
A constrained minimization theory to prevent 
self-intersection in hyperelastic solids

Lucas Almeida Rocha
Tese de Doutorado do Programa de Pós-Graduação em Engenharia Civil 
(Engenharia de Estruturas) da Escola de Engenharia de São Carlos, 
Universidade de São Paulo.

Uma teoria de minimização com restrição para impedir 
auto-intersecção em sólidos hiperelásticos



 



Lucas Almeida Rocha

A constrained minimization theory to prevent
self-intersection in hyperelastic solids

CORRECTED VERSION
The original version is available at the São Carlos School of Engineering

Thesis presented to the São Carlos School of
Engineering of the University of São Paulo
in partial fulfillment of the requirements for
the degree of Doctor of Science in Civil
Engineering (Structural Engineering).

Research area: Structures

Advisor: Prof. Dr. Adair Roberto Aguiar

São Carlos
2025



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I AUTHORIZE TOTAL OR PARTIAL REPRODUCTION OF THIS WORK BY 
ANY CONVENTIONAL OR ELECTRONIC MEANS, FOR RESEARCH 
PURPOSES, SO LONG AS THE SOURCE IS CITED. 

Index card prepared by User Service at “Prof. Dr. Sergio 
Rodrigues Fontes Library” at EESC/USP 

 

 

 

 Rocha, Lucas Almeida 

R672c    A constrained minimization theory to prevent self-

intersection in hyperelastic solids / Lucas Almeida 

Rocha; advisor Adair Roberto Aguiar. -- São Carlos, 2025. 

 

 

    Doctoral (Dissertation) - Graduate Program in 

Structural Engineering and Research area in Structures -- 

São Carlos School of Engineering, at University of São 

Paulo, 2025. 

  

 

    1. Nonlinear elasticity. 2. Orthotropy. 3. Phase-plane 

analysis. 4. Finite element method. 5. Constrained 

minimization. I. Título. 

 

 

 

Prepared by Eduardo Graziosi Silva- CRB-8/8907 





 



ACKNOWLEDGEMENTS

First of all, I would like to thank my parents and my brother for their unconditional
support throughout my life.

I am also grateful to my advisor Professor Adair Roberto Aguiar. I deeply appreciate
his guidance and the opportunity to work with him.

My friends deserve my gratitude for all the discussions we had as well as distractions
that made these past years much more pleasant.

I express my gratitude to the staff of the Department of Structural Engineering of
EESC/USP for the assistance provided.

Last but not least, I acknowledge the financial supporters of this work. This study
was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior –
Brasil (CAPES) – Finance Code 001 and by the São Paulo Research Foundation (FAPESP),
grant n◦ 2022/07083-8.





ABSTRACT

Rocha, L. A. A constrained minimization theory to prevent self-intersection in
hyperelastic solids. 2025. Thesis (PhD) - São Carlos School of Engineering, University
of São Paulo, São Carlos, 2025.

The classical linear elasticity theory predicts self-intersection in the neighborhood of
interior points of anisotropic solids, crack tips, and corners. This physically unrealistic
behavior is characterized by the violation of the local injectivity condition J > 0, where
J is the determinant of the deformation gradient. One way to impose this condition
consists of minimizing the total potential energy of an elastic solid subjected to the
constraint J ≥ ε > 0, where ε is a small positive parameter. In the context of the
classical linear elasticity theory, this approach was successfully used to eliminate the
anomalous self-intersecting behavior. The resulting constrained linear theory gives rise to
large deformations inside the solid, which is in contradiction to the basic assumption of
infinitesimal strains of the classical linear theory. In this work, we present a constrained
minimization theory for hyperelastic solids undergoing finite deformations and derive
necessary conditions for a deformation field to be a minimizer. We then apply this
formulation in the analysis of equilibrium of an annular disk made of an orthotropic St
Venant-Kirchhoff material. This material is a natural constitutive extension of its classical
linear counterpart. The disk is fixed on its inner surface and compressed by a constant
pressure on its outer surface. The analysis of equilibrium of a solid disk is obtained by
letting the inner radius tend to zero. The disk problem is formulated as both a boundary
value problem (disk BVP) and a minimization problem (disk MP), and these problems
are solved in the context of both the classical nonlinear theory, for which the condition
J > 0 is not imposed, and the constrained nonlinear theory, for which J > 0 is imposed.
In the context of the classical nonlinear theory, we find that there is a critical pressure p̄,
which tends to zero as the inner radius of the disk tends to zero, above which a solution of
either problem becomes non-smooth and predicts J ≤ 0. In addition, p̄ is smaller than
its counterpart from the classical linear theory and, therefore, serves as an upper bound
below which this linear theory is valid. In the context of the constrained nonlinear theory,
the solutions of both the disk BVP and MP agree very well and satisfy all the necessary
conditions for a minimizer, including the injectivity condition. Finally, these results are
also in very good agreement with their counterpart obtained in the context of the classical
nonlinear elasticity for a disk made of an orthotropic and compressible Mooney-Rivlin
material; in particular, when the parameter ε tends to zero.

Keywords: Nonlinear elasticity. Orthotropy. Phase-plane analysis. Finite element method.
Constrained minimization.





RESUMO

Rocha, L. A. Uma teoria de minimização com restrição para impedir
auto-intersecção em sólidos hiperelásticos. 2025. Tese (Doutorado) - Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2025.

A teoria de elasticidade linear clássica prediz auto-intersecção em vizinhanças de pontos
interiores de sólidos anisotrópicos, em pontas de trincas e em cantos. Esse comportamento
fisicamente inadmissível é caracterizado pela violação da restrição de injetividade local
J > 0, em que J é o determinante do gradiente de deformação. Uma forma de impor essa
condição consiste em minimizar o potencial total de energia de um sólido elástico sujeito à
restrição J ≥ ε > 0, em que ε é um parâmetro pequeno e positivo. No contexto da teoria
de elasticidade linear clássica, essa abordagem foi utilizada para eliminar com sucesso a
auto-intersecção. Essa teoria linear com restrição resulta em deformações elevadas o que
contradiz a hipótese básica de deformações infinitesimais da teoria linear clássica. Neste
trabalho, apresentamos uma teoria de minimização com restrição para sólidos hiperelásticos
sujeitos a deformações finitas e obtemos condições necessárias para que um campo de
deformação seja um minimizador. Aplicamos essa formulação na análise do equilíbrio de
um disco anelar feito de um material de St Venant-Kirchhoff ortotrópico. Esse material
corresponde a uma extensão natural de um material elástico linear. A superfície interna
do disco está fixa e a externa está comprimida por uma pressão uniforme. A análise de
equilíbrio de um disco sólido é obtida no caso limite do raio interno tendendo a zero. O
problema do disco é formulado como um problema de valor de contorno (PVC do disco) e
um problema de minimização (PM do disco). Esses problemas são resolvidos no contexto
da teoria de elasticidade não linear clássica, em que J > 0 não é imposto, e da teoria
não linear com restrição, em que J > 0 é imposto. No contexto da elasticidade não linear
clássica, determinamos uma pressão crítica p̄, que tende a zero à medida que o raio interno
tende a zero, acima do qual as soluções de ambos os problemas se tornam não suaves e
predizem J ≤ 0. p̄ é menor que seu valor correspondente predito pela elasticidade linear
clássica e, portanto, é um limite superior abaixo do qual a teoria linear é válida. No
contexto da teoria não linear com restrição, as soluções do PVC e do PM do disco estão
de muito bom acordo e satisfazem todas as condições necessárias para mínimo, incluindo
a condição de injetividade local. Por fim, esses resultados também estão de muito bom
acordo com resultados análogos obtidos no contexto da teoria de elasticidade não linear
clássica para um disco feito de um material de Mooney-Rivlin compressível e ortotrópico;
em particular, quando o parâmetro ε tende a zero.

Palavras-chave: Elasticidade não linear. Ortotropia. Análise de plano de fase. Método
dos elementos finitos. Minimização com restrição.
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1 INTRODUCTION

1.1 Presentation and motivation

We are interested in singular points where there is an abrupt change of geometry,
material properties, and boundary conditions. Crack tips, points on the interface between
different materials, and interior points in anisotropic solids are typical examples of singular
points. From an experimental point of view, large values of stress may occur in these
points and cause the growth of cracks and debonding of interfaces between different
materials, such as those found in films and substrates or welding and bimetallic joints.
From a theoretical point of view, the linear elasticity theory may predict self-intersection,
or material overlapping, in a neighborhood of the singular points, which is not physically
admissible.

Fosdick and Royer-Carfagni (2001) proposed a constrained minimization theory,
which is based on the minimization of the total potential energy functional E of the classical
linear elasticity theory subjected to the constraint J > 0, where J is the determinant of
the deformation gradient. This constrained minimization theory can properly represent
the nonlinear constraint J > 0, whose imposition gives rise to reactive forces that prevent
the material from overlapping itself. However, self-intersection is associated with large
deformations that violate the hypothesis of infinitesimal strains upon which the linear
elasticity theory is based. Therefore, in this work, we extend this constrained theory to the
nonlinear elasticity theory by considering E as the total potential energy of a hyperelastic
material.

We apply this theory to a relevant problem in engineering that has a non-
homogeneous solution and, yet, is amenable to analysis. The problem consists of an
elastic annular disk with uniform thickness in equilibrium in the absence of body force.
The disk is fixed on its inner surface of radius Ri ≥ 0 and compressed by a constant
and uniform pressure p > 0 on the deformed configuration of its outer surface of radius
Re > Ri. The disk is made of an orthotropic material.

In the context of the classical linear elasticity theory, the solution of the disk
problem is unique and, for Ri = 0, predicts that the stresses go monotonically to minus
infinity as we approach the center of the disk, even for small values of p, when the stiffness
in the radial direction is greater than the stiffness in the tangential direction (Lekhnitskii,
1968). This type of material property is found in carbon fibers with radial microstructure
(Christensen, 1994) and in certain types of wood (Forest Products Laboratory, 2010).

Fosdick and Royer-Carfagni (2001) found that, in addition to stress singularities,
Lekhnitskii’s solution predicts self-intersection in a neighborhood of the center of the disk.
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To prevent this anomalous behavior, the authors minimize the total potential energy of
the linear elasticity theory subjected to the local injectivity condition J > 0. The authors
found an analytical solution that does not exhibit self-intersection. Later, Aguiar, Fosdick
and Sanchez (2008) considered the case Ri > 0 and showed that the solution of the linear
elasticity theory predicts self-intersection if the pressure is greater than a certain value.
Then, in the context of the constrained minimization theory of Fosdick and Royer-Carfagni
(2001), the authors obtained an analytical solution that does not predict this anomalous
behavior. They also proposed a numerical method based on a penalty formulation, which
can be used to treat more general problems, and obtained sequences of numerical solutions
that converge to the analytical solution.

The solutions reported above correspond to radial displacements only. However,
in view of the constraint J > 0, the constrained minimization theory is highly nonlinear
and may predict more than one solution. Fosdick, Freddi and Royer-Carfagni (2008)
and Aguiar and Rocha (2021) considered the case Ri = 0 and obtained numerical and
analytical solutions corresponding to a displacement field having both radial and tangential
displacements not null. In addition, this secondary solution corresponds to a lower energy
level when compared to the primary solution, which has null tangential displacements.

In the context of the nonlinear elasticity theory, Antman and Negrón-Marrero
(1987) studied the disk problem in the case Ri = 0 and showed that, for a certain class of
materials, the stress goes monotonically to minus infinity at the center of the disk if the
material is radially reinforced. This result indicates that the stress singularity observed in
the Lekhnitskii’s solution is not an artifact of the linear elasticity theory, but it is intrinsic
to radially reinforced materials.

In Chapter 3, we extend the constrained minimization theory of Fosdick and Royer-
Carfagni (2001) to the nonlinear elasticity theory. In Chapter 4, we study the disk problem
in the context of the classical nonlinear elasticity theory, that is, we do not impose the local
injectivity condition. We use an orthotropic St Venant-Kirchhoff material model, which
corresponds to a natural constitutive extension of the linear to the nonlinear elasticity
theory and a first-order approximation of hyperelastic materials with the same material
symmetry. For comparison purposes, we also consider an orthotropic and compressible
Mooney-Rivlin material.

In Chapter 5, we use the constrained nonlinear theory developed in Chapter 3 to
impose the local injectivity condition J > 0 in the disk problem using the orthotropic St
Venant-Kirchhoff model. We obtain physically plausible solutions, which are in very good
agreement with the solutions obtained with the orthotropic and compressible Mooney-
Rivlin material. It is known that penalty formulations are susceptible to numerical errors
caused by ill-conditioned systems. For this reason, we impose the constraint J > 0 using
both penalty and augmented Lagrangian formulations and compare the results obtained
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from both formulations. In Chapter 6, we present some concluding remarks and ideas for
future investigations.

1.2 Objectives

We use analytical and numerical methods to investigate the mechanical behavior of
anisotropic elastic solids near singular points. In particular, we extend our studies of the
constrained minimization theory based on the classical linear elasticity to the nonlinear
elasticity theory. As an example of application, we investigate the equilibrium problem of
an annular disk with uniform thickness in the absence of body force. The disk is fixed on
its inner surface of radius Ri and is compressed by a uniform pressure p on the deformed
configuration of its outer surface of radius Re. The disk is made of an orthotropic material,
that is stiffer in the radial direction than in the tangential direction. Below we list some
specific objectives.

1. Determine necessary conditions that a minimizer of the total potential energy
functional of an hyperelastic material subjected to the local injectivity constraint
must satisfy. These conditions are compared with those obtained by Fosdick and
Royer-Carfagni (2001) for a linear elastic material.

2. Use an orthotropic St Venant-Kirchhoff model to investigate the disk problem. We
obtain results that can be compared with results reported by Aguiar, Fosdick and
Sanchez (2008) in the context of the classical linear elasticity theory. In Section
4.3, we find that there is a pressure p̄ above which the solution of the disk problem
predicts self-intersection and a jump in the deformation gradient.

3. Impose the local injectivity constraint J > 0 in the orthotropic St Venant-Kirchhoff
model to obtain solutions of the disk problem that do not predict self-intersection
for any value of p. For that, we use both a penalty and an augmented Lagrangian
formulation, and compare the results obtained with both formulations. We obtain
physically plausible deformation fields, which may not be smooth.

4. Use an alternative hyperelastic model with a strain energy function that goes to
infinity as J → 0; more specifically, a compressible Mooney-Rivlin material extended
to the orthotropic case. We obtain solutions that do not violate the injectivity
constraint and compare them with the corresponding results of the previous specific
objective.

1.3 Structure of the thesis

In Chapter 2, we review the literature on the disk problem in the context of both
linear and nonlinear elasticity theories, where, for the former, we include results concerning
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the imposition of the constraint J > 0. In view of the non-smoothness found in the solution
of the disk problem, which is presented in Section 4.3, we also review works that deal with
topics such as ellipticity conditions and non-monotonic stress-strain relations.

In Chapter 3, we present background material on concepts of continuum mechanics
and nonlinear elasticity theory that are relevant in this work. In addition, we extend the
constrained minimization theory to the nonlinear case. We derive necessary conditions for
a deformation field to be a minimizer of the energy functional, which include traction con-
tinuity and dissipation-free conditions across a surface of discontinuity of the deformation
gradient.

In Chapter 4, we present results concerning the disk problem in the context of
the classical nonlinear elasticity theory. In Section 4.1, we formulate the disk problem
as both boundary value and minimization problems. In Section 4.2, we investigate some
constitutive aspects and apply some of the results presented in Chapter 3 regarding the
ellipticity of the equilibrium equations and the stability of non-smooth deformation fields.
In Section 4.3, we study the disk boundary value problem using a phase-plane technique.
We find that there is a value of pressure p̄ above which the solution of the disk problem is
non-smooth and predicts self-intersection. In Section 4.4, we solve the disk minimization
problem using standard tools of nonlinear programming. In view of the discontinuity of
the deformation gradient, we include the position of the discontinuity as a variable of the
problem in addition to the degrees of freedom of the displacement field.

In Chapter 5, we apply the constrained nonlinear theory to the disk problem.
In Section 5.1, we formulate the constrained disk problem as both boundary value and
minimization problems. In Section 5.2, we adapt the phase-plane technique of Section 4.3
to the constrained nonlinear theory. In addition, we study the constrained disk boundary
value problem analytically in the region where the constraint is active. In Section 5.3, we
adapt the numerical procedure of Section 4.4 to impose the local injectivity constraint.
We use and compare both penalty and augmented Lagrangian formulations. In addition,
we find that the classical nonlinear elasticity and the constrained nonlinear theory yield
solutions that are in very good agreement.

In Chapter 6, we present some final considerations, including topics for further
investigations.
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2 LITERATURE REVIEW

In this chapter, we review the literature on the constrained minimization theory,
the disk problem in the context of both the linear and nonlinear theory of elasticity, and
constitutive relations considered in this work.

In the context of the classical linear elasticity theory, Lekhnitskii (1968) studied
the problem of a homogeneous cylindrically orthotropic disk in equilibrium without body
force and compressed along its boundary by a uniform pressure. The author obtained a
solution that predicts stress singularity in the center of the disk for any value of pressure
when the elastic constant in the radial direction is greater than the elastic constant in the
tangential direction. This type of material property is found in carbon fibers with radial
microstructure (Christensen, 1994), fiber-reinforced composites (Daniel; Ishai, 2006), and
some types of wood (Forest Products Laboratory, 2010).

Carbon fibers and fiber-reinforced composites are employed by many industries,
such as aerospace, automotive, construction, energy, medical, and sport industries, because
of their mechanical, thermal, and electrical properties. Stiffer response in the radial
direction than in the tangential direction is obtained by the alignment of stiff fibers along
the radial direction in the case of fiber-reinforced composites (Daniel; Ishai, 2006). For
carbon fibers, such a relation is obtained from the alignment of the basal planes of the
graphite crystals along the radial direction (Huang, 2009; Christensen, 1994).

The Lekhnitskii’s solution predicts not only stress concentration but also self-
intersection, as shown by Fosdick and Royer-Carfagni (2001). More precisely, there is a
region around the center of the disk where the determinant of the deformation gradient is
not positive, which, of course, has no physical meaning. One way to prevent self-intersection
in elasticity consists of treating the local injectivity condition det F > 0, where F is the
deformation gradient, via convexity and coercivity conditions that entail unbounded growth
of energy as det F approaches zero. For nonlinear elastic materials and provided that these
conditions hold, Ball’s theorem (Ball, 1976; Ciarlet, 1988) guarantees the existence of
minimizers of the total potential energy that satisfy det F > 0.

Fosdick and Royer-Carfagni (2001) took another route and proposed a constrained
minimization theory according to which the displacement field is determined by minimizing
the total potential energy of the classical linear elasticity theory subjected to the constraint
that the determinant of the deformation gradient must not be less than a small positive
parameter. The authors proved an existence theorem for such minimizers and obtained a
solution for the Lekhnitskii’s disk problem that does not predict self-intersection.

Aguiar, Fosdick and Sanchez (2008) investigated the Lekhnitskii’s disk problem
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in the case of a disk that has a concentric circular opening of radius Ri. In the context
of the classical linear elasticity theory, the authors found that, even though the stresses
remain bounded, the solution of this problem predicts self-intersection near the inner
radius if the pressure applied on the outer radius is large enough. Then, the authors
considered this problem in the context of the constrained minimization theory of Fosdick
and Royer-Carfagni (2001) and determined an analytical solution that does not predict
self-intersection. The authors also obtained sequences of numerical solutions that converge
to this analytical solution. Two different numerical procedures based on interior and
exterior penalty formulations were used. The former constructs a sequence of functions
that approaches the solution from within the set of admissible solutions, whereas, in
the latter, the corresponding sequence approaches the solution from the outside of the
admissible set.

Obeidat et al. (2001) proposed a numerical approach based on the variational
form of the equilibrium equation of the solid disk problem. They solved this problem
using a carefully designed algorithm that is difficult to implement when the region where
the constraint is active is not known in advance. The interior penalty formulation was
introduced by Aguiar (2006) in the solution of the problem of a spherically anisotropic
solid sphere subjected to a uniform pressure in the context of the constrained minimization
theory. In the context of the classical linear elasticity, this problem may also predict
self-intersection, as reported by Ting (1998).

In the works mentioned above, the authors searched for a radially symmetric
displacement field, in the sense that, it has only the radial component and it depends only
on the radius. In the classical linear elasticity theory, this solution is unique; in the context
of the in constrained minimization theory, however, it may not be so.

Fosdick, Freddi and Royer-Carfagni (2008) used a bi-dimensional finite element
mesh and the penalty formulation of Aguiar (2006) to present a numerical solution, in
the context of the constrained minimization theory, that does not predict overlapping
and is not radially symmetric. When the shearing modulus is sufficiently small, there is
a secondary solution that bifurcates from the radially symmetric solution obtained by
Fosdick and Royer-Carfagni (2001). There is a region around the center of the disk where
undeformed radial lines are deformed into spiral lines. The authors, however, did not
present convergence results.

Recently, Aguiar and Rocha (2021) investigated the non-uniqueness of the solution
of Lekhnitskii’s problem in the context of the constrained minimization theory. The authors
used a semi-analytic approach to obtain a rotationally symmetric solution, in the sense
that, the displacement field depends only on the radius and has both radial and tangential
components. This solution has similarities with the computational results of Fosdick,
Freddi and Royer-Carfagni (2008), such as the rotation of a central region of the solid, but
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also some differences; for instance, in the rotationally symmetric solution, the tangential
displacement is a linear function of the radius near the center of the disk. Aguiar and Rocha
(2021) also used sequences of bi-dimensional finite element meshes to obtain numerical
solutions that converge to the rotationally symmetric solution.

We see from above that the imposition of the local injective constraint using a
linearly elastic material induces reactive internal forces that prevent the solid from inter-
secting itself. Self-intersection, however, is associated with large strains, which contradicts
the basic assumption of infinitesimal strains of the linear elasticity theory. Therefore, it is
natural to study the disk problem in the context of the nonlinear elasticity theory.

Antman and Negrón-Marrero (1987) considered the problem of a cylindrically
anisotropic solid cylinder subjected to a uniform pressure on its outer radius in the context
of the nonlinear elasticity theory. Under some physically motivated assumptions for the
response of the material, the authors show that the stress is a monotonic function of the
radius and goes to minus infinity at the center of the cylinder if the material is radially
reinforced. Therefore, the unbounded stress predicted by the Lekhnitskii’s solution is not
an artifact of the linear theory, but intrinsic to radially reinforced materials. To obtain
this result, the authors rewrote the equation of equilibrium as a system of autonomous
equations and used a phase-plane technique to study the solutions of the considered
problem. In Sections 4.3 and 5.2.2, we use a similar technique to find the solution of the
disk problem.

Stepanov and Antman (2016) studied radially symmetric deformations in annular
cylinders and spherical shells. The authors used different mathematical tools, such as
phase-plane analysis, direct methods of the calculus of variations, fixed-point theorems,
and global continuation methods to investigate the existence, multiplicity, and qualitative
behavior of solutions when the solid is subjected to different types of boundary conditions.
The authors pointed out the advantages and disadvantages of each mathematical tool. For
the considered problems, the phase-plane technique provided detailed qualitative behavior,
addressing questions regarding the existence and uniqueness of solutions and the presence
of extrema of strain and stress. As a disadvantage, the phase-plane technique is limited to
homogeneous materials, unless a more complex version of the method is used.

A topic of great importance in the nonlinear elasticity theory is the ellipticity
of the equilibrium equations. In the linear elasticity theory, ellipticity is guaranteed if
the material constants satisfy certain relations such as, in the isotropic case, µ > 0 and
Λ + 2µ > 0, where Λ e µ are the first and second Lamé constants, respectively (Gurtin,
1973). In the nonlinear elasticity theory, ellipticity conditions depend on both the material
constants and the deformation.

Aguiar (2019) obtained necessary and sufficient conditions for the strong ellipticity
of the equilibrium equations governing finite plane deformations of a class of orthotropic
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and compressible hyperelastic solids. The ellipticity conditions of the classical linear
elasticity theory of orthotropic solids were recovered as a particular case.

Merodio and Ogden (2005) studied the loss of ellipticity of the equations of
equilibrium for fiber-reinforced nonlinear elastic materials. The authors associated fiber
failure with the loss of ellipticity. El Hamdaoui, Merodio and Ogden (2015) studied the
equilibrium of a circular cylindrical tube made of a fiber-reinforced nonlinear elastic
material that undergoes certain combinations of axial stretch, inflation, and helical shear
deformations. The authors used a neo-Hookean isotropic model augmented by a standard
reinforcement model, which accounts for fiber stretching only. In the case of a cylinder
reinforced with radial fibers under inflation, the authors concluded that the stronger
the anisotropy, the smaller the deformation required for loss of ellipticity. El Hamdaoui,
Merodio and Ogden (2018) replaced the standard reinforcement model with a model
that, in addition to fiber stretching, also accounts for fiber shearing. In the case of radial
fibers, the authors showed that shearing delays the loss of ellipticity associated with fiber
contraction.

Merodio, Saccomandi and Sgura (2007) used the neo-Hookean and standard rein-
forcement models to study the problem of rectilinear shear of a fiber-reinforced slab. The
authors found that the deformation gradient has a finite jump discontinuity in an interior
surface of the slab when the amount of shear is sufficiently large and contracts the fibers.
At this discontinuity, the leading term of the equilibrium equation is null, and the second
derivative of the displacement is unbounded. The loss of ellipticity was also verified. As
noted by Baek and Pence (2010), in this situation, the fiber goes through three different
stages of deformation as the shear increases. First, it shortens until it reaches a minimum
length, then it relaxes until it recovers its original length, and finally, it elongates. In the
second state, the energy stored in the fibers is released, which may cause the shear stress
to be a non-monotonic function of the amount of shear.

Both loss of ellipticity and non-monotonic stress-strain relations are associated with
discontinuous deformation gradients. Knowles and Sternberg (1978) and Gurtin (1986)
showed that the loss of ellipticity of the equilibrium equations at some deformation is a
necessary condition for the existence of a deformed state with a finite jump in its gradient.
Ericksen (1975) considered the problem of equilibrium of a unidimensional bar made of a
material with a non-monotonic stress-strain relation. The author showed that this kind of
constitutive relation results in a problem with infinite solutions because the strain at any
point of the bar may assume more than one value. An energy criterion was used to render
the solution unique for all, except one critical value of loading for which the strain in the
bar can assume two different values, which correspond to two equally stable deformed
states according to the adopted energy criterion.

Abeyaratne (1981) studied the problem of an annular cylinder fixed on its outer



25

surface and subjected to a prescribed twist ϕ0 on its inner surface. The cylinder is made of
an incompressible isotropic material with a non-monotonic relation between shear stress
and the amount of shear. The author showed that there are values 0 < ϕ1 < ϕ2 < ϕ3 <

ϕ4 < ϕ5 < ϕ6 such that: (i) if |ϕ0| ∈ (0, ϕ1) ∪ (ϕ6,∞), there is a unique solution, which is
smooth, (ii) if |ϕ0| ∈ (ϕ2, ϕ3) ∪ (ϕ4, ϕ5), there is an infinite number of solutions, which are
all non-smooth, and (iii) if |ϕ0| ∈ (ϕ1, ϕ2) ∪ (ϕ3, ϕ4) ∪ (ϕ5, ϕ6), there is an infinite number
of solutions, one of which is smooth whereas the others are non-smooth. The author has
used an energy minimization criterion to render the solution unique for |ϕ0| ∈ (ϕ1, ϕ6).
The corresponding deformation gradient is continuous everywhere, except at a cylindrical
surface internal to the cylinder, where it has a finite jump. Abeyaratne (1983) obtained
necessary conditions for a non-smooth deformation field to be a minimizer of the total
potential energy functional, which include continuity conditions across the surface of
discontinuity of the deformation gradient.

Fosdick and Macsithigh (1986) investigated a problem similar to that of Abeyaratne
(1981). The authors adopted a more general form for the displacement field and formulated
the problem as a minimization problem. The authors found that the minimizer may have
a finite jump in its gradient in a cylindrical surface internal to the cylinder if the twist
belongs to a certain interval. Tommasi et al. (2001) also used a minimization approach to
study non-smooth deformation fields in solids. The authors considered the problem of a
rectangular cylinder subjected to dead-load surface traction composed of an incompressible
isotropic material similar to that of Fosdick and Macsithigh (1986). They showed that the
stable deformation field may be non-smooth depending on the applied surface forces.

A non-monotonic relation between stress and strain can model crystalline materials
that may exist in more than one crystal structure, which is referred to as phase. Examples
of such materials include the shape memory alloy NiTi, the ferroelectric alloy BaTiO3,
the ferromagnetic alloy FeNi, and the high-temperature superconducting ceramic alloy
ErRh4B4. In this type of material, changes in the temperature and stress conditions can
transform the material abruptly into a different phase. In the context of thermal variations,
the phase preferable at low temperatures is called the martensitic phase, and the one
preferable at high temperatures is called the austenitic phase. In the context of stress
variations, the phases are referred to as low and high strain phases. In addition, these
solid-solid transformations represent a particular case of more general phase transitions,
which also include, for instance, liquid-solid transformations such as in a solidification
process. (Abeyaratne; Knowles, 2006).

Non-monotonic stress-strain relations are also used to model strain localization
associated with plasticity. Froli and Royer-Carfagni (2000) proposed a unidimensional
model composed of elementary units. These units are composed of springs and frictional
sliding blocks in such a way that the force-displacement response of the unit is non-
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monotonic. The authors used this model to numerically reproduce their experimental
results obtained previously (Froli; Royer-Carfagni, 1999) by carrying out a displacement-
controlled tensile test on a steel bar. Froli and Royer-Carfagni (1999) used strain gauges
along the bar to measure the local strain at different positions. The average stress-strain
curve was also plotted. The authors identified three different stages as the load increases.
First, all gauges recorded the same local strain and the average stress-strain response
was linear. Then, the gauges gradually recorded finite jumps in the local strain followed
by an approximately constant local strain. This second stage corresponds to the plastic
plateau of the average stress-strain curve. Then, in the third stage, the recorded local
strains increased again.

From the above discussion, we see that the choice of the material model is not
trivial in the nonlinear elasticity theory. One of the simplest models is the St Venant-
Kirchhoff material, which is isotropic and corresponds to a linear relation between the
second Piola-Kirchhoff stress tensor and the Green-St Venant strain tensor.

Batra (2001) studied the behavior of the St Venant-Kirchhoff model under different
homogeneous deformations. In simple extension, the relation between the axial load and the
axial stretch ϵ is non-monotonic with an extremum point at ϵ =

√
3/3, independently of the

material constants. The load-stretch curves resulting from the biaxial and triaxial loading
of a membrane and a cube, respectively, also present an extremum point at ϵ =

√
3/3. In

the case of simple shear, the shear stress monotonically increases with the shear strain.

The classical St Venant-Kirchhoff material, which is isotropic, can be extended to
the anisotropic case. According to Bonet and Burton (1998), the anisotropic St Venant-
Kirchhoff material model is simple to implement in finite element codes. However, as
indicated by a numerical experiment, it is not adequate for problems involving large
deformations since the determinant of the deformation gradient may assume negative
values. This is expected since the strain energy function of this material remains finite
as the determinant of the deformation gradient tends to zero. Nevertheless, this material
is commonly used in the literature. Lewandowski and Stupkiewicz (2018) studied the
wedge indentation of a single nickel crystal using a crystal plasticity model, whose elastic
response is governed by an anisotropic St Venant-Kirchhoff model. This material model
was also used by Yamashita, Jayakumar and Sugiyama (2016) to study the multi-layer
fiber-reinforced rubber for steel belt and carcass layers in tires, by Eik, Puttonen and
Herrmann (2015) to study constitutive relations for steel fiber reinforced concrete, and by
Vu-Quoc and Tan (2003) to model the behavior of multilayered composites. Arndt et al.
(2006) compared experimental results of compression tests on NiMnGa single crystals with
numerical results. To model the martensitic transformation in the crystal, the authors used
a free energy composed of the strain energy function of the anisotropic St Venant-Kirchhoff
model and a term that depends on the temperature.
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Materials that are more adequate to model large deformations must satisfy some
growth conditions that are associated with the idea that extreme deformations must
correspond to extreme stresses. A way of defining anisotropic hyperelastic models consist
of defining its strain energy function W as the sum of both an isotropic and an anisotropic
part, that is, W = Wiso +Waniso. For Wiso, it is common to adopt the strain energy function
of an isotropic material, such as the Neo-Hookean or the Mooney-Rivlin material, since
they have appropriate growth properties. For Waniso, it depends on the material symmetry;
we comment on some models of the literature for transversely isotropic materials.

Bonet and Burton (1998) defined a transversely isotropic material as a compressible
Neo-Hookean material augmented with the anisotropic part of a transversely isotropic
St Venant-Kirchhoff material. In their studies, this material yielded physically plausible
results in simulations where the St Venant-Kirchhoff material did not. In addition, its
isotropic part can be replaced with more complex models, such as a Mooney-Rivlin or
an Ogden material. In Section 3.3, we use this approach to define an orthotropic and
compressible Mooney-Rivlin material.

Another common choice for Waniso is the standard reinforcement model, which is a
simple model that accounts only for the stretch in the direction of the symmetry of the
material. Thinking of transversely isotropic materials as composites made of a matrix
reinforced with uni-directional fibers, the standard reinforcement model is associated with
the idea that the contribution of the fibers comes from their stretch only. Although the
simplicity of this model allows for more analytical calculations, Murphy (2013) noted that
this model imply that, for infinitesimal deformations, the shear moduli in the direction of
the fiber and perpendicular to the fiber are the same if we assume that the undeformed
reference configuration is stress-free. This relation is not observed for transversely isotropic
materials, such as some soft tissues and fiber-reinforced composites, as can be seen from
Tables 1 and 2 of Murphy (2013) and Table A.6 of Daniel and Ishai (2006).

It is also possible to define models based on some particular properties. For instance,
Ball’s theorem (Ball, 1976; Ciarlet, 1988) proves the existence of solutions for displacement-
traction problems provided that the strain energy function is polyconvex and satisfy some
growth conditions. Itskov and Aksel (2004) defined a class of transversely isotropic models
that satisfies these properties. Schröder and Neff (2003) (see also Schröder (2010)) proposed
a simple way to create polyconvex strain energy functions. These models yield stress-
strain relations that are more complex to handle analytically than the models mentioned
previously. In addition, for these models to be polyconvex, its material parameters, which
are related to the elastic constants of the classical linear elasticity, must satisfy some
relations. These relations are not satisfied for any plausible elastic constants.

In this work, we propose a constrained minimization theory in nonlinear elasticity,
which represents an extension of the constrained minimization theory of Fosdick and Royer-
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Carfagni (2001), who have used the generalized Hooke’s law. We determine necessary
conditions that a minimizer must satisfy and, as an example of application, we consider
the equilibrium problem of an annular disk made of an orthotropic St Venant-Kirchhoff
material under external pressure. In Section 4.2, we show that the relation between the
radial normal stress and the radial stretch may be non-monotonic, in analogy to the
non-monotonic behavior reported by Batra (2001) with the isotropic St Venant-Kirchhoff
material. In Section 4.3, we will see that, when the pressure exceeds a critical value, the
solution of the disk problem predicts self-intersection and a jump discontinuity in the
deformation gradient. Self-intersection is an unphysical behavior that will be removed when
we impose the local injectivity constraint. Jump discontinuity creates numerical difficulties
that require special numerical strategies. In this work, we present two strategies, one of
which is based on solving the equilibrium equations using a phase-plane technique adapted
from the works of Antman and Negrón-Marrero (1987) and Stepanov and Antman (2016),
whereas the other strategy is based on searching a minimizer of the energy functional using
the finite element method together with standard nonlinear programming tools. In addition,
in Section 5.3.2, we compare the results obtained from the constrained minimization theory
with those obtained with an orthotropic and compressible Mooney-Rivlin material with
no imposition of the local injectivity constraint. We will see that both solutions are in
very good agreement with each other.
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3 THEORETICAL BACKGROUND

In this chapter, we present some background material about continuum mechanics
and the nonlinear theory of elasticity. We begin by presenting results regarding body and
surface forces. Next, we introduce the balance laws and the constitutive assumptions used
to model elastic materials. We also present the typical form of a boundary value problem
of elasticity and conditions for the strong ellipticity of the governing equations. Finally,
we study the constrained nonlinear theory mentioned in the previous chapters.

3.1 Applied forces

Let B ⊂ R3 be the undistorted reference configuration of a solid body. Material
points x ∈ B are mapped into spatial points y ∈ R3 by the deformation field f : B → R3,
that is, y = f(x) ∈ f(B) ⊂ R3, where f(B) denotes the deformed configuration of the solid.
A body force per unit of deformed volume bf : f(B) → R3 is applied to the body. We
associate to this field a body force per unit of undeformed volume b : B → R3 given by

b(x) = det F(x) bf (y) , y = f(x) , (3.1)

where F(x) ≜ ∇f(x) and ∇ is the gradient operator with respect to x. Since det F is
the ratio between an infinitesimal volume element in the deformed configuration and its
respective value in the reference configuration, it is usual to assume that F ∈ Lin+ ≜

{A ∈ Lin | det A > 0}, where Lin is the space of the linear transformations A : R3 → R3.
However, when solving problems, such a constraint is usually not imposed but only verified
a posteriori.

We denote ∂B as the boundary of B, which is composed of two parts, ∂1B and
∂2B, such that ∂B = ∂1B ∪ ∂2B and ∂1B ∩ ∂2B = ∅. In ∂1B, the deformation is known and
given by

f(x) = f̄(x) , x ∈ ∂1B . (3.2)

In f(∂2B), we apply a surface force per unit of deformed area tf : f(∂2B) → R3. We
associate to this field a surface force per unit of undeformed area t : ∂2B → R3 given by

t(x) = det F(x) |F(x)−T N| tf (y) , y = f(x) , (3.3)

where N is the unit outer normal vector to ∂2B at x. In Figure 1, we show an illustration
of the reference configuration and the applied forces.

In this work, we consider that the body and surface forces have the forms given by

b(x) = b̂(x, f(x)) , (3.4)
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Figure 1 – The reference configuration and the applied forces.

Source: The author.

t(x) = t̂(x,F(x)) , (3.5)

respectively, where b̂ : B×R3 → R3 and t̂ : ∂2B×Lin+ → R3. We also consider that both b
and t are conservative. For b, this means that there is a functional B : {f : B → R3} → R
with the form

B(f) =
∫

B
B̂(x, f) dx , (3.6)

such that its Gâteaux derivative in a direction w is given by

B′(f) w =
∫

B
b̂(x, f) · w dx. (3.7)

The function B̂ : B × R3 → R is called the potential of the applied body force. For the
conservative surface force t, there is a functional T : {f : B → R3} → R with the form

T (f) =
∫

∂B
T̂ (x, f ,∇f) dA , (3.8)

such that its Gâteaux derivative in a direction w is given by

T ′(f) w =
∫

∂B
t̂(x,∇f) · w dA . (3.9)

The function T̂ : ∂B × R3 × Lin+ → R3 is called the potential of the surface force.

A body (or surface) force is a dead load if its value per unit of undeformed volume
(or area) does not depend on the deformation f . Therefore, the applied forces b and t with
the forms (3.4) and (3.5) are not necessarily dead loads. For dead loads, we have

B(f) =
∫

B
b · f dx , T (f) =

∫
∂2B

t · f dA . (3.10)

An applied force of interest in this work is the pressure load, which is given by

tf (y) = −pn(y) , y ∈ f(∂2B) , (3.11)
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where p > 0 is a pressure and n(y) is the unit outer normal vector to the surface f(∂2B)
at y. From (3.11), (3.3), and the Nanson’s formula,

n da = (det F) F−T N dA , (3.12)

where da and dA are infinitesimal areas in the deformed and undeformed configurations,
respectively, we have that t̂ in (3.5) becomes

t̂(x,F) = −p cof F N(x), x ∈ ∂2B , (3.13)

where cof F ≜ (det F) F−T . We see from (3.13) that the pressure load is not a dead load
since t̂ depends on f through its gradient. It is possible to show that the uniform pressure
is a conservative surface force whose functional T is given by, (Ciarlet, 1988),

T (f) = −p

3

∫
∂B

(cof ∇f N) · f dA = −p
∫

B
det ∇f dx . (3.14)

3.2 Stress

Static problems in continuum mechanics are based on the following principle.

Stress principle of Euler and Cauchy: Consider a body occupying a deformed
configuration f(B) and subjected to applied forces given by the densities bf : f(B) → R3

and tf : f(∂2B) → R3. Then, there is a vector field sf : f(B) × N → R3, which is called the
Cauchy stress vector, where N ≜ {v ∈ R3 : |v| = 1}, such that:

(a) For any subdomain Sf of f(B), and at any point y ∈ f(∂2B) ∩ ∂Sf where the unit
outer normal vector n to f(∂2B) ∩ ∂Sf exists, sf (y,n) = tf (y).

(b) For any subdomain Sf of f(B),∫
Sf

bf (y) dy +
∫

∂Sf
sf (y,n) da = 0 , (3.15)

∫
Sf

r(y) × bf (y) dy +
∫

∂Sf
r(y) × sf (y,n) da = 0 , (3.16)

where n denotes the unit outer normal vector along ∂Sf , r(y) = y − o is the position
vector with respect to the origin o of a coordinate system, and × denotes the vector
product.

The equations (3.15) and (3.16) are referred to as the axioms of force and moment
balance, respectively. The above stress principle is a particular case of the stress principle
for dynamical problems.

Under some smoothness conditions of bf and sf , the stress principle of Euler and
Cauchy implies that there is a tensor field T : f(B) → Lin, called the Cauchy stress tensor,
such that

sf (y,n) = T(y) n , ∀ y ∈ f(B) and ∀ n ∈ N , (3.17)
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and
div T(y) + bf (y) = 0 , ∀ y ∈ f(B) , (3.18)

T(y) = T(y)T , ∀ y ∈ f(B) , (3.19)

T(y) n(y) = tf (y) , ∀ y ∈ f(∂2B) . (3.20)

where div is the divergence operator with respect to y. The expressions (3.17)-(3.20) are
the main results of the Cauchy’s theorem.

We can associate to the Cauchy stress tensor T a tensor field P : B → Lin, called
the first Piola-Kirchhoff stress tensor, by

P(x) ≜ (det F(x)) T(y) F(x)−T , y = f(x) . (3.21)

Equations (3.18)-(3.20) can be rewritten in terms of P as

Div P(x) + b(x) = 0 , ∀ x ∈ B , (3.22)

P(x) F(x)T = F(x) P(x)T , ∀ x ∈ B , (3.23)

P(x) N(x) = t(x) , ∀ x ∈ ∂2B , (3.24)

where Div is the divergence operator with respect to x. This is more convenient than
(3.18)-(3.20) for solving problems in solid mechanics since we usually know B instead of
f(B).

In the study of constitutive relations, it is often convenient to work with the
second Piola-Kirchhoff tensor S : B → Sym, where Sym ≜ {A ∈ Lin | A = AT }, which is
symmetric and defined by

S(x) ≜ F(x)−1 P(x) . (3.25)

3.3 Constitutive relations

Constitutive relations are functions that relate a measure of stress, for instance, T,
P, and S, with the deformation f . A material is said to be elastic if T depends on f only
through its gradient F = ∇f . That is, there is a function T̂ : B × Lin+ → Sym, called the
response function for the Cauchy stress, such that T(y) = T̂(x,F). We see from (3.21)
and (3.25) that there are also functions P̂ : B × Lin+ → Lin and Ŝ : B × Lin+ → Sym
such that, for all x ∈ B,

P(x) = P̂(x,F(x)) , (3.26)

S(x) = Ŝ(x,F(x)) . (3.27)

The functions P̂ and Ŝ are called response functions for the first and second Piola-Kirchhoff
stress, respectively. In addition, an elastic material is homogeneous if its response T̂ has
no explicit dependence on x. In this case, it follows from (3.21) and (3.25)-(3.27) that
both P̂ and Ŝ also do not depend explicitly on x.
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An elastic material is said to be hyperelastic if there is a function W : B×Lin+ → R,
called the strain energy density or the store energy function, such that

P̂(x,F) = ∂W

∂F
(x,F) , (3.28)

where ∂(·)/∂F denotes the gradient with respect to F.

The axiom of material frame-indifference, also known as the axiom of invariance
under change of observer or axiom of objectivity, represents the idea that observable
quantities, such as mass, temperature, and surface forces, should not depend on the
observer. In the study of elastic materials, this axiom can be stated as

Axiom of material frame-indifference: Let the deformed configuration f(B) be
related to another deformed configuration g(B) through g = Q f for some Q ∈ Rot, where
Rot ≜ {A ∈ Lin | det A = 1 , A−1 = AT } is the set of rotations in R3. Then

sg(g(x),Q n) = Q sf (f(x),n) , ∀ x ∈ B , n ∈ N , (3.29)

where sg : g(B) × N → R3 and sf : f(B) × N → R3 are the Cauchy stress vector fields in
the deformed configurations g(B) and f(B), respectively.

It is possible to show that this axiom is satisfied if and only if, for all x ∈ B and
F ∈ Lin+, (Ciarlet, 1988),

T̂(x,Q F) = Q T̂(x,F) QT , Q ∈ Rot , (3.30)

or, equivalently, if and only if, there exists a function S̃ : B × Sym> → Sym such that, for
all x ∈ B and F ∈ Lin+,

Ŝ(x,F) = S̃(x,C) , C ≜ FT F , (3.31)

where C ∈ Sym> is the right Cauchy-Green strain tensor and Sym> ≜ {A ∈ Sym | v·A v >
0 , ∀ v ∈ R3\{0}} is the set of positive definite linear transformations in R3. For later use,
an alternative form of (3.31) can be written as

Ŝ(x,F) = Š(x,E) , E ≜
1
2(C − I) , (3.32)

where E is the Green-St Venant strain tensor.

For hyperelastic materials, the axiom of frame-indifference is satisfied if and only if
the strain energy function W satisfies, (Ciarlet, 1988),

W (x,Q F) = W (x,F) , Q ∈ Rot , (3.33)

for all F ∈ Lin+, or, equivalently, if and only if there is a function W̃ : B × Sym> → R
such that

W (x,F) = W̃ (x,C) , ∀ F ∈ Lin+ . (3.34)
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We can also use material symmetry to impose further restrictions on the form of
the response function. These restrictions take the form

T̂(x,F Q) = T̂(x,F) , ∀ F ∈ Lin+ , ∀ Q ∈ Gx . (3.35)

where Gx ⊂ Rot is called the symmetry group at x. For instance, if Gx = Rot we say that
the material is isotropic at x; otherwise, it is anisotropic. In the case of transverse isotropy
with the material symmetry m1 ∈ R3, Gx consists of rotations about m1. In this work, we
consider orthotropic materials with respect to three orthogonal planes that are normal to
the vectors m1, m2, m3 ∈ R3, for which Gx consists of the identity transformation and
rotations about m1, m2, m3 by π radians. In this case, since m3 = m1 × m2, we say that
a material is orthotropic with the material symmetries m1 and m2.

Equivalently, we can express the material symmetry condition (3.35) in terms of P̂
and Ŝ as

P̂(x,F Q) = P̂(x,F) Q ,

Ŝ(x,F Q) = QT Ŝ(x,F) Q ,
∀ F ∈ Lin+ , ∀ Q ∈ Gx . (3.36)

In the case of hyperelastic materials, it follows from (3.28) and (3.35) that the strain
energy function W satisfies

W (F Q) = W (F) , ∀ F ∈ Lin+ , ∀ Q ∈ Gx . (3.37)

The fourth-order elasticity tensor Ĉ(x,F), defined by

Ĉ(x,F) ≜ ∂P̂
∂F

(x,F) , (3.38)

is an important tensor in the study of elastic bodies. Assuming that the reference configu-
ration is stress-free, that is, P̂(x, I) = T̂(x, I) = Š(x,0) = 0, it is possible to show that,
(Gurtin, 1982),

C(x) ≜ Ĉ(x, I) = ∂P̂
∂F

(x, I) = ∂T̂
∂F

(x, I) = ∂Š
∂E

(x,0) , (3.39)

where T̂(x,F), P̂(x,F), and Š(x,E) are the response functions for the Cauchy stress and
for the first and second Piola-Kirchhoff stress, respectively, introduced in the beginning of
Section 3.3. In addition, C(x) is invariant under rotations Q ∈ Gx in the sense that, for
any A ∈ Lin and Q ∈ Gx,

QC(x)[A] QT = C(x)[Q A QT ] . (3.40)

If the material is homogeneous and the reference configuration is stress-free, we
expand Š(E) in a Taylor series about E = 0 and use (3.39) to obtain

Š(E) = C[E] + o(E) . (3.41)



35

In addition, if the material is also isotropic, then it is possible to show that, (Ciarlet,
1988),

Š(E) = Λ (tr E) I + 2µE + o(E) , (3.42)

where Λ and µ are the first and second Lamé constants, respectively, and tr (·) is the trace
operator, which linearly maps any A ∈ Lin to a scalar and satisfies tr (v1 ⊗ v2) = v1 · v2

for all v1,v2 ∈ R3, with ⊗ denoting the tensor product.

The classical St Venant-Kirchhoff material, which is isotropic, is defined as the
material whose response function Š is given by (3.42) neglecting the higher-order terms,
that is,

Š(E) = Λ (tr E) I + 2µE . (3.43)

This material is hyperelastic with a strain energy function W̌ (E) = Ŵ (F) = W̃ (C) given
by

W̌ (E) = Λ
2 (tr E)2 + µ tr (E2) . (3.44)

Similarly, we can neglect the higher-order terms in (3.41) to define the anisotropic
St Venant-Kirchhoff material as the material whose response Š is given by the relation

Š(E) = C[E] , (3.45)

which corresponds to the strain energy function

W̌ (E) = 1
2 E · C[E] . (3.46)

It follows from (3.41) and (3.45) that, if the reference configuration is stress-free, then the
response of any homogeneous elastic material near the reference configuration reduces to
that of the anisotropic St Venant-Kirchhoff material.

Using an orthonormal basis {e1, e2, e3} of R3, the anisotropic case, given by (3.46),
reduces to the isotropic one, given by (3.44), when the nonzero components of the fourth-
order tensor C = ∑3

i,j,k,l=1 cijkl ei ⊗ ej ⊗ ek ⊗ el, which has the symmetries cijkl = cklij =
cjikl = cijlk, assume the values

c11 = Λ + 2µ , c12 = Λ ,

c22 = c33 = c11 , c13 = c23 = c12 , c44 = c55 = c66 = c11 − c12

2 ,
(3.47)

where we have used the symmetries of C and the rule 11 → 1, 22 → 2, 33 → 3, 23 → 4,
13 → 5, 12 → 6 to rewrite the four-index notation cijkl, where i, j, k, l = 1, 2, 3, into a
two-index notation cab, where a, b = 1, 2, 3, 4, 5, 6.

If the material is orthotropic with mi = ei, i = 1, 2, 3, then the nonzero components
of C are given by, (Sokolnikoff, 1956),

c11 , c22 , c33 , c12 , c13 , c23 , c44 , c55 , c66 . (3.48)
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These nine independent constants can be written in terms of the engineering constants E1,
E2, E3, v12, v23, v13, G12, G13, G23 as

c11 = 1 − v23 v32

E2 E3 v̄ , c22 = 1 − v13 v31

E1 E3 v̄ , c33 = 1 − v12 v21

E1 E2 v̄ ,

c12 = v21 + v31 v23

E2 E3 v̄ , c13 = v13 + v12 v23

E1 E2 v̄ , c23 = v32 + v12 v31

E1 E3 v̄ ,

c44 = G23 , c55 = G13 , c66 = G12 ,

(3.49)

where

v̄ = 1
E1 E2 E3

det


1 −v21 −v31

−v12 1 −v32

−v13 −v23 1

 ,

v21 = v12
E2

E1
, v31 = v13

E3

E1
, v32 = v23

E3

E2
,

(3.50)

with E, v, G denoting the Young’s modulus, the Poisson’s ratio, and the shear modulus,
respectively, and the subscripts 1, 2, 3 denoting the directions e1, e2, e3, respectively.

For isotropic materials, it is usual to write the strain energy function as a function
of the invariants of C given by

I1 ≜ tr C , I2 ≜
1
2[I2

1 − tr (C2)] , I3 ≜ det C , (3.51)

and, for orthotropic materials with the material symmetries m1 and m2, the invariants

I4 ≜ m1 · C m1 , I5 ≜ m1 · C2 m1 , I6 ≜ m2 · C m2 , I7 ≜ m2 · C2 m2 , (3.52)

in addition to I1, I2, and I3.

Let us rewrite the strain energy function W̌ (E) of the orthotropic St Venant-
Kirchhoff material with the orthogonal material symmetries m1 and m2. Recall from above
that, in this case, W̌ (E) is given by (3.46), where C has the nonzero components in (3.48).
It follows from its symmetry group, introduced below (3.35), that W̌ (E) can be written as
a function of the invariants, (Spencer, 1984),

tr E , tr (E2) , tr (E3) ,
m1 · E m1 , m1 · E2 m1 , m2 · E m2 , m2 · E2 m2 .

(3.53)

Since E is given by (3.32.b), the above invariants can be written in terms of the invariants
I1, I2, . . . , I7 as

tr E = 1
2 (I1 − 3) , tr (E2) = 1

4
(
I2

1 − 2 I1 − 2 I2 + 3
)
,

tr (E3) = 1
8
(
I3

1 − 3 I2
1 − 3 I1 I2 + 3 I1 + 6 I2 + 3 I3 − 3

)
,

m1 · E m1 = 1
2 (I4 − 1) , m1 · E2 m1 = 1

4 (−2 I4 + I5 + 1) ,

m2 · E m2 = 1
2 (I6 − 1) , m2 · E2 m2 = 1

4 (−2 I6 + I7 + 1) .

(3.54)
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In addition, note from (3.46) that W̌ (E) is a quadratic form on E, that is, it has
the form W̌ (E) = β(E,E), where β is a linear function on both of its arguments. The
most general quadratic form on E that can be written with the invariants in (3.53) is

W̌ (E) = Λ
2 (tr E)2 + µ tr (E2)

+ α1 (m1 · E m1)2 + α2 (m1 · E2 m1) + α3 tr E (m1 · E m1)
+ α4 (m2 · E m2)2 + α5 (m2 · E2 m2) + α6 tr E (m2 · E m2)
+ α7 (m1 · E m1) (m2 · E m2) ,

(3.55)

where Λ, µ, αi, i = 1, 2, . . . , 7, are material parameters. Comparing (3.55) with (3.44),
we see that the strain energy function of the orthotropic St Venant-Kirchhoff material
can be written as the sum of the strain energy function of its classical isotropic version
plus terms that depend on m1 and m2. This kind of representation is associated with the
idea of representing an orthotropic material as a composite made of an isotropic matrix
reinforced with fibers in the directions m1 and m2.

Substituting (3.54) into (3.55), we obtain the strain energy function of the or-
thotropic St Venant-Kirchhoff material in the form W̌ (E) = W̄ (I1, I2, I4, I5, I6, I7), where

W̄ (I1, I2, I4, I5, I6, I7) = W̄iso(I1, I2) + W̄aniso(I1, I4, I5, I6, I7)

W̄iso(I1, I2) = µ (I1 − 3) + Λ + 2µ
8 (I1 − 3)2 − µ

2 (I2 − 3) ,

W̄aniso(I1, I4, I5, I6, I7) = 1
4

[
α1 (I4 − 1)2 + α2 (−2 I4 + I5 + 1)

+ α3 (I1 − 3) (I4 − 1) + α4 (I6 − 1)2

+ α5 (−2 I6 + I7 + 1) + α6 (I1 − 3) (I6 − 1)

+ α7 (I4 − 1) (I6 − 1)
]
.

(3.56)

It is not difficult to verify that W̄ given by (3.56) is the same strain energy function
used by Raible et al. (2005) to study wrinkling in membranes. In addition, by taking
α4 = α5 = α6 = α7 = 0, W̄ reduces to the stain energy function used by Bonet and Burton
(1998) to represent a transversely isotropic St Venant-Kirchhoff material.

Next, we introduce some restrictions on the strain energy function W̄ of an or-
thotropic hyperelastic model, so that it corresponds to a stress-free undeformed reference
configuration and is consistent with the classical linear elasticity of orthotropic materials,
whose elastic constants are given by (3.48).
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It follows from (3.25), (3.28), and (3.31.b) that

S = 2 ∂W̃ (x,C)
∂C

= 2
7∑

i=1

∂W̄

∂Ii

∂Ii

∂C

= 2
[
W̄1 I + W̄2 (I1 I − C) + W̄3 I3 C−1

+ W̄4 m1 ⊗ m1 + W̄5 (Cm1 ⊗ m1 + m1 ⊗ Cm1)

+ W̄6 m2 ⊗ m2 + W̄7 (Cm2 ⊗ m2 + m2 ⊗ Cm2)
]
,

(3.57)

where W̄i ≜ ∂W̄/∂Ii, i = 1, 2, . . . , 7. Then, to ensure that the stress is null at the reference
configuration, where C = I, I1 = I2 = 3, and I3 = I4 = I5 = I6 = I7 = 1, we must have

W̊1 + 2 W̊2 + W̊3 = 0 , W̊4 + 2 W̊5 = 0 , W̊6 + 2 W̊7 = 0 , (3.58)

with W̊i, i = 1, 2, ..., 7, denoting W̄i evaluated at the undeformed reference configuration.

Linearizing S with respect to E around the reference configuration yields1

S = 2
[

2 I (k1 tr E + k3 m1 · E m1 + k7 m2 · E m2) + k2 E

+ 2 m1 ⊗ m1 (k3 tr E + k4 m1 · E m1 + k5 m2 · E m2)
+ 2 m2 ⊗ m2 (k7 tr E + k5 m1 · E m1 + k8 m2 · E m2)
+ k6 (E m1 ⊗ m1 + m1 ⊗ E m1)

+ k9 (E m2 ⊗ m2 + m2 ⊗ E m2)
]
,

(3.59)

where
k1 ≜ W̊2 + W̊3 + W̊11 + 4 W̊22 + W̊33 + 4 W̊12 + 2 W̊13 + 4 W̊23

k2 ≜ −2 W̊2 − 2 W̊3

k3 ≜ W̊14 + 2 W̊24 + W̊34 + 2 W̊15 + 4 W̊25 + 2 W̊35

k4 ≜ W̊44 + 4 W̊55 + 4 W̊45

k5 ≜ W̊46 + 2 W̊47 + 2 W̊56 + 4 W̊57

k6 ≜ 2 W̊5

k7 ≜ W̊16 + 2 W̊26 + W̊36 + 2 W̊17 + 4 W̊27 + 2 W̊37

k8 ≜ W̊66 + 4 W̊77 + 4 W̊67

k9 ≜ 2 W̊7 .

(3.60)

with W̊ij , i, j = 1, 2, ..., 7, denoting W̄ij evaluated at the undeformed reference configuration.

1 In Appendix A, we show how to obtain (3.59) in detail.
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Then, for m1 = e1 and m2 = e2, we can write the components of S, given by (3.59),
in terms of the components of E, both with respect to the basis {e1, e2, e3}, as

S11 = (4 k1 + 2 k2 + 8 k3 + 4 k4 + 4 k6)E11 + 4 (k1 + k3 + k5 + k7)E22

+ 4 (k1 + k3)E33 ,

S22 = 4 (k1 + k3 + k5 + k7)E11 + (4 k1 + 2 k2 + 8 k7 + 4 k8 + 4 k9)E22

+ 4 (k1 + k7)E33 ,

S33 = 4 (k1 + k3)E11 + 4 (k1 + k7)E22 + (4 k1 + 2 k2)E33 ,

S23 = 2 (k2 + k9)E23 , S13 = 2 (k2 + k6)E13 , S12 = 2 (k2 + k6 + k9)E12 .

(3.61)

On the other hand, in the classic linear elasticity, where E is assumed to be infinitesimal,
the stress components are given by

σ11 = c11 E11 + c12 E22 + c13 E33 ,

σ22 = c12 E11 + c22 E22 + c23 E33 ,

σ33 = c13 E11 + c23 E22 + c33 E33 ,

σ23 = 2 c44 E23 , σ13 = 2 c55 E13 , σ12 = 2 c66 E12 .

(3.62)

Therefore, it follows from (3.61), (3.62), and (3.60) that

c11 = 4
(
W̊11 + W̊33 + W̊44

)
+ 8

(
W̊13 + W̊14 + W̊34 + W̊5

)
,

+ 16
(
W̊12 + W̊15 + W̊22 + W̊23 + W̊24 + W̊35 + W̊45 + W̊55

)
+ 32 W̊25 ,

c22 = 4
(
W̊11 + W̊33

)
+ 8 W̊13 + 16

(
W̊12 + W̊22 + W̊23

)
,

c33 = 4
(
W̊11 + W̊33 + W̊66

)
+ 8

(
W̊13 + W̊16 + W̊36 + W̊7

)
,

+ 16
(
W̊12 + W̊17 + W̊22 + W̊23 + W̊26 + W̊37 + W̊67 + W̊77

)
+ 32 W̊27 ,

c12 = 4
(
W̊11 + W̊14 + W̊2 + W̊3 + W̊33 + W̊34

)
+ 8

(
W̊13 + W̊15 + W̊24 + W̊35

)
,

+ 16
(
W̊12 + W̊22 + W̊23 + W̊25

)
,

c13 = 4
(
W̊11 + W̊14 + W̊16 + W̊2 + W̊3 + W̊33 + W̊34 + W̊36 + W̊46

)
,

+ 8
(
W̊13 + W̊15 + W̊17 + W̊24 + W̊26 + W̊35 + W̊37 + W̊47 + W̊56

)
,

+ 16
(
W̊12 + W̊22 + W̊23 + W̊25 + W̊27 + W̊57

)
,

c23 = 4
(
W̊11 + W̊16 + W̊2 + W̊3 + W̊33 + W̊36

)
+ 8

(
W̊13 + W̊17 + W̊26 + W̊37

)
,

+ 16
(
W̊12 + W̊22 + W̊23 + W̊27

)
,

c44 = 2
(
−W̊2 − W̊3 + W̊7

)
,

c55 = 2
(
−W̊2 − W̊3 + W̊5 + W̊7

)
,

c66 = 2
(
−W̊2 − W̊3 + W̊5

)
.

(3.63)

It is possible to verify that the restrictions (3.58) and (3.63) are equivalent to the restrictions
(15) and (17) of Aguiar (2019).
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Equations (3.56), (3.58), and (3.63) form a system of equations, which can be
solved for Λ, µ, αi, i = 1, 2, . . . , 7, to find that

Λ = c33 − 2 (c44 + c55 − c66) , µ = c44 + c55 − c66 , (3.64)

and

α1 = c11

2 − c13 + c33

2 − 2 c55 , α2 = 2 (−c44 + c66) ,

α3 = c13 − c33 + 2 (c44 + c55 − c66) , α4 = c22

2 − c23 + c33

2 − 2 c44 ,

α5 = 2 (−c55 + c66) , α6 = c23 − c33 + 2 (c44 + c55 − c66) ,
α7 = c12 − c13 − c23 + c33 − 2 (c44 + c55 − c66) .

(3.65)

In the case of the orthotropic St Venant-Kirchhoff material the relations (3.64) and (3.65)
can also be obtained by comparing (3.46) and (3.56) since they are equivalent. However,
for other orthotropic materials, we need to use (3.58) and (3.63).

We see from (3.56) that W̄ does not depend on I3 = det F and, thus, it remains
finite as det F → 0. This is in disagreement with the intuitive idea that an infinite amount of
energy should be required to make the volume of a body null. Therefore, the orthotropic St
Venant-Kirchhoff is expected to yield unphysical results for large compressive deformations.

A simple way to satisfy this idea consists in adopting a strain energy function of
the form W̄ = W̄iso + W̄aniso, where W̄iso = W̄iso(I1, I2, I3) goes to infinity as I3 → 0 and
W̄aniso depends on the symmetries m1 and m2 through I4, I5, I6, and I7. Typically, the
term W̄iso corresponds to the strain energy function of some isotropic material, such as
a compressible Mooney-Rivlin material, whereas W̄aniso accounts for the anisotropy. A
simple form for W̄aniso is given by

W̄aniso = α1 (I4 − 1)2 + α2 (I5 − 1)2 + α3 (I6 − 1)2 + α4 (I7 − 1)2 , (3.66)

where αi, i = 1, 2, 3, 4, are material parameters. The terms (I4 − 1)2 and (I6 − 1)2 are
measures of the stretch in the directions m1 and m2, respectively; thus, it is associated with
the energy required to stretch fibers aligned with m1 and m2. The fiber contribution in
deformations involving shearing comes from the terms (I5−1)2 and (I7−1)2. A disadvantage
of adopting (3.66) is that this model is consistent with linear elasticity only when the elastic
constants satisfy certain relations. For instance, in this case, W̊4 = W̊5 = W̊6 = W̊7 = 0 and
we see from the last three equations in (3.63) that this model corresponds to c44 = c55 = c66,
which, in general, is not adequate for orthotropic materials.

Bonet and Burton (1998) proposed a strain energy function in the form W̄ =
W̄iso + W̄aniso, where W̄iso → ∞ as det F → 0 and W̄aniso is given by (3.56.c). We use this
approach to define the strain energy of the orthotropic and compressible Mooney-Rivlin
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material as

W̄ (I1, I2, I3, I4, I5, I6, I7) = W̄iso(I1, I2, I3) + W̄aniso(I1, I4, I5, I6, I7) ,

W̄iso(I1, I2, I3) = a (I1 − 3) + b (I2 − 3) + c (I3 − 1) − d

2 log I3 ,
(3.67)

where W̄aniso is given by (3.56.c). Assuming that the material symmetries are given by
m1 = e1 and m2 = e2, the restrictions (3.58) and (3.63) yield

a = c− c33

4 + c44 + c55 − c66 , b = −c+ c33

4 − 1
2 (c44 + c55 − c66) , d = c33

2 , (3.68)

and (3.65). Therefore, the behavior of this orthotropic and compressible Mooney-Rivlin
material is not completely defined by its behavior for infinitesimal deformations. Instead,
it has an additional constant, c, which can be used to achieve a good fit between predicted
and observed responses for a larger range of deformations in addition to infinitesimal ones.
The equation (3.68) can be rewritten so that a or b is the additional constant instead of c.
As we will see in Chapter 4, this model yields physically plausible solutions for the disk
problem considered therein, whereas the St Venant-Kirchhoff model does not unless we
impose the local injectivity condition det F > 0.

3.4 Elasticity problems

The applied forces introduced in Section 3.1, the equilibrium equation presented in
Section 3.2, and the constitutive relations of Section 3.3 yield the necessary tools to define
the boundary value problem of the elasticity theory. It follows from (3.2), (3.5), (3.22),
(3.24), and (3.26) that the boundary value problem of equilibrium of a hyperelastic solid
body consists of finding the deformation field f that satisfies

Div P̂(x,∇f) + b(x) = 0 , x ∈ B ,

f(x) = f̄(x) , x ∈ ∂1B ,

P̂(x,∇f) N(x) = t̂(x,∇f) , x ∈ ∂2B .

(3.69)

The boundary value problem (3.69) is equivalent to the variational problem of
finding a smooth field f : B → R3 that satisfies the essential boundary condition f(x) = f̄(x)
for x ∈ ∂1B together with the integral equation∫

B
P̂(x,∇f) · ∇w dx =

∫
B

b̂(x, f) · w dx +
∫

∂2B
t̂(x,∇f) · w dA , (3.70)

for all smooth enough fields w : B → R3 such that w(x) = 0 for x ∈ ∂1B. This variational
problem is the mathematical statement of the principle of virtual work in the reference
configuration.

In addition, since we assume that b and t are conservative forces and the material
is hyperelastic, (3.70) can be written as the variation of a functional E = E(f) being
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null. Therefore, the minimizers of E are solutions of the variational problem (3.70) and,
if they are smooth enough, solutions of the boundary value problem (3.69) as well. This
observation leads to a minimization problem, which is of interest to the constrained
minimization theory used in this work. This problem consists of finding f such that

f = argmin
g∈A

E(g) ,

E(g) ≜
∫

B
W (x,∇g) dx −B(g) − T (g) ,

(3.71)

where A is a space of smooth enough functions g : B → R3 such that g = f̄ in ∂1B and
B and T are given by (3.6) and (3.8), respectively. The functional E is called the total
potential energy and we refer to its minimizers as stable deformation fields.

It is common in textbooks to use the axioms of force and moment balance (3.15)-
(3.16) to deduce the equation of equilibrium (3.18), which is associated with (3.69.a), and
then show the equivalence between (3.69) and the variational problem (3.70) for smooth
enough deformation fields. It is also possible to deduce (3.70) directly from the axioms
of force and moment balance (3.15)-(3.16) (Ciarlet, 1988). Observe from the problems
(3.69) and (3.70) that f is required to be twice differentiable in the first problem and only
differentiable in the second problem. Thus, the smoothness requirement on f is weaker
in the variational problem (3.70) than in the boundary value problem (3.69). For this
reason, the forms (3.69) and (3.70) of an elasticity problem are referred to as strong and
weak forms, respectively. We have seen from above that the minimization problem (3.71)
comes from the variational problem (3.70), which, therefore, does not require f to be twice
differentiable either.

Numerical procedures based on both the variational problem (3.70) and the mini-
mization problem (3.71) are naturally more adequate to find deformation fields f that are
not smooth, such as the case of a finite jump in its gradient, ∇f , along a certain surface
within the body. In this case, Abeyaratne (1983) obtained necessary conditions for f to be
a minimizer of E considering that the body is subjected to a surface force that is a dead
load.

Recall from the paragraph containing (3.11) that we are interested in the case of a
pressure load, which is a live load in the sense that it depends on the deformation of the
body. Therefore, below, we follow arguments similar to those given by Abeyaratne (1983)
to obtain the necessary conditions in the case the surface force is a pressure load.

Let us assume that we search for a minimizer f of (3.71.b), which is required to be
continuous in B and smooth in B \ S, where S ⊂ B is a regular surface where F may suffer
a finite jump. Also, the surface of discontinuity S, which is not known a priori, divides
B into two non-intersecting sub-regions B+ and B− such that B = B+ ∪ B− ∪ S with the
unit outer normal to S pointing to B+. This situation is illustrated in Figure 2.
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Figure 2 – Illustration of the surface of discontinuity S.

Source: The author.

The continuity of f implies that [F]+− (I − N ⊗ N) v = 0, ∀v ∈ R3, where N is a
unit normal to S and [f ]+− ≜ f+ − f− with f+ and f− denoting the limiting values of a
field f obtained from approaching a point in S from B+ and B−, respectively (Gurtin,
1993). Since (I − N ⊗ N) v = v − (v · N) N is the projection of v onto the plane normal
to N, we find that

[F]+− L = 0 , (3.72)

for any vector L that is tangent to S. Then, using the fact that any v ∈ R3 can be written
as v = (v · N) N + (v · L) L for some L orthogonal to N, we can write

[F]+− v = [F]+− [(v · N) N + (v · L) L] = (v · N) [F]+− N =
[(

[F]+− N
)

⊗ N
]

v (3.73)

on S for all v ∈ R3. Therefore, we have that

[F]+− = a ⊗ N , a ≜ [F]+− N , on S . (3.74)

Consider that the solid is homogeneous, there is no body force, and the surface
load is a pressure load given by (3.13), then, in (3.71.b), W (x,∇g) = W (∇g), B(g) = 0,
and T (g) is given by (3.14).

Therefore, the total potential energy functional (3.71.b) can be written as

E(f) = EW (f) + T (f) , (3.75)

where
EW ≜

∫
B
W (F) dx (3.76)

and T (f) is given by (3.14). To find necessary conditions for f to be a minimizer of the
functional E , we first determine its variation δE with respect to virtual deformations
f∗ ∈ A, where we recall from (3.71) that A is the space of admissible deformation fields.
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We consider virtual deformations f∗ : B → R3 of the form

f∗(x∗) = f(x) + δf(x) , x∗(x) = x + δx(x) , (3.77)

where the perturbations δf and δx are smooth with δf = 0 on ∂1B and δx = 0 on ∂B.
Since ∂f is smooth and f is not smooth on S, we see from (3.77) that f∗ is not smooth
on a surface S∗, which is different than S because of the perturbation δx. Therefore, in
particular, δx has the effect of perturbing the surface of discontinuity S.

The variations of EW and T are given by, respectively,

δEW =
∫

B

[
Div (PT δf +W δx) − δf · Div P

]
dx , (3.78)

δT = p
∫

B

[
Div

(
∂J

∂F

T

δf + J δx
)

− δf · Div
(
∂J

∂F

)]
dx , (3.79)

δf = δf − F δx . (3.80)

These expressions are obtained by using (B.7) with g = W and g = −p det F. Although
Appendix B is focused on the calculations of Section 3.6 below, the equation (B.7) is also
valid here.

We then use the divergence theorem, δf = 0 on ∂1B, δx = 0 on ∂B, ∂J/∂F = cof F,
and the Piola’s Identity Div (cof F) = 0 to find that

δEW =
∫

S

{
δf · [P N]−+ + δx ·

[
W N − FT P N

]−
+

}
dA

+
∫

∂B
δf · P N dA−

∫
B

(
δf · Div P − δx · FT Div P

)
dA ,

(3.81)

δT = p
∫

S
δf · [cof F N]−+ dA+ p

∫
∂2B

δf · cof F N dA . (3.82)

If f is a minimizer of E , the variation δE = δEW + δT is null. Then, recalling that
F is not defined on S, it follows from (3.81), (3.82), the fundamental lemma of calculus of
variations, and the arbitrariness of δf and δx, that

Div P = 0 in B \ S ,

f = f̄ on ∂1B ,

P N = −p cof F N on ∂2B ,

(3.83)

and
[P N]+− + p [cof F N]+− = 0 on S , (3.84)[
W N − FT P N

]+
−

= 0 on S . (3.85)

It follows from (3.74) that F+ = F− (I + ā ⊗ N), where ā ≜ (F−)−1 a. Then, using
cof F = (det F) F−T and the identities, (Gurtin, 1986),

det(I + ā ⊗ N) = 1 + ā · N ,

(I + ā ⊗ N)−1 = I − (1 + ā · N)−1 ā ⊗ N ,
(3.86)
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it is not difficult to show that [cof F N]+− = 0. Therefore, (3.84) becomes

[P N]+− = 0 on S . (3.87)

Next, note that (3.85) corresponds to three scalar equations, which can be obtained by
taking the dot product of (3.85) with three linearly independent vectors. Let us take the
dot product of (3.85) with the unit normal N and two non-collinear tangent vectors L1

and L2. The dot product with N yields the scalar equation

[W − F N · P N]+− = 0 on S (3.88)

and, using (3.87), the dot product with Lα, α = 1, 2, yields(
[F]+− Lα

)
· P+ N = 0 on S , α = 1, 2 , (3.89)

which is trivially satisfied because of (3.72). Therefore, the vector equation (3.85) is
equivalent to the scalar equation (3.88).

Thus, (3.83) together with the continuity conditions (3.87) and (3.88) are necessary
conditions for a continuous and non-smooth deformation field f with a jump in F across
S ⊂ B to be a minimizer of the total potential energy functional in the case the surface
force is a pressure load, the solid is homogeneous, and there is no body force.

Except for (3.83.c), which is clearly specific for the pressure load given by (3.13),
these necessary conditions are the same conditions obtained by Abeyaratne (1983), who
considered that the surface force is a dead load. In addition, if f is smooth, then (3.83),
(3.87), and (3.88) reduce to (3.69), when b(x) = 0 and t̂ is given by (3.13).

Note that, if we were to consider a virtual deformation given by (3.77) with δx ≡ 0,
the terms that multiply δx in (3.81) and (3.82) would not appear. Therefore, we would
find (3.83) and (3.87), but not (3.88). Recall from the discussion below (3.77) that the
case δx ≡ 0 correspond to a virtual deformation which does not perturb the surface S.
Thus, the continuity condition (3.88) comes from a perturbation of the surface S, whereas
the other conditions can be found without perturbing S.

The continuity condition (3.87) corresponds to the requirement that the traction
PN be continuous across S and is, therefore, known as the traction continuity condition.
As shown by Knowles (1979), this condition corresponds to an equilibrium of forces at
a point on S. By considering a quasi-static time-dependent family of equilibrium states,
this author introduced a dissipation condition, which is given by (3.88) with the = sign
replaced with ≥. For this reason, we refer to (3.88) as the dissipation-free condition. In
addition, (3.88) is also known as Maxwell relation (Silhavy, 1997). In one dimension, the
conditions (3.87) and (3.88) correspond to the Weierstrass-Erdmann corner conditions in
the context of continuum mechanics and yield the equal-area rule presented by Ericksen
(1975).
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In this work, we only consider the type of non-smoothness defined above, that is,
a non-smooth field that is continuous and has a finite jump in its spatial derivative at a
point or on a surface within its domain.

3.5 Strong Ellipticity conditions

We say that the equation of equilibrium (3.69.a) and the elasticity tensor Ĉ(x,∇f),
given by (3.38), are strongly elliptic at x and f if

(a ⊗ b) · Ĉ(x,∇f)[a ⊗ b] > 0 , ∀ a,b ∈ R3 \{0} . (3.90)

Let us consider a class of hyperelastic orthotropic materials, which has the material
symmetry directions m1,m2 ∈ R3 and a strain energy function W̃ (x,C) that can be
written as

W̃ (x,C) = W̄ (x, ιC) , (3.91)

where W̄ : R3 × (R)7 → R and ιC is the list of the sevens invariants Ii, i = 1, 2, ..., 7,
given by (3.51) and (3.52) Also, let {e1, e2, e3} denote the principal directions of C or,
equivalently, of the right stretch tensor U ≜

√
C. If m1 = e1, m2 = e2, and the deformation

field f corresponds to a plane strain state in the plane spanned by e1 and e2, necessary
and sufficient conditions to the strong ellipticity condition (3.90) to be satisfied for a and
b in this plane are given by, (Aguiar, 2019),

Q11 > 0 , Q22 > 0 , Q12 > 0 , Q21 > 0 , Q∗ > 0 , (3.92)

where

Q11 ≜ 2
{
u−2

1 (W̄1 + W̄4) + 2
[
W̄11 + W̄44 + 1

2 W̄3 I3 u
−4
1

+ I3 u
−2
1 (I3 W̄33 u

−2
1 + 2 W̄13) + 2 (W̄14 + I3 W̄34 u

−2
1 )

]}
,

Q22 ≜ 2
{
u−2

2 W̄1 + 2
[
W̄11 + 1

2 W̄3 I3 u
−4
2 + I3 u

−2
2 (I3 W̄33 u

−2
2 + 2 W̄13)

]}
,

Q12 ≜ 2u−2
1 W̄1 , Q21 ≜ 2u−2

2 (W̄1 + W̄4) ,

Q∗ ≜
√
Q11 Q22 +

√
Q12 Q21 − 2 |Q66| ,

Q66 ≜ W̄3 + 2 (W̄11 + I3 W̄33 + I1 W̄13 + W̄14 + W̄34 u
2
1) .

(3.93)

In (3.93), W̄i ≜ ∂W̄/∂Ii, W̄ij ≜ ∂2W̄/∂Ii ∂Ij, i, j = 1, 2, 3, ..., 7, and u1, u2 are the
principal stretches, that is, the eigenvalues of U associated with the principal directions
e1, e2, respectively.

Assuming that the reference configuration is a natural state, where F = I, and
that there is no residual stress, the conditions (3.92) and (3.93) evaluated at the reference
configuration take the form, (Aguiar, 2019),

Q11 = c11 > 0 , Q22 = c22 > 0 , Q12 = Q21 = c66 > 0 ,
Q∗ = √

c11 c22 + c66 − |c66 + c12| > 0 .
(3.94)
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The strong ellipticity condition (3.90) implies that, given arbitrary vectors a and
b, the function a · F b 7→ a · P̂(x,F) b is strictly increasing. This is a mathematical way
to represent the idea that a body should elongate in the direction of the applied force
(Antman, 2005). However, there are cases in which this monotonic behavior is not desirable.
For instance, as mentioned in Chapter 2, non-monotonic responses have been proposed to
model materials that can undergo multiple solid phases or strain localization. This type
of non-monotonic response may yield a deformation field that has a jump in its gradient
and is in good agreement with experimental results. In fact, this type of non-smooth
deformation field is only possible if the strong ellipticity condition is violated at some
deformation field (Knowles; Sternberg, 1978; Gurtin, 1986).

3.6 The constrained minimization theory

We have seen in Chapter 2 that, in the context of the classical linear elasticity
theory, there are problems whose solutions predict self-intersection even though the applied
load is small. One way to prevent this unphysical behavior is to impose the local injectivity
constraint, det F > 0, as it was done by Fosdick and Royer-Carfagni (2001). One of our
objectives is to study this constrained minimization theory in the context of the nonlinear
elasticity theory since the violation of the constraint det F > 0 is associated with large
deformations.

We consider the constrained minimization problem

min
f∈Aε

E(f) , (3.95)

where
Aε ≜ {f : B → R3 | c(F) ≜ det F − ε ≥ 0} (3.96)

for smooth enough deformations f , ε is a small positive parameter, and, assuming that
the body is homogeneous, E is given by

E(f) =
∫

B
W (F) dx −B(f) − T (f) , (3.97)

where B(f) and T (f) are the potentials associated with the loads b and t, respectively.
Recall from Section 3.1 that if both b and t are dead loads, B(f) and T (f) are given by
(3.10) and, for the pressure load, T (f) is given (3.14).

We now introduce the sets

B= ≜ int [{x ∈ B | c(F(x)) = 0}] , B> ≜ int [{x ∈ B | c(F(x)) > 0}] , (3.98)

where int[·] denotes the interior of a set, such that B = B> ∪ B= ∪ Σ, where B> ∩ B= = ∅
and Σ ≜ B̄> ∩ B̄= denotes the interface between B> and B= with unit normal N pointing
towards B>. In addition, let ∂2B> ≜ B̄> ∩ ∂2B and ∂2B= ≜ B̄= ∩ ∂2B denote, respectively,
the parts of the boundaries of B> and B= belonging to ∂2B.
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We then assume that there exists a Lagrange multiplier field λ : B → R associated
with the local injectivity constraint c(F) ≥ 0, such that λ = 0 in B> ∪ ∂2B>. In this case,
a minimizer of (3.97) is also a minimizer of the functional

Ea(f , λ) = EW
a (f , λ) −B(f) − T (f) , (3.99)

where
EW

a (f , λ) ≜
∫

B
Wa(F, λ) dx , Wa(F, λ) ≜ W (F) − λ c(F) . (3.100)

Next, we calculate the variation of Ea, which we denote by δEa, with respect to
admissible deformations f∗ ∈ Aε and Lagrange multiplier fields λ∗ having the form

f∗(x∗) = f(x) + δf(x) , λ∗(x∗) = λ(x) + δλ(x) , x∗(x) = x + δx(x) , (3.101)

where the perturbations δf , δλ, δx are smooth and satisfy δf = 0 on ∂1B, δλ = 0 in
B> ∪ ∂2B>, and δx = 0 on ∂B.

Abeyaratne (1983) used perturbations of the domain to study conditions that must
hold on an internal surface S ⊂ B, across which the deformation gradient F may suffer a
finite jump. His study does not involve the imposition of the local injectivity constraint.
Here, we assume that F may be discontinuous not only across S, but also across Σ, where
S ∩ Σ = ∅. This assumption is used below when we apply the divergence theorem.

For B and T having the forms (3.10) and (3.14), the first variation of Ea is given by

δEa = δEW
a − δB − δT , (3.102)

where (see Appendix B)

δEW
a =

∫
B

[
Div

(
∂Wa

∂F

T

δf +Wa δx
)

− δf · Div
(
∂Wa

∂F

)
+ ∂Wa

∂λ
δλ

]
dx , (3.103)

δT =


∫

∂2B t · δf dx , (dead load) ,

−p
∫

B

[
Div

(
∂J

∂F

T

δf + J δx
)

− δf · Div
(
∂J

∂F

)]
dx , (pressure load) ,

(3.104)

δB =
∫

B

{
Div [(b · f) δx] + b · δf

}
dx , (3.105)

δf = δf − F δx , δλ = δλ− ∇λ · δx , (3.106)

and J ≜ det F.

We then use (3.100.b), the divergence theorem, δf = 0 on ∂1B, δx = 0 on ∂B,
∂J/∂F = cof F, the Piola’s identity Div (cof F) = 0, c(F) = 0 in B=, and λ = 0 in
B> ∪ ∂2B> to find that

δEW
a =

∫
Σ∪S

{
δf · [Pa]−+ N + δx ·

[
W N + FT Pa N

]−
+

}
dA

+
∫

∂2B
δf · Pa N dA−

∫
B

(
δf · Div Pa − δx · FT Div Pa

)
dx ,

(3.107)
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δT =


∫

∂2B t · δf dx , (dead load) ,

−p
∫

Σ∪S δf · [cof F]−+ N dA− p
∫

∂2B δf · cof F N dA , (pressure load) ,
(3.108)

δB =
∫

B

(
δf · b − δx · FT b

)
dx , (3.109)

where
Pa ≜

∂Wa

∂F
= P − λ cof F (3.110)

and [ · ]−+ ≜ (·)− − (·)+ with (·)+ and (·)− indicating that the evaluations of (·) are
understood as limit values as we approach the surfaces Σ and S from their corresponding
positive and negative sides, respectively. The positive side of these surfaces is that towards
their normal N points and the negative side is the opposite side. Recall from above that
λ = 0 in B> ∪ ∂2B>, thus, Pa = P in B> ∪ ∂2B>. See Appendix B for further details about
the derivation of (3.103)-(3.109).

The variation δEa, which is given by (3.102) together with (3.107)-(3.110), vanishes
at a minimizer f of the functional E . Since the perturbation δf is arbitrary in B> ∪ ∂2B>,
it follows from the fundamental lemma of calculus of variations that the coefficients of δf
are null in B> ∪ ∂2B>. The same is true in B=, but with a different reasoning. Following
the arguments in Section 4.5 of Kirk (2004), we have that, in B= ∪ ∂2B=, two of the
components of δf , say the first two, are arbitrary, whereas the remaining component, say
the last one, is chosen so that the scalar constraint c(F) = 0 is satisfied. Since in the
above equations λ(x) is arbitrary in B= ∪ ∂2B=, we select λ(x) so that the last component
of the coefficients of δf is zero. Here, such a value of λ(x) is assumed to exist; later, in
Chapter 5, we verify this assumption by determining λ(x) numerically. Then, it follows
from the arbitrariness of the first two components of δf that the first two components of
the coefficients of δf are also null.

Recalling that F is not defined on Σ ∪ S and t is given by (3.13) for a pressure
load, the above considerations on δf lead to the Euler-Lagrange equation

Div Pa + b = 0 in B \(Σ ∪ S) , (3.111)

the traction condition
Pa N = t on ∂2B , (3.112)

where, here, N is the unit normal to ∂2B, and the jump condition
[Pa N]+− = 0 , if t is a dead load ,

[Pa N]+− + p [cof F]+− N = 0 , if t is a pressure load ,
(3.113)

on Σ ∪ S, where N is the unit normal to Σ ∪ S. In addition, δx is arbitrary in the interior
of B, yielding

[W N + FT Pa N]+− = 0 on Σ ∪ S . (3.114)
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Then, the same arguments used in Section 3.4 to obtain (3.87) and (3.88) from
(3.84) and (3.85), respectively, can be used to show that (3.113) and (3.114) are respectively
equivalent to

[Pa N]+− = 0 on Σ ∪ S , (3.115)

[W + F N · Pa N]+− = 0 on Σ ∪ S . (3.116)

Thus, the necessary conditions for a deformation field to be a minimizer of the
minimization problem (3.95) consist of the Euler-Lagrange equation (3.111), the traction
condition (3.112), the continuity of traction (3.115), and the scalar equation (3.116).

Remark 1 (Constrained linear theory). If F is continuous across Σ ∪ S, which means that
F+ = F−, using (3.115), we find that (3.116) is trivially satisfied. It follows from (3.110),
det F = ε in B=, and cof F = (det F) F−T that Pa = P−λ εF−T in B=. Therefore, (3.111),
(3.112), and (3.115) have the same form of the equations of the constrained minimization
theory proposed by Fosdick and Royer-Carfagni (2001) if we replace P with the stress
tensor of the classical linear elasticity theory.
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4 THE UNCONSTRAINED DISK PROBLEM

In this chapter, we consider the problem of a radially reinforced annular disk that
is fixed on its inner surface and compressed by a uniform pressure on its outer surface.
No body force acts on the disk. We investigate the solutions predicted by the orthotropic
St Venant-Kirchhoff and Mooney-Rivlin models without imposing the local injectivity
constraint. For comparison purposes, we also consider the analogous problem in the context
of the classical linear elasticity theory.

4.1 Formulation of the problem

Let {eR, eΘ, eZ} denote the usual orthonormal cylindrical basis at x associated
with the cylindrical coordinates (R,Θ, Z), such that x = R eR(Θ) + Z eZ . Similarly, let
{er, eθ, ez} and (r, θ, z) be the corresponding orthonormal cylindrical basis and coordinates,
respectively, at y, such that y = r er(θ) + z ez. Unless stated otherwise, we omit the
dependence of eR and er on the azimuth.

We consider the problem of equilibrium of an elastic annular disk with uniform
unitary thickness in the absence of body force, so that b = bf = 0. The disk is fixed on
its inner surface of radius Ri ≥ 0 and compressed by a uniform pressure p > 0 on its
outer surface of radius Re > Ri. The disk is homogeneous and made of a cylindrically
orthotropic material, that is, it is orthotropic with respect to the planes that are normal
to eR, eΘ, eZ . In Figure 3, we show an illustration of the disk problem.

Figure 3 – Illustration of the disk problem.

Source: The author.
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We want to find a radially symmetric deformation field f , such that points x ∈ B
move along radial lines according to

f(R,Θ, Z) = r(R) er(Θ) + Z ez , (4.1)

or, equivalently,
u(R,Θ, Z) = ur(R) eR , ur(R) = r(R) −R . (4.2)

Since F ≜ ∇f , we have that

F = ν(R) er ⊗ eR + τ(R) eθ ⊗ eΘ + ez ⊗ eZ ,

ν(R) ≜ r′(R) , τ(R) ≜ r(R)
R

,
(4.3)

where the explicit dependence on x = (R,Θ, Z) is omitted and (·)′ denotes the derivative
with respect to R. In addition, it follows from (4.3) that

det F = ν(R) τ(R) . (4.4)

For comparison purposes, we consider two material models. The first model concerns
an orthotropic St Venant-Kirchhoff material, whose strain energy density function is given
by (3.46), where the nonzero components of C with respect to {eR, eΘ, eZ} are given by
(3.48) with the subscripts 1, 2, 3 denoting the directions eR, eΘ, eZ , respectively. The
second model concerns an orthotropic and compressible Mooney-Rivlin material, whose
strain energy function is given by (3.67), (3.68), (3.56.c), and (3.65), which means that
m1 = eR and m2 = eΘ.

It follows from (3.21) and (4.3.a) that

P = Prr(R) er ⊗ eR + Pθθ(R) eθ ⊗ eΘ + Pzz(R) ez ⊗ eZ , (4.5)

where the components of P are given by

Prr(R) = P̂ vk
rr (ν, τ) ≜ ν

2
[
c11 (ν2 − 1) + c12 (τ 2 − 1)

]
, (4.6)

Pθθ(R) = P̂ vk
θθ (ν, τ) ≜ τ

2
[
c12 (ν2 − 1) + c22 (τ 2 − 1)

]
, (4.7)

for the St Venant-Kirchhoff material and by

Prr(R) = P̂ mr
rr (ν, τ) ≜ P̂ vk

rr (ν, τ) − c33

2 ν (ν4 − 2 ν2 + 1) , (4.8)

Pθθ(R) = P̂ mr
θθ (ν, τ) ≜ P̂ vk

θθ (ν, τ) − c33

2 τ (τ 4 − 2 τ 2 + 1) , (4.9)

for the Mooney-Rivlin material. The expressions of Pzz were omitted because they do not
contribute to the governing equations of equilibrium. In this work, we will use P̂rr and P̂θθ

to represent the response functions of Prr and Pθθ, respectively, without distinguishing
between the St Venant-Kirchhoff and Mooney-Rivlin materials.
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Observe from (4.6)-(4.9) that the stress responses of the Mooney-Rivlin material are
equal to the corresponding responses of the St Venant-Kirchhoff material plus a term that
depends on c33. We will see in Section 4.3.3 that this additional term plays a fundamental
role to prevent self-intersection of the Mooney-Rivlin material. For a large enough traction,
where ν, τ > 1, the sign of P̂ mr

rr is given by the sign of (c11 − c33) ν3 + c12 ν τ
2, which is

negative if c33 is sufficiently larger than c11. This is not realistic, so we limit our studies
to the case c33 ≤ c11. The same argument applied to P̂ mr

θθ yields c33 ≤ c22. In addition,
recall from the beginning of this section that the disk is radially reinforced, which yields
c11 > c22. Therefore, we focus our study in the case c11 > c22 ≥ c33.

Recall from above that, to obtain (4.6)-(4.9), we have considered m1 = eR and
m2 = eΘ. The directions m1 and m2 are usually associated with the directions of fiber
reinforcements, thus, c33 is indeed expected to be lower than c11 and c22. In addition, if we
were to consider m1 = eR and m2 = eZ , we would obtain (4.6)-(4.9) with c33 replaced with
c22. Thus, c33 would not influence Prr and Pθθ. Also, the analysis of the sign of P̂ mr

rr would
yield c11 > c22, which, again, is in agreement with the idea of m1 and m2 being directions
of reinforcements. Therefore, these results indicate that the considered orthotropic and
compressible Mooney-Rivlin material is adequate to model fiber-reinforced composites
subjected to compression or traction; however, it is not adequate to represent materials
with aligned flaws, such as voids or flexible fibers, under traction.

Substituting (4.5) into the vector equilibrium equation (3.69.a), we find that this
equation reduces to the scalar ordinary differential equation given by

d
dR [RPrr(R)] − Pθθ(R) = 0 . (4.10)

Also, from (4.3) and (3.13), the boundary conditions in (3.69.b,c) for the disk problem
reduce to, respectively,

r(Ri) = Ri , Prr(Re) = −p r(Re)
Re

, (4.11)

where the pressure p > 0 is constant.

Thus, the disk boundary value problem (disk BVP) consists of finding r : [Ri, Re] →
R that satisfies the ordinary differential equation (4.10), the boundary conditions (4.11),
and either (4.6)-(4.7) for the St Venant-Kirchhoff material or (4.8)-(4.9) for the Mooney-
Rivlin material, where ν and τ are given by (4.3). A detailed investigation of the disk
BVP is presented in Section 4.3.

In addition, we define the disk minimization problem (disk MP) as the problem
of finding a radial displacement field ur : [Ri, Re] → R that satisfies ur(Ri) = 0 and
minimizes the functional

Ě(ur) ≜ E(f) , (4.12)



54

where f = x + u and E(f) is given by (3.97) together with (4.2), (3.14), B(f) = 0, and
either (3.46) for the St Venant-Kirchhoff material or (3.67) for the Mooney-Rivlin material.
A detailed investigation of the disk MP is presented in Section 4.4.

Remark 2 (Linearly elastic disk BVP). We can follow a similar procedure to define a
problem in the context of the classical linear elasticity theory which is analogous to the
disk BVP introduced above. We refer to this analogous problem as the linearly elastic disk
BVP. It consists of finding r : [Ri, Re] → R that satisfies the ordinary differential equation

d
dR [Rσrr(R)] − σθθ(R) = 0 , (4.13)

where σrr and σθθ are the corresponding components of the stress tensor of the linear
theory. To obtain these components, observe from (4.3) that both ν and τ are close to
unity near the reference configuration. It then follow from (4.6) and (4.7) that

σrr(R) = σ̂rr(ν, τ) = c11 (ν − 1) + c12 (τ − 1) , (4.14)

σθθ(R) = σ̂θθ(ν, τ) = c12 (ν − 1) + c22 (τ − 1) . (4.15)

In addition, r must also satisfy the boundaries conditions (4.11.a) and

σrr(Re) = −p (4.16)

since, in the linear theory, the pressure load is a dead load. The solution of the linearly
elastic disk BVP is known and given by, (Aguiar; Fosdick; Sanchez, 2008),

r(R) = R − Ri

2κ

[(
R

Ri

)κ

−
(
R

Ri

)−κ
]

p

c11 p1
,

p1 ≜
Ri

2κRe

[(
κ− c12

c11

)(
Ri

Re

)κ

+
(
κ+ c12

c11

)(
Ri

Re

)−κ
]
, κ ≜

√
c22

c11
,

(4.17)

which, in the case Ri = 0, simplifies to

r(R) = R − pRe√
c11 c22 + c12

(
R

Re

)κ

. (4.18)

4.2 Analysis of the constitutive response of the disk

We apply some concepts presented in Chapter 3 to the considered disk problem.
We analyze the response function P̂rr(ν, τ), obtain reduced expressions for the continuity
conditions (3.87) and (3.88), and obtain reduced expressions for the inequalities (3.92),
which are necessary and sufficient conditions for the strong ellipticity condition (3.90).

4.2.1 Behavior of the radial normal stress Prr

Recalling from (4.6)-(4.9) that both Prr(R) = P̂rr(ν, τ ) and Pθθ(R) = P̂θθ(ν, τ ) and
from (4.3) that ν = r′ and τ = r/R, we can use the relations

dPrr

dR = ∂P̂rr

∂ν

∂ν

∂R
+ ∂P̂rr

∂τ

∂τ

∂R
,

∂ν

∂R
= r′′ , (4.19)
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to rewrite (4.10) as a differential equation of the form

R
∂P̂rr(r′, r/R)

∂ν
r′′ + f(r′, r, R) = 0 , (4.20)

for some function f . Since R∂P̂rr/∂ν is the leading term in (4.20), we investigate below
the behavior of P̂rr.

First we focus on the response of the orthotropic St Venant-Kirchhoff material and,
later, on the orthotropic and compressible Mooney-Rivlin material. Observe from (4.6)
that P̂rr is a cubic polynomial in ν parameterized by τ and passing through the origin. It
may have two or no extrema, depending on the roots of the equation

∂P̂ vk
rr

∂ν
(ν, τ) = 1

2
[
c11 (3 ν2 − 1) + c12 (τ 2 − 1)

]
= 0 . (4.21)

which occur at ν = νe1 and ν = νe2, where

νe1 = −νe2 =
√

3
3

√
(−τ 2 + τ̄ 2) c12

c11
, τ̄ ≜

√
c11 + c12

c12
. (4.22)

Clearly, if |τ | < τ̄ , the roots are real numbers and P̂rr(ν, τ) has two local extrema
given by P min

rr = P̂rr(νe, τ) and P max
rr = P̂rr(−νe, τ), where

P max
rr = −P min

rr =
√

3
9

√
(−τ 2 + τ̄ 2) c12

c11

(
−τ 2 + τ̄ 2

)
c12 . (4.23)

On the other hand, if |τ | > τ̄ , the roots are imaginary numbers and P̂rr(ν, τ ) is a monotonic
function of ν for a given τ . In the special case of |τ | = τ̄ , both roots are null. In all the
cases, there is an inflection point at the origin, where the graph is concave for ν < 0 and
convex, otherwise.

We see from (4.22) that in the case τ = 1, the extrema occur at ν = ±
√

3/3 for
any value of the elastic constants. Recall from Chapter 2, that this value of stretch was
also found by Batra (2001) in the study of homogeneous deformations of a body made
of the classical isotropic St Venant-Kirchhoff material. In his work, this value of stretch
corresponds to an extremum point in the load-stretch relation of the experiments of simple
extension, biaxial loading of a membrane, and triaxial loading of a cube.

In the case of the orthotropic and compressible Mooney-Rivlin material, there may
also be extrema, which are determined by finding the roots of the equation

2 ν2 ∂P̂
mr

rr

∂ν
(ν, τ) = 3 (c11 − c33) ν4 + (τ 2 c12 − c11 − c12 + 2 c33) ν2 + c33 = 0 . (4.24)

For ν > 0, the extrema occur at ν = νe1 and ν = νe2, where

νe1 =

√√√√−b̄+
√
b̄2 − 4 ā c̄

2 ā , νe2 =

√√√√−b̄−
√
b̄2 − 4 ā c̄

2 ā ,

ā ≜ 3 (c11 − c33) , b̄ ≜ (τ 2 c12 − c11 − c12 + 2 c33) , c̄ ≜ c33 ,

(4.25)
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if νe1, νe2 ∈ R. Recall from Section 4.1 that we consider c11 > c33, thus ā > 0 and, for
ν > 0, there are two extrema or there is none; it cannot exist only one extremum.

In Figure 4, we plot P̂ vk
rr (ν, τ), given by (4.6), versus ν in the range (−1.5, 1.5)

using different values of τ and the elastic constants

c11 = 900
59 ≈ 15.2542 , c22 = 239

177 ≈ 1.35028 , c12 = 30
59 ≈ 0.508475 , (4.26)

which, by using (3.49), are obtained from the engineering constants

E1 = 15 , E2 = E3 = 1 , v12 = v13 = 0.25 , v23 = 0.5 . (4.27)

These engineering constants can be used to approximately represent the properties of a
unidirectional carbon/epoxy composite (Daniel; Ishai, 2006). Of course, negative values of
ν have no physical meaning, and are included here because of the constitutive structure
of the hyperelastic model. In Chapter 5 we impose the constraint det F ≥ ε > 0 and
eliminate these negative values from occurring.

We see from Figure 4 that the curve corresponding to τ = 6 is monotonic and the
other curves are not monotonic with respect to ν. The non-monotonic curves have two
local extrema, which are determined from (4.22) and (4.23), where τ̄ = 5.568 . All the
curves have an inflection point at ν = 0. These results are expected from the previous
analysis. We also see from Figure 4 that the curves corresponding to τ = 0 and τ = 1 are
very close to each other, which is relevant in the analysis of the disk problem since, in this
case, we expect that 0 < τ ≤ 1.

In Figure 5, we plot P̂ mr
rr (ν, τ), given by (4.6), versus ν using c33 = c22/d, d =

1, 2, 5, 20, and the elastic constants given by (4.26). We have verified that the curves do
not change significantly for τ ∈ (0, 1), so we consider τ = 1. We see from this figure
that only in the case c33 = c22 the curve is monotonic. In the other cases, the curves
are non-monotonic with extrema at νe1 and νe2 given by (4.25). In addition, in all cases,
Prr → −∞ as ν → 0+, which is a physically expected response. Only the interval ν > 0 is
physically meaningful and it yields the whole range of P̂ mr

rr . Nevertheless, we show P̂ mr
rr for

ν < 0 because, later in Sections 4.3 and 4.4, the numerical procedures we use to solve the
disk BVP and MP, respectively, need to prevent ν < 0, even though it is mathematically
possible.

We have seen from above that the response functions P̂ vk
rr (ν, τ) and P̂ mr

rr (ν, τ),
given by (4.6) and (4.8), respectively, may be monotonic or not. In the latter case, they
are similar to the non-monotonic response functions used by Ericksen (1975), Abeyaratne
(1981), and Fosdick and Macsithigh (1986) in the sense that, as ν increases, P̂rr(ν, τ)
increases, then it decreases, and then it increases again. In their work, this type of response
function yields a deformation field with a jump in its gradient on an internal surface of the
body if the applied load is greater than a certain value. We will see in Section 4.3 that the
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Figure 4 – Radial normal stress P̂ vk
rr versus ν for different values of τ .

τ = 0 τ = 1 τ = 2 τ = 4 τ = 6

Source: The author.

Figure 5 – Radial normal stress P̂ mr
rr versus ν for τ = 1 and different values of c33.

c33 = c22 c33 = c22/2 c33 = c22/5 c33 = c22/20

Source: The author.
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deformation field of our disk problem has this same behavior. For this reason, we study
next some aspects of this non-smooth behavior by applying the continuity conditions (3.87)
and (3.88) to the disk problem.

4.2.2 Continuity conditions

We have seen in Section 3.4 that necessary conditions for a non-smooth deformation
field f to minimize the total potential energy (3.71.b) are given by (3.83), (3.87), and
(3.88). In this section, we particularize the traction continuity condition (3.87) and the
dissipation-free condition (3.88) to the case of the disk BVP.

Since f is continuous and given by (4.1), both r and τ = r/R are also continuous
and S is a cylindrical surface with outer unit normal N = eR. This together with (4.3)
implies that the jump condition on F is given by

[F]+− = (ν+ − ν−) er ⊗ eR , (4.28)

which is in agreement with (3.74). Then, it follows from (4.5) and (3.87) with N = eR,
that [Prr er]+− = 0, that is, Prr must be continuous across S. Thus, we find that ν+ and
ν− must satisfy

P̂rr(ν+, τ) = P̂rr(ν−, τ) ≜ P̄rr on S , (4.29)

where P̂rr is used to represent both P̂ vk
rr and P̂ mr

rr . This is trivially satisfied if ν+ = ν−,
which, as can be seen from (4.28), corresponds to the case of F being continuous on S. In
this case, the dissipation-free condition (3.88) is also trivially satisfied. In the remainder
of this section, we assume that ν+ ̸= ν−.

Next, we consider the dissipation-free condition (3.88). Since F has the form (4.3),
we write W (F) = Ŵ (ν, τ ). It follows from (4.3.a), (4.5), and (4.29), that the dissipation-free
condition (3.88) can be written as

Ŵ (ν+, τ) − Ŵ (ν−, τ) − (ν+ − ν−) P̄rr = 0 on S . (4.30)

For a given τ , the equation (4.30) is analogous to equation (3.3) of Ericksen (1975). In
view of (3.28), (4.3), and (4.5), we can write P̂rr = ∂Ŵ/∂ν. Thus,

Ŵ (ν+, τ) − Ŵ (ν−, τ) =
∫ ν+

ν−
P̂rr(ν, τ) dν , (4.31)

and (4.30) can be rewritten as
∫ ν+

ν−
P̂rr(ν, τ) dν − (ν+ − ν−) P̄rr =

∫ ν+

ν−

[
P̂rr(ν, τ) − P̄rr

]
dν = 0 on S , (4.32)

which means that the signed area enclosed by the curve P̂rr(ν, τ) − P̄rr and the axis ν
must be null. Thus, the horizontal line P̂rr(·, τ) = P̄rr intersects the graph of P̂rr(·, τ) at
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Figure 6 – Graphical interpretation of equation (4.30).

Source: The author.

three points, such that the two enclosed regions between this graph and the horizontal
line have equal areas. This situation is depicted in Figure 6, where P̄rr must be chosen so
that A1 = A2.

For the orthotropic St Venant-Kirchhoff material, P̂rr = P̂ vk
rr , which is given by

(4.6), is a cubic polynomial and an odd function in ν; thus, we have that

P̄rr = 0 , ν+ = −ν− , |ν+| = |ν−| =
√

(−τ 2 + τ̄ 2) c12

c11
(4.33)

for |τ | < τ̄ , where τ̄ is given by (4.22.c). In addition, since det F is given by (4.4) and
τ is continuous on S, ν+ = −ν− implies that det F ≤ 0 on one of the sides of S.
This corresponds to self-intersection, which is a physically unacceptable behavior. For
the orthotropic and compressible Mooney-Rivlin material, we could not find a simple
expression analogue to (4.33); however, the continuity conditions (4.29) and (4.30) will be
verified numerically in Sections 4.3.3 and 4.4.2.

In summary, it follows from the above discussion that (4.29) and (4.30) are necessary
conditions for a non-smooth field r with a jump in its first derivative r′ = ν to be a stable
solution of the disk BVP, in the sense that it corresponds to a minimum of the total
potential energy functional. In the case of the orthotropic St Venant-Kirchhoff material,
these conditions can be written as (4.33) and the corresponding stable non-smooth solution
predicts self-intersection in a region within the disk, which is not physically admissible.

4.2.3 Strong ellipticity conditions

Let us now study the strong ellipticity conditions (3.92)-(3.93), where u1 = ν(R)
and u2 = τ(R) because of (4.3). In the case of the orthotropic St Venant-Kirchhoff material,
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where W̄ is given by (3.56), the conditions (3.92)-(3.93) become

Q vk
11 = 1

2 ν2

[
c11 (3 ν2 − 1) + c12 (τ 2 − 1)

]
= 1
ν2

∂P̂ vk
rr

∂ν
> 0 ,

Q vk
22 = 1

2 τ 2

[
c12 (ν2 − 1) + c22 (3 τ 2 − 1)

]
= 1
τ 2

∂P̂ vk
θθ

∂τ
> 0 ,

Q vk
12 = 1

2 ν2

[
c12 (ν2 − 1) + c22 (τ 2 − 1)

]
+ c66 > 0 ,

Q vk
21 = 1

2 τ 2

[
c11 (ν2 − 1) + c12 (τ 2 − 1)

]
+ c66 > 0 ,

Q vk
∗ =

√
Q vk

11 Q
vk
22 +

√
Q vk

12 Q
vk
21 − |c12 + c66| > 0 .

(4.34)

In the case of the orthotropic and compressible Mooney-Rivlin material, W̄ is given
by (3.67) and the conditions (3.92)-(3.93) become

Qmr
11 = Q vk

11 + c33

2 ν4 (−3 ν4 + 2 ν2 + 1) = 1
ν2

∂P̂ mr
rr

∂ν
> 0 ,

Qmr
22 = Q vk

22 + c33

2 τ 4 (−3 τ 4 + 2 τ 2 + 1) = 1
τ 2

∂P̂ mr
θθ

∂τ
> 0 ,

Qmr
12 = Q vk

12 + c33

2 ν2 (2 − ν2 − τ 2) > 0 ,

Qmr
21 = Q vk

21 + c33

2 ν2 (2 − ν2 − τ 2) > 0 ,

Qmr
∗ =

√
Qmr

11 Q
mr
22 +

√
Qmr

12 Q
mr
21 −

∣∣∣∣c12 + c66 + c33

2

( 1
ν2 τ 2 − 1

)∣∣∣∣ > 0 .

(4.35)

The loss of ellipticity occurs when at least one of the above expressions in (4.34)-
(4.35) is null. Note from (4.34.a-d) that, if all elastic constants are positive1, Q vk

11 , Q vk
22 ,

Q vk
12 , and Q vk

21 are positive for any ν, τ > 1; they may be negative only if ν, τ ∈ (0, 1).
We see from (4.35) that the expressions of Qmr

ij , ij = 11, 22, 12, 22, are those of the St
Venant-Kirchhoff material plus extra terms that multiply c33; similarly to what we have
discussed for the stress below (4.8)-(4.9). These extra terms are positive for ν, τ ∈ (0, 1)
and go to infinity as ν, τ → 0; therefore, they contribute to the ellipticity of the governing
equations. If ν, τ > 1, these extra terms are negative, but bounded; on the other hand,
Q vk

11 , Q vk
22 , Q vk

12 , and Q vk
21 are positive and unbounded.

4.3 The disk boundary value problem

In this section, we study the solutions of the disk BVP using a phase-plane technique;
see, for instance, Pontryagin (1962). We begin by rewriting the differential equation (3.69)
1 Recall from (3.94) that this is a requirement for c11, c22, c66, so that the strong ellipticity

condition holds at the reference configuration. This ellipticity condition allows c12 < 0;
however, c12 is positive for most materials.
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as a system of autonomous differential equations2. We then use the constitutive relations
to construct trajectories of this system.

4.3.1 The autonomous system of differential equations

For a given τ , we solve Prr = P̂rr(ν, τ) for ν, yielding ν = ν̌(τ, Prr). The possible
multivaluedness of ν is addressed in Sections 4.3.2 and 4.3.3. We then define P̌θθ(τ, Prr) ≜
P̂θθ(ν̌(τ, Prr), τ) and rewrite the differential equation (3.69) as the system of equations

d
dR [Rτ ] = ν̌(τ, Prr) ,

d
dR [RPrr(R)] = P̌θθ(τ, Prr) .

(4.36)

Next, we change variables by introducing ξ = logR, ξ ∈ [logRi, logRe], and rewrite
τ(R) as τ(ξ) and Prr(R) as Prr(ξ). The system of equations (4.36) can then be rewritten
as the system of autonomous differential equations given by

dτ
dξ = ν̌(τ, Prr) − τ ,

dPrr

dξ = P̌θθ(τ, Prr) − Prr ,

(4.37)

where we have omitted the dependence of both τ and Prr on ξ. Singular points of the
system (4.37) are points where both the vertical isocline V ≜ {(τ, Prr) ∈ U | dτ/dξ =
0 (4.37.a)⇐⇒ ν̌(τ, Prr) = τ} and the horizontal isocline H ≜ {(τ, Prr) ∈ U | dPrr/dξ = 0 (4.37.b)⇐⇒
P̌θθ(τ, Prr) = Prr} intersect. Therefore, at singular points the relation P̂θθ(τ, τ) = P̂rr(τ, τ)
holds.

Next, we rewrite the boundary conditions (4.11) in terms of τ and Prr as
τ(ξ) = 1 , ξ = logRi , if Ri > 0 ,

lim
ξ→−∞

eξ τ(ξ) = 0 , if Ri = 0 ,
(4.38)

Prr(ξ) = −p τ(ξ) , ξ = logRe . (4.39)

We then use (4.38.a) and (4.39) to define the initial curve Ci and the terminal curve
Ce ≡ Ce(p) as, respectively,

Ci = {(τ, Prr) ∈ U | τ = 1}, Ce(p) = {(τ, Prr) ∈ U | Prr = −p τ} . (4.40)

A trajectory of the system (4.37) is a curve in the plane U ≜ {(τ, Prr) | τ, Prr ∈ R}
parameterized by ξ that satisfies (4.37) and is oriented according to increasing values of
2 A system of autonomous differential equation is a system of differential equations that does

not explicitly depend on the independent variable.
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ξ. The trajectory of solution of the disk BVP is a segment of a trajectory of the system
(4.37) whose starting and ending points satisfy (4.38) and (4.39), respectively. Therefore,
it begins at the initial curve Ci with ξ = logRi for Ri > 0 and it ends at the terminal
curve Ce with ξ = logRe. For Ri = 0, the initial point of the trajectory of solution, which
corresponds to ξ = −∞, must be a point such that (4.38.b) holds, which can be either
a point at infinity or a singular point; for the former, τ(ξ) may become unbounded as
ξ → −∞ as long as eξ tends to zero at a faster enough rate, for the latter, τ(ξ) remains
finite so (4.38.b) is trivially verified.

To construct the phase portrait of the autonomous system (4.37), which is a
collection of trajectories of this system, we must determine expressions for ν̌(τ, Prr) and
P̌θθ(τ, Prr), which depends on the constitutive relation.

4.3.2 Orthotropic St Venant-Kirchhoff material

In the case of the orthotropic St Venant-Kirchhoff material, it follows from (4.6)
that ν = ν̌(τ, Prr) satisfies the cubic equation

ν3 −
[
1 + c12

c11
(1 − τ 2)

]
ν − 2 Prr

c11
= 0. (4.41)

The discriminant of this equation is given by

D = D(τ, Prr) ≜ −4 a3 − 27 b2 , (4.42)

where a ≜ −[1 + (1 − τ 2) c12/c11] and b ≜ −2Prr /c11, where we recall from (3.94.a) that
c11 > 0. We then have the following three cases of interest, which will be used in the
discussion of numerical results presented below.

• If D = 0, the equation (4.41) has either a triple root ν0
3 = 0 if a = b = 0 or both

a simple root ν0
1 = 3 b/a and a double root ν0

2 = −ν0
1/2 if a ̸= 0 and b ̸= 0. In the

latter case, D = 0 and −27 b2 < 0 yields a < 0; thus, for c11 > 0, ν0
1 has the same

sign of Prr and ν0
2 the opposite sign.

• If D > 0, the equation (4.41) has three distinct real roots, given by νi = νi(τ, Prr),
i = 1, 2, 3, where ν1 < ν2 < ν3. By Vieta’s formulas, ν1 + ν2 + ν3 = 0 and ν1 ν2 ν3 =
2Prr/c11. Therefore, ν1 < 0, ν3 > 0, and, since c11 > 0, ν2 has the opposite sign of
Prr. In addition, for D → 0+, we have: (i) ν1, ν2 → ν0

2 and ν3 → ν0
1 if Prr > 0; (ii)

ν2, ν3 → ν0
2 and ν1 → ν0

1 if Prr < 0; (iii) ν1, ν2, ν3 → 0 if Prr = 0.

• If D < 0, the equation (4.41) has only one real root ν∗ = ν∗(τ, Prr) and two complex
conjugate roots. Again, by Vieta’s formulas, the product of these three roots is equal
to 2Prr/c11. Therefore, ν∗ has the same sign of Prr since the product between two
complex conjugates is positive. In addition, ν∗ → ν0

1 for D → 0−.
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We use the discriminant D to define the regions

D> ≜ {(τ, Prr) ∈ U | D > 0} , D< ≜ {(τ, Prr) ∈ U | D < 0} . (4.43)

The interface between D> and D< corresponds to points where D = 0. Once ν = ν̌(τ, Prr)
is determined, P̌θθ(τ, Prr) is obtained from (4.7) by recalling from above that P̌θθ(τ, Prr) ≜
P̂θθ(ν̌(τ, Prr), τ).

Given p, Ri ̸= 0, and the elastic constants c11, c12, c22, we can determine trajectories
of solutions of the disk BVP by generating a set of points {(τ j, P j

rr)}, j = 1, 2, ..., N , where
(τ 1, P 1

rr) ∈ Ci,

(τ j+1, P j+1
rr ) = (τ j, P j

rr) + δξj

(
dτ

dξ
,
dPrr

dξ

) ∣∣∣∣
(τ j ,P j

rr)
, (4.44)

and N is such that ∑N
j=1 δξj = ∆ξ ≜ logRe − logRi. Thus, N is the total number of steps

that are necessary to go from the initial curve Ci to the terminal curve Ce. In addition,
we use a simple iterative procedure to choose the initial point (τ 1, P 1

rr) ∈ Ci in such a
way that the last point (τN , PN

rr ) is close to Ce(p) within a small error. More precisely,
(τN , PN

rr ) ∈ Ce(p∗), where |p− p∗| < 0.001 |p|. For Ri = 0, we consider a sequence of disk
BVPs parameterized by the internal radius Ri > 0 and obtain the trajectory of solution in
the limit, as Ri → 0.

Remark 3 (Trajectories of the linearly elastic case). As mentioned in Section 4.1, in the
context of the linear elasticity theory, Prr = σrr is given by (4.14), from which we obtain
ν̌(τ, σrr) = 1 + [σrr − c12 (τ − 1)]/c11. Also, P̌θθ(τ, σrr) = σ̌θθ(τ, σrr) ≜ σ̂θθ(ν̌(τ, σrr), τ) is
obtained from (4.15). In the linear theory, the above comments regarding the starting
point of the trajectory of solution remain valid. For the ending point, however, (4.39.a) is
replaced by σrr(Re) = −p, yielding the terminal curve Ce(p) = {(τ, σrr) ∈ U |σrr = −p},
instead of (4.40.b). The trajectory of solution in the linear case is then obtained from the
exact solution of the linearly elastic disk BVP given by (4.17) together with (4.14) and
(4.3.b,c).

In the remainder of this section, we use Re = 1, so that all lengths are normalized
with respect to Re, and the elastic constants c11, c22, c12 given by (4.26). In Figure 7, we
plot phase portraits associated with the system (4.37) together with some auxiliary lines.
The gray oriented lines are the trajectories, the black vertical dashed line is the initial
curve Ci, and the blue dashed line is the terminal curve Ce(p) for p = 0.01. In addition, the
green dashed line segments correspond to D = 0, where D is the discriminant defined in
(4.42), and separate the regions D< and D>, which are defined in (4.43). Figures 7.a-c are
the phase portraits for the orthotropic St Venant-Kirchhoff material and Figure 7.d is the
phase portrait for the linear elastic material. Inside the region D>, recall from below (4.42)
that ν̌(τ, Prr) may assume three possible values, denoted by νi(τ, Prr), i = 1, 2, 3. Figures
7.a-c are phase portraits corresponding to ν1, ν2, and ν3, respectively. Outside the region
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D>, ν̌(τ, Prr) assumes only one value and, therefore, in Figures 7.a-c, the trajectories differ
only inside D>.

The red line segments shown in Figures 7.a-c are trajectories of solutions of the
disk BVP for Ri = 0.001 and p = 0.01. To obtain these trajectories, we use (4.44) with the
steps δξj = δξ = 0.001 for j = 1, 2, ..., N − 1, and the last step δξN = − logRi − (N − 1) δξ.
Similarly, the red line segment shown in Figure 7.d is the trajectory of solution of the
linearly elastic disk BVP for the same values of Ri and p. As mentioned in Remark 3, we use
the exact solution (4.17) to determine this trajectory. In Figure 8, we show enlargements
of the phase portraits of Figure 7 near the trajectories of solutions.

Recall from Section 4.3.1 that P̂θθ(τ, τ) = P̂rr(τ, τ) at singular points. Thus, it
follows from (4.6) and (4.7) that (τ, Prr) ∈ {(−1, 0), (0, 0), (1, 0)} are singular points as
can be seen from Figures 8.a-c. Observe from Figures 8.a-b that the red line segments end
on Ce for τ not close to 1, which means that the outer surface of the disk undergoes a large
deformation for an applied pressure that is small. This behavior is not physically realistic.
On the other hand, the red line segment shown in Figure 8.c ends near τ = 1 and is similar
to the trajectory of solution of the linearly elastic disk BVP represented by the red line
segment of Figure 8.d. This is consistent with the result that the St Venant Kirchhoff
model reduces to the linear elastic model in the limit of infinitesimal deformations.

In view of the exposition above, we restrict our analysis to the case ν̌ = ν3 in D>.
Recall from (4.42) and the ensuing discussion that, along the upper green dashed line,
where D = 0 and Prr > 0, we have ν∗ = ν3 = ν0

1 . Along the lower green dashed line, where
D = 0 and Prr < 0, we have ν∗ = ν1 = ν0

1 and ν3 = ν0
2 . Therefore, ν̌ is continuous along

the upper green dashed line and has a finite jump from ν∗ = ν0
1 to ν3 = ν0

2 along the
lower green dashed line. It follows from both (4.37) and (4.7) that a jump in ν̌ causes a
jump in both dτ/dξ and dPrr/dξ, which results in the abrupt change of direction of the
trajectories observed along the lower green dashed line in Figure 7.c.

In Figure 9, we show trajectories of solutions for Ri = 0.001 and three different
values of pressure, p = 0.005, 0.013773, 0.02. The solid lines correspond to trajectories
of solutions of the disk BVP by choosing ν̌(τ, Prr) = ν3(τ, Prr) in D>. The dotted lines
correspond to trajectories of solutions of the linearly elastic disk BVP. The black dashed
line is the interface between D> and D<. As mentioned below (4.44), the trajectories begin
at the initial curve Ci, defined by (4.40.a), and end at the terminal curve Ce, defined by
(4.40.b) in the case of the disk BVP and inside Remark 3 in the case of the linearly elastic
disk BVP. In view of this, observe from the inset of the figure that the curves end before
(1, 0).

We see from this Figure 9 that, for p = 0.005, the trajectories of the nonlinear and
linear cases are very similar to each other and that, as p increases, the solid and the dotted
lines become very different. In particular, for p = 0.02, the trajectory of the nonlinear
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Figure 7 – Phase portraits of the system (4.37): (a), (b), (c) Orthotropic St Venant-
Kirchhoff material. (d) Linear elastic material.

(a) ν̌ = ν1 in D> (b) ν̌ = ν2 in D>

(c) ν̌ = ν3 in D> (d) Linearly elastic case

Source: The author.
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Figure 8 – Enlargements of the phase portraits of Figure 7. (a), (b), (c) Orthotropic St
Venant-Kirchhoff material. (d) Linear elastic material.

(a) ν̌ = ν1 in D> (b) ν̌ = ν2 in D>

(c) ν̌ = ν3 in D> (d) Linearly elastic case

Source: The author.
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Figure 9 – Trajectories of solutions of the disk BVP for the St Venant-Kirchhoff material
(solid lines) and their linearly elastic counterparts (dotted lines) for Ri = 0.001
and different values of p.

Source: The author.

case is not smooth at the interface between D> and D<. As mentioned above, this is
because the corresponding field ν̌ has a jump discontinuity at this interface. Therefore,
this non-smooth trajectory corresponds to a field r that has a finite jump in its derivative
r′, where we recall from above that r′(R) = ν(R) = ν̌(τ, Prr), at an interior point of the
disk. It also provides an example of solution of the disk BVP that does not correspond to
a minimum of the energy functional, even though it is part of a sequence of solutions that
approach their linear counterpart as p decreases. To see this, observe from Figure 9 that,
for p = 0.02, the trajectory of solution is not smooth at a point where Prr ≈ −3, which
does not satisfy the relations (4.29) and (4.33.a). In addition, this non-smooth trajectory
corresponds to a solution that predicts self-intersection, which is not physically admissible.
To see this, recall from the discussion below (4.42) that, in D<, ν̌(τ, Prr) = ν∗(τ, Prr) is
negative if Prr < 0. Therefore, from (4.4), we have that det F = ν τ < 0 in the segment of
trajectory that belongs to D<.

In Section 4.4.2, we show a deformation field that is not smooth and, yet, corresponds
to a minimizer of the energy functional. The phase-plane technique used here can be
adapted to obtain a trajectory of solution that is also an energy minimizer. This is done
in Section 4.3.3 for the case of the Mooney-Rivlin material.

It follows from the above discussion that the orthotropic St Venant-Kirchhoff
material model matches well the response of the corresponding linear elastic material for
small values of p and that it is not appropriate to model the behavior of the disk for large
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values of p. We infer from the above that there is an intermediate value of p, denoted
by p̄, above which the solution of the disk BVP has a finite jump discontinuity in its
derivative. This value corresponds to the point A in Figure 9, which is at the intersection
of the initial curve Ci with the line defined by D = 0 represented by the black dashed
line, where D is defined in (4.42). We then have that D(1, Prr) = 4 [1 − 27 (Prr/c11)2] = 0,
yielding the initial point (τ 1, P 1

rr) = (1,−c11
√

3/9) = (1,−2.93568) for the recursive
formula (4.44), where c11 is given by (4.26.a). The last point (τN , PN

rr ) of the trajectory
yields p̄ = −PN

rr /τ
N = 0.013773, which is a value of p shown in Figure 9.

Substituting the pair (τ 1, P 1
rr) into (4.6) yields ν =

√
3/3. Thus, p̄ can also be

obtained from the solution of the differential equation (4.10), (4.6), and (4.7), with the
initial conditions r(Ri) = Ri and r′(Ri) =

√
3/3. Since the solution corresponding to

p = p̄ is smooth, this initial value problem can be solved numerically using a standard
numerical solver of differential equations3. Using (4.11), we obtain p̄ = −Prr(Re)/τ(Re),
where Prr(Re) is evaluated from (4.6) employing the numerical solution. This numerical
approach yields the values of p̄ presented in Table 1.

Next, recall from the discussion of Figure 9 that the solution of the disk BVP
predicts self-intersection for p > p̄. In the context of the linearly elastic BVP, Aguiar,
Fosdick and Sanchez (2008) determined an analogous upper bound p̄ lin, that is, the solution
of the linearly elastic BVP predicts self-intersection for p > p̄ lin. This critical value is given
by p̄ lin = c11 p1, where p1 is given by (4.17.b,c).

In Table 1, we show p̄, p̄ lin, and the ratio p̄ lin/p̄ for different values of Ri. The
numbers inside parenthesis are the ratios between two consecutive values of either p̄ or p̄ lin

evaluated at 10Ri and Ri. We see from this table that, as Ri → 0, both p̄ and p̄ lin tend
to zero at the same ratio, which is, approximately, equal to 5.04. Therefore, if the disk is
solid, in which case Ri = 0, the deformation field has a finite jump in its spatial derivative
and predicts self-intersection for any value of p > 0. We do not treat the case Ri = 0
directly because, in this case, ∆ξ = ∞ and we cannot use (4.44) to obtain trajectories of
solutions. For all the considered values of Ri, we have that p̄ < p̄ lin and, for Ri < 10−3,
the ratio p̄ lin/p̄ is approximately constant and equal to 4.85, yielding p̄ ≈ 0.206 p̄ lin.

Although not shown here, we also calculated the ratio p̄ lin/p̄ for Re = 1, c22 = 1,
and different combinations of Ri ∈ [10−8, 0.9], c11 ∈ (1, 104], and c12 ∈ [0, 1]. In all the
cases, we have obtained p̄ lin/p̄ ∈ [3.6, 5.2], which means that the critical pressure, p̄, above
which self-intersection occurs by using the St Venant-Kirchhoff material is lower than the
corresponding critical pressure, p̄ lin, predicted by the classical linear theory. Therefore, p̄
yields an upper bound of p below which the classical linear elasticity theory is valid.

3 We use the routine solve_ivp of the the Python library SciPy, version 1.4.1, with the
parameters atol = rtol = 10−10. To avoid numerical singularity, we use the initial condition
r′(Ri) =

√
3/3 + 10−8.
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Table 1 – Comparison between p̄ and p̄ lin for different values of Ri.

Ri 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

p̄ 4.25e-01 7.19e-02 1.38e-02 2.71e-03 5.38e-04 1.07e-04 2.11e-05 4.20e-06
(5.91) (5.22) (5.08) (5.05) (5.04) (5.04) (5.04)

p̄ lin 2.02 3.51e-01 6.71e-02 1.32e-02 2.61e-03 5.17e-04 1.03e-04 2.04e-05
(5.77) (5.23) (5.09) (5.05) (5.04) (5.04) (5.04)

p̄ lin/p̄ 4.767 4.882 4.871 4.857 4.852 4.850 4.850 4.850

4.3.3 Orthotropic and compressible Mooney-Rivlin material

We have seen in Section 4.3.1 that to determine the trajectories associated with
the autonomous system of differential equations (4.37), we need to determine ν̌(τ, Prr) and
P̌θθ(τ, Prr), which depend on the constitutive relation. In the case of the orthotropic and
compressible Mooney-Rivlin material, ν̌(τ, Prr) is obtained numerically from the relation
Prr = P̂ mr

rr (ν̌, τ), where P̂ mr
rr is given by (4.8), and P̌θθ(τ, Prr) is obtained from its definition

below (4.36) as P̌θθ(τ, Prr) = P̂ mr
θθ (ν̌(τ, Prr), τ), where P̂ mr

θθ is given by (4.9).

In addition, we use (4.30) to define the curve

CS = {(τ, Prr) ∈ U | [Ŵ (ν̌, τ) + ν̌ Prr]+− = 0 , ν̌ = ν̌(τ, Prr)} . (4.45)

This curve represents the points that satisfy (4.30) and, thus, any jump in ν must occur
at a point of this curve for the trajectory of solution be a minimizer of the energy. As we
have seen in Section 4.2.1, P̂ mr

rr may be non-monotonic with respect to ν depending on
the elastic constants, so we expect a jump discontinuity in ν.

Differently from Section 4.3.2, here, it is more convenient to construct trajectories
of solutions from the outer radius to the inner radius of the disk. This is because near the
inner radius, Prr may have a large absolute value and, as we have seen in Figure 5, the
relation between (τ, Prr) and ν > 0 may be not one-to-one, so it is not immediately clear
which value of ν to choose. On the other hand, at the outer radius, Prr has a low absolute
value for plausible values of p. In this case, (τ, Prr) 7→ ν is one-to-one and ν ≈ 1, so ν is
determined unequivocally. As we construct the trajectory, ν remains well defined even if
(τ, Prr) 7→ ν is not one-to-one because ν is continuous except at a point of the curve CS ,
where ν jumps to it lowest positive value. More specifically, recall from Section 4.2.1 that
P̂ mr

rr may have two extrema, so the map (τ, Prr) 7→ ν may yield ν = νi, i = 1, 2, 3, where
0 < ν1 < ν2 < ν3; in this case, a jump between ν1 and ν3 occurs across the curve CS .

Therefore, we generate the set of points {(τ j, P a j
rr )}, j = 1, 2, ..., N , using the

recursive formula

(τ j+1, P j+1
rr ) = (τ j, P j

rr) − δξj

(
dτ

dξ
,
dPrr

dξ

) ∣∣∣∣
(τ j ,P j

rr)
, (4.46)
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Figure 10 – Trajectories of solutions of the disk BVP for the Mooney-Rivlin material (solid
lines) and their linearly elastic counterparts (dotted lines) for Ri = 0.001 and
different values of p.

Source: The author.

where (τ 1, P 1
rr) ∈ Ce and N is such that ∑N

j=1 δξj = ∆ξ ≜ logRe − logRi. Thus, N is
the number of steps to go from the terminal curve Ce to the initial curve Ci and is a
consequence of the choice for the size steps δξj. We use a simple iterative procedure to
find the initial point (τ 1, P 1

rr) ∈ Ce such that 0.999 < τN < 1.001, that is, the last point
(τN , PN

rr ) is close enough to Ci.

In Figure 10, we show trajectories of solutions for Ri = 0.001 and three different
values of pressure, p = 0.005, 0.012157, 0.02. We use the same elastic constants of Section
4.3.2, which are given by (4.26), in addition to c33 = c22/5. The solid lines correspond to
trajectories of solutions of the disk BVP and the dotted lines correspond to trajectories
of solutions of the linearly elastic disk BVP. The black dashed line represents the curve
CS given by (4.45). Similarly to the St Venant-Kirchhoff case presented in Figure 9, the
trajectories of the nonlinear and linear cases are very similar to each other for p = 0.005
and they become very different from each other as p increases. In addition, note that the
critical pressure above which the solution becomes non-smooth is p = 0.012157, which
is a lower value than that of the St Venant-Kirchhoff material shown in Figure 9. For
p = 0.02, the trajectory of the nonlinear case is non-smooth at the CS , which means that
the dissipation-free condition (4.30) holds. Recall from Section 4.2.2 that this condition
together with the traction continuity condition (4.29) are necessary conditions that a
minimizer of the energy functional must satisfy. The traction continuity condition (4.29)
is also verified since the trajectory is continuous. Therefore, both necessary conditions are
satisfied.
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4.4 The disk minimization problem

We now turn our attention to the disk minimization problem (disk MP) defined in
(4.12) and present a numerical method to find approximate solutions of this problem. The
numerical method is implemented in a C++ code using the open-source finite element
library deal.ii (Arndt et al., 2019).

4.4.1 Numerical procedure

The numerical procedure is based in a finite element formulation of the disk MP.
For this, let Vh be a finite dimensional space spanned by a set of scalar basis functions {wi},
where h stands for the characteristic length of the finite element. Then, an approximate
minimizer uh of the disk MP can be written as

uh = uh eR , uh =
m∑

i=1
si wi , (4.47)

where uh ∈ Vh is the approximate radial displacement, si ∈ R, i = 1, 2, 3, ...,m, is a degree
of freedom and m is the number of degrees of freedom associated with the discretization. In
this work, we use Lagrange finite elements with degree d = 1, 2, 3, ... and a Gauss-Legendre
quadrature rule with 2 d points.

For the orthotropic St Venant-Kirchhoff material, we use (4.12), (3.97), (3.46),
(3.14), (4.2), B(f) = 0, and ur(Ri) = 0 to obtain Ě(ur) = Ě vk(ur), where

Ě vk(ur) ≜ π
∫ Re

Ri

(
c11

4 Ru′
r

4 + c11 Ru
′
r

3 + c11 Ru
′
r

2 + c12 ur u
′
r

2 + 2 c12 ur u
′
r

+ c12

2R u2
r u

′
r

2 + c12

R
u2

r u
′
r + c22

R
u2

r + c22

R2 u
3
r + c22

4R3 u
4
r

)
dR

+ π p
[
(Re + ur(Re))2 −R2

i

]
.

(4.48)

Similarly, for the orthotropic and compressible Mooney-Rivlin material, we use (3.67) in
the place of (3.46) to obtain Ě(ur) = Ě mr(ur), where

Ě mr(ur) ≜ Ě vk(ur) + π c33

∫ Re

Ri

− R

4
(
u′

r
4 + 4u′

r
3 + 2u′

r
2 − 4u′

r

)

− R

2 log
[

(R2 + 2Rur + u2
r) (u′

r
2 + 2u′

r + 1)
R2

]

+ ur − u2
r

2R − u3
r

R2 − u4
r

4R3

 dR .

(4.49)

We have seen in Section 4.3 that the radial stretch ν may be discontinuous. This
creates numerical difficulties for standard numerical procedures. In view of this, we propose
a numerical procedure that uses a penalty formulation to restrict the jump in ν to occur at
a position R = RS and then search for the value of RS that minimizes the total potential
energy functional. For that, we introduce the penalty functional
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Q(ur, RS) ≜ δe

[∫
B−

max (0, ν − νe2)2 dx +
∫

B+
max (0, νe1 − ν)2 dx

]
≥ 0 , (4.50)

where both νe1 and νe2 are given by either (4.22) for the St Venant-Kirchhoff material
or (4.25) for the Mooney-Rivlin material, δe > 0 is a penalty parameter, and, here,
B− ≜ {x ∈ B |Ri < R < RS} and B+ ≜ {x ∈ B |RS < R < Re}. We see from (4.50) that
Q is null if and only if ν ≥ νe1 in B+ and ν ≤ νe2 in B−. In addition, RS is not limited to
be in the interval [Ri, Re]; for instance, RS < Ri means that B− = ∅, B+ = B, and ν is
continuous.

We consider the bi-level minimization problem4

min
RS∈R

min
s∈Rm

F(s, RS) , F(s, RS) = Eh(s) + Qh(s, RS) , (4.51)

where we used (4.47) to define the vector s ≜ (s1, s2, ..., sm) and the functions Eh(s) ≜ Ě(uh)
and Qh(s, RS) ≜ Q(uh, RS). The inner problem is a minimization problem in the vector
variable s parameterized by RS . The outer problem is a minimization problem in the
scalar variable RS , which we solve by using the golden-section search. See, for instance,
Luenberger and Ye (2008).

We set the initial search interval of the golden section search to be [Ra
S , R

b
S ], where

Ra
S and Rb

S are numerical parameters that must be chosen so that the initial search interval
is large enough to contain RS of the minimizer. At each iteration of the golden section
search, we solve the inner minimization problem for intermediate values Rc

S , R
d
S ∈ [Ra

S , R
b
S ],

which are given by5 Rc
S = Rb

S − (Rb
S − Ra

S)/ψ and Rd
S = Ra

S + (Rb
S − Ra

S)/ψ, where
ψ ≜ (1 +

√
5)/2, using a standard Newton-Raphson method with a unidirectional search,

as explained below. For large enough values of the penalty parameter δe, the solution of
this inner minimization problem is expected to converge to a deformation field satisfying
Qh(s) = 0. Let sc and sd denote the solutions found using Rc

S and Rd
S , respectively. Then,

if F(sc, Rc
S) < F(sd, Rd

S), we set Rb
S = Rd

S ; otherwise, we set Ra
S = Rc

S . Finally, if the
new search interval [Ra

S , R
b
S ] is greater than 10−6, we repeat the iteration; otherwise, we

set (s, RS) = argmin {F(sc, Rc
S),F(sd, Rd

S)} as the solution of the minimization problem
(4.51).

To solve the inner problem in (4.51), we use a standard Newton-Raphson method
with a unidirectional search; see, for instance, Luenberger and Ye (2008). Thus, starting
4 In Appendix C, we present numerical results concerning a standard numerical formulation,

which does not include RS as a variable of the problem. These results are convergent only if
the pressure is small enough so that the minimizer is smooth, that is, if p < p̄ as we have seen
in Section 4.3.2. For p > p̄, the procedure fails to obtain convergent results. These results,
however, motivated us to formulate the discrete problem as in (4.51).

5 By definition, the golden section search is a Fibonacci search whose interval of uncertainty
tends to zero. This definition yields the expressions of Rc

S and Rd
S (Luenberger; Ye, 2008).



73

from an initial guess s0, we generate a sequence of vectors sk, k = 1, 2, 3, ..., using the
recursive formula

sk+1 = sk + αk dk , (4.52)

where dk ∈ Rm is a search direction and αk ∈ R is a step length. Below, we shall omit the
dependence of F on the parameter RS .

The search direction dk is given by

dk = −
[
∇2

sF(sk)
]−1

∇sF(sk) , (4.53)

where ∇sF ≜ (∂F/∂s1, ∂F/∂s2, ..., ∂F/∂sm) is the gradient of F with respect to s and
∇2

sF is the Hessian of F . The step length αk is the minimizer of the unidirectional
minimization problem

min
α∈R

H(α) , H(α) ≜ F(sk + αdk) . (4.54)

Starting from α(0) = 0, we use the recursive formula

α(i+1) = α(i) −
(

dH/dα
d2H/dα2

) ∣∣∣∣
α=α(i)

(4.55)

to generate a sequence of values α(i), which is expected to converge to αk as i → ∞. This
sequence is truncated and we set αk = α(i+1) when the following stop criterium is satisfied.

∣∣∣dk · ∇sF(sk + α(i+1) dk)
∣∣∣

|dk| |∇sF(sk + α(i+1) dk)| < εα or i+ 1 = Nα , (4.56)

where εα > 0 is an adopted tolerance and Nα is the maximum number of iterations allowed.
The inequality (4.56.a) states that the search direction dk and the gradient of the objective
function F must be orthogonal to each other to within an error εα. For the Mooney-Rivlin
material, we check if αk yields det F = ν τ > 0 at all quadrature points; otherwise, we halve
αk until this condition is verified. Recall from the discussion of Figure 5 that, despite ν > 0
yielding the whole range of P̂ mr

rr , ν < 0 is mathematically possible. This verification makes
the step length small enough so ν < 0 is not reached. For the St Venant-Kirchhoff material,
this verification is not done since, recalling from the discussion of (4.33), a non-smooth
minimizer necessarily has det F ≤ 0 on one of the sides of S; additionally, ν > 0 does not
yield the whole range of P̂ vk

rr like in the Mooney-Rivlin case.

Let uk
h = uk

h eR denote the approximate displacement field associated with sk

through (4.47). The stop criterium used to truncate the sequence of vectors sk, k = 1, 2, 3, ...,
is ∣∣∣∣∣∣uk+1

h − uk
h

∣∣∣∣∣∣
H1
< εs , (4.57)
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where εs > 0 is an adopted tolerance and ||uk+1
h − uk

h||H1 is the H1-norm of uk+1
h − uk

h,
which is given by

∣∣∣∣∣∣uk+1
h − uk

h

∣∣∣∣∣∣
H1

=
[∫

B

(∣∣∣uk+1
h − uk

h

∣∣∣2 +
∣∣∣∇uk+1

h − ∇uk
h

∣∣∣2) dx
]1/2

=
{

2 π
∫ Re

Ri

[
R

(
duk+1

h

dR − duk
h

dR

)2

+
(
R + 1

R

)(
uk+1

h − uk
h

)2
]
dR
}1/2

.

(4.58)

4.4.2 Numerical results

We use the numerical procedure presented in the previous section to determine
approximate solutions of the disk MP. We use Ri = 0.001, Re = 1, and the elastic constants
c11, c12, c22 given by (4.26), which were used in Section 4.3. Also from this section, we
find that p̄ = 0.013773; since here we are interested in non-smooth solutions, we choose
p = 0.05 > p̄. In addition, we use [0.9Ri, 0.01Re] as the initial search interval of the
golden-section search presented below (4.51), δe = 1000 in (5.35), εs = 10−6 in (4.57),
εα = 10−6 and Nα = 50 in (4.56), and non-uniform meshes parameterized by q ∈ N and
composed of N = 24 × 2q linear finite elements distributed in three intervals: 15 × 2q

elements in Ri < R < 0.1Re, 5 × 2q elements in 0.1Re < R < 0.5Re, and 4 × 2q elements
in 0.5Re < R < Re. These meshes are similar to the meshes used by Aguiar and Rocha
(2021) and Aguiar, Fosdick and Sanchez (2008). The initial guess used in the numerical
procedure is given by s0 = 0, which corresponds to the undistorted reference configuration.

First, we consider the St Venant-Kirchhoff material. In Figure 11, we show ν (left)
and Prr (right) versus the radius in a neighborhood of the inner surface of the disk. The
colored lines refer to approximate solutions of the nonlinear disk problem obtained with a
sequence of increasing mesh refinements. The black solid lines refer to the corresponding
fields, either ν or Prr, obtained with the linear solution, which is given by (4.17). We
see from this figure that the numerical approximations of both ν and Prr tend to limit
functions that satisfy both (4.29) and (4.33) and are considerably different from their
linear counterparts near the inner surface of the disk. We have verified that, for our most
refined mesh, which corresponds to q = 10, the jump discontinuity of ν occurs at the
position RS = 0.00554 where ν− ≈ −1.0093, ν+ ≈ 1.0094, and P̄rr ≈ −0.0016, which
is in good agreement with (4.29) and (4.33). Recall from Section 4.2.2, that (4.29) and
(4.33) correspond to the traction continuity and dissipation-free conditions, given by (3.87)
and (3.88), respectively, which are necessary conditions for a deformation field to be a
minimizer of total potential energy. Since τ is continuous and positive at RS , we have that
det F = ν− τ < 0, which is not acceptable.

Figure 12 is the analogue of Figure 11 for the Mooney-Rivlin material with the
elastic constant c33 = c22/5. Again, the curves are significantly different from their linear
counterpart near the inner radius because of the discontinuity of ν. We have verified
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that, at this discontinuity, both the traction continuity and dissipation-free conditions,
given by (4.8) and (4.9), are satisfied. Recall from Section 4.2.1 that the responses of
Prr and Pθθ depend on c33; in fact, this elastic constant is critical for the emergence of
the discontinuity in ν, which, recalling from Chapter 2, is of interest in the modeling of
solids which undergoes stress-induced phase transformations. In Section 5.3, we present
solutions for different values of c33 and compare them with the solutions obtained with
the constrained minimization theory.

Figure 11 – Radial stretch ν and radial normal stress Prr versus R using the St Venant-
Kirchhoff material.

q = 4 q = 6 q = 8 q = 10 Classical linear theory

(a) ν vs. R (b) Prr vs. R

Source: The author.
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Figure 12 – Radial stretch ν and radial normal stress Prr versus R using the Mooney-Rivlin
material.

q = 4 q = 6 q = 8 q = 10 Classical linear theory

(a) ν vs. R (b) Prr vs. R

Source: The author.
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5 THE CONSTRAINED DISK PROBLEM

In this chapter, we impose the local injectivity constraint, det F ≥ ε > 0, in the
disk problem studied in the previous chapter. Again, we find approximate solutions using
both a phase-plane technique and a finite element formulation. The former is used to
solve a boundary value problem obtained from the Euler-Lagrange equations derived in
Section 3.6. The latter is used to solve a constrained minimization problem. In addition,
we compare the solutions obtained with both the constrained minimization theory and
the classical nonlinear elasticity using the orthotropic and compressible Mooney-Rivlin
material.

5.1 Formulation of the constrained problem

As we have seen in the discussion of (4.33), in the unconstrained disk problem,
a jump in ν corresponds to a jump in det F from a positive to a negative value; thus,
violating the local injectivity constraint. In addition, ν is continuous in B= since, in this
region, det F = ν τ = ε, τ is continuous, and ε is a constant. Therefore, in the constrained
disk problem, a jump in ν must occur on Σ, which is the interface between B= and B>.
This allows us to rewrite the the Euler-Lagrange equations (3.111) as

Div Pa + b = 0 in B= ∪ B> , (5.1)

where we use (3.110), (4.5), (4.3) to write Pa as

Pa = P a
rr(R) er ⊗ eR + P a

θθ(R) eθ ⊗ eΘ + P a
zz(R) ez ⊗ eZ , (5.2)

P a
rr(R) = P̂ a

rr(ν, τ, λ) ≜ P̂rr(ν, τ) − λ τ , (5.3)

P a
θθ(R) = P̂ a

θθ(ν, τ, λ) ≜ P̂θθ(ν, τ) − λ ν . (5.4)

The expression of P a
zz is omitted because it does not contribute to the governing equations

of equilibrium. In addition, we use P̂rr = P̂ vk
rr and P̂θθ = P̂ vk

θθ , which are given by (4.6)
and (4.7), respectively, because we impose the local injectivity constraint only for the St
Venant-Kirchhoff model.

Recall from Sections 4.3.2 and 4.4.2 that, in the unconstrained case, det F < 0 in a
neighborhood of the inner surface of the disk. Here, we assume that there exists a radius
RΣ, corresponding to the position of the interface Σ, such that the expressions in (3.98)
become

B= = {x ∈ B |Ri < R < RΣ} , B> = {x ∈ B |RΣ < R < Re} . (5.5)

The radius RΣ is not known a priori and is determined from the solution of the constrained
problem presented below.
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Using both (5.2) and b = 0, we reduce the vector equilibrium equation (5.1) to the
scalar differential equation

d
dR [RP a

rr(R)] − P a
θθ(R) = 0 in (Ri, RΣ) ∪ (RΣ, Re) . (5.6)

At R = RΣ, the conditions (3.115) and (3.116) become

P a
rr(R−

Σ) = P a
rr(R+

Σ) ≜ P̄ a
rr , Ŵ (ν>, τ) − Ŵ (ν=, τ) − (ν> − ν=) P̄ a

rr = 0 , (5.7)

respectively, where ν> = ν(R+
Σ) and ν= = ν(R−

Σ). In view of the expressions in (5.5) and
the definition of λ introduced in Section 3.6, we obtain

det F = ν τ = ε in (Ri, RΣ) , λ = 0 in (RΣ, Re) , (5.8)

where λ may be discontinuous at R = RΣ in order for (5.7) to be satisfied. In addition,
boundary conditions analogous to (4.11) are given by

r(Ri) = Ri , P a
rr(Re) = −p r(Re)

Re

, (5.9)

where P a
rr is given by (5.3).

Thus, the constrained disk BVP consists of determining the radial deformation
r : [Ri, Re] → R and Lagrange multiplier λ : [Ri, Re] → R that satisfy the differential
equation (5.6) together with (5.3), (5.4), (5.8), (5.7), (5.9), and (4.3.b,c).

Similarly to the disk MP introduced in Section 4.1, the constrained disk MP consists
of finding ur : [Ri, Re] → R that minimizes the functional Ě(ur), given by (4.12), and
satisfies both ur(Ri) = 0 and det F = (1 + u′

r) (1 + ur/R) ≥ ε. In Sections 5.2 and 5.3, we
conduct a detailed investigation of the constrained disk BVP and the constrained disk
MP, respectively.

Remark 4 (The constrained linearly elastic disk BVP). The analogous version of the
constrained disk BVP in the context of the classical linear elasticity is referred to as the
constrained linearly elastic disk BVP and was studied by Fosdick and Royer-Carfagni (2001)
and by Aguiar, Fosdick and Sanchez (2008) in the cases Ri = 0 and Ri ≥ 0, respectively.
These authors determined analytical solutions for both r and λ in the whole disk. In B=,
they are given by

r(R) =
√

(R2 −R2
i ) ε+R2

i , (5.10)

λ(R) = c11

− (1 − ε)R2
i

2

(
1

r(R)2 − 1
r2

Σ

)
+ log

(
r(R)
rΣ

)

− κ2 log
(
R

RΣ

)
− 1 − κ2

√
ε

log
(√

εR + r(R)√
εRΣ + rΣ

) ,
(5.11)

κ ≜

√
c22

c11
, rΣ ≜ r(RΣ) , (5.12)
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for Ri > 0, and by
r(R) = R

√
ε , (5.13)

λ(R) = −1 −
√
ε√

ε
(c11 − c22) log

(
R

RΣ

)
(5.14)

for Ri = 0. The expression for r in B>, where λ = 0, is given by

r(R) = R + β1 R
κ + β2 R

−κ , (5.15)

where 
β1 ≜

R−κ+1
Σ
2κ

[
−1 − κ+ κ

rΣ

RΣ
+ ε

RΣ

rΣ

]
,

β2 ≜
Rκ+1

Σ
2κ

[
1 − κ+ κ

rΣ

RΣ
− ε

RΣ

rΣ

]
,

(5.16)

for Ri ≥ 0. In addition, RΣ is determined by solving the algebraic equation

Γ(ζ, κ) + Γ(ζ,−κ) + p

c11
= 0 , ζ ≜

RΣ

Re

, (5.17)

where

Γ(ζ, κ) ≜ κ+ c12/c11

2κ ζ1−κ

[
−1 − κ+ κ

γ(ζ)
ζ

+ ε
ζ

γ(ζ)

]
, (5.18)

γ(ζ) ≜

√√√√ε ζ2 + (1 − ε)
(
Ri

Re

)2
. (5.19)

5.2 The constrained disk boundary value problem

We study the constrained disk BVP by, first, finding its solution in B= analytically
and, then, applying the phase-plane technique to search for a solution in the whole domain.

5.2.1 Analytical solution in the active region B=

In B=, the field r must satisfy the ordinary differential equation det F = ν τ =
r′ r/R = ε and the boundary condition r(Ri) = Ri. This yields the expression (5.10) for
Ri > 0 and the expression (5.13) for Ri = 0. Thus, in B=, the field r coincides in the
constrained disk BVP and its constrained linear counterpart, which is given by (5.10) and
(5.13). Despite that, λ does not coincide, as we will see below.

We use (5.3), (5.4), and (4.3.b,c) to rewrite the differential equation (5.6) as
[
c11

(
3 (r′)2 − 1

)
+ c12

(
r2

R2 − 1
)]

r′′ −
[
c11 + c12

(
r2

R2 + 1
)]

r′

R

+ c11
(r′)3

R
+ c12

(r′)2 r

R2 + (c12 + c22)
r

R2 − c22
r3

R4 − 2λ′ r

R
= 0 .

(5.20)
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We then substitute (5.10) into (5.20) and integrate λ′ to obtain

λ(R) = K + 3R2
i c11 ε

2 (ε− 1)
8

R2

r4 + R2
i (ε− 1)[ε c11 − 2 c11 − 2 c12]

8 r2

+ (ε− 1) c11 − c12

2 log(r) − (ε− 1) c22 − c12

2 log(R)

− R2
i c22 (ε− 1)

4R2 in B= ,

(5.21)

where K is a constant of integration and r is given by (5.10). In the case Ri = 0, (5.21)
becomes

λ(R) = K0 + (ε− 1) (c11 − c22)
2 logR in B= , (5.22)

K0 ≜ K + (ε− 1) c11 − c12

4 log ε . (5.23)

Also, the continuity conditions (5.7) can be written as

P̂ a
rr(ν>, τΣ, 0) − P̂ a

rr(ν=, τΣ, λ
=) = 0 , (5.24)

Ŵ (ν>, τΣ) − Ŵ (ν=, τΣ) + ν> P̂ a
rr(ν>, τΣ, 0) − ν= P̂ a

rr(ν=, τΣ, λ
=) = 0 , (5.25)

where λ= = λ(R−
Σ), P a

rr is given by (5.3), and

Ŵ (ν, τ) = 1
4
{
(ν2−1) [c11 (ν2−1)+c12 (τ 2−1)]+(τ 2−1) [c12 (ν2−1)+c22 (τ 2−1)]

}
. (5.26)

In both (5.24) and (5.25), ν= = r′(R−
Σ) and τΣ = r(RΣ)/RΣ, where r is given by (5.10).

Both (5.24) and (5.25) can be used to determine λ= and ν> in terms of RΣ. To determine
RΣ, we should first find r in B> as the general solution of the differential equation (5.20)
with λ ≡ 0. Then, RΣ and the constants of integration of this general solution are obtained
from r′(R+

Σ) = ν>, the continuity of r at RΣ, and the boundary condition (5.9.b). In this
work, we do not find r in B> analytically. Instead, we find numerical approximations of r
using both the phase-plane technique in Section 5.2.2 and the finite element method in
Section 5.3.2.

Next, we investigate the behavior of λ in the cases of Ri = 0 and ε → 0. For Ri = 0,
we see from (5.22) that λ is singular at the center of the disk. In fact, it has the same
log-singularity of its constrained linear counterpart given by (5.14). For ε → 0, we see
from both (5.21) and (5.22) that bounded values of λ depend on whether K and K0 are
also bounded.

Now, we show that K remains bounded and K0 becomes unbounded for ε → 0.
For this, we solve (5.24) for λ= and substitute the resulting expression into (5.25). We
then obtain a fourth-order polynomial in ν>, which, in the case of ε → 0, is given by

(ν>)2
[
(ν>)2 + 2

3

(
−c̃− 1 + c̃

R2
i

R2
Σ

)]
= 0 , c̃ ≜

c12

c11
. (5.27)
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Its positive root is given by

ν> =
√

6
3

√
R2

Σ + c̃ (R2
Σ −R2

i )
RΣ

. (5.28)

Substituting ν>, given by (5.28), into the expression of λ= mentioned above, we find that

λ= = c11

√
6

18
[R2

Σ + c̃ (R2
Σ −R2

i )]3/2

Ri R2
Σ

, (5.29)

which is finite for Ri > 0. Thus, K is also finite and, consequently, λ for Ri > 0. This
behavior is qualitatively similar to the behavior of its constrained linear counterpart given
by (5.11), which is also bounded for ε → 0. In Section 5.3.2, we show numerical results
obtained with the finite element method that confirm these findings. Next, by taking
Ri → 0 in (5.29), we see that λ= becomes unbounded; thus, both K0 and λ also become
unbounded, yielding the same type of behavior of its constrained linear counterpart given
by (5.14).

5.2.2 Numerical solution in the whole disk

In the previous section, we studied the solution of the constrained disk BVP in
B=, which corresponds to the region where the local injectivity constraint is active. Let us
now study its solution in the whole disk. For that, we construct trajectories of solutions
on the plane Ua ≜ {(τ, P a

rr) | τ, P a
rr ∈ R}. Similarly to Section 4.3, we change variables by

introducing ξ = logR and write the differential equation (5.6) as the system of autonomous
differential equations given by

dτ
dξ = ν̌(τ, P a

rr) − τ ,

dP a
rr

dξ = P̌ a
θθ(τ, P a

rr) − P a
rr ,

(5.30)

where, here, P̌ a
θθ(τ, P a

rr) ≜ P̂ a
θθ(ν̌(τ, P a

rr), τ), with P̂ a
θθ given by (5.4).

To determine a trajectory of solution of the constrained disk BVP, we need to
calculate ν̌(τ, P a

rr) and P̌ a
θθ(τ, P a

rr). If (τ, P a
rr) corresponds to a deformation field satisfying

det F > ε, we have λ = 0 and we recover the unconstrained case, where ν̌(τ, P a
rr) is given by

the solution of the cubic equation (4.41) with Prr = P a
rr. Recall from the discussion below

the equation (4.42) that this cubic equation has the three distinct real roots νi(τ, P a
rr),

i = 1, 2, 3, if D(τ, P a
rr) > 0. In view of the discussion of the Figures 7 and 8, we set

ν̌(τ, P a
rr) = ν3. If (τ, P a

rr) corresponds to a deformation field for which det F = ε, we have
that ν̌(τ, P a

rr) = ε/τ . In addition, in this case, λ ̸= 0 is obtained from (5.3) as

λ = 1
τ

(P̂rr − P a
rr) , P̂rr = P̂ vk

rr (ν̌(τ, P a
rr), τ) . (5.31)

After ν̌(τ, P a
rr) is calculated, P̌ a

θθ(τ, P a
rr) is obtained from its definition below (5.30).
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Similar to (4.40), we define initial and terminal curves for the constrained disk
BVP as, respectively,

Ci ≜ {(τ, P a
rr) ∈ Ua | τ = 1}, Ce(p) ≜ {(τ, P a

rr) ∈ Ua | P a
rr = −p τ} . (5.32)

In addition, we use (3.116) with N = eR, (4.3.a), and (5.2) to define the curve

CΣ ≜ {(τ, P a
rr) ∈ Ua | [Ŵ (ν̌, τ) + ν̌ P a

rr]+− = 0 , ν̌ = ν̌(τ, P a
rr)} , (5.33)

which is used below for determining RΣ. Recall from Section 5.1 that, in the constrained
disk problem, a jump in ν must occur at R = RΣ, which is the position of the interface Σ.

In Section 4.3.2, we constructed a trajectory of solution for the unconstrained disk
problem in its forward direction, that is, we began on the initial curve Ci, at R = Ri,
and, by using the recursive formula (4.44), we marched towards the terminal curve Ce,
where the distance of the last point to this curve was within a small error. In this section,
however, we do not know, a priori, whether the constraint of injectivity is active or not
at R = Ri, and, thus, we cannot determine (dτ/dξ, dP a

rr/dξ) from (5.30). Since the local
injectivity constraint is not active at R = Re for reasonable values of pressure, we construct
a trajectory of solution for the constrained disk problem in the backward direction like in
Section 4.3.3, that is, the initial point belongs to the terminal curve Ce and, for Ri > 0, it
ends near the initial curve Ci to within a small error. The trajectory will cross the curve
CΣ for p large enough and ε small enough, in which case the injectivity constraint becomes
active. For small p, det F > ε and, therefore, the trajectory will not cross the curve CΣ. For
large ε, say ε = 0.5, we have verified that the constraint becomes active without crossing
the curve CΣ. In this work, we are interested in small values of ε; so, the case of large ε is
not presented.

Here, we generate a set of points {(τ j, P a j
rr )}, j = 1, 2, ..., N , using the recursive

formula
(τ j+1, P a j+1

rr ) = (τ j, P a j
rr ) − δξj

(
dτ

dξ
,
dP a

rr

dξ

) ∣∣∣∣
(τ j ,P a j

rr )
, (5.34)

where (τ 1, P a 1
rr ) ∈ Ce and N is such that ∑N

j=1 δξj = ∆ξ ≜ logRe − logRi. Thus, N is the
total number of steps that are necessary to go from the terminal curve Ce to the initial curve
Ci and depends on the choice of the step sizes δξj. In addition, we use a simple iterative
procedure to search for an initial point (τ 1, P 1

rr) ∈ Ce such that 0.999 < τN < 1.001, that
is, the last point (τN , PN

rr ) of the corresponding trajectory of solution is close to Ci to
within a small error.

To show numerical results, we use the same geometrical parameters and elastic
constants considered in Sections 4.3 and 4.4, that is, Ri = 0.001, Re = 1, and c11, c22, c12

given by (4.26). In addition, the constraint parameter that appears in (5.8) is assumed
to be ε = 0.1. In Figure 13, we show trajectories of solutions for three different values
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Figure 13 – Trajectories of solutions of the constrained disk BVP for Ri = 0.001 and
different values of p.

Source: The author.

of pressure, p = 0.005, 0.010161, 0.02. The black dotted line corresponds to CΣ, given by
(5.33), and, as mentioned above, corresponds to the interface between B> and B= with
the constraint det F ≥ ε being active in the segment of trajectory below the dotted line.
Therefore, in the trajectories of solutions shown in Figure 13, the constraint is active in a
neighborhood of the inner radius only for p = 0.02. The case p = 0.010161 corresponds to
a critical value p̂ above which the local injectivity constraint becomes active near the inner
radius of the disk. This value is smaller than p̄, which appears in Table 1 and corresponds
to the solid green line in Figure 9. In any case, p̂ < p̄ and both tend to zero as Ri → 0.
The trajectory of solution for the case p = 0.005 is the same one shown in Figure 9 and
corresponds to a case for which the constraint is not active in any part of the disk.

5.3 The constrained disk minimization problem

We now turn our attention to the constrained disk MP. To solve this problem
numerically, we adapt the numerical procedure used to solve the unconstrained disk MP in
Section 4.4, which is also implemented in a C++ code using the open-source finite element
library deal.ii (Arndt et al., 2019).

5.3.1 Numerical procedure

We consider a finite element formulation of the constrained disk MP using an
approximate minimizer uh having the form (4.47). For comparison purposes, we impose
the constraint det F ≥ ε using penalty and augmented Lagrangian formulations. For that,
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we define the penalty functional

P(ur, RΣ) ≜ δ

2

∫
B=
c2 dx + δe

∫
B>

max (0, νe1 − ν)2 dx (5.35)

and the Lagrangian functional

L(ur, λ, RΣ) ≜
∫

B=

(
−λ c+ δ

2 c
2
)

dx + δe

∫
B>

max (0, νe1 − ν)2 dx , (5.36)

where ν = u′
r + 1, νe1 is given by (4.22.a), λ = λ(R) is the Lagrange multiplier field

associated with the constraint c ≜ det F − ε = 0 in B=, δ > 0 and δe > 0 are penalty
parameters, and both B= and B> are given by (5.5).

In the penalty formulation, the discrete version of the constrained disk MP can be
written as

min
RΣ∈R

min
s∈Rm

F(s, RΣ) , F(s, RΣ) = Eh(s) + Ph(s, RΣ) , (5.37)

where we used (4.47) to introduce the vector s ≜ (s1, s2, ..., sm) and to define the functions
Eh(s) ≜ Ě(uh) and Ph(s, RΣ) ≜ P(uh, RΣ). In the augmented Lagrangian formulation, we
introduce a finite element approximation of λ, which is given by

λh =
mλ∑
i=1

li ŵi , (5.38)

where li ∈ R, i = 1, 2, 3, ...,mλ, is a degree of freedom, mλ is the number of degrees of
freedom associated with the approximation of λ, and ŵi is a shape function of the finite
element approximation. Then, the discrete version of the constrained disk MP can be
written as

min
RΣ∈R

[
max

l∈Rmλ
min
s∈Rm

F(s, l, RΣ)
]
, F(s, l, RΣ) = Eh(s) + Lh(s, l, RΣ) , (5.39)

where we used both (4.47) and (5.38) to define the vector l ≜ (l1, l2, ..., lmλ
) and the

function Lh(s, l, RΣ) ≜ L(uh, λh, RΣ).

In both (5.37) and (5.39), the outer problem is a minimization problem in the
scalar variable RΣ, which we solve by using the golden section search explained in Section
4.4.1. In (5.37), the inner problem is a minimization problem in the vector variable s
parameterized by RΣ; whereas, in (5.39), the inner problem is a max-min problem in the
vector variables l and s, which is also parameterized by RΣ.

For both penalty and augmented Lagrangian formulations, we use δe = 103. For
the penalty formulation, we use increasingly larger values of δ. Starting from δ = 103 and
s = s0, we solve the inner problem using a standard Newton-Raphson method with a
unidirectional search. Then, we increase δ and solve again the inner problem starting from
the solution of the previous problem. We repeat this process until δ = δf , where δf is large
enough so that the constraint c(F) = 0 is satisfied to within a small error. The dependence
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of this error on δf is discussed below in the presentation of Figure 16. In this formulation,
the numerical approximation of the Lagrange multiplier λ is obtained in a post-processing
calculation and is given by λ = −δ c(I + ∇uδ

h), where uδ
h is the finite element solution uh

corresponding to δ.

For the augmented Lagrangian formulation, we use a fixed value, δ = δf , where,
again, δf is large enough so that the constraint c(F) = 0 is satisfied to within a small error.
As above, the dependence of this error on δf is discussed below in the presentation of Figure
16. In addition, λh is constant by parts, which means that mλ coincides with the number of
mesh elements used in the discretization. Starting from l1 = l2 = ... = lmλ

= 0 and s = s0,
we solve the inner minimization problem using a standard Newton-Raphson method with
a unidirectional search as explained in Section 4.4.1. Then, we update li, i = 1, 2, 3, ...,mλ,
as explained below and solve again the inner minimization problem starting from the
solution of the previous problem. We repeat this process until the L2-norm of the update
of λh is lower than 10−3. We update li, i = 1, 2, 3, ...,mλ, using the recursive formula

l
(k+1)
i = l

(k)
i − δ c

(k)
i , (5.40)

where the superscript denotes an iteration of the inner maximization problem, c(k)
i =

c(I + ∇uh), and ∇uh is evaluated at the center of the i-th mesh element in the k-th
iteration.

5.3.2 Numerical results

We use the numerical procedure presented in Section 5.3.1 to determine approxi-
mate solutions of the constrained disk MP. We use the same geometrical, material, and
kinematical parameters of Section 5.2. Here, we fix the pressure at the value p = 0.1, which
is about ten times the critical value p = 0.010161 shown in Figure 13. Recall from Section
5.2 that, above this critical value, the local injectivity constraint becomes active near the
inner radius of the disk. We compare our results with the corresponding results obtained in
the context of the constrained linear theory, which is given by Remark 4. Recall from the
discussion of Table 1 that, in the linear case, the pressure above which the local injectivity
constraint becomes active near the inner radius of the disk is p̄ lin = 0.0671. We choose
p = 0.1 > p̄ lin so that in both nonlinear and linear cases the local injectivity constraint is
active near the center of the disk. Although it is not shown here, we have also considered
p ∈ (0.010161, 0.1) and verified that the corresponding solution has the same qualitative
behavior of the solution corresponding to p = 0.1.

We use [0.9Ri, 0.02Re] as the initial search interval of the golden section search.
We also use non-uniform meshes parameterized by q ∈ N, which was introduced in Section
4.4. We use Lagrange finite elements of degree d = 1, 2, 3, ... in the approximation of the
displacement field uh. The initial guess used in the numerical procedure is s0 = 0, which
corresponds to the undistorted reference configuration.
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In Figure 14, we show ur (top left), ν (top right), det F (bottom left), and λ

(bottom right) versus the radius R in a neighborhood of the inner surface of the disk. The
colored lines correspond to approximate solutions of the nonlinear disk problem using the
augmented Lagrangian formulation with increasing mesh refinements, δ = 104, and d = 1.
These colored lines are almost indistinguishable, which indicates the convergence of the
numerical results. Using d = 2 and the sequence δ = 103, 104, 105, the numerical results
obtained with the penalty formulation are very similar to those shown in Figure 14. Later
in this section, we present a comparison of results obtained with both formulations. The
black solid lines correspond to the exact solution of the disk problem in the context of
the constrained linear theory, which is given by (5.10)-(5.11) in B= and (5.15)-(5.16) in
B>. The black dotted line in the graph of λ corresponds to the analytical expression of
λ, given by (5.21), where K is calculated using the numerical approximations of RΣ and
λ(RΣ) obtained with the most refined mesh. We see from this graph that the numerical
approximations of λ converge to its analytical expression.

We see from Figure 14.a that the radial displacement ur is continuous, but not
smooth, and that the colored lines are nearly parallel to the black solid line for R > RΣ.
In fact, this behavior is observed up to the outer surface of the disk, R = 1, where the
difference between the displacements is approximately 12%. This seems to indicate that a
localized behavior of the solution affects its global behavior.

We see from Figure 14.b that the radial stretch ν has a jump discontinuity at
R = RΣ. An analogous discontinuity was observed in the case of the unconstrained disk
MP, as shown in Figure 11. There, however, the discontinuity is related to det F < 0, which
is not admissible. We see also that the black and the colored lines are indistinguishable
near the inner radius of the disk, differ significantly in an interval around the discontinuity,
and become indistinguishable again as we move towards the outer surface of the disk.

We see from above that the disk is considerably more deformed in B= than it is
in B>. For radially fiber-reinforced materials, this indicates that, near the inner surface
of the disk and for p > p̄, the fibers fail by kinking, since the surface of discontinuity of
the deformation gradient is normal to the fiber direction. See, for instance, Merodio and
Ogden (2002) and El Hamdaoui, Merodio and Ogden (2020).

Next, observe from Figures 14.c and 14.d that the local injectivity constraint is
active in the intervals (Ri, R

lin
Σ ) and (Ri, RΣ), where Rlin

Σ ≈ 0.002 in the constrained linear
theory and RΣ ≈ 0.010 in the constrained nonlinear theory. In addition, in (Ri, R

lin
Σ ), ur

and, consequently, ν of both theories coincide, as expected from Section 5.2.1.

Recall from Section 3.6 that (3.115) and (3.116) are necessary conditions that the
deformation field must satisfy to be a minimizer of the energy functional. To verify these
conditions in our case, we show the trajectory of solution represented by the blue solid line
in Figure 15 together with the curve CΣ represented by the black dotted line. The curve
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Figure 14 – Radial displacement ur, radial stretch ν, determinant of the deformation
gradient det F, and Lagrange multiplier λ versus the radius R.

q = 4 q = 6 q = 8 q = 10
Eq. (5.21) Constrained linear theory

(a) ur vs. R (b) ν vs. R

(c) det F vs. R (d) λ vs. R

Source: The author.
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Figure 15 – Curve (τ(R), P a
rr(R)) for R ∈ [Ri, Re] and p = 0.1 obtained from the ap-

proximate solutions of both the constrained disk MP using q = 10 and the
constrained disk BVP using δξ = 10−3.

Constrained disk MP Constrained disk BVP

Source: The author.

CΣ is obtained from (5.33), which defines the set of points (τ(R), P a
rr(R)) satisfying the

dissipation-free condition (3.116). Observe from this figure that the trajectory of solution
is continuous and changes direction abruptly at the intersection with the curve CΣ. The
above conditions are, therefore, satisfied. For comparison purposes, we also plot the the
trajectory of solution of the constrained disk BVP as a black dashed line. Both the blue
solid and the black dashed lines are almost indistinguishable from each other.

We now focus on the comparison between the penalty and the augmented Lagrangian
formulations. For this, we investigate how accurately the constraint det F = ε in B= is
imposed when we use different meshes, by varying the parameter q, and finite element
approximations, by varying the parameter d. We also study the influence of the penalty
parameter δ on the penalty and the augmented Lagrangian formulations. The results
presented below were obtained using the same pressure, disk geometry, and material
parameters used in the previous numerical example.

We define the error e ≜
√∫

B=(det F − ε)2 dx and, in Figure 16, we plot log10 e

versus log10 δf , where δf is the final value of δ. Recall from Section 5.3.1 that, in the
augmented Lagrangian formulation, δ is fixed and equal to δf , and that, in the penalty
formulation, δ increases from δ = 103 to δ = δf . The two graphs on the top part of the
figure refer to results obtained with d = 1 and increasing values of q. The two graphs
on the bottom part refer to results obtained with q = 6 and increasing values of d. The
graphs on the left and right sides refer to, respectively, the penalty and the augmented
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Lagrangian formulations. From the top left graph, we see that e decreases as δf increases
until it reaches an asymptotic value that decreases as q increases. From the top right
graph, we see that e decreases as q increases, independently of the value of δf .

Next, we see from the bottom left graph of Figure 16 that, for the penalty for-
mulation, the error e decreases as δf increases until it reaches an asymptotic value that
decreases as d increases. From the bottom right graph, we see that the augmented La-
grangian formulation yields a similar behavior. The main difference in this case is that the
asymptotic value is reached with lower values of δf .

For large enough penalty parameters, we see from Figure 16 that, in both formu-
lations, an increase of two units in q, which approximately quadruplicates the number
of degrees of freedom, reduces log10 e in approximately 0.6 units. On the other hand, an
increase of one unit in d, which less than duplicates the number of degrees of freedom,
reduces log10 e in approximately 2 units. Therefore, our results indicate that, to reduce
the error e, it is preferable to increase the degree of the finite element approximation than
to increase the number of mesh elements.

In Figures 17 and 18 we consider the cases ε → 0 and Ri → 0, respectively. In Figure
17, we plot λ versus the radius R for ε = 10−1, 10−2, 10−3, 10−5, 10−7, and a fixed inner
radius Ri = 0.001. We see from this figure that the curves tend to a limit curve as ε → 0; in
fact, the curves corresponding to ε = 10−5 and ε = 10−7 are indistinguishable. In Figure 18,
we show log10 λ versus the radius R for Ri = 10−5, 4×10−5, 16×10−5, 64×10−5, 256×10−5,
and a fixed parameter ε = 10−7. We see that, as Ri decreases, λ increases with no indication
of convergence to some limit curve. In addition, for Ri = 10−5, 4 × 10−5, 16 × 10−5, λ
sharply increases as we approach R = Ri. These results are in good agreement with the
results presented in Section 5.2, below equation (5.29), where we have seen that λ remains
finite in the case Ri > 0 and ε → 0, but is unbounded in the case Ri = 0 and ε → 0.

Next, we compare numerical results obtained with both the constrained minimiza-
tion theory and the classical nonlinear elasticity theory. For this, we compare solutions
of the disk MP in the case of the orthotropic and compressible Mooney-Rivlin material,
defined in Section 4.1, with solutions of the constrained disk MP, which was defined in
Section 5.1 and uses the orthotropic St Venant-Kirchhoff material as its material model.

In Figure 19, we show the radial displacement ur (top left), the radial stretch
ν (top right), the determinant of the deformation gradient det F = ν τ (bottom left),
and the radial stress (bottom right) versus the radius R in a neighborhood of the inner
surface of the disk. Regarding the radial stress, we show P a

rr, given by (5.3), for the St
Venant-Kirchhoff model and Prr, given by (4.8), for the Mooney-Rivlin model. The solid
lines correspond to results obtained with the Mooney-Rivlin (MR) material for different
values of c33. The dashed lines correspond to results obtained with the St Venant-Kirchhoff
(StVK) material for different values of ε. Recall from (4.49) that the energy functional
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Figure 16 – Base 10 logarithm of the error e versus base 10 logarithm of the final penalty
parameters δf .

q = 4 d = 1 q = 6 d = 1 q = 8 d = 1 q = 10 d = 1

d = 1 q = 6 d = 2 q = 6 d = 3 q = 6

Source: The author.
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Figure 17 – Lagrange multiplier field λ versus R for Ri = 0.001 and different values of ε.

ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−5 ε = 10−7

Source: The author.

Figure 18 – Lagrange multiplier field λ versus R for ε = 10−7 and different values of Ri.

Ri = 256 × 10−5 Ri = 64 × 10−5 Ri = 16 × 10−5

Ri = 4 × 10−5 Ri = 10−5

Source: The author.



92

of the Mooney-Rivlin material depends on the elastic constant c33, whereas the energy
of the St Venant-Kirchhoff material, given by (4.48), does not. On the other hand, in
the constrained minimization theory, the results depend on the constraint parameter ε.
We see from Figure 19 that the results obtained with both materials have similarities.
For instance, as we move away from the inner radius, det F remains either constant or
approximately constant, increases sharply, and then increases moderately. In addition,
as c33 and ε decrease, the results obtained with both materials become very similar. In
particular, the case MR c33 = c22/100 is almost indistinguishable from the case StVK
ε = 0.001. These results indicate that the constrained minimization theory prevents
self-intersection from occurring in a way which is consistent with others classical nonlinear
elastic models.
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Figure 19 – Radial displacement ur, radial stretch ν, determinant of the deformation
gradient det F, and radial stress versus the radius R for different values of c33
and ε.

MR c33 = c22 MR c33 = c22/5 MR c33 = c22/20 MR c33 = c22/100

StVK ε = 0.1 StVK ε = 0.01 StVK ε = 0.001

(a) ur vs. R (b) ν vs. R

(c) det F vs. R (d) Radial stress vs. R

Source: The author.





95

6 FINAL CONSIDERATIONS

This work proposes a constrained minimization theory in nonlinear elasticity, which
represents an extension of the constrained minimization theory of Fosdick and Royer-
Carfagni (2001), to impose the local injectivity condition, det F > 0. This condition is
associated to the physical requirement that matter cannot penetrate itself. Our interest is
on the investigation of equilibrium problems of hyperelastic solids satisfying the injectivity
condition. For this, we considered the problem of minimizing the total potential energy of a
hyperelastic solid subject to the injectivity condition. We derived necessary conditions that
a minimizer must satisfy, which include traction continuity and dissipation-free conditions
on surfaces of discontinuity of the deformation gradient. These conditions, which are given
by (3.111), (3.112), (3.115), and (3.116), are the nonlinear counterparts of the conditions
obtained by Fosdick and Royer-Carfagni (2001).

We applied this minimization theory in the investigation of the problem of an
orthotropic annular disk that is fixed on its inner surface of radius Ri and is compressed by
a constant pressure p on the deformed configuration of its outer surface of radius Re. The
disk is made of an orthotropic St Venant-Kirchhoff material. If no injectivity condition is
imposed and if the applied pressure is greater than a certain critical value p̄, we found an
equilibrium solution that predicts both self-intersection in a neighborhood of the inner
surface of the disk and a jump in the deformation gradient across an interior surface of
the disk. This discontinuity is due to the failure of ellipticity of the equilibrium equations.
Thus, p̄ is an upper bound below which the classical linear theory is valid. In addition, we
verified that p̄ → 0 as Ri → 0, which means that the solution predicts self-intersection for
any value of pressure in the case of a solid disk, for which Ri = 0. This last behavior is
also observed in the context of the classical linear elasticity theory.

By imposing the local injectivity constraint, det F ≥ ε > 0, the solution does not
predict self-intersection. The behavior of the Lagrange multiplier is qualitatively similar
to its constrained linear counterpart. For Ri > 0, the multiplier remains finite. For Ri = 0,
both λ and its constrained linear counterpart have a log-singularity at the center of the disk
for ε > 0 and are unbounded in a neighborhood of this center for ε → 0. These conclusions
were found analytically and confirmed numerically. In addition, we compared the solutions
of both the constrained nonlinear theory and the classical nonlinear theory. For the latter,
we used an orthotropic and compressible Mooney-Rivlin material and obtained solutions
which are in very good agreement with those obtained with the constrained nonlinear
theory.

We used two different numerical approaches. The first approach consists in using the
Euler-Lagrange equations of the associated minimization problem to formulate a boundary
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value problem. The problem was then solved numerically using a phase-plane technique.
This technique is very useful in providing both qualitative and quantitative insights of
solution candidates; especially, when these candidates are not smooth. In particular, it
allowed us to formulate an initial value problem to calculate p̄. The second approach
consists in using the finite element method to formulate a bi-level minimization problem, in
which the independent variables are the degrees of freedom of the displacement field and the
position of the surface of discontinuity of the deformation gradient. Standard minimization
techniques are then used to search for a minimizer of this minimization problem. This
minimizer satisfies the necessary conditions found previously, which include the traction
continuity and dissipation-free condition given by (3.115) and (3.116), respectively. In
addition, in this second approach, we imposed the local injectivity constraint using both a
penalty and an augmented Lagrangian formulation. To obtain similar results, the former
requires a more refined discretization by either refining the mesh or by increasing the
order of the finite element. On the other hand, the latter requires a discretization of the
Lagrange multiplier field, which introduces additional degrees of freedom.

For future investigations, it would be interesting to investigate the existence of a
possible secondary solution of the disk problem in the context of the constrained nonlinear
theory. Such a solution could correspond to a deformation field with both radial and
tangential components depending on both radius and azimuth. One of the challenges is
the fact that the discontinuity of the deformation gradient might not be only due to the
radial stretch ν, but also due to new components of the deformation gradient associated
with the tangential displacement. In addition, for the radially symmetric deformation
field considered in this work, the discontinuity occurs only on the interface Σ between the
regions where the local injectivity constraint is active and inactive; this could not be true
for more general deformations fields.

It would also be interesting to apply the constrained linear and nonlinear theories
to more complex problems such as those involving cracks and corners. In the classical
linear elasticity theory, the solutions of these problems may predict oscillatory behaviors
that are associated with self-intersection. In the context of the classical nonlinear elasticity
theory, the solution may require some constraints on the values of the elastic constants
to avoid self-intersection; see, for instance, Aguiar and Fosdick (2014) and the references
cited therein. These problems may have complex geometries that require new strategies to
find the solution. The theory of free boundary problems, which are often formulated as
variational inequalities, may be particularly useful since it concerns problems of determining
field variables, such as the displacement field, and geometric variables, such as the contour
of the active region B=. See, for instance, Kinderlehrer and Stampacchia (1980) for
classical aspects of the theory and Chen, Shahgholian and Vazquez (2015) for some recent
developments in the area.
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APPENDIX A – LINEARIZATION OF THE STRESS TENSOR

We obtain the linearization of the second Piola-Kirchhoff stress tensor S, given by
(3.59). In this appendix, all the linearizations are with respect to E around the reference
configuration, so this statement will be omitted. We begin by linearizing some of the terms
in (3.57). We use (3.32.b), (3.51), and the identities, (Gurtin, 1982),

det(A − ω I) = −ω3 + tr Aω2 − 1
2[(tr A)2 − tr (A2)]ω + det A , (A.1)

(A + δA)−1 = A−1 + ∂(A−1)
∂A

δA + o(δA) = A−1 − A−1 δA A−1 + o(δA) , (A.2)

where A, δA ∈ Lin, to write

C−1 = I − 2 E + o(E) , (A.3)

I3 = 1 + 2 tr E + o(E) , (A.4)

I3 C−1 = I + −2 E + (2 tr E) I + o(E) (A.5)

I1 I − C = 2 I + (2 tr E) I − 2 E , (A.6)

(Cmi ⊗ mi + mi ⊗ Cmi) = 2 (mi ⊗ mi + E mi ⊗ mi + mi ⊗ E mi) , i = 1, 2 . (A.7)

Substituting (A.5)-(A.7) into (3.57) yields

S = 2
{

I
[
W̄1 + 2 W̄2 + W̄3 + 2 (W̄2 + W̄3) tr E

]
− 2 E (W̄2 + W̄3)

+ m1 ⊗ m1 (W̄4 + 2 W̄5) + (E m1 ⊗ m1 + m1 ⊗ E m1) 2 W̄5

+ m2 ⊗ m2 (W̄6 + 2 W̄7) + (E m2 ⊗ m2 + m2 ⊗ E m2) 2 W̄7

}
+ o(E) .

(A.8)

Then, we write W̄i(I1, I2, ..., I7) = W̄i(C), i = 1, 2, ..., 7, and linearize W̄i(C). We
obtain

W̄i(C) = W̄ (I + 2 E) = W̄i(I) + ∂ W̄i(C)
∂C

∣∣∣∣
C=I

· 2 E + o(E) , (A.9)

∂ W̄i

∂C

∣∣∣∣
C=I

=
 7∑

j=1

∂ W̄i

∂Ij

∂ Ij

∂C

 ∣∣∣∣∣∣
C=I

=
 7∑

j=1
W̄ij

∂ Ij

∂C

 ∣∣∣∣∣∣
C=I

= (W̊i1 + 2 W̊i2 + W̊i3) I + (W̊i4 + 2 W̊i5) m1 ⊗ m1

+ (W̊i6 + 2 W̊i7) m2 ⊗ m2 ,

(A.10)
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where W̊i ≜ W̄i(I) and W̊ij ≜ W̄ij(I), i, k = 1, 2, ..., 7. In addition, to obtain (A.10), we
used the relations

∂ I1

∂C

∣∣∣∣
C=I

= I ,
∂ I2

∂C

∣∣∣∣
C=I

= (I1 I − C)
∣∣∣
C=I

= 2 I ,

∂ I3

∂C

∣∣∣∣
C=I

=
(
I3 C−1

) ∣∣∣
C=I

= I ,

∂ I4

∂C

∣∣∣∣
C=I

= m1 ⊗ m1 ,
∂ I6

∂C

∣∣∣∣
C=I

= m2 ⊗ m2 ,

∂ I5

∂C

∣∣∣∣
C=I

= (Cm1 ⊗ m1 + m1 ⊗ Cm1)
∣∣∣
C=I

= 2 m1 ⊗ m1 ,

∂ I7

∂C

∣∣∣∣
C=I

= (Cm2 ⊗ m2 + m2 ⊗ Cm2)
∣∣∣
C=I

= 2 m2 ⊗ m2 .

(A.11)

Next, we use (A.9)-(A.10), (3.58), W̄ij = W̄ji, i, j = 1, 2, ..., 7, and E · I = tr E to
rewrite some of the terms in (A.8) as

W̄1 + 2 W̄2 + W̄3 = 2 tr E (W̊11 + 4 W̊22 + W̊33 + 4 W̊12 + 2 W̊13 + 4 W̊23)
+ 2 m1 · E m1 (W̊14 + 2 W̊15 + 2 W̊24 + 4 W̊25 + W̊34 + 2 W̊35)
+ 2 m2 · E m2 (W̊16 + 2 W̊17 + 2 W̊26 + 4 W̊27 + W̊36 + 2 W̊37)
+ o(E) ,

(A.12)

W̄4 + 2 W̄5 = 2 tr E (W̊14 + 2 W̊24 + W̊34 + 2 W̊15 + 4 W̊25 + 2 W̊35)
+ 2 m1 · E m1 (W̊44 + 4 W̊55 + 4 W̊45)
+ 2 m2 · E m2 (W̊46 + 2 W̊47 + 2 W̊56 + 4 W̊57) + o(E) ,

(A.13)

W̄6 + 2 W̄7 = 2 tr E (W̊16 + 2 W̊26 + W̊36 + 2 W̊17 + 4 W̊27 + 2 W̊37)
+ 2 m1 · E m1 (W̊46 + 2 W̊47 + 2 W̊56 + 4 W̊57)
+ 2 m2 · E m2 (W̊66 + 4 W̊77 + 4 W̊67) + o(E) ,

(A.14)

W̄2 + W̄3 = W̊2 + W̊3 +O(E) , W̄5 = W̊5 +O(E) , W̄5 = W̊5 +O(E) , (A.15)

Substituting (A.12)-(A.15) into (A.8) yields (3.59).
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APPENDIX B – DERIVATION OF THE TERMS IN δEa

We derive the expressions (3.107) for δEW
a , (3.108) for δT , and (3.109) for δB,

which are used in (3.102) to evaluate δEa. Let us first determine the variation of a functional
G having the form

G = G(f , λ) ≜
∫

B
g(x, f ,∇f , λ) dx . (B.1)

Later, we determine ∂EW
a , δT , and ∂B by taking particular expressions for g in (B.1).

We use the admissible fields given by (3.101) to obtain

∆G ≜ G(f∗, λ∗) −G(f , λ) =
∫

B∗
g(x∗, f∗,∇∗f∗, λ∗) dx∗ −

∫
B
g(x, f ,∇f , λ) dx

=
∫

B
[g(x + δx, f + δf ,∇f + δ∇f , λ+ δλ) det(I + ∇δx) − g(x, f ,∇f , λ)] dx

∼
∫

B
[g(x + δx, f + δf ,∇f + δ∇f , λ+ δλ) (1 + Div δx) − g(x, f ,∇f , λ)] dx ,

(B.2)

where ∇∗ denotes the gradient with respect to x∗, B∗ = x∗(B), and ∼ denotes equality
except for terms of order greater than one relative to δf , δλ, or δx.

Now, let δf(x) ≜ f∗(x) − f(x) and δλ(x) ≜ λ∗(x) − λ(x), then it is possible to
verify that, (Gelfand; Fomin, 1963),

δf ∼ δf + ∇f δx , δ∇f ∼ ∇δf + (∇∇f) δx , δλ ∼ δλ+ ∇λ · δx . (B.3)

Using Taylor’s theorem and (B.3) to expand the first term of the integrand in (B.2)
and keeping only terms that are linear with respect to δf , δλ, and δx, we obtain the first
variation of G as

δG =
∫

B

[
∂g

∂x
· δx + ∂g

∂f
· δf + ∂g

∂∇f
· δ∇f + ∂g

∂λ
δλ+ gDiv δx

]
dx ,

=
∫

B

∂g
∂x

· δx + ∂g

∂f
· (δf + ∇f δx) + ∂g

∂∇f
· (∇δf + ∇∇f δx)

+ ∂g

∂λ
(δλ+ ∇λ · δx) + gDiv δx

 dx ,

(B.4)

where g ≡ g(x, f ,∇f , λ). Then, we use the relations, (Gurtin, 1982),

∂g

∂x
· δx + ∂g

∂f
· (∇f δx) + ∂g

∂∇f
· (∇∇f δx) + ∂g

∂λ
(∇λ · δx)

= ∇g · δx = Div (g δx) − gDiv δx ,
(B.5)

∂g

∂∇f
· ∇δf = Div

( ∂g

∂∇f

)T

δf

− δf · Div
(
∂g

∂∇f

)
, (B.6)
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to rewrite (B.4) as

δG =
∫

B

Div
( ∂g

∂∇f

)T

δf + g δx


− δf ·

[
Div

(
∂g

∂∇f

)
− ∂g

∂f

]
+ ∂g

∂λ
δλ

 dx .
(B.7)

Except for the term involving λ, (B.7) is similar to the expression presented by Gelfand
and Fomin (1963), who considered g depending only on x, f , and ∇f .

Using (B.7) with g = Wa, g = −p det F, and g = b · f we obtain, respectively, δEW
a ,

δT for the pressure load, and δB as presented in (3.103)-(3.106). The expression of δT
for the dead load is classical since T does not depend on λ and δx = 0 on ∂B, so that
x∗(x) = x on ∂B. For convenience, the expressions (3.103)-(3.106) are reproduced below

δEW
a =

∫
B

[
Div

(
∂Wa

∂F

T

δf +Wa δx
)

− δf · Div
(
∂Wa

∂F

)
+ ∂Wa

∂λ
δλ

]
dx, (3.103)

δT =


∫

∂2B t · δf dx , (dead load) ,

−p
∫

B

[
Div

(
∂J

∂F

T

δf + J δx
)

− δf · Div
(
∂J

∂F

)]
dx , (pressure load) ,

(3.104)

δB =
∫

B

{
Div [(b · f) δx] + b · δf

}
dx , (3.105)

δf = δf − F δx , δλ = δλ− ∇λ · δx , (3.106)

where, as before, J = det F.

Let us now obtain (3.107)-(3.109) by considering δEW
a , δT , and δB separately. For

δEW
a , we apply the divergence theorem in (3.103) and use both (3.110) and ∂Wa/∂λ = c

to write

δEW
a =

∫
Σ∪S

[PT
a δf +Wa δx]−+ · N dA+

∫
∂B

(PT
a δf +Wa δx) · N dA

+
∫

B

[
−δf · Div Pa + c δλ

]
dx ,

(B.8)

where the integral on Σ and S appears due to the discontinuity of F. Substituting (3.106)
into (B.8) and recalling that δf = 0 on ∂1B and δx = 0 on ∂B, we obtain

δEW
a =

∫
Σ∪S

{
δf · [Pa]−+ N + δx ·

[
W N + FT Pa N

]−
+

}
dA

+
∫

∂2B
δf · Pa N dA

+
∫

B

[
−
(
δf · Div Pa − δx · FT Div Pa

)
+ c (δλ− ∇λ · δx)

]
dx .

(B.9)

Then, we use B = B= ∪ B>, c = 0 in B=, and both δλ = 0 and ∇λ = 0 in B> to obtain
(3.107).
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For δT , we apply the divergence theorem in (3.104) and use ∂J/∂F = cof F to
rewrite δT as

δT = −p


∫

Σ∪S

[
(cof F)T δf + J δx

]−
+

· N dA

+
∫

∂B

[
(cof F)T δf + J δx

]
· N dA+

∫
B

[
−δf · Div (cof F)

]
dx

 .
(B.10)

We substitute (3.106.a) into (B.10) and use the Piola’s identity Div (cof F) = 0 together
with δf = 0 on ∂1B and δx = 0 on ∂B to find that

δT = − p
∫

Σ∪S

[
(cof F)T δf − (cof F)T Fδx + J δx

]−
+

· N dA

− p
∫

∂2B
δf · cof F N dA .

(B.11)

Then, since cof F ≜ J F−T , we have that (cof F)T F δx = J δx and, thus, (B.11) yields
(3.108).

Finally, for δB, we apply the divergence theorem in (3.105) to find that

δB =
∫

∂B
(b · f) δx · N dA+

∫
B

b · δf dx , (B.12)

where we used the continuity of f and b. Then, (3.109) follows from (B.12) by using
(3.106.a) and δx = 0 on ∂B.
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APPENDIX C – STANDARD NUMERICAL PROCEDURE

We use a standard numerical procedure to try solving the disk MP defined in
Section 4.1. This minimization problem can be written in a discrete form as

min
s∈Rm

F(s) , F(s) = Eh(s) , (C.1)

where, recalling from Section 4.4.1, s = (s1, s2, ..., sm) is related to the approximated
minimizer uh of the disk MP by (4.47) and Eh(s) ≜ Ě(uh), where Ě is given by (4.12).

We solve the minimization problem (C.1) using the Newton-Raphson method with
a unidirectional search as explained in Section 4.4.1 to solve the inner problem in (4.51). We
refer to this procedure as the standard numerical procedure because it does not formulate
the disk MP as a bi-level minimization problem like we do in Section 4.4.1. Here, we
consider only the orthotropic St Venant-Kirchhoff material and use the same meshes and
geometrical, material, and numerical parameters used in Section 4.4.2. Recall from this
section that the deformation field is non-smooth for p > p̄ = 0.013773.

For p = 0.005 < p̄ and p = p̄, we have verified that, as the mesh is refined, the
approximate solutions obtained by the standard numerical procedure converge to the
smooth solution predicted in Section 4.3.2. For p > p̄, however, the approximate solutions
do not converge to the non-smooth solution predicted in that section. Recall from there
that the non-smooth solution has a jump discontinuity in its derivative. We comment on
the non-convergent results below.

In Figures 20 and 21, we show ν and Prr, respectively, versus the radius R in a
vicinity of the inner surface of the disk for p = 0.05 > p̄ using different meshes. This is the
same pressure p used to obtain the numerical results presented in Section 4.4.2. Recall
from Section 4.3.2 that a non-smooth solution is expected in this case, which has a jump
discontinuity in its derivative. We see from Figure 20 that this jump occurs near the radius
R = 0.003. Away from this radius, the curves are smooth and similar to each other. Near
this radius, however, ν oscillates. We have verified that the discriminant D(τ, Prr), given
by (4.42), is positive and close to zero near R = 0.003. Therefore, the oscillations occur
in an interval where the corresponding point (τ, Prr) belongs to D> and is close to the
interface with D<. In addition, it is clear from Figure 20 that the jumps in ν do not satisfy
(4.33), which means that these numerical results do not correspond to minimizers of the
total potential energy. In spite of the oscillations of ν, observe from Figure 21 that Prr is
continuous for all considered meshes, which means that the traction continuity condition
(4.29) is satisfied.

The reason for this oscillatory behavior is not clear. In Section 3.4, we have seen
that the traction continuity and the dissipation-free conditions, given by, respectively,
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Figure 20 – Radial stretch ν versus radius R using q = 4, 6, 8, 10.

(a) q = 4 (b) q = 6

(c) q = 8 (d) q = 10

Source: The author.

(3.87) and (3.88), are necessary conditions for a deformation field to be a minimizer of
the total potential energy. Recall from Section 3.4 that the traction continuity condition
(3.87), which corresponds to (4.29) in the disk problem, can be found by perturbing the
minimizer of the energy functional while holding S fixed, whereas (3.88), which yields
(4.33) in the disk problem, is found by perturbing S. This motivated the inclusion of the
radius RS of the surface S, which, recalling from Section 4.2.2, is cylindrical in the disk
problem, as a variable of the numerical procedure presented in Section 4.4.1.
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Figure 21 – Radial normal stress Prr versus radius R using q = 4, 6, 8, 10.

q = 4 q = 6 q = 8 q = 10

Source: The author.
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