Documento | Mestrado |
Área | Métodos Numéricos |
Data da defesa | 05/04/2017 |
Autor | ANDRADE, Heider de Castro e |
Orientador | LEONEL, Edson Denner |
Português | |
Título | Análise da propagação de fissuras em estruturas bidimensionais não-homogêneas via Método dos Elementos de Contorno |
Resumo
Este trabalho apresenta um modelo numérico para a análise da propagação de fissuras em estruturas bidimensionais não-homogêneas. O comportamento mecânico é simulado a partir da formulação elastostática do Método dos Elementos de Contorno (MEC) aplicada a materiais isotrópicos. O MEC é uma eficiente e robusta técnica numérica para análises de propagação de fissuras. A não exigência de uma malha de domínio pelo método permite uma representação precisa da concentração de tensão nas pontas. Além disso, a redução da dimensionalidade proporcionada pelo MEC facilita o processo de remalhamento durante o crescimento das fissuras. A formulação dual do MEC é adotada, na qual as equações integrais singular e hipersingular são aplicadas. A modelagem de domínios não-homogêneos é realizada a partir da técnica de sub-regiões. A Mecânica da Fratura Elástico-Linear (MFEL) é aplicada para a análise da fratura em materiais frágeis. Os fatores de intensidade de tensão são determinados a partir da integral-J e a teoria da máxima tensão circunferencial é adotada para definir a direção de propagação das fissuras e o fator de intensidade de tensão equivalente. Problemas envolvendo fraturamento hidráulico também são investigados a partir da aplicação da MFEL. A integral-J é modificada para a consideração da pressão hidrostática atuante sobre as faces da fissura. Estruturas sujeitas à fadiga de alto ciclo também são avaliadas. A lei de Paris é utilizada para a estimativa da taxa de crescimento das fissuras. O último tipo de problema considerado é a fratura em materiais quase-frágeis. O modelo de fissura coesiva é empregado para a representação do comportamento não-linear físico próximo à ponta. O sistema de equações não-linear obtido é resolvido a partir de um algoritmo iterativo denominado operador constante. O estado de tensão na ponta, determinado por extrapolação, é utilizado para a verificação da estabilidade à propagação e o caminho de crescimento é definido a partir da formulação da MFEL. São observadas boas correspondências entre os resultados obtidos e as respostas encontradas na literatura, indicando a eficiência e a robustez do código computacional proposto. Melhorias do modelo numérico implementado também são discutidas.
|
|
Palavras-chave | Método dos Elementos de Contorno, Mecânica da Fratura, Propagação de Múltiplas Fissuras, Domínios Não-Homogêneos. |
English | |
Title | Crack propagation analysis in non-homogeneous two-dimensional structures using the Boundary Element Method. |
Abstract
This work presents a numerical approach for crack propagation modelling in non-homogeneous two-dimensional structures. The mechanical structural behaviour is simulated using the elastostatic formulation of the Boundary Element Method (BEM) applied to isotropic materials. The BEM is an efficient and robust numerical technique for crack propagation analyses. The non-requirement of a domain mesh enables the BEM for accurately quantifying the stresses concentration at the crack tip. Moreover, the mesh dimension reduction provided by the BEM makes the remeshing procedures during crack growth a less complex task. The dual BEM formulation is adopted, in which singular and hypersingular integral equations are applied. The non-homogeneous domains are modelled using the sub-region technique. The Linear Elastic Fracture Mechanics (LEFM) is applied to analyze the fracture in brittle materials. The stress intensity factors are evaluated through the J-integral and the maximum circumferential stress theory is adopted to define the crack propagation angle and the equivalent stress intensity factor. Problems involving hydraulic fracture (fracking) are also investigated applying the LEFM. A modified J-integral scheme is implemented to consider the hydrostatic pressure acting at the crack faces. Structures subjected to high-cycle fatigue are also addressed. The Paris’ law is used to estimate the crack growth rate. The last type of problem considered is the fracture in quasi-brittle materials. The cohesive crack model is used to represent the material nonlinear behaviour next to the crack tip. The nonlinear system of equations obtained is solved by an iterative algorithm named constant operator. The state of stress at the tip, obtained by extrapolation, is used to verify crack growth stability and the crack path is defined by the LEFM formulation. Good agreement is observed among the results achieved by the BEM model and the responses available in literature, showing the efficiency and robustness of the proposed numerical scheme. Further improvements of the BEM code are also discussed.
|
|
Keywords | Boundary Element Method, Fracture Mechanics, Multiple Crack Propagation, Non-Homogeneous Domains. |