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ABSTRACT 

 

RIBEIRO, L. R. Risk-based optimization of reinforced concrete frames under progressive 

collapse. 2024. Thesis (PhD in Civil Engineering – Structures) – School of Engineering of São 

Carlos, University of São Paulo, São Carlos, Brazil, 2024. 

 

Structural design has traditionally focused on individual elements, using calibrated safety factors to meet 

target reliability against conventional demands. However, this method often overlooks overall 

robustness. Recent incidents of partial and total progressive collapses have encouraged designers to 

adopt a more systemic approach, such as discretionary element removal to evaluate structural 

robustness. Although research on this topic has advanced significantly in the last decades, a gap exists 

between deterministic studies on realistic progressive collapse behavior and structural optimization 

studies that addresses uncertainties, risks, and systemic behavior. Hence, this thesis aims to bridge this 

gap by employing a risk-based optimization framework to examine the cost-effectiveness of 

strengthening reinforced concrete framed buildings against progressive collapse, balancing safety and 

economy while considering realistic collapse features. Cost-effective mitigation strategies for 

progressive collapse in reinforced concrete frames are shown to depend significantly on threat 

probabilities and the balance between beam and column flexural capacities. When column cross-sections 

are squared, enhancing beam moment of inertia to activate Compressive Arch Action proves more cost-

effective than increasing column flexural strength to allow Catenary Action, regardless of the frame’s 

aspect ratio. Conversely, frames with beams of lower moment of inertia (squared cross-sections) can be 

cost-effective for the Alternative Path Method if columns possess high flexural capacity to support the 

increased bending moments induced by Catenary Action. Furthermore, the primary design for abnormal 

lateral loading events, such as tornadoes and earthquakes, typically follows a strong-column, weak-

beam approach, as evidenced in recent studies. It is highlighted the novel potential for achieving optimal, 

cost-effective configurations that are resilient to both progressive collapse and abnormal lateral loadings 

over the lifespan. Thus, designs with weak beams and adequately strong adjacent columns may serve as 

multi-hazard solutions. While squared columns may not be the most economical option for column-loss 

scenarios, they could be optimal if additional hazards, such as earthquakes or tornadoes, are 

considered—a topic that warrants further investigation.  

 

 

 

 

Keywords: frames; progressive collapse; reinforced concrete; risks; structural optimization; 

uncertainties.  



 

  



 

RESUMO 

 

RIBEIRO, L. R. Otimização baseada em riscos de pórticos de concreto armado sob colapso 

progressivo. 2024. Tese (Doutorado em Engenharia Civil – Estruturas) – Escola de Engenharia 

de São Carlos, Universidade de São Paulo, São Carlos 2024. 

 

O projeto estrutural tem tradicionalmente se concentrado em elementos individuais, utilizando fatores 

de segurança calibrados para atender à meta de confiabilidade em relação às demandas convencionais. 

No entanto, esse método muitas vezes negligencia a robustez geral da estrutura. Incidentes recentes de 

colapsos progressivos parciais e totais incentivaram os projetistas a adotar uma abordagem mais 

sistêmica, como a remoção controlada de elementos para avaliar a robustez estrutural. Embora a 

pesquisa sobre esse tema tenha avançado significativamente nas últimas décadas, ainda há uma lacuna 

entre os estudos determinísticos sobre o comportamento realista do colapso progressivo e os estudos de 

otimização estrutural que abordam incertezas, riscos e comportamento sistêmico. Assim, esta tese visa 

preencher essa lacuna, empregando uma metodologia de otimização baseada em risco para examinar a 

relação custo-benefício do reforço de edifícios aporticados em concreto armado contra o colapso 

progressivo, equilibrando segurança e economia ao mesmo tempo em que considera características 

realistas do colapso. Estratégias de mitigação custo-efetivas para colapso progressivo em estruturas de 

concreto armado dependem significativamente das probabilidades de ameaça e do equilíbrio entre as 

capacidades de flexão de vigas e pilares. Quando as seções transversais dos pilares são quadradas, 

aumentar o momento de inércia das vigas para ativar a Ação de Arco Comprimido se mostra mais 

econômico do que aumentar a resistência à flexão dos pilares para suportar a Ação Catenária, 

independentemente da relação de aspecto da estrutura. Por outro lado, estruturas com vigas de menor 

momento de inércia (seções quadradas) pode ser custo-efetivas pelo Método de Caminho Alternativo se 

os pilares tiverem alta capacidade de flexão para suportar os momentos fletores aumentados induzidos 

pela Ação de Catenária. Além disso, o projeto para eventos de carregamento lateral extremo, como 

tornados e terremotos, tipicamente segue uma abordagem de pilares fortes e vigas fracas. Destaca-se o 

potencial inédito para alcançar configurações otimizadas e econômicas que sejam resilientes tanto ao 

colapso progressivo quanto a carregamentos laterais anômalos ao longo da vida útil. Assim, projetos 

com vigas fracas e pilares adjacentes adequadamente fortes podem servir como soluções para múltiplos 

tipos de risco. Embora pilares quadrados possam não ser a opção mais econômica para cenários de perda 

de pilar, eles podem ser ideais se ameaças adicionais, como terremotos ou tornados, forem consideradas 

— um tópico que merece futuras investigações. 

 

Palavras-chave: colapso progressivo; concreto armado; incertezas; otimização estrutural; 

pórticos; riscos.   
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1 INTRODUCTION’ 

 

Structural design is typically done element by element, using calibrated partial safety 

factors to achieve a target reliability against expected conventional demands. Hence, overall 

robustness is not objectively addressed in this usual framework. Recent occurrences of partial 

and total progressive collapses have prompted designers to consider systemic behavior more 

objectively, e.g. addressing discretionary element removal to verify the structural robustness. 

System integrity depends on the capacity of its components to act together for ensuring overall 

resistance. Hence, a localized failure leads to a force redistribution to the remaining elements. 

If this force rearrangement is unsuccessful, the initial failure may propagate into progressive 

collapse (also referred to as disproportionate collapse). 

 

1.1 OVERVIEW 

 

Progressive collapse is a Low-Probability High-Consequence (LPHC) event that relates 

to a high level of uncertainty, justifying probabilistic analyses and risk assessments to address 

it. From a mathematical standpoint, great progress can be observed in structural optimization 

under uncertainties, but not so much in terms of systemic behavior under abnormal loadings. 

There is a gap between deterministic studies on realistic progressive collapse behavior, and 

structural optimization studies addressing uncertainties and systemic behavior. 

Numerous studies in the literature investigate progressive collapse, particularly its 

numerical modeling (Adam et al., 2018). However, not so many studies consider uncertainties 

when investigating this phenomenon, e.g. Hartmann et al. (2008); Arshian et al. (2015); Arshian 

and Morgenthal (2015); Brunesi et al. (2015); Brunesi and Parisi (2017); Felipe et al. (2018); 

Felipe et al. (2019); Parisi et al. (2019); Scalvenzi et al. (2023). Similarly, few works on 

structural optimization under uncertainties address progressive collapse, e.g., Beyer and 

Sendhoff (2007); Schuëller and Jensen (2009); Aoues and Chateauneuf (2010); Lopez and Beck 

(2012); Beck et al. (2018); Luiz (2020). In terms of failure consequences (or risks), 

investigations addressing the optimal compromise between safety and economy for systems 

prone to progressive collapse are very recent, e.g. Beck et al. (2020); Beck et al. (2022); 

Praxedes and Yuan (2022); da Silva et al. (2023); Beck and Stewart (2023); Ribeiro et al. 

(2024); da Silva et al. (2024). It is evident that risk-based optimization of structures prone to 

progressive collapse is a broad open field of research, especially in terms of realistic progressive 

collapse simulation. 
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This research seeks to bridge this gap by using a risk-based optimization framework to 

investigate the cost-effectiveness of strengthening reinforced concrete framed buildings against 

progressive collapse, regarding the compromise between safety and economy (Figure 1.1). In 

this proposed framework, progressive collapse is realistically addressed in structural analysis 

stage, so that reliability and risk-based stages take into account the ultimate plastic reserve of 

the structure. Yet, this work is inherently conceptual, albeit utilizing advanced nonlinear 

numerical models. The study focuses on reinforced concrete framed buildings, but overall 

findings are also relevant for other structural alternatives and overall civil infrastructure. 

 

Figure 1.1 – Brief framework depiction. 

 

Source: own authorship. 
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As shown in Figure 1.1, advanced numerical tools for structural analysis, probabilistic 

approaches, risk-based optimization techniques, and metamodeling alternatives are integrated 

to comprehend how the optimal design of reinforced concrete frames behaves under progressive 

collapse threats. Reliability assessment is done in terms of nonlinear finite element analysis to 

address a realistic structural behavior, with surrogate modeling being used to attenuate the high 

computational cost in both stages.  

Following Beck et al. (2020), the total expected cost 𝐶𝑇𝐸 for a given strengthening level 

can be generally addressed in terms of manufacturing cost 𝐶𝑀 and expected cost of failure 𝐶𝐸𝐹: 

 

 𝐶𝑇𝐸(𝒅) = 𝐶𝑀(𝒅) + ∑𝐶𝑒𝑓,𝑖(𝑿, 𝒅)

𝑁𝐼𝐹

𝑖=1

+ ∑ 𝐶𝑒𝑓,𝑘𝑗(𝑿, 𝒅, 𝑃𝐿𝐷)

𝑁𝐿𝐷𝐹

𝑗=1

 (1.1) 

 

where NIF and NLDF represent the number of failure modes for intact structure and local 

damage scenario, respectively; 𝑿 relates to the random variable vector; 𝒅 corresponds to the 

design variable vector; and 𝑃𝐿𝐷 is the local damage probability.  

 

1.2 OBJECTIVES 

 

The objective of this work is to understand how the simultaneous consideration of 

progressive collapse and uncertainties influences the optimal risk-based design of reinforced 

concrete framed structures. Additionally, the following specific objectives are defined: 

 

(a) Development and application of numerical tools for simulating progressive collapse in 

2-dimensional framed structures, including physical and geometrical nonlinearities; 

(b) Conceptual development of a framework and specific formulations for addressing 

optimal risk-based structural design, considering systemic behavior, progressive 

collapse, and uncertainties; 

(c) Investigation of various cases of reinforced concrete frames prone to progressive 

collapse, addressing alternatives for robustness enhancement, different scenarios of 

triggering event, and distinct threat probabilities; 

(d) Comparison of optimal designs with current guideline standards; 

(e) Investigation on how resources are optimally allocated within the reinforced concrete 

frame to mitigate progressive collapse occurrences. 
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1.3  CONTRIBUTIONS AND SIGNIFICANCE OF THE STUDY 

 

Although the literature contains several works on the aforementioned topics, only a 

few recent studies consider them simultaneously. Yet, they are mostly related to conceptual and 

simplified structures in order to provide an (essential) initial basis on how optimal risk-based 

design behaves when progressive collapse is addressed.  

In terms of reinforced concrete (RC) frames, numerical progressive collapse 

investigations usually address structural robustness in terms of the ultimate capacity of the beam 

spans directly above a lost column. Remaining adjacent columns are usually designed to 

withstand expected axial loads and to provide enough lateral restraint for the beams. Hence, 

ultimate structural resistance against progressive collapse is typically related to the ultimate 

capacity of the beam spans directly above a suddenly lost column.   

In terms of optimal risk-based design and realistic nonlinear structural modeling, this 

work reveals non-obvious compromises between beam and column capacities for progressive 

collapse mitigation. Thus, all optimal design solutions have enough safety margins against all 

addressed failure modes, and also are shown to be in accordance with current code provisions, 

evidencing reasonable, realistic, and feasible results. 

Overall findings in this thesis comprise some of the initial contributions aimed to fill 

the previously mentioned knowledge gap between realistic progressive collapse behavior and 

risk-based optimization. 

 

1.4  LIMITATIONS 

 

This study provides valuable insights into the risk-based optimization of progressive 

collapse mitigation in reinforced concrete frames. However, several limitations must be 

acknowledged, primarily related to simplifications made for computational feasibility and focus 

on the main resisting mechanisms and failure modes. Yet, these limitations offer opportunities 

for future research, where more complex scenarios and phenomena could be considered to 

enhance the understanding and practical applications of the results. The limitations include: 

 

(a) Only planar reinforced concrete frames are investigated, excluding the influence of 

walls, slabs, secondary beams, and other 3-dimensional features; 

(b) Soil-structure interaction is neglected, so columns are assumed fully restrained at 

ground floor; 
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(c) The study disregards column shear forces, addressing column failure just in terms of 

axial vs bending demands for the sake of simplification; 

(d) The risk-based optimization process does not rely on target reliability indexes; instead, 

the algorithm determines optimal reliability values for each failure mode depending on 

the severity of their consequences; 

(e) Localized phenomena such as rebar debonding, cracking patterns, and member 

separation are disregarded in the structural models due to the need for computational 

efficiency for large samples; 

(f) Localized failure mechanisms at the beam-column joints are not addressed; 

(g) Axial forces are not considered when addressing shear capacity; 

(h) Surrogate techniques are employed for structural modeling and reliability analysis to 

manage computational costs; 

(i) The developed framework has several stages in series, inevitably leading to an 

accumulating amount of errors; yet, they are reduced as much as possible until accurate 

enough predictions are obtained for the purposes of this research; 

(j) Only gravitational loads are considered, focusing on progressive collapse due to 

amplified vertical loads, while lateral loads and other hazards are not addressed; 

(k) The analysis considers local damage due to the sudden loss of a single ground-floor 

column, without exploring more complex failure scenarios; 

(l) Total expected costs focus solely on construction and expected failure costs, 

disregarding additional life-cycle costs e.g. maintenance, operation, and disposal; 

(m) Only progressive collapse related to a lack of redistribution capacity after local damage 

is considered, excluding other collapse mechanisms e.g. impact and loss of stability; 

(n) Mitigation techniques are limited to reinforcing beams and columns to ensure activation 

of intrinsic resisting mechanisms, without exploring alternative approaches such as 

those in Section 2.5; 

(o) Hazards that induce abnormal lateral loadings are not addressed; 

(p) Column failure is defined by comparing axial force vs bending moment demands with 

the resisting envelope, without considering post-yielding or buckling behavior in the 

structural modeling. 
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1.5  ORGANIZATION OF THE THESIS 

 

Chapter 1 (Introduction) aims to present the work developed, contextualize the topic, 

list the objectives of the research, as well as identify the motivations for carrying it out. 

Chapter 2 (Progressive collapse) explores mechanisms, causes, probabilistic 

approaches, and mitigation strategies of progressive collapse, emphasizing structural robustness 

via Alternative Load Paths and enhancement of the intrinsic resisting mechanisms. 

Chapter 3 (Proposed framework) presents a comprehensive framework used for risk-

based optimization of reinforced concrete structures under progressive collapse, integrating risk 

optimization, reliability analysis via simulation, nonlinear structural modeling via finite 

element method, and surrogate techniques for reducing the computational cost. 

Chapter 4 (Results) presents the results of the risk-based optimization framework 

applied to usual 2-dimensional reinforced concrete structures, highlighting the trade-offs 

between safety and economy in progressive collapse mitigation. 
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2 PROGRESSIVE COLLAPSE 

 

Progressive collapse is a chain reaction mechanism characterized by a significant 

disproportion between the area affected by an initial failure and the total area affected by its 

propagation (Parisi and Augenti, 2012). A local failure initiates the collapse of nearby elements, 

which progressively triggers further failures, culminating in a large-scale, global collapse 

(Allen and Schriever, 1972). Thus, loss of load-bearing capacity in a small part of the structure 

due to abnormal loads can trigger a domino effect of subsequent failures able to affect a 

disproportionately larger portion of the structure (Gross and Mcguire, 1983). 

 

2.1 HISTORICAL CONTEXT 

 

Safety against progressive collapse was highlighted after the partial collapse of the 22-

story Ronan Point Apartment Tower, in London, 1968. A gas explosion in a kitchen of the 18th 

floor dislodged a facade panel that supported the slab above. The lack of support and 

reinforcement continuity between structural elements led to the upward collapse from the 19th 

floor up to the roof, and their impact caused the floors below to collapse from the 18th floor 

down to the ground floor (Griffiths et al., 1968). 

Prefabricated RC panels built with the Larsen-Nielsen system formed the Ronan Point 

structure. Each floor slab was connected to load-bearing walls through dowel bars filled with 

dry mortar. Although this system reduced manufacturing costs, it compromised structural 

continuity and the ability of force redistribution. In addition, existing building codes were found 

to be inadequate for ensuring safety and integrity for high-rise precast concrete apartment 

buildings (Pearson and Delatte, 2005). Better ties between panels started to be proposed for 

progressive collapse prevention due to new requirements in the fifth amendment of the UK 

building regulations (Hendry, 1979; Elkady et al. 2024). 

Worldwide concern increased at each new occurrence of progressive collapse, 

particularly those with greater number of victims and/or caused by malicious intents. For 

instance, in April 1995, a truck bomb detonation near the Alfred P. Murrah Federal Building in 

Oklahoma, USA, resulted in 168 deaths and in the partial collapse of the structure (FEMA 277, 

1996). The facade facing the explosion had a transfer girder beam supported by four columns, 

with three of them collapsing in the detonation. This triggered a collapse propagation that ended 

damaging a third of the building. As the building integrity strongly relied on the transfer girder, 

this collapse event highlighted the need for Alternative Load Paths (ALPs). 
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The Sampoong Department Store collapse in Seoul, South Korea, 1995, caused over 

500 deaths due to poor construction quality control, inappropriate design decisions, and lack of 

supervision. Neglected problems, such as reduced column cross-sections, reduced slab depth, 

concrete strength below specified, and increased dead load due to change in use of the 5th floor, 

contributed to the collapse (Gardner et al. 2002). 

In June 1996, a detonation happened in front of the Khobar Towers residential 

complex, in Saudi Arabia. The most damaged building had 8 stories and was constructed using 

prefabricated reinforced concrete walls and slabs. Connections between slabs and walls 

followed progressive collapse prevention requirements from the British standard CP 110-1 

(1972). Hence, collapse did not propagate much beyond the initial damage, being contained to 

the targeted facade and part of the internal walls and slabs (NISTIR 7396, 2017). 

The collapse of the World Trade Center (WTC) Twin Towers in Manhattan NY, USA, 

2001, resulted in almost 3000 deaths, several injured and many with long-term health 

aftereffects (9/11 Memorial & Museum, 2006; Alper et al. 2017). According to NIST (2005) 

final report, the collapse of both towers was triggered by a multi-floor fire caused by impact of 

highjacked aircrafts. Despite the towers being hit at high speed and key structural components 

being lost, such as core columns, perimeter columns, and floors, the towers initially withstood 

the impacts due to the robust perimeter frame-tube system and the buildings' large size. 

However, overall loss of fireproofing insulation followed by multi-floor fires led to a mix of 

impact damage and heat-weakened structural components causing the final abrupt collapse 

(NIST, 2005). As the fires progressed, sagging floors pulled the perimeter columns inward, and 

their viscoplastic buckling ultimately led to loss of their load-carrying capacity. This resulted 

in the entire upper section to fall on the floors below, triggering a cascading effect of falling 

floors all the way down (Bažant et al. 2009). This multi-hazard collapse (collision, explosion 

and fire) highlighted the dependency between distinct threats, justifying cost-effective solutions 

to simultaneously ensure safety against multiple hazards (Mattos, 2024; Carneiro, 2024). 

In view of the above, there has been a significant increase in progressive collapse 

related studies over the past decades (Elkady et al. 2024). Until 2001, most studies on this topic 

were conducted in USA and UK, largely motivated by the Alfred P. Murrah Federal Building 

(Oklahoma, 1995) and Ronan Point (London, 1968) collapses. The WTC attack boosted the 

worldwide concern for progressive collapse mitigation, causing a substantial increase in studies 

about it. Although USA and UK remain among the most active countries in this research field, 

Asia took the lead from 2009 onwards, with China currently being the most prominent country 

addressing this topic (Adam et al., 2018). 
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Progressive collapse is often triggered by abnormal loads, resulting from threats like 

fires, natural disasters, human error, accidental impact and terrorist attacks. Hence, progressive 

collapse is a Low Probability-High Consequence (LPHC) event. These hazards introduce 

enhanced dynamic loads due to a sudden initial local damage, which can severely compromise 

structural integrity and force redistribution capacity (Starossek, 2010). Thus, construction, 

material, and design flaws are contributing factors for collapse propagation (Byfield et al. 

2014). For instance, corrosion can lead to component overloading, causing the premature 

collapse of nearby elements (Lu et al. 2021). Caredda et al. (2023) demonstrated that design 

and construction errors contributed to 48% and 29% of the forty collapse cases studied by these 

authors, respectively. Hence, preventing progressive collapse relies on the strength of 

individual members and on the overall interaction capacity between structural elements, with 

redundancy and ductility enhancing progressive collapse resistance (Li et al. 2014). 

 

2.2 TYPES OF PROGRESSIVE COLLAPSE 

 

Starossek (2007) classifies progressive collapse into six categories regarding the 

structural response after an initial failure: pancake, zipper, domino, section, instability and 

mixed. A broader classification is also proposed, grouping the original six categories into four 

classes regarding similarities in their causes and in collapse propagation: redistribution-type, 

impact-type, instability, and mixed-type collapses.   

Redistribution-type collapses include zipper and section, occurring due to inefficient 

force redistribution. Zipper collapses are one of the most common types, occurring when ALPs 

fail to bridge over an initial damage in the structure. Hence, it relates to the system inadequate 

dynamic response to impulsive loadings caused by sudden failure, e.g. overload of adjacent 

beams and columns in a framed structure under column loss scenarios. Zipper collapse typically 

propagates transversally, e.g. lateral column failure propagation in frames and bridges; upward 

vertical propagation in case of beam failure over a lost column. Current building guidelines 

address ALPs enhancement as mitigation strategy for zipper-type progressive collapse.  

Section collapse relates to an inadequate force redistribution capacity in cross-

sectional level, typically happening as a quick fracture instead of a progressive fashion. Hence, 

Section-type is appropriate to address individual members, such as cables and membranes. 

Starossek (2007) addressed section-type just to point out analogies between cross-section 

failure and system failure, with “cross section” relating to the overall structure, and “cross 

section part” to individual elements. 
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Impact type-collapses include pancake and domino, occurring due to potential energy 

being converted into kinetic energy as the structure falls down on itself. Falling parts abruptly 

impact the remaining structure, causing a significant dynamic overloading able to trigger new 

parts to fall and/or overturn. Pancake collapse relates to a downward collapse propagation due 

to member separation and vertical falling, being common in high-rise frame buildings. A 

notorious example is the ultimate collapse stage of the WTC Twin Towers, where the building 

section above the initial impacted area fell on the floor below as in a rigid body motion. The 

amplified dynamic impact forces were beyond the floor’s ultimate capacity, so a cascading 

downward collapse was triggered all the way to the ground floor (La Malva et al, 2009; 

Kotsovinos and Usmani, 2013).  

In Domino impact-type collapses, the conversion from potential to kinetic energy 

causes the overturning of the separated parts, causing them to fall with an angular rigid-body 

motion. Domino type is more common in bridge structures (Khoey et al. 2019). In framed 

structures, it may happen when an initial column loss leads to excessive horizontal forces in the 

beam spans above it, pulling the entire frame inwards and potentially overturning the adjacent 

elements. Although similar to Pancake collapses, collapse propagates in the overturning 

direction, as in a domino-effect. Besides, the impact forces that trigger failure in the next 

element act toward a direction other than the main forces originally transmitted by it. Unlike 

other types of collapse, progressive collapse-resistant design in terms of enhanced ALPs usually 

is not effective against impact-type collapses, as the energy of falling structural elements can 

be far beyond the structural capacity (Kiakojouri et al. 2022). 

Instability collapses relate to failure in compressed stabilizing components, followed 

by a potentially abrupt failure in the destabilized components, and causing collapse propagation. 

In this type, potential energy converts into strain energy. For instance, failure in bracing 

components of pinned steel frames can trigger instability collapse, as they stabilize the structure 

against lateral loadings (Starosek, 2017). If a primary stabilizing component fails, it can cause 

an immediate collapse with severe disproportion between initial and final damaged areas. 

Therefore, the sudden collapse of the entire Block 7 of the 13-story Lotus Riverside residential 

building in Shangai, China, 2009, may be classified as an Instability collapse. An ongoing 

excavation was happening in one side of this building, and the excavated soil was being dumped 

at the other side of the building. The weight of the 10 m high stock-pilled soil, combined with 

an excavated area without lateral supports, caused the soft soil to move below the building and 

toward the excavation. This severely compromised the foundation piles, causing the immediate 

overturning of the entire building and one death (Wang et al. 2017).  
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Alternatively, instability collapse can progress consecutively through destabilized 

elements, as seen in propagating buckles of deep-water pipelines (Starosek, 2007). Thus, small 

perturbations in compressed members able to cause a disproportionate final damage strongly 

resembles the main definition of progressive collapse. Hence, progressive collapse can also be 

addressed as a type of instability. This is especially convenient when addressing it via nonlinear 

dynamic procedures, as the ultimate structural capacity corresponds to loss of dynamic stability 

(Ding et al. 2024). 

Mixed-type collapses relate to features of two or more types being present, covering 

the majority of progressive collapse occurrences. The Alfred P. Murrah collapse, for example, 

happened with Pancake and Domino-like characteristics. Although Pancake collapse was the 

prevalent type, lateral forces may have developed in the transfer girder causing column 

overturn. In addition, the Sampoong Department Store collapse had characteristics of a Pancake 

and Zipper types. Failure began via column punching shear mechanism, inducing Zipper-type 

collapse as the structure failed to promote force redistribution. This ultimately triggered 

Pancake collapse due to loss of load-bearing capacity in the slabs (Elkady et al. 2024).  

 

2.3 RESISTING MECHANISMS IN FRAMED STRUCTURES 

 

When addressing RC framed structures, progressive collapse typically has features of 

Pancake-type, Zipper-type, and Domino-type, the latter being less common. As shown in 

Kiakojouri et al. (2022), mitigation techniques that are appropriate for one type of collapse may 

be ineffective against other collapse types, which is a main issue when addressing realistic 

Mixed-types. Nonetheless, resistant mechanisms thoroughly described in this Section relate to 

Redistribution-type Zipper collapses, following current guidelines for promoting progressive 

collapse capacity by means of enhancing the structure’s ALPs. Sudden loss of a supporting 

element initially mobilizes the structural capacity of force redistribution, so Zipper-type has a 

major relevance soon after the initial damage.  Regarding RC frames, assuming ALPs able to 

efficiently bridge over a lost column imply in no further member separation, avoiding later 

stages of Impact-type collapse (as verified in the Sampoong Department Store collapse).  

Alternative Path Method (APM) is a design framework for progressive collapse 

mitigation, in which ALPs are enhanced by increasing the structural robustness. Robustness 

refers to a structure's ability to withstand local failures caused by abnormal loadings without 

triggering collapse propagation and a disproportionately larger final damaged extension (CEN, 

2006). Hence, it relates to the structural resistance against damage imposed by a given threat. 
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Although robustness relies on several system characteristics, such as overall strength, 

ductility, redundancy and continuity, it strongly depends on the type of abnormal loading. For 

instance, the WTC Twin Towers had enough robustness to withstand direct aircraft impacts that 

removed almost 60% of the perimeter columns of the walls they hit. However, they lacked 

robustness against the subsequent high temperatures and Impact-type collapse (Eagar and 

Musso, 2001).  Hence, for the results shown in this thesis, robustness always relates to the 

sudden loss of a single column caused by an unspecified hazard (threat-independent approach), 

following the usual APM guideline framework.  

There are other relevant properties that describe how a structure behaves after being 

struck by an abnormal loading. For instance, fragility relates to how prone to failure a structure 

is, in terms of probabilities, for a prescribed hazard intensity and damage state. This property is 

more commonly addressed in risk-analysis frameworks, especially for performance-based 

seismic analysis (Singhal e Kiremidjiian, 1998). However, recent studies address it for 

progressive collapse, aiming to quantify its probability and to allow its performance-based 

assessment (Brunesi et al. 2015; Parisi et al. 2019; Scalvenzi et al. 2023). Vulnerability also 

addresses how prone to failure a structure is relative to a prescribed hazard intensity and damage 

state, but in terms of loss/risk. Additionally, some critical infrastructure buildings may require 

resilience, i.e. capacity to withstand and recover its functionality after an extreme event. This 

encompasses the robustness property and adds a broader spectrum for progressive collapse 

mitigation. Nevertheless, only robustness is addressed in this thesis. 

Several deterministic and reliability/risk-based methods have been proposed for 

quantifying robustness (Adam et al. 2018; Beck et al. 2023). In general, by addressing 

robustness 𝑅𝑋 as the system insensitivity to small changes (Eq. 2.1), Brett and Lu (2013) show 

that robustness ranges from zero (infinite structural sensitivity 𝑆𝑋) to one (insensitive structure).  

 𝑅𝑋 =
1

1 + 𝑆𝑋
 (2.1) 

Aiming to increase a RC frame robustness, ensuring load redistribution capacity via 

ALPs is an efficient approach to reduce the overall sensitivity to a column loss scenario. When 

an abnormal loading causes a sudden column removal in an RC frame, the ALPs rely on a series 

of resisting mechanisms whose activation depend on the capacity of the remaining beams and 

columns. Beam spans directly above the lost column are the most critical part in the remaining 

structure, especially in the floor immediately above the local damage. Hence, as shown in 

Figure 2.1, all resisting mechanisms can be directly associated to the frame’s overall behavior. 
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Figure 2.1 – Progressive collapse resisting mechanisms for an inner column loss. 

 

Source: Praxedes (2020). 

The first mechanism corresponds to Bending or Flexural Action, being related to 

elastic behavior, beam cracking, and ultimately on the onset of cross-section plastification 

(point A in Figure 2.1a). Hence, beam behavior in this stage corresponds to what would be 

expected for a conventional scenario, with small displacements and all materials in their elastic 

phases. Small rotations are observed at beam ends fixed to adjacent columns, so axial forces 

are negligible in the beams. Since bending is mobilized right after the loss of a column, it is the 

first line of defense against the sudden transition in stress signs in the beam sections above the 

missing column. Originally, the cross-section top at beam ends is in tension while the bottom 

is in compression, but this flips when the column is removed. Flexural Action ends as the cross-

section leaves the elastic behavior, with concrete reaching its peak strength and/or steel rebars 

starting to yield. The exact characteristics of the plastification onset relies on the rebar ratio: 

only rebar yielding occurs for under reinforced sections; concrete reaches its peak strength for 

over reinforced sections; and both happen in conventionally designed cross-sections. 

If the adjacent columns fail to provide anchorage and lateral restraint to the beams, the 

peak of the force vs displacement curve in Figure 2.1a is Point A. In this case, Curve 1 

represents a post-peak behavior clearly indicating a premature failure of the load redistribution 

via ALPs. From this point, all resisting mechanisms depicted in Figure 2.1 relate to loss of an 

inner column. Since further mechanisms rely on the available lateral restraint provided by 

adjacent supports, Figure 2.1 does not apply for scenarios of external column loss. Hence, loss 

of outer columns solely relies on Flexural Action and Vierendeel Action, which will be 

addressed later.  
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Greater rotations start to develop in the beam-column connections due to triggering of 

plastic stage, causing the beam ends to be pushed outwards as they rotate. If the adjacent 

columns provide anchorage and adequate horizontal confinement to the beams, this causes 

compressive axial forces to develop resembling an arch-shape in the critical double-span beam 

(Figure 2.1b). This additional resistance to the downward drift of the double-span beam 

characterizes Compressive Arch Action (CAA). As the beam ends are pushed outwards as they 

rotate, columns supporting the deflecting beams are pushed outwards in this mechanism. 

Flexural damage starts to propagate through the entire depth in beam end sections, and a 

relevant bending effort starts to propagate to the adjacent columns (Long et al. 2021). Thus, 

since the additional vertical resistance comes from beam ends being pushed outward, beams 

with greater depths have greater CAA capacity (Yu and Tan, 2013). 

Load-bearing capacity reaches a peak during CAA due to advanced rebar yielding and 

concrete crushing at beam ends (Point B in Figure 2.1a), forming plastic hinges in these regions. 

The structure may not go further in case of insufficient horizontal restraint, anchorage failure, 

or rebar rupture, with Curve 2 in Figure 2.1a representing the final structural response in this 

case. However, if lateral restraint is still available, a snap-through instability occurs (Figure 

2.1c), with its intensity relying on how strong the lateral confinement is. Stronger columns 

allow a well evidenced instability stage such as the one depicted in Figure 2.1a (Yu and Tan, 

2013). However, this instability stage is much shorter for weaker columns, with the 

characteristic downhill slope of the snap-through instability being substituted by a brief plateau 

after CAA peak (Yi et al. 2007). Intermediate columns lead to intermediate instability behavior 

(Lew et al. 2014). This instability stage is not a proper resisting mechanism, but rather a 

transition stage between two effective mechanisms. 

If the structure survived all the previous stages, beams enter the Catenary Action (CA) 

stage when their axial load turns to tension, with the double span beam vertical drift typically 

exceeding the beam section depth (Figure 2.1d). In this stage, the entire double-span beam is 

damaged and in tension, resulting in additional load capacity due to rebars being used up to 

their limit. Since it uses the final plastic reserve of the double-span beam, CA is one of the most 

investigated resisting mechanisms, as it is the last line of defense against redistribution-type 

collapse (Elkady et al. 2024). Just as CAA, CA relies on the lateral column confinement to be 

mobilized, but now they are pulled inwards due to beams being in tension. Yu and Tan (2013) 

show that a reduced beam depth enhances CA capacity and mobilize it earlier, although at the 

expense of reducing CAA capacity. Ultimate load-carrying capacity in CA is related to rebar 

rupture in the adjacent beam column joints, being indicated by Point C in Figure 2.1a. 
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If the vertical load related to Point C in Figure 2.1a is below Point B, then the frame 

never actually recovers from the instability stage. In this case, the frame ultimate capacity 

relates to the CAA peak capacity, and reaching Point C is as ineffective as the failure Curve 2. 

Hence, significantly strong lateral confinement may cause brittle rebar rupture before the beam 

being able to recover from the instability stage.  

Yet, shear failure may also happen at any point of the described force vs displacement 

curve, causing a premature and brittle structural collapse in case of insufficient transversal 

reinforcement. Lateral confinement provided by columns adjacent to the lost one is not 

equivalent to the concrete confinement provided by proper stirrup detailing at cross-sectional 

level. In this text, the horizontal restraint provided by adjacent columns is mentioned as lateral, 

horizontal, or column confinement, whereas the cross-sectional feature is addressed as concrete, 

cross-section, or core confinement. 

Rebar detailing significantly influences the mobilization of these resistance 

mechanisms. Afefy (2012) shows that beams with discontinuous lap spliced rebars reach their 

flexural capacity right after the column loss. Thus, it is shown that conventional design leads to 

lower Flexural capacity, highlighting the importance of APM design. Additionally, an increase 

in load capacity was noticed when beams had more column supports, vouching for redundancy 

effectiveness in providing ALPs.  

Continuous reinforcement along all the spans of beams and columns is often 

impractical, so design strategies are essential to mitigate progressive collapse when using 

spliced rebars. Mechanical splices, such as couplers, provide direct load transfer and improve 

structural robustness compared to traditional lap splices. When lap splices are used, ensuring 

adequate lap lengths and enhancing transverse reinforcement at splice locations improves bond 

performance and reduces the propensity of brittle debonding failure. Additionally, splices 

should be strategically placed in lower-stress regions to avoid critical tension zones. However, 

in the examples presented in this thesis, perfect anchorage and continuous rebars are assumed 

for simplification. As shown in the structural analysis validation of Section 3.4.1, results with 

adequate accuracy are obtained with this approach given the purposes of this research.  

Abdelwahed (2019) found that greater rebar reinforcement can increase ultimate load-

bearing capacity up to 50%. Conversely, Long et al. (2021) observed that increased rebar 

reinforcement enhances and triggers CA earlier. Ren et al. (2016) added that over-reinforcement 

can accelerate bending failure and hasten the CA onset. Greater top reinforcement is preferable 

as it is shown to reduce both rotations and tensile forces, effectively increasing ultimate CA 

capacity (Yu and Tan, 2013b; Praxedes and Yuan, 2022) 
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Resistance mechanisms covered in Figure 2.1 occur in sequence. However, an 

additional mechanism not implicitly related to this sequence has major relevance: Vierendeel 

Action (VA). As vertical drifts increase due to column loss, VA develops particularly in the 

adjacent columns and upper beam spans. When mobilized, (ideally) rigid beam-column 

connections transfer axial and shear forces, as well as bending moments, across all members 

encompassed by the VA mechanism. Thus, each beam and column span within the VA system 

experience combined axial, shear and bending demands. Hence, increased axial forces in the 

first story (critical) double-span beam cause extra shear and bending demands in the adjacent 

columns, which are redistributed (mostly) to all beam and column spans up to the last floor.  

To ensure equilibrium for the VA subsystem, axial forces in the beam spans above a 

lost column show a sign transition from the lower floor to the upper floor. For instance, if a 1st 

floor double-span beam is in compression (CAA), beams immediately above show lower 

compressive forces, gradually changing to tension at each floor up the last one. Similarly, if the 

1st floor spans are in tension (CA), a gradual transition to compression happens at each floor 

until the last one. Vierendeel Action starts typically after Flexural Action and together with 

CAA, as axial forces in the critical beams start to get relevant.  

Sasani et al. (2007) show that VA dominates the load redistribution capacity when 

perimeter frame columns are removed, being the main provider of ALPs for external column 

loss scenarios. A visual indication of this VA synergy is a double curvature in all beam spans 

above a lost column, regardless of the column loss scenario (Figure 2.2).  

Figure 2.2 – Double curvature due to Vierendeel Action. 

 
Source: Shu et al. (2017) 
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Hence, VA provides additional resistance due to moment transfer between beams and 

columns. This also prevents adjacent beams from acting as if they were simply supported, 

allowing all beam spans above a lost column to act together, further resisting collapse 

propagation. When addressing an entire building, additional resistance is also provided due to 

non-structural components and systemic tridimensional features. Infill walls may enhance the 

load-carrying capacity, especially for Flexural and CAA stages, as result of additional ALPs 

provided by them. Such gain in early stages is due to the infill walls behaving as compressed 

braces within each cell of the frame. However, infill walls may reduce overall frame ductility 

and ultimate CA capacity (Kiakojouri et al. 2022; Shan et al. 2023).  

For the sake of simplicity and to focus on the system's primary elements, infill walls 

are not considered in the analyses presented in this thesis. Their behavior and interaction with 

the structural frame introduce complexities that are outside the scope of this initial study, though 

it is acknowledged that they are physically present in the building. While infill walls can 

enhance the overall robustness of the structure, this work concentrates on beams and columns 

due to their greater significance in the structural performance and load-carrying mechanisms.  

Tridimensional features able to assist in progressive collapse mitigation are mostly 

expanded versions of the main mechanisms previously discussed. Floor slabs have a major role 

in force redistribution due to their diaphragm and membrane effects. Bidimensional resisting 

mechanisms analogous to CAA and CA can be developed in floor spans above a lost column, 

namely Compressive Membrane Action (CMA) and Tensile Membrane Action (TMA). For 

instance, Alshaikh et al. (2020) show that TMA can increase the ultimate tensile capacity by 

2.5 times. In addition, floor slabs may contribute up to 34% on the overall progressive collapse 

resistance (Elkady et al. 2024). Shear walls have shown to reduce the potential for progressive 

collapse in flat slab buildings due to greater overall stability and more uniform load 

redistribution (Garg et al. 2021).  

Moreover, progressive collapse triggered by punching failure in RC flat slab buildings 

is inherently a 3-dimensional problem, so regarding all the 3D features involved is mandatory 

to realistically address such cases (Melo and Regan, 1998; Oliveira, Melo and Regan, 2004; 

Santos et al. 2022; Galdino and Melo, 2023). 

Nonetheless, only planar RC frames are investigated in this thesis, disregarding the 

influence of walls and slabs. This work dealt with the complex task of combining nonlinear 

structural analysis, reliability analysis, metamodeling approaches, and risk-based optimization 

to address one goal: comprehend how progressive collapse influences the optimal configuration 

of RC frames.  
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As shown in this Section, all major resisting mechanisms are able to develop in planar 

frames. Hence, delineating the objects of study to 2-dimensional frames is justifiable for the 

initial approach proposed herein. Yet, to minimize inaccuracies and oversights due to 3D 

features not being addressed, only primary RC frames related to unidirectional floor slabs are 

considered in this work.  

 

2.4 PROBABILISTIC APPROACHES 

 

Progressive collapse is associated with high uncertainties regarding extreme events 

and structural response, so a growing interest in addressing it by probabilistic thinking can be 

observed in the community. For instance, Ellingwood and Leyendecker (1978) pioneered a 

probabilistic approach to the vulnerability of structural systems for specific damage scenarios, 

advocating the APM design as framework for robustness assessment. 

Bennett (1988) developed models and conceptual formulations to estimate the 

progressive collapse probability due to high local damage caused by exceptional loading. It was 

found that even if the progressive collapse probability is relatively high for a given local 

damage, overall safety margins can be acceptable if the probability of initial damage is low. 

Agarwal et al. (2003) assessed the vulnerability of three-dimensional structures by 

analyzing their shapes and connectivity, regardless of their responses to specific actions. This 

methodology proved capable of providing sufficient information regarding structural 

vulnerability to unpredictable events (England et al., 2008).  

Ellingwood (2006) proposed a framework for risk-analysis related to progressive 

collapse, discarding trivial threats and focusing on those that most contribute to overall risk. 

Probabilistic risk analysis, which relies on quantitative risk measures, is shown to be a rational 

approach for decision-making in terms of disaster mitigation. Thus, progressive collapse 

probability can be computed in terms of two conditional probabilities: local damage for a given 

extreme event, and disproportionate collapse for a given local damage:  

 

 𝑃[𝐶] = 𝑃[𝐶|𝐿𝐷] 𝑃[𝐿𝐷|𝐻] 𝜆𝐻 (2.2) 

 

where 𝐿𝐷 is the local damage resulting from event 𝐻; 𝐶 is the progressive collapse induced by 

𝐿𝐷; 𝜆𝐻 is the average annual rate of occurrence of 𝐻; and 𝐻 is the threat or extreme LPHC 

event able to trigger progressive collapse. By assuming multiple threats and damage states, Eq. 

(2.2) can be rewritten as: 
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 𝑃[𝐶] = ∑∑𝑃[𝐶|𝐿𝐷] 𝑃[𝐿𝐷|𝐻] 𝜆𝐻

𝐿𝐷𝐻

 
(2.3) 

 

Parisi (2015) presents blast fragility curves and probabilistic pressure-impulse 

diagrams for addressing multiple damage levels in RC columns of a rectangular section. 

Fragility curves allow to obtain the conditional failure probability for a given damage state and 

combination of overpressure and impulse. From these curves, probabilistic overpressure-

impulse diagrams are obtained, which can assist in quantitative risk analysis, performance-

based assessment, and progressive collapse risk studies for blast events. 

Based on concepts and methodologies applied in Earthquake Engineering, Brunesi et 

al. (2015) developed fragility functions for multiple damage stages to address the risk of 

progressive collapse for low-rise RC buildings. An increase in robustness from 20% to 40% 

was found for the earthquake-resistant design. Incremental dynamic analysis is shown to be 

more conservative compared to static pushdown analysis in terms of structural response 

prediction. Thus, secondary beams are also shown to contribute to ALPs and overall robustness.  

Fragility models are well-established tools in earthquake engineering, offering critical 

estimates of collapse probability as a function of earthquake intensity parameters, such as peak 

ground acceleration (PGA) or spectral acceleration (Sa). Hence, these curves correlate the 

probability of exceeding specific damage states with the intensity of ground motion, making 

them essential for assessing the physical vulnerability of buildings and bridges (Siqueira, 

Tavares and Paultre, 2014; Siqueira et al. 2014). 

Yu et al. (2017) show, through reliability and sensitivity analysis, that uncertainties 

have great influence on the residual capacity of RC frames under column loss, especially those 

related to gravitational actions and rebar reinforcement. Thus, quasi-static pushdown analysis 

was performed on a 2D co-rotational macromodel to define the residual load capacity in terms 

of two damage criteria: DC-I to represent the yielding onset, and DC-II to represent ultimate 

capacity. DC-II capacity was found to be 1.5 to 2.0 times higher than DC-I capacity. 

Parisi et al. (2019) performed a multilevel sensitivity analysis to characterize 

progressive collapse for modern European RC buildings. The sensitivity of the ultimate load 

capacity, variability in terms of the ultimate steel strain, and location of the lost column are 

investigated. Thus, five performance-based limit states related to increasing damage levels are 

obtained. It was found that ultimate load capacity is significantly sensitive to the ultimate steel 

strain, being 141% greater than design load for ultimate strain of 20%. Ultimate capacity was 

shown to be more sensitive to the column loss location in plan than in elevation.  
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Parisi et al. (2019) also found that the most severe column removal scenarios are those 

referring to the removal of corner columns on the first floor, in line with previous researches. 

Regarding the sensitivity of the maximum dynamic displacement, it was found that the 

compressive strength of the concrete is not significant when compared to the steel yield 

strength, reinforcement ratio, beam span and ceiling height. Concrete strength was shown to be 

relevant only when CAA was mobilized in the double-span beams. 

Beck (2020) presented a pioneering conceptual study on risk-based optimization for 

structures subject to progressive collapse, exploring the optimal design of redundant systems. 

It is shown that uncertainties related to non-structural factors have great influence on the 

optimal design, being the primary driver to redundant optimal systems. These non-structural 

uncertainties are addressed by the latent failure probability 𝑃𝐿, including workmanship, failure 

due to unanticipated loads, accidental loads, terrorist attacks, and connection capacity. Hence, 

there is a latent background probability of failure regardless of the actual structural strength. 

Considering the above, Beck et al. (2020) rewrote the Ellingwood (2006) equation (Eq. 

2.3) considering the probability of collapse in terms of the conditional probability of collapse 

given column loss 𝑃[𝐶│𝐶𝐿], and a probability of column loss 𝑃𝐶𝐿: 

 

 𝑃[𝐶] = ∑∑𝑃[𝐶|𝐶𝐿] 𝑃𝐶𝐿

𝐿𝐷𝐻

 
(2.4) 

 

In Eq. 2.4, 𝑃𝐶𝐿 = ∑ 𝑃[𝐶𝐿|𝐻]𝑃[𝐻]𝐻  is an independent parameter related to non-

structural uncertainties, similarly to 𝑃𝐿 in Beck (2020); 𝑃[𝐶𝐿|𝐻] is the column loss probability 

for a given hazard 𝐻; 𝑃[𝐻] is the hazard probability during the lifespan and the sum ∑ (. )𝐿𝐷  

refers to different column loss scenarios. This expression addresses the risk-based optimization 

of common structures, such as continuous beams, regular floor spans, and regular frames, all 

subject to column loss. Thus, progressive collapse behavior for each case is addressed via 

analytical approaches. Beck et al. (2020) show that 𝑃𝐶𝐿 has major influence on the optimal 

design, and stregthening the frame to produce alternate load paths only has positive cost-benefit 

if this probability exceeds a threshold column loss probability 𝑃𝐶𝐿
𝑡ℎ. In case 𝑃𝐶𝐿 ≈ 𝑃𝐶𝐿

𝑡ℎ, optimal 

design is indifferent to stregthening or not, which is characterized by a plateau or by multiple 

similar local minima in the objective function. For 𝑃𝐶𝐿 < 𝑃𝐶𝐿
𝑡ℎ, conventional design is cost-

effective, with expected costs of progressive collapse being smaller than strengthening costs. 
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Beck et al. (2022) used the concepts and formulation in Beck et al. (2020) to study the 

optimal design of regular RC frames subject to the loss of columns and beams, now in terms of 

a probability of local damage 𝑃𝐿𝐷, instead of 𝑃𝐶𝐿. Progressive collapse behavior is addressed 

by analytical formulations proposed by Masoero et al. (2013). It is shown that optimal APM 

strengthening strongly depends on 𝑃𝐿𝐷, as it only pays off after a threshold local damage 

probability 𝑃𝐿𝐷
𝑡ℎ . Moreover, 𝑃𝐿𝐷

𝑡ℎ  is shown to be dependent on frame aspect ratio, consequences 

of failure, and strengthening strategies (which parts of the structure should be strengthened). It 

is also found that APM design is more cost-effective for taller frames; for greater sizes of the 

local damage; and for cheaper and/or partial strengthening strategies.  

Optimal risk-based designs found in Beck et al. (2022) relate to the best resource 

allocation when simultaneously dealing with beam bending, column crushing and global 

pancake failures. For wider and shorter frames, optimal design is often related to smaller beam 

safety margins and greater reinforcement of the columns. This happens due to upward collapse 

propagation being much less severe than horizontal propagation due to column crushing. In 

contrast, tall frames require both beams and columns to be strong, as both vertical and 

horizontal propagation become almost equally severe. This contrasts with the seismic design 

principle of weak beam - strong column, which prioritizes beam plastification over column 

failure, as briefly discussed in the end of Section 4.5. 

Praxedes et al. (2021) proposed a Damage Evolution Curve (DEC) to address the 

disproportionality and cascading failure related to progressive collapse. Based on the DEC, the 

authors propose a risk-based robustness index. The DEC shows how prone an initial damage is 

to propagate throughout the system, and how quickly it happens. When it comes to the 

pushdown analysis of a framed structure (Khandelwal and El-Tawil, 2011), the vertical drift of 

the joint related to the missing column is used as measure for the evolution of structural damage, 

enabling to obtain the DEC and its respective risk curve.  

The expected value of losses is defined as the total area under the risk curve, which is 

used to estimate a vulnerability index and a robustness index. Praxedes et al. (2021) presented 

examples involving trusses and framed structures to compare the proposed index with 

previously existing indices. Yet, Praxedes and Yuan (2021) show an evaluation framework for 

the aforementioned robustness index in RC framed structures. Praxedes and Yuan (2022) find 

that the probability threshold for justifying investment against progressive collapse aligns with 

the lower values of the empirical incidence rate of extreme events. Optimal strengthening is 

also found to strongly rely on cost parameters, such as relative costs between concrete and steel. 
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Beck and Stewart (2023) address the risk-based cost-benefit analysis of strengthening 

RC frames to mitigate progressive collapse due to terrorist blast loading. A break-even point 

related to an annual threat probability leading to both conventional and APM design having the 

same total expected costs is identified. Thus, a break-even point related to strengthening against 

one or two column losses is obtained. For buildings susceptible to blast threats, the authors 

suggest slightly increased strengthening for columns prone to brittle failure, and reduced 

strengthening for beams with ductile failure.  

 

2.5 MITIGATION STRATEGIES  

 

Load redistribution capacity due to ALPs implies in greater robustness. However, there 

are additional strategies to deal with progressive collapse, e.g. segmentation and key element 

design. Alternative strategies not only enhance the overall robustness, but also serve as new 

lines of defense in case of the intrinsic ALPs not being enough. Hence, mitigating measures 

beyond the frame inherent ALPs may be justifiable from a risk analysis perspective.  

Risk analysis aims to ensure that materials and resources are being efficiently 

allocated, considering the many potential initial damage and damage propagation scenarios. 

This decision relies on the type of occupation, potential number of victims, size of the structure, 

building relevance to society, and others. Therefore, reinforcements beyond necessary are 

avoided in less relevant buildings, related to low occupancy and lower threat probabilities, 

whereas lack of robustness is avoided in higher risk buildings (Stewart and Melchers, 1997). 

Strategies against progressive collapse consists of preventing initial damage, containing its 

propagation, or limiting the final damaged area (Kiakojouri et al. 2022). Thus, they are closely 

related to overall guideline requirements of continuity, redundancy and ductility (ASCE 7, 

2005; UFC 4-023-03, 2009; GSA, 2016; NISTIR 7396, 2017). 

In structural mechanics, a structure is considered statically indeterminate when the 

equilibrium equations alone are insufficient to determine the internal forces and reactions. The 

degree of static indeterminacy (𝑔ℎ) is defined as the number of additional equations needed to 

solve for the static unknowns in the structure. For typical reinforced concrete (RC) frame 

buildings, 𝑔ℎ  can be in the order of hundreds or even thousands. Redundancy, on the other 

hand, refers to the availability of ALPs that can be activated in the event of localized failure of 

one or more structural elements. This redundancy depends on both the location and extent of 

the initial damage. Generally, the degree of redundancy (𝑔𝑟) is associated with the number of 

columns that can be removed from an RC frame without triggering a disproportionate collapse. 

In RC frames, it is typical for 𝑔ℎ to be significantly greater than 𝑔𝑟.  
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Redundant elements make hyperstatic structures, enabling greater number of ALPs 

and greater force redistribution capacity after a localized failure. In a redundant structure with 

degree 𝑔𝑟, failure of 𝑔𝑟 + 1 elements need to occur to cause global system failure (Melchers 

and Beck, 2018). Thus, more redundant systems mean more paths for force redistribution. 

However, force redistribution only occurs if there is continuity between elements.  

Continuous rebar reinforcement and anchorage as perfect as possible along beams and 

columns ensures continuity in RC frames. Additionally, it is desirable that failures happen in a 

ductile manner if they are inevitable, allowing large displacements that provide visual warning 

and evacuation time (Dimas, 2014). In RC frame structures, the same reinforcements that ensure 

systemic continuity also promote ductile failure through CA mechanism. 

Additional strategies against progressive collapse can be added to both new and 

existing structures. As stated by Kiakojouri et al. (2022) it is not always possible to classify a 

reinforcement or strenghtening measure, as they may have dual effects and their performance 

depends on the initial triggering event, loading level and size of initial failure. For instance, 

measures targeted to mitigate initial damage may also ensure more effective ALPs. Thus, some 

reinforcement measures, such as inactive cables under usual loading conditions, only contribute 

after mobilization of intrinsic resisting mechanisms, especially Catenary Action. 

 

2.5.1 Initial damage 

 

Strategies to reduce the magnitude of initial damage are mostly focused on individual 

elements and for specific threats, e.g. fire, impacts, and blasts. Yet, few studies address 

strengthening to prevent initial damage of seismic origin (Tavakoli and Hasani, 2017; 

Maghroon et al. 2022).  

Progressive collapse caused by fire is typically addressed for steel structures (Zhou et 

al. 2021), as RC frames have intrinsic protection due to aggregates (Gedam, 2021) and cover 

layers (Murugam and Srinivasan, 2021). However, significant strength reduction over time and 

potentially irreversible physical-chemical changes (Khoury, 1992) may trigger an earlier onset 

of progressive collapse. Mattos (2024) and Carneiro (2024) propose an alloy-based cellular 

protection device enclosing column spans as mitigating strategy against both fire and impact 

threats in existing RC flat slab buildings. Its cost-effectiveness is estimated by means of risk-

based optimization, addressing cost of device implementation, expected costs of load 

redistribution failure and device failure, and the occurrence probability of each threat. 



38 

 

Reinforcement strategies against impact can be grouped in: (a) ensuring additional 

resistance by adding material; and (b) using sacrificial elements to protect key members. 

Damage from impact can result from external elements like cars and planes, or from failed 

structural elements within the structure itself. In the first case, columns are typically the critical 

elements to be reinforced, while in the second case, slabs and floor beams are the focus. To 

mitigate impact loads, large deformations can assist in dissipating the kinetic energy. Lu et al. 

(2020) and Xu et al. (2021) suggest wrapping structural elements with aluminum foam, which 

absorbs kinetic energy from small impacts and confines concrete for higher impacts. Although 

expensive, Mattos, Carneiro and Beck (2024) shows that this approach has positive cost-benefit 

for greater threat probabilities of impact and fire. Fan et al. (2020) recommend using corrugated 

steel tubes to encase ultra-high-strength fiber-reinforced concrete columns in bridge structures. 

Another common protective measure is using fiber-reinforced polymers (FRP), as noted by 

Kadhim et al. (2018) and Alam et al. (2020), especially for bridge columns. Sandwich structures 

also reduce impact (Ma et al. 2021; Wang et al. 2021). 

Motivated by recent terrorist attacks, the literature has extensively studied blasting as 

triggers for progressive collapse, both at member level and system level. Due to the similarities 

between triggering events, some impact mitigating strategies can also be used for blast 

scenarios, either ensuring additional resistance or using sacrificial elements.  

Adding material to increase element resistance includes jacketing concrete elements 

with steel (Thai et al. 2020; Hanifehzadeh et al. 2021), using sandwich structures (Vatani and 

Kiakojouri, 2015; Yang et al. 2021), and using fiber-reinforced polymers (Buchan and Chen, 

2003; Vapper and Lasn, 2020).  

However, strengthening for blast scenarios can have negative effects. Increased 

resistance, especially in columns, can redistribute explosion forces to the rest of the structure, 

expanding the area subject to overpressure and potentially leading to greater initial failure 

(Kiakojouri et al. 2022; Beck and Stewart, 2023). 

 

2.5.2 Collapse propagation 

 

Design measures that aim to mitigate the spread of collapse consist of either adding 

new ALPs or improving the efficiency of existing ones. In case of incorporating new paths, the 

additional structural elements typically involve struts, cables (relaxed or not), and trusses. The 

inclusion of new load-bearing walls or pillars is usually economically disadvantageous, 

although it can be effective (Kiakojouri et al. 2022).   
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As shown in the WTC Twin Towers collapse, additional columns along the perimeter 

improve the system's rigidity, ductility and energy dissipation, also acting as direct protection 

against impacts and explosions (Ezoddin et al. 2021). Load paths are guided by stiffness 

distribution. Therefore, if a new element does not provide additional stiffness to the system, its 

inclusion does not provide a new load path (De Biagi and Chihaia, 2016). Furthermore, new 

load paths depend on the type of load generated by the initial failure, so the same structural 

element may behave differently depending on the beginning of propagation. Additional beams 

are not usually an adequate strategy to ensure ALPs, but there are exceptions. In case of RC flat 

slab structures, for instance, beams along the perimeter are proposed as an effective measure 

against progressive collapse (Garg et al. 2021a; 2021b; 2021c).  

Another strategy to combat collapse spread is by using truss structures between beam 

spans. This measure is known to be effective against seismic actions, and has recently been 

proposed to also mitigate collapse spread, mostly for steel structures and independent of the 

threat (Khandewal et al. 2009; Qian et al. 2019; Yu et al. 2020; Qian et al. 2021).  

Reinforcement trusses can also be applied on the top floor of the structure, being an 

effective alternative for low to medium height buildings (Zahrai and Ezoddin; 2018; Naji and 

Ommetalab, 2019; among others). However, as the height of the building increases, the ability 

to control the propagation of collapse decreases for initial damage occurring on the first floors.  

Such reinforcement substructures can also act in conjunction with cables (Izadi and 

Ranjbaran, 2012) and other floor substructures along the height of the building (Sun et al. 2012). 

Such a strengthening strategy allows for a more uniform distribution of axial loads on the 

columns after an initial failure, as well as a reduction in dynamic amplification related effects 

(Freddi et al. 2022).  

Cables and ropes are effective elements in reinforcing against progressive collapse, 

and can be applied to both steel and concrete structures without interfering with seismic 

performance. Another reinforcement measure is the use of shock absorbers, although studies of 

these applications are still scarce. Such devices act to absorb energy, therefore generating new 

ALPs (Kim et al. 2011; Kim et al. 2014).  

However, this alternative is complex and interferes with the architectural design in 

existing structures. Strengthening the original columns is rarely efficient, but is usually 

necessary to ensure integrity for the combined use with reinforcement cables, or to use them as 

energy absorbers (Horr and Safi, 2003). Meanwhile, strengthening beams is the main strategy 

for improving the original ALPs (Galal and El-Sawy, 2010).  
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Additional beam reinforcement is a classic strategy to improve structural performance 

against progressive collapse. In order to make progressive collapse reinforcement independent 

of the seismic reinforcement, Alogla et al. (2016) propose additional longitudinal rebars in the 

middle of the cross-section to assist CA. Yet, in the case of tall buildings, contribution of each 

structural element may vary along the height, so the need for reinforcement for the first floors 

may be far beyond the necessary for upper floors (Shan et al. 2019). 

 

2.5.3 Extent of final failure 

 

If initial failure cannot be avoided and collapse propagation is difficult to control, the 

final emergency alternative is to limit the extent of progressive collapse propagation. This 

strategy is commonly applied to prevent Impact-type collapses, most notably Pancake type. 

Yankelevsky et al. (2021) show that design based on current regulations is not enough to ensure 

robustness to flat slab connections under Pancake collapse.  

As the dynamic impact forces can reach three to four times the total weight of the 

floors during free fall, usual strategies against progressive collapse are shown not to be enough. 

Hence, to overcome this scenario, two alternatives are shown to be efficient: (a) using energy 

absorption devices and (b) compartmentalization. 

Energy absorption devices are common to provide lateral dynamic stabilization, but 

their use in mitigating Impact-type collapse is promising. Zhou and Yu (2004), for instance, 

propose a high-efficiency device to mitigate progressive collapse propagation in tall structures. 

Yet, little is known about how the collapse behavior is influenced by the additional weight that 

such devices add on the structure, as well as interactions between frame and device.  

Compartmentalization, also addressed as segmentation, is a much simpler alternative. 

It consists on limiting the final damage extent by dividing the structure into smaller sections, 

so that the failure in one portion does not physically propagate to the others. Starossek (2017) 

suggested this technique for skyscrapers and bridges. Horizontal segmentation is commonly 

introduced by construction joints and structural fuses. As verified in the Alfred P. Murrah 

collapse, reinforcement discontinuities are favorable for horizontal compartmentalization 

(Starossek, 2017). Hence, reducing the flexural capacity in key parts of beams and slabs act in 

favor of arresting collapse propagation, as well as the use of fuse (sacrificial) elements.  

Vertical segmentation in high-rise buildings is possible by using sections of different 

energy dissipation capabilities, in which reinforced floors are designed to withstand the impact 

of the upper floors (Lalkovsky and Starossek, 2014; Yang and Zhang, 2021). 
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 RELEVANT DESIGN FACTORS  

 

All different mitigation strategies shown previously have the main purpose of 

increasing overall robustness, and the cost-effectiveness of each should be addressed via risk 

analysis. Since a given alternative can be more or less efficient depending on structural topology 

and type of triggering event, these and other key factors are mandatory in risk analysis. When 

seismic threats are relevant, mitigation strategies that separate seismic and progressive collapse 

reinforcements should be considered to avoid unwanted effects from their interaction. Thus, 

dual effects shown by some strategies should be carefully investigated.  

 

2.5.4 Structural topology 

 

Size and arrangement of the structural system can influence the possible failure modes 

to be triggered and, consequently, the most adequate reinforcement strategy. Collapse in tall 

and slender buildings tend to propagate downwards, so Pancake collapse is the critical type, 

whereas in large low-rise buildings the collapse can propagate both vertically and horizontally 

(Beck et al. 2022; Beck and Stewart, 2023).  

Member length is another relevant factor in framed buildings: for a similar column 

loss scenario and frame length, short and rigid beams (more columns) provide better force 

redistribution when compared to long beams (less columns).  

This goes in line with the redundancy concept, as a continuous beam having more 

supports is clearly more robust. Yet, the plastic hinges formed earlier in longer beams may also 

act as a structural fuse, limiting the collapse spread to the beam spans above the lost column.  

Building irregularities are another major factor. When comparing regular buildings 

with inclined and twisted buildings, Kim et al. (2011; 2013; 2014) show that beam plastic 

hinges can lead to further collapse propagation in irregular buildings. In regular frames, beam 

plastic hinges tend to limit the propagation within the damaged span. 

 

2.5.5 Triggering event and initial failure 

 

Guideline standards usually recommend discretionary removal of a single ground floor 

column to address robustness. However, the initial failure may be much greater in real cases. 

Although there are no limits to the extent of initial failure, there are technical and economic 

limitations in terms of structural strengthening.  
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Few studies consider beam loss as the initial failure (Fang et al. 2013; Rezvani et al. 

2017; Behnam et al. 2019), as this is more common in earthquake and fire scenarios. Yet, this 

is considered the most likely cause of initial failure in the Plasco building collapse (Yarlagadda 

et al. 2018).  

Each type of triggering event can lead to different types of progressive collapse 

depending on the available resistance mechanisms and the topological system configuration. 

While the proportion of initial damage tends to be limited to a single structural element in the 

event of a vehicular impact, it is possible for an entire floor to be affected by fire.  

Figure 2.3 illustrates a comparison between increasing pre-existing ALPs and 

providing compartmentalization in terms of initial failure magnitude. As the proportion of 

initial damage increases, it becomes more difficult to provide ALPs via APM, reaching the 

point where it becomes economically and technically unfeasible to use this methodology. On 

the other hand, compartmentalization is not as cost-effective for smaller initial damages. 

Considering that size of initial failure depends on an unknown threat, Starossek (2012) suggests 

a hybrid methodology, with ALP enhancement being more adequate for vertically-alligned 

frames, and segmentation being more suitable for horizontally-aligned buildings. 

 

Figure 2.3 – Impact of initial failure size on reinforcement strategy. 

 

Source: Kiakojouri et al. (2022), based on Starosek (2012). 

Strengthening measures at the structural element level aimed at mitigating initial 

damage are generally useful for smaller triggering events, such as a vehicular collision or small 

nearby explosion. Nevertheless, the focus of the structural reinforcement must address global 

systemic performance. 
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2.5.6 Interaction between seismic and progressive collapse design  

 

Seismic-resistant designs aim to resist predominantly horizontal loadings, whilst a 

progressive collapse-resistant design aims to resist predominantly vertical loadings. Musavi and 

Sheidaii (2021) discuss the influence of earthquake-resistant design on progressive collapse. 

Earthquake-resistant designs tend to use “strong pillars – weak beams” or “strong connections 

– weak elements” frameworks, which can intensify the propagation of certain types of 

progressive collapse. This is further addressed at the end of Chapter 4. 

As mentioned in the previous Section, there are some proposals to make additional 

progressive collapse resisting mechanisms independent of seismic-oriented mechanisms. These 

strategies can be grouped in: (a) inactive load-bearing systems under usual and seismic loading 

conditions, but active in progressive collapse related scenarios (large vertical drifts); and (b) 

providing additional reinforcement in a way which causes little interference in seismic 

performance. Among the alternatives in the first strategy, techniques involving relaxed cables 

and/or ropes stand out, while the second strategy highlights ALP enhancement through 

additional strategically positioned reinforcement elements (Kiakojouri et al. 2022). 

For instance, Lin et al. (2019) and Yang et al. (2021) propose an additional rebar 

reinforcement in the middle of the beam depth. Since it is close to the beam neutral axis, this 

extra rebar layer only influences the intrinsic CA mechanism. Qiu et al. (2020) propose relaxed 

external cables below the beam spans, while Feng et al. (2017) and Qiang et al. (2020) study 

kinked rebar reinforcements (rebar folds close to beam-column joints). The two later 

alternatives also activate extra ALPs only at greater values of vertical drifts, thus relating solely 

to progressive collapse mitigation. 

 

2.5.7 Collateral effects 

 

Some mitigating strategies can lead to undesirable effects on the overall system 

performance, which is little understood. In fact, Chapter 4 shows that addressing just the 

intrinsic resisting mechanisms is able to cause dual effects in beam and column strengthening. 

Depending on the reinforcement strategy, significant differences may arise in the force 

redistribution in mobilization of CAA, CA, and VA mechanisms. Reinforcement using high-

resistance cables and tie rods can have the adverse effect of transmitting the dynamic 

overloading of the initial failure to the rest of the structure through these elements (Sarti et al. 

2016). Similarly, blast strengthening can increase the loading surface and promote further 

spread of initial damage (Kiakojouri et al. 2022; Beck and Stewart, 2023).  
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Although continuity is commonly seen as a favorable feature in terms of robustness, it 

can have adverse effects, e.g. propagating horizontal Domino-type collapse by means of pulling 

mechanisms (Starossek, 2017). Besides, some mitigation strategies against progressive collapse 

are undesirable from an aesthetic and architectural point of view, such as the addition of trusses 

between spans, truss subsystems on the roof, and large energy absorption devices. 

 

2.6 DESIGN STANDARDS 

 

Given the severity of progressive collapse consequences, various international 

regulations have been proposed to prescribe minimum safety margin against it and to establish 

efficient frameworks on how to address it. These guidelines outline acceptable damage limits 

after an initial failure, specific reinforcement frameworks, and risk classes for buildings. Hence, 

in terms of the building's risk level, different robustness requirements are prescribed for 

government buildings and residential buildings, for instance.  

Guideline approaches for preventing progressive collapse are categorized into direct 

and indirect methods. Direct methods address increase in robustness by designing key structural 

elements to withstand abnormal loadings, and also by ensuring enough ALPs (Dimas, 2014). 

When addressing ALPs via APM design, dynamic effects related to a sudden column loss need 

to be addressed. GSA (2016) proposes Dynamic Amplification Factors (DAF) up to 2.0, which 

must be included in the abnormal load combinations regardless on the type of structural analysis 

performed (linear static, nonlinear static, or nonlinear dynamic).  

Indirect methods rely on implicit strategies for robustness, such as imposing minimum 

values of resistance, ductility and continuity on the elements. As it does not resort to a complex 

analysis, it is simpler than direct methods, although more limited (Dimas, 2014). Tie 

requirements are an example of indirect method, in which overall robustness is enhanced by 

means of minimal requirements for the connections (UFC 4-023-03, 2009).  

Acceptable limits for the final damage extent are also prescribed. The European 

standard EC2 1-7 (2006), for instance, suggests that damage to a building resulting from an 

exceptional action does not exceed 15% of the floor area or 100 m². In the vertical direction, 

damage must not exceed two floors adjacent to the origin of the damage.  

Stewart (2017) shows that North American guidelines against progressive collapse led 

to a satisfactory cost-benefit only for very high threat probabilities, around 10−3/building/year. 

Thus, the risk related to blast-induced progressive collapse in government buildings is very low. 

It should be noticed, however, that cost-benefit can become positive if the columns are subject 

to other threats, such as earthquakes and vehicular impacts.  
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Brazilian guidelines do not explicitly deal with progressive collapse caused by sudden 

column loss, but prescribe constructive standards to avoid its onset by brittle failure modes in 

flat slab RC structures (NBR 6118, 2023). No formal definition is presented for the 

phenomenon, possibly reflecting the low incidence of typical abnormal threats in Brazil, such 

as earthquakes and terrorist attacks. Yet, Pereira et al. (2024) argue that earthquake loads should 

not be dismissed in Brazil, particularly for important or critical buildings.  

Brazil has its own notorious occurrences of progressive collapse. For instance, the 

partial collapse of Pallace II residential building, in Rio de Janeiro, 1998, happened in two 

instances due to failure in two columns, as result of several construction errors and poor choice 

of materials (Instability collapse). In 2001, in Ubatuba, SP, block B of Anêmona residential 

building collapsed due to failure in its foundation piles (also Instability collapse). 

Dos Anjos (2016) found that designs based on Brazilian regulations did not satisfy the 

Demand-Capacity Ratio criteria established by GSA (2013) for a 12-story regular RC frame in 

terms of a linear static procedure. However, by increasing the longitudinal reinforcement ratio 

by up to 380% and transverse reinforcement ratio by up to 400%, it was possible to comply 

with the required limits for scenarios of internal column loss. While the reinforcement required 

to mitigate progressive collapse is ~400% higher than for intact scenario, rebar and stirrup 

detailing remain reasonable and within permissible limits. Thus, as shown in the linear 

procedure of Section 4.1, similar increases for rebars and stirrups are found. 

 

2.7 STRUCTURAL ANALYSIS 

 

Pushdown analysis, proposed by Khandelwal and El-Tawil (2013), is a framework for 

evaluating progressive collapse robustness due to loss of load-bearing elements, similar to the 

pushover analysis used in earthquake engineering. The technique consists of gradually 

increasing the gravitational load after the loss of one or more critical elements until collapse is 

verified. Besides, robustness can be quantified in terms of the Overload Factor (OF): 

 

 𝑂𝐹 =
Ultimate capacity

Nominal gravitational load
 (2.5) 

 

Following GSA (2016), pushdown analysis can be performed in three ways: Uniform 

Pushdown (UP), Bay pushdown (BP), and Incremental Dynamic Pushdown (IDP). In UP, 

gravitational loads are increased throughout the entire damaged structure via static nonlinear 

procedure until failure.  
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On the other hand, BP emphasizes the increasing loads only in the beam spans above 

the lost column. The more realistic IDP consists of a series of dynamic analyses, with each step 

having a vertical load over the critical spans greater than in the previous step, until failure occurs 

in one of the increments. Khandelwal and El-Tawil (2013) show that IDP is the alternative 

closer to reality, and results via BP closely resemble those via IDP, even without considering 

dynamic effects. Hence, BP is a simpler yet efficient approach able to replace IDP.  

In this regard, Biagi et al. (2017) propose various techniques to address progressive 

collapse robustness of RC frames. They suggest three alternatives for column removal: (a) 

reducing mechanical properties; (b) complete column removal followed by incremental load 

application; (c) and incremental unloading of internal forces on the damaged column. Since 

external forces are always present during structural damage, the third alternative is considered 

the most realistic. However, its complexity makes it less preferable. The second approach, 

which resembles BP, is the simplest, but does not account for the presence of the damaged 

element. The first approach disregards external actions. In terms of structural efficiency and 

computational burden, the simple element removal for robustness assessment is justified.  

According to Fascetti et al. (2015), BP associated with dynamic effects is an efficient 

alternative, since dynamic effects make up a large part of the progressive collapse behavior. 

Such effects can be represented by explicit dynamic analysis, DAFs (conservative approach), 

or by Energy Equivalent Method (EEM).  

A pragmatic solution is enabled by EEM, as it relies on the nonlinear static pushdown 

curve and the principle of energy conservation (Izzudin et al. 2008; Xue and Ellingwood, 2011; 

Xue and Le, 2016; Bao et al. 2017). In a dynamic deformable body, the sum of kinetic energy, 

external work and internal deformation energy must remain constant for any time instant and 

for any deformation. For simplification, energy dissipation from other sources, such as heat and 

plastic strains, is neglected, leading to small discrepancies in the dynamic estimation. 

Considering the oscillation of the affected frame bay as a single-degree-of-freedom 

system, the kinetic energy at peak dynamic displacement is zero. Hence, the relationship 

between force and peak dynamic displacement can be obtained by equating the external work 

to the internal strain energy: 

 

 𝜆𝑑(𝑑) ∙ 𝑑 = ∫ 𝜆𝑠(𝑢) 𝑑𝑢
𝑑

0

 (2.6) 

 

where 𝜆𝑑  (𝑑) and 𝜆𝑠 (𝑑) represent the pseudo-static and static pushdown curves, respectively 

(Praxedes, 2020). 
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In this thesis, progressive collapse is addressed by a combination of Bay Pushdown 

Analysis and Energy Equivalence Method, unless stated otherwise. This approach is used by 

Praxedes (2020), and it has shown a good balance in terms of progressive collapse behavior 

prediction and computational burden for risk-optimization purposes.  

Yet, metamodeling techniques had to be added in this thesis due to a broader range of 

systemic outputs addressed, significantly increasing the computational time for both structural 

and reliability analyses. In this work, robustness is addressed in terms of the overall frame 

systemic behavior, relying in more than just the RC beams. Further details regarding these 

aspects are shown in Section 3.3. 

Several alternatives are available for the numerical modelling of progressive collapse 

(Adam et al.2018). Four approaches stand out: (a) Finite Element Method (FEM); (b) Discrete 

Element Method (DEM); (c) Applied Element Method (AEM); and (d) Cohesive Element 

Method (CEM). The main features for each of them are displayed in Figure 2.4. 

 

Figure 2.4 – Main features of the most relevant progressive collapse numerical methods. 

 

Source: Adapted from Elkady et al. (2024).  

 

Herein, FEM approach is adopted by combining BP and EEM, due to its broad 

acceptance in the community, being the analysis method incorporated in several Software 

Packages. In fact, the widely accepted OpenSees Software (Mckenna et al. 2010), which relies 

on FEM, is used in this thesis in progressive collapse simulation, unless stated otherwise.  



48 

 

OpenSees is an open-source software framework developed at UC Berkeley, supported 

by renowned US research centers, and was designed for advanced analysis of non-linear 

structural responses to seismic events.  However, over the past decades, it has grown into a 

powerful tool with capabilities in geotechnical modeling, reliability analysis, and structural 

simulation for earthquake, progressive collapse, fire, and explosions. As the platform of choice 

in many researches, OpenSees facilitates data sharing, remote experiments, and hybrid 

simulations, fostering a large, collaborative community of engineers dedicated to solving 

complex structural challenges (Usmani et al. 2010; Usmani et al. 2012). 

Although FEM does not allow to directly address member separation, these other 

alternatives are fairly recent, time demanding, and rather complex for the purpose of this work. 

Yet, as shown in the validation examples of Section 3.4.1, FEM approach is able to accurately 

depict the entire static pushdown behavior for a broad-range of experimental tests. Nonetheless, 

future studies may address these alternative methods in order to simulate other collapse features 

better depicted by them.  
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3 PROPOSED FRAMEWORK 

 

The objective of this thesis is to comprehend how progressive collapse influences the 

optimal risk-based configuration of reinforced concrete framed structures. To achieve this, a 

framework of several methods was adopted to address each desired feature. 

 

3.1 OVERVIEW 

 

As stated in the previous Chapter, redistribution-type progressive collapse due to 

single column loss is addressed. Only intrinsic resisting mechanisms are considered (Section 

2.3), so the main strategy for progressive collapse mitigation consists on enhancing existing 

ALPs via APM design, as done in usual guideline framework. In this initial study, only primary 

RC frames related to unidirectional floor slabs are addressed, minimizing potential inaccuracies 

due to 3D features not being considered. Typical design variables are optimized to ensure 

enough safety margin against progressive collapse, such as cross-sectional depths, longitudinal 

and transversal reinforcement ratios, and concrete strength. Alternative strategies are addressed, 

but they also ensure robustness by means of enhancing existing ALPs.   

Based on Beck et al. (2020; 2022), a threat-independent approach is adopted, 

combining hazard probability and column loss probability given hazard as probability of local 

damage 𝑃𝐿𝐷 = ∑ 𝑃[𝐶𝐿|𝐻]𝑃[𝐻]𝐻 . To understand how progressive collapse influences the 

optimal design, 𝑃𝐿𝐷 is assumed to range between a lower value 𝑃𝐿𝐷
𝑚𝑖𝑛 = 5 × 10−6 to 1. This 

allows to cover scenarios gradually changing from negligible to very significant threat of 

column loss. It is noteworthy to mention that 𝑃𝐿𝐷
𝑚𝑖𝑛 relates to the 50-year lifespan equivalent to 

the “de minimis” annual probability 𝑝 = 10−7 (Pate-Cornel, 1987). 

Given the above, the adopted framework relies generally on four pillars (Figure 3.1): 

(a) risk-based optimization: total expected costs, given by cost of construction and expected 

costs of failure, are minimized for each 𝑃𝐿𝐷 (Section 3.2); 

(b) reliability analysis: in order to compute the expected costs of failure, probability of 

occurrence for each failure mode is addressed (Section 3.3); 

(c) structural modeling: at each sample point, structural response is addressed via nonlinear 

FEM for limit state evaluation (Section 3.4); 

(d) metamodeling: as structural and reliability analyses have great computational burden, 

simplified yet accurate models are used to hasten these stages (Section 3.5). 
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Figure 3.1 – Simplified depiction of the proposed framework. 

 

Source: own authorship. 

Latin Hypercube Sampling (LHS) is used to create a uniform sample (1st) across the 

sampling domain 𝓢 containing the problem’s random variables (McKay et al. 1979; Tang, 1993; 

Ye, 1998). These sample points are support points for the 1st metamodeling stage related to 

structural behavior (Section 3.5). Then, FEM is used to realistically address structural behavior 

for the intact structure and each column loss scenario.  

A new and significantly bigger sample (2nd) is created via LHS across 𝓢, but structural 

behavior is now quickly (and accurately) estimated by metamodeling based on previously 

analyzed support points via FEM. To ensure convergence in reliability analysis, this larger 

sample may reach dozens of millions of sample points, so it would be highly unfeasible to get 

their structural behavior via FEM. 

Each sample point in the bigger sample has its limit states computed accordingly to 

the addressed failure modes, but always in terms of a resistance term minus a demand term. 

Some failure modes have resistance terms estimated via metamodeling (FEM), such as ultimate 

capacities in CAA and CA. Others have demand terms obtained via metamodeling (FEM), such 

as shear demand in beams, force vs bending demand in columns, and material strains. 

Nevertheless, limit state estimation leads to outputs equal to 0 (safety, demand < resistance) or 

1 (failure, demand ≥ resistance). More details related to each limit state function are described 

in the introduction of each example shown in Chapter 4.  

A new sample (3rd) is created via LHS across the design domain 𝓓. Design domain 

𝓓 contains the mean values of some of the random variables in 𝓢; hence, 𝓓 ⊂ 𝓢. Vector 𝓓 has 

a smaller dimension than vector 𝓢, as some random variables are not considered as design 

variables, e.g. yielding strength, dead load, live loads, and model error. For each new sample 

point in the 3rd sample, the previous larger sample (2nd) and their limit state results are used 

to compute the probability of occurrence for all of its failure modes.  
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Design variables are conveniently considered as random design variables in order to: 

(a) ensure a more robust uncertainty modelling; and (b) allow usage of the most efficient 

reliability analysis method found for this framework (more details in Section 3.3). 

A final sample (4th) is then created via LHS across 𝓓 and for risk-based optimization 

purposes. The reliability indexes are quickly (and accurately) estimated via metamodeling in 

terms of the support points previously evaluated in reliability analysis.  

As the iterative optimization process advances, optimal candidates converge towards 

the optimum (most cost-effective solution), and for each candidate the failure probabilities are 

quickly (and accurately) estimated based on reliability index metamodels. These surrogates are 

related to specific failure modes of intact structure scenario and column loss scenarios. 

Although the probability of failure modes related to column loss scenarios is conditional on 

threat probability, the same reliability index metamodels can be used regardless of 𝑃𝐿𝐷. 

To briefly illustrate the efficiency of the proposed framework, in terms of the examples 

in Chapter 4 and which are mostly solved in a notebook (16 GB RAM, 64 bits OS, Intel® Core 

i7-11800H @ 2.30 GHz, 8 cores), the average computational times for each stage were:  

(a) structural analysis (continuous RC beam example): 20 to 30 minutes for a column loss 

scenario and 2000 support points in 𝓢; 

(b) structural analysis (RC frame examples): 3 to 8 hours for each column loss scenario and 

2000 support points in 𝓢, with taller frames taking longer; 

(c) limit state estimation: 2 to 6 hours for 30 million points in 𝓢 using FEM metamodels, 

with RC frames under several column loss scenarios taking longer; 

(d) reliability analysis: 1 to 4 hours for 2000 support points in 𝓓, with RC frames under 

several column loss scenarios taking longer; 

(e) risk optimization: less than a minute for each 𝑃𝐿𝐷, 100 iterations, an initial extensive 

search for 10 thousand candidates in 𝓓, reliability indexes surrogates, and regardless of 

the structure. 

This clearly shows how fundamental the metamodeling approaches were, being the 

key factors to link the stages of structural modeling, reliability analysis and risk optimization. 

If not for metamodeling, structural analysis for 30 million tall frame sample points would 

roughly take 13.7 years, which would be unfeasible. Yet, different metamodeling approaches 

were used for RC beam and RC frame examples, as the method used for beams was shown to 

be too complex and slow for RC frames with many more outputs (more details in Section 3.5). 
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Metamodeling enabled refined nonlinear FEM to be used (Section 3.4). Besides, 

reliability analysis relies on a simulation method that allows using the same large sample in 𝓢 

for computing failure probabilities for all support points in 𝓓 (Section 3.3).  

 

3.2 RISK OPTIMIZATION PROBLEM  

 

For each 𝑃𝐿𝐷, cost-effectiveness provided by a given configuration in design variable 

vector 𝒅 ∈ 𝓓 is measured in terms of the compromise between construction cost and expected 

costs of failure. Hence, risk-based optimization is chosen to describe the cost-benefit of an APM 

design against progressive collapse.  

Risk optimization (RO) is currently the best alternative for addressing the optimal 

balance between economy and safety (in terms of probability of failure), leading to consistent 

results when system failure can be characterized and when costs of failure can be defined. Thus, 

only RO is able to result in optimal configurations in terms of uncertainty and monetary 

consequences of failure (Beck et al. 2012; 2015). 

Reliability-based design optimization (RBDO) is historically the most studied method 

for optimization under uncertainties, but as results depend on admissible failure probabilities 

(constraints), optimal compromise between safety and economy is not necessarily achieved. 

Deterministic design optimization (DDO) does not account for failure probabilities at all, so 

minimal construction costs are related to increased expected costs of failure, even when using 

safety coefficients (Beck et al. 2012).  

Robust optimization does not make use of probabilistic measures, often relying on 

arbitrary design constraints and normalizing constants to make a structure less sensitive to 

uncertainties. This lack of objectiveness leads to optimal results not necessarily related to the 

best compromise between safety and economy (Beck et al. 2015). 

In this thesis, construction costs and expected costs of failure (cost of failure x 

probability of failure) compose the total expected cost 𝐶𝑇𝐸(𝑿, 𝒅), with 𝑿 being the random 

variable vector, and 𝒅 being the design vector.  

Additional life-cycle costs could be included in 𝐶𝑇𝐸, e.g. costs of maintenance, 

operation, inspection, demolition and disposal. However, only those related to construction and 

expected loss are used, solely addressing consequences of progressive collapse, following Beck 

et al. (2020; 2022) and Ribeiro et al. (2023). Hence, RO consists in solving the following 

optimization problem: 
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                                               find 𝒅∗ 

                  which minimizes 𝐶𝑇𝐸(𝑿, 𝒅) 

                                        subject to 𝒅 ∈ 𝓓 

(3.1) 

 

The objective function 𝐶𝑇𝐸(𝑿, 𝒅) is typically a non-convex function with multiple 

local minima; therefore, gradient-based mathematical programing methods cannot be used for 

RO. Herein, global heuristic algorithms are adopted for solving Eq. (3.1) (Beck et al. 2012).  

Firefly algorithm (FA) is chosen for solving RO in this thesis. Introduced by Yang 

(2008), FA is a metaheuristic optimization algorithm inspired by firefly behavior. Hence, each 

optimal candidate in 𝓓 is assumed as a firefly, and 𝐶𝑇𝐸 landscape formed in 𝓓 is given in terms 

of the brightness of the fireflies. Convergence is then characterized by fireflies getting closer to 

the brightest ones. Three idealized rules define their behavior: (a) fireflies are attracted to each 

other regardless of sex; (b) attractiveness is proportional to brightness; and (c) brightness is 

given in terms of the landscape (𝐶𝑇𝐸).  

As shown in Yang (2008), attractiveness relies on the coefficients 𝛾𝐹𝐴 (related to sky 

light absorption) and 𝛽0
𝐹𝐴 (greatest possible attractiveness, as it decreases over distance). Thus, 

firefly movement relies on a randomization parameter 𝛼𝐹𝐴. In a parametric study, Yuan-Bin et 

al. (2013) suggest 0.1 ≤ 𝛾𝐹𝐴 ≤ 30, 0.1 ≤ 𝛼𝐹𝐴 ≤ 0.2, and 20 to 50 fireflies across 𝓓. In this 

thesis, it is used 𝛾𝐹𝐴 = 0 (no light absorption); 𝛼𝐹𝐴 is set for decreasing randomness; 𝛽0
𝐹𝐴 ranges 

from 0  to 1, in terms of its 𝐶𝑇𝐸 compared to the maximum; 40 fireflies; initial extensive search 

of 10 thousand fireflies; and 100 iterations. For each 𝑃𝐿𝐷, 10 optimization runs are performed. 

Heuristic algorithms with better probabilistic metrics could have been employed 

instead of FA (Gomes et al. 2018). However, thanks to metamodeling, optimization proved to 

be the fastest stage of the framework. Additionally, a quick extensive search was conducted 

before the iterative process, significantly reducing convergence issues. 

 

3.3 RELIABILITY ANALYSIS 

 

As 𝐶𝑇𝐸 needs to be computed at each optimal candidate, in each iteration and for each 

𝑃𝐿𝐷, several evaluations of probability of failure 𝑃𝑓 are required for a single optimization run. 

Hence, reliability analysis is done in two stages: (a) an estimation via simulation method for a 

set of support points in 𝓓 for metamodeling purposes; and (b) estimations via metamodeling 

during optimization, based on the previously obtained support points (Figure 3.1).  
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Weighted Average Simulation Method (WASM) is used in the first stage of reliability 

analysis. Proposed by Rashki et al. (2012), WASM consists on estimating 𝑃𝑓 from a sample of 

uniformly distributed points for all random variables, regardless of their real distribution. It is 

also able to estimate design point location, but this property is not addressed in this work.  

The weight of each sample point 𝑖 is defined by the product of the probability density 

function 𝑓𝑗 of its 𝑁𝑉 random variables (Eq. 3.2), being greater or smaller as it is closer or farther 

from the mean value, as shown in Figure 3.2 (𝑊1 > 𝑊2 > 𝑊3). 

 

 𝑊𝑖 = Π𝑗=1
𝑁𝑉 𝑓𝑗(𝑖) (3.2) 

 

Figure 3.2 – Weighting of sample points in sampling space. 

 

 

Source: Rashki et al. (2012) 

 

From the weight of each sample point, 𝑃𝑓 is estimated by: 

 

 𝑃𝑓 =
∑ 𝑊𝑖𝐼(𝑥𝑖)

𝑁𝑆
𝑖=1

∑ 𝑊𝑖
𝑁𝑆
𝑖=1

 (3.3) 



55 

 

where 𝑥𝑖 is the 𝑖-th sample point; 𝑊𝑖 is the sample point weight; 𝐼(𝑥𝑖) is the indicator function 

of 𝑥𝑖, worth 0 for survival and 1 for failure; and 𝑁𝑆 is the number of sample points. Two proofs 

attesting to the veracity of Eq. (3.3) are presented in Rashki et al (2014). 

Rashki et al. (2012) show that this technique avoids classic drawbacks of crude Monte 

Carlo simulation, especially the need for a very large sample. By using low coefficients of 

variation, design variables typically addressed as deterministic can be adopted as random. 

However, its greatest advantage relates to a single sample being used regardless on 𝒅 ∈ 𝓓.  

In optimization problems involving random design variables, only 𝑊𝑖 is dependent on 

the optimal candidate configuration. As 𝐼(𝑥𝑖) depends on sampling, changing the optimal 

candidate design (mean value) only requires the reevaluation of the sampling weight 𝑊𝑖, 

enabling a single sample to be used throughout the entire process (Okasha, 2016).  

Although WASM is not used within the iterative optimization processes, this property 

has great value in the 1st stage reliability analysis, as up to 2000 support points are used for 

metamodeling purposes. Hence, the same large sample across 𝓢 is used for all support points.  

 

3.3.1 Risk optimization and reliability analysis validation 

 

This example relates to the continuous 6 span elastoplastic beam addressed in Beck et 

al. (2020). A uniform loading composed by dead load 𝐷𝑛 and live load 𝐿𝑛 acts over the spans, 

and the beam is subject to middle and external column loss scenarios (Figure 3.3). Cross-section 

is rectangular and constant along the length, with plastic modulus 𝑧𝑝, and all properties are 

assumed adimensional as in the reference. 

Figure 3.3 – Object of study for validation. 

 

Source: adapted from Beck et al. (2020). 

Figure 3.4 shows bending moment factors 𝑚 for each support loss scenario in terms of 

a unitary uniform load. If optimal design is satisfactory for the maximum bending moment 

factors 𝑚, then it also is for the remaining sections. Table 3.1 lists the uncertainty modeling. 
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Figure 3.4 – Greatest bending moment factors 𝑚 for each scenario. 

 

Source: adapted from Beck et al. (2020). 

 

Table 3.1 – Uncertainty modeling. 

Variable Mean (𝜇) COV (𝛿) Distribution 

Resisting plastic moment  

of steel beams (𝑍) - adimensional 
1.30 0.12 Normal 

Dead load (𝐷) 1.05 𝐷𝑛 0.10 Normal 

Arbitrary point in time live load (𝐿𝑎𝑝𝑡)  0.25 𝐿𝑛 0.55 Gamma 

50-year live load (𝐿50) 1.0 𝐿𝑛 0.25 Gumbel 

Source: Beck et al. (2020). 

Following the reference, design variable relates to the mean value of resisting plastic 

moment 𝜇𝑍, but in terms 𝜆𝑃𝐶 = 𝜇𝑍
∗/𝜇𝑍0, with 𝜇𝑍

∗  being the optimal mean value of 𝑍, and 

𝜇𝑍0 =1.30 the reference mean value of 𝑍 (Table 3.1). Thus, 𝜇𝑍0 = 1.3 corresponds to the 

reinforcement required to meet the guideline abnormal load condition 𝑅 ≥ 1.2𝐷𝑛 + 0.5𝐿𝑛, and 

design variable 𝜆𝑃𝐶 corresponds to the additional strengthening required. 

The objective function 𝐶𝑇𝐸 addresses construction cost 𝐶𝐶 and expected costs of failure 

for each scenario 𝐶𝐸𝐹|𝑁𝐿𝐶, 𝐶𝐸𝐹|𝐼𝐶𝐿, e 𝐶𝐸𝐹|𝐸𝐶𝐿, with 𝑁𝐿𝐶 being normal loading condition, 𝐼𝐶𝐿 

being internal column loss, and 𝐸𝐶𝐿 is external column loss. Construction cost 𝐶𝐶 is assumed 

equivalent to the beam resisting plastic moment, but non-dimensional in terms of 𝑅(𝜆𝑃𝐶 = 1): 

  

  𝐶𝐶 =
𝑅(𝜆𝑃𝐶)

𝑅(𝜆𝑃𝐶 = 1)
=

𝜆𝑃𝐶  𝑧𝑝 𝜇𝑍0

𝑧𝑝 𝜇𝑍0
= 𝜆𝑃𝐶 (3.4) 
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Expected cost of failure 𝐶𝐸𝐹 is given by failure cost 𝐶𝐹 multiplied by failure probability. 

Term 𝐶𝐹 is assumed equivalent to a reference construction cost (𝑅(𝜆𝑃𝐶 = 1)) multiplied by a 

cost factor 𝑘 above 1.0. According to the Joint Committee on Structural Safety (JCSS, 2001), 

risk analyzes are not necessary in situations where 𝑘 < 10. That said, 𝑘 = 20 was considered, 

slightly higher than that found by Marchand and Stevens (2015) for steel frames (≈ 16.7). 

Expected failure costs 𝐶𝐸𝐹 are made non-dimensional by dividing by R(𝜆𝑃𝐶 = 1): 

 

  𝐶𝐸𝐹 =
𝑘 𝑅(𝜆𝑃𝐶 = 1)𝑃𝑓

𝑅(𝜆𝑃𝐶 = 1)
= 𝑘 𝑃𝑓 (3.5) 

 

 𝑃𝑓 = {

 𝑃𝑓[𝑁𝐿𝐶]                for 𝑁𝐿𝐶

𝑃𝐼𝐶𝐿 𝑃𝑓[𝐼𝐶𝐿]         for 𝐼𝐶𝐿 

𝑃𝐸𝐶𝐿 𝑃𝑓[𝐸𝐶𝐿]       for 𝐸𝐶𝐿

 (3.6) 

 

where 𝑃𝑓[𝑁𝐿𝐶] is the failure probability of the intact beam, under normal loading condition; 

𝑃𝐼𝐶𝐿 and 𝑃𝐸𝐶𝐿 are probabilities of suddenly losing internal and external supports, respectively; 

and 𝑃𝑓[𝐼𝐶𝐿] and 𝑃𝑓[𝐸𝐶𝐿] are failure probabilities conditional to 𝐼𝐶𝐿 and 𝐸𝐶𝐿, respectively. 

Probabilities of sudden support removal are assumed equivalent (𝑃𝐼𝐶𝐿 = 𝑃𝐸𝐶𝐿 = 𝑃𝐶𝐿). 

According to Ellingwood (2006), column removal analysis is not necessary when the 

probability of the threat occurring  is less than 10−7/year. Considering a design life of 50 years, 

the lower limit 𝑃𝐶𝐿
𝑚𝑖𝑛 = 5 × 10−6 is obtained. At the upper limit, 𝑃𝐶𝐿

𝑚𝑎𝑥  = 1.0 is adopted. That 

said, total expected cost 𝐶𝑇𝐸 and optimization problem are given by: 

 

 
𝐶𝑇𝐸(𝑿, 𝜆𝑃𝐶) = 𝜆𝑃𝐶 + 𝑘 𝑃[𝑁𝐿𝐶(𝑿, 𝜆𝑃𝐶)] + 

+𝑘 𝑃𝐶𝐿 𝑃[𝐼𝐶𝐿(𝑿, 𝜆𝑃𝐶)] + 𝑘 𝑃𝐶𝐿 𝑃[𝐸𝐶𝐿(𝑿, 𝜆𝑃𝐶)] 
(3.7) 

 

 
find 𝜆𝑃𝐶

∗  

which minimizes 𝐶𝐸𝑇(𝑿, 𝜆𝑃𝐶) 
(3.8) 

 

As previously stated, FA is used to solve the RO problem and WASM is addressed for 

reliability analysis, as proposed by Okasha (2016). No metamodeling is employed in this 

validation, so WASM is used within each iterative optimization stage based on a sample of 70 

thousand points in 𝓢.  
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Yet, a new sample is created for each optimization run, no auxiliary extensive search 

is performed prior to optimization, and only 30 fireflies are adopted. Moreover,  𝛾𝐹𝐴 = 1 (slight 

light absorption), so fireflies convergence is slower; 𝛼𝐹𝐴 starting equal to 0.7, but decreasing 

to 0 as the iterative process advances (decreasing randomness).  Limit state functions are 

assumed linear in Gaussian random variables: 

 

 𝑔𝑁𝐿𝐶(𝝀𝑷𝑪, 𝑿) = 𝑧𝑝 𝑍 𝝀𝑷𝑪 − 𝑚𝑁𝐿𝐶(𝐷 + 𝐿50) (3.9) 

 𝑔𝐼𝐶𝐿(𝝀𝑷𝑪, 𝑿) = 𝑧𝑝 𝑍 𝝀𝑷𝑪 − 𝑚𝐼𝐶𝐿(𝐷 + 𝐿𝑎𝑝𝑡) (3.10) 

 𝑔𝐸𝐶𝐿(𝝀𝑷𝑪, 𝑿) = 𝑧𝑝 𝑍 𝝀𝑷𝑪 − 𝑚𝐸𝐶𝐿(𝐷 + 𝐿𝑎𝑝𝑡) (3.11) 

 

Figures 3.5, 3.6 and 3.7 show sampling results in terms of resisting and demand 

bending moments, indicating failure and survival domains. Figure 3.8 shows the convergence 

of 30 fireflies along the iterative process for 𝑃𝐶𝐿
𝑚𝑖𝑛. 

 

Figure 3.5 – Sampling results for 𝑁𝐿𝐶. 

 
Source: own authorship. 

Figure 3.6 – Sampling results for 𝐼𝐶𝐿. 

 
Source: own authorship. 
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Figure 3.7 – Sampling results for 𝐸𝐶𝐿. 

 

Source: own authorship. 

 

Figure 3.8 – Firefly convergence for 𝑃𝐿𝐷
𝑚𝑖𝑛. 

 

Source: own authorship. 

Considering 20 optimization runs for each 𝑃𝐶𝐿 value, the result shown in Figure 3.9 is 

obtained. For each 𝑃𝐶𝐿, all optimization runs converge to the same optimal. Yet, there is a slight 

variance in optimal designs due to a small number of sample points being used for WASM. For 

𝑃𝐶𝐿 equal to 0.017 and 0.020, two optimal designs are found at 𝜆𝑃𝐶
∗ = 0.5 and 𝜆𝑃𝐶

∗ = 0.8. 

Two optimal designs found for 𝑃𝐶𝐿 ≈ 0.02 indicate two local minima. Beck et al. 

(2020) show that for 𝑃𝐶𝐿 ≈ 0.02, 𝐶𝑇𝐸 has a flat behavior over a wide range of 𝜆𝑃𝐶 values. This 

indicates an equivalence between considering or not the removal of columns in the structural 

design. 
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Figure 3.9 – Optimal designs for each 𝑃𝐶𝐿. 

 

Source: own authorship. 

 

Beck et al. (2020) call 𝑃𝐶𝐿 ≈ 0.02 the Column Loss Probability Treshold 𝑃𝐶𝐿
𝑡ℎ, being 

the value above which there is positive cost-benefit in addressing APM design to mitigate 

progressive collapse. Figure 3.10 shows strong correspondence between the global optima of 

Beck et al. (2020) with those obtained via FA and WASM, confirming the framework accuracy 

and efficiency. 

Figure 3.10 – Optimal design validation. 

 

Source: own authorship, based on Beck et al. (2020). 
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3.4 STRUCTURAL ANALYSIS 

 

Nonlinear FEM modeling is used to realistically address progressive collapse behavior 

due to a sudden column loss. As mentioned in the previous Chapter, BA is used to obtain the 

static pushdown curve, and EEM is used to get a pseudo-static pushdown curve. This allows to 

address dynamic effects in a simple, yet effective, manner. Only 2-dimensional frames are 

investigated in Chapter 4, so modeling relates only to beam and column spans. 

Based on the mesh analysis made by Praxedes (2020), beam spans are discretized in 5 

fiber displacement-based Finite Elements (FE), being 3 FEs for the beam itself and 1 at each 

beam end to represent the joint region. This is shown to be an efficient approach in terms of 

minimal refinement level and agreement with experimental data, even though beam-column 

joints are not explicitly modeled. Thus, each FE has 3 Gauss-Lobatto integration points. In 

terms of column discretization, Section 3.4.2 justifies a single linear element being used. 

Corrotational transformation is used for all elements to account for large displacements 

due to geometrical nonlinearities. Cross-section layering consists of 200 fibers for confined 

concrete and 10 fibers for each face of unconfined concrete cover. This amount of fibers is used 

to avoid convergence issues along the entire set 𝓢, especially for greater values of beam depth.  

Static bay pushdown analysis is performed with a displacement-based integrator using 

Krylov-Newton method to solve the nonlinear problem (tolerance of 10
-5

). An initial increment 

size of 1 mm is adopted, but an adaptive algorithm is used to enhance or decrease the step 

depending on lack or need of convergence improvement, respectively.  

Two load steps are adopted for BA: a) nominal dead and live load are applied over the 

beam spans, also accounting for self-weight of all members on themselves; and b) if beam rebar 

rupture does not occur at the first stage (possible for weak beams), an increasing load is applied 

over the beam spans of interest until rebar rupture is verified. Parameters obtained as outputs 

include applied force, vertical drift, internal forces and rebar strains. 

Details related to material constitutive relationship are addressed in the introduction of 

each example of Chapter 4, as different models were adopted in the examples. In general, a 

nonlinear model that accounts for elastoplastic behavior is adopted for the rebars, and uniaxial 

models that allows to consider confinement effects, softening, tensile strength and unilateral 

behavior are chosen for concrete. Although stirrups cannot be explicitly modeled, their effects 

over concrete core ductility can be addressed if the concrete model meets the previous 

requirements, with the amount of core confinement given in terms of stirrup detailing, concrete 

strength, and cross section geometry for each sample point.  
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A self-made algorithm based on Coda and Paccola (2014) was initially adopted. This 

nonlinear FE algorithm followed a total-Lagrangian position-based formulation, considering 

two translations and one rotation as degrees of freedom (DOFs) for each node. Newton-

Raphson was used to find equilibrium at each loading step, and Arc-Length method was 

introduced to address instability stages. According to a mesh analysis, each RC beam was 

discretized into 14 FEs, which were layered 2D frame elements with fifth degree of 

approximation. A total of 20 layers with one integration point were used for transversal 

discretization, being 18 for concrete and one for each rebar layer.  

Although proven to be accurate, the lack of advanced parallelization techniques led to 

tall frames requiring up to 45 min to be analyzed, making it an unfeasible tool. Hence, it was 

only used for the RC beam example in Section 4.2, being then replaced by OpenSees. 

 

3.4.1 Structural analysis validation 

 

Following Praxedes (2020), some experimental tests are chosen for a brief validation 

of the structural analysis model: two RC beam subassemblages from Yu and Tan (2013), one 

RC beam-column subassemblage from Lew et al. (2014), and one RC frame from Yi et al. 

(2009). Table 3.2 depicts material and geometrical parameters of each structure. 

 

Table 3.2 – Input data for specimens used in model validation. 

Parameter 

RC beam  

non-seismic  

(Yu and Tan, 

2013) 

RC beam 

seismic  

(Yu and Tan, 

2013) 

Intermediate 

RC frame IMF 

(Lew et al. 

2014) 

RC frame  

(Yi et al. 2009) 

Beam span (m) 2.75 2.75 6.09 2.667 

Column span (m) - - 4.19 
1.567 (1st floor) 

1.100 (above) 

Beam depth (mm) 

× width (mm) 
250 × 150 250 × 150 508 × 712 200 × 100 

Column depth (mm) 

× width (mm) 
- - 712 × 712 200 × 200 

Concr. cover (mm) 20 20 50 25 

continues.     
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conclusion.     

Parameter 

RC beam  

non-seismic  

(Yu and Tan, 

2013) 

RC beam 

seismic  

(Yu and Tan, 

2013) 

Intermediate 

RC frame IMF 

(Lew et al. 

2014) 

RC frame  

(Yi et al. 2009) 

Top reinf. area 

(mm²) 
236 290 2027 226 

Bottom reinf. area 

(mm²) 
157 157 1289 226 

Column reinf. 

area (mm²) 
- - 7736 452 

𝑓𝑐
′ (MPa) 31.20 31.20 32.00 20.83 

𝑓𝑐𝑡𝑚 (MPa) 3.5 3.2 3.2 2.8 

𝐸𝐶 (GPa) 27.60 27.60 25.57 22.82 

𝑓𝑦 (MPa) 511 511 476 416 

𝐸𝑆 (GPa) 200 200 200 200 

𝜀𝑠𝑢 0.11 0.11 0.17 0.16 

Stirrup diam.(mm) 6 6 12.70 6 

Stirrup space (mm) 100 50 102 150 

Stirrup 𝑓𝑦𝑡 (MPa) 310 310 524 370 

Number of stirrup 

legs 
2 2 

2 in beams 

4 in columns 
2  

Source: based on Yu and Tan (2013), Lew et al. (2014), and Yi et al. (2009). 

 

As shown in Figure 3.11, the numerical force vs displacement curves show good 

agreement with experimental data for both the in-house FE algorithm based on Coda and 

Paccola (2014) and OpenSees, with slight discrepancies terms of CAA and CA stages. Both 

tools are appropriate in terms of structural modeling, but OpenSees is significantly faster. 

Member discretization is done as previously mentioned, and nonlinear constitutive 

models used for each case are:  

(a) in-house FE algorithm: 𝜇 Model (Mazars et al. 2015) for concrete, and bilinear 

elastoplastic model with isotropic hardening for rebars (Section 4.2); 

(b) opensees: ConcretewBeta for concrete, and ReinforcingSteel for rebars (both in the 

software library, with more details in Section 4.3 and Figure 4.17). 
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Figure 3.11 – Model validation for progressive collapse analysis. 

 

Source: own authorship. 

Pushdown curves in Figure 3.11 closely match the experimental behavior for RC 

beams and RC frames for both structural analysis models, revealing the efficiency of the 

discretization approach and constitutive models for concrete and longitudinal rebars. As 

mentioned in Section 1.4, rebar debonding and member separation is not addressed in the 

analyses, justifying the continuity of the numerical pushdown curves while the experimental 

results show breaks due to localized fractures in rebars, stirrups, and concrete. Yet, estimation 

of structural capacity at CAA and CA is accurate enough for the purposes in this research, and 

fast enough to allow multiple structural analyses for each sample point of a large sample over 

𝓢 i.e. several analyses for each column loss scenario of a given structure. 

3.4.2 Commentary on column discretization 

Material nonlinear behavior is not addressed in column discretization to avoid sudden 

breaks in the pushdown curve. These disruptions are most common when addressing tall 

frames, but even for lower frames it can happen if columns are too weak. While the column 

rebars are not explicitly modeled in the linear discretization, they are accounted for when 

calculating the column's resistance envelope for each sample point. 



65 

 

Compressive rebar yielding, often related to column buckling, is the sole reason behind 

this tricky behavior. Tensile column rebar yielding also has an impact in the pushdown curve, 

but not as severe, especially in frame regions where columns are related to low axial forces. 

To investigate this behavior, the primary RC frame from Scalvenzi et al. (2022) is used 

as reference (Figure 3.12). This structure was designed to gravity loads in accordance with EC2 

1-1 (CEN, 2004), being representative of low-rise modern European RC buildings not 

strengthened against seismic activities. The RC frame is made of C20/25 concrete and B450C 

rebars, and 𝐷𝑛 = 3 kN/m² and 𝐿𝑛 = 2 kN/m² represent dead and live loads, respectively. 

 

Figure 3.12 – Case-study structure. 

 

Source: adapted from Scalvenzi et al. (2022). 
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Only penultimate column loss is addressed. Figure 3.13 show a sensitivity analysis in 

terms of the beam depth ℎ𝐵, ranging from 300 mm (weak beam, square cross-section) to 600 

mm (strong beam), with “weak” and “strong” referring to its flexural capacity. Besides, two 

discretization approaches are used for the columns: (a) nonlinear columns discretized exactly 

as the beams (5FEs); and (b) linear columns discretized with a single FE. 

Figure 3.13 shows that overall structural response is almost identical for both column 

modeling approaches before they reach their plastic capacity.  

 

Figure 3.13 – Structural behavior in terms of beam depth and column capacity. 

 

Source: own authorship. 

Figure 3.13 illustrates a consistent column behavior in VA, with negative moments 

related to columns being pushed outwards (CAA) and positive moments referring to columns 

being pulled inwards (CA). Weaker beams have CA mobilized for smaller loadings, leading to 

severe bending moments in the adjacent columns. When force vs moment demand reaches the 

resisting column envelope for nonlinear column modeling, the cross-section enters a plastic 

stage. In the analysis shown in Figure 3.13, column rebar yielding happens in tension, so no 

sudden breaks are observed in the pushdown curve. Yet, the ricochet behavior observed in force 

vs bending diagrams is already enough to compromise surrogate efficacy.  

Thus, column yielding in tension compromises the adjacent column's ability to provide 

sufficient lateral restraint, hindering the double-span beams from fully developing their 

resisting mechanisms, particularly catenary action. This relates to curve 2 in the illustrative 

pushdown curve of Figure 2.2. 
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Column yielding in tension was also shown to be common in frame regions related to 

lower axial forces, as depicted in the yield maps of Figure 3.14. However, these column sections 

entering a plastic phase have shown small influence over the pushdown behavior and over the 

most critical components of the VA subsystem.  

 

Figure 3.14 – Typical mild column yielding locations.  

 

Source: own authorship. 

 

However, when column rebar yielding happens in compression, the entire response 

becomes discontinuous, severely compromising further surrogate techniques. Even 30 thousand 

support points explicitly addressing column failure were not enough to ensure metamodeling 

effectiveness when columns are prone to compressive yielding and/or column buckling. 

As structural disruptions are inherently related to material behavior, even the simplest 

nonlinear material models led to the aforementioned issues. Therefore, the most efficient 

solution found is to assume one linear FE for columns in structural analysis. This approach still 

ensures a realistic evolution of axial forces and bending moments until the resisting envelope 

of the column is reached (Figure 3.13). 

This simplified approach allows the internal forces to go beyond the cross section 

resisting envelope, without a sudden force redistribution. Besides, this allows to estimate the 

frame load capacity at CA even though premature column failure may have happened, ensuring 

the needed smooth behavior across 𝓢 and 𝓓 to enable both metamodeling stages.  

The estimated pushdown curve may differ from the realistic behavior if a premature 

column failure is prone to occur. This, however, is not an issue for the risk-based framework. 

Figure 3.13 shows that column internal forces are realistically addressed until their respective 

resisting limit is reached.  
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Hence, as long as the internal forces are within these limits, the pushdown curve is 

realistic. Besides, when addressing expected costs of failure, premature failures have greater 

penalization factors when compared to ductile beam failure at CA. Hence, optimal risk-based 

design solutions are expected not to be prone to premature failure modes. Results in Chapter 4 

confirm this. 

The issues caused by compressive column rebar yielding were first noticed when 

investigating the taller frames of Section 4.4. Hence, the same structure from Scalvenzi et al. 

(2022) is addressed, but now with 20 stories. When addressing the same material and geometric 

parameters of the reference, Figure 3.15 shows that pushdown behavior is prematurely 

interrupted due to compressive yielding in both rebars located in the foot of the outermost 

adjacent column. The pushdown curve suddenly drops and then it increases again, leading to 

an ultimate beam capacity equivalent to the ultimate loading prior to the disruption. As shown 

in Figure 3.16, this is inherently related to plastic rebar behavior. 

 

Figure 3.15 – Compressive rebar yielding in a frame with strong columns and respective static 

pushdown curve. 

 

Source: own authorship. 
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Figure 3.16 – Rebar strains in the critical column at the instant of pushdown break.  

 

Source: own authorship. 

 

The “break” in the pushdown curve coincides with the instant where both rebar layers 

reach compressive yielding (around a vertical drift of 200 mm). The pushdown curve 

“recovery” coincides with compressive strains in the outer-most rebar layer reaching values 

above 𝜀𝑠ℎ (adopted as 0.03), characterizing the hardening rebar phase.  

Small load steps were needed after to accurately depict the buckling behavior 

(Baumgardt et al. 2023). Pushdown curves in Figures 3.15 and 3.17 show results for greater 

overall refinement level (continuous black lines) and greater refinement only for the critical 

frame regions (red dotted lines).  

Figure 3.17 shows that weak column configurations (exaggerated low depth and width 

of 250 mm) have a severely worst behavior. Not only the adjacent columns are affected, but 

several other column spans in the vicinity also sustain buckling. Ultimate beam capacity is 

significantly below the peak capacity prior to the instability in pushdown behavior, and axial 

forces originally transmitted to the adjacent columns are redistributed to other columns. 

Several attempts were made to enable metamodeling while realistically addressing the 

pushdown instability due to column compressive yielding. The breaks related to these events 

are not caused by mistakes in structural analysis, but due to intrinsic material properties. Hence, 

in an idealized scenario, it would be convenient to address this. Yet, only linear column 

modeling was found to allow further surrogate usage.  

As previously stated, column internal forces realistically increase until their respective 

resisting envelope is reached, and structural configurations related to premature column failure 

(expected demands beyond resisting limits) are greatly penalized in RO. Hence, optimal risk-

based design solutions are expected to not be prone to premature column failure. 
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Figure 3.17 – Pushdown curve with column buckling. 

 

Source: own authorship. 

  

3.5 METAMODELING STRATEGIES 

 

If not for metamodeling, this research would not have been possible. Since a large 

sample is needed to ensure good 𝑃𝑓 estimates via WASM, especially when random design 

variables with low uncertainty are addressed, simplified models based on support points 

accurately analyzed were shown to be key-factors in this framework.  

Kriging was the first metamodeling technique to be addressed. It considers that a 

complex model of interest can be approximated by a stochastic process (Kroetz et al. 2020): 

 

 𝑌̃(𝒙) = 𝑓(𝒙)𝑇 𝑨 + 𝑍(𝒙) (3.11) 

 

where the first term relates to a deterministic mean value function and the second term is a 

Gaussian process with a constant mean equal to zero;  𝑓(𝒙), in this work, is a basis of 

polynomial functions; and 𝑨 is a vector of coefficients associated to correlations between 

responses at different support points: 

 

 𝑨 = (𝑭𝑇 𝑹−1 𝑭)−1 𝑭𝑇 𝑹−1 𝑩 (3.12) 
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where 𝑩 is the vector with the original responses of the high-fidelity model in the support 

points; 𝑹 is the correlation matrix between pairs of support points; 𝑭 is the regression matrix 

with the basis functions evaluated at the support points. The terms 𝑅𝑗𝑘 in the correlation matrix 

are obtained, in this work, by:  

 

 𝑅𝑗𝑘(𝑥𝑗 − 𝑥𝑘, 𝜃) = Π𝑖=1
𝑛 exp (−𝜃𝑖 𝑑𝑖

2) (3.13) 

 

with 𝑑𝑖 being the distance between support points in the 𝑖 direction, and 𝜽 the hyperparameter 

vector that defines the correlation length of the stochastic field 𝑌̃(𝒙). Both correlation matrix 

and coefficient vector 𝑨 depend on 𝜽. In this work, the hyperparameter vector is defined based 

on the minimization of the Maximum Likelihood Function in Dubourg (2011). As in RO, FA 

is also used for this purpose: 

 

 𝜽 = arg min
θ⃗⃗ ∈nθ

ℒ(𝜽) = 𝜎𝑍
2(𝜽) |𝑹(𝜽)|1/𝑛 (3.14) 

 

where the stochastic field variance 𝜎𝑍
2 is given by: 

 

 
𝜎𝑍

2 =
1

𝑛𝑠𝑢𝑝
 (𝑩 − 𝑭𝑨)𝑇 𝑹−1 (𝑩 − 𝑭𝑨) 

(3.15) 

 

Given the hyperparameter vector θ, the coefficient vector 𝑨 and stochastic field 

variance 𝜎𝑍
2, it is possible to estimate the high-fidelity model response by: 

 

 𝑍(𝒙) = 𝑟(𝒙)𝑇 𝑹−1 (𝑩 − 𝑭𝑨) (3.16) 

 

where 𝑟(𝒙) is a vector containing the correlation between the model response at point 𝒙 and the 

responses in the support points. 

One of the main advantages of kriging, in relation to other metamodeling techniques, 

such as neural networks and polynomial chaos expansions, is knowing the model variance at 

any point in the domain. This allows support point adaptability in regions of greater variance: 

 

 𝜎2(𝒙) = 𝜎𝑍
2[1 − 𝑟𝑇(𝒙) 𝑹−1 𝒓(𝒙) + 𝒖𝑇(𝒙) (𝑭𝑇 𝑹−1 𝑭)−1 𝒖(𝒙)] (3.17) 
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with 𝒖(𝒙) = 𝑭𝑇 𝑹−1𝒓(𝒙) − 𝑓(𝒙). Thus, kriging recovers the high-fidelity response at the 

support points (Beck, 2019; Kroetz, 2018; 2019; Kim and Boukouvala, 2020). 

In this thesis, more specifically for continuous RC beams, kriging is used to estimate 

structural behavior and reliability indexes for larger samples based on a relatively small number 

of support points, always following the maximum local variances 𝜎2(𝒙) to ensure that no region 

of the domain is lacking support points.  

Kriging was shown to be a key-feature when addressing risk-based optimization of RC 

beams. However, it became too slow and complex when advancing to planar RC frame analysis. 

Since more outputs need to be estimated, the number of 𝑹 matrix inversions, hyperparameter 

calibrations and overall matrix operations were greatly increased. 

Hence, Inverse Distance Weighting (IDW) was chosen to address the compromise 

between computational burden and accurate enough estimations when dealing with frames. It 

is not as accurate as kriging, but it is significantly faster and accurate enough in terms of the 

objectives of this work. As shown in Figure 3.18, IDW consists on estimating the behavior in 

given sample point in terms of the known answer in its closest support points by means of 

weighted average estimation (Shepard, 1968). 

This technique is commonly used to map surfaces in several applied areas, such as 

geoprocessing (Figure 3.18), environmental modeling (air quality, temperature, rainfall), soil 

mapping, and others. Its formulation closely resembles the 𝑃𝑓 estimation via WASM (Eq. 3.3), 

with weights given in terms of the inverse of the distance between points, and the known 

answers being used instead of an index function. Unlike kriging, IDW does not have a 

formulation that allows estimating the error and dispersion of estimates in any region of the 

domain. Its advantage is its low computational cost. This is the simplest efficient approach 

found, with its simplicity compensating its significant reduction in the computational burden. 

 

Figure 3.18 – IDW concept 

 

Source: ArcGIS Pro (2024). 
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In order to briefly address the efficiency of both metamodeling techniques, Figure 3.19 

shows dispersion curves in terms of ultimate beam capacity for a small RC frame under middle 

and external column loss scenarios. A total of 1000 support points are analyzed via FEM in 

terms of changing values of beam depth, column size (square cross-section), beam 

reinforcement and column reinforcement. Then, 70 new sample points are estimated via FEM, 

kriging and IDW to build the dispersion curves. In this short example, only the 10 closest 

support points are used for IDW estimation. 

As expected, kriging shows better accuracy than IDW, but overall results can be 

improved by using more support points. Hence, RC frame examples in Chapter 4 uses 2000 

support points, and IDW is done considering all support points with non-dimensional weight 

greater than 0.1, leading to roughly 20 to 30 support points for each estimation. 

More accurate surrogate approaches, such as Artificial Neural Networks or Adaptive 

Kriging, could have been used at least in the 2nd metamodeling stage to address 𝑃𝑓 in RO 

(Gomes and Beck, 2013; Kroetz, 2019). However, as previously mentioned, the simplicity and 

faster computational time of IDW were deemed appropriate for the scope of this work and the 

large number of parameters requiring simultaneous estimation. Besides, there is no need for 

estimating probabilities of failure below 10−5 with great accuracy due to related expected costs 

of failure becoming negligible past this point. 

 

Figure 3.19 – Brief metamodeling comparison. 

 
Source: own authorship. 
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3.6 FRAMEWORK LIMITATIONS AND CHALLENGES 

 

The developed framework comprises a series of complex, sequential steps, where 

errors from early stages propagate and amplify through subsequent stages, resulting in a 

magnified final error. Nonetheless, as demonstrated in the validation examples, the framework 

achieved strong alignment between experimental and numerical results for structural analysis, 

as well as for risk optimization combined with reliability analysis.  

The greatest challenge in implementing the framework lies in managing the 

computational burden associated with linking all sequential steps effectively. The later 

examples in Chapter 4 adopt strategies in structural analysis and surrogate modeling that 

prioritize time efficiency while maintaining the necessary accuracy and precision of estimates. 

Furthermore, the precision of small failure probability estimates due to WASM is less critical, 

as the corresponding expected failure cost will naturally approach zero in the optimization 

stage, ensuring minimal impact on overall results. 

For surrogate modeling, kriging displayed the lowest error, requiring fewer support 

points to maintain accuracy, whereas IDW demanded more support points to achieve 

comparable error levels, albeit with a faster computation speed. Potential strategies to further 

reduce error in future research include adaptive kriging with optimized learning functions 

(Kroetz, 2019), advanced parallelization methods, and Latin hypercube sampling with iterative 

adjustments to improve sample uniformity (Sheikholeslami and Razavi, 2017). 

Thus, each example in Chapter 4 presents slight adaptations from the general 

framework, which serves as an overarching methodology. The first example, due to its 

simplicity, omits the metamodeling stages. In contrast, the second example incorporates 

ordinary kriging as a surrogate, while the third and fourth examples employ IDW to meet the 

requirements of more complex scenarios.  

The second example utilizes a self-developed finite element (FE) algorithm; however, 

due to the code’s limited parallelization and optimization, OpenSees was selected for the third 

and fourth examples to facilitate faster analysis of full reinforced concrete (RC) frames. While 

the examples from the second to fourth follow the general framework steps, they feature minor 

variations in the specific techniques applied for structural and reliability analysis. 
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4 RESULTS 

 

Progressive collapse is a complex mechanism of cascading failures triggered by an 

initial local damage. Large displacements are expected, materials are stressed to their limits, 

and all members of the structural system may act together both in the resisting mechanism and 

in promoting collapse propagation. For instance, beam and column spans above and adjacent 

to a missing column create a Vierendeel Action mechanism that is essential in the frame load-

bearing capacity. Even infill walls have been found to contribute in the frame load-carrying 

capacity. Yet, excessive horizontal forces in adjacent columns, which are transmitted by the 

double span beams in Catenary Action above a lost column, may trigger a zipper –type 

progressive collapse, or even domino-type, causing a greater final damaged extent.  

Due to its natural complexity and the number of distinctive contributions provided by 

structural and nonstructural factors, results in this work are shown following an increasing 

amount of complexity in terms of progressive collapse simulation. This promotes the 

comprehension on how each random variable, modelling strategy, column loss scenario and 

systemic behavior intricacies influence over the optimal risk-based design, thus allowing a clear 

presentation for each factor. 

Following Beck et al. (2020), the risk-based optimization consists on minimizing the 

total expected costs 𝐶𝑇𝐸, given in Eq. 4.1, for all studied cases. 

 

 𝐶𝑇𝐸(𝒅) = 𝐶𝑀(𝒅) + ∑𝐶𝑒𝑓,𝑖(𝑿, 𝒅)

𝑁𝐼𝐹

𝑖=1

+ ∑ ∑ 𝐶𝑒𝑓,𝑘𝑗(𝑿, 𝒅, 𝑃𝐿𝐷𝑘
)

𝑁𝐶𝐿𝐹

𝑗=1

𝑁𝐶𝐿

𝑘=1

 (4.1) 

 

where 𝐶𝑀 is the construction cost; 𝐶𝑒𝑓 is the expected cost of failure; NIF and NCLF represent 

the number of failure modes for intact and each column loss scenario, respectively; and 𝑁𝐶𝐿 

stands for the number of column loss scenarios. Vector 𝑿 relates to the random variables, while 

vector 𝒅 corresponds to the mean value to be optimized for each random design variable.  

As mentioned in section 3.1, the possibility of sudden column loss is addressed by the 

probability of local damage 𝑃𝐿𝐷 = 𝑃[𝐿𝐷|𝐻]𝑃[𝐻]. This term allows to consider progressive 

collapse analysis independent of a series of subjective factors that could make a building prone 

to one or more kind of hazards.  
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Hence, for each example 𝑃𝐿𝐷 increases from a very small value up to a large value, 

ensuring that risk-based optimal designs encompass scenarios where progressive collapse may 

be neglected, scenarios where it is too relevant to be ignored, and intermediate situations.  

In real life situations the main interest is to define if a building needs to be strengthened 

against collapse propagation. Threshold values of 𝑃𝐿𝐷 define when the strengthening cost 

against progressive collapse compensates the reduction of expected costs of failure. Hence, the 

decision to reinforce a particular building should take into account if 𝑃[𝐿𝐷|𝐻]𝑃[𝐻] is above or 

below the threshold 𝑃𝐿𝐷
𝑡ℎ , and this relies on a meticulous risk assessment that is out of the scope 

of this study. In this work, the reader must be aware that the objective is not to define if the 

studied structures must be strengthened against progressive collapse, but to comprehend how 

this LPHC event affects the optimal configuration of reinforced concrete frame structures. 

 

4.1 RC BEAM SUBASSEMBLAGE – ANALYTICAL APPROACH 

 

The first example deals with a double span RC beam subassemblage subjected to 

middle column loss, with progressive collapse being treated considering structural linear 

analysis. This allows an initial and basic comprehension on how the optimal reinforcement 

changes when the local damage probability changes from a negligible value to a significant 

figure.  

Results in this subsection are based on the conference paper by Ribeiro and Beck 

(2020), but updated accordingly to the feedback given in the event. In this manuscript, this and 

all further examples uses Firefly Algorithm to solve the optimization problem since it is simpler, 

consolidated in the literature, suitable for highly nonlinear objective functions and do not rely 

on gradient quantification for the limit states. 

Figure 4.1 illustrates the study object of this example, which is a RC beam 

subassemblage tested by Yu and Tan (2013) extracted from a perimeter RC frame. Each beam 

span has 6.00 m, rectangular cross section with depth of 500 mm and width of 300 mm, concrete 

strength 𝑓𝑐
′ of 32 MPa, and concrete cover of 40 mm.  

Columns have length of 4 m at the first floor and 3.3 m at upper floors, squared cross 

sections of 500×500 mm2, and were assumed to provide great lateral stiffness for the beams 

tested experimentally. This justified considering just the RC beam subassemblage in the 

reference paper, and the same is done in this example and the next one. The impact of this 

simplification is addressed in Section 4.5.  
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Following Yu and Tan (2013), a design dead load of 7.1 kN/m² and design live load 

of 4.8 kN/m² are considered. One-way floor systems lead to a nominal dead load 𝐷𝑛 = 23.3 

kN/m and live load 𝐿𝑛 = 14.4 kN/m on the beams. The lost column is located at the first floor 

of a perimeter frame, in the middle of the continuous RC beam.  

The reference beam is designed in accordance with ACI 318-05 (ACI, 2005) for both 

seismic and non-seismic detailing. Yu and Tan (2013) show the stirrup detailing for 50% scaled 

specimens, with Ф6 @100 mm (stirrups with 6 mm of diameter spaced by 100 mm) for non-

seismic design and Ф6 @50 mm for seismic design. Considering the same transverse 

reinforcement ratio  𝜌𝑠𝑡 for the full-scale structure leads to Ф10 @130 mm for non-seismic 

design (𝜌𝑠𝑡 ≈ 0.39%) and Ф10 @70 mm for seismic design (𝜌𝑠𝑡 ≈ 0.77%). Both designs have 

beam depth of 500 mm and stirrups with equal diameter, with differences relying on the 

longitudinal reinforcement ratio and stirrup spacing.  

 

Figure 4.1 – Location of the reference RC beam (a and b) and structural model adopted for 

both scenarios (c and d), showing loadings, constraints, shear and bending diagrams. 

 

Source: adapted from Yu and Tan (2013). 
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 The risk optimization problem is based on the formulation proposed by Beck et al. 

(2020), with total expected cost 𝐶𝑇𝐸 given in Eq. 4.1 adapted for this problem: 

 

 
𝐶𝑇𝐸(𝒅) = 𝐶𝑀 + ∑𝑘𝑖𝑃𝑓𝑖𝐶𝑀

𝑁𝐼𝐹

𝑖=1

+ 𝑃𝐿𝐷 ∑ 𝑘𝑗𝑃𝑓𝑗𝐶𝑀

𝑁𝐶𝐿𝐹

𝑗=1

 

 

(4.2) 

For both scenarios, ultimate failure modes of beam bending and shear are addressed. 

Construction cost 𝐶𝑀 is given in terms of (𝒅), while the probabilities of failure in Eq. (4.2) are 

functions of (𝑿, 𝒅), but this is omitted for notation convenience.  

The design parameters to be optimized are the top and bottom longitudinal rebar areas 

(𝐴𝐵 and 𝐴𝑇) and stirrup spacing (𝑠𝑡). Two cases of transversal reinforcement are addressed: 2- 

and 3-legged stirrup across the beam depth. Random design variables with low uncertainty are 

assumed in order to allow WASM for reliability analysis, so 𝒅 = {𝐴𝐵, 𝐴𝑇 , 𝑠𝑡} is the mean value 

of a random variable in vector 𝑿.  

Brazilian SINAPI database is adopted to estimate 𝐶𝑀 in Brazilian Reais (R$), where 

unencumbered costs for São Paulo regarding the period of April 2024 are considered. Later, 𝐶𝑀 

is converted to Euros (€) at a rate of € 1.00 equal to R$ 5.28 (as of April 9, 2024).  

In this example, 𝐶𝑀 is composed by cost of formwork, concrete and steel rebars, as 

well as corresponding workmanship. The cost-benefit analysis is done by solving the 

optimization problem given by: 

 

 

                                               find 𝒅∗ 

                  which minimizes 𝐶𝑇𝐸(𝒅) 

                                        subject to 𝒅 ∈ 𝓓 

 

(4.3) 

where 𝓓 is a matrix of side constraints, and Eq. (4.3) is solved via firefly algorithm. The 

uncertainties considered in this example are shown in Table 4.1, and ultimate limit state 

functions are shown in Table 4.2. 
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Table 4.1. Uncertainty modeling. 

Source: Ellingwood and Galambos (1982), JCSS (2001), Real, Campos Filho and Maestrini (2003), Wisniewski 

et al. (2012), Santiago (2018), Santiago and Beck (2018), Parisi et al. (2018), Costa and Beck (2024a; 2024b). 

 

 

 

 

 

 

Category RV Distribution Mean 
Standard 

deviation 

Coefficient 

of variation 

 

Geometry 

Beam depth 

(ℎ) 
Normal 500 mm 1 mm - 

 

Bottom rebar area 

(𝐴𝐵) 
Normal 

To be 

optimized* 

- 0.05 
 

Top rebar area 

(𝐴𝑇) 
Normal 

To be 

optimized* 

- 0.05 
 

Stirrup spacing 

(𝑠𝑡) 
Normal 

To be 

optimized* 
- 

0.05 

(assumed) 

 

Material 

Concrete 

compressive 

strength 

(𝑓𝑐
′) 

Lognormal 32 MPa - 0.12 

 

Rebar yield 

strength 

(𝑓𝑦) 

Normal 510 MPa - 0.05 

 

Loads 

Dead load 

(𝐷) 
Normal 1.05𝐷𝑛 - 0.10 

 

50-year live load 

(𝐿50) 
Gumbel 1.00𝐿𝑛 - 0.25 

 

Arbitrary point in 

time live load 

(𝐿𝑎𝑝𝑡) 

Gamma 0.25𝐿𝑛 - 0.55 
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Table 4.2. Failure mode assessment. 

Scenario Failure mode Cost factor 𝑘 Limit state function 

Intact 

structure 

(𝐼) 

Bending failure at the 

beam midspan 
30 𝑔𝐼,𝐵𝑀(𝒙) = 𝑀𝑅𝑀 −

𝑞𝑁𝐿𝐶𝐿
2

24
 

Bending failure at the 

beam ends 
30 𝑔𝐼,𝐵𝐸(𝒙) = 𝑀𝑅𝐸 −

𝑞𝑁𝐿𝐶𝐿
2

12
 

Shear failure 60 𝑔𝐼,𝑆𝐻(𝒙) = 𝑉𝑅 −
𝑞𝑁𝐿𝐶𝐿

2
 

Column 

loss 

(𝐶𝐿) 

Bending failure at the 

beam midspan 
50 𝑔𝐶𝐿,𝐵𝑀(𝒙) = 𝑀𝑅𝑀 −

𝑞𝐶𝐿𝑆(2𝐿)
2

24
 

Bending failure at the 

beam ends 
50 𝑔𝐶𝐿,𝐵𝐸(𝒙) = 𝑀𝑅𝐸 −

𝑞𝐶𝐿𝑆(2𝐿)
2

12
 

Shear failure 80 𝑔𝐶𝐿,𝑆𝐻(𝒙) = 𝑉𝑅 −
𝑞𝐶𝐿𝑆(2𝐿)

2
 

Source: own authorship. 

 

where 𝑀𝑅𝑀 is the resisting midspan bending moment; 𝑀𝑅𝐸 is the resisting bending moment at 

the beam ends; and 𝑉𝑅 is the shear strength.  

All resistance terms are obtained according to ACI 318-19 (ACI, 2019), and demand 

terms in Table 4.2 are obtained for each sample point following shear and bending diagrams 

shown in Figure 4.1. Each scenario has its own loading condition, with 𝑞𝑁𝐿𝐶 = ℎ𝐵𝑏𝛾𝑐 + 𝐷 +

𝐿50 for the Normal Load Condition (𝑁𝐿𝐶) of a intact structure, and 𝑞𝐶𝐿𝑆 = ℎ𝐵𝑏𝛾𝑐 + 𝐷 + 𝐿𝑎𝑝𝑡 

for Column Loss Scenario (𝐶𝐿𝑆). No Dynamic Amplification Factor is adopted for 𝐶𝐿𝑆 in this 

initial approach. 

 

4.1.1 Optimal design solutions 

 

Figure 4.2 depicts the behavior of each optimal design variable for increasing values 

of column loss probabilities 𝑃𝐿𝐷. For each 𝑃𝐿𝐷, a total of 10 optimization runs are performed, 

each one with 40 fireflies, 100 iterations, and an initial iteration of 10000 fireflies to provide a 

fast auxiliary extensive search over 𝓓. In the following depiction, superscript (∙)∗ represents 

the optimal value of the given design variable. 
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Figure 4.2 - Optimal design for each 𝑃𝐿𝐷 and corresponding total expected cost 𝐶𝑇𝐸. 

 

Source: own authorship. 

Optimal design solutions show small variability for all values of 𝑃𝐿𝐷, revealing an 

effective calibration of the optimization algorithm parameters and the effectiveness of 

combining it to an auxiliary extensive search. Optimal results for 𝐴𝐵 and 𝐴𝑇 are identical for 

both cases of stirrup detailing, justifying they being shown just once in Figure 4.2. 

Multiple optimal configurations are observed for each stirrup configuration: at 𝑃𝐿𝐷 ≈

1.5 × 10−3 for 2-legged stirrups, and at 𝑃𝐿𝐷 ≈ 1.35 × 10−2 for 3-legged stirrups. The optimal 

design remains constant until these threshold 𝑃𝐿𝐷
𝑡ℎ  values are reached, but then two local optimal 

solutions are found at them: one identical to those previously found, and a strengthened new 

one. Beyond these values, the total reinforcement increases as 𝑃𝐿𝐷 rises.  

This characterizes a transition in optimal design behavior, reflecting stages of 

negligible and significant threat of column loss before and after threshold, respectively. In the 

1st stage the optimal configuration is controlled by the normal loading condition (𝑁𝐿𝐶), hence 

a typical design for intact structure is obtained. Larger values of 𝑃𝐿𝐷 above threshold 

characterize the 2nd stage, with optimal designs adapting to resist progressive collapse threats.  
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Optimal results with an equivalent real-life detailing and reinforcement ratios are 

shown in Table 4.3. Figure 4.3 shows the evolution of manufacturing cost (𝐶𝑀) and total 

expected cost (𝐶𝑇𝐸) with 𝑃𝐿𝐷. Figure 4.4 shows the evolution of the optimal conditional 

reliability indexes 𝛽∗ with 𝑃𝐿𝐷 for the different 𝑁𝐿𝐶 and 𝐶𝐿𝑆 failure modes. Figure 4.5 shows 

how the expected costs of each failure mode (𝐶𝑒𝑓) behaves as 𝑃𝐿𝐷 increases.  

 

Table 4.3. Optimal reinforcement ratios. 

Design 

variable 

2 legged stirrups 3 legged stirrups 

1st stage Transition 2nd stage 1st stage Transition 2nd stage 

𝐴𝐵
∗  

(mm²) 

465 

(~3Φ14) 

465 

(~3Φ14) 

1645 

(~3Φ27) 

465 

(~3Φ14) 

1492 

(~3Φ25) 

1763 

(~3Φ27) 

𝜌𝐵 (%) 0.31 0.31 1.10 0.31 0.99 1.18 

𝐴𝑇
∗  

(mm²) 

961 

(~3Φ20) 

961 

(~3Φ20) 

4194 

(~5Φ32) 

961 

(~3Φ20) 

3400 

(~5Φ29) 

3965 

(~5Φ32) 

𝜌𝑇 (%) 0.64 0.64 2.80 0.64 2.27 2.64 

𝑠𝑡
∗ (mm) 200 125 94 200 145 126 

𝜌𝑠𝑡 (%) 0.17 0.26 0.36 0.25 0.35 0.40 

Source: own authorship. 

Figure 4.3 - Behavior of manufacturing cost 𝐶𝑀 and total expected cost 𝐶𝑇𝐸 with 𝑃𝐿𝐷. 

 

Source: own authorship. 
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Figure 4.4 - Behavior of each conditional 𝛽∗ with 𝑃𝐿𝐷. 

 

Source: own authorship. 

Figure 4.5 - Behavior of each 𝐶𝑒𝑓
∗  with 𝑃𝐿𝐷. 

 

Source: own authorship. 
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The transitions identified in Figure 4.2 and the reinforcement increase beyond 𝑃𝐿𝐷
𝑡ℎ  rely 

on the balance between manufacturing costs and expect costs of failure. Both optimal values at 

𝑃𝐿𝐷
𝑡ℎ  for 2-legged stirrups have identical total 𝐶𝑇𝐸

∗  although their 𝐶𝑀
∗  are different due to the 

increased transversal reinforcement in the 2nd optimal. For the 3-legged stirrups the 

discrepancy between each 𝐶𝑀
∗  is significantly greater due to both longitudinal and transversal 

reinforcements being increased. Although 𝐶𝑀
∗  being distinct for each optimal at 𝑃𝐿𝐷

𝑡ℎ , 𝐶𝑇𝐸
∗  is 

identical at both due to a similar balance between economy and safety for both solutions. 

At 𝑃𝐿𝐷
𝑡ℎ , the optimal related to 𝑁𝐿𝐶 has less 𝐶𝑀

∗  but greater ∑𝐶𝑒𝑓
∗ , while the optimal 

related to 𝐶𝐿𝑆 has greater 𝐶𝑀
∗  but reduced ∑𝐶𝑒𝑓

∗  (Figures 4.3 and 4.5). Nevertheless, their 

balance between 𝐶𝑀
∗  and  ∑𝐶𝑒𝑓

∗  is identical at 𝑃𝐿𝐷
𝑡ℎ , revealing an indifferent cost-benefit in 

reinforcing the structure to ensure load-bearing capacity in 𝐶𝐿𝑆. Hence, for 𝑃𝐿𝐷 < 𝑃𝐿𝐷
𝑡ℎ  

strengthening the structure against progressive collapse leads to an increased 𝐶𝑀 without 

beneficial reduction in ∑𝐶𝑒𝑓, so the optimal design for 𝑁𝐿𝐶 has better cost-benefit. However, 

for 𝑃𝐿𝐷 > 𝑃𝐿𝐷
𝑡ℎ  strengthening against column loss pays off, with strengthening costs smaller than 

the reduction in expected costs of failure. 

Figure 4.4 and 4.5 outlines that the most critical failure modes under 𝑁𝐿𝐶 are bending 

at the beam ends (BE) and at the midspan (BM) for both 2- and 3-legged stirrups. Under 𝐶𝐿𝑆, 

bending failures are still critical, but collapse from a lacking shear resistance (SH) becomes 

much more significant, especially for the 2-legged stirrup detailing.  

Although both stirrup cases allows minimal transverse reinforcement for 𝑁𝐿𝐶 

(ϕ8 @200), Figure 4.4 shows that shear capacity is greater for 3-legged stirrups due to its greater 

initial 𝜌𝑠𝑡
∗  (𝛽𝐼,𝑆𝐻

∗ ≈ 5.8 for 2 legs and 𝛽𝐼,𝑆𝐻
∗ ≈ 8.0 for 3 legs). To ensure similar 𝜌𝑠𝑡

∗  for both cases 

at the 1st stage, 𝑠𝑡 should be equal to 296 mm for the 3-legged option. The smaller shear 

capacity for 2 legged stirrups leads to a faster increase of 𝐶𝑒𝑓 𝐶𝐿,𝑆𝐻, justifying a smaller 𝑃𝐿𝐷
𝑡ℎ  for 

this transversal detailing.  

Besides, the material increase due to an additional stirrup leg is not compensated by 

an increase in 𝑠𝑡
∗ , which in turn leads to greater 𝐶𝑀 and 𝐶𝑇𝐸 at the 1st stage (Figure 4.3). 

Transverse reinforcement with 2-legged stirrups is suitable, in terms of costs, for the 1st stage, 

while 3-legged stirrups are shown to be efficient, in terms of costs, for the 2nd stage. For 𝑃𝐿𝐷 = 

1.0, both stirrup detailing have similar 𝜌𝑠𝑡
∗ , but the 3-legged option leads to a cheaper structure 

and is related to greater shear capacity at 2nd stage.  
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It should be noticed that increasing the longitudinal reinforcement to mitigate 

progressive collapse happens beyond 𝑃𝐿𝐷 ≈ 1.35×10
-2

 for both cases of transversal detailing. 

Although this 𝑃𝐿𝐷 value is a threshold for longitudinal reinforcement, it leads to the first 

instance of positive-cost benefit of strengthening only for the 3-legged case. Hence, this 𝑃𝐿𝐷 

value corresponds to the overall threshold 𝑃𝐿𝐷
𝑡ℎ  only for the second option of stirrup detailing. 

For the 1st stage, Figure 4.4 shows that optimal reliability indexes for bending at 

midspan and beam ends are constant and 𝛽𝐼,𝐵𝑀
∗ , 𝛽𝐼,𝐵𝐸

∗  ~ 3.5. Figure 4.5 shows that all 𝑁𝐿𝐶 

failure modes have 𝐶𝑒𝑓 lower around 1% of 𝐶𝑀 at the 1st stage, and zero at the second stage. 

Hence, strengthening against progressive collapse has shown no reduction in the intact structure 

safety margins. Optimal rebar ratios at the end of 2nd stage range from 1 to 3%, but this is better 

addressed in the next example. 

 

4.1.2 Assessment of guideline-conforming design solutions 

 

Load and Resistance Factor Design (LRFD) according to ACI 318-19 (ACI, 2019) is 

used to validate optimal configurations for 𝑁𝐿𝐶 following load combination for usual design:  

 

 𝜙𝑅𝑛 ≥ 1.2𝐷𝑛 + 1.6𝐿𝑛 (4.4) 

 

where 𝜙 is the strength reduction factor set to 0.9 for beam bending and 0.75 for shear failure; 

and 𝑅𝑛 is the resistance parameter of interest. For 𝐶𝐿𝑆, the LRFD approach is adopted following 

a load combination for extraordinary loading events (ASCE, 2022):  

 

 𝜙𝑅𝑛 ≥ 1.2𝐷𝑛 + 0.5𝐿𝑛     (4.5) 

 

Table 4.4 shows the overall guideline assessment via demand capacity (DCR) factors. 

Optimal design solutions for 𝑁𝐿𝐶 and 𝐶𝐿𝑆 meet ACI 318-19 (2022) and ASCE 7 (2010) 

provisions, respectively. Demand-capacity ratio (DCR) is very close to 1 for 𝑁𝐿𝐶, showing that 

the optimization algorithm ensured a minimal safety level against its failure modes. This reflects 

an adequate choice for the cost factors for bending failure, as 𝑘 = 30 is enough to keep DCR 

around 0.91 ~ 0.92 (𝛽𝐼,𝐵𝑀
∗ ≈ 3.6 and 𝛽𝐼,𝐵𝐸

∗ ≈ 3.4 for the optima with 2 and 3 legs). For shear 

failure, 𝑘 = 60 leads to a DCR of 0.95 for 2-legged stirrups (𝛽𝐼,𝑆𝐻
∗ ≈ 5.8) and 0.79 for the 3-

legged setup (𝛽𝐼,𝑆𝐻
∗ ≈ 8.0).  
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Table 4.4. DCR factors for intact structure and column loss scenario (𝑃𝐿𝐷 = 1). 

Scenario Failure mode Parameter 
Optimal design 

2-legged stirrups 3-legged stirrups 

Intact 

structure 

Bending at 

midspan 

0.9𝑀𝑅 (kNm) 91.20 91.20 

𝑀𝑆 (kNm) 83.25 83.25 

DCR 0.91 0.91 

Bending at 

beam ends 

0.9𝑀𝑅 (kNm) 181.89 181.89 

𝑀𝑆 (kNm) 166.50 166.50 

DCR 0.92 0.92 

Shear failure 

0.75𝑉𝑅 (kN) 175.40 210.26 

𝑉𝑆,𝐼 (kN) 166.50 166.50 

DCR 0.95 0.79 

Column 

loss  

Bending at 

midspan 

0.9𝑀𝑅 (kNm) 295.94 314.25 

𝑀𝑆 (kNm) 237.96 237.96 

DCR 0.80 0.76 

Bending at 

beam ends 

0.9𝑀𝑅 (kNm) 606.80 586.12 

𝑀𝑆 (kNm) 475.92 475.92 

DCR 0.78 0.81 

Shear failure 

0.75𝑉𝑅 (kN) 254.72 273.65 

𝑉𝑆,𝐼 (kN) 237.96 237.96 

DCR 0.93 0.87 

Source: own authorship. 

As previously stated, the transversal detailing with 3 legs requires a stirrup spacing of 

296 mm (beyond the usual limit of 200 mm) in order to have a 𝜌𝑠𝑡
∗  (and potentially 𝛽𝐼,𝑆𝐻

∗ ) 

equivalent to the 2-legged option. This is addressed once again in the next example. 

For 𝐶𝐿𝑆, optimal DCRs at 𝑃𝐿𝐷 = 1 are around ~0.80 for bending at the ends of the 

double span beam and at its midspan (location of the lost support), revealing a slightly excess 

of safety margin against them in terms of DCR (𝛽𝐶𝐿,𝐵𝐸
∗  and 𝛽𝐶𝐿,𝐵𝑀

∗ ≈ 4.0). As a cost multiplier 

𝑘 = 30 is adopted to penalize bending failure for 𝑁𝐿𝐶, 𝑘 equal to 50 is adopted for bending at 

𝐶𝐿𝑆, which seems to be too much for penalizing the cross-section plastification of the double 

span beam. 
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Shear failure at 𝐶𝐿𝑆 shows DCRs of 0.93 for 2-legged stirrups and 0.87 for the 3-

legged setup. This evidences once again the superiority of the second stirrup detailing in terms 

of providing shear capacity with reduced 𝐶𝑀 and 𝐶𝑇𝐸. Besides, as opposed to bending failures, 

an increased cost multiplier 𝑘 = 80 does not lead to an excess in safety margin against shear 

failure in terms of DCR (𝛽𝐶𝐿,𝑆𝐻
∗ ≈ 4.5). 

Dynamic Amplification Factor (DAF) is not accounted for 𝑞𝐶𝐿𝑆 due to exaggerated 

longitudinal reinforcements being required to mitigate bending failure at the double-span beam. 

Following GSA (2016), assuming DAF = 1.25 for a Linear Static Procedure leads to: 

 

 𝜙𝑅𝑛 ≥ 1.25 (1.2𝐷𝑛 + 0.5𝐿𝑛) (4.6) 

 

Hence, in order to meet GSA (2016) provision for 𝐶𝐿𝑆, 𝜙𝑅𝑛 for bending capacity 

needs to be at least 25% greater than the values shown in Table 4.4. Roughly assuming 1.25𝐴𝐵
∗  

and 1.25𝐴𝑇
∗  as optimal bottom reinforcement for 𝑃𝐿𝐷 = 1.0 is able to ensure DCR < 1.0 for 

bending at the midspan and at the beam ends. However, 1.25𝐴𝑇
∗  is equivalent to an unfeasible 

beam detailing of 8𝜙30 just at the top layers, above the maximum 𝜌𝑇,𝑙𝑖𝑚 = 2.5%.  

In view of that, a conservative consideration of dynamic effects shows that an 

analytical approach addressing bending failure is not appropriate for realistically addressing 

optimal risk-based design for 𝐶𝐿𝑆 under larger 𝑃𝐿𝐷 values. It is appropriate, however, to address 

𝑁𝐿𝐶 for intact structures. 

 

4.2 RC BEAM SUBASSEMBLAGE – NONLINEAR APPROACH 

 

The same double span RC beam subassemblage of the previous example is once again 

the object of study, but relying on a nonlinear approach for progressive collapse analysis (Figure 

4.6). This allows to comprehend how the realistic material degradation and nonlinear evolution 

of load vs displacement and internal forces affect the optimal risk-based results, and how these 

optima change compared to those obtained from linear analysis. Besides, no interference 

between distinct failure modes happened in the previous example due to each design variable 

relating to a specific failure mode. In this example, altering a single design variable may reflect 

in several 𝑁𝐿𝐶 and 𝐶𝐿𝑆 failure modes. Results presented herein are from a journal paper by 

Ribeiro et al. (2023) published in Engineering Structures. Besides, these results are an expanded 

version from those in Ribeiro and Beck (2021).  
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Figure 4.6 – Object of study. 

 

Source: own authorship. 

As done in the previous example, columns are assumed to provide great lateral 

stiffness for the beam subassemblage, and the impact of this simplification is addressed in the 

next example. In order to reduce the analysis error due to a 2D capacity model being used, 

floors are once again assumed unidirectional to prioritize the structural load-bearing capacity 

over the perimeter primary frame of interest. Nevertheless, secondary beams are still able to 

increase overall robustness for this type of framed structure (Brunesi and Parisi, 2017; Parisi et 

al. 2018), but this is not addressed herein. 

Only two local damage/hazard combinations are considered: intact structure under 

normal gravity load condition, and column loss under dynamically amplified gravity loads. The 

independent term 𝑃𝐿𝐷 is varied from 𝑃𝐿𝐷
𝑚𝑖𝑛 ≈ 5 × 10−6, which is the 50-year lifespan equivalent 

to the “de minimis” annual probability 𝑝 = 10−7 (Pate-Cornel, 1987), to 𝑃𝐿𝐷 = 1.0.  

Quantitative risk analysis considering all collapse modes of the RC beam, with 

sectional dimensions and reinforcement ratios as design parameters, allows to verify the cost-

effectiveness of APM design, specifically for a RC beam to form a load bridge’ over a failed 

column. The uncertainties adopted are shown in Table 4.5, and the failure modes in Table 4.6. 
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Table 4.5. Uncertainty modeling. 

Category RV Distribution Mean 
Standard 

deviation 

Coef. of 

variation 

Geometry 

Beam depth (ℎ) Normal 
To be 

optimized* 
1 mm - 

Bottom rebar area (𝐴𝐵) Normal 
To be 

optimized* 

- 0.05 

Top rebar area (𝐴𝑇) Normal 
To be 

optimized* 

- 0.05 

Stirrup cross section area 

(𝐴𝑠𝑡) 
Normal 

To be 

optimized* 
- 

0.05 

(assumed) 

Stirrup spacing (𝑠𝑡) Normal 
To be 

optimized* 
- 

0.05 

(assumed) 

Material 

Concrete compressive 

strength (𝑓𝑐
′) 

Lognormal 32 MPa - 0.12 

Rebar yield strength (𝑓𝑦) Normal 510 MPa - 0.05 

Concrete unit weight (𝛾𝑐) Normal 25 kN/m³ - 
0.05 

(assumed) 

Ultimate steel strain (𝜀𝑠𝑢) Normal 0.20 - 0.14 

Loads 

Dead load (𝐷) Normal 1.05𝐷𝑛 - 0.10 

50-year live load (𝐿50) Gumbel 1.00𝐿𝑛 - 0.25 

Arbitrary point in time 

live load (𝐿𝑎𝑝𝑡) 
Gamma 0.25𝐿𝑛 - 0.55 

Analysis Model error (𝑀𝐸) Lognormal 1.107 0.255 - 

Source: Ellingwood and Galambos (1982), JCSS (2001), Real, Campos Filho and Maestrini (2003), Wisniewski 

et al. (2012), Santiago (2018), Santiago and Beck (2018), Parisi et al. (2018), Costa and Beck (2024a; 2024b). 

Design parameters to be optimized are the mean values of beam depth (ℎ𝐵), top and 

bottom longitudinal rebar areas (𝐴𝐵 and 𝐴𝑇), stirrups cross section area (𝐴𝑠𝑡) and stirrup 

spacing (𝑠𝑡). Every design variable in vector 𝒅 = {ℎ, 𝐴𝐵, 𝐴𝑇 , 𝐴𝑠𝑡 , 𝑠𝑡} is the mean value of one 

random variable of vector 𝑿. The previous example has shown that 𝑠𝑡
∗ should be near 300 mm 

in order to the 3-legged stirrup option have the same 𝜌𝑠𝑡
∗  as the 2-legged option, hence 𝑠𝑡 now 

ranges from 50 mm to 300 mm in 𝓓 to allow this possible comparison. 
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Besides, 𝐶𝑇𝐸 is once again addressed by Eq. 4.2, but with an improved choice of failure 

modes which was made possible from the nonlinear approach. Risk-based optimization 

problem is once again given by Eq. 4.3. The Brazilian SINAPI database is adopted to estimate 

𝐶𝑀 in Brazilian Reais (R$), where unencumbered prices for São Paulo regarding the period of 

July 2022 are considered. Later, 𝐶𝑀 is converted to Euros (€) at a rate of € 1.00 equal to R$ 

5.28 (as of July 15, 2022, when the results were first submitted). As in the previous example, 

𝐶𝑀 is composed by cost of formwork, concrete, steel rebars, and corresponding workmanship. 

 

Table 4.6. Failure mode depiction. 

Condition Limit state 
Failure 

mode 
Limit state function 

Intact 

structure 

(𝐼) 

Serviceability 
Large 

deflection 
𝑔𝑆𝐸(𝒙) = 𝑞𝐼,𝑆𝐸 − 𝑞𝐼 

Ultimate 

Positive 

bending 
𝑔𝐵𝑀(𝒙) = 𝑞𝐼,𝐵𝑀 − 𝑞𝐼 

Negative 

bending 
𝑔𝐵𝐸(𝒙) = 𝑞𝐼,𝐵𝐸 − 𝑞𝐼 

Shear failure 𝑔𝐼,𝑆𝐻2𝐿(𝒙) = 𝑉𝑅 − 𝑉𝐼 

Column 

loss 

(𝐶𝐿𝑆) 

Ultimate 

Steel rupture 

after instab. 
𝑔𝑆𝑅𝐶𝐴(𝒙) = 𝑀𝐸  𝑞𝐶𝐿,𝑆𝑅𝐶𝐴 − 𝑞𝐶𝐿 

Steel rupture 

at instab. 
𝑔𝑆𝑅𝑆𝑇(𝒙) = {

𝑀𝐸  𝑞𝐶𝐿,𝐶𝐴𝐴 − 𝑞𝐶𝐿  

1 

if 𝑞𝐶𝐿,𝑆𝑅𝐶𝐴 <  𝑞𝐶𝐿,𝐶𝐴𝐴

if 𝑞𝐶𝐿,𝑆𝑅𝐶𝐴 ≥ 𝑞𝐶𝐿,𝐶𝐴𝐴

 

Shear failure 𝑔𝐶𝐿,𝑆𝐻2𝐿(𝒙) = 𝑉𝑅 − 𝑉𝐶𝐿 

Source: own authorship. 

In Table 4.6, 𝑞𝐼,𝑆𝐸  is the load intensity that produces a midspan deflection of 𝐿/400; 𝐿 

is the beam span of 6.00 m; 𝑞𝐼 = ℎ𝑏𝛾𝑐 + 𝐷 + 𝐿50 is the acting load for intact scenario; 𝑏 is the 

cross-section width (300 mm); 𝑞𝐼,𝐵𝑀 is the load that leads to the resisting bending moment 𝑀𝑅,𝐵 

at the midspan; 𝑞𝐼,𝐵𝐸 is the load that leads to the resisting bending moment 𝑀𝑅,𝑇 at the beam 

ends; 𝑉𝑅 is the shear strength;  𝑉𝐼 is the shear demand for 𝐼; 𝑞𝐶𝐿,𝐶𝐴𝐴 is the ultimate CAA 

capacity; 𝑞𝐶𝐿,𝑆𝑅𝐶𝐴 is the ultimate CA capacity; 𝑞𝐶𝐿 = 2(ℎ𝑏𝛾𝑐 + 𝐷 + 𝐿𝑎𝑝𝑡) is the acting uniform 

load for the 𝐶𝐿𝑆, with multiplier 2.0 representing a worst-case value of dynamic amplification 

factor; and 𝑉𝐶𝐿 is the shear demand for 𝐶𝐿𝑆.  



91 

 

The limit state functions rely on resistance and demand terms. Resistance thresholds 

for bending, shear and allowable displacements are estimated accordingly to ACI 318-19 

(2019). Ultimate loads 𝑞𝐶𝐿,𝐶𝐴𝐴 and 𝑞𝐶𝐿,𝑆𝑅𝐶𝐴 are obtained using an in-house static FE 

implementation, which addresses geometrical and material nonlinearities. Rebar failure is 

addressed in two situations: during or after snap-through instability, which is typical for strong 

lateral restraint (Figure 4.6e). Since this instability stage is sudden, a rebar rupture during its 

occurrence denies the positive ductility aspects of the longitudinal reinforcements, leading to a 

failure as brittle and severe as shear failure. A commentary on this instability stage is done in 

Chapter 2, and validation examples addressing this phenomenon is shown in Section 3.4.1. 

To address the severity of each failure mode, cost factors 𝑘𝑖 are chosen based on Beck 

et al. (2020; 2022; 2023). Therefore, 𝑘𝑖 is assumed as 5 for serviceability failure, 30 for bending 

failure at beam ends and midspan, 40 for steel rupture at CA, and 60 for all brittle failure modes, 

namely, shear and steel rupture during instability stage. As done in Beck et al. (2020; 2022), 

these values range accordingly to the analysis by Marchand and Stevens (2015), which 

compares the cost of construction to the cost of collapse of the Alfred P. Murrah Federal 

Building, World Trade Center and Pentagon. Nevertheless, higher failure cost multipliers could 

be assumed for critical or strategic buildings. Yet, further verifications of optimal designs 

complying to guideline provisions attest a well choice for these parameters. 

The nonlinear FE algorithm used in progressive collapse analysis follows the total-

Lagrangian position-based method proposed by Coda (2014). Newton-Raphson algorithm is 

used at every loading step to find the equilibrium configuration, considering two translations 

and one rotation as degrees of freedom (DOFs) for each node. Thus, Arc-Length method is 

introduced in order to investigate the structural response even at instability stages. Each RC 

beam is discretized into 14 FEs, which are layered 2D frame elements with a fifth degree of 

approximation. A total of 20 layers with 1 integration point are used for transversal 

discretization, being 18 for concrete and one for each steel reinforcement.  

This modelling allows implementation of distinct constitutive relations for concrete 

(confined or not) and steel layers. A uniaxial model of isotropic hardening is enough to 

represent the elastoplastic behavior of steel reinforcements. For concrete, μ-Model (Mazars et 

al. 2015) is used to represent the damage evolution and its unilateral behavior after stress 

reversals. The choice of accurately representing crack opening and closure (unilateral behavior) 

is to correctly simulate, in column loss scenarios, the transition of the RC beam from CAA to 

the CA stage, where locations originally in compression end up under tensile stresses.  
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Stirrups are not explicitly considered in the adopted FE modeling. However, their 

influence on concrete ductility is regarded by using the uniaxial curve from the modified Park-

Kent model (Park et al. 1982) as basis to automatically calibrate the μ-Model compressive 

parameters. Concrete tensile behavior is defined via the uniaxial tensile curve from fib Model 

Code (2012), which is also used for the automatic calibration of tensile μ-Model parameters.  

Two structural analyses are performed for each sample point, namely, the analysis of 

the intact structure under normal loading condition (𝑁𝐿𝐶) and the analysis under column loss 

scenario (𝐶𝐿𝑆). Analysis for 𝑁𝐿𝐶 is done considering the beam built in in both ends (rotation 

and translations restrained), as shown in Figure 4.6c, while analysis for 𝐶𝐿𝑆 is done considering 

the beam built in the left end, while on the right only free vertical translation is allowed as 

symmetry is considered (Figure 4.6d). Further details regarding the FE implementation and 

validation with experimental results are described in Appendix B of Ribeiro et al. (2023). 

Hence, the overall framework shown in Chapter 3 is adopted. First, nonlinear static 

(pushdown) analysis is performed for limit state support points created via LHS. The outputs 

are then metamodeled via ordinary kriging to ensure a faster, yet accurate estimation of sample 

points for the uncertainty assessment via WASM for each failure mode. Additional ordinary 

kriging metamodels for the reliability indexes are then constructed for the design support points 

over the design domain 𝓓, ensuring a fast run for each optimization process. 

 

4.2.1 Optimal design solutions 

 

Figure 4.7 shows, for each design variable, the evolution of optimal designs 𝒅∗ with 

𝑃𝐿𝐷 ranging from 5 × 10−6 to 1, for cross sections with 2- and 3-legged stirrups. For each 𝑃𝐿𝐷, 

a total of 10 optimization runs were performed, each one with 20 fireflies, 100 iterations, and 

an initial iteration of 6000 fireflies to provide a fast auxiliary extensive search over 𝓓.  

The optimal design remains constant from 𝑃𝐿𝐷
𝑚𝑖𝑛 to 𝑃𝐿𝐷 ≈ 10−3, but two local optimal 

solutions with similar 𝐶𝑇𝐸 are found at 𝑃𝐿𝐷 ≈ 3 × 10−3. From this value until 𝑃𝐿𝐷 = 1, the 

optimal configurations follow the general characteristics of the new optima as 𝑃𝐿𝐷 increases. 

This clearly characterizes a transition in optimal design behavior. Smaller values of 𝑃𝐿𝐷 reflect 

situations with less relevant threat of column loss, characterizing a 1st stage where optimal 

configuration is controlled by the normal loading condition (𝑁𝐿𝐶). Larger values of 𝑃𝐿𝐷 

characterize the 2nd stage, with more significant column loss threat, where optimal design 

clearly adapts to resist progressive collapse under column loss conditions (𝐶𝐿𝑆). 
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Figure 4.7 – Optimal design for each 𝑃𝐿𝐷 and corresponding total expected cost 𝐶𝑇𝐸. 

 

Source: own authorship. 
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In Fig. 4.7h, 𝐴𝑠𝑡 for the 3-legged setup increases significantly at 𝑃𝐿𝐷
𝑡ℎ  and then reduces 

after 𝑃𝐿𝐷 = 10−1. This, however, is accompanied by an optimal gradual decrease in stirrup 

spacing, leading to an overall increase in transverse reinforcement after 𝑃𝐿𝐷
𝑡ℎ . 

Figure 4.8 shows the behavior of 𝐶𝑀 and 𝐶𝑇𝐸 in terms of 𝑃𝐿𝐷. Figure 4.9 shows the 

evolution of the optimal conditional reliability indexes 𝛽∗ with 𝑃𝐿𝐷 for the different 𝑁𝐿𝐶 and 

𝐶𝐿𝑆 failure modes. Figure 4.10 shows the of expected costs of failure (𝐶𝑒𝑓) behavior with 𝑃𝐿𝐷. 

The transition identified in Figure 4.7 is reflected in the optimal reliability indexes (Figure 4.9), 

and in the cost functions in Figure 4.10. Figure 4.9 outlines that the most critical failure modes 

under 𝑁𝐿𝐶 are bending at beam ends (BE), bending at midspan (BM) and shear failure (SH) 

for both 2- and 3-legged stirrups. Under 𝐶𝐿𝑆, steel rupture at catenary action (SRCA) and shear 

failure (SH) are the most critical failure modes, especially for larger 𝑃𝐿𝐷 values. 

 

Figure 4.8 – Evolution of manufacturing cost 𝐶𝑀 and total expected cost 𝐶𝑇𝐸 with 𝑃𝐿𝐷. 

 

Source: own authorship. 

Optimal cross section detailing is shown in Table 4.7, with an equivalent real-life 

detailing and reinforcement ratios being shown for 𝐴𝐵
∗ , 𝐴𝑇

∗  and 𝐴𝑠𝑡
∗ . At the 1st stage, optimal 

solutions for cross sections with 2-legged stirrups and 3-legged stirrups are quite similar. As 

shown in Figures 4.8 and 4.10, the increase in 𝐶𝑀 and 𝐶𝑇𝐸  due to an additional stirrup leg is 

compensated by an increase in 𝐴𝑠𝑡
∗  and 𝑠𝑡

∗, leading to a similar transverse reinforcement ratio 

𝜌𝑠𝑡 (Table 4.7) and similar safety margin against shear failure in 𝑁𝐿𝐶 (Figure 4.9, 𝛽𝐼,𝑆𝐻
∗ ≈ 3.5). 

Nonetheless, 𝐶𝑀 and 𝐶𝑇𝐸 for 3-legged stirrup are slightly greater, making transverse 

reinforcement with 2-legged stirrups more suitable, in terms of costs, for the 1st stage. Although 

opposed to the verified in the previous example, in which similar 𝜌𝑠𝑡
∗  and 𝛽𝐼,𝑆𝐻

∗  was not possible, 

2-legged stirrups are still found to be the optimal choice for 𝑁𝐿𝐶.  
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Figure 4.9 – Behavior of optimal reliability indexes 𝛽∗ with 𝑃𝐿𝐷. 

 

Source: own authorship. 

Figure 4.10 – Behavior of each 𝐶𝑒𝑓
∗  with 𝑃𝐿𝐷. 

 

Source: own authorship. 
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Table 4.7. Optimal design solutions related to cross section detailing. 

Design 

variable 

2 legged stirrups 3 legged stirrups 

𝑃𝐿𝐷 < 𝑃𝐿𝐷
𝑡ℎ   

(1st stage) 

𝑃𝐿𝐷 ≈ 𝑃𝐿𝐷
𝑡ℎ  

(transition) 

𝑃𝐿𝐷 > 𝑃𝐿𝐷
𝑡ℎ   

(2nd stage) 

𝑃𝐿𝐷 < 𝑃𝐿𝐷
𝑡ℎ   

(1st stage) 

𝑃𝐿𝐷 ≈ 𝑃𝐿𝐷
𝑡ℎ  

(transition) 

𝑃𝐿𝐷 > 𝑃𝐿𝐷
𝑡ℎ   

(2nd stage) 

ℎ∗ (mm) 500 390 330 500 390 350 

𝐴𝐵
∗  

(mm²) 

428 

(~3Φ14) 

538 

(~3Φ16) 

1219 

(~3Φ22) 

438 

(~3Φ14) 

550 

(~3Φ16) 

1041 

(~3Φ22) 

𝜌𝐵
∗  (%) 0.29 0.60 1.23 0.29 0.47 0.99 

𝐴𝑇
∗  

(mm²) 

819 

(~3Φ20) 

1118 

(~3Φ22) 

1490 

(~3Φ26) 

838 

(~3Φ20) 

1155 

(~3Φ22) 

1488 

(~3Φ26) 

𝜌𝑇
∗  (%) 0.56 0.96 1.51 0.56 0.98 1.42 

𝐴𝑠𝑡
∗  

(mm²) 

29 

(~Φ6) 

36 

(~Φ8) 

62 

(~Φ10) 

46 

(~Φ8) 

77 

(~Φ10) 

40 

(~Φ8) 

𝑠𝑡
∗ (mm) 150 110 100 300 300 100 

𝜌𝑠𝑡 (%) 0.13 0.23 0.41 0.15 0.26 0.33 

𝐶𝑀 (€) 1245.00 1382.00 1903.00 1259.00 1401.00 1756.00 

𝐶𝑇𝐸 (€) 1263.00 1422.00 2045.00 1280.00 1432.00 1873.00 

Source: own authorship. 

When addressing the previous example, 𝐶𝑀 is computed based on reference values 

with a 2-year gap: April 2024 in the previous approach, and July 2022 in this example. This 

explains why this example is ~200 € more expensive in terms of the 1st stage optimal, despite 

the similarity between optimal designs. Although the conversion from R$ to € was lower in 

2022, construction costs were worldwide greater as an outcome of Covid-19 pandemic (Kisi 

and Sulbaran, 2022). Nonetheless, this does not compromise overall findings from the 

individual analysis of each example, or those from their comparison.  

Albeit significantly more expensive, reference costs of 2022 lead to slightly inferior 

optimal rebar reinforcements for the 1st stage and similar optimal reliability indexes against 

bending failure for 𝑁𝐿𝐶 (Figures 4.4 and 4.9). Lower stirrup ratios are found in this case, but 

this is due to stirrup cross-section area 𝐴𝑠𝑡 also being a design variable and to a greater upper 

bound for 𝑠𝑡 in 𝒟 (300 mm). Hence, a better transversal detailing was enabled, ensuring a better 

balance between economy (reduced 𝜌𝑠𝑡
∗ ) and safety (enough safety margins, as reflected by 

𝛽𝐼,𝑆𝐻
∗ ≈ 3.5) when compared to the previous analysis. This also prevented the discrepancy 

between 𝑃𝐿𝐷
𝑡ℎ  values that was found in the previous analysis. 
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For the 1st stage, Figure 4.9 shows that optimal reliability indexes for bending at 

midspan and beam ends are constant and 𝛽𝐼,𝐵𝑀
∗ , 𝛽𝐼,𝐵𝐸

∗ ≈ 3.5; for serviceability, probability of 

failure is negligible. Figure 4.10 shows that all failure modes for 𝑁𝐿𝐶 have low expected costs 

of failure 𝐶𝑒𝑓 at the 1st stage (lower than 1% of 𝐶𝑀). Besides, the optimization leads to a 

detailing that meets multiple purposes: for instance, large beam depth not only provides safety 

against serviceability limit state (SE), bending (BM and BE), and shear failure (SH), but also 

allows a simultaneous reduction in both longitudinal and transversal reinforcements. Even 

though a reduced ℎ with increased longitudinal reinforcement could ensure similar safety 

against SE, BE, and BM, an increased 𝜌𝑠𝑡 is needed to compensate for reduced shear resistance, 

hence increasing 𝐶𝑀. 

As the local damage probability increases approaching 𝑃𝐿𝐷 ≈ 3 × 10−3, an additional 

optimal design with equivalent 𝐶𝑇𝐸 is obtained, as shown in Table 4.7. This additional optimum 

occurs due to the greater expected costs of rebar rupture at catenary action (SRCA) and shear 

failure at 𝐶𝐿𝑆 as a function of increasing 𝑃𝐿𝐷 (Figure 4.10), with a concomitant reduction of 

𝛽𝐶𝐿,𝑆𝑅𝐶𝐴
∗  and 𝛽𝐶𝐿,𝑆𝐻

∗  (Figure 4.9).  

Since 𝑃𝐿𝐷 multiplies the failure probabilities of 𝐶𝐿𝑆, expected costs of failure 𝐶𝑒𝑓 

increases if the optimal conventional design is not appropriate for 𝐶𝐿𝑆, which is the case of the 

stage 1 optimal design. Hence, 𝑃𝐿𝐷 ≈ 3 × 10−3 marks a sudden transition, in which reliability 

against SRCA reaches a minimum (𝛽𝐶𝐿,𝑆𝑅𝐶𝐴
∗ ≈ 3).  

Before this point, there is no benefit in reinforcing the structure to ensure robustness 

against progressive collapse. By contrast, as 𝑃𝐿𝐷 increases, conventional design is no longer 

appropriate due to lack of robustness. This is directly in line with previous results found by 

Beck et al. (2020); hence, 𝑃𝐿𝐷 ≈ 3 × 10−3 marks a threshold local damage probability 𝑃𝐿𝐷
𝑡ℎ . As 

stated by Beck et al. (2020), the threshold local damage probability is the value above which 

APM design under discretionary local damage has positive cost-benefit in comparison to usual 

design.  

Herein, optimal design solutions leads to 𝑃𝐿𝐷
𝑡ℎ ≈ 2.75×10

-3
  for 2-legged stirrups and 

𝑃𝐿𝐷
𝑡ℎ ≈ 3.13×10

-3
 for 3-legged stirrups. This means that strengthening the beam with 2-legged 

stirrup against column loss is justified for slightly smaller threat probabilities. As shown in 

Table 4.8, this difference relies on rather greater unconditional probability of 𝐶𝐿𝑆 failure modes 

for the usual design setup with 2 legs, mainly for SRCA. Hence, as shown in Figure 4.10, the 

probability 𝑃𝑓 𝐶𝐿,𝑆𝑅𝐶𝐴 × 𝑃𝐿𝐷 and its corresponding 𝐶𝑒𝑓 grow slightly faster for the 2-legged 

stirrup option, justifying its earlier transition to optimal progressive collapse design.  
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Table 4.8. Optimal unconditional probability for each 𝐶𝐿𝑆 failure mode. 

Failure 

mode 

probability 

         2-legged stirrups     3-legged stirrups 

𝑃𝐿𝐷 ≈ 𝑃𝐿𝐷
𝑡ℎ  𝑃𝐿𝐷 = 1 𝑃𝐿𝐷 ≈ 𝑃𝐿𝐷

𝑡ℎ   𝑃𝐿𝐷 = 1 

Usual 

design 

PC  

design 

PC  

design 

Usual 

design 

PC  

design 

PC  

design 

𝑃𝑓 𝐶𝐿,𝑆𝑅𝐶𝐴 9.04×10
-1

 1.70×10
-1

 1.56×10
-3

 8.30×10
-1

 6.39×10
-2

 1.27×10
-3

 

𝑃𝑓 𝐶𝐿,𝑆𝑅𝑆𝑇 4.74×10
-4

 ~0 ~0 2.94×10
-4

 ~0 ~0 

𝑃𝑓 𝐶𝐿,𝑆𝐻 1.94×10
-1

 6.55×10
-5

 9.90×10
-5

 1.25×10
-1

 3.75×10
-9

 3.70×10
-5

 

Source: own authorship. 

In contrast with the previous example, the number of stirrup legs influences more than 

just the shear capacity. This is possible to be addressed due to the adopted nonlinear approach, 

which allows to represent the slightly increase in concrete strength and softening ductility that 

results from a greater core confinement provided by additional stirrup legs (Park et al. 1982). 

This leads to a minor enhancement in CAA and CA capacity, which in turn reflects in slightly 

smaller unconditional probabilities of rebar rupture for 3-legged stirrups and, consequently, in 

a slightly greater 𝑃𝐿𝐷
𝑡ℎ  for this transversal setup. Yet, the biggest difference between setups is 

that, in terms of 𝐶𝑇𝐸, 2-legs is more suitable for 𝑁𝐿𝐶 and 3-legs is more appropriate for 𝐶𝐿𝑆 

due to its advantages regarding concrete confinement. 

For 𝑃𝐿𝐷 > 𝑃𝐿𝐷
𝑡ℎ, optimal design is controlled by ductile steel rupture. Nonetheless, 

Figure 4.9 shows that safety margins against all other ultimate failure modes (including those 

related to the intact structure) increase as well. A decreasing trend is only observed for 

serviceability, yet ensuring a minimum 𝛽𝐼,𝑆𝐸
∗ ≈ 3.0, which is enough to maintain 𝐶𝐸𝐹 𝐼,𝑆𝐸 

irrelevant in contrast with 𝐶𝑀 and 𝐶𝑇𝐸. This shows that greater robustness against progressive 

collapse is also beneficial, in terms of safety, for usual loading conditions. The reduction in 

𝛽𝐼,𝑆𝐸
∗  is due to smaller ℎ∗ for 𝐶𝐿𝑆, which ensures greater CA capacity for a RC beam 

subassemblage. Yet, this is better addressed in the next example. 

In contrast to the 1st stage, Figure 4.7 shows that optimal design solutions do not 

remain constant for 𝑃𝐿𝐷 > 𝑃𝐿𝐷
𝑡ℎ, delineating an expected outcome. For the intact structure, 

failure probabilities do not depend on 𝑃𝐿𝐷, the opposite occurring under local damage condition. 

Hence, as 𝑃𝐿𝐷 increases past 𝑃𝐿𝐷
𝑡ℎ , the optimal design has to become more and more robust. As 

shown in Figures 4.11 and 4.12, the increase in robustness is given by larger rebar 

reinforcement, greater transversal reinforcement, and smaller beam depth.  
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Figure 4.11 – Optimal design solutions for (a) usual and (b) progressive collapse conditions 

for option with 2-legged stirrups. 

 

Source: own authorship. 

Figure 4.12 – Optimal design solutions for (a) usual and (b) progressive collapse conditions 

for option with 3-legged stirrups. 

 

Source: own authorship. 

The extra cross-section confinement observed for 𝑃𝐿𝐷 > 𝑃𝐿𝐷
𝑡ℎ  increases the actual 

concrete strength, yet shear resistance decreases for smaller ℎ∗. Hence, transverse 

reinforcement has to increase in order to ensure shear resistance, which is mainly characterized 

by greater stirrup diameter and spacing reduction. Such a combination appears to be the most 

economical for the studied structure and adopted costs factors.  
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As mentioned earlier, increasing 𝜌𝑠𝑡 provides greater shear resistance, but also greater 

ductility for the confined concrete, meaning that more stresses at cross sectional level will be 

shared between concrete and steel rebars after the CAA peak. This slightly helps the beam to 

postpone SRCA and to prevent SRST. As for steel rupture, a reduced beam depth allows rebars 

layers to be closer to each other, reducing stress discrepancies between bottom and top rebars, 

and enabling them to be used more efficiently at CA. However, as discussed in the next 

example, this is verified only for a RC beam subassemblage. 

For 𝑃𝐿𝐷 > 𝑃𝐿𝐷
𝑡ℎ, optimal rebar ratios range from 0.47% to 1.23% for the bottom layer, 

and from 0.98% to 1.51% for the top layer. Bottom layer ratios are very similar to those found 

via analytical approach, but not the top layer ratio, which ranges from 0.64% to 2.80%. This is 

due to how 𝐶𝐿𝑆 was previously addressed, as typical bending failures relates to cross-section 

plastification either by rebar yielding, concrete peak strength being reached, or both.  

Since only the reinforcements are optimized in the linear approach, the only alternative 

to mitigate bending failure in 𝐶𝐿𝑆 is to provide an excessive amount of steel area in order to 

avoid steel yielding and keep the neutral axis between 0.6283𝑑 and ℎ. Following NBR 6118 

(ABNT, 2023), this configuration relates to cross-sections in domains 4 or 4a, in which steel 

capacity is not fully explored and concrete failure happens in a brittle fashion. 

However, a nonlinear approach allows to address resisting mechanism that go beyond 

flexural capacity, thus making use of the load-bearing capacity that is still available after cross 

section plastification (as discussed in Chapter 2). Top rebars characterize the most relevant 

rebar layer in both cases, since they must resist to greater 𝐶𝐿𝑆 bending moments in linear 

analysis and are subjected to greater rebar strains in the nonlinear approach.  

As top reinforcements found via nonlinear approach are smaller, ductile plastification 

is allowed at the beam ends opposed to the lost column. Hence, the thorough usage of confined 

concrete beyond softening and of steel rebars up to their ultimate capacity is endorsed.  

Figures 4.3 and 4.4 shows that ∑𝐶𝑒𝑓 for 𝐶𝐿𝑆 bending failures is equivalent to 𝐶𝑀 

before reinforcement against plastification is justifiable. When comparing to Figures 4.3 and 

4.8, it is noticed that allowing plastification is convenient in terms of 𝐶𝑀 and 𝐶𝑒𝑓.  

Even when considering conservative dynamic effects and expensive reference costs 

from the pandemic period, APM design is ~35% cheaper along the 2nd stage. Besides, relying 

on ultimate material capacity justifies rebar strengthening against progressive collapse for 

smaller threats of column loss. As shown in Table 4.7 and Figure 4.10, the cost of increasing 

~0.30% in 𝜌𝐵
∗  and 𝜌𝑇

∗  (~ 150 €) starts to compensates 𝐶𝑒𝑓 𝐶𝐿,𝑆𝑅𝐶𝐴 around 0.01𝐶𝑀 (~ 150 €). 
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4.2.2 Analysis of the total expected cost function 

 

Level surfaces are appropriate to verify the behavior of 𝐶𝑇𝐸 with the given design 

variables along 𝑃𝐿𝐷. In order to allow this visualization in 2D plots, 4 design variables at a time 

are set to their average optimal values (𝒅∗) for each 𝑃𝐿𝐷, while the remaining variable is 

gradually increased from its lower to upper bound, as shown in Figure 4.13. 

  

Figure 4.13 – Behavior of 𝐶𝑇𝐸 for each design variable and each 𝑃𝐿𝐷. 

 

Source: own authorship. 
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For 𝑃𝐿𝐷 < 𝑃𝐿𝐷
𝑡ℎ, values of ℎ and 𝐴𝑇 below optimal lead to a very steep slope of 𝐶𝑇𝐸 due 

to greater 𝐶𝑒𝑓 and smaller safety margins against 𝑁𝐿𝐶 failure modes of serviceability 

(displacements), bending, and shear. This is also true for 𝐴𝑠𝑡 below optimum (3 legs) and 𝑠𝑡 

above optimum (2 legs), as they produce decreasing safety against shear resistance. If ℎ, 𝐴𝐵, 

𝐴𝑇 and 𝐴𝑠𝑡 are above their optimal values (and 𝑠𝑡 is below it), a seemingly linear behavior is 

noticeable. This indicates overly conservative design solutions, where manufacturing cost is 

added with no corresponding reduction in the expected cost of failure.  

Two curves (identified as A and B) are shown for 𝑃𝐿𝐷
𝑡ℎ , each representing one of the 

two optimal solutions shown in Figure 4.7. Although the level curves of conventional design 

(curve A) reflect the 1st stage behavior, the level curve B shows a slightly steeper slope for ℎ 

and 𝐴𝐵 above optimal. As 𝑃𝐿𝐷 → 1, these slopes become more and more steeper. This behavior 

is motivated by a greater peak strength promoted at CAA, which increases the peak shear force 

at CAA with no corresponding increase in shear resistance.  

Even though symmetric rebars are favorable at CA, the benefits in terms of 𝐶𝑒𝑓 

reduction for SRCA (and also SRST) does not compensate its increase for shear failure. 

However, as 𝑃𝐿𝐷 → 1, the need for greater ductility at CA leads to a more symmetric rebar 

setup, but with an even more reduced beam depth and increased transverse reinforcement to 

attenuate the increased CAA peak strength. 

 

4.2.3 Assessment of guideline-conforming conventional design solution 

 

Load and Resistance Factor Design (LRFD) according to ACI 318-19 (ACI, 2019) 

guidelines is used herein to validate the optimal configurations for 𝑁𝐿𝐶 (i.e., for small 𝑃𝐿𝐷):  

 

 𝜙𝑅𝑛 ≥ 1.2𝐷𝑛 + 1.6𝐿𝑛  (4.7) 

 

where 𝜙 is the strength reduction factor set to 0.9 for beam bending and 0.75 for shear failure 

verification; and 𝑅𝑛 is the resistance parameter of interest, such as resisting shear strength. 

Bending and shear resistance (𝑀𝑅 and 𝑉𝑅, respectively) are estimated according to ACI 318-19 

(ACI, 2019). Hence, Eq. (4.7) simplifies to: 

 

 
0.9𝑀𝑅 ≥ 𝑀𝑆 for bending failure 

0.75𝑉𝑅 ≥ 𝑉𝑆,𝐼 for shear failure 

(4.8a) 

(4.8b) 
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Table 4.9 shows the validation of the optimal designs according to ACI 318-19 (ACI, 

2019). All optimal design solutions meet the guideline provisions for bending failure. Demand 

Capacity Ratio (DCR) is very close to 1 in all cases, showing that the optimization ensured a 

accepable safety level against all ultimate failure modes. This reflects an adequate choice for 

the cost factors: 𝑘 = 30 for bending was enough to keep DCR slightly smaller than 1 (𝛽𝐼,𝐵𝑀
∗ ≈ 

3.6 and 𝛽𝐼,𝐵𝐸
∗ ≈ 3.4), while 𝑘 = 60 for shear led to a DCR slightly over 1, even with 𝛽𝐼,𝑆𝐻

∗  being 

the highest safety margin for 𝑁𝐿𝐶 (𝛽~3.8 for the optima with 2 and 3 legs).  

 

Table 4.9. DCR complying with ACI 318-19 (ACI, 2019) guidelines. 

Failure mode Parameter 

  

Optimal (2 legs) Optimal (3 legs) 

Bending at 

midspan 

0.9𝑀𝑅 (kNm) 91.84 93.93 

𝑀𝑆 (kNm) 87.70 88.35 

DCR 0.95 0.94 

Bending at 

beam ends 

0.9𝑀𝑅 (kNm) 171.14 174.88 

𝑀𝑆 (kNm) 163.38 165.45 

DCR 0.95 0.95 

Shear failure 

0.75𝑉𝑅 (kN) 157.40 163.44 

𝑉𝑆,𝐼 (kN) 166.50 166.50 

DCR 1.06 1.02 

Source: own authorship. 

In order for shear failure DCR to be exactly 1, 𝑉𝑅 should be 222 kN. By keeping the 

same 𝐴𝑠𝑡
∗ , this is achieved by considering 𝑠𝑡 = 125.1 mm for 2 legged stirrups, and 𝑠𝑡 = 284.8 

mm for 3 legs. Considering 𝑠𝑡 values below optimum to satisfy Eq. (4.8b) leads to greater 

reliability indexes and smaller 𝐶𝑒𝑓 for shear failure. Anyway, the reduction in 𝐶𝑒𝑓 does not 

compensate the increase in 𝐶𝑀 (and 𝐶𝑇𝐸) due to the addition of more stirrups to the beam. 

Hence, a more conservative design is required to satisfy Eq. (4.8b) in this example. 

 

4.2.4 Assessment of guideline-conforming progressive collapse design solution 

 

The LRFD approach according to GSA guidelines (2016) is adopted herein to validate 

the optimal configurations for progressive collapse (i.e., for large 𝑃𝐿𝐷). Those guidelines 

assume the following load combination for nonlinear static analysis:  
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 𝜙𝑅𝑛 ≥ Ω𝑁(1.2𝐷𝑛 + 0.5𝐿𝑛) (4.9) 

 

where Ω𝑁 is the dynamic increase factor, assumed as 2 in this study (worst case scenario).  

Steel rupture is regarded by comparing the applied load 𝑞𝑆,𝐶𝐿 = Ω𝑁[1.2(𝛾𝐶ℎ𝑏 +

𝐷𝑛) + 0.5𝐿𝑛] to the ultimate loads 𝑞𝐶𝐿,𝑆𝑅𝐶𝐴 and 𝑞𝐶𝐿,𝐶𝐴𝐴, which are obtained via limit state 

surrogates. Since this failure mode depends on a material property (𝜀𝑠𝑢), no strength factor 𝜙 

is required by GSA guidelines (2016). As for shear failure, the same strength reduction factor 

𝜙 and equation used for 𝑁𝐿𝐶 is used. Hence, Eq. (4.9) simplifies to Eq. (4.10), with DCRs 

being shown in Table 4.10, with 𝑞𝐶𝐿,𝑈𝐿𝑇 = max[𝑞𝐶𝐿,𝑆𝑅𝐶𝐴,  𝑞𝐶𝐿,𝐶𝐴𝐴]: 

 

 
𝑞𝐶𝐿,𝑈𝐿𝑇 ≥ 𝑞𝑆,𝐶𝐿 for steel rupture  

0.75𝑉𝑅 ≥ 𝑉𝑆,𝐶𝐿 for shear failure 

(4.10a) 

(4.10b) 

 

Table 4.10. DCR factors for 𝐶𝐿𝑆 following GSA guidelines (2016). 

Failure 

mode 
Parameter 

Optimal (2-legs) Optimal (3-legs) 

𝑃𝐿𝐷 ≳ 𝑃𝐿𝐷
𝑡ℎ 𝑃𝐿𝐷 > 10−1 𝑃𝐿𝐷 ≳ 𝑃𝐿𝐷

𝑡ℎ  𝑃𝐿𝐷 > 10−1 

Steel 

rupture 

𝑞𝐶𝐿,𝐶𝐴𝐴 (kN/m) 25.34 26.63 24.41 27.16 

𝑞𝐶𝐿,𝑆𝑅𝐶𝐴 (kN/m) 78.69 114.32 82.30 109.71 

𝑞𝑆,𝐶𝐿 (kN/m) 77.38 76.26 77.33 76.67 

DCR 0.98 0.67 0.94 0.70 

Shear 

failure 

 

0.75𝑉𝑅 (kN) 153.29 177.11 162.04 177.71 

𝑉𝑆,𝐶𝐿 (kN) 152.04 159.78 146.46 156.96 

DCR 0.99 0.90 0.90 0.88 

Source: own authorship. 

All optimal design solutions satisfy the GSA (2016) provisions, showing DCR ≈ 1 for 

shear failure and steel rupture for 𝑃𝐿𝐷 ≳ 𝑃𝐿𝐷
𝑡ℎ. Despite all DCRs for shear failure being very 

close to unity, none of them is above 1. This means that the minimum safety margin against 

shear failure provided by the optimization algorithm is enough to satisfy GSA provisions, 

without any adaptation to make the design more conservative. The advantages of stirrups with 

3 legs also rely on smaller DCR for shear failure during 𝐶𝐿𝑆 (mainly if 𝑃𝐿𝐷 ≳ 𝑃𝐿𝐷
𝑡ℎ) in 

comparison with the optimal solutions with 2 legs.  
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DCRs very close to unity for steel rupture and 𝑃𝐿𝐷 ≳ 𝑃𝐿𝐷
𝑡ℎ  reflect a minimum safety 

margin against SRCA in order to reduce its 𝐶𝑒𝑓 no more than necessary, as this margin grows 

at larger rates for conventional design until 𝑃𝐿𝐷
𝑡ℎ  (Figure 4.10). However, as 𝑃𝐿𝐷 increases to 

unity, this DCR approaches 0.70, even though Figure 4.9 shows that 𝛽𝐶𝐿,𝑆𝑅𝐶𝐴
∗  is approximately 

equal to 3 under 𝑃𝐿𝐷 > 𝑃𝐿𝐷
𝑡ℎ  (always the smaller reliability index under 𝐶𝐿𝑆). As shown in Table 

4.8, for 𝑃𝐿𝐷 values slightly greater than the threshold, the unconditional probability of steel 

rupture is around 1.70× 10−1 for 2-legged stirrups and 6.39× 10−2 for 3-legged stirrups. As 

𝑃𝐿𝐷 increases till unity, the unconditional probability of steel rupture reduces to 1.56× 10−3 for 

2-legged stirrups and 1.27× 10−3 for 3-legged stirrups. Hence, the much higher unconditional 

probability for 𝑃𝐿𝐷 ≳ 𝑃𝐿𝐷
𝑡ℎ is the reason behind the greater DCR from Eq. (4.10a), even though 

the conditional 𝛽𝐶𝐿,𝑆𝑅𝐶𝐴
∗  is approximately equal to 3 over the entire 𝐶𝐿𝑆 design. This difference 

arises from the discretionary column removal of current guidelines, whereas in this study 

column loss is considered as an event conditioned on severity of hazard intensity (𝑃𝐿𝐷). 

In addition, the DCR related to steel rupture decreases as 𝑃𝐿𝐷 increases, dropping from 

~1.0 to ~0.7. This outcome shows that the greater the benefit of considering 𝐶𝐿𝑆 in design, the 

larger the safety margin becomes, in terms of the demand-capacity relationship, for the beam 

to bridge over a lost column. This happens because as 𝑃𝐿𝐷 → 1 the unconditional probability of 

steel rupture decreases until it becomes equivalent to its conditional probability, which the 

optimization algorithm always keeps around 1.35× 10−3 (𝛽 ≈ 3.00). Thus, the DCR associated 

with steel rupture as 𝑃𝐿𝐷 → 1 is roughly the same over both optimal solutions in Table 4.10, 

being DCR ≈ 0.7 for Ω𝑁 = 2.0. This is also due to the ultimate load 𝑞𝐶𝐿,𝑆𝑅𝐶𝐴 being around 110 

kN and 𝑞𝑆,𝐶𝐿 being similar for both optimal solutions. Hence, a similar 𝛽𝐶𝐿,𝑆𝑅𝐶𝐴
∗ ≈ 3.00 over all 

optimal solutions led to a similar ductility level for all of them, despite all detailing differences.  

Increased robustness as APM designs show better cost-benefit is also observed in 

terms of 𝑞𝐶𝐿,𝐶𝐴𝐴 and 𝑞𝐶𝐿,𝑆𝑅𝐶𝐴, which are always greater for higher values of 𝑃𝐿𝐷. Thus, 𝑞𝐶𝐿,𝑆𝑅𝐶𝐴 

is always 2 to 4 times greater than 𝑞𝐶𝐿,𝐶𝐴𝐴, evidencing the algorithm´s effort to avoid steel 

rupture during the instability stage and fully enhance CA capacity. Despite the ultimate load 

𝑞𝐶𝐿,𝑆𝑅𝐶𝐴 assuming high values (especially for 𝑃𝐿𝐷 → 1), 𝑞𝐶𝐿,𝐶𝐴𝐴 being considerably smaller 

reflects a lack of benefits (in terms of 𝐶𝑇𝐸 reduction) from increasing CAA capacity, as 

propensity to premature rebar rupture is increased.  

It is worth mentioning that these optimal configurations relate to a RC beam with 

perfect horizontal restraint, with no impact to the lateral supports due to increased axial forces 

under CAA and CA. Further examples addressing this feature show a distinct behavior.  
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Yet, additional failure modes under 𝐶𝐿𝑆, such as excessive cracking, rebar yielding, 

concrete spalling and crushing, and vertical drift, could add advantages to keeping higher values 

for 𝑞𝐶𝐿,𝐶𝐴𝐴. Hence, implementing a performance-based approach to the risk optimization shown 

in this study would allow many more insights. 

When comparing DCR values of this example to those found previously for an 

analytical framework, it becomes once again evident that a fully nonlinear approach is 

significantly more suitable to address 𝐶𝐿𝑆 failure modes in a risk-based optimization scope. 

Besides ensuring cheaper designs in terms of 𝐶𝑀 and 𝐶𝑇𝐸 even when conservatively addressing 

dynamic effects and relying on more expensive reference costs to compose 𝐶𝑀, the realistic 

approach for column loss scenarios leads to better results in terms of DCR. 

 

4.3 RC FRAME UNDER MULTIPLE COLUMN LOSS SCENARIOS 

 

In this example, the entire RC frame tested by Yu and Tan (2013) is the object of study, 

not just the double-span beam above the lost column as shown in section 4.2. Progressive 

collapse may now advance vertically (upward propagation due to beam rebar failure) or 

horizontally (lateral propagation due to the column failure). Hence, the studied structure 

advances from a simple RC beam to a 2D RC frame system under multiple column loss 

scenarios, which is significantly more complex and much closer to a realistic situation.   

This example addresses updated analysis in the conference papers from Ribeiro et al. 

(2022; 2023) published in XLIII CILAMCE and XLIV CILAMCE. The first study addresses a 

reduced RC frame (4 bays, 2 stories, beam length of 4 m) under middle column loss, low 

ductility rebars (𝜀𝑠𝑢 = 0.13), and ultimate load capacity estimated via uniform pushdown 

analysis. The later addresses the same RC frame, but with greater ductility rebars (𝜀𝑠𝑢 = 0.20) 

and addressing middle and exterior column loss. These results were obtained for a smaller RC 

frame due to the computational burden not being fully solved by the time they were obtained. 

At the time, structural analysis was still performed on a self-made algorithm. Yielding of 

compressed column rebars was still challenging, and ordinary kriging became impractical as 

the number of outputs increased for RC frame systems.  

As shown in section 3.3 and 3.4, OpenSees greatly improved structural analysis 

efficiency, and IDW allowed metamodeling multiple outputs faster than kriging and accurately 

enough. This allowed both studies to be performed once again for a more realistic RC frame 

and taking into consideration precious feedback at both conferences.  
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Hence, results shown herein address multiple scenarios of column loss, lateral collapse 

propagation due to adjacent column failure, bay pushdown analysis, better representation of 

dynamic effects due to sudden column loss, and reconstruction of the entire pseudo-static 

pushdown curve and related internal forces via metamodeling. These updated and improved 

results are in a manuscript to be submitted to Engineering Structures. 

As shown in Figure 4.6, the first-floor column height has 4.00 m, while the remaining 

floors have height of 3.30 m. All columns at ground floor are subjected to a local damage 

probability 𝑃𝐿𝐷. Unidirectional floor slabs are considered; hence the perimeter frame gets floor 

loadings from one side only. It should me mentioned that if an inner frame was being optimized, 

two floor loads would be added to the beams, so greater optimal reinforcements would be 

expected for both intact and column loss scenarios. However, real life occurrences of 

progressive collapse due to terrorist attacks, for instance, shows that facade columns at the 

ground floor are usually more prone to sudden loss. 

For the studied frame, pushdown analysis for middle column loss rarely shows the 

snap-through behavior that is always observed for the RC beam subassemblage, and when it 

does, is significantly less prominent (Figure 4.14). Besides, ultimate capacity at CA is shown 

to be reduced when the entire system is addressed, which is aligned to the observed behaviors 

in the validation examples of RC beams and frames in Section 3.4.2.  

 

Figure 4.14 – Typical static pushdown curves for the RC frame (a) and the RC beam 

subassemblage (b) estimated for the same 200 sample points. 

 

Source: own authorship. 

Beam sensitivity analysis reveals a distinct behavior for some relevant variables 

(Figure 4.15). While a reduced beam depth increases the ultimate load capacity in a RC beam 

subassemblage, the opposite is observed for the RC frame system. This major difference relies 

on the horizontal drift at the adjacent columns, since they lack a perfect horizontal confinement 

for the beams when the entire RC frame is addressed.  
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Figure 4.15 – Beam sensitivity analysis comparison. 

 

Source: own authorship. 
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In view of this, significant changes in the optimal risk-based design are expected for 

the frame system in comparison to the beam subassemblage. Additionally, concrete strength 

has a reduced role in the pushdown development when the RC frame system is adopted, since 

the increase in CAA capacity observed in the beam subassemblage model is not present. 

Once again,total expected cost 𝐶𝑇𝐸 addresses manufacturing costs and the expected 

costs of all failure modes of the intact structure and each column loss scenario. Since the frame 

is symmetric, the loss of the exterior (CL1 and CL7), penultimate (CL2 and CL6) and 

antepenultimate columns (CL3 and CL5) are considered twice in 𝐶𝑇𝐸. Additional life-cycle 

costs could be included in the objective function, but only those related to construction and loss 

are used in order to solely address the consequences of progressive collapse, as done in Beck et 

al. (2020; 2022), Ribeiro et al. (2023), and the previous examples.  

 

 
𝐶𝑇𝐸(𝑿, 𝒅) = 𝐶𝑀 + ∑𝑘𝑖𝑃𝑓𝑖𝐶𝑀𝐴𝑖

𝑁𝐼𝐹

𝑖=1

+ ∑ ∑ 𝑘𝑗𝑃𝑓𝑗𝐶𝑀𝐴𝑗𝑃𝐿𝐷𝑘𝑗

𝑁𝐶𝐿𝐹

𝑗=1

𝑁𝐶𝐿

𝑘=1

 

 

(4.11) 

Based on Beck et al. (2022), 𝐶𝑀𝐴 refers to the construction cost of the damaged area 

by a given failure mode. In the previous examples, 𝐶𝑀 = 𝐶𝑀𝐴 since only a RC beam 

subassemblage is addressed, so this distinction was not necessary. Design variables are the 

beam depth ℎ𝐵, beam rebar diameter (bottom 𝜙𝐵 and top 𝜙𝑇 layers), beam stirrup spacing 𝑠𝑡, 

column size ℎ𝐶  (square column), and diameter of column reinforcement 𝜙𝐶 . As mentioned in 

section 3.2, design variables that can be represented as deterministic are addressed as random 

variables with low uncertainty in order to allow the usage of WASM for reliability analysis. 

Since multiple columns are subject to sudden loss, 𝑃𝐿𝐷 is addressed in two different 

manners: a) 𝑃𝐿𝐷 relates to a specific column at a time, so the optimal risk-based design for each 

scenario is studied individually; b) 𝑃𝐿𝐷 relates to the loss of any supporting element, so each 

column is under a probability 𝑃𝐿𝐷𝑐𝑜𝑙 = 𝑃𝐿𝐷/(number of columns) simultaneously. This allows 

to address how each scenario influences over the optimal design, and how they compete with 

each other in terms of reinforcement allocation when all of them are possible to occur. 

In this first RC frame example, two distinct strategies are adopted for progressive 

collapse reinforcement: one regarding the regions of the frame to be strengthened (total or 

partial reinforcement), and the second regarding the amount of ductility provided by the 

longitudinal rebars (in terms of 𝜀𝑠𝑢). Additional strategies, such as including structural fuses, 

will be addressed in future studies.  
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Probability of occurrence of each failure mode is estimated by metamodeling via IDW, 

which relies on 2000 design support points with probabilities computed via WASM (as shown 

in section 3.2). Table 4.11 shows the limit state functions, consequence factor 𝑘 for all failure 

modes, and the extent of the final damaged area affected by each failure mode (in red).  

 

Table 4.11 – Failure modes depiction. 

Case 
Failure 

mode 
𝑘 Limit state function Damaged area 

Intact 

structure 

(𝐼) 

Large 

deflection 
5 𝑔𝐼,𝑆𝐸(𝒙) = 𝛿𝑙𝑖𝑚 − 𝛿(𝑞𝐼) 

 

Bending 

failure at 

midspan 

30 𝑔𝐼,𝐵𝑀(𝒙) = 𝑀𝑅𝑀 − 𝑀𝑀(𝑞𝐼) 

 

Bending 

failure at 

beam ends 

30 𝑔𝐼,𝐵𝐸(𝒙) = 𝑀𝑅𝐸 − 𝑀𝐸(𝑞𝐼) 

 

Shear 

failure 
60 𝑔𝐼,𝑆𝐻(𝒙) = 𝑉𝑅 − 𝑉(𝑞𝐼) 

 

Column 

failure 
60 𝑔𝐼,𝐶𝑂𝐿(𝒙) = 𝑅(𝑁𝑅 , 𝑀𝑅) − 𝑆(𝑁𝑆𝐼 , 𝑀𝑆𝐼) 

 

Column 

loss 

(𝐶𝐿𝑖) 

Rebar 

rupture 
40 𝑔𝐶𝐿𝑖,𝑆𝑅(𝒙) = 𝑞𝐶𝐿𝑖,𝑆𝑅 − 𝑞̃𝐶𝐿 

 

Shear 

failure 
60 𝑔𝐶𝐿𝑖,𝑆𝐻(𝒙) = 𝑉𝑅 − 𝑉(𝑞̃𝐶𝐿) 

 

Column 

failure 
80 𝑔𝐶𝐿𝑖,𝐶𝑂𝐿(𝒙) = 𝑅(𝑁𝑅 , 𝑀𝑅) − 𝑆(𝑁̃𝑆𝐶𝐿𝑖, 𝑀̃𝑆𝐶𝐿𝑖) 

 

Source: own authorship. 

Beam failure at the intact scenario is considered to damage only one continuous beam, 

since it is unlikely that live load reaches its 50-year extreme value in all stories simultaneously. 

Column failure at the intact scenario is considered only at the top corner due to the greater 

bending moments and low compressive forces in these regions (Section 3.4.2). Even with a 

eccentricity of 20 mm, column failure did not occur at the base of an inner column. 
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Middle column loss scenario is chosen just to illustrate the damaged areas in Table 

4.11, but the actual frame portion to be damaged depends on which column is suddenly lost. 

Beam failure in column loss scenarios leads to an upward vertical propagation of progressive 

collapse, while failure of the adjacent columns results in one stage of horizontal propagation 

followed the immediate upward propagation of an increased portion of the frame (BECK et al. 

2022). Depiction of Figure 4.18 justifies the adopted damaged frame area for this failure mode.  

Table 4.12 shows the adopted uncertainty modelling for reliability analysis at the 

design support points, as well as the sampling domain 𝒮 and design domain 𝓓. Boundary values 

for 𝓢 are chosen in terms of 𝝁 ± 2𝝈 for each random variable, since values beyond 2𝝈 have a 

reduced weight contribution and can be neglected without compromising the necessary 

efficiency for estimating the probabilities. Thus, lower and upper bounds for 𝒮 for the random 

design variables are chosen in terms of 𝝁𝑚𝑖𝑛(𝓓) − 2𝝈 and 𝝁𝑚𝑎𝑥(𝓓) + 2𝝈, respectively.  

Since the diameter for each rebar is optimized in this example, a fixed number of 3 

rebars at each beam layer and 8 rebars for the square columns is adopted, as shown in Figure 

4.16. For this example, with 6 random design variables and 8 random variables, 10 million 

sample points created via LHS are enough to ensure probability convergence for each failure 

mode of 2000 design support points. Each sample point created via LHS has its limit states 

evaluated as shown in Table 4.13, with the most relevant internal forces and ultimate load 

capacity at CA estimated via IDW metamodeling. This initial metamodeling stage relies on 

2000 limit state support points, which are created via LHS and serves as input for structural 

analysis using OpenSees for both intact structure scenario and each column loss scenario. 

 

Figure 4.16 – Cross-sections to be optimized in the RC frame. 

 

Source: own authorship. 
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Table 4.12 - Uncertainty modeling. 

Category RV Distribution Mean 
Standard 

deviation 

Coefficient 

of variation 

Geometry 

Beam  

depth (ℎ𝐵) 
Normal 

To be 

optimized* 
1 mm - 

Bottom rebar  

diameter (𝜙𝐵) 
Normal 

To be 

optimized* 

- 0.05 

Top rebar  

diameter (𝜙𝑇) 
Normal 

To be 

optimized* 

- 0.05 

Stirrup  

spacing (𝑠𝑡) 
Normal 

To be 

optimized* 
- 

0.05 

(assumed) 

Column 

size (ℎ𝐶) 
Normal 

To be 

optimized* 
1 mm - 

Column rebar  

diameter (𝜙𝐶) 
Normal 

To be 

optimized* 
- 0.05 

Material 

Concrete  

strength (𝑓𝑐
′) 

Lognormal 32 MPa - 0.12 

Rebar yield  

strength (𝑓𝑦) 
Normal 510 MPa - 0.05 

Concrete unit  

weight (𝛾𝑐) 
Normal 25 kN/m³ - 

0.05 

(assumed) 

Ultimate steel  

strain (𝜀𝑠𝑢) 
Normal 

0.13 (1st case) 

0.20 (2nd case) 
- 0.14 

Loads 

Dead  

load (𝐷) 
Normal 1.05𝐷𝑛 - 0.10 

50-year live  

load (𝐿50) 
Gumbel 1.00𝐿𝑛 - 0.25 

Arbitrary point in 

time live load 

(𝐿𝑎𝑝𝑡) 

Gamma 0.25𝐿𝑛 - 0.55 

Analysis Model error (𝑀𝐸) Lognormal 1.101 0.187 - 

Source: Ellingwood and Galambos (1982), JCSS (2001), Real, Campos Filho and Maestrini (2003), Wisniewski 

et al. (2012), Santiago (2018), Santiago and Beck (2018), Parisi et al. (2018), Costa and Beck (2024a; 2024b). 
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Each beam span is discretized in 5 fiber displacement-based finite elements (3 Gauss-

Lobatto integration points in each), being 3 finite elements for the beam itself and 1 at each 

beam end to represent the joint region. Praxedes (2020) shows the efficiency of this approach 

in terms of minimal refinement level and agreement with experimental static pushdown curves, 

although the beam-column joints are not explicitly modelled.  

Corrotational transformation is used for all beam and column elements to account for 

the expected large geometrical nonlinearities. In order to avoid convergence issues along the 

entire sampling domain 𝒮, the cross-section layering consists of  200 fibers for the confined 

concrete and 10 fibers for each face of unconfined concrete cover. Static bay pushdown analysis 

is performed with a displacement-based integrator using Kylov-Newton method to solve the 

nonlinear problem (tolerance of 10
-5

). An initial increment size of 1 mm is adopted, but an 

adaptive algorithm is used to enhance or decrease the step depending on the lack or need of 

convergence improvement, respectively.  

Since in bay pushdown analysis only the beam spans adjacent to the lost column have 

an increasing load applied, two load steps are adopted: a) nominal dead and live load are applied 

over all beam spans, as well as the self-weight of each structural member on itself; b) if beam 

rebar rupture does not occur on the first stage (possible for weak beam configurations), an 

increasing load is applied over the beam spans of interest until rebar rupture is verified. 

The modified Park-Kent model (Park et al. 1982) is used as reference to estimate the 

confined and unconfined concrete behavior in compression, and the multilinear model from fib 

Model Code (2012) is the reference for concrete in tension. As shown in Figure 4.17, all main 

parameters from both models are used as inputs for the “concretewBeta” model available in 

OpenSees. Some parameters shown in Figure 4.17a, such as 𝐾, 𝜀20𝑢 and 𝜀20𝑐 are outputs from 

the reference concrete model (Park et al. 1982), relying on cross-section geometry, 𝑓𝑐
′ and 

stirrup detailing to be inferred.  

Although commonly used for RC truss modelling, concretewBeta is able to 

satisfactorily represent softening and residual stresses both in tension and compression. 

Residual stress of tensile concrete is negligible in the applications of this study, but assuming a 

residual value of 0.01𝑓𝑐𝑡𝑚 is enough to avoid major convergence issues from singular stiffness 

matrixes.  

Rebar behavior is represented by the “ReinforcingSteel” model available in OpenSees, 

which realistically encompasses the linear elastic region, the yield plateau, strain hardening, 

and strain softening which are expected for typical steel reinforcements (Figure 4.17b).  
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Usual bilinear models are not used due a fixed value of hardening modulus of elasticity 

𝐸𝑠ℎ being adopted, which leads to load x displacement discrepancies and unrealistic rebar 

stresses for advanced stages of CA. As shown in section 3.3, this realistic rebar model results 

in close agreement with experimental data.  

 

Figure 4.17 – Constitutive models and parameter values for concrete (a) and rebars (b). 

 

Source: own authorship. 

Material nonlinear behavior is not considered in column discretization in order to avoid 

sudden breaks in the pushdown curve due to compressive rebar yielding and column buckling, 

as mentioned in section 3.3. This ensures a smooth and continuous force vs displacement curve, 

enabling metamodeling strategies to be efficiently used in order to proceed to reliability 

analysis.  

As mentioned in section 3.5, satisfactory dispersion curves were not obtained even 

with 30 thousand limit state support points when explicitly addressing column failure. 

Therefore, one finite element with linear material behavior is assumed for columns in structural 

analysis, which still ensures a realistic evolution of axial forces and bending moments until the 

resisting envelope of the column is reached (as shown in section 3.4.2).  
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This simplified approach allows the internal forces to go beyond the cross section 

resisting envelope without a sudden force redistribution to keep further increments within the 

column resisting limit. Besides, this allows to estimate the frame load capacity at CA even 

though premature column failure may happen before it, ensuring a smooth behavior for all the 

probabilities of failure across the design domain 𝓓.  

Herein, assuming a structural configuration prone to premature shear and/or column 

failures still relies on an estimated pushdown curve that increases until ultimate beam capacity 

at CA is reached. Although this is the only solution found to efficiently enable metamodeling 

strategies, reliability analysis, and ultimately the risk-based optimization, the estimated 

pushdown curve may differ from the realistic behavior if a premature failure occurs. However, 

this is not an issue for the proposed risk-based approach.  

Beam shear and column internal forces realistically increase until their resisting limits 

are reached. As long as the internal forces are within their limits, the pushdown curve is realistic. 

Besides, when addressing the expected costs of failure, premature failure modes have greater 

penalization factors when compared to the ductile beam failure at CA. Hence, optimal risk-

based design solutions are expected to not be prone to premature failure modes. 

Based on Beck et al. (2020; 2022) and Ribeiro et al. (2023), the multipliers 𝑘 reflect 

the severity of a given failure mode in terms of the construction cost of the area affected by the 

given failure mode 𝐶𝑀𝐴.Values range accordingly to the analysis by Marchand and Stevens 

(2015), which compares the cost of construction to the cost of collapse of the Alfred P. Murrah 

Federal Building, World Trade Center and Pentagon. Hence, less severe failure modes, such as 

serviceability failure in terms of allowable displacements and bending failure (cross-section 

plastification by rebar yielding and/or concrete softening) have smaller values of 𝑘, while brittle 

shear and column failures have greater values.  

As done in the previous example, rebar rupture in CA is considered the less severe 

failure mode for the column loss scenarios. Great displacements appear prior to rebar failure at 

CA, allowing enough time for building evacuation, so it is expected that the frame reaches this 

last line of defense against redistribution-type progressive collapse if it is unavoidable.  

Identifying critical failure sequences to simplify the problem is fundamental 

(Rodrigues da Silva et al. 2024). Brittle shear for the column loss scenarios interrupts the full 

development of CA in the double span beams (or cantilever beam for an external column loss 

scenario), triggering a premature upward collapse propagation. Thus, Figure 4.18 shows how 

the failure of the columns adjacent to the lost one (due to a hazard and expressed in terms of 

𝑃𝐿𝐷) triggers a lateral propagation of collapse.  



116 

 

Figure 4.18 – Illustration of horizontal collapse progression due to column failure. 

 

Source: own authorship. 

When the first set of adjacent columns reach failure, beam span length increases above 

the updated number of lost columns, which in turn causes greater bending moments and axial 

forces for the remaining columns, mainly for the new set of adjacent columns. Since herein all 

columns have the same cross-section, failure of the initial set of adjacent columns unavoidably 

propagates the failure to the new set of adjacent columns, and failure propagates laterally until 

the increased beam span above reaches its new ultimate load-bearing capacity. Hence, adjacent 

column failure at a column loss scenario triggers a horizontal collapse propagation that 

advances until the upward propagation is unavoidable, resulting in a significantly increased 

extension of the damaged area and justifying the choice of greater 𝑘 value for it.  

Reliability analysis for the design support points reveals probabilities of beam failure 

due to rebar rupture greater than 0.99 when the first set of adjacent columns is removed, and 

equal to 1.00 for the upcoming stages. Therefore, only the 1st and 2nd stages (enclosed by a 

dashed dark red line in Figure 4.18) are actually addressed for adjacent column failure in the 

missing column loss scenarios. 
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4.3.1 Optimal design solutions 

 

In order to address how the amount of reinforcement ductility influences over the 

optimal design, two mean values of ultimate steel strain are considered for column loss 

scenarios: 0.13, as used in the reference frames of Yu and Tan (2013), and 0.20, as commonly 

used in studies of structural robustness.  

For each case the optimal risk-based design is investigated for increasing values of 𝑃𝐿𝐷 

for each column loss scenario individually, and then considering the loss of any column in the 

first floor. Firefly algorithm is used to solve the optimization problem, relying on 10 

optimization runs for each 𝑃𝐿𝐷 value, 100 iterations per run, and 40 fireflies.  

An initial extensive search with 10000 fireflies is done over 𝓓 to improve convergence 

around the global optima, so only the 40 most bright fireflies are kept in further iterations. It 

should be noticed that the auxiliary extensive search + iterations only take a few seconds. This 

is possible due to IDW metamodeling to estimate the reliability indexes accurately for each 

failure mode at any region of the design domain 𝓓. 

Tables 4.14 to 4.18 shows the optimal risk-based results at each columns loss scenario 

for all strengthening strategies. Starting from 𝑃𝐿𝐷
𝑚𝑖𝑛, the optimal design for all column loss 

scenarios remains constant until a threshold 𝑃𝐿𝐷
𝑡ℎ  value is reached. Optimal 1st stage beam design 

is similar to the one found previously for the RC beam subassemblage. The slightly increased 

beam depth of 576 mm is compensated by a reduction in the top rebar diameter to 19 mm and 

increase in stirrup spacing to 200 mm, leading to reinforcement ratios of 0.26% for bottom 

rebars, 0.49% for top rebars and 0.17% for stirrups.  

By comparing with the first example, allowing an upper bound of 600 mm for beam 

depth leads to a 1st stage design 1.8% more expensive in terms of beam manufacturing cost, 

but with greater overall resistance: 17% more for bending at midspan, 5% more for bending at 

beam ends, and 15% greater shear capacity. The advantages are more evident when addressing 

the second example (section 4.2), for which a 19% reduction in beam manufacturing costs leads 

to an overall increase of 25% for bending and shear capacities.  

Hence, in terms of conventional scenarios under normal loading condition, ensuring 

greater moment of inertia by increasing beam depth seems to be the best approach for 

minimizing beam constructive costs and enhancing its resisting capacity. This is especially 

more evident when dealing with more expensive unitary construction costs. 
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Optimal column design seems to be indifferent to 𝑃𝐿𝐷 for all scenarios and 

reinforcement strategies, showing slight increases of a few mm in column size and up to 2 mm 

in column rebar diameter even for greater values of 𝑃𝐿𝐷. Load combination of usual loading 

condition 𝑞𝐼 = 1.2𝐷𝑛 + 1.6𝐿𝑛 leads to approximately 63 kN/m for beam spans and 4.8 kN/m 

for column spans (𝐷𝑛 = 7.1 kN/m² and 𝐿𝑛 = 4.8 kN/m²), so a total of 2000 kN is roughly 

expected at the foot of an inner column. This estimated demand is just 40% of the ultimate axial 

capacity of the optimal cross-section, and addressing a minimum eccentricity of 20 mm (IS, 

2000) still keeps the axial load x bending moment demand in the column resisting envelope. 

However, structural analysis shows that bending moments at the frame top corners 

have values ~5% of the axial demand at the foot of the inner columns. Thus, bending moments 

of roughly 100 kNm combined with negligible axial forces are expected at the top of corner 

columns. By addressing the column resisting envelope, column strength reduction factors 𝜙 

ranging from 0.65 to 0.90 leads to an axial load x bending moment demand close to the resisting 

threshold. Hence, optimal 1st stage column design leads to Demand Capaciy Factors (DCRs) 

ranging from 1.18 (𝜙 = 0.65) to 0.85 (𝜙 = 0.9). Although leading to DCR > 1 for smaller 𝜙 

values, the difference is small and column plastification in the frame top corner is not as severe 

as if it happens in the foot of a ground floor column (as discussed in Section 3.4.2). 

Load combination for extraordinary loading condition is used with a DAF of 1.22 

(common value after CAA). So, 𝑞𝐶𝐿 = 1.22 (1.2𝐷𝑛 + 0.5𝐿𝑛) leads to 57 kN/m for the double 

span beams, 47 kN/m in the non-affected span beams and 4.8 kN/m for column spans, so a total 

of 2550 kN is roughly expected at the foot of the column adjacent to the lost one. Although this 

axial demand being 50% of the column axial capacity, optimal column design at the 2nd stage 

relies once again in the bending moment demand. As discussed in section 3.3, beams require 

enough axial restraint in order to Catenary Action (CA) to be developed, and herein this is 

provided by the RC columns. As shown in Figure 4.15a, the pushdown curves may reach 

vertical drifts ranging from ~2 ℎ𝐵 to ~4ℎ𝐵, related to significant axial tensile. These enhanced 

axial forces due to CA cause severe bending moments in the adjacent columns, promoting their 

rebars to yield and compromising their lateral restraint capabilities. Hence, as opposed to the 

previous example, optimal design focuses on the CAA mechanism (greater beam depths).  

The threshold value that defines a positive cost-effect in strengthening depends on the 

frame extent to be strengthened. It also depends on the amount of ductility provided, but in a 

smaller scale. Loss of the exterior column (CL1) is the only noticeable exception, with 𝑃𝐿𝐷
𝑡ℎ  

between 10−2 and 10−1 no matter what reinforcement decision is being adopted.  
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Table 4.14 – Optimal risk-based design for each individual scenario of column loss, low ductility rebars and whole frame strengthened. 

Scenario 𝑃𝐿𝐷 
ℎ𝐵

∗  

(mm) 

𝜙𝐵
∗  

(mm) 

𝜙𝑇
∗  

(mm) 
𝑠𝑡
∗ (mm) 

ℎ𝐶
∗  

(mm) 

𝜙𝐶
∗  

(mm) 
𝐶∗

𝑇𝐸 (€) 𝐶𝑀
∗  (€) 

𝐶𝐵𝑒𝑎𝑚
∗  

(€ / m) 

𝐶𝑐𝑜𝑙𝑢𝑚𝑛
∗  

(€ / m) 

External 

column 

loss 

(CL1) 

≤ 10
-3

 576 14 19 200 400 16 30741.33 30389.03 83.78 127.14 

10
-2

 576 14 19 200 400 16 33287.39 30389.02 83.78 127.14 

10
-1

 588 26 26 149 400 17 42412.93 40923.34 140.96 129.15 

1 598 25 28 134 400 17 44390.52 42354.93 147.17 131.75 

Penult. 

column 

loss  

(CL2) 

≤ 10
-3

 576 14 19 200 400 16 30741.95 30389.03 83.78 127.14 

10
-2

 576 14 19 200 400 16 34522.53 30389.02 83.78 127.14 

10
-1

 590 26 26 148 400 17 41565.87 40996.14 141.25 129.32 

1 600 25 28 135 400 17 43230.63 42537.87 147.51 132.76 

Antepenult. 

column 

loss  

(CL3) 

≤ 10
-3

 576 14 19 200 400 16 30743.50 30389.03 83.78 127.14 

10
-2

 581 14 19 199 400 16 36942.24 30806.65 85.49 128.05 

10
-1

 589 26 26 149 400 17 41361.58 40956.93 141.04 129.30 

1 600 25 28 139 400 17 42639.68 42306.72 147.13 131.42 

Middle 

column 

loss  

(CL4) 

≤ 10
-3

 576 14 19 200 400 16 30744.28 30389.03 83.78 127.14 

10
-2

 580 14 19 200 400 16 31584.05 30820.03 85.66 127.92 

10
-1

 587 26 26 149 400 17 41202.75 40968.68 141.19 129.19 

1 600 25 28 135 406 17 42634.67 42513.72 147.33 132.79 

Source: own authorship. 
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Table 4.15 – Optimal risk-based design for each column loss scenario, greater ductility rebars and whole frame strengthened 

Scenario PLD 
hB

∗  

(mm) 

ϕB
∗  

(mm) 

ϕT
∗  

(mm) 
st
∗ (mm) 

hC
∗  

(mm) 

ϕC
∗  

(mm) 
C∗

TE (€) CM
∗  (€) 

CBeam
∗  

(€ / m) 

Ccolumn
∗  

(€ / m) 

External 

column 

loss 

(CL1) 

≤ 10
-3

 576 14 19 200 401 16 30994.74 30389.03 83.78 127.14 

10
-2

 576 14 19 200 401 16 33287.33 30389.02 83.78 127.14 

10
-1

 597 20 26 151 412 16 39314.92 38250.37 125.15 130.59 

1 600 25 28 137 412 17 42885.04 42490.03 147.03 133.10 

Penult. 

column 

loss  

(CL2) 

≤ 10
-3

 576 14 19 200 401 16 31118.25 30389.03 83.78 127.14 

10
-2

 576 14 19 200 401 16 34522.48 30389.02 83.78 127.14 

10
-1

 595 20 26 157 413 17 39413.46 38050.66 123.32 131.67 

1 600 25 28 138 413 17 42696.26 42338.31 146.86 132.08 

Antepenult. 

column 

loss  

(CL3) 

≤ 10
-3

 576 14 19 200 401 16 31428.39 30389.03 83.78 127.14 

10
-2

 584 14 19 199 400 17 36062.45 31214.29 85.58 131.31 

10
-1

 600 20 26 157 408 17 39061.80 38257.98 124.16 132.14 

1 600 25 28 135 408 17 42592.19 42497.36 147.33 132.71 

Middle 

column 

loss  

(CL4) 

≤ 10
-3

 576 14 19 200 401 16 31583.99 30389.03 83.78 127.14 

10
-2

 581 14 19 200 401 17 36921.59 31376.24 86.40 131.44 

10
-1

 597 20 26 153 406 17 39135.82 38330.48 125.18 131.21 

1 600 25 28 134 406 17 42634.67 42513.72 147.38 132.77 

Source: own authorship. 
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Table 4.16 – Optimal risk-based design for each individual scenario of column loss, low ductility rebars and strengthening in the 2 first floors. 

Scenario 𝑃𝐿𝐷 
ℎ𝐵

∗  

(mm) 

𝜙𝐵
∗  

(mm) 

𝜙𝑇
∗  

(mm) 
𝑠𝑡
∗ (mm) 

ℎ𝐶
∗  

(mm) 

𝜙𝐶
∗  

(mm) 
𝐶∗

𝑇𝐸 (€) 𝐶𝑀
∗  (€) 

𝐶𝐵𝑒𝑎𝑚
∗  

(€ / m) 

𝐶𝑐𝑜𝑙𝑢𝑚𝑛
∗  

(€ / m) 

External 

column 

loss 

(CL1) 

≤ 10
-3

 576 14 19 200 401 16 31294.79 30388.91 83.78 127.14 

10
-2

 576 14 19 200 400 16 33913.41 30392.91 83.78 127.18 

10
-1

 600 25 28 135 400 17 43058.98 42443.77 146.84 132.99 

1 600 25 28 137 400 17 44768.34 42498.23 147.31 132.75 

Penult. 

column 

loss  

(CL2) 

≤ 10
-3

 576 14 19 200 401 16 30685.62 30069.02 84.13 127.75 

10
-2

 600 20 26 153 402 16 33836.69 33188.65 125.77 130.28 

10
-1

 589 26 26 147 400 17 34820.34 34257.38 141.33 130.20 

1 600 25 28 134 401 17 35534.19 34832.16 147.04 132.59 

Antepenult. 

column 

loss  

(CL3) 

≤ 10
-3

 576 14 19 200 401 16 30784.62 30174.30 84.52 129.35 

10
-2

 591 21 26 151 405 17 33586.22 33088.29 124.58 129.96 

10
-1

 590 26 26 148 400 17 34638.90 34247.30 141.13 129.29 

1 600 25 28 134 401 17 35149.26 34868.60 147.46 132.72 

Middle 

column 

loss  

(CL4) 

≤ 10
-3

 576 14 19 200 401 16 31061.62 30112.47 84.71 129.23 

10
-2

 600 20 26 153 401 16 33721.38 33142.14 125.73 130.34 

10
-1

 590 26 26 148 401 17 34911.80 34250.85 146.49 132.60 

1 600 25 28 139 401 17 35142.90 34785.19 147.56 132.78 

Source: own authorship. 
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Table 4.17 – Optimal risk-based design for each column loss scenario, greater ductility rebars and strengthening in the 2 first floors 

Scenario PLD 
hB

∗  

(mm) 

ϕB
∗  

(mm) 

ϕT
∗  

(mm) 
st
∗ (mm) 

hC
∗  

(mm) 

ϕC
∗  

(mm) 
C∗

TE (€) CM
∗  (€) 

CBeam
∗  

(€ / m) 

Ccolumn
∗  

(€ / m) 

External 

column 

loss 

(CL1) 

≤ 10
-3

 576 14 19 200 401 16 30568.72 30066.57 84.12 127.71 

10
-2

 576 14 19 200 400 16 32913.38 30015.60 83.78 127.15 

10
-1

 595 25 28 140 400 17 34865.69 34690.66 146.29 130.77 

1 600 25 28 135 400 17 35238.62 34853.04 147.24 132.73 

Penult. 

column 

loss  

(CL2) 

≤ 10
-3

 576 14 19 200 401 16 30685.56 30069.01 84.13 127.75 

10
-2

 600 19 27 138 400 17 33512.69 33204.41 125.36 131.21 

10
-1

 600 20 26 153 401 16 34545.96 33192.13 125.82 130.27 

1 600 25 28 135 400 17 35150.65 34876.60 147.53 132.79 

Antepenult. 

column 

loss  

(CL3) 

≤ 10
-3

 576 14 19 200 401 16 30784.51 30174.04 84.51 129.36 

10
-2

 599 19 26 151 400 17 33238.40 33028.59 122.19 132.29 

10
-1

 600 20 26 152 404 17 33993.89 33164.52 124.57 131.56 

1 600 25 28 138 400 17 34914.74 34852.43 147.19 132.79 

Middle 

column 

loss  

(CL4) 

≤ 10
-3

 576 14 19 200 401 16 30852.53 30174.07 84.51 129.36 

10
-2

 597 19 27 138 401 17 33443.74 33222.64 124.75 132.50 

10
-1

 600 20 26 158 400 18 34007.25 33263.91 123.36 135.43 

1 596 25 28 134 402 17 34931.39 34736.58 147.36 130.14 

Source: own authorship. 
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Table 4.18 – Optimal risk-based design addressing sudden loss at any ground floor column. 

Scenario PLD 
hB

∗  

(mm) 

ϕB
∗  

(mm) 

ϕT
∗  

(mm) 
st
∗ (mm) 

hC
∗  

(mm) 

ϕC
∗  

(mm) 
C∗

TE (€) CM
∗  (€) 

CBeam
∗  

(€ / m) 

Ccolumn
∗  

(€ / m) 

Entire frame 

strengthened 

Low 

ductility 

≤ 10
-3

 576 14 19 200 400 16 30740.11 30389.03 83.78 127.14 

10
-2

 576 14 19 200 401 16 31238.16 30389.03 86.98 130.43 

10
-1

 582 25 25 198 400 17 35372.65 31360.22 140.86 129.41 

1 589 25 28 152 401 17 41772.35 40935.29 146.78 131.48 

Entire frame 

strengthened  

Greater 

ductility 

≤ 10
-3

 576 14 19 200 400 16 31238.11 30389.03 83.78 127.14 

10
-2

 583 14 19 199 400 17 35183.22 31188.82 86.41 129.86 

10
-1

 595 20 26 160 404 16 39427.41 37782.89 122.73 130.33 

1 600 25 28 136 400 17 42714.02 42486.48 147.25 132.73 

Two floors 

strengthened  

Low 

ductility 

≤ 10
-3

 576 14 19 200 401 16 30705.37 30182.34 84.71 129.23 

10
-2

 600 20 26 153 404 16 33839.96 33189.20 125.73 130.34 

10
-1

 600 25 28 137 400 17 34909.86 34793.04 146.49 132.60 

1 600 25 28 135 400 17 35747.93 34878.20 147.56 132.78 

Two floors 

strengthened  

Greater 

ductility 

≤ 10
-3

 576 14 19 200 401 16 30785.70 30098.34 84.68 127.54 

10
-2

 600 18 27 140 400 17 33420.76 33135.32 122.98 133.33 

10
-1

 595 20 26 156 400 17 34499.01 33108.15 124.40 130.65 

1 600 25 28 144 400 17 35007.08 34683.61 145.78 131.40 

Source: own authorship.
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As discussed in Section 3.3, 2D analysis shows that exterior column loss is the most 

demanding scenario. In fact, ultimate load-bearing capacity increases as the missing column 

scenario (ground floor) is located inner in the frame, reaching a maximum for middle column 

loss. Catenary Action (CA) effectiveness is shown to be enhanced as the amount of lateral frame 

confinement increases from both sides. Middle column loss has the greatest amount of 

remaining adjacent spans in each side, so the maximum mobilization of CA is achieved. The 

opposite is true for external column loss, as insufficient axial restraints makes the frame rely 

only on bending action and Vierendeel action. Therefore, greater costs of strengthening are 

expected for CL1 to provide a satisfactory load-bearing capacity, and this is shown to be 

justifiable only for larger threats for all the adopted reinforcement decisions.  

When addressing only CL1, optimal 2nd stage beam design shows almost identical 

reinforcement ratios for both reinforcement strategies: 0.82% for bottom rebars, 1.03% for top 

rebars, and 0.25% for stirrups. However, the benefits of the strengthening strategies are shown 

in terms of 𝐶𝑇𝐸 and 𝐶𝑀. Greater ductility rebars provide an economy of ~1000€ in 𝐶𝑇𝐸 for both 

total and partial frame reinforcement, but it does not reduce 𝐶𝑀. However, partial frame 

strengthening reduces both 𝐶𝑀 and 𝐶𝑇𝐸  in 19% when compared to total reinforcement, although 

it is only effective for loss in the first storey. The gap between optimal values of 𝐶𝑀 and 𝐶𝑇𝐸 

for CL1 ranges from 2000 € (low ductility rebars) to 1000 € (greater ductility rebars).  

For a given setup of design parameters, ultimate capacity is expected to be greater for 

penultimate column loss (CL2) due to CA now being achievable. Yet, the same optimal 2nd 

stage beam design from CL1 is shown to be optimal for CL2. Greater ductility rebars still 

provide an economy of ~1000€ in 𝐶𝑇𝐸 for both total and partial frame reinforcement, and partial 

frame strengthening now reduces both 𝐶𝑀 and 𝐶𝑇𝐸  in 17% when compared to whole frame 

reinforcing. Still, the gap between optimals 𝐶𝑀 and 𝐶𝑇𝐸 is smaller for CL2, ranging from ~800€ 

(low ductility rebars) to ~300€ (greater ductility rebars). Since additional load-bearing capacity 

is possible due to CA, and 𝐶𝑀
∗  for CL1 and CL2 are equivalent, ∑𝐶𝑒𝑓

∗  for CL2 is reduced. 

Antepenultimate column has even greater lateral restraint, so an enhanced ultimate 

capacity is expected at CA. Yet, the same optimal 2nd stage beam design from CL1 and CL2 

is found for CL3. Partial frame strengthening still reduces both 𝐶𝑀 and 𝐶𝑇𝐸  by 17% when 

compared to a whole frame reinforcing, and the gap between optimal 𝐶𝑀 and 𝐶𝑇𝐸 is ~200€ for 

both low ductility and greater ductility rebars. The economy of ~1000€ in 𝐶𝑇𝐸 previously found 

for greater ductility rebars is significantly reduced to ~200€. Hence, ∑𝐶𝑒𝑓
∗  gets significantly 

reduced as the CA mechanism efficiency increases, even for low ductility rebars.  
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Optimal 2nd stage beam designs for middle column loss behave similarly to those from 

CL3. Partial frame strengthening reduces 𝐶𝑀 and 𝐶𝑇𝐸  in 17%, and the gap between optimal 𝐶𝑀 

and 𝐶𝑇𝐸 is ~200€ independently on rebar ductility. Greater ductility rebars once again provide 

an economy of ~200€ in 𝐶𝑇𝐸. Although the CA effectiveness for CL4 is greater than CL3, its 

effect in a risk-based approach is found to be equivalent to CL3. 

Tables 4.14 to 4.18 show that the cost-benefit of reinforcement against progressive 

collapse is justifiable for lower threat probabilities as the CA effectiveness increases. As 

mentioned earlier, CL1 is the only scenario with 𝑃𝐿𝐷
𝑡ℎ  ranging between 10−2 to 10−1 

independently on the reinforcement strategy, which is due to a lower ultimate capacity resulting 

from a lack of CA mechanism. Penultimate column loss is the first scenario to allow CA to be 

developed, although not so efficiently. This leads to 𝑃𝐿𝐷
𝑡ℎ  ranging between  10−2 to 10−1 when 

a more expensive total frame reinforcement is addressed, but this range reduces from 10−3 to 

10−2 if the reinforcement is made just in the two first floors.  

Antepenultimate and middle column loss show similar behaviors in this aspect, with 

𝑃𝐿𝐷
𝑡ℎ  ranging between 10−3 to 10−2 for all reinforcement strategies due to their extra enhanced 

CA capacity. However, optimal designs for 𝑃𝐿𝐷 = 10−2 reveals just a small increase in beam 

depth (to account for shear capacity at CL3 and CL4) when the entire frame reinforcement is 

addressed. If partial frame strengthening is considered, optimal beam designs for 𝑃𝐿𝐷 = 10−2  

show already all characteristics of the optimal 2nd beam design: 0.82% for bottom rebars, 

1.03% for top rebars, and 0.25% for stirrups. 

As shown in the sensitivity analysis of Figure 4.15a and b, increasing ℎ𝐵 increases the 

ultimate load-bearing capacity at the expense of decreasing the overall frame ductility (in terms 

of large displacements) for a same amount of rebar ductility (in terms of 𝜀𝑠𝑢). Hence, optimizing 

ℎ𝐵 while ensuring a thorough usage of confined concrete beyond softening and steel rebars up 

to their ultimate capacity is closely related to a multi-objective optimization problem, as shown 

in Figure 4.19. In terms of ℎ𝐵, each static pushdown curve leads to a solution that fully utilizes 

the resisting capacity of each material, and the set of all solutions corresponds to a Pareto 

frontier in terms of 𝜀𝑠𝑢.  

This Pareto front explicitly shows a tradeoff between ultimate load-bearing capacity 

and overall frame ductility, as increasing one reduces the other. Thus, results shown herein 

demonstrate that the proposed risk-based optimization framework is able to efficiently address 

the best balance between this tradeoff by simultaneously addressing construction costs and 

expected costs of failure. 
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Figure 4.19 – Tradeoff between structural ultimate capacity and frame ductility. 

 

Source: own authorship. 

In this example, ℎ𝐵
∗  = 600 mm (upper bound for ℎ𝐵 in 𝓓) for all cases of individual 

column loss reflects a full preference of load carrying capacity in detriment of frame ductility. 

However, this result is valid specifically for the structure addressed in this example: a perimeter 

primary frame with 6 bays, 5 stories, beam spans of 6 m, column spans of 3.3 m (4 m at ground 

floor), and unusually high values for nominal dead load and live loads (𝐷𝑛 = 7.1 kN/m² and 

𝐿𝑛 = 4.8 kN/m²). Nonetheless, optimization constraints in terms of minimum ductility 

requirements could be adopted in order to ensure a minimal safety margin in terms of time for 

building evacuation. 

 Optimal beam designs with maximum load capacity and minimal vertical drifts, in 

terms of ℎ𝐵
∗ = 600 mm, correspond to smaller tensile axial forces during CA stage, which in 

turn reduces the bending moments acting over the adjacent columns. Hence, beam depth is 

shown to be a highly relevant design variable due to its direct increase in resistance across 6 

failure modes (serviceability in terms of allowable displacements, beam bending at its midspan 

and at its ends, shear failure in both intact and damaged scenarios, and steel rebar rupture) and 

its indirect reduction in moment demand when addressing column failure.  

Reducing ℎ𝐵
∗  in favor of more frame ductility would require additional longitudinal 

and transversal reinforcements, as well as possible greater dimensions for column cross 

sections,  in order to achieve similar safety margins against all failure modes. This approach, 

however, is shown to have no cost-effectiveness in terms of the balance between 𝐶𝑀 and ∑𝐶𝑒𝑓. 
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When 𝑃𝐿𝐷 relates to the sudden loss of any column at ground floor level, optimal 2nd 

stage beam designs still behave similarly to those found for individual column loss. Partial 

frame strengthening reduces 𝐶𝑀 and 𝐶𝑇𝐸  in 16%, and the gap between optimal 𝐶𝑀 and 𝐶𝑇𝐸 

ranges from ~300€ (greater ductility rebars) to ~850€ (low ductility rebars). Nonetheless, 

greater ductility rebars provide a negligible economy in terms of just 𝐶𝑇𝐸, as similarly found 

for the individual loss of the inner columns.  

All reinforcement strategies lead to 𝑃𝐿𝐷
𝑡ℎ  ranging from 10−3 to 10−2, except for the 

case of low ductility rebars combined with whole frame strengthening (10−2 to 10−1). 

However, it should be noticed that  𝑃𝐿𝐷 related to the sudden loss of any column implies, in this 

example, to an individual 𝑃𝐿𝐷𝑐𝑜𝑙 = 𝑃𝐿𝐷/ 7, with 7 being the number of columns subjected to 

local damage.  

Hence, 𝑃𝐿𝐷 ranging from 5 × 10−6 to 1 for any column implies, in this example, that 

each column is subjected to 𝑃𝐿𝐷𝑐𝑜𝑙 ranging from ~7.14 × 10−7 to ~1.428 × 10−1. This explains 

why the overall optimal behavior when addressing the loss of any column closely resembles 

optimal results for loss of inner columns. Since individual 𝑃𝐿𝐷𝑐𝑜𝑙 is able to reach a maximum 

of ~0.14, the greater gaps between 𝐶𝑀
∗  and 𝐶𝑇𝐸

∗  observed for individual loss of CL1 and CL2 

for 𝑃𝐿𝐷 = 1 are not obtained. 

Figure 4.20 shows the behavior of the optimal conditional reliability indexes 𝛽∗ with 

𝑃𝐿𝐷 for 𝑁𝐿𝐶 failure modes (intact structure) for the different strengthening strategies. Figures 

4.21 and 4.22 shows 𝛽∗ behavior with 𝑃𝐿𝐷 for the 𝐶𝐿𝑆 failure modes addressing total and partial 

frame reinforcements, respectively. When assessing 𝛽∗ for 𝐶𝐿𝑆, strong lines are related to the 

individual loss of the given column, while thinner transparent lines represent its loss when any 

column is subjected to 𝑃𝐿𝐷.  

Optimal 1st stage design is controlled by bending failure at the beam ends (𝛽𝐼,𝐵𝐸
∗ ≈

 3.2) and by column failure at the top corner of the frame (𝛽𝐼,𝐶𝑂
∗ ≈ 3.4). As mentioned earlier, 

optimal 1st stage beam design is cheaper and more efficient, in terms of resisting capacity, than 

those found in the previous examples, and optimal column design leads to a DCR ranging from 

0.85 to 1.13, depending on the strength reduction factor 𝜙 adopted.  

After 𝑃𝐿𝐷
𝑡ℎ , 𝛽𝐼,𝐵𝐸

∗  is the first safety margin to increase due to a gradual initial increase 

of ℎ𝐵
∗ , followed by 𝛽𝐼,𝐶𝑂

∗  and then the remaining failure modes. Besides, the reduction in 𝑃𝐿𝐷
𝑡ℎ  

for a partial frame reinforcement is once again noticeable. 
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Figure 4.20 - Behavior of 𝛽∗ with 𝑃𝐿𝐷 for 𝑁𝐿𝐶. 

 

Source: own authorship. 

For both partial and total frame reinforcements, optimal 2nd stage design is controlled 

either by steel rupture or by shear failure, depending on the strengthening strategy and 𝑃𝐿𝐷 

value. Nonetheless, 𝑃𝐿𝐷
𝑡ℎ  is characterized by 𝛽𝐶𝐿𝑖,𝑆𝑅

∗  reaching a minimum of 2.33. For both partial 

and total frame strengthening, 𝑃𝐿𝐷 = 10−1 is related to 𝛽𝐶𝐿𝑖,𝑆𝐻
∗ < 𝛽𝐶𝐿𝑖,𝑆𝑅

∗  for low ductility 

rebars, while for greater ductility the opposite is observed.  

Although no reduction in 𝐶𝑀 is noticeable from using greater ductility rebars, their 

potential to provide greater decreases in 𝐶𝑒𝑓 𝐶𝐿𝑖,𝑆𝑅 allows usage of slightly less longitudinal 

reinforcement while still providing satisfactory safety margins.  

Symmetric rebars of 25 mm related to a slightly reduced ℎ𝐵  found for 𝑃𝐿𝐷 = 10−1 and 

low ductility reinforcements enhance the beam’s ultimate capacity, but this is more expansive 

and there is no correspondent increase in shear capacity. Hence, this option is shown to be 

justified only for low ductility rebars right after APM design becomes cost-effective, as an 

emergency response to increased expected costs of failure when 𝑃𝐿𝐷
𝑡ℎ  is reached. Yet, for other 

alternatives and 𝑃𝐿𝐷 > 10−1 there is a visible preference for 𝜙𝑇 > 𝜙𝐵 and increased ℎ𝐵, which 

is slightly cheaper and better suitable against larger strains in the top beam layer. 
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Figure 4.21 - Behavior of 𝛽∗ with 𝑃𝐿𝐷 for each 𝐶𝐿𝑆 (whole frame reinforcement). 

 

Source: own authorship. 
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Figure 4.22 - Behavior of 𝛽∗ with 𝑃𝐿𝐷 for each 𝐶𝐿𝑆 (partial frame reinforcement). 

 

Source: own authorship. 
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Between adopting symmetric rebars plus additional stirrup ratio to ensure shear 

capacity, or using asymmetric rebars (𝜌𝑇 ≈ 1.7𝜌𝐵) with greater ℎ𝐵 and reduced 𝑠𝑡, the 

algorithm’s preference relies on the amount of rebar ductility and threat probability. Therefore, 

symmetric rebar options related to slightly reduced beam depths are found to have the best cost-

effectiveness when simultaneously dealing with individual column loss scenarios, providing 

low ductility reinforcements, and at the first part of the 2nd stage, right after 𝑃𝐿𝐷
𝑡ℎ . 

Column safety margins for 𝐶𝐿𝑆 shows a minimum of 𝛽𝐶𝐿𝑖,𝐶𝑂
∗ ≈ 4.0 at 𝑃𝐿𝐷

𝑡ℎ  and 6.0 for 

values beyond it, except for external column loss. Since in CL1 there is no development of 

catenary action, there are no enhanced bending moments acting over the adjacent column. 

Figure 4.21 reveals no significate difference between safety margins for individual column loss 

and those for the loss of any column when the entire frame is strengthened. However, Figure 

4.22 shows that for a partial frame reinforcement, assuming loss of any column leads to the 

only case of the external column being reinforced for 𝑃𝐿𝐷 < 10−2, and that symmetric rebars 

are not cost-effective at any range of 𝑃𝐿𝐷, even when assuming low ductility rebars.  

Optimal resistance factors 𝛾𝐶𝐿𝑖
∗  are used to address the increase of each resisting 

parameter in terms of 𝑃𝐿𝐷 and each 𝐶𝐿𝑆 in nondimensional terms: 

 

 𝛾𝐶𝐿𝑖,𝑓𝑚
∗ =

𝑅𝐶𝐿𝑖,𝑓𝑚
∗ (𝑃𝐿𝐷)

𝑅𝐶𝐿𝑖,𝑓𝑚
∗ (𝑃𝐿𝐷

𝑚𝑖𝑛)
 (4.12) 

 

where 𝐶𝐿𝑖 is the scenario being addressed; 𝑅𝐶𝐿𝑖,𝑓𝑚
∗ (𝑃𝐿𝐷,𝑗) relates to the optimal resisting 

capacity of any 𝑓𝑚 failure mode at 𝐶𝐿𝑖 and the 𝑃𝐿𝐷 value of interest. Herein, 𝛾𝐶𝐿𝑖
∗  relates to 

positive and negative beam bending, shear capacity, column axial capacity, and ultimate load 

capacity corresponding to steel rupture. Figure 4.23 shows the behavior of each 𝛾𝐶𝐿𝑖,𝑓𝑚
∗  as a 

function of 𝑃𝐿𝐷. 

Positive beam bending capacity is the resistance parameter with greater improvement 

at the 2nd stage (𝛾𝐶𝐿𝑖,𝐵𝑀
∗ ≈ 3.1), and this is due to an increase in 𝜌𝐵

∗  from 0.31% to 0.82%. 

Although being one of the less relevant variables for the intact structure (𝛽𝐼,𝐵𝑀
∗ ≈ 6.5), 𝜙𝐵 plays 

a major role after 𝑃𝐿𝐷
𝑡ℎ  by directly assisting to provide load-bearing capacity long after the 

plastification of the double span beam cross-sections. In line with the above, it is found that 

optimal load bearing capacity of rebar rupture in the 2nd stage increases up to  𝛾𝐶𝐿𝑖,𝑆𝑅
∗ ≈ 2.25, 

ensuring the beam being able to effectively achieve all resisting mechanisms, and that ductile 

steel rupture occurs in case of collapse being unavoidable (least worst failure mode).  
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Figure 4.23 - Behavior of 𝛾𝐶𝐿𝑖
∗  with 𝑃𝐿𝐷. 

 

Source: own authorship. 

 

Negative beam bending capacity also increase up to 𝛾𝐶𝐿𝑖,𝐵𝐸
∗ ≈ 2.25, but as a 

consequence of increasing rebar reinforcements being needed for enhancing the ultimate load 

capacity. Since shear capacity was already more than enough for the intact structure (𝛽𝐼,𝑆𝐻
∗ ≈

 6.5 even for minimal 𝜌𝑠𝑡
∗ ), its increase in the 2nd stage is less noticeable compared to the 

previous ones (𝛾𝐶𝐿𝑖,𝑆𝐻
∗ ≈ 1.2). 
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As previously discussed, optimal column design is guided by significant bending 

moments in the frame top corner (intact structure) or in the column adjacent to the lost one 

(damaged structure). Yet, the optimal configuration is coincidentally the same for both cases in 

this example, partially due to a reduced demand in column bending moments enabled by the 

increased optimal beam depth. Therefore, 𝛾𝐶𝐿𝑖,𝐶𝑂
∗ ≈ 1.0 along the entirety of the 2nd stage for 

all reinforcement strategies. Additionally, partial frame reinforcement allows 𝛾∗ factors to 

increase earlier in all scenarios except CL1, with only minor discrepancies observed when 

comparing low and greater ductility rebars. 

 

4.4 ASPECT RATIO INFLUENCE 

 

Based on Beck et al. (2022), this example solely focuses on investigating the influence 

of the frame aspect ratio over the optimal risk–based design. More specifically, it is investigated 

if the preference for optimal stronger beams in taller frames and weaker beams in lower frames, 

found by Beck et al. (2022), is also shown when addressing a nonlinear capacity model for 

progressive collapse simulation. This example addresses preview results from Ribeiro et al. 

(2024) published in ECCOMAS 2024 congress. 

Five RC frames with distinct aspect ratios (number of bays x number of stories) are 

the objects of study. All frames have similar “tributary” area in terms of number of bays 

multiplied by the number of stories (Figure 4.24). Each frame has beam spans of 6.00 m and 

column spans of 3.00 m, and each one is subjected to 4 scenarios: intact structure, loss of 

exterior column at ground floor, loss of penultimate column at ground floor, and loss of middle 

column at ground floor. Each column loss scenario is treated individually, so local damage 

probability 𝑃𝐿𝐷 relates to the sudden loss of one column at a time.  

 

Figure 4.24 – Studied RC frames and respective aspect ratios. 

 

Source: own authorship. 
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Unlike the previous examples, the primary frames are extracted from the interior of 

the building, so unidirectional floor slabs lead to floor loadings from both sides. In view of this, 

more strengthening is expected at the columns when compared to a perimeter frame.  

Although facade columns on the ground floor are more exposed for certain hazards, 

such as IEDs and vehicular impacts, it is herein assumed buildings with easy access at ground 

floor. Hence, admitting terrorist attacks as potential hazard, inner column spans at ground floor 

become potential targets. Additionally, performing a 2D analysis in a primary frame within the 

building allows (for future studies) a direct comparison when a 3D capacity model is adopted, 

addressing the influence of secondary beams and floor membrane action. 

The total expected cost 𝐶𝑇𝐸 (Eq. 4.11) to be minimized (via Eq. 4.3) addresses 

manufactural costs and the expected costs of all failure modes. Additional life-cycle costs could 

be included in 𝐶𝑇𝐸, but they are out of the scope of this manuscript.  

As in the previous example, 𝐶𝑀𝐴 refers to the construction cost of the areas damaged 

by a given failure mode, which are once again assumed following Table 4.11 and Figure 4.18. 

As shown in Figure 4.25, design variables 𝒅 are the beam depth ℎ𝐵, diameter of beam 

reinforcement 𝜙𝐵 (symmetric bottom and top rebars), beam stirrup spacing 𝑠𝑡, column size ℎ𝐶  

(square column), diameter of column reinforcement 𝜙𝐶 , and overall concrete strength 𝑓𝑐
′. As 

mentioned in section 3.2, design variables that can be represented as deterministic are addressed 

as random variables with low uncertainty to allow reliability analysis with WASM. 

 

Figure 4.25 – Adopted cross section detailing. 

 

Source: own authorship. 

Although 𝑓𝑐
′ has shown a minor contribution in terms of the frame pushdown behavior 

(Figure 4.15i), it is more relevant in terms of shear capacity and column capacity when 

addressing an inner primary frame, especially for taller frame configurations.  
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Symmetric beam reinforcements were shown, in the previous example, to be related 

to slightly reduced beam depths, enhancing ultimate capacity at the expense of requiring extra 

transversal reinforcement to address a non-corresponding increase in shear capacity. Yet, rebars 

are assumed symmetric to facilitate results comprehension given the greater complexity of 

addressing and comparing multiple frames.  

Besides, a seemingly exaggerated number of 16 columns rebars is chosen to ensure 

that a unique detailing is able to cover all frames in all scenarios given the design domain 𝓓, 

which is favorable in terms of direct comparisons between distinct frames. Further results show 

that only lower frames (bellow 6 x 6) under Normal Loading Condition (𝑁𝐿𝐶) could have 

smaller number of column rebars given the lower bounds in 𝓓 (300 mm for ℎ𝐶  and 12 mm for 

𝜙𝐶). Hence, 16 rebars is an adequate overall choice for inner primary RC frames. 

Reinforcing the entire frame is the only progressive collapse mitigating strategy 

addressed, as the scope of this example relies in exclusively addressing aspect ratio influence. 

Based on Starossek and Haberland (2012), structural segmentation could be more appropriate 

for the horizontally aligned frames than an APM design, but this is avoided to allow an initial 

direct comparison between frames.  

Partial frame reinforcement has shown significant advantages in terms of 𝐶𝑀 and 𝐶𝑇𝐸 

in the previous example and also in Beck et al. (2022; 2024). This goes in line with Praxedes 

and Yuan (2021; 2022), in which it was shown that the first floor requires the majority of 

reinforcements, followed by the second floor, to attain optimal robustness. This happens due to 

the double span beam above a lost column representing the critical path of failure due to CA 

behavior. However, Praxedes and Yuan (2022) also found some (optimal) beam strengthening 

beyond the (critical) first floors, with reduced reinforcements for upper floors. 

In fact, static bay pushdown analysis for partially strengthened frames (with increasing 

load focused on the reinforced floors) reveals that Vierendeel Action develops differently if 

compared to a whole frame reinforcement, thus modifying the pushdown behavior. Hence, the 

optimal transition from full reinforcement (first floors) to smaller reinforcements (upper floors) 

seems to optimize the balance between axial compressive forces from Vierendeel Action (upper 

floors) to the tensile ones due to Catenary Action (lower floors). 

Nevertheless, these differences are smaller for squared and horizontally aligned frames 

up to 5 stories. Hence, given the main scope of risk-based optimization, assuming pushdown 

curves equivalent to those found for whole frame strengthening is possible for such aspect 

ratios. These smaller differences for square-shaped frames also justify a partial frame 

strengthening being adopted in the previous RC frame example.  
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In the other hand, differences are greater for taller frames due to a significant number 

of floors contributing to Vierendeel Action, which in turn may lead to significantly increased 

bending moments in the first unreinforced column spans. Therefore, only total frame 

reinforcement is adopted in order to avoid unrealistic results for taller frames. Further 

investigations into these aspects will be addressed in future studies. 

The probability of occurrence of each failure mode for each column loss scenario and 

each frame configuration is estimated via IDW, with each estimation relying on 2000 design 

support points and probabilities computed via WASM (Section 3.2). As in the previous 

example, Table 4.11 shows the limit state function, consequence factor 𝑘 for all failure modes 

of each scenario, and the extent of the final damaged area affected by each failure mode.  

The affected area for each failure mode is assumed similarly to the previous example. 

For inner primary frames, ground floor central column failures are also critical. Hence, for the 

(initially) intact frame, central column failure is also relevant. Beam failure in column loss 

scenarios leads to an upward vertical propagation of progressive collapse, while failure of the 

adjacent columns leads to one stage of horizontal propagation, followed by upward propagation 

of an increased portion of the frame. As shown in the previous example, a large beam span of 

6.00 m leads to a single stage of lateral collapse propagation followed by the upward 

propagation of a larger portion of the frame. Further stages of lateral propagation can be more 

likely for beam spans ranging from 3.00 to 5.00 m. 

Table 4.19 shows the uncertainty modelling for reliability analysis at the design 

support points. A sample with 10 million points created via LHS is enough to ensure probability 

convergence for each failure mode, for 2000 design support points, for each frame. Each sample 

point created via LHS has its limit states computed as shown in Table 4.11, with the most 

relevant internal forces and ultimate load capacity at CA estimated via IDW metamodeling. The 

parameters obtained via IDW refer to the static pushdown curve, so Energy Equivalence 

Method is used to obtain these parameters in terms of the Pseudo-static pushdown curve in 

order to address the dynamic effects. This initial metamodeling stage relies on 2000 limit state 

support points for each frame, which are created via LHS and then analyzed in OpenSees.  

Discretization approach, material models and cost multipliers 𝑘 are identical to those 

used in the previous example. Only large ductility rebars are assumed herein (𝜀𝑠𝑢 = 0.20). As 

previously stated, material nonlinear behavior is not considered in column discretization in 

order to avoid sudden disruptions in the pushdown curve due to compressive rebar yielding 

and/or column buckling, especially for the taller frames (Section 3.4.2).  
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Table 4.19 - Uncertainty modeling. 

Category RV Distribution Mean 
Standard 

deviation 

Coefficient 

of variation 

Geometry 

Beam  

depth (ℎ𝐵) 
Normal 

To be 

optimized* 
1 mm - 

Beam rebar  

diameter (𝜙𝐵) 
Normal 

To be 

optimized* 

- 0.05 

Stirrup  

spacing (𝑠𝑡) 
Normal 

To be 

optimized* 
- 

0.05 

(assumed) 

Column 

size (ℎ𝐶) 
Normal 

To be 

optimized* 
1 mm - 

Column rebar  

diameter (𝜙𝐶) 
Normal 

To be 

optimized* 
- 0.05 

Material 

Concrete  

strength (𝑓𝑐
′) 

Lognormal 
To be 

optimized* 
- 0.12 

Rebar yield  

strength (𝑓𝑦) 
Normal 510 MPa - 0.05 

Concrete unit  

weight (𝛾𝑐) 
Normal 25 kN/m³ - 

0.05 

(assumed) 

Ultimate steel  

strain (𝜀𝑠𝑢) 
Normal 0.20 - 0.14 

Loads 

Dead  

load (𝐷) 
Normal 1.05𝐷𝑛 - 0.10 

50-year live  

load (𝐿50) 
Gumbel 1.00𝐿𝑛 - 0.25 

Arbitrary point 

in time live load 

(𝐿𝑎𝑝𝑡) 

Gamma 0.25𝐿𝑛 - 0.55 

Structural 

model 

Model  

error (𝑀𝐸) 
Lognormal 1.101 0.187 - 

Source: Ellingwood and Galambos (1982), JCSS (2001), Real, Campos Filho and Maestrini (2003), Wisniewski 

et al. (2012), Santiago (2018), Santiago and Beck (2018), Parisi et al. (2018), Costa and Beck (2024a; 2024b). 
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It should be mentioned that more common values are adopted in this example for the 

nominal dead load and live load: 𝐷𝑛 = 3 kN/m² and 𝐿𝑛 = 2 kN/m². These figures are aligned 

with the International Building Code (ICC, 2021) in regard to residential buildings.  

Firefly algorithm is used to solve the optimization problem, relying on 10 optimization 

runs for each 𝑃𝐿𝐷 value, 100 iterations per run, and 40 fireflies. An initial extensive search with 

10000 fireflies is done over the design domain 𝓓 in order to ensure convergence around the 

global optima, so only the 40 brighter fireflies are kept for the further iterations. It should be 

noticed that the computational burden required in this auxiliary extensive search is minimal 

(few seconds) due to IDW metamodeling for reliability analysis estimation. 

 

4.4.1 Optimal design solutions 

 

Tables 4.20 to 4.22 shows the optimal risk-based results for each frame configuration 

under each individual columns loss scenario. Optimal risk-based designs related to a Normal 

Loading Condition are constant from 𝑃𝐿𝐷
𝑚𝑖𝑛 up to 𝑃𝐿𝐷 ≈ 10−3 for lower frames and 10−4 for 

taller frames, after which a threshold 𝑃𝐿𝐷
𝑡ℎ  is identified in all scenarios for all frames. Since inner 

primary frames receive floor loadings from both sides, expected costs of column loss failures 

grow faster with 𝑃𝐿𝐷. Hence, strengthening against progressive collapse becomes cost-effective 

earlier, in comparison to perimeter primary frames.  

Overall concrete strength 𝑓𝑐
′ shows the same multipurpose characteristics of the beam 

depth ℎ𝐵. Although it does not influence the pushdown behavior (Figure 4.15i), an increased 

𝑓𝑐
′ directly provides greater resistance against 5 failure modes (serviceability, negative and 

positive beam bending, shear failure and column failure). Therefore, ensuring 𝑓𝑐
′∗ at its upper 

bound in 𝓓 (45 MPa) for all frames in all scenarios is shown to be the choice of best cost-

effectiveness. Increasing 𝑓𝑐
′ allows a simultaneous reduction in longitudinal and transversal 

reinforcements in order to attain similar desirable safety margins. 

Optimal 1st stage beam design is similar to previous results: beam depth up to its upper 

bound, rebar ratio of 0.42%, and stirrup ratio of 0.17%. Load combination 𝑞𝐼 = 1.2𝐷𝑛 + 1.6𝐿𝑛 

leads to roughly 64 kN/m over the beam spans. Hence, DCRs are obtained as follows: 1.03 for 

bending at the beam ends (𝜙 = 0.9); 0.52 for bending at the midspan (𝜙 = 0.9); and 0.82 for 

shear failure (𝜙 = 0.75). Since symmetric rebars are adopted, more than enough safety is shown 

against midspan bending. As reducing DCR for negative bending implies a sufficient reduction 

in the positive bending DCR, 𝜙𝐵 = 18 mm is shown to make the optimal balance. 
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Optimal column designs are no longer constant with 𝑃𝐿𝐷. Besides, optimal 1st stage 

column design shows an increased capacity for taller frames, as expected. Combination for 

usual loading condition 𝑞𝐼 = 1.2𝐷𝑛 + 1.6𝐿𝑛 leads to roughly 64 kN/m in the beam spans (6 m) 

and 4.8 kN/m for column spans (3 m). Therefore, at the foot of inner columns it is roughly 

expected 1550 kN for the lowest frame (4 x 9); 2000 kN for the lower intermediate frame (5 x 

7); 2330 kN for the squared frame (6 x 6); 2800 kN for the taller intermediate frame (7 x 5); 

and 3600 kN for the tallest frame (9 x 4). These expected axial demands correspond to 0.36, 

0.48, 0.56, 0.52 and 0.59 of the respective optimal axial column capacities, and a minimum 

eccentricity of 20 mm still keeps each axial load x moment demand inside the column resisting 

envelope. The top corner of each frame presents negligible axial forces and bending moments 

of ~0.05 of its greatest axial demand. By comparing these demands with the columns optimal 

resisting envelopes, DCRs ranging from 1.2 (taller frame) to 0.77 (lower frame) are obtained.  

Hence, lower safety margins are allowed for column failure as the frame height 

increases, reaching DCR > 1 at the frame top corner (𝜙 = 0.9, as demand is mainly flexural) 

and ~0.91at the ground floor (𝜙 = 0.65) for the tallest frame configuration. As the column 

cost/meter increases for taller frames, cost-effectiveness of avoiding column plastification 

reduces for the intact structure, especially at the top corner of the frames. 

As in the previous example, optimal 2nd stage beam design is similar for all frames 

and all column loss scenarios, with beam depth equal to its upper bound, maximum concrete 

strength, rebar ratios up to 1.03%, and stirrup ratio up to 0.50%. By addressing DAF = 1.22 

(common value between CAA and CA in pseudo-static pushdown curves), load combination 

for extraordinary loading condition 𝑞𝐶𝐿 = 1.25(1.2𝐷𝑛 + 0.5𝐿𝑛) leads to roughly 64 kN/m over 

the beam spans (𝐷𝑛 = 3kN/m² and 𝐿𝑛 = 2kN/m²). Ultimate load-carrying capacity (in terms of 

static pushdown analysis) is found via IDW metamodeling for each frame at each column loss 

scenario, leading to the DCR factors for rebar rupture shown in Table 4.23. Since DCR relates 

to a material property, no strength reduction factor 𝜙 is used. 

Overall DCR factors are ~0.9, indicating a rebar rupture safety margin of ~10% for all 

frames for all column loss scenarios. In terms of optimal conditional reliability index, rebar 

rupture is related to 𝛽𝐶𝐿𝑖,𝑆𝑅
∗ ≈ 3.9 for all frames in all scenarios (as shown in Figure 4.26). 

Although previous examples of perimeter primary frames have shown  𝛽𝐶𝐿𝑖,𝑆𝑅
∗  ranging from 

2.32 to 3.20, the greater expected load for an inner frame and imposed use of symmetric beam 

rebars result in a slightly larger safety margin against rebar rupture. This also reflects an 

increase of ~18% in the beam cost/meter after reaching the APM-strengthening threshold.
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Table 4.20 – Optimal risk-based design addressing sudden loss of the external ground floor column (ECL). 

Frame 

(𝑛𝑠𝑡𝑜𝑟 × 𝑛𝑏𝑎𝑦𝑠) 
PLD 

hB
∗  

(mm) 

ϕB
∗  

(mm) 

st
∗  

(mm) 

𝑓𝑐
′∗ 

(MPa) 

hC
∗  

(mm) 

ϕC
∗  

(mm) 
CTE

∗  (€) CM
∗  (€) 

CBeam
∗  

(€ / m) 

Ccolumn
∗  

(€ / m) 

Lower 

(4 x 9) 

≤ 10
-3

 600 18 200 45 300 12 32801.41 32708.88 92.38 106.29 

10
-2

 585 27 66 45 310 12 50985.57 50794.08 169.93 117.41 

10
-1

 579 28 74 45 310 12 51456.25 51377.28 172.63 117.41 

Lower 

intermediate 

(5 x 7) 

≤ 10
-3

 600 18 200 45 300 12 32567.64 32154.60 92.38 106.29 

10
-2

 595 28 62 45 314 12 50975.33 50649.30 178.61 109.51 

10
-1

 597 28 60 45 330 14 54257.57 54050.10 182.17 131.62 

Square 

(6 x 6) 

≤ 10
-4

 600 18 200 45 300 12 33785.22 33346.62 92.38 106.29 

10
-2

 590 28 67 45 363 12 53785.37 53534.34 177.15 121.19 

10
-1

 599 28 60 45 363 13 55997.45 55774.44 182.37 130.02 

Taller 

intermediate 

(7 x 5) 

≤ 10
-4

 600 18 200 45 350 12 34375.57 34271.58 92.38 118.03 

10
-2

 594 28 67 45 427 13 55978.78 55715.94 177.54 146.29 

10
-1

 594 27 60 45 427 13 56157.77 55928.04 178.55 146.29 

Taller  

(9 x 4) 

≤ 10
-4

 600 18 200 45 375 12 36975.76 36714.33 92.38 124.15 

10
-2

 598 28 81 45 439 12 56823.73 56517.75 171.50 144.25 

10
-1

 598 28 69 45 439 13 58787.46 58549.50 177.65 149.46 

Source: own authorship. 
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Table 4.21 – Optimal risk-based design addressing sudden loss of the penultimate ground floor column (PCL). 

Frame 

(𝑛𝑠𝑡𝑜𝑟 × 𝑛𝑏𝑎𝑦𝑠) 
PLD 

hB
∗  

(mm) 

ϕB
∗  

(mm) 

st
∗  

(mm) 

𝑓𝑐
′∗ 

(MPa) 

hC
∗  

(mm) 

ϕC
∗  

(mm) 
CTE

∗  (€) CM
∗  (€) 

CBeam
∗  

(€ / m) 

Ccolumn
∗  

(€ / m) 

Lower 

(4 x 9) 

≤ 10
-3

 599 18 200 45 300 12 33076.68 32708.88 92.38 106.29 

10
-2

 593 28 73 45 354 13 54614.52 53008.80 174.40 127.82 

10
-1

 590 27 65 45 449 12 64986.27 53919.36 170.01 143.31 

Lower 

intermediate 

(5 x 7) 

≤ 10
-3

 600 18 200 45 300 12 32862.40 32154.60 92.38 106.29 

10
-2

 595 28 73 45 366 13 53047.75 52355.10 174.59 130.76 

10
-1

 591 27 63 45 454 13 57234.38 53431.80 171.30 145.49 

Square 

(6 x 6) 

≤ 10
-4

 600 18 199 45 300 12 33398.56 33346.62 92.38 106.29 

10
-2

 595 28 77 45 425 12 54329.12 54184.86 170.98 136.93 

10
-1

 597 28 69 45 456 12 60276.95 57273.84 175.79 153.20 

Taller 

intermediate 

(7 x 5) 

≤ 10
-4

 600 18 200 45 350 12 35508.21 34271.58 92.38 118.03 

10
-2

 596 28 78 45 442 12 54354.12 53851.98 171.58 141.43 

10
-1

 596 28 63 45 470 13 58232.14 57498.00 179.09 157.85 

Taller  

(9 x 4) 

≤ 10
-4

 600 18 199 45 375 12 36955.13 36714.33 92.38 124.15 

10
-2

 596 27 66 45 456 13 57823.92 57732.21 171.01 154.03 

10
-1

 595 28 67 45 480 13 61239.74 59211.54 173.74 160.62 

Source: own authorship. 
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Table 4.22 – Optimal risk-based design addressing sudden loss of the middle ground floor column (MCL). 

Frame 

(𝑛𝑠𝑡𝑜𝑟 × 𝑛𝑏𝑎𝑦𝑠) 
PLD 

hB
∗  

(mm) 

ϕB
∗  

(mm) 

st
∗  

(mm) 

𝑓𝑐
′∗ 

(MPa) 

hC
∗  

(mm) 

ϕC
∗  

(mm) 
CTE

∗  (€) CM
∗  (€) 

CBeam
∗  

(€ / m) 

Ccolumn
∗  

(€ / m) 

Lower 

(4 x 9) 

≤ 10
-3

 600 18 200 45 300 12 32808.77 32708.88 92.38 106.29 

10
-2

 597 27 79 45 353 15 57923.21 54877.44 172.19 147.37 

10
-1

 597 28 71 45 421 14 65687.80 56469.84 175.74 154.25 

Lower 

intermediate 

(5 x 7) 

≤ 10
-3

 600 18 200 45 300 12 32210.75 32154.60 92.38 106.29 

10
-2

 594 28 81 45 403 13 53783.46 52428.60 171.14 137.41 

10
-1

 600 28 66 45 405 14 60749.27 56522.10 178.69 158.31 

Square 

(6 x 6) 

≤ 10
-4

 600 18 200 45 300 12 33353.43 33346.62 92.38 106.29 

10
-2

 596 27 73 45 394 12 53258.59 52196.04 167.39 127.30 

10
-1

 594 28 74 45 413 14 60161.73 57777.84 174.04 160.20 

Taller 

intermediate 

(7 x 5) 

≤ 10
-4

 600 18 200 45 350 12 34508.48 34271.58 92.38 118.03 

10
-2

 584 28 72 45 395 13 54123.66 53933.46 174.02 138.01 

10
-1

 600 30 87 45 499 12 59779.25 59062.08 180.49 167.93 

Taller  

(9 x 4) 

≤ 10
-4

 600 18 198 45 375 12 36872.02 36714.33 92.38 124.15 

10
-2

 597 27 73 45 426 13 55994.15 55890.54 167.49 146.02 

10
-1

 596 28 63 45 506 13 62094.55 61569.99 180.09 167.93 

Source: own authorship. 
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Table 4.23 – Rebar rupture DCR factors for 𝜀𝑠𝑢 = 0.20 and APM design (𝑃𝐿𝐷 = 10−1). 

Frame 

(𝑛𝑠𝑡𝑜𝑟𝑖𝑒𝑠 × 𝑛𝑏𝑎𝑦𝑠) 
Scenario 

Ultimate 

capacity (kN/m)  
DCR 

Lower  

frame 

(4 x 9) 

ECL 69.09 0.926 

PCL 71.11 0.900 

MCL 73.04 0.876 

Lower 

intermediate 

frame (5 x 7) 

ECL 69.29 0.924 

PCL 71.15 0.900 

MCL 73.22 0.874 

Square 

frame 

(6 x 6) 

ECL 69.30 0.924 

PCL 71.39 0.896 

MCL 73.28 0.873 

Taller 

intermediate 

frame (7 x 5) 

ECL 69.35 0.923 

PCL 71.45 0.896 

MCL 73.35 0.873 

Taller 

frame 

(9 x 4) 

ECL 69.57 0.920 

PCL 71.56 0.894 

MCL 73.48 0.871 

Source: own authorship. 

Table 4.23 also reveals a slight decrease in DCR factors for taller frames and scenarios 

of inner column loss, especially MCL. Larger safety margins for these cases are related to more 

efficient development of Catenary Action and Vierendeel Action, so a similar optimal 2nd stage 

beam design is able to attain slightly greater ultimate capacity values. This indirectly explains 

the reduction in the gap between 𝐶𝑀 and 𝐶𝑇𝐸 for PCL and MCL as the frame height increases. 

When addressing penultimate and middle column loss, lower frames have less stories 

available above the double span beam, so reduced axial forces related to Catenary Action and 

Vierendeel Action are able to develop. Although the impact on the optimal beam capacity is 

~2%, it implies in a significantly reduced bending moment demand over the adjacent columns. 

This allows lower column safety margins, with 𝛽𝐶𝐿1,𝐶𝑂
∗  ranging from 3.0 (lower frame) to 3.5 

(square frame), and consequently to greater gaps of 0.12𝐶𝑀 between 𝐶𝑀 and 𝐶𝑇𝐸 for lower 

frames (Tables 4.21 and 4.22). As reinforcing the whole frame is the only strengthening 

decision, reinforcing all column spans only pays off when significant axial forces are developed 

in the double span beams. 
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Figure 4.26 - 𝛽𝐶𝐿𝑖
∗  with the aspect ratio for 𝑃𝐿𝐷 = 10−1. 

 

Source: own authorship. 

On the other hand, Table 4.23 reveals that exterior column loss (ECL) has the greatest 

DCR for rebar rupture. Yet, this relates to the unconditional failure event, as Figure 4.26 shows 

a conditional 𝛽𝐶𝐿1,𝑆𝑅
∗ ≈ 4.0 for all aspect ratios. Since Catenary Action does not develop for 

ECL (as reflected by its greater DCRs), a reduced column reinforcement is able to ensure 

greater safety margin against horizontal collapse propagation (𝛽𝐶𝐿1,𝐶𝑂
∗ ≈ 4.5 for smaller frames 

and 6.0 for taller frames). Hence, the gap between 𝐶𝑀 and 𝐶𝑇𝐸 is negligible for ECL (~200 €).  

Thus, it should be noticed that as the frame height increases, the frame has to become 

thinner in order to maintain the same tributary area. As the number of remaining columns 

decreases in damaged scenarios, the number of vertical loads and bending moments 

redistributed to each remaining column increases, particularly for the adjacent ones.  

Although the column bending moments due to Vierendeel Action are not as large as 

those expected from Catenary Action, their relevance increases for taller frames. This also 

implies more strengthened optimal 2nd stage column designs, explaining why 𝛽𝐶𝐿1,𝐶𝑂
∗  for taller 

frames increases even in scenarios where Catenary Action does not develop.  

Regarding shear forces, an expected load of 64 kN/m on the affected spans leads to 

approximately 384 kN. Optimal beam 2nd stage design leads to DCR factors up to ~0.99 (𝜙 = 

0.65), demonstrating that the algorithm ensured a minimal amount of safety margin against 

shear failure.  
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When addressing the conditional failure event, Figure 4.26 shows 𝛽𝐶𝐿𝑖,𝑆𝐻
∗  ranging 

between 4.0 and 4.6. As mentioned earlier, symmetric rebars provide greater ultimate load 

capacity without corresponding increase in shear capacity. Thus, maximizing beam depth and 

concrete strength to handle shear demands increases the cost per meter. Further reduction in 

stirrup spacing incurs additional strengthening costs that are not compensated by the reduction 

in expected costs of shear failure. 

To address the increase in optimal beam resistance, Figure 4.27 shows the optimal 

resistance factors 𝛾∗, defined at any 𝑃𝐿𝐷 in terms of optimal design at 𝑃𝐿𝐷
𝑚𝑖𝑛 (Eq. 4.12) for 

bending and shear failure for each frame and each column loss scenario. Since rebars are 

symmetric, no distinction is made between positive or negative bending capacity. 

 

Figure 4.27 – Behavior of beam 𝛾∗ with 𝑃𝐿𝐷 for each frame and CL scenario. 

 

Source: own authorship. 
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Overall increase in optimal bending capacity is around 2.2 for 𝑃𝐿𝐷 > 𝑃𝐿𝐷
𝑡ℎ , whilst for 

shear capacity it is 1.8. Although lower frames have a smaller damaged area in case of upward 

collapse propagation due to beam failure, weaker beams are never shown to be justified, in 

contrast with Beck et al. (2022). In the mentioned study, a progressive collapse capacity model 

that neglects the bending moments over adjacent columns shows that stronger beams are only 

cost-effective for taller frames, where the upward collapse propagation is as severe as horizontal 

column collapse propagation. Additional comments related to seismic design (principle of weak 

beams – strong columns) are shown in Section 4.5. 

However, realistic capacity models reveal that significant axial forces developed 

during Catenary and Vierendeel Actions have major impacts over adjacent columns. Besides 

weak beams having lower ultimate capacity, Vierendeel and Catenary Action develop earlier, 

leading to larger bending moment demands over the adjacent columns.  

These additional flexural demands increase the propensity of column rebar yielding. 

In case of tensile column rebar yielding, full achievement of beam ultimate capacity is severely 

compromised, while compressive column rebar yielding also leads to a brittle and sudden 

column collapse (Section 3.4.2). This justifies the risk-based algorithm’s preference for 

stronger beams independently of the frame configuration or column loss scenario. 

To address the increase in optimal column resistance, Figure 4.28 shows the optimal 

column resistance factors 𝛾∗ (Eq. 4.12) in terms of axial capacity for each frame, for each CL 

scenario, and the whole range of 𝑃𝐿𝐷. Axial capacity for lower frames increases by 90%, and 

for taller frames it increases 60%, but taller frames still have the greatest axial capacity. Hence, 

adopting optimal 1st stage design of each frame as reference can lead to misinterpretations in 

this regard. Therefore, optimal 1st stage column design for the lower frame is used as reference 

in Eq. 4.12, leading to 𝛾∗ for taller frames greater than 1 at 𝑃𝐿𝐷
𝑚𝑖𝑛.  

Although beam reinforcement against progressive collapse happens for 𝑃𝐿𝐷 ranging 

between 10−3 to 10−2, column reinforcement is cost-effective earlier for taller frames, even for 

exterior column loss scenario. Hence, taller frames have a threshold characterized just by 

column strengthening, reducing the 𝐶𝑒𝑓 related to greater axial forces in the adjacent beams. 

The contrast between the aforementioned results and those from Beck et al. (2022) is 

better illustrated in Figure 4.29, w.r.t. 𝑃𝐿𝐷 = 10−1. Optimal beam resistance factors are shown 

to be indifferent to the frame aspect ratio and column loss scenario, as stronger beams are 

required to avoid the magnified bending moments transmitted to the columns. 
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Figure 4.28 - Behavior of column 𝛾∗ with 𝑃𝐿𝐷 for each frame and scenario. 

 
Source: own authorship. 

Only optimal column axial resistance is shown to be sensitive to the frame aspect ratio, 

with increasing values being required for taller frames, which goes in line with Beck et al. 

(2022). Scenarios of inner column loss are related to column 𝛾∗ factors ranging from 2 (lower 

frames) to 2.5 (taller frames), while for external column loss it ranges from 1.0 to 1.8, 

respectively. Hence, scenarios where Catenary Action is able to develop show an increase in 

𝛾𝐶𝑂
∗  of ~100% for lower frames, and ~40% for taller frames. 

 

Figure 4.29 - Behavior of each 𝛾∗ with frame aspect ratio. 

 
Source: own authorship. 
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4.5 COMMENTARY ON COLUMN STRENGHTENING FOR APM DESIGN  

 

For the sake of brevity, figures and demonstrations in this section relate to optimal 

column results for the squared frame of the previous Section. Nonetheless, main conclusions 

drawn from this section are applicable to other frame configurations as well. It has been shown 

that ultimate beam capacity in terms of steel rupture, which is broadly regarded as the last 

resisting mechanism against progressive collapse, is strongly related to the flexural demand on 

the adjacent columns. Besides, Sections 4.1 and 4.2 show that an optimal risk-based design 

addressing the ultimate beam capacity is more cost-effective than relying solely on early 

resisting mechanisms e.g. Flexural Action. Further resisting mechanisms in the beam spans 

above a lost column rely on the development of axial compressive forces (Vierendeel and 

Compressive Arch Action) and tensile forces (Catenary Action), which depend on the available 

horizontal restraint. In this study, RC columns are the sole providers of this lateral confinement.  

Catenary Action is the mechanism related to the greatest load-carrying capacity and 

overall frame ductility (in terms of large displacements until collapse). Scenarios of external 

column loss are unable to trigger this ultimate mechanism due to a lack of lateral restraint in 

both sides. Hence, load-carrying capacity relies on Flexural and Vierendeel Action, leading to 

minor impacts in the adjacent column in terms of flexural demand (Figure 4.30).  

 

Figure 4.30 - Column failure assessment for ECL. 

 

Source: own authorship. 
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Figure 4.30 shows the resisting envelope for the optimal 2nd stage column design for 

the square frame (6 x 6) and the expected force vs moment demands obtained by FE analysis 

for 200 sample points. Each FE analysis addresses the same square frame and the same optimal 

2nd stage column design, but with random combination of beam design variables across the 

design space 𝓓. This allows to identify the effects that weak, intermediate and stronger beams 

have over the flexural column demand.  

For all sample points the resisting envelope encompasses the main force vs moment 

demands of the adjacent columns. In this scenario, Vierendeel Action leads to compressive 

forces in the first floor, tensile forces in the last floor, and a gradual transition from lower to 

upper floors, ensuring equilibrium for the hanging frame span. These axial forces, which only 

develop due to the stiffness of the adjacent column, cause a flexural demand in it, with the frame 

being pushed inwards in the first floors and pulled outwards in the upper floors. As shown in 

Figure 4.30, a significant safety margin is observed for the force vs moment demand at the 

bottom of the adjacent column, which seems to be indifferent to the beam configuration.  

However, greater bending moments at the top of the adjacent column can be observed 

for weaker beams, leading to smaller safety margins in this region. Nonetheless, this failure 

mode is related to column rebar yielding in tension, which has negligible impact over pushdown 

behavior, ultimate frame capacity, and structural robustness. Remaining floors in the hanging 

frame span have intermediate force vs moment demands, so they are omitted for clarification 

purposes. In addition, column tensile rebar yielding is common for the hanging column span, 

but with negligible implications. 

Weak beams cause a major increase in column flexural demand for penultimate 

column loss, mainly at the outer-most adjacent column (Figure 4.31). Although some Catenary 

action is able to develop, the lateral restraint for the double-span beams is unbalanced, causing 

very distinct force vs moment demands over the adjacent columns.  

Weak beams have lower Flexural, Compressive Arch and Catenary Action capacities, 

but can exhibit significantly larger vertical drifts (up to ~4ℎ𝐵) until rebar rupture happens 

(Figures 4.14, 4.15 and 4.19). This inherently leads to the development of greater axial forces 

in Catenary Action, which produce larger bending moments ~370% on columns, which exceed 

the maximum bending capacity of the outermost column.  This severely compromises the 

frame’s pushdown behavior, leading to a premature collapse of a potentially larger portion of 

the frame. Despite domino–type progressive collapse not being addressed in this study, the 

propensity of its occurrence is visibly significant due to the overwhelming inward pull of the 

outer adjacent column. 
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Figure 4.31 - Column failure assessment for PCL 

 

Source: own authorship. 

Optimal 2nd stage column design is able to envelope all force vs bending demands of 

the inner-most adjacent column.  For the outer adjacent columns, this only happens for the 

strongest beam configurations. Lower values of conditional 𝛽𝐶𝐿2,𝐶𝑂
∗ ≈ 3.0 (Figure 4.27b) are 

also justified by the aforementioned behavior. Column flexural demand is shown to be greater 

in the adjacent column related to lower capacity of lateral restraint. Hence, the outermost 

adjacent column should be prioritized when addressing structural strengthening for columns 

lost closer to facades or building corners.   

Middle column loss leads to reduced values of flexural demand due to the balanced 

lateral restraints, but figures up to ~190% above the maximum flexural capacity are still 

possible for both adjacent columns (Figure 4.32). For middle column loss, both adjacent 

columns require strong beams. It should be mentioned that weak beam configurations can pull 

the entire frame inwards, potentially affecting the entire structure in case of adjacent column 

failure (domino-type collapse), rather than just the next adjacent span, as assumed in this study.  

Despite middle column loss leading to smaller (yet relevant) flexural demands in 

adjacent columns, its potential to affect the entire frame through a zipper-type and domino-type 

collapses is greater compared to penultimate column loss. Zipper collapse for penultimate 

column loss, as assumed in this study, is also possible when addressing the inner most adjacent 

column, but with a reduced potential of inflicting the entire frame. 
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Figure 4.32 – Column failure assessment for MCL. 

 

Source: own authorship. 

All optimal 2nd stage column designs found for each frame and each scenario have 

one aspect in common: ultimate axial capacity at least twice the maximum expected axial 

demand. Since column failure in redistribution-type progressive collapse is solely attributed to 

increased flexural demands, Figure 4.33 shows that column cross-sections other than the classic 

square-shape could be better suited for APM design purposes.  

 

Figure 4.33 – Column failure assessment for MCL under different cross-section configurations. 

 

Source: own authorship. 
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In Figure 4.33, an illustrative rectangular cross-section with the same area and number 

of rebars are used, but with half of the rebars placed on each side (an unconventional 

arrangement adopted for clarity). This results in the same axial capacity, but the maximum 

flexural capacity is increased by approximately 150%. The new resisting envelope is able to 

accommodate greater bending demands, potentially providing more safety margins for weaker 

beams. Although the new rectangular section alters the axial vs bending demands, the 

previously calculated demands are maintained for clarity. In addition, removing ¾ of the rebars 

in the compressed side of the adjacent column seems to have a negligible negative effect in the 

tensioned side. This could lead to optimal strengthening solutions with APM design paying off 

at lower threat probabilities and possibly allowing weaker-intermediate beams to be used. Thus, 

optimal results found in Beck et al. (2022), in which weaker beams are justified for lower planar 

RC frames, could be valid for column sections better suited against flexural demands. 

 In terms of cross-section plastification, NBR 6118 (ABNT, 2023) introduces the 

concept of failure domains, which characterizes specific strain behaviors depending on how 

failure due to a nonlinear behavior onset occurs in a linear RC element. Line A corresponds to 

uniform tension, with all rebar layers equally yielding. Domain 1 corresponds to eccentric 

tension, with failure being characterized by rebar strain of 0.01. Domain 2 refers to under 

reinforced cross-sections, with flexural capacity being reached in terms of rebar yielding only, 

as concrete strains are below 0.0035. Domain 3 relates to well reinforced cross-sections, with 

flexural capacity being reached simultaneously with concrete strains of 0.0035 and rebar 

yielding. Domains 4 and 4a characterize over reinforced cross-sections, in which flexural 

capacity is reached in terms of concrete strains of 0.0035 and tensioned rebars still in linear 

behavior. While in domain 4 the neutral axis is within the concrete core, in domain 4a it is 

located in the concrete cover of the tensioned side. Domain 5 is the usual domain for column 

design, as it refers to eccentric compression, with its failure threshold defined in terms of the 

eccentricity. Line B relates to an idealized uniform compression.  

By monitoring the neutral axis position in each coordinate of the column resisting 

envelope, the thresholds between each flexural domain can be identified. In Figure 4.33, the 

great majority of failure occurrences are related to the third domain: tensioned rebars yielding 

and concrete strains reaching the guideline threshold of 0.0035 in the compressed side. When 

considering a squared-shape section, some weak beam configurations lead to flexural capacity 

being reached in domain 2, which is very unexpected in column analysis. In this domain, the 

adjacent columns at ground floor have tensile demands significantly more critical than the 

compressive demands. 
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In view of this, a tradeoff between beam moment of inertia and column moment of 

inertia becomes apparent. RC beams in Sections 4.1 and 4.2 are related to adjacent columns 

with infinite moment of inertia, resulting in optimal 2nd stage beam designs with reduced 

moment of inertia. RC frame examples allows the simultaneous optimization of beams and 

columns, but squared cross-sections for the columns restricted the cost-effectiveness of greater 

moments of inertia for these elements. Hence, optimal 2nd stage designs relate to almost 

maximum beam moment of inertia and a significantly smaller column moments of inertia. As 

the depth of elements in a specific direction increases, the depth of elements in the perpendicular 

direction decreases to ensure a cost-effective solution. 

An increase in column moment of inertia implies an increase in its flexural capacity. 

When addressing rectangular and squared cross sections of identical manufacturing costs, area 

and number of rebars, Figure 4.33 shows that the rectangular option withstands the majority of 

force vs moment demands due to its greater moment of inertia. Thus, increased column flexural 

capacity allows greater mobilization of beam Catenary Action, which in turn enhances the 

ultimate load-carrying capacity for (weaker) beams with reduced beam depth (Figure 4.15b). 

In this discussion, weaker beams refer to a reduced flexural capacity in these elements, even 

though their ultimate Catenary Action capacity is greatly improved when combined with 

columns of great flexural capacity. This goes in line with Long et al. (2021), who show that 

load capacity of frames under Catenary Action strongly depends on the moment capacity of the 

adjacent columns in order to provide strong restraints. This also goes in line with Yu and Tan 

(2013), whose experimental setups of great lateral restraint show that higher (beam) span-to-

depth ratios enhances Catenary Action capacity, while smaller span-to-depth ratios improve 

Compressive Arch Action capacity in (as shown in Figure 4.15b).  

Reduced column moments of inertia lead to a tradeoff between load-carrying capacity 

and overall frame ductility, as shown in Figure 4.19. Since lateral restraints are weaker, 

developed axial forces in Catenary Action exert larger horizontal drifts on the adjacent columns 

(weaker beams in Figures 4.31 and 4.32), resulting in larger vertical drifts being reached for 

reduced loads (Figure 4.15a). However, Figure 4.15b shows that there is no tradeoff when 

strong lateral restraints are available, as increased beam ductility due to Catenary Action also 

implies greater load-carrying capacity. Since column horizontal drift reduces for stronger lateral 

restraints, greater vertical forces are required to achieve larger vertical drifts. 

The tradeoff between ultimate capacity and frame ductility (Figure 4.19) relates to a 

specific condition of low column moment of inertia. Hence, this tradeoff results from a much 

deeper tradeoff between beam and column moments of inertia, as shown in Figure 4.34.  
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For these plots, 2000 sample points for the square frame were run in OpenSees, with 

3 rebars of 20 mm for both beam layers, 20 mm rebars in the columns, 𝑓𝑐
′ = 45 MPa, and 𝑓𝑦 = 

510 MPa. Rectangular cross-sections are assumed for beams and columns (width of 300 mm in 

both), with only beam and column depth varying. 

 

Figure 4.34 – Ultimate frame capacity in terms of beam depth and column depth. 

 

Source: own authorship. 

Increased column flexural capacity decreases the Compressive Arch Action (CAA) 

capacity for strong beams and significantly increases the Catenary Action (CA) capacity for 

weaker beams. Column cross-sections closer to a squared shape leads to strong beams CAA 

capacity greater than weak beams CA capacity, resembling Figures 4.15a and 4.19. For a 

column depth twice its width, CAA and CA capacities for strong and weak beams, respectively, 

become equivalent. Increasing values of column depth leads to weak beams CA capacity up to 

~39% greater than strong beams CAA capacity. Besides, greater column moment of inertia 

leads to simultaneously greater ductility and CA capacity for weaker beams, resembling the 

behavior in Figure 4.15b. 

Intermediate beams are shown to be suboptimal in terms of post-flexural resisting 

mechanisms, as they are simultaneously unable to reach significant compressive forces during 

CAA and tensile forces during CA (Figure 4.35). This explains the significant gap between RC 

beam optimal results and RC frame optimal results found in this Chapter.  

Ultimate capacity in frames of weak columns can only be attained via CAA, whereas 

stronger columns allows it either by CA and CAA. As weaker beams have reduced 

manufacturing costs, great overall cost-effectiveness is expected for them in future studies. 
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Figure 4.35 – Ultimate frame capacity in terms of CAA and CA. 

 

Source: own authorship. 

Results in Section 4.2 have already shown a preference for weak beams when column 

moment of inertia is assumed infinite. However, increased shear capacity may lead to stronger 

beams being more cost-effective when assuming realistic values of strong columns. 

Since the critical columns behave as beams in column loss scenarios, it would be 

appropriate to address reinforcement decisions that specifically target this aspect. Hence, 

greater cost-effectiveness is expected if columns of greater depth and smaller width were 

assumed in primary frames subjected to column loss scenarios. The same cannot be promptly 

expected for 3D frames, as enhanced bending moments are expected across both column cross-

section axes. In such cases, the squared-shaped sections investigated in this study could be 

significantly more cost-effective, as well as L-shapes, T-shapes and a multitude of exotic 

possibilities which will be the object of study in future investigations e.g. H-shaped, polygonal, 

circular, trapezoidal, cross-shaped, and others. This thesis marks the end of a cycle, but not the 

end of this research.  
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CONCLUSIONS 

 

This thesis addressed the optimal risk-based design of reinforced concrete frames 

under progressive collapse. Damage leading to loss of load-bearing elements in RC frames are 

low-probability high consequence events, with significant impacts in terms of disproportionate 

collapse consequences and in terms of strengthening costs. Herein, the Alternative Path Method 

has been addressed under accidental column loss scenarios, considering multiple strengthening 

options and distinct column loss scenarios in planar frame structures. The risk-based 

optimization looks for a proper point of balance between APM reinforcement costs, and 

expected costs of progressive collapse. 

Cost-effectiveness of progressive collapse mitigation strategies in RC frames was 

found to strongly depend on threat probabilities and on the tradeoff between beam and column 

moments of inertia. By assuming squared cross-sections for the columns, it is not cost-effective 

to ensure great flexural capacity for these vertical members, so ultimate capacity solely relies 

on increasing the beam moment of inertia to promote the Compressive Arch Action mechanism, 

regardless on the frame aspect ratio. Yet, it is shown that beams with low moment of inertia 

(squared cross-sections) can be the most cost-effective APM solution if columns are assumed 

to have great flexural capacity to handle the increased bending moment demands caused on 

them due to Catenary Action in the beams.  

In addition, primary design against hazards related to abnormal lateral loadings, such 

as tornados and earthquakes, follow well-stablished concepts of strong columns and weak 

beams (Macedo et al. 2024; Bosse et al. 2024; Rodrigues et al. 2024). Therefore, analysis shown 

in Section 4.5 evidences the possibility of optimal configurations simultaneously cost-effective 

for progressive collapse and abnormal lateral loadings, which is novel. Hence, optimal designs 

with weak beams (low moment of inertia) may be optimal for such multi-hazard exposition 

during the lifespan, as long as that adjacent columns have enough flexural capacity. Thus, 

strong columns with squared cross-sections are shown to not be cost-effective for column loss 

scenarios alone, they could be if earthquakes and/or tornados were also addressed. This will be 

investigated in future studies. 

The previous paragraphs highlight the main findings of this study, focusing on the 

optimal balance between beam and column flexural capacities for progressive collapse 

mitigation and future investigations. However, additional conclusions were also drawn: 
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(a) A tradeoff between load-carrying capacity and overall frame ductility is observed when 

columns of squared-cross sections are assumed. As ultimate capacity relies in additional 

CAA capacity, optimal APM beam design is related to maximum beam depth and 

minimum ductility in terms of vertical drift. This might compromise the time needed for 

building evacuation, so the balance between risk-based cost-effectiveness of beam and 

column flexural capacities requires further investigations; 

(b) Squared cross-section columns in perimeter frames show optimal APM design 

equivalent to optimal conventional design. Perimeter frames receive floor load 

contributions from one side only, so a reduced vertical beam demand results in a smaller 

force vs moment demand in the columns. This, combined with stronger beams, make 

the optimal conventional column design also cost-effective for APM design; 

(c) Relying on the structure’s entire plastic reserve up to beam rebar rupture was found to 

be the optimal approach to deal with progressive collapse threats, so nonlinear capacity 

models were key-factors to describe the resisting mechanisms beyond flexural capacity. 

Besides, metamodeling was fundamental to integrate all major pieces of the framework, 

although some difficulties were found for ordinary kriging; 

(d) Literature findings were consistently related to cost-effective solutions. For instance: 

optimal beam designs with greater depth promote CAA (Alogla et al. 2016); large axial 

restraints lead to optimal beam designs with improved CAA and CA capacities (Long 

et al. 2021); optimal beam designs with reduced depth have improved CA capacity when 

assuming full lateral restraints (Alshaikh et al. 2020; Yu and Tan, 2013); greater optimal 

rebar reinforcements in APM designs were in favor of increasing the frame ultimate 

capacity (Abdelwahed, 2019); however, optimal over reinforced beams are related to 

slightly decreased flexural capacity and earlier mobilization of CA (Ren et al. 2016); 

top reinforcement ratio is always greater in optimal progressive collapse-resistant beam 

design (Long et al. 2021); strengthening the two first floors is shown to be a very cost-

effective solution for low-rise frames (Praxedes and Yuan, 2022);  

(e) Threshold probabilities above which partial frame reinforcement becomes cost-effective 

ranges between 2 × 10−5 to 2 × 10−4 per year in this work, whilst for Praxedes and 

Yuan (2022) it is among 2 × 10−7 and 2 × 10−6 per year. Yet, this is possibly related 

to their greater beam span lengths (7 m) and lower rebar yielding strength (413.7 MPa) 

on their frames, making them more susceptible to early collapse, even for lower values 

of dead and live loads; 
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(f) A transition in optimal solutions was observed, with optimal cross-sections changing 

from a configuration with best performance under normal loading condition to another 

with best performance against progressive collapse, characterizing the threshold local 

damage probability 𝑃𝐿𝐷
𝑡ℎ . It represents a break-even point between costs of strengthening 

and the reduction in expected costs of progressive collapse. When the abnormal load 

and threat are such that 𝑃𝐿𝐷 < 𝑃𝐿𝐷
𝑡ℎ , APM design for load bridging is not cost-effective. 

By contrast, APM design pays off under significant threat probabilities, with 

strengthening costs being compensated by a reduction in expected costs of failure;  

(g) External column loss scenarios were shown to be the most critical due to neither CAA 

or CA being mobilized. As ultimate capacity solely relies on Vierendeel Action, 

reinforcing becomes expensive. This leads to APM design being cost-effective only for 

larger threat probabilities when addressing perimeter frames (10−2 < 𝑃𝐿𝐷
𝑡ℎ < 10−1). For 

inner primary frames, 𝑃𝐿𝐷
𝑡ℎ  for external column loss is in a similar range of inner column 

loss scenarios (10−3 < 𝑃𝐿𝐷
𝑡ℎ < 10−2), but optimal APM design starts with significantly 

reduced safety margins against progressive collapse, especially for lower frames due to 

greater floor load contributions and less effective VA mechanism; 

(h) Assuming the loss of any ground-floor column leads to optimal APM design being cost-

effective for 10−3 < 𝑃𝐿𝐷
𝑡ℎ < 10−2 for all reinforcement strategies investigated. This 

relates to independent individual threat probabilities ranging from ~1.428 × 10−4 to 

~1.428 × 10−3 for each of the seven columns of the investigated frame. Hence, passive 

measures that reduce the number of potential target columns for a given hazard can have 

better cost-benefit than addressing an APM design that simultaneously covers multiple 

scenarios of single column loss. Yet, this relates to a series system event, where local 

damage to any column either triggers progressive collapse or effectively engage 

resisting mechanisms (union of events). Assuming independence of events leads to a 

lower bound for 𝑃𝐿𝐷
𝑡ℎ  ranging from ~1.428 × 10−4 to ~1.428 × 10−3, whilst perfect 

dependency leads to 10−3 < 𝑃𝐿𝐷
𝑡ℎ < 10−2 as upper bound. Admitting a local damage 

event for any column implies in some dependency between columns, so the actual value 

for 𝑃𝐿𝐷
𝑡ℎ  is between the aforementioned limits; 

(i) Under prevalence of usual loading condition, the risk-based framework leads to a good 

balance between safety and construction cost, allocating material to provide just-enough 

safety against the most critical failure modes, namely bending at the beam ends and 

column failure;  
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(j) Increased ultimate capacity is ensured for 𝑃𝐿𝐷 > 𝑃𝐿𝐷
𝑡ℎ , with larger longitudinal and 

transversal reinforcement ratios, and concrete strength up to its upper bound. Optimal 

beam depth strongly depends on the lateral confinement: strong columns allow weak 

beams, whilst weak columns require strong beams. Yet, optimal APM design has 

increased safety margins against brittle shear, steel rupture before catenary action, and 

column failure, but also warranting a minimum safety margin against ductile steel 

failure in CA (i.e., the least bad failure mode);  

(k) Inner primary frames of lower height have minimum safety margin against column 

failure after 𝑃𝐿𝐷
𝑡ℎ . As lower frames have less stories, reduced axial forces are developed 

in Vierendeel Action and Catenary Action (inner column loss scenarios). This implies a 

reduction in column flexural demand, allowing reduced safety margins for these vertical 

elements. Hence, when addressing the entire frame, reinforcing all column spans only 

pays off when significant axial forces are developed over the critical beams; 

(l) The gap between optimal manufacturing cost and total expected costs reduces according 

to how efficiently Vierendeel and Catenary Actions can be mobilized. Hence, scenarios 

of inner column loss are related to the smallest expected costs of progressive collapse, 

whilst external and penultimate column loss scenarios have greater gaps due to lower 

safety margins e.g. greater expected costs of failure. Hence, this cost-gap is reduced for 

taller frames due to more efficient resisting mechanisms; 

(m) Additional robustness against progressive collapse also provides satisfactory safety 

margins against all intact structure failure modes. Strong lateral restraint leads to 

increased safety against ultimate failure modes, and an adequate admissible safety 

margin against excessive midspan displacements (serviceability). Weaker columns 

result in optimal APM beam designs with greater depth, so safety against serviceability 

failure also increases; 

(n) Beam cross-section depth and overall concrete strength are design variables able to 

ensure capacity against multiple failure modes. Consequently, the risk-based algorithm 

tends to favor high values for these parameters.  However, it is shown that great depth 

(stronger) columns can lead to optimal low depth (weaker) beams due to their enhanced 

CA capacity, but always ensuring an admissible safety margin against serviceability and 

shear failure. Thus, concrete strength is a design variable with significant uncertainty, 

so higher values help to ensure sufficient column safety margin in case of non-compliant 

concrete (Magalhães, Real and da Silva Filho, 2016); 
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(o) By studying how the total expected costs change in terms of the optimal risk-based 

solution, two situations are noticeable. Conservative design relates to total expected 

costs slowly increasing, as resources are allocated with no corresponding decrease in 

expected costs of failure. Unsafe design has its total expected costs increasing in a very 

steep slope due to lacking capacity against one or more failure modes. Therefore, all 

optimal design solutions for a given 𝑃𝐿𝐷 reflect the best allocation of resources, 

balancing reinforcement costs with the reduction in expected costs of failure;  

(p) Column axial capacity for optimal APM design increases according to frame height and 

column loss scenario, as greater flexural demands are expected for taller frames and 

inner column loss scenarios due to Vierendeel, Compressive Arch and Catenary Actions 

being more efficiently mobilized;  

(q) Greater unitary reference costs lead to similar optimal designs both before and after 𝑃𝐿𝐷
𝑡ℎ . 

However, the increased overall manufacturing costs imply in slightly reduced 

reinforcements and safety margins against critical failure modes. Besides, cost-

effectiveness of APM design becomes positive for slightly increased threat probabilities 

due to more expensive reference reinforcement costs. In comparison to expensive 

reference costs from the Covid-19 pandemic period, cheaper reference costs from 2024 

lead to a ~19% reduction in beam manufacturing costs and overall increase of 25% for 

bending and shear capacities; 

(r) Optimal design slightly changes in terms of the amount of ductility in the rebars, leading 

to optimal solutions of similar manufacturing cost. However, greater ductility rebars 

provide increased safety margins and smaller expected costs of failure;  

(s) Symmetric rebar reinforcements related to slightly reduced beam depths enhance the 

ultimate capacity, but not with a corresponding increase in shear resistance. Hence, this 

option is shown to be cost-effective only when simultaneously meeting the following 

conditions: loss of a single column, low ductility rebars, and 𝑃𝐿𝐷 slightly above 𝑃𝐿𝐷
𝑡ℎ . 

This combination reflects a situation where more rebars are needed, due to their lower 

ductility, to manage a high probability of rebar rupture, for which the algorithm allows 

for a slight reduction in shear capacity to meet the more urgent need;  

(t) Partially strengthening the first two floors reduces manufacturing and total expected 

costs in ~19% when compared to whole frame reinforcement. In addition, partial frame 

reinforcement makes APM design cost-effective for smaller threat probabilities. Yet, 

gas explosions at the upper floors, for instance, are not addressed by this solution; 
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(u) For 𝑃𝐿𝐷 < 𝑃𝐿𝐷
𝑡ℎ , an optimal setup with 2-legged stirrups is slightly cheaper than a setup 

with 3-legged stirrups, although the additional shear resistance due to a third stirrup leg 

is compensated by a reduction in stirrup diameter to meet a similar 𝜌𝑠𝑡. The advantages 

of the extra core confinement provided by slightly more expensive 3-legged stirrups 

become noticeable for 𝑃𝐿𝐷 > 𝑃𝐿𝐷
𝑡ℎ , reducing the total expected cost by approximately 

10% in comparison with the 2-legged stirrup option, and slightly increasing 𝑃𝐿𝐷
𝑡ℎ . This 

slight advantage in the APM design relates to the extra confinement provided by an 

additional stirrup leg, which assists on the CAA capacity, reduces the propensity of rebar 

failure during snap-though instability, and slightly postpone the CA onset; 

(v) ACI and GSA guideline provisions for conventional and progressive-collapse-resistant 

design are satisfied by the optimal solutions, and the few exceptions are related to 

Demand-Capacity Ratios (DCR) slightly greater than one. In these few cases, the risk-

based algorithm does not show cost-effectiveness in providing greater reinforcements 

solely to meet the safety margin required by guidelines. Besides, slightly more 

conservative designs would be needed to ensure safety margins in these cases;  

(w) Target reliability indexes cold be added to ensure that guideline provisions are always 

automatically met. Nevertheless, DCRs close to unity are a good indication that the 

optimal solutions are in agreement with expected real-life safety demands, indicating a 

good choice of cost multipliers 𝑘 when computing expected cost of failure. Thus, DCR 

factors for rebar rupture reduces for taller frames under inner column loss, reflecting 

their greatest effectiveness in developing both VA and CA; 

(x) As the cost-benefit of APM design grows, the optimal structure becomes more efficient 

at bridging over a lost column. If 𝑃𝐿𝐷 is slightly above 𝑃𝐿𝐷
𝑡ℎ , much higher unconditional 

probabilities of ductile steel failure led to greater DCRs, even though its optimal 

conditional reliability index is between 3.0 and 4.0; 

(y) Resistance factors show that flexural capacity for optimal APM designs is at least twice 

than the flexural capacity for optimal conventional design. Ultimate capacity in terms 

of rebar rupture is also shown to become more than double, regardless of frame aspect 

ratio and column loss scenario, when square cross-sections are assumed for the columns.  

 

Ongoing investigations are addressing all the main outcomes. As stated in the end of 

Chapter 4: this thesis marks the end of a cycle, but not the end of this research. In fact, this is 

just the beginning. 
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