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RESUMO

MATTE, A.t.C Proposta de plataforma orientada a objetos para a resolução de
problemas mecânicos por meio do MEF posicional. 2024. Dissertação
(Mestrado) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos,
2024.

Este trabalho trata de uma proposta de arquitetura de código, orientada a objetos,
para a resolução de problemas mecânicos, por meio do Método dos Elementos Finitos
(MEF) Posicional. A implementação englobou problemas quase estáticos, dinâmicos,
e com a imersão de elementos na malha. Foram empregados elementos bidimensionais,
triangulares, de aproximações linear, quadrática e cúbica, e elementos de barra simples, com
aproximação linear. O código foi desenvolvido na linguagem de programação C++, visando
o aproveitamento de características importantes que a orientação a objetos proporciona,
como manutenibilidade e escalabilidade. Por tratar, geralmente, de problemas com grandes
dimensões, a arquitetura proposta apresenta ambientes bem definidos de pré processamento,
processamento e pós processamento, evitando ao máximo a movimentação desnecessária de
dados. A documentação foi inserida diretamente no código, e gerada automaticamente por
meio do software Doxygen®. A plataforma foi disponibilizada por meio de um repositório
no GitHub® e publicada por meio da plataforma Zenodo®, totalmente open source. Foram
apresentados diversos exemplos de aplicação, validando a implementação para todos os
tipos de problemas propostos.

Palavras-chave: Método dos elementos finitos posicional. Arquitetura de código. Orien-
tação a objetos. Escalabilidade. Programação. C++.



 



ABSTRACT

MATTE, A.t.C Object oriented platform proposal for mechanic problems
resolution through posicional FEM. 2024. Dissertation (Master) - Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2024.

This work presents an object-oriented code architecture proposal for solving mechanical
problems using the Positional Finite Element Method (FEM). The implementation covers
quasi-static, dynamic problems, and problems with immersed elements in the mesh. Two-
dimensional triangular elements with linear, quadratic, and cubic approximations, as well
as simple bar elements with linear approximation, were employed. The code was developed
in C++ to leverage the important features that object-oriented programming provides,
such as maintainability and scalability. Since it generally deals with large-scale problems,
the proposed architecture features well-defined environments for pre-processing, processing,
and post-processing, minimizing unnecessary data movement. Documentation was directly
embedded in the code and automatically generated using Doxygen® software. The platform
was made available through a GitHub® repository and published via Zenodo®, completely
open-source. Several application examples were presented, validating the implementation
for all types of proposed problems.

Keywords: Positional finite element method. Code architecture. Object orientation.
Scalability. Programming. C++.
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1 INTRODUÇÃO

Os códigos que envolvem a resolução de problemas com o Método dos Elementos
Finitos (MEF) costumam apresentar alto nível de complexidade. Muitos deles são construí-
dos sem a devida preocupação com futuros desdobramentos ou extensões, o que acaba por
dificultar, ou até mesmo inviabilizar, uma futura adaptação ou atualização. Devido a sua
grande extensão acabam por limitar os profissionais habilitados à realizar modificações e
ajustes, exigindo o conhecimento de grande parte, ou até a totalidade da teoria envolvida
na sua concepção (MCKENNA, 1997).

Para que um código seja facilmente adaptável, é de extrema importância que,
na fase de projeto, sejam elencadas não somente as suas funcionalidades atuais, como
também uma série de funcionalidades que poderão complementá-lo futuramente. Também
é imprescindível que sejam seguidos alguns princípios que tornem as futuras alterações
menos trabalhosas, como políticas de modularização do sistema, facilitando a localização
de elementos específicos (ANICHE; YODER; KON, ; KULESZA, 2000).

Os avanços na engenharia de software proporcionaram uma série de ferramentas
primordiais para a reconstrução da arquitetura geral desses códigos. No início da década
de 80, com o surgimento das primeiras linguagens orientadas a objetos – primeiramente
a SIMULA 67 (LAMPRECHT, 1983), e depois uma série de outras linguagens, com
ênfase para C++, que é amplamente utilizada ainda na atualidade – abrem-se novas
oportunidades de pesquisa nessa área. Na Figura 1.1 pode-se observar a evolução de
diversas linguagens e a conexão entre elas.

Figura 1.1 – Evolução de várias linguagens de programação orientadas a objetos

Fonte: Seed (1996).
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Na simbologia utilizada por Seed (1996), similar à simbologia de herança entre
classes, as setas conectam as linguagens que tiveram influência, ou até serviram de base
para a criação de novas linguagens, apontando sempre para as predecessoras. A linguagem
C++, por exemplo, foi amplamente influenciada pela linguagem Simula (SEED, 1996).

No início da década de 90 começam a surgir os primeiros trabalhos referentes ao MEF
utilizando o paradigma de orientação a objetos (OHTSUBO; KAWAMURA; KUBOTA,
1993; SCHOLZ, 1992). Todavia, os métodos numéricos também não ficaram estagnados
no tempo. Foram criados métodos completamente distintos, e os métodos existentes foram
sendo continuamente reformulados, adaptados e aprimorados. Isso ocorre devido a uma
série de fatores, dentre os quais podem ser citados a resolução de novos problemas de
engenharia, a avaliação de diferentes tipos de materiais, as melhorias relacionadas ao
desempenho, precisão, convergência, assim como a melhoria dos equipamentos utilizados
para análise, dentre outros fatores.

Nessa linha que surge o Método dos Elementos Finitos Posicional (MEFP), que
vem sendo desenvolvido desde Coda (2003), no intuito de simplificar a implementação dos
códigos para problemas com consideração de não linearidade geométrica. Uma série de
trabalhos vem sendo desenvolvidos para comprovar a eficiência do método em diferentes
problemas de engenharia. Esses trabalhos tratam de estruturas de pórtico, treliçadas
bidimensionais (CODA; GRECO, 2004) e tridimensionais (GRECO et al., 2006), cascas
(CODA; PACCOLA, 2007; 2008), etc., envolvendo modelos quase-estáticos, dinâmicos
(GRECO; CODA, 2006), termomecânicos (CARRAZEDO, 2009; CARRAZEDO; CODA,
2010) e de interação fluido-estrutura (SANCHES; CODA, 2013; 2014). Também há estudos
sobre a consideração de materiais heterogêneos (CARRAZEDO; PACCOLA; CODA, 2018;
NOGUEIRA; PACCOLA; CODA, 2016; PACCOLA; CODA, 2016), por meio de elementos
imersos na malha, a consideração do comportamento viscoelástico dos materiais (RABELO
et al., 2018), de danos causados por corrosão (RAMOS; CARRAZEDO, 2020), dentre
outros estudos.

Muitos desses trabalhos envolvendo novas formulações, adaptações e melhorias dos
métodos foram sendo desenvolvidos com foco na resolução do problema de engenharia,
sem grandes preocupações com a estrutura do código. Dentro desse contexto, a estratégia
de plataforma se mostra uma alternativa muito interessante em diversas frentes. O termo
plataforma é utilizado para descrever um conjunto de subsistemas que torna possível o
desenvolvimento de uma determinada gama de produtos. O conceito trata de reutilizar
grande parte do código, deixando apenas a customização dos trechos necessários para o
desenvolvimento de produtos específicos (GHANAM; MAURER; ABRAHAMSSON, 2012).
Nesse sentido, a plataforma promove maior integração entre os trabalhos da mesma área,
otimizando o tempo dedicado de cada profissional, evitando retrabalhos com repetição de
códigos, e proporcionando uma padronização de desenvolvimento, tornando os trabalhos
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mais acessíveis a novos pesquisadores.

Todavia, a construção de uma plataforma envolve uma série de desafios. Conforme
Sanner e Nielsen (2019), a capacidade de inovação de uma plataforma de software de-
pende muito de sua arquitetura. A sua estrutura deve ser organizada e pensada para
comportar futuros desenvolvimentos. Além disso, a comunicação é um fator imprescindível,
devendo a documentação ser clara e suficiente, para que novos desenvolvedores não tenham
dificuldades de implementação.

Em vista disso, este trabalho trata do desenvolvimento de uma plataforma voltada à
resolução de problemas mecânicos, por meio do MEF Posicional, no paradigma orientado a
objeto, visando uma estrutura facilmente escalável, adaptável e bem documentada, tornando
possível a sua utilização em futuras aplicações do método, assim como a continuidade de
atualizações.

1.1 Metodologia

Com relação à formulação matemática para a elaboração dos códigos, foi utilizado
como base o material de Coda (2018). A plataforma foi projetada para ser facilmente
adaptável, podendo abranger uma série de problemas distintos (envolvendo alterações
de materiais, elementos, condições de contorno, etc.). Todavia, o trabalho se restringiu à
resolução de problemas mecânicos estáticos e dinâmicos. Também foi prevista a resolução
com elementos compósitos, nos quais são imersos elementos de mesma dimensionalidade
da malha base, ou de dimensionalidade inferior. Foram utilizados elementos de chapa
triangulares, com aproximação linear, quadrática e cúbica. A integração numérica foi feita
na forma de quadratura de Hammer (HAMMER; MARLOWE; STROUD, 1956), onde
serão empregados modelos com 7 e 12 pontos de integração.

O código foi escrito na linguagem C++, e sua estrutura foi desenvolvida com
base no paradigma de orientação a objetos. A documentação do código foi elaborada
através do software Doxygen®1. A disponibilização do repositório O2P2: Pre-alpha release
(CARRAZEDO et al., 2023) está sendo feita por meio do GitHub®2.

1.2 Estrutura do trabalho

No capítulo 2 é apresentado um breve histórico de pesquisas e o atual estado
da arte referente aos assuntos abordados. Os principais temas tratados foram o MEF
Posicional e a programação orientada a objetos. Também são abordadas as estruturas
de código utilizadas atualmente para a resolução desses problemas, com ênfase naqueles
desenvolvidos segundo o paradigma orientado a objetos. No capítulo 3 é apresentada a
1 Disponível em: <https://doxygen.nl/index.html/>. Versão: 1.9.8. Acesso em: Outubro de

2023.
2 Disponível em: <https://github.com/>. Acesso em: Outubro de 2023.
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teoria do método dos elementos finitos posicional, que foi utilizada como base para a
elaboração do código. O trabalho trata de problemas mecânicos estáticos, dinâmicos e
também com a inserção de elementos imersos na malha.

O capítulo 4 traz os principais conceitos referentes à teoria de programação orientada
a objetos, que serviram de base para a lógica de desenvolvimento do sistema. Nesse mesmo
capítulo, a estrutura geral do código é apresentada, elencando as principais classes e as
interações entre elas. Todas as classes que compõem o código foram descritas, trazendo
suas principais características e funcionalidades dentro do sistema. Também é exposto
o processo de documentação e disponibilização, onde são apresentadas as ferramentas
utilizadas, tanto para a geração dos textos da documentação quanto para a disponibilização
do código. Por fim, o capítulo ainda trata do desenvolvimento da estrutura padrão utilizada
para a documentação, de forma a simplificar não só o entendimento geral do sistema, mas
também de cada uma das funções componentes do código.

No Capítulo 5 são apresentados problemas já discutidos em outros trabalhos, com
resultados conhecidos, com a finalidade de validar o código desenvolvido. Por fim, o
Capítulo 6 traz as conclusões a partir dos resultados obtidos e discutidos, em conformidade
com os objetivos geral e específicos do trabalho, citados no Capítulo 1.

1.3 Delimitação do tema

Desenvolvimento de plataforma genérica orientada a objetos na linguagem C++
aplicada ao MEF Posicional (não linear geométrico), sendo implementada, neste trabalho,
para problemas mecânicos estáticos e dinâmicos com a consideração de elementos imersos,
utilizando o modelo constitutivo de Saint-Venant-Kirchhoff.

1.4 Objetivos

O objetivo deste trabalho é desenvolver uma plataforma no paradigma orientado
a objetos por meio do MEF posicional para análise mecânica estática e dinâmica de
estruturas, com a consideração de elementos imersos na matriz.

1.4.1 Objetivos específicos

a) Organizar a arquitetura do código com uma visão generalista, de forma a possibilitar a
resolução de diferentes problemas;

b) Implementar classes de objetos que sejam independentes do problema a ser resolvido,
de forma a facilitar a inclusão de novas classes a posteriori.

c) Desenvolver códigos modulares, facilmente adaptáveis;
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d) Documentar todas as funções, de forma clara e concisa, para que a plataforma possa ser
utilizada de forma trivial como base para o desenvolvimento de novas ferramentas;

e) Disponibilizar o código para a comunidade científica através do repositório GitHub®.

1.5 Justificativa

No desenvolvimento de códigos computacionais voltados à resolução de problemas
específicos de engenharia é comum que o pesquisador construa, inicialmente, um código
base, tornando possível a evolução de sua pesquisa. A existência de uma plataforma com
características genéricas, com estrutura organizada e documentada se torna uma ferramenta
primordial para a elaboração de validações dessas pesquisas, evitando retrabalhos e gastos
excessivos de tempo de programação. Desta forma, o pesquisador pode dedicar mais tempo
na parte teórica e na implementação de um trecho específico de código. Além disso, caso
seja seguida a mesma linha de raciocínio nesses trabalhos, os códigos serão facilmente
integrados à plataforma, e poderão ser utilizados por futuros pesquisadores. À vista disso,
este trabalho pretende desenvolver uma plataforma genérica, aplicada ao MEF Posicional,
segundo o paradigma de orientação a objetos, de maneira que sua estrutura seja de fácil
escalabilidade, adaptação e de fácil entendimento, possibilitando o seu aprimoramento
contínuo.
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2 ESTADO DA ARTE

Este capítulo tem como objetivo apresentar o atual estado da arte relacionado
ao tema em questão. Em um primeiro momento são discutidos aspectos referentes ao
MEF, com foco no MEF Posicional. Mais à frente é abordado o emprego de programação
orientada a objetos na implementação desse tipo de código.

2.1 O Método dos Elementos Finitos Posicional

O método dos elementos finitos (MEF) foi desenvolvido na década de 50 e no
início dos anos 60, quando passou a ser visto como uma técnica numérica viável, sendo
utilizado principalmente para estruturas aeronáuticas. A partir daí foi ganhando espaço
em diferentes indústrias, como a automobilística, construção civil, biomecânica, geotécnica,
entre outras. O tipo de análise também foi sendo diversificado com o passar dos anos,
destacando-se as análises mecânicas (estáticas e dinâmicas), térmicas, de campos elétricos
e magnéticos, de escoamento de fluidos, etc. (BOWER, 2010; FISH; BELYTSCHKO, 2007;
OÑATE et al., 2004; WRIGGERS, 2008; ZIENKIEWICZ; HUANG; LIU, 1990).

Observando as limitações do MEF, foram surgindo novos métodos, sendo alguns
deles com poucas adaptações na sua formulação, e outros com uma concepção totalmente
distinta, com o objetivo de atender a necessidades específicas de cada aplicação. No geral há
uma série de vantagens e desvantagens quando comparamos essas metodologias, que acabam
nos direcionando conforme o tipo de problema a ser analisado. Citando alguns exemplos,
de forma resumida, o Método dos Elementos de Contorno (MEC) apresenta uma concepção
totalmente distinta, mais complexa, resultando em uma matriz densa e assimétrica. Todavia,
o método proporciona uma diminuição do tempo de modelagem do problema, uma vez que
a sua dimensão é reduzida em uma ordem (problemas tridimensionais são descritos por
meio de uma superfície de contorno, enquanto problemas bidimensionais são descritos por
meio de uma linha de contorno). Essas características são favoráveis em análise de fratura,
por exemplo, devido à necessidade contínua de reconstrução da malha (BECKER, 1992).
Outro exemplo mais recente é o Método dos Elementos Finitos Generalizados (MEFG),
que foi desenvolvido na década de 90 (DUARTE; BABUŠKA; ODEN, 2000). O método
é baseado no MEF tradicional, porém suas funções de enriquecimento possibilitam a
obtenção de resultados mais precisos em regiões particulares do domínio, como fissuras e
regiões de contato, dispensando assim um refinamento excessivo da malha (PIEDADE
NETO, 2013).

Com os avanços da engenharia estrutural, em busca de otimização de recursos,
e também de estruturas diferenciadas, tornam-se mais comuns os projetos envolvendo
estruturas com menor rigidez. Desse modo surge a necessidade da utilização de métodos
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de cálculo adequados para estruturas que apresentam grandes deslocamentos. Com base
nisso surge o Método dos Elementos Finitos Posicional (BONET et al., 2000/ CODA,
2003; 2018), apresentando, em sua implementação, uma metodologia mais simples e direta
para a consideração da não linearidade geométrica dentro do MEF. Baseado no princípio
da estacionariedade da energia, o método se diferencia principalmente por utilizar a
posição como variável incógnita. A formulação é não-linear geométrica de forma natural,
apresentando vantagens nas análises com grandes deslocamentos, rotações e deformações,
por considerar a cinemática exata do corpo sólido (CARVALHO, 2019; SIQUEIRA, 2019).
A partir de sua formalização, realizada por Coda (2003), o método já teve várias aplicações
em diferentes tipos de problemas. Pode-se citar alguns dos trabalhos pioneiros, como
o desenvolvido por Coda e Greco (2004), em estruturas bidimensionais compostas por
elementos de pórtico, e o trabalho de Greco et al. (2006), simulando treliças tridimensionais,
onde o método se mostrou eficiente quanto à sua convergência e precisão, enfatizando ainda
a capacidade de avaliação das estruturas após a ocorrência de instabilidades geométricas.
Na pesquisa desenvolvida por Greco e Coda (2006), voltada para multicorpos flexíveis,
foi demonstrado que a formulação é adequada para problemas dinâmicos com grandes
deslocamentos e grandes rotações, considerando não linearidade geométrica.

A formulação seguiu sendo aplicada com êxito em diferentes tipos de problemas.
Pode-se citar os trabalhos de Coda e Paccola (2007, 2008) envolvendo a análise de
cascas, os de Carrazedo (2009) e Carrazedo e Coda (2010) com a consideração de efeitos
termomecânicos, e os de Sanches e Coda (2013, 2014) e Fernandes, Coda e Sanches (2019),
demonstrando a aplicabilidade da formulação em problemas de interação fluido-estrutura,
e de Avancini e Sanches (2020) em problemas de escoamentos de fluidos em superfície
livre. Como exemplo de aplicação em problemas de impacto, menciona-se o trabalho
de Cavalcante, Maciel e Greco (2018), que avaliou a resposta dinâmica de treliças bi e
tridimensionais. Com relação a formulações voltadas a materiais compósitos, pode-se citar
os trabalhos de Paccola e Coda (2016), apresentando uma alternativa para a consideração
de compósitos particulados, de Nogueira, Paccola e Coda (2016), propondo uma formulação
para o tratamento de estruturas laminadas e de Carrazedo, Paccola e Coda (2018), com a
proposição de uma estratégia numérica para consideração da rigidez de painéis sanduíche1.
Também pode-se mencionar alguns trabalhos envolvendo a não linearidade física, como o
de Reis e Coda (2014), com a implementação de conexões elastoplásticas semi-rígidas, os
trabalhos de Rabelo et al. (2018), avaliando o comportamento mecânico viscoelástico em
treliças tridimensionais, o de Pascon (2022), tratando de um modelo de dano com grandes
deformações, e o de Ramos e Carrazedo (2020), propondo uma estratégia alternativa de
expansão e dano de seções transversais de concreto causados pela corrosão não uniforme
associados ao ingresso de cloretos. O trabalho de Carvalho, Coda e Sanches (2020) trata
1 Constituídos normalmente por duas chapas de pequena espessura e maior rigidez, separadas

por uma camada espessa de um material leve, de menor rigidez.
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de problemas envolvendo contato, avaliando o processso de conformação a frio. Ainda
podem ser citados os trabalhos de Soares, Paccola e Coda (2019, 2021), sobre análise de
instabilidade em estruturas de parede fina e o de Paulino e Leonel (2021), sobre otimização
topológica, entre outras abordagens, que corroboram a utilidade do método para inúmeros
problemas de engenharia.

2.2 Programação orientada a objetos no MEF

Desde o período inicial das aplicações do MEF surge a problemática relacionada à
complexidade de seus códigos computacionais. Na maioria dos problemas há a necessidade
de utilização de uma quantidade elevada de variáveis, que devem ser relacionadas de
diferentes formas, em trechos distintos do código. Dessa forma, caso não seja dada a devida
atenção à sua organização, os códigos se tornam repetitivos, e apresentam dificuldades
quanto a sua alteração e escalabilidade. Nas primeiras versões do software NASTRAN já
ficava clara a preocupação de Wills e Roe (1972) com questões relacionadas a escalabilidade
e facilidade de adaptação dos códigos, assim como com a sua documentação. Outros
trabalhos realizados na mesma época demonstram preocupações similares, como é o caso
de Dodds e Lopez (1978), criando uma discussão a respeito de análises não lineares, e
de Iwaki, Maeda e Ishii (1979), com foco no alto desempenho, no desenvolvimento do
software Mitsui Structural Analysis System (MISA).

Com o avanço das linguagens de programação e o surgimento da orientação a
objetos na década de 80, inicialmente através da linguagem SIMULA 67 (LAMPRECHT,
1983), e posteriormente de outras linguagens, com ênfase para C++, que foi – e ainda é –
amplamente utilizada, iniciaram-se os desenvolvimentos de códigos de MEF orientados a
objetos no início da década de 90. Pode-se citar alguns trabalhos pioneiros, como o trabalho
de Forde, Foschi e Stieme (1990), que foi o primeiro a aplicar a programação orientada a
objetos em problemas relacionados ao MEF, e o trabalho de Scholz (1992), desenvolvido
na linguagem C++, que apesar da simplicidade relacionado ao problema de engenharia,
traz aspectos importantes com relação ao paradigma de orientação a objetos. Mackie
(1992) implementou seu código empregando Turbo Pascal (BORLAND INTERNATIONAL
INC., 1988), ilustrando algumas vantagens da utilização da metodologia. Zimmermann,
Dubois-Pèlerin e Bomme (1992) abordaram os princípios de orientação a objetos voltados
ao MEF utilizando a linguagem Smalltalk/V286 (1998) e, simultaneamente desenvolveram
um protótipo utilizando a mesma linguagem, tratando da implementação dos códigos
orientados a objetos (DUBOIS-PÈLERIN; ZIMMERMANN; BOMME, 1992). No ano
seguinte, Dubois-Pèlerin e Zimmermann (1993) buscaram a implementação de um programa
orientado a objetos preocupando-se também com a eficiência numérica, desta vez utilizando
a linguagem C++. Nesse mesmo ano, Ohtsubo, Kawamura e Kubota (1993) desenvolveram
o MODeling tool for Integrated Finite element analYsis (MODIFY), trazendo preocupações
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relativas ao pré e pós processamento, também desenvolvido na linguagem C++.

Uma série de pesquisadores se dedicaram a esses problemas nos anos subsequentes,
sendo desenvolvidos códigos orientados a objetos aplicados aos mais diversos problemas de
engenharia utilizando o MEF. Mackerle (2004) realizou uma revisão bibliográfica visando
trabalhos voltados a programação orientada a objetos aplicados ao MEF e ao MEC,
considerando o intervalo de 1990 a 2003. Nessa revisão o autor cita mais de 100 trabalhos
somente aplicados ao MEF. Li e Zhou (2013) se propuseram a montar um estado da arte
relacionado a programação orientada a objetos aplicada em códigos de elementos finitos.
O Quadro 2.1 tem por objetivo listar os principais trabalhos desenvolvidos segundo o
paradigma de orientação a objeto aplicados ao MEF. Foi feita uma relação entre os autores,
o modelo de estudo, a linguagem de programação e a abordagem utilizada, onde se nota
que é recente a consideração de problemas não lineares em códigos orientados a objetos.
As linguagens de programação utilizadas na implementação são adicionadas no quadro
através de siglas, sendo Object Pascal(OP), Smalltalk(ST), Matlab(ML) e C++(CPP). Já
as siglas NLF, NLG, NLFG e L, que estão entre parênteses, indicam, respectivamente, a
consideração de não linearidade física, não linearidade geométrica, não linearidade física e
geométrica (simultaneamente) e linearidade física e geométrica.

Quadro 2.1 – Principais trabalhos envolvendo Orientação a Objetos aplicado ao MEF

Autor Modelo
Estático Dinâmico Térmico

Forde, Foschi e Stieme (1990) OP(L)
Zimmermann, Dubois-Pèlerin e Bomme (1992) ST(L)
Dubois-Pèlerin, Zimmermann e Bomme (1992) ST(L)

Mackie (1992) OP(L) OP(L)
Dubois-Pèlerin e Zimmermann (1993) CPP(L) CPP(L)
Ohtsubo, Kawamura e Kubota (1993) CPP

Zeglinski, Han e Aitchison (1994) CPP
Bose e Carey (1999) CPP

Patzák e Bittnar (2001) CPP(NLG) CPP(NLG)
Jayesh, Jeyakarthikeyan e Yogeshwaran (2018) ML

Gong et al. (2020) CPP(NLFG) CPP(NLFG)
Ding, Yu e Bui (2020) ML(NLF)

Ding et al. (2020) ML(NLF) ML(NLF)
Tan et al. (2021) CPP(NLFG) CPP(NLFG)

Fonte: Próprio autor.

Pode-se observar, por meio do quadro acima que, com o passar do tempo, foram
sendo desenvolvidos trabalhos com a consideração de não linearidade física e geométrica
aplicados a diferentes modelos. Também se nota a preferência pela linguagem C++, devido
principalmente à sua eficiência numérica. Conforme Dubois-Pèlerin e Zimmermann (1993),
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a linguagem foi desenvolvida tendo como proposta, a combinação entre as vantagens da
orientação a objetos e a eficiência numérica da linguagem C.

Alguns pesquisadores disponibilizaram seus códigos para a comunidade científica,
facilitando ainda mais os avanços na área. Commend e Zimmermann (2001), por exemplo,
empregaram a metodologia voltada a problemas não lineares e disponibilizaram os códigos
para a comunidade através do seu próprio website. Atualmente há uma série de softwares
cujos códigos são abertos, ou seja, são disponibilizados à comunidade científica por meio
de repositórios públicos, sendo possível a sua utilização como bibliotecas, facilitando o
desenvolvimento de novas ferramentas. Um exemplo é a Modular Finite Element Methods
(MFEM), desenvolvida por Kolev e Dobrev (2010) no Lawrence Livermore National Lab.
(LLNL), na linguagem C++. Outro exemplo é a biblioteca code-aster (EDF, 1989), criada
pela estatal francesa Életricité de France (EDF), também na linguagem C++, porém,
com alguns comandos desenvolvidos na linguagem Python, com a intenção de facilitar
a sua utilização. No Brasil, pode-se citar a Interactive Structural Analysis Environment
(INSANE, 2007), desenvolvida no Departamento de Engenharia de Estruturas (DEES) da
Universidade Federal de Minas Gerais (UFMG).

Com base no que foi exposto neste capítulo, conclui-se que o MEF Posicional,
apesar de ser mais recente, já foi amplamente empregado nos mais diversos tipos de
problemas. O método se mostrou eficiente, principalmente no que diz respeito à sua
utilização em problemas que necessitam da consideração da não linearidade geométrica.
Levando em consideração a abordagem de orientação a objetos aplicada ao MEF, também
percebe-se a grande quantidade de trabalhos publicados, com diferentes abordagens e
com a utilização de diferentes linguagens de programação. Apresentado o atual estado
atual da arte referente a esses temas, os capítulos a seguir apresentam a teoria utilizada
como base na implementação do código, iniciando pelo MEF Posicional e, posteriormente,
abrangendo programação orientada a objetos.
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3 MÉTODO DOS ELEMENTOS FINITOS POSICIONAL

Este capítulo tem a finalidade de expor a formulação matemática empregada na
concepção dos códigos. A abordagem do MEF baseado em posições teve início nos trabalhos
de Bonet et al. (2000) e Coda (2003). Coda (2018) formalizou essa abordagem descrevendo
o método para vários tipos de elementos, trazendo exemplos diversos, sempre de forma
clara e didática, com o objetivo de servir aos alunos de pós-graduação em engenharia de
estruturas. Em vista disso, esse material foi utilizado como base para a elaboração desse
capítulo. Por mais que grande parte da teoria aqui descrita se aplique de forma genérica a
diferentes elementos e problemas, o texto tem foco na resolução de problemas estáticos e
dinâmicos, com a utilização de elementos sólidos bidimensionais triangulares. O modelo
constitutivo adotado é o de Saint Venant Kirchhoff. Também é tratada, ao final desse
capítulo, a teoria de imersão de elementos na malha.

3.1 Funções aproximadoras

O método dos elementos finitos é assim chamado por representar o contínuo através
de um conjunto finito de subdomínios. Nesse caso, ao invés de um número infinito de incóg-
nitas, essas são aproximadas em um conjunto finito de parâmetros nodais representativos.

As aproximações que ocorrem nos elementos para a representação do contínuo
são obtidas por meio de polinômios aproximadores. Nesse processo são estabelecidos um
intervalo válido e alguns pontos conhecidos. Posteriormente, calcula-se o polinômio que
coincida com os valores dos pontos pré-estabelecidos. Esse processo é de simples dedução
quando se trata de polinômios de grau 1 ou grau 2. Todavia, quando são utilizados
polinômios de graus maiores, ou inclusive para calcular essa aproximação de forma genérica
(pela facilidade de programação), são utilizadas outras técnicas, dentre elas, os polinômios
de Lagrange, que foi a técnica utilizada neste trabalho.

3.1.1 Polinômios de Lagrange

Para uma aproximação unidimensional, os polinômios de Lagrange, empregados
como funções de forma, são definidos por meio de coordenadas adimensionais ξ, definidas
no intervalo de [−1, 1] (BOWER, 2010). O primeiro nó do elemento equivale à ξ = −1 e o
último equivale à ξ = 1, sendo os nós intermediários distribuídos de maneira equidistante,
conforme ilustra a Figura 3.1. A figura representa as funções de forma para elementos com
aproximação linear, quadrática e cúbica. A função de forma Φα (correspondente ao nó α),
vale 1 no nó α e 0 nos demais nós.

Tendo em vista a metodologia descrita, a obtenção das funções de forma se dá por
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meio da equação (3.1), que representa a fórmula geral dos polinômios de Lagrange.

Figura 3.1 – Funções de forma linear, quadrática e cúbica

Fonte: Próprio autor.

Φα = ξ − ξ1

ξα − ξ1
· · · ξ − ξα−1

ξα − ξα−1
· ξ − ξα+1

ξα − ξα+1
· · · ξ − ξn

ξα − ξn

(3.1)

Desta forma, as funções de forma referentes ao elemento com aproximação linear
obtidas por meio dos polinômios de Lagrange, representado na Figura 3.1, por exemplo,
são dadas por:

Φ1 = 1 − ξ

2 (3.2)

Φ2 = 1 + ξ

2 (3.3)

A utilização dos polinômios de Lagrange como função aproximadora se dá devido
à propriedade de partição da unidade. Ou seja, somando-se todos os valores de todos
os polinômios, obtém-se 1 como resultado em qualquer ponto do domínio. Portanto,
sendo conhecidos os valores da função em cada um dos nós do elemento (Fα), a função
aproximadora pode ser escrita conforme o seguinte somatório:

f(ξ) = Φα(ξ)Fα (3.4)

No caso do MEF isoparamétrico, essa metodologia é utilizada inclusive para a
aproximação da geometria dos elementos. Assim, sendo Xi e Yi as posições, respectivamente,
inicial e atual de um ponto do elemento, onde i equivale à direção da coordenada e α ao
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nó do elemento, escreve-se, de forma análoga à equação (3.4):

f 0
i (ξ) = Φα(ξ)Xα

i (3.5)

f 1
i (ξ) = Φα(ξ)Y α

i (3.6)

As funções aproximadoras f 0
i e f 1

i representam, respectivamente, o mapeamento das
configurações inicial e atual do elemento. Essa mesma metodologia pode ser aplicada para
a obtenção de funções referentes a outras variáveis como, por exemplo, forças distribuídas
aplicadas sobre os elementos.

Para aproximação bidimensional em elementos quadrangulares, utilizando os po-
linômios de Lagrange, segue-se a mesma lógica empregada na aproximação unidimensional.
Ou seja, a função de forma do nó α deve valer 1 no ponto correspondente ao nó α e 0 nos
demais nós do elemento. A representação de um elemento quadrangular com aproximações
linear e quadrática no espaço adimensional é ilustrada por meio da Figura 3.2.

Figura 3.2 – Elementos quadrangulares de ordens 1 e 2 no espaço adimensional

Fonte: Próprio autor.

A obtenção das funções de forma desses elementos se dá por meio da seguinte
equação:

Φα(ξ1, ξ2) = Φβ(ξ1)Φγ(ξ2) (3.7)

Em elementos tridimensionais pode-se obter as funções de forma seguindo a mesma
metodologia, sendo elas descritas por meio da equação:

Φα(ξ1, ξ2, ξ3) = Φβ(ξ1)Φγ(ξ2)Φθ(ξ3) (3.8)

sendo β, γ e θ relacionados aos nós do elemento.

3.1.2 Funções aproximadoras em elementos com base triangular

Quando comparados aos elementos quadrangulares, os elementos triangulares
possuem algumas vantagens e desvantagens. Dentre as vantagens pode-se destacar a
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facilidade de acomodação à geometria das estruturas e a geração de polinômios completos.
Nos elementos quadrangulares, por exemplo, são gerados alguns termos superabundantes,
provenientes das funções de forma unidimensionais (FISH; BELYTSCHKO, 2007). A
Figura 3.3 apresenta, no espaço adimensional, os elementos triangulares com aproximações
linear, quadrática e cúbica. Nota-se que tanto ξ1 quanto ξ2 variam somente no intervalo
de 0 ≤ ξi ≤ 1.

Figura 3.3 – Elementos triangulares de ordens 1, 2 e 3 no espaço adimensional

Fonte: Próprio autor.

Para uma aproximação quadrática, ou seja, para um elemento triangular de 6 nós,
são geradas as funções de forma conforme a regra de Pascal, por meio da equação (3.9). O
índice α é relativo ao nó do elemento e, consequentemente, à sua função de forma. Assim,
para a obtenção das funções de forma, é necessário calcular os 6 coeficientes referentes a
cada um dos nós.

Φα(ξ1, ξ2) = ak1 + ak2ξ1 + ak3ξ2 + ak4ξ
2
1 + ak5ξ1ξ2 + ak6ξ

2
2 (3.9)

As coordenadas dos nós do elemento triangular com aproximação quadrática são
dadas por P1(1, 0), P2(1

2 , 1
2), P3(0, 1), P4(1

2 , 0), P5(0, 1
2) e P6(0, 0). Como a função de forma

correspondente ao nó α tem valor unitário no próprio nó, pode-se escrever 6 equações
substituindo as coordenadas do nó α na função de forma α e igualando a 1. A equação
(3.10) apresenta essas funções no formato matricial.

a11

a21

a31

a41

a51

a61

a12

a22

a32

a42

a52

a62

a13

a23

a33

a43

a53

a63

a14

a24

a34

a44

a54

a64

a15

a25

a35

a45

a55

a65

a16

a26

a36

a46

a56

a66


·



1
1
1
1
1
1

1
1/2
0

1/2
0
0

0
1/2
1
0

1/2
0

1
1/4
0

1/4
0
0

0
1/4
0
0
0
0

0
1/4
1
0

1/4
0



t

= I (3.10)
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Dessa forma, como a multiplicação entre as matrizes resulta na matriz identidade,
sendo M a matriz dos coeficientes, conclui-se que M = P −1. Assim, através do cálculo dos
coeficientes são obtidas as funções de forma do elemento.

3.1.3 Modelo Constitutivo de Saint-Venant-Kirchhoff

O gradiente dos mapeamentos das configurações inicial e atual (vide equações (3.5)
e (3.6)) são necessários ao cálculo das deformações associadas ao método dos elementos
finitos posicional. Estas são dadas pelas equações (3.11) e (3.12), a seguir:

A0
ij = f 0

i,j = Φα,jX
α
i (3.11)

A1
ij = f 1

i,j = Φα,jY
α

i (3.12)

em que i e j representam a direção da coordenada, α é relativo ao nó do elemento, A0
ij é o

gradiente do mapeamento da configuração inicial e A1
ij é o gradiente do mapeamento da

configuração atual.

O cálculo do gradiente da função mudança de configuração (Aij), utilizado para
calcular a deformação de Green e, portanto, a energia de deformação, é dado por:

Aij = A1
ij(A0

ij)−1 (3.13)

A medida de deformação utilizada neste trabalho é a de Green-Lagrange (Eij),
sendo essa uma medida adequada para grandes deslocamentos e rotações, e qualquer valor
de deformação. A deformação de Green-Lagrange é calculada através do gradiente da
função mudança de configuração (apresentado anteriormente através da equação (3.13)),
conforme a equação abaixo:

Eij = 1
2(AjiAij − δij) (3.14)

Como conjugado energético da deformação de Green-Lagrange, tem-se o tensor de
Piola-Kirchhoff de segunda espécie (Sij), que pode ser escrito como sendo a variação da
energia específica de deformação, em relação à deformação de Green-Lagrange:

Sij = ∂ue

∂Eij

(3.15)

A segunda variação da energia específica de deformação em função de Eij resulta
no tensor constitutivo elástico tangente (Cijkl), conforme a equação abaixo:

Cijkl = ∂2ue

∂Eij∂Ekl

(3.16)

Adotando o modelo constitutivo de Saint-Venant-Kirchhoff, que permite a conside-
ração de problemas com grandes deslocamentos, porém, com deformações moderadas, a
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energia específica de deformação e, consequentemente, a relação entre tensão e deformação
são apresentadas, respectivamente, nas equações (3.17) e (3.18).

uSV K
e (E) = 1

2EijCijklEkl (3.17)

Sij = CijklEkl (3.18)

Tratando-se especificamente de elementos sólidos bidimensionais, compostos de
materiais isotrópicos, o tensor de Piola-Kirchhoff de segunda espécie, para o estado plano
de deformações e de tensões é dado, respectivamente, pelas equações (3.19) e (3.20).

S =

 2G

(1 − 2ν)((1 − ν)E11 + νE22)

2GE21

2GE12
2G

(1 − 2ν)((1 − ν)E22 + νE11)

 (3.19)

S =

 2G

(1 − ν)(E11 + νE22)

2GE21

2GE12
2G

(1 − ν)(E22 + νE11)

 (3.20)

sendo G o módulo de elasticidade transversal do material, ν o coeficiente de poisson e Eij

o tensor de deformações de Green-Lagrange, em que E12 = E21.

3.1.4 Integração numérica

No procedimento de resolução do MEF Posicional, deve-se realizar o cálculo de
algumas integrais de domínio e superfície. Conforme descrito anteriormente nesse capítulo,
a geometria inicial da estrutura é aproximada por meio dos elementos finitos, que são
definidos por meio de um espaço adimensional (por meio de coordenadas ξi). Dessa forma,
pode-se dizer que uma integral sobre o volume inicial de uma função qualquer F (x), no
espaço bidimensional é dada por:∫

V0
F (−→x )dV0 = t

∫
ξ1

∫
ξ2

F (−→x (ξ1, ξ2))J0(ξ1, ξ2)dξ1dξ2 (3.21)

em que J0 é o jacobiano do mapeamento inicial, dado pelo determinante do gradiente do
mapeamento da configuração inicial (det(A0)). A variável t representa a espessura, por
se tratar de um elemento sólido bidimensional. Para casos de elementos tridimensionais,
resolve-se uma integral tripla, adicionando-se a dimensão ξ3.

A resolução dessas integrais apresenta certa complexidade, tornando mais adequado
o uso de integração numérica. Nesse caso, para elementos unidimensionais, quadrangulares
ou hexaédricos pode-se utilizar a quadratura de Gauss. Já para elementos triangulares ou
tetraédricos pode ser empregada a quadratura de Hammer. Essas metodologias consistem
em um somatório de n termos, sendo n o número de pontos no elemento. Para uma
determinada configuração de pontos, são dadas as coordenadas adimensionais e o peso (w)
referentes a cada ponto. Os termos são calculados por meio da multiplicação do valor da
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função a ser integrada no ponto específico, multiplicado pelo jacobiano da integração e
pelo peso correspondente, conforme apresentado abaixo:

∫
V0

F (−→x )dV0 =
n∑

i=1
F (−→x (ξi))J0(ξi)wi (3.22)

Tal equação pode ser empregada nas duas quadraturas. No presente trabalho foram
utilizadas as configurações de 7 e 12 pontos da quadratura de Hammer.

3.2 Princípio da estacionariedade

O MEF posicional é fundamentado no princípio da estacionariedade. Tal princípio
estabelece a posição de equilíbrio de um sólido como sendo aquela onde a energia mecânica
tem sua variação nula. Neste método, o equilíbrio é sempre calculado em relação à posição
atual, ou seja, pode-se dizer que o método considera de forma natural a não linearidade
geométrica. Conforme Greco e Coda (2006), a energia mecânica pode ser dividida em
quatro termos: P - Energia potencial das forças externas; U - energia de deformação; K -
energia cinética; Q - energia de dissipação. Desta forma, o cálculo da energia mecânica é
dado por:

Π = P + U + K + Q (3.23)

Seguindo o princípio da estacionariedade, calcula-se a variação da energia mecânica e
iguala-se o resultado à 0, conforme a equação abaixo:

δΠ = δP + δU + δK + δQ = 0 (3.24)

3.2.1 Potencial das forças externas

Neste trabalho serão consideradas apenas forças conservativas, ou seja, que perma-
necem com intensidade, direção e sentido constantes, que não se sujeitam a mudanças com
a variação de forma da estrutura. O potencial das forças externas pode conter parcelas
decorrentes de forças concentradas, distribuídas em partes da superfície do sólido, ou
ainda em partes do seu domínio. De forma geral, o potencial pode ser escrito por meio da
seguinte equação:

P = −F α
i Y α

i −
∫

Γ0
qiyidΓ0 −

∫
Ω0

biyidΩ0 (3.25)

em que o índice i é relativo a direção da coordenada, α ao nó do elemento, a variável Y

se refere à posição atual da força concentrada, e y é utilizado para representar a posição
atual das forças distribuídas, com a intenção de diferenciar os pontos isolados de pontos
da superfície ou da linha. Já q e b representam, respectivamente, força de superfície e força
de volume e, por fim, Γ e Ω representam superfície e domínio, respectivamente, sendo o
índice 0 utilizado para caracterizá-los com base em sua posição inicial, já que se tratam de
forças conservativas.
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3.2.2 Energia de deformação

A descrição da energia de deformação em materiais hiperelásticos é dada pela
integral da energia específica de deformação em todo o volume do sólido (sendo esse o
volume inicial, considerando problemas Lagrangianos). Tomando como base o modelo
constitutivo de Saint-Venant-Kirchhoff, por meio das equações (3.17) e (3.18), a energia
de deformação pode ser representada pela equação abaixo:

U =
∫

Ω0
uedΩ0 =

∫
Ω0

1
2EmnSmndΩ0 (3.26)

A variação da energia de deformação é descrita por:

δU =
∫

Ω0
SmnδEmndΩ0 (3.27)

em que os índices m e n representam as direções da deformação e da tensão, S o tensor de
Piola-Kirchhoff de segunda espécie e E a deformação de Green-Lagrange.

3.2.3 Energia cinética

A parcela referente à energia cinética pode ser descrita por meio da Equação 3.28.
Esse termo é dependente da massa do elemento, assim como da variação da sua posição com
relação ao tempo (velocidade), sendo que os termos ρ0 e ẏi representam, respectivamente,
a densidade do material e a variação da posição em função do tempo.

K = 1
2

∫
Ω0

ρ0ẏiẏidΩ0 (3.28)

Desenvolvendo a sua variação, tomando o tempo como parâmetro, obtém-se a
equação descrita abaixo, sendo ÿi a segunda variação da posição em função do tempo
(aceleração):

δK = dK
dt

δt =
∫

Ω0
ρ0ÿiδyidΩ0 (3.29)

3.2.4 Energia de dissipação

Em um sistema no qual há a conservação de energia, a entrada e a saída de energia
devem ser iguais. Caso ocorra a dissipação de parte dessa energia, há uma alteração
na energia total do sistema ao longo do tempo. Por esse motivo, o termo de energia de
dissipação é acrescido na descrição da energia mecânica total (Equação 3.23). Sua variação
em função da posição, considerando apenas a dissipação de energia de amortecimento,
proporcional à sua massa, pode ser descrita da seguinte forma:

∂Q
∂Y α

i

=
∫

Ω0

∂q

∂Y α
i

dΩ0 =
∫

Ω0
ρ0cmẏidΩ0 (3.30)

sendo q o funcional de energia específica de dissipação e cm a constante de amortecimento.
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3.3 Método de Newton-Raphson

A descrição da energia em função das posições atuais dos nós da estrutura é um
dos pontos cruciais para a resolução do problema. Dessa forma, recorrendo ao exposto
na equação (3.4), escrevem-se as derivadas (em função da posição atual dos nós) do
potencial das forças externas, da energia de deformação, da energia cinética, e da energia
de dissipação, respectivamente, por meio das equações (3.31), (3.32), (3.33) e (3.34).

∂P
∂Y α

i

= −F α
i −

∫
Γ0

ΦαΦβdΓ0Q
β
i −

∫
Ω0

ΦαΦβdΩ0B
β
i (3.31)

∂U
∂Y α

i

=
∫

Ω0
Smn

∂Emn

∂Y α
i

dΩ0 (3.32)

∂K
∂Y α

i

=
∫

Ω0
ρ0ΦαΦβŸ α

i dΩ0 (3.33)

∂Q
∂Y α

i

=
∫

Ω0
ρ0cmΦαΦβ

˙Y α
i dΩ0 (3.34)

sendo i relacionado a direção da coordenada, Φ às funções de forma, α e β aos nós do
elemento e Q e B as forças de superfície e de volume, respectivamente.

Tratando de problemas estáticos, considera-se K = 0 e Q = 0. Portanto, tem-se
que a variação da energia mecânica em função da posição atual (Y α

i ) é dada pela equação
(3.35) que, segundo o princípio da energia mecânica estacionária, é nula. Desta forma,
pode-se dizer que (∂U/∂Y α

i ) é o vetor de forças internas, que somado ao vetor de forças
externas (∂P/∂Y α

i ) resulta em zero.

∂Π
∂Y α

i

δY α
i =

(
∂P

∂Y α
i

+ ∂U
∂Y α

i

)
δY α

i = 0 (3.35a)

−F α
i −

∫
Γ0

ΦαΦβdΓ0Q
β
i −

∫
Ω0

ΦαΦβdΩ0B
β
i +

∫
Ω0

Smn
∂Emn

∂Y α
i

dΩ0 = 0 (3.35b)

O método de solução do problema não linear utilizado foi a estratégia incremental-
iterativa tangente, também conhecido como método de Newton-Raphson. O procedimento
se inicia adotando uma posição tentativa (Y 0) para calcular a variação da energia de
deformação. Enquanto a posição tentativa for diferente da solução do problema, a equação
(3.35) não é satisfeita, gerando um vetor resíduo (g(Y 0)), também chamado de vetor
de desbalanceamento mecânico. Posteriormente é realizada uma expansão em série de
Taylor em torno dessa posição tentativa, representada por meio da equação (3.36), sendo
gα

i = ∂Π/∂Y α
i .

gα
i = gα

i (Y k) + ∂gα
i

∂Y β
j

∣∣∣∣∣∣
(Y k)

(
∆Y β

j

)k
+ (Oα

i )2 = 0 (3.36)

A variável (Oα
j )2 representa os termos de ordens superiores. Desprezando-se esses
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termos, pode-se reescrever a equação (3.36) da seguinte forma:

(
∆Y β

j

)k
= −

 ∂gα
i

∂Y β
j

∣∣∣∣∣∣
(Y k)


−1

gα
i (Y k) (3.37)

Como a segunda variação do potencial de forças externas não é função da posição
atual dos nós, escreve-se:

∂gα
i

∂Y β
j

∣∣∣∣∣∣
(Y k)

= ∂2U
∂Y α

i Y β
j

∣∣∣∣∣∣
(Y k)

= Hk
ijαβ (3.38)

em que Hijαβ é a matriz de rigidez tangente, ou matriz Hessiana para essa posição tentativa.
Com base na equação (3.32), escreve-se:

Hk
ijαβ =

∫
Ω0

∂

∂Y β
j

(
Smn

∂Emn

∂Y α
i

)∣∣∣∣∣
Y k

dΩ0 = 0 (3.39)

Assim, reescreve-se abaixo a equação (3.37), apresentando de forma resumida o
cálculo do vetor

(
∆Y β

j

)k
, sendo esse o ponto chave da estratégia incremental-iterativa

tangente, ou método de Newton-Raphson.(
∆Y β

j

)k
= −

(
Hk

ijαβ

)−1
gα

i (Y k) (3.40)

Em seguida, atualizam-se as posições:(
Y β

j

)k+1
=
(
Y β

j

)k
+
(
∆Y β

j

)k
(3.41)

Desta forma, o processo de solução tem início adotando-se para a posição tentativa
a própria posição inicial. A partir daí é realizado um incremento de carga (ou de posição
prescrita) e, por meio da equação (3.40), calcula-se o vetor

(
∆Y β

j

)k
. Atualiza-se a posição,

somando esse vetor ao vetor de posição tentativa. Caso o valor de
∣∣∣∣(∆Y β

j

)k
/Xβ

j

∣∣∣∣ (cálculo

do erro, sendo Xβ
j o vetor de posições iniciais) for maior que a tolerância adotada, repete-se

o mesmo procedimento para a nova posição tentativa. Caso o valor seja menor que essa
tolerância, é realizado um novo incremento de carga e, depois disso, repete-se o processo,
até que se chegue à carga total (ou posição prescrita total), com um valor de erro menor
que a tolerância adotada.

Com a finalidade de facilitar o entendimento da resolução do problema estático por
meio do MEF Posicional, foi elaborado um algoritmo de solução simplificado, que pode
ser visualizado abaixo:
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Algoritmo 1: Resolução de problema estático
1 Atribuição das coordenadas iniciais como atuais para definição da primeira posição tentativa (Y α

i = Xα
i );

2 para cada passo de carga (dF α
i ) ou posição (dY α

i ) faça
3 Atualização do vetor de forças externas (F α

i = F α
i + dF α

i ) ou de posição (Y α
i = Y α

i + dY α
i );

4 enquanto resíduo > tolerância faça
5 para cada elemento faça
6 para cada ponto de integração faça
7 Cálculo das funções de forma e suas derivadas;
8 Cálculo do gradiente do mapeamento da configuração inicial (A0

ij - Equação 3.11) e final
(A1

ij - Equação 3.12);
9 Cálculo da deformação de Green-Lagrange (Eij - Equação 3.14);

10 Cálculo do tensor de Piola-Kirchhoff de segunda espécie (Sij - Equação 3.15);
11 para cada nó α na direção i faça
12 Cálculo do vetor global de força interna ( ∂U

∂Y α
i

- Equação 3.32);

13 para cada nó β na direção j faça
14 Cálculo da hessiana global (Hk

ijαβ - Equação 3.38);
15 fim
16 fim
17 fim
18 Imposição das condições de contorno;
19 Contribuição do elemento na força interna e hessiana globais;
20 fim
21 Resolução do sistema linear (Obtenção do (∆Y α

i )k - Equação 3.40);
22 Atualização da posição ((Y α

i )k+1 - Equação 3.41);

23 Avaliação do resíduo
(∣∣∣(∆Y β

j

)k
/Xβ

j

∣∣∣);

24 fim
25 fim

3.4 Problemas dinâmicos (Newmark + Newton-Raphson)

Para o cálculo de problemas dinâmicos, passa-se a considerar K ̸= 0 e Q ̸= 0.
Portanto, a variação da energia mecânica em função da posição atual (Y α

i ), descrita
anteriormente por meio da equação (3.35), pode ser obtida por meio da equação (3.42).

∂Π
∂Y α

i

= ∂P
∂Y α

i

+ ∂U
∂Y α

i

+ ∂K
∂Y α

i

+ ∂Q
∂Y α

i

= 0 (3.42a)

∂Π
∂Y α

i

= −F α
i −

∫
Γ0

ΦαΦβdΓ0Q
β
i −

∫
Ω0

ΦαΦβdΩ0B
β
i +

∫
Ω0

Smn
∂Emn

∂Y α
i

dΩ0

+
∫

Ω0
ρ0cmΦαΦβ

˙
Y β

i dΩ0 +
∫

Ω0
ρ0ΦαΦβŸ β

i dΩ0 = 0 (3.42b)

Uma vez que a matriz de massa de um elemento finito é descrita por:

M =
∫

Ω0
ρΦαΦβdΩ0 (3.43)

e ainda, considerando a matriz de amortecimento C = Mcm, pode-se reescrever a equação
(3.42) da seguinte forma:

−F α
i −

∫
Γ0

ΦαΦβdΓ0Q
β
i −

∫
Ω0

ΦαΦβdΩ0B
β
i +

∫
Ω0

Smn
∂Emn

∂Y α
i

dΩ0 + Cαβ
˙

Y β
i + MαβŸ β

i = 0

(3.44)
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Para iniciar o procedimento de cálculo, deve-se admitir um valor inicial para a
aceleração. Partindo da Equação 3.44, escreve-se:

¨Y(t0)αβ
= M−1

αβ

[
F α

i +
∫

Γ0
ΦαΦβdΓ0Q

β
i +

∫
Ω0

ΦαΦβdΩ0B
β
i −

∫
Ω0

Smn
∂Emn

∂Y α
i

dΩ0 − Cαβ
˙Y(t0)

]
(3.45)

O tempo é uma variável contínua, entretanto, para a resolução do problema
numérico, ele é tomado como uma variável discreta. Desta forma, são utilizados integradores
temporais para calcular, de forma aproximada, passos de tempo, nos quais são realizadas
a análise. Neste trabalho foram utilizados os integradores temporais de Newmark. Cada
passo é escrito em função do passo anterior, ou seja, sendo t(s), t(s+1) e ∆t, respectivamente,
o passo de tempo atual, o passo de tempo anterior, e um intervalo de tempo, tem-se que:

t(s+1) = t(s) + ∆t (3.46)

Assim sendo, considerando Yt(s+1) , Ẏt(s+1) e Ÿt(s+1) , respectivamente, a posição,
velocidade e aceleração atuais, aproximam-se os valores atuais de posição e velocidade,
por meio das expressões de Newmark:

Yt(s+1) = Yt(s) + ∆tẎt(s) + ∆t2
[(1

2 − β
)

Ÿt(s) + βŸt(s+1)

]
(3.47)

Ẏt(s+1) = Ẏt(s) + ∆t(1 − γ)Ÿt(s) + γ∆tŸt(s+1) (3.48)

sendo β e γ parâmetros livres do método. Para considerar a aceleração constante em um
passo de tempo, por exemplo, são utilizados os parâmetros β = 1/4 e γ = 1/2.

Isolando-se a velocidade e a aceleração atuais nas equações (3.47) e (3.48), descrevem-
se abaixo essas variáveis em função das posições atuais e valores referentes ao passo de
tempo anterior (já conhecidos).

Ÿt(s+1) =
Yt(s+1)

β∆t2 −

 Yt(s)

β∆t2 +
Ẏt(s)

β∆t2 +
(

1
2β

− 1
)

Ÿt(s)

 (3.49)

Ẏt(s+1) = γ

β∆t
Yt(s+1) +

[
Ẏt(s) + ∆t(1 − γ)Ÿt(s)

]

−

 Yt(s)

β∆t2 +
Ẏt(s)

β∆t2 +
(

1
2β

− 1
)

Ÿt(s)

 γ∆t (3.50)

De modo a facilitar os cálculos, separam-se as parcelas relacionadas ao passo de
tempo anterior, nomeadas como Qs e Rs, conforme as equações abaixo:

Qs =
Yt(s)

β∆t2 +
Ẏt(s)

β∆t
+
(

1
2β

− 1
)

Ÿt(s) (3.51)

Rs = Ẏt(s) + ∆t(1 − γ)Ÿt(s) (3.52)
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substituindo os valores de Qs e Rs nas equações (3.49) e (3.50), são obtidas as seguintes
equações:

Ÿt(s+1) =
Yt(s+1)

β∆t2 − Qs (3.53)

Ẏt(s+1) = γ

β∆t
Yt(s+1) + Rs − Qsγ∆t (3.54)

De posse desses valores, pode-se reescrever a variação da energia mecânica em
função da posição no instante atual (Y |t(s+1)

), substituindo os valores das equações (3.53)
e (3.54) na equação (3.42), conforme demonstrado abaixo (índices suprimidos para facilitar
a leitura):

∂Π
∂Y

∣∣∣∣∣
t(s+1)

= ∂P
∂Y

∣∣∣∣∣
t(s+1)

+ ∂U
∂Y

∣∣∣∣∣
t(s+1)

+ C

(
γ

β∆t
Yt(s+1) + Rs − Qsγ∆t

)

+M

(
Yt(s+1)

β∆t2 − Qs

)
= 0 (3.55)

Para a montagem da resolução de problemas dinâmicos, realiza-se o mesmo procedi-
mento utilizado para problemas estáticos (equações (3.36) a (3.40)), porém, considerando
as parcelas referentes à energia cinética e de dissipação. Desta forma, é admitida uma
posição tentativa, adotando-se, para o início dos cálculos, Y k = Yt(s+1) = Yt(s) . Em se-
guida, é realizada uma expansão em série de Taylor truncada em primeira ordem, ou seja,
desprezando os termos de ordens superiores, o que pode ser visto na equação abaixo:

gα
i

(
Yt(s+1)

)
= gα

i

(
Y k

t(s+1)

)
+ ∂gα

i

∂Y β
j

∣∣∣∣∣∣(
Y k

t(s+1)

) (∆Y β
j

)k
= 0 (3.56)

(
∆Y β

j

)k
= −

 ∂gα
i

∂Y β
j

∣∣∣∣∣∣(
Y k

t(s+1)

)


−1

gα
i

(
Y k

t(s+1)

)
(3.57)

Desta forma, a segunda variação da energia mecânica em função da posição, agora
considerando as parcelas relativas à energia cinética e energia de dissipação, é escrita da
seguinte forma:

∂gα
i

∂Y β
j

∣∣∣∣∣∣(
Y k

t(s+1)

) = ∂2U
∂Y α

i Y β
j

∣∣∣∣∣∣
(Y k

t(s+1)
)

+ Mαβ

β∆t2 + Cαβγ

β∆t
= H

(din)
ijαβ (3.58)

sendo H
(din)
ijαβ a matriz Hessiana para a posição tentativa, no instante atual (t(s+1)). Da

mesma forma que foi feito para problemas estáticos, reescreve-se o cálculo do vetor de
variação da posição

(
∆Y β

j

)k
, que é de suma importância no processo de resolução.

(
∆Y β

j

)k
= −

(
H

k(din)
ijαβ

)−1
gα

i

(
Y k

t(s+1)

)
(3.59)



46

O processo de solução para problemas dinâmicos é muito similar ao utilizado para
problemas estáticos. Basicamente, resolve-se um problema estático, seguindo-se o mesmo
procedimento, para cada passo de tempo diferente. Por meio do algoritmo 2 são descritos
os passos de solução, vinculando cada um deles com as equações expostas neste capítulo.

Algoritmo 2: Resolução de problema dinâmico
1 Atribuição da posição, velocidade e aceleração do passo anterior como primeira tentativa:(

Yt(s+1) = Y k
t(s+1) = Yt(s)

)
/
(

Ẏt(s+1) = Ẏ k
t(s+1) = Ẏt(s)

)
/
(

Ÿt(s+1) = Ÿ k
t(s+1) = Ÿt(s)

)
;

2 Cálculo da matriz de massa (M) e de amortecimento (C) (Equação 3.43);
3 Cálculo da aceleração inicial (Equação 3.45)
4 para cada passo de carga (dF α

i ), posição (dY α
i ) ou tempo (∆t) faça

5 Atualização do vetor de forças externas (F α
i = F α

i + dF α
i ) ou de posição (Y α

i = Y α
i + dY α

i );
6 Cálculo das parcelas relativas ao passo de tempo anterior - Qs (Equação 3.51) e Rs (Equação 3.52);
7 enquanto resíduo > tolerância faça
8 para cada elemento faça
9 para cada ponto de integração faça

10 Cálculo das funções de forma e suas derivadas;
11 Cálculo do gradiente do mapeamento da configuração inicial (A0

ij - Equação 3.11) e final
(A1

ij - Equação 3.12);
12 Cálculo da deformação de Green-Lagrange (Eij - Equação 3.14);
13 Cálculo do tensor de Piola-Kirchhoff de segunda espécie (Sij - Equação 3.15);
14 para cada nó α na direção i faça
15 Cálculo da contribuição no vetor global de força interna

(
∂U

∂Y α
i

+ ∂K
∂Y α

i
+ ∂Q

∂Y α
i

-
Soma das equações (3.32), (3.33) e (3.34) );

16 para cada nó β na direção j faça
17 Cálculo da contribuição na hessiana global dinâmica (Hk(din)

ijαβ - Equação 3.58);
18 fim
19 fim
20 fim
21 Imposição das condições de contorno;
22 Contribuição do elemento na força interna e hessiana globais;
23 fim
24 Resolução do sistema linear (Obtenção do

(
∆Y β

j

)k - Equação 3.59);

25 Atualização da posição
((

Y β
j

)k+1 =
(
Y β

j

)k +
(
∆Y β

j

)k
)

;

26 Atualização da aceleração e da velocidade atuais (Equações (3.53) e (3.54));

27 Avaliação do resíduo
(∣∣∣(∆Y β

j

)k
/Xβ

j

∣∣∣);

28 fim
29 Atualização do passo de tempo (t = t + ∆t);
30 fim

3.5 Elementos imersos

As técnicas de inserção de elementos imersos na malha são utilizadas para a
simulação de materiais heterogêneos, compostos por uma matriz reforçada com fibras, ou
partículas. Existem diferentes abordagens para a modelagem desse tipo de material, que
influenciam de diferentes formas no modelo de geração de malha, nos graus de liberdade, e
na formulação utilizada. Conforme descrito por Ramos (2020), pode-se dividir essas técnicas
em três diferentes formas de modelagem: Homogeneização, Discretização e Embutimento.
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A Figura 3.4 apresenta exemplos de cada uma dessas técnicas.

A primeira delas, baseia-se na homogeneização das propriedades dos elementos
nos quais estão contidos os nós dos reforços. Já na estratégia de discretização, os nós dos
elementos de reforço devem coincidir com os nós da malha. Ou seja, os elementos de reforço
atuam diretamente sobre os graus de liberdade do problema. Nesse caso, para compatibilizar
a malha, tem-se duas opções: reconstruir a malha, passando obrigatoriamente sobre os
pontos dos elementos de reforço, ou adequar os elementos de reforço para que coincidam com
nós já existentes da malha. Por último, a técnica de embutimento, que foi implementada
neste trabalho, em que é feita a contribuição dos nós do elemento de reforço, em cada um
dos nós do elemento da matriz no qual está contido, reescrevendo os parâmetros nodais do
elemento de reforço em função dos parâmetros nodais do elemento da matriz. Essa é uma
estratégia muito interessante, uma vez que não é necessária nenhuma alteração na malha,
levando a uma grande liberdade no posicionamento dos reforços e não aumenta os graus
de liberdade do problema.

Figura 3.4 – Técnicas para inserção de elementos na malha

Fonte: Próprio autor.

A técnica de embutimento aqui tratada pode ser aplicada para a inserção de fibras
e/ou partículas na matriz. Neste trabalho foram implementados apenas elementos finitos
de barra simples, ou seja, com dois graus de liberdade por nó.

3.5.1 Elemento finito de barra simples

Nesta seção são demonstrados os cálculos referentes à força interna e à hessiana
desse tipo de elemento, se tratando, respectivamente, da primeira e da segunda variação
da energia de deformação com relação à posição.

Conforme tratado anteriormente, o cálculo da energia de deformação é deduzido
por meio das configurações inicial e atual do elemento. Na Figura 3.5 observam-se essas
configurações, nas quais estão devidamente indicados as posições dos nós (Xα

i e Y α
i , sendo
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i referente à direção do grau de liberdade e α referente ao nó), assim como os comprimentos
inicial (L0) e atual (L) do elemento.

Figura 3.5 – Configurações inicial e final de um elemento de barra simples

Fonte: Próprio autor.

Desta forma, como o elemento está submetido apenas a esforços normais, a defor-
mação de Green é obtida por meio da seguinte equação:

E = 1
2

(
L2 − L2

0
L2

0

)
(3.60)

sendo L2
0 e L2 dados por:

L2
0 =

(
X2

1 − X1
1

)2
+
(
X2

2 − X1
2

)2
(3.61)

L2 =
(
Y 2

1 − Y 1
1

)2
+
(
Y 2

2 − Y 1
2

)2
(3.62)

Considerando-se a resolução de problemas com cinemática Lagrangiana, sendo Ω0

o volume inicial, Γ0 a área inicial e L0 o comprimento inicial, pode-se escrever a energia
de deformação na configuração inicial, para um elemento, da seguinte forma:

U el =
∫

Ω0
uedΩ0 = ueΩ0 = ueΓ0L0 (3.63)

Seguindo com a utilização da lei constitutiva de Saint-Venant-Kirchhoff, obtém-se
a equação da força interna, que pode ser vista abaixo:

∂U el

∂Y α
i

= Γ0L0
∂ue

∂E

∂E

∂Y α
i

(3.64)

aplicando o conceito de conjugado energético, em que aparece a tensão de Piola Kirchhoff
de segunda espécie (S = ∂ue/∂E), e sendo:

∂E

∂Y α
i

= (−1)α

(L0)2 (Y 2
i − Y 1

i ) (3.65)
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tem-se que:
∂U el

∂Y α
i

= Γ0S
(−1)α

L0
(Y 2

i − Y 1
i ) (3.66)

Mantendo as mesmas considerações, porém, calculando-se a segunda derivada da
energia de deformação em função da posição atual, obtém-se a hessiana, ou matriz tangente,
que pode ser escrita conforme a equação abaixo:

∂2U el

∂Y α
i Y β

j

= ∂

∂Y α
i

∂U el

∂Y β
j

 = Γ0L0
∂

∂Y α
i

∂ue

∂E

∂E

∂Y β
j


= (−1)α(−1)βΓ0

L0

(
KSV K

t

(Y 2
i − Y 1

i )
L0

(Y 2
j − Y 1

j )
L0

+ Sδij

)
(3.67)

3.5.2 Estratégia de acoplamento entre matriz e reforço

Neste trabalho foi utilizada a técnica de embutimento, aplicada ao método dos
elementos finitos posicional, com uma formulação proposta inicialmente por Vanalli (2004),
e empregada em uma série de trabalhos no decorrer dos últimos anos. Podem ser aqui
citados os trabalhos de Fernandes (2016) e Moura (2015), que propõem análises elásticas e
elastoplásticas de materiais compósitos, de Felix (2018) e Ramos (2020), que trataram da
simulação do processo de corrosão em estruturas de concreto armado, e de Tavares (2020),
que utilizou a técnica para modelar uma estrutura de concreto protendido. Também os
trabalhos de Salomão (2021), envolvendo análises termomecânicas em compósitos, de Felix
(2022) propondo um modelo de dano acumulado em concreto, e de Marques (2023), que
também trabalhou com um modelo de dano, porém, para analisar o comportamento de
estruturas de concreto armado. Todos esses trabalhos utilizaram o método dos elementos
finitos posicional, em conjunto com a estratégia de embutimento, comprovando o seu
potencial em diversas aplicações.

A estratégia consiste em tratar os parâmetros nodais do reforço, em função dos
parâmetros nodais da matriz, fazendo o uso das funções de forma desses elementos. Cada
um dos nós dos elementos de reforço será atribuído a um elemento da matriz, para que
essa mudança de referência seja realizada. Sendo (•̂) a simbologia utilizada para descrever
os termos relacionados à matriz, e (•) ao reforço, pode-se escrever os mapeamentos das
posições inicial e atual dos nós do reforço, conforme a Equação 3.68 e a Equação 3.69,
respectivamente. Assim, os elementos imersos podem ser inseridos em qualquer localização,
sem precisar coincidir com nenhum nó existente da malha, e sem adicionar graus de
liberdade ao problema.

Xβ
i = Φ̂α(ξβ)X̂α

i (3.68)

Y β
i = Φ̂α(ξβ)Ŷ α

i (3.69)

Para que haja a contribuição do reforço no cálculo da força interna e da hessiana
do problema, escreve-se a energia de deformação como a soma dos termos referentes a
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matriz e ao reforço, conforme descrito na Equação 3.70.

U = U + Û (3.70)

Seguindo essa linha de raciocínio, escreve-se a variação da energia de deformação
em função da posição, para a obtenção da força interna.

∂U
∂Ŷ α

i

= ∂U + ∂Û
∂Ŷ α

i

= ∂U
∂Y β

j

∂Y β
j

∂Ŷ α
i

+ ∂Û
ˆ∂Y α

i

(3.71)

sendo (∂Y β
j /∂Ŷ α

i ) a variação da posição do nó do reforço, em função da posição do nó da
matriz, dada também por:

∂Y β
j

∂Ŷ α
i

=
∂Φ̂γ(ξβ)Ŷ γ

j

∂Ŷ α
i

= Φ̂γ(ξβ)δijδγα (3.72)

reescrevendo-se, desta forma, a Equação 3.71:

∂U
∂Ŷ α

i

= ∂U
∂Y β

i

Φ̂α(ξβ) + ∂Û
ˆ∂Y α

i

(3.73)

em que ∂U/∂Y β
i descreve a componente i da força interna relacionada ao nó β de um

elemento finito de reforço, Φ̂α(ξβ) representa a função de forma referente ao nó α de um
elemento finito da matriz, sendo esta avaliada segundo as coordenadas adimensionais do
nó β do elemento de reforço, e ∂Û/∂Y α

i , por sua vez, representando a componente i da
força interna relacionada ao nó α de um elemento finito da matriz.

Seguindo essa mesma lógica, realiza-se o cálculo da hessiana com a consideração
de elementos de reforço imersos na malha da matriz. A matriz é obtida por meio da
segunda variação da energia específica de deformação, em relação à posição, conforme a
Equação 3.74.

∂2U

∂Ŷ α
i Ŷ β

j

= ∂2U + ∂2Û

∂Ŷ α
i Ŷ β

j

= ∂

∂Y α
i

 ∂U
∂Y γ

k

∂Y γ
k

∂Ŷ β
j

+ ∂2Û
ˆ∂Y α

i Ŷ β
j

= ∂2U
∂Y ζ

l ∂Y γ
k

∂Y ζ
l

∂Ŷ α
i

∂Y γ
k

∂Ŷ β
j

+ ∂2Û
ˆ∂Y α

i Ŷ β
j

(3.74)

Da mesma forma que foi demonstrado na Equação 3.72, tem-se que:

∂Y ζ
l

∂Ŷ α
i

∂Y γ
k

∂Ŷ β
j

= ∂Φ̂η(ξζ)Ŷ η
l

∂Ŷ α
i

∂Φ̂θ(ξγ)Ŷ θ
k

∂Ŷ β
j

= Φ̂η(ξζ)δilδηαΦ̂θ(ξγ)δjkδθβ (3.75)

portanto, pode-se reescrever a equação da matriz hessiana, já com a contribuição do reforço,
substituindo a Equação 3.75 na Equação 3.74, conforme a Equação 3.76, apresentada
abaixo.

∂2U

∂Ŷ α
i Ŷ β

j

= ∂2U
∂Y ζ

i ∂Y γ
j

Φ̂α(ξζ)Φ̂β(ξγ) + ∂2Û
ˆ∂Y α

i Ŷ β
j

(3.76)
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A metodologia de cálculo para a obtenção da força interna e da hessiana, com a
inclusão desses elementos de reforço, partiu da hipótese que os elementos da matriz que
recebem os nós dos elementos de reforço são conhecidos. No entanto, é necessário realizar
esta localização de alguma forma. Neste trabalho, o algoritmo utilizado para identificar
esses elementos foi dividido em duas etapas.

Primeiramente, é feita uma pré seleção dos elementos, para diminuir o custo
computacional. Nessa primeira etapa, é calculada a medida entre o nó do reforço e o
centro geométrico de todos os elementos. Caso a dimensão for maior do que o raio de um
círculo que circunscreve o elemento, majorado em 5% (percentual aproximado, para evitar
problemas de precisão numérica, em casos onde o nó do reforço se encontra muito próximo
da fronteira do elemento da matriz), o elemento entra na lista de verificação.

Na segunda etapa, o nó de reforço é escrito em função das coordenadas adimensionais
de cada um dos elementos selecionados na primeira etapa, conforme a Equação 3.68. Nota-
se que os valores conhecidos do problema são as coordenadas iniciais, tanto dos nós dos
elementos de reforço, quanto dos nós dos elementos da matriz. Portanto, as incógnitas do
problema são, justamente, as coordenadas adimensionais do nó do reforço, que satisfazem a
igualdade representada na Equação 3.68. Escrevendo esse conjunto de igualdades, recai-se
em um sistema de equações, que, caso o elemento da matriz tenha aproximação quadrática
ou superior, é não linear. Desta forma, pode-se recorrer ao método de Newton-Raphson
para a resolução desse sistema.

Na Equação 3.77 é demonstrada a expansão em série de Taylor, truncada em
primeira ordem, ou seja, os termos de ordem quadrática ou superior são desconsiderados,
gerando um resíduo.

Xβ
i = Φ̂α(ξm

k )X̂α
i +

 ∂Φ̂α(ξk)
∂ξj

∣∣∣∣∣∣
(ξm

k
)

X̂α
i

∆ξm
j (3.77)

sendo Xβ
i as coordenadas iniciais do nó β do elemento de reforço, ξm

k as coordenadas
adimensionais tentativas, e ∆ξm

j a correção dessas tentativas, cujo valor é obtido por meio
da Equação 3.78.  ∂Φ̂α(ξk)

∂ξj

∣∣∣∣∣∣
(ξm

k
)

X̂α
i

∆ξm
j = Xβ

i − Φ̂α(ξm
k )X̂α

i (3.78)

Desta forma, o valor das coordenadas adimensionais são atualizados, conforme
a Equação 3.79. O procedimento é repetido até que o valor de ∆ξm

j seja menor que a
tolerância admitida.

ξm+1
k = ξm

k + ∆ξm
j (3.79)

Para identificar se o nó do reforço está contido no elemento da matriz, as coordenadas
adimensionais obtidas no processo de solução, devem estar contidas no domínio desse
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elemento. Ou seja, no caso de um elemento triangular, devem ser satisfeitas as seguintes
condições: 0 ≤ ξβ

1 ≤ 1, 0 ≤ ξβ
2 ≤ 1 e 0 ≤ 1 − ξβ

1 − ξβ
2 ≤ 1.

Desta forma, para esclarecer o procedimento de cálculo, foi elaborado um algoritmo
para descrever todos os passos, vinculando cada um deles com as equações descritas neste
capítulo.
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Algoritmo 3: Resolução de problema com elementos imersos
1 para cada elemento da matriz faça
2 Cálculo do centro geométrico (XCG

i );
3 Cálculo do raio do círculo circunscrito ao elemento acrescido de 5% (R0.05).
4 fim
5 para cada nó de reforço faça
6 para cada elemento da matriz faça
7 se distância entre Xi e XCG

i for menor que R0.05 então
8 Adoção de uma coordenada adimensional tentativa (ξm

k = Xi/XCG
i );

9 enquanto ∆ξj > tolerância faça
10 Cálculo do ∆ξm

j , utilizando ξm
k , conforme Equação 3.78;

11 Atualização do ξm+1
k , conforme Equação 3.79;

12 Cálculo do resíduo (norma de ∆ξm
j ).

13 fim
14 se 0 ≤ ξm

1 ≤ 1, 0 ≤ ξm
2 ≤ 1 e 0 ≤ 1 − ξm

1 − ξm
2 ≤ 1. então

15 Registro de que o nó de reforço incide sobre o elemento da matriz;
16 Registro das coordenadas adimensionais atuais (ξm

k );
17 Interrupção de busca para o nó de reforço atual.
18 fim
19 fim
20 fim
21 fim
22 para cada passo de carga (dF α

i ) ou posição (dY α
i ) faça

23 Atualização do vetor de forças externas (F α
i = F α

i + dF α
i ) ou de posição (Y α

i = Y α
i + dY α

i );
24 enquanto resíduo > tolerância faça
25 para cada elemento da matriz faça
26 para cada ponto de integração faça
27 Cálculo das funções de forma e suas derivadas;
28 Cálculo do gradiente do mapeamento da configuração inicial (A0

ij - Equação 3.11) e final
(A1

ij - Equação 3.12);
29 Cálculo da deformação de Green-Lagrange (Eij - Equação 3.14);
30 Cálculo do tensor de Piola-Kirchhoff de segunda espécie (Sij - Equação 3.15);
31 para cada nó α na direção i faça
32 Cálculo do vetor global de força interna ( ∂U

∂Y α
i

- Equação 3.32);

33 para cada nó β na direção j faça
34 Cálculo da hessiana global (Hk

ijαβ - Equação 3.38);
35 fim
36 fim
37 fim
38 Imposição das condições de contorno;
39 Contribuição do elemento na força interna e hessiana globais;
40 fim
41 para cada elemento de reforço faça
42 Cálculo da força interna desenvolvida no reforço, conforme Equação 3.73;
43 Cálculo da hessiana desenvolvida no reforço, conforme Equação 3.76;
44 Contribuição do reforço na força interna e hessiana globais.
45 fim
46 Resolução do sistema linear (Obtenção do ∆Y α

i - Equação 3.40);
47 Atualização da posição ((Y α

i )k+1 - Equação 3.41);

48 Avaliação do resíduo
(∣∣∣(∆Y β

j

)k
/Xβ

j

∣∣∣);

49 fim
50 fim
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4 PROPOSTA DE PLATAFORMA PARA O MEF POSICIONAL

No Capítulo 3 foi demonstrada a teoria do MEF Posicional para a resolução
de problemas estáticos, dinâmicos, e com a inserção de elementos na malha, desde a
sua formulação, até a técnica de solução. Também foram apresentados os elementos
triangulares para aproximações linear, quadrática e cúbica. Este capítulo, por sua vez,
tem como objetivo expor a estrutura do código desenvolvido, de forma a conectar todas
as etapas da formulação e da técnica de solução. Para o desenvolvimento desse código,
foi empregada a programação orientada a objetos. Portanto, inicialmente, é apresentada
uma breve descrição do método, expondo suas principais características, funcionalidades,
aplicabilidades e padrão de representação.

4.1 Programação orientada a objetos

A metodologia de orientação a objetos proporciona uma série de vantagens no
desenvolvimento de softwares se utilizada corretamente e de maneira organizada. Desta
forma, é de extrema importância a adoção de padrões. Eriksson et al. (2004) tratam de
uma linguagem unificada, denominada Unified Modeling Language (UML), que proporciona
aos sistemas desenvolvidos melhor visualização, especificação, construção e documentação.
Segundo os autores, o termo modeling pode gerar certa confusão, por estar aplicado a
diversos níveis. O "modelo" remete, de forma geral, ao planejamento completo do sistema,
desde a descrição do problema, passando pela análise, proposição de solução, projeto
e implementação. Abaixo estão citados alguns dos principais conceitos relacionados ao
desenvolvimentos de modelos orientados a objetos:

• A metodologia de orientação a objetos produz modelos que refletem o domínio em
questão, de forma natural, usando terminologias próprias daquele mesmo domínio;

• Conceitos subjacentes: objetos, mensagens, classes, herança e polimorfismo. Os
objetos têm um certo comportamento e uma certa identidade, definidos através de
nome, atributos e operações. Todo objeto acaba por ser uma instância de uma classe,
sendo ela uma espécie de modelo que define as características de um objeto;

• Modelos orientados a objetos, quando construídos da forma correta, são de fácil comu-
nicação, alteração, expansão, validação e verificação, demonstrando uma arquitetura
bem definida;

• Os modelos são convenientemente implementados utilizando linguagens de progra-
mação orientadas a objeto;
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• Orientação a objeto é uma tecnologia testada e utilizada em muitos projetos, cons-
truindo diferentes tipos de sistemas.

As linguagens orientadas a objetos apresentam uma determinada estrutura, e uma
série de características que possibilitam a prática dos conceitos citados. Neste capítulo
serão abordadas as definições de classes e objetos, assim como as interações entre eles,
tirando proveito das peculiaridades da orientação a objetos como, por exemplo, herança,
encapsulamento e polimorfismo.

4.1.1 Objetos e classes

Pode-se descrever os objetos como sendo entidades com estrutura e comportamento
bem definidos, através de sua classe geradora (SEED, 1996). Nesse contexto, afirma-se que
um objeto é uma instância de uma classe. A ideia geral da programação orientada a objetos
é baseada na organização dos dados por meio dessas instâncias, que são responsáveis por
enviar e receber mensagens de outros objetos. Ou seja, o código consiste em um grupo
de objetos que interagem entre si (SENGUPTA; KOROBKIN, 1994). Geralmente, os
objetos do código remetem a objetos reais como, por exemplo, em uma estrutura, os
elementos estruturais, os vínculos externos, os carregamentos, etc. Todavia, algumas vezes
são utilizadas instâncias com funções específicas, que servem apenas como ferramenta
de interação entre esses objetos. É o exemplo de objetos que realizam o pré e o pós
processamento do cálculo da estrutura.

Neste trabalho os dados armazenados dentro dos objetos foram denominados
como atributos, e as funções responsáveis pela interação entre eles como operações. Para
representar as classes de forma eficiente foram utilizados diagramas de classe UML (Unified
Modeling Language)(ERIKSSON et al., 2004). A Figura 4.1 ilustra um exemplo geral
da utilização do diagrama, em que o campo superior é reservado para o nome da classe,
o central para os atributos e o inferior para as operações. Os símbolos "+", "−" e "#"
indicam os especificadores de acesso public, private e protected, respectivamente. Ainda nos
atributos são identificados os tipos de dados, e nas operações os parâmetros de entrada e
de saída.

Figura 4.1 – Diagrama UML de uma classe qualquer

Fonte: Próprio autor.
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A forma como esses atributos e operações foram escritos e organizados será de-
monstrada adiante, buscando a utilização de características primordiais em um código
orientado a objetos: encapsulamento, herança e polimorfismo.

4.1.2 Encapsulamento

Algumas características dos objetos não tem a necessidade de serem acessadas pela
maioria dos usuários. Desta forma, o acesso a essas informações é exclusivamente interno.
Portanto, essas características ficam encapsuladas dentro do objeto. Um exemplo muito
interessante, trazido por Seed (1996), é o de um carro, que possui milhares de componentes,
porém o motorista recebe apenas as informações necessárias para que ele possa dirigi-lo.

Dentro de uma classe há diferentes formas de especificar o acesso aos atributos do
objeto, e isso é feito por meio dos especificadores de acesso citados anteriormente. O termo
public torna os dados (atributos e operações) públicos, ou seja, podem ser acessados dentro
e fora da classe por qualquer objeto. Já o especificador private é utilizado para restringir
o acesso à classe onde os dados foram definidos. Por fim, o termo protected permite que
subclasses derivadas da classe onde foram definidos os dados tenham acesso, porém, outros
objetos não tem essa permissão. A ideia da utilização de subclasses já ingressa em outra
característica primordial do código orientado a objetos, que é a herança entre classes.

4.1.3 Herança

A escrita de um código enxuto é essencial, e a ideia de herança contribui para que
isso seja possível. Basicamente, uma classe herda alguns aspectos de outra classe, para
que não haja duplicidade de informações. Isso normalmente ocorre quando se tem vários
“tipos” de um determinado elemento, tendo estruturas muito similares, que são herdadas.
Todavia, cada um possui suas particularidades, que são adicionadas posteriormente em
cada uma delas (KOENIG; MOO, 2000; YAMASSAKI, 2014).

A classe MeshNode, por exemplo, não chega a instanciar nenhum objeto dentro do
código, sendo tratada como uma classe abstrata, ou seja, ela serve apenas de base para a
formação de outras classes. Para diferentes tipos de problemas os nós podem necessitar
diferentes dados, e por consequência, diferentes tipos de acesso e processamento. Desta
forma, para a resolução de um problema estático cria-se a subclasse MeshNode _MQS
a partir da classe MeshNode. Assim, todo o conteúdo da classe MeshNode é herdado
pela subclasse MeshNode _MQS, evitando a escrita de códigos repetitivos. A Figura 4.2
apresenta o diagrama UML dessas classes.

Nesse processo, há a necessidade de acrescentar atributos e/ou operações, ou ainda
de alterar algumas dessas operações. Quando uma operação da classe é alterada em mais
de uma das suas subclasses é utilizada a ideia de polimorfismo.
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Figura 4.2 – Diagrama UML da classe MeshNode e a derivada MeshNode _MQS

Fonte: Próprio autor.

4.1.4 Polimorfismo

Polimorfismo é caracterizado quando duas ou mais classes, que são derivadas de uma
mesma classe, possuem operações que podem ser chamadas através do mesmo nome, porém,
poderão ter características específicas em cada uma das classes (SENGUPTA; KOROBKIN,
1994). A utilização dessa técnica proporciona uma padronização dos atributos entre as
classes de uma mesma "família". Se tivermos uma classe "pai", por exemplo, representando
formas geométricas, e como derivadas, as classes retângulo, triângulo, círculo e trapézio.
Para cada uma delas, tem-se uma operação que retorna, por exemplo, a área do elemento.
O emprego do polimorfismo faz com que a chamada dessa operação seja sempre igual,
para qualquer classe derivada.

Essa propriedade foi aplicada diversas vezes no código. Na Figura 4.3 pode-se obser-
var a classe BaseElement, da qual derivam os diferentes tipos de elementos. Praticamente
todas as operações são implementadas como virtual, permitindo a utilização da mesma
nomenclatura nas classes derivadas, sobrescrevendo a operação em cada uma delas. Desta
forma, citando um exemplo, toda vez que for solicitado, em qualquer elemento, o número
de graus de liberdade dos seus nós, será chamada a operação getNumNdDOF.

Da mesma forma que é utilizada a ideia de herança como alternativa para evitar
a concepção de códigos repetitivos, o uso de templates auxilia significativamente nesse
sentido.
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Figura 4.3 – Diagrama UML da classe BaseElement

Fonte: Próprio autor.

4.1.5 Templates

As classes, como visto anteriormente, são protótipos para a criação de objetos. Pode-
se visualizar a ideia de template como um protótipo de classe ou função com parâmetros
de entrada variáveis. Conforme Booch et al. (2007), template é uma família de classes cuja
estrutura e comportamento estão definidos, independente dos seus parâmetros. Um aspecto
interessante dessa ferramenta é que o seu funcionamento se dá em tempo de compilação, e
as classes derivadas desse "protótipo" só são geradas quando são chamadas no código. Ou
seja, caso não haja nenhuma instanciação, indicando os parâmetros de entrada, o conteúdo
dessa classe ou função sequer é compilado.

Dentro do exemplo da classe Mesh foi utilizada essa ferramenta para evitar a
reescrita da classe para problemas com domínio de diferentes dimensões (2D e 3D). A
representação do template da classe Mesh _MQS pode ser visualizada na Figura 4.4. O
único parâmetro de entrada é o ndim (restrito a dados do tipo integer), ao qual foram
atribuídos os valores 2 e 3, representando domínios bidimensionais e tridimensionais.

Figura 4.4 – Diagrama UML do template da classe Mesh _MQS

Fonte: Próprio autor.
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Ao longo deste capítulo foram tratadas as principais características de um código
orientado a objetos, assim como a forma de representar a construção desses códigos
por meio de diagramas, segundo a linguagem unificada (UML). Para a representação de
diagramas completos, é indispensável uma nomenclatura padrão para o relacionamento
entre seus elementos.

4.1.6 Relacionamentos

A ideia da representação de códigos fazendo o uso de diagramas UML, proporciona
não só o entendimento de uma classe em si, - por meio da descrição dos atributos e operações
- mas também da interação entre as diferentes classes. Para que não haja problemas de
ambiguidade, são utilizadas diferentes simbologias para especificar o relacionamento entre
os elementos contidos em um diagrama. A Figura 4.5 mostra os tipos de relacionamentos
utilizados neste trabalho.

Figura 4.5 – Relacionamentos entre elementos

Fonte: Próprio autor.

A relação de dependência indica que, de alguma forma, um elemento depende do
outro. Já a simbologia de Herança, previamente utilizada na Figura 4.2, indica que a
classe é derivada de uma outra, ou seja, herda todas as características da classe "pai",
somando às suas características adicionais. O vínculo de associação conecta elementos e
associa instâncias. A relação de agregação não deixa de ser um tipo de associação, porém,
onde um elemento contém outro elemento. No caso de conter mais de um, a simbologia
permanece a mesma, porém, o losango que consta na extremidade do contentor passa a
ser preenchido.

4.2 Estrutura do código

Analisando o Algoritmo 1 apresentado no Capítulo 3, pode-se notar que se trata
de um procedimento iterativo e incremental de cálculo, devido à consideração da não
linearidade geométrica e a aplicação do carregamento (ou deslocamento prescrito) por
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meio de um determinado número de incrementos. Levando em conta esse procedimento
de cálculo, buscou-se a concepção de uma arquitetura otimizada, de modo a aproveitar
ao máximo as características positivas que a orientação a objetos proporciona, como
a fácil manutenibilidade e escalabilidade. A grande dimensão dos problemas que serão
resolvidos por meio da plataforma também gera a necessidade de controlar ao máximo a
movimentação de dados entre os objetos e namespaces. Todavia, por mais que o tempo de
execução sempre foi levado em consideração durante a concepção do código, a pesquisa
não tem o objetivo de avaliar o seu tempo de processamento.

A estrutura do código é apresentada abaixo, através de linguagem UML, com
diferentes níveis de detalhes, de forma a compreender desde uma visão mais generalizada,
até o funcionamento de cada uma de suas classes. Por meio da Figura 4.6 são observados os
principais namespaces utilizados, organizando as classes dentro de três principais ambientes:
Prep (Pré processamento), Proc (Processamento) e Post (Pós processamento). O ambiente
Elem foi criado com o objetivo de organizar todos os dados relacionados aos diferentes
tipos de elementos disponibilizados. Já o ambiente Comp detém todos os dados utilizados
na análise.

Figura 4.6 – Visão geral da arquitetura - namespaces

Fonte: Próprio autor.

Com o objetivo de ter um melhor entendimento do funcionamento geral da plata-
forma, foi criado um diagrama de classes geral (Figura 4.7), suprimindo seus atributos e
operações, possibilitando a apresentação em um único diagrama.

A classe FEAnalysis comanda todo o processo. Inicialmente, por meio do aciona-
mento da ModelBuilder, que realiza a leitura dos arquivos de entrada, é criado o domínio
do problema, armazenado em uma única instância da classe Domain. Esse objeto contém
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instâncias das classes Node, Material, Section e Element, responsáveis por armazenar dados
referentes aos nós, materiais, seções e elementos do problema, respectivamente.

Uma vez que o domínio do problema está construído, a classe FEAnalysis aciona
a única instância da classe SolutionAlgorithm, com o objetivo de criar toda a estrutura
de dados necessários para a realização da análise nas classes de processamento. Dessa
forma, os dados do domínio do problema, que compõem a etapa de pré processamento,
permanecem estáticos, e a resolução do problema se resume ao ambiente de processamento.
Os dados acessados durante o procedimento de cálculo estão contidos em instâncias das
classes MeshElem, MeshNode, MaterialPoint, LoadStep, Constraints e em suas classes
derivadas.

Figura 4.7 – Visão geral da arquitetura - classes

Fonte: Próprio autor.

Com todos os dados a serem utilizados na análise já organizados, a classe Solutio-
nAlgorithm inicia o processo não linear iterativo de cálculo, por meio de instâncias das
classes TimeStepping e NonLinearSolver. O resultado do cálculo nada mais é do que as
posições atuais dos nós da estrutura, ou seja, a sua deformada. De posse desses dados, a
FEAnalysis prossegue acionando o ambiente de pós processamento, por meio das instâncias
das classes PostProcess e OutputSystem. A primeira tem por objetivo o tratamento dos
resultados para a geração dos dados que serão apresentados. Já a segunda visa a criação dos
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arquivos de apresentação dos resultados, para visualização em softwares como o Paraview1

e o Acadview2.

A Figura 4.7 possibilita o entendimento geral da plataforma. Todavia, sem a
descrição dos atributos e operações não é possível entender o funcionamento do código.
Desta forma foram elaborados diagramas UML completos das principais classes.

4.2.1 Diagramas de classes

Nesta seção são apresentados os diagramas das classes mais relevantes que compõem
a plataforma, para que, por meio da descrição de seus atributos e operações, seja possível
entender o seu funcionamento e sua função dentro do código. Essas classes de maior
relevância são: FEAnalysis, ModelBuilder, Domain, SolutionAlgorithm, Mesh, OutputSystem
e PostProcess.

A FEAnalysis é responsável por comandar todo o processo, desde a leitura dos
arquivos de entrada, passando pelo armazenamento e processamento dos dados, até a
geração dos arquivos de saída. Pode-se observar, por meio da Figura 4.8, que a classe
armazena as instâncias únicas das classes Domain, SolutionAlgorithm e PostProcess,
nomeadas, respectivamente, como theMesh, theAnalyzer e thePost. Desta forma, ela detém
todos os dados relacionados com o pré processamento, com o processamento e com o pós
processamento. Também é possível observar por meio da Figura 4.8 é o parâmetro de
template nDim. Conforme demonstrado no Capítulo 4, a classe é definida em função desse
parâmetro, e reescrita, em tempo de compilação, para cada um dos valores definidos. Neste
caso foram definidos apenas os valores 2 e 3 para o parâmetro nDim, adaptando o código
para problemas bidimensionais e tridimensionais, respectivamente.

Figura 4.8 – Diagrama de classes: FEAnalysis

Fonte: Próprio autor.

A operação initComponents é responsável pela leitura dos arquivos de entrada, assim
1 Disponível em: <https://www.paraview.org/>. Versão: 5. Acesso em: Outubro de 2023.
2 Disponível em: <https://set.eesc.usp.br/software/acadview/>. Versão: 3. Acesso em: Outubro

de 2023.
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como o armazenamento dos dados do problema. Já a runAnalysis realiza o processamento
dos dados. Por fim, a operação drawResults cria e preenche os arquivos de saída.

A classe ModelBuilder desempenha um papel essencial na construção do domínio do
problema. Armazena os arquivos de entrada fileNode, fileElem, fileMat, fileDOF, que detém
os dados referentes aos nós, elementos, materiais e graus de liberdade, respectivamente.

Acionada por meio da classe FEAnalysis, realiza a leitura desses arquivos, e cria os
objetos que compõem o domínio do problema, armazenando-os em uma instância da classe
Domain. Como pode ser visto na Figura 4.9, além dos arquivos de entrada citados, a classe
detém atributos relacionados ao tipo de análise (AnalysisType) e ao tipo de problema
(ProblemType). Uma vez que a construção do domínio é finalizada, a classe já cumpriu o
seu papel, e pode ser descartada sem causar nenhum prejuízo.

Figura 4.9 – Diagrama de classes: ModelBuilder

Fonte: Próprio autor.

Instanciada uma única vez, a classe Domain representa o domínio do problema.
Seus principais atributos (Figura 4.10) são os containers, que guardam informações de
cada um dos nós (Node), materiais (Mat), seções (Sect) e elementos (Elem). Algumas de
suas operações são utilizadas pela ModelBuilder com o objetivo de popular os containers
citados. Uma vez que o domínio do problema está montado, ou seja, assim que os arquivos
de entrada são lidos, os dados desse objeto permanecem estáticos, porém, ainda guardados
na memória. As operações com o prefixo get são utilizadas para acessar esses dados durante
as etapas de processamento e pós processamento.

Dentre os atributos detidos pela classe, os elementos são os que apresentam maior
complexidade na sua estrutura de dados. Como pôde ser visto na Figura 4.7, foi criado
um namespace especial para a organização desses dados. De forma geral, todo elemento é
instanciado a partir de sua classe geradora que, dependendo da dimensão desse elemento,
é derivada das classes ElementLinear, ElementPlane, ou ElementSolid, se tratando de
elementos unidimensionais, bidimensionais e tridimensionais, respectivamente. Nesta pes-
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quisa foram implementados apenas elementos planos triangulares, com aproximação linear,
quadrática e cúbica.

Figura 4.10 – Diagrama de classes: Domain

Fonte: Próprio autor.

Finalizada a construção do domínio do problema, é acionada a SolutionAlgorithm,
que é responsável por comandar a etapa de processamento. Em um primeiro momento,
a classe é encarregada de organizar todos os dados a serem utilizados na análise dentro
de uma instância única da classe Mesh, armazenada na própria SolutionAlgorithm. Essa
estratégia faz com que, durante o período de processamento, haja acesso e movimentação
de dados somente dentro do ambiente de processamento, mantendo o ambiente de pré
processamento estático, como já foi dito anteriormente. Na etapa seguinte, com todos os
dados já organizados, são acionados os objetos das classes NonLinearSolver e TimeStepping,
também detidos pela SolutionAlgorithm, para que seja realizado o procedimento iterativo
e incremental de cálculo.

A única instância da classe Mesh é incumbida de armazenar todos os dados acessados
durante a etapa de processamento. Na Figura 4.12 é possível visualizar esses atributos,
principalmente os vetores contendo os nós e elementos da malha, nomeados como meshNode
e meshElem, respectivamente. Um aspecto importante da classe é que seus atributos e
operações foram construídos de forma mais genérica, para que ela possa se adequar aos
diversos tipos de problemas (estáticos, dinâmicos, elementos imersos, térmicos, etc.). Em
virtude disso, em operações que são comuns a várias tipologias, porém, que apresentam
cálculos diferenciados em cada uma delas, foi utilizada a característica de polimorfismo,
definindo essas operações como virtuais em sua classe pai. É o caso da assembleSOE, da
setTimeStep e da imposeNeumannBC, responsáveis por montar o sistema de equações,
definir o passo de tempo e impor condições de contorno, respectivamente. Desta forma,
permite-se implementações distintas em suas classes derivadas, conforme as especificidades
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de cada uma, ainda que a operação permaneça com o mesmo nome.

Figura 4.11 – Diagrama de classes: SolutionAlgorithm

Fonte: Próprio autor.

Figura 4.12 – Diagrama de classes: Mesh

Fonte: Próprio autor.

A classe PostProcess contém os atributos e operações (Figura 4.13) responsáveis
por tratar os dados obtidos na análise, de forma a obter a saída de dados desejada.

Já a OutputSystem é responsável por construir os arquivos para visualização dos
resultados obtidos na análise por meio dos dados gerados pela PostProcess. Neste trabalho
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foi implementada apenas a saída de dados para visualização no software AcadView, como
pode ser visto na Figura 4.14.

Figura 4.13 – Diagrama de classes: PostProcess

Fonte: Próprio autor.

Figura 4.14 – Diagrama de classes: OutputSystem

Fonte: Próprio autor.

4.2.2 Documentação do código

A documentação foi gerada por meio do software Doxygen®3. Os textos descritivos
de cada classe, atributo, operação, etc. foram adicionados diretamente no código, fazendo
com que a concepção da documentação ocorresse automaticamente. A inserção dessas
informações devem atender a um formato específico, para que seja possível categorizá-las
e organizá-las. Na Figura 4.15 pode-se observar a indicação dos dados da classe Node,
envolvendo também o construtor, onde pode-se observar as chamadas para as informações
fornecidas.

O texto final, disponibilizado por meio do repositório O2P2: Pre-alpha release
(CARRAZEDO et al., 2023) - assim nomeado (O2P2) devido a contração de Object
Oriented Platform for Positional FEM - , foi disposto em arquivos html, podendo ser
visualizado em qualquer navegador. Por meio da Figura 4.16 pode-se observar a página
inicial da documentação, que permite, por meio do menu lateral, o acesso a todos os dados
descritos no código, categorizados, conforme a sua hierarquia. No trecho inicial, foram
inseridas informações gerais da plataforma, como os seus recursos, as características da
licença, os autores envolvidos, forma de citação, etc. Também consta um passo a passo
para a sua utilização, com orientações relacionadas ao local de acesso ao código, e também
ao modo de execução.
3 Disponível em: <https://doxygen.nl/index.html/>. Versão: 1.9.8. Acesso em: Outubro de

2023.
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Figura 4.15 – Detalhe da inserção da documentação no código

Fonte: Repositório O2P2: Pre-alpha release (CARRAZEDO et al., 2023).

Figura 4.16 – Documentação: Página inicial

Fonte: Repositório O2P2: Pre-alpha release (CARRAZEDO et al., 2023).

Na Figura 4.17 pode-se visualizar a organização e a forma de apresentação dos
atributos, das operações e das descrições da classe Node. Todas as informações estão
conectadas, por meio de links, facilitando o entendimento do usuário, proporcionando uma
navegação rápida entre os elementos da plataforma. A hierarquia de classes também fica
explícita por meio de fluxogramas interativos, fazendo com que a estrutura do código seja
de entendimento fácil, sem que haja a necessidade de inspecionar códigos para compreender
as relações entre as classes.
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Figura 4.17 – Documentação: Classe Node

Fonte: Repositório O2P2: Pre-alpha release (CARRAZEDO et al., 2023).
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5 EXEMPLOS DE APLICAÇÃO

Para a validação do código elaborado, foram simulados alguns exemplos conhecidos,
retirados de outros trabalhos. Os exemplos buscam avaliar características específicas
relacionadas ao MEF Posicional, como problemas de grandes deslocamentos e/ou rotações,
porém, com deformações moderadas, devido a utilização do modelo constitutivo de Saint-
Venant-Kirchhoff. Para a geração da malha foi utilizado o software de pré-processamento
AcadMesh2D (PIEDADE NETO; FAGA JÚNIOR; PACCOLA, 2012), e para a visualização
dos resultados foi utilizado o software de pós-processamento AcadView (CODA; PACCOLA,
2005).

5.1 Exemplo 1: Linha elástica de Euler

O primeiro exemplo, retirado do trabalho de Marques (2006), trata-se de um pilar
com a base engastada e o topo livre, com uma carga vertical para baixo aplicada no topo
de forma excêntrica. Esse problema também é conhecido como linha elástica de Euler,
podendo também ser encontrado nos trabalhos de Fujii (1983) e Simo, Hjelmstad e Taylor
(1984). Os parâmetros e dimensões utilizados para essa análise foram os mesmos utilizados
por Marques (2006), e podem ser visualizados na Figura 5.1.

Figura 5.1 – Exemplo 1: Linha elástica de Euler

Fonte: Próprio autor.

A estrutura foi discretizada de quatro formas diferentes de modo a comparar os
resultados obtidos com elementos triangulares de diferentes ordens. Essa variação de
discretização pode ser visualizada por meio da Figura 5.2. O primeiro modelo, denominado
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T10_86, foi discretizado em 86 elementos triangulares com aproximação cúbica (10 nós).
O segundo e o terceiro, denominados, respectivamente, T6_86 e T3_86, também possuem
86 elementos triangulares, porém, com aproximação quadrática e linear. O quarto modelo,
T3_798, foi discretizado com elementos triangulares lineares, porém, mantendo a mesma
quantidade de nós que o primeiro modelo, totalizando 798 elementos.

Figura 5.2 – Exemplo 1: Discretização dos modelos

Fonte: Próprio autor.

A carga de 37.100 kN foi aplicada em 371 passos de carga, com 100 kN cada. Na
Figura 5.3 pode-se visualizar a variação do deslocamento horizontal no topo do pilar
em função do carregamento aplicado, para os quatro modelos de discretização, assim
como para o modelo analisado por Marques (2006). A obtenção desses resultados só é
possível devido à consideração da não linearidade geométrica na formulação que, no MEF
Posicional, é obtida de forma natural.

Nota-se que os valores obtidos nos modelos com 86 elementos triangulares quadrá-
ticos (T6_86) e cúbicos (T10_86) estão muito próximos entre si, assim como do modelo
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de referência, analisado por Marques (2006), que conta com 80 elementos triangulares de
aproximação cúbica. Já o modelo com 86 elementos lineares (T3_86) não apresentou um
resultado satisfatório, divergindo do modelo já validado, demonstrando que a variação
linear de deformações dentro do elemento é insuficiente para a resolução deste exemplo,
nesta ordem de discretização. O modelo T3_798, que conta com 798 elementos, já apresenta
uma malha mais refinada, porém, embora tenha o mesmo número de nós que o primeiro
modelo (T10_86), ainda demonstra resultados distintos da referência.

Figura 5.3 – Exemplo 1: Deslocamento horizontal (m) x Carga (kN)

Fonte: Próprio autor.

Os resultados obtidos também foram comparados com o trabalho de Fujii (1983),
onde foram plotados os valores de deslocamento horizontal (δh) relativo ao comprimento
do pilar (L), em função da carga relativa à carga crítica de Euler (Pcr). Para essa análise,
foi criado um quinto modelo, denominado T10_86_CC, com a mesma discretização do
T10_86, ou seja, 86 elementos triangulares com aproximação cúbica. Todavia, ao invés
de realizar a aplicação da carga na extremidade do pilar, foi aplicada uma carga com
menor excentricidade para induzir a instabilidade no pilar. Essa diferença pode ser vista
na Figura 5.4, que representa a aplicação de um passo de carga nos modelos T10_86 e
T10_86_CC.

A sobreposição das curvas obtidas pode ser visualizada na Figura 5.5. Da mesma
forma que pôde ser visualizado na Figura 5.3, os modelos com elementos de aproximação
linear divergem da referência, que é o modelo proposto por Fujii (1983). Já os modelos
com elementos de aproximação quadrática e cúbica apresentaram um resultado muito
próximo ao da referência, com exceção do trecho inicial, antes de atingir a carga crítica.
Essa diferença entre os modelos ocorre justamente devido à aplicação da carga de forma
excêntrica, que acarreta em um deslocamento horizontal prévio. Com a aplicação da
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carga centrada, por meio do modelo T10_86_CC, pode-se observar que a ocorrência da
instabilidade se dá muito próximo à carga crítica de Euler, demonstrando que a divergência
entre a referência e os modelos propostos advém da aplicação do carregamento de forma
excêntrica.

Figura 5.4 – Diferença de aplicação do carregamento

Fonte: Próprio autor.

Figura 5.5 – Deslocamento horizontal relativo x Carga relativa

Fonte: Próprio autor.

Por fim, a Figura 5.6 representa a comparação entre o deslocamento vertical da
referência, e do modelo T10_86_CC, para diferentes níveis de carregamento.
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Figura 5.6 – Deslocamento vertical

Fonte: Adaptado de Fujii (1983).

5.2 Exemplo 2: Viga engastada-livre com carga transversal aplicada na extre-
midade

O segundo exemplo se trata de uma viga com a extremidade esquerda engastada e
a direita livre, submetida a um carregamento transversal aplicado em seu extremo livre.
Os parâmetros utilizados nessa análise foram os mesmos utilizados por Greco (2004), e
podem ser visualizados na Figura 5.7.

Figura 5.7 – Exemplo 2: Viga engastada-livre

Fonte: Próprio autor.
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A estrutura foi discretizada em 578 elementos triangulares com aproximação cúbica
(10 nós), e a carga total (10 kN) foi aplicada em 100 passos de carga de 100N cada.
Os deslocamentos horizontal e vertical são apresentados na Figura 5.8, e representam a
situação gerada pelo máximo carregamento aplicado (10kN).

Figura 5.8 – Exemplo 2: Deslocamento com carga máxima (10kN)

(a) Deslocamento horizontal. (b) Deslocamento vertical.

Fonte: Próprio autor.

A Figura 5.9 ilustra as variações do deslocamento horizontal e a Figura 5.10 do
deslocamento vertical, ambas medidas no ponto de aplicação da carga. Os resultados foram
comparados à solução analítica encontrada nos trabalhos de Fujii (1983), Greco (2004) e
também ao trabalho de Mattiasson (1981). É possível notar um resultado muito próximo
ao encontrado por esses autores.

Figura 5.9 – Exemplo 2: Desl. horizontal x Carga (Adim.)

Fonte: Próprio autor.
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Figura 5.10 – Exemplo 2: Desl. vertical x Carga (Adim.)

Fonte: Próprio autor.

5.3 Exemplo 3: Viga engastada-livre com amortecimento

O problema, trazido tanto por Greco (2004), como por Marques (2006), se trata
de uma viga com a extremidade esquerda engastada e a direita livre, submetida a um
carregamento transversal constante aplicado em seu extremo livre. Foi realizada a análise
transiente, com a consideração de amortecimento. Os dados considerados no exemplo
podem ser visualizados na Figura 5.11.

Figura 5.11 – Exemplo 3: Viga engastada-livre com amortecimento

Fonte: Próprio autor.
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O problema foi discretizado em 82 elementos triangulares, com aproximação cúbica.
A Figura 5.12 ilustra os resultados de deslocamento vertical em função do tempo, proveni-
entes da análise transiente, comparados aos resultados obtidos por Marques (2006), tanto
com a consideração de amortecimento, quanto sem essa consideração. Pode-se observar
que os resultados se aproximam muito dos obtidos pela referência.

Figura 5.12 – Deslocamento vertical x tempo - Com e sem amortecimento

Fonte: Próprio autor.

Figura 5.13 – Deslocamento com t=0.0021s

Fonte: Próprio autor.

Por meio da Figura 5.13 pode ser visualizada a discretização do modelo, assim como
o deslocamento da estrutura no tempo de 0.0021s, um dos períodos em que o deslocamento
vertical atinge a amplitude máxima.

5.4 Exemplo 4: Viga engastada-livre com carga variável em função do tempo

Neste exemplo, avalia-se o comportamento dinâmico de uma viga engastada, com
um carregamento transversal em sua extremidade livre, variando em função do tempo. Os
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dados do problema podem ser observados por meio da Figura 5.14, e na Figura 5.15, observa-
se a variação da amplitude do carregamento em função do tempo. Foram avaliadas duas
situações: a primeira, com carregamento máximo de 100.000lb, e outra com carregamento
máximo de 500.000lb, que foram as mesmas situações avaliadas por Marques (2006). A
estrutura foi discretizada em 74 elementos triangulares, com aproximação cúbica.

Figura 5.14 – Exemplo 4: Viga engastada-livre com carga variável em função do tempo

Fonte: Próprio autor.

Figura 5.15 – Variação da força em função do tempo

Fonte: Próprio autor.

Os resultados das análises podem ser visualizados por meio da Figura 5.16, que
representa o deslocamento horizontal em função do tempo, e da Figura 5.17, que ilustra o



80

deslocamento vertical em função do tempo. Nas duas figuras há a sobreposição dos valores
provenientes da análises com os resultados obtidos por Marques (2006).

Figura 5.16 – Deslocamento horizontal x tempo

Fonte: Próprio autor.

Figura 5.17 – Deslocamento vertical x tempo

Fonte: Próprio autor.

Percebe-se a diferença entre os resultados obtidos na análise e os obtidos por
Marques (2006), a medida em que se tem maiores deformações. Isso ocorre devido a
utilização de diferentes medidas de deformação. Marques (2006) utilizou a deformação
longitudinal de engenharia, dada por ε = (| dy | − | dx |)/ | dx |, enquanto que nesta
análise foi utilizada a deformação de Green-Lagrange, conforme descrito no Capítulo 3.
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Os deslocamentos vertical e horizontal, no tempo de 0.24s, podem ser visualizados,
respectivamente, pela Figura 5.18 e pela Figura 5.19, sendo esse um dos períodos em que
o deslocamento atinge a amplitude máxima.

Figura 5.18 – t=0.24s - Deslocamento vertical

Fonte: Próprio autor.

Figura 5.19 – t=0.24s - Deslocamento horizontal

Fonte: Próprio autor.

5.5 Exemplo 5: Viga engastada-livre reforçada com carga distribuída

Este exemplo foi apresentado inicialmente por Sampaio (2014) e também por
Ramos (2020), e se trata de uma viga engastada em uma de suas extremidades, e livre na
outra, com um carregamento distribuído ao longo de todo o elemento. A viga é composta
por dois materiais, sendo que um dos materiais compõe a matriz do elemento, e o outro
compõe os reforços. A Figura 5.20 ilustra o problema, onde é possível observar a seção da
viga, com a posição dos reforços.
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Figura 5.20 – Exemplo 5: Viga engastada-livre reforçada com carga distribuída

Fonte: Próprio autor.

O material adotado para a matriz tem um módulo de elasticidade (Em) de 21
GPa, enquanto o adotado para os reforços tem módulo de elasticidade (Er) de 210 GPa.
A espessura da viga (t) é de 1cm, a área de cada um dos reforços (Ar) é de 1 cm2 e o
coeficiente de Poisson foi adotado como 0, para ambos os materiais (νm = νr = 0).

A matriz é representada por 74 elementos triangulares, com aproximação cúbica,
resultando em um total de de 448 nós. Para a simulação dos reforços, foram utilizados
224 elementos de barra simples, imersos na malha, segundo a técnica de embutimento,
descrita no Capítulo 3. Foram elaborados dois modelos, sendo o primeiro somente com os
elementos da matriz, e o segundo com a inserção dos reforços. Para cada um dos modelos,
foram realizadas duas análises: a primeira, no regime linear, com q ≤ 0, 5N/cm; a segunda,
com um nível de carregamento maior, de q ≤ 50N/cm, já atingindo o regime não linear
geométrico.

A Figura 5.21 ilustra o deslocamento vertical para o carregamento de 0,5 N/cm,
no modelo sem a inserção do reforço. Já a Figura 5.22 representa o deslocamento para o
mesmo carregamento, porém, com a inserção dos elementos de reforço.

Em ambas as análises, os carregamentos foram aplicados em 10 passos de carga,
considerando o valor de 0,05 N/cm para cada um deles. Os resultados obtidos na análise
dos dois modelos, dentro do regime linear, foram comparados com a solução analítica
do problema, por apresentar pequenos deslocamentos. Como esperado, os resultados são
coincidentes, e podem ser visualizados por meio da Figura 5.23.
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Figura 5.21 – Deslocamento vertical - Sem reforço - Regime linear

Fonte: Próprio autor.

Figura 5.22 – Deslocamento vertical - Com reforço - Regime linear

Fonte: Próprio autor.

Figura 5.23 – Comparação entre a análise e a solução analítica - Regime linear

Fonte: Próprio autor.

Aumentando o nível de carregamento, o elemento passa a atingir o regime não
linear geométrico. É possível observar, por meio da Figura 5.24, o deslocamento vertical
para o carregamento de 50 N/cm, no modelo sem a inserção do reforço. A Figura 5.25
ilustra também, para o mesmo carregamento, o deslocamento vertical, porém, com a
inserção dos elementos de reforço. Para essas análises também foram aplicados 10 passos



84

de carga, sendo cada um com o valor de 5 N/cm.

Figura 5.24 – Deslocamento vertical - Sem reforço - Regime não linear geométrico

Fonte: Próprio autor.

Figura 5.25 – Deslocamento vertical - Com reforço - Regime não linear geométrico

Fonte: Próprio autor.

Esses resultados, provenientes da análise no regime não linear geométrico, foram
comparados aos resultados obtidos por Ramos (2020), conforme ilustra a Figura 5.26,
demonstrando valores muito próximos da referência.
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Figura 5.26 – Deslocamento vertical - Com reforço - Regime não linear geométrico

Fonte: Próprio autor.
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6 CONCLUSÃO

Uma plataforma para análise mecânica estática e dinâmica de estruturas, com a
consideração de elementos imersos na matriz, por meio do MEF posicional foi desenvolvida
no paradigma de orientação a objetos.

A arquitetura foi organizada de forma generalista, com os atributos e operações de
suas classes principais sendo bem abrangentes, possibilitando a implementação de novos
recursos para a resolução de diferentes problemas, sem que seja necessário alterar de forma
significativa a estrutura do código. Os componentes específicos utilizados em cada tipo de
análise, por exemplo, foram dispostos em subclasses, herdando os atributos e operações mais
genéricos das classes principais. Desta forma, em novas implementações, serão adicionadas
novas classes herdeiras, sem que as principais sofram alterações significativas.

Os códigos foram desenvolvidos conforme a metodologia de orientação a objetos,
usufruindo das suas principais vantagens e recursos. Os componentes que não necessitam
de ajustes ou alterações, por exemplo, foram encapsulados, fazendo com que novos usuários
não precisem se aprofundar a respeito do funcionamento de todas essas classes. As
características de herança e polimorfismo foram amplamente utilizadas, já que existem
diversos tipos de nós, elementos, materiais, seções, dentre outras categorias, que possuem
muitos atributos e operações em comum. Outro recurso utilizado foi o template, evitando
a reescrita de classes para a alteração de um único parâmetro. Destaca-se que o código não
foi extensamente aprofundado em características de desempenho. O maior objetivo, no
momento, era obter uma estrutura (framework) viável para aprimoramentos. Não obstante,
todo o cálculo dos elementos é paralelo e utiliza-se solver paralelo de alto desempenho.

A documentação do código foi gerada de forma automática, com o auxílio do software
Doxygen®, sendo que todas as informações e comentários foram inseridos diretamente no
código, seguindo um mesmo padrão de entrada de dados. O repositório, nomeado como
O2P2: Pre-alpha release (CARRAZEDO et al., 2023), foi disponibilizado por meio do
GitHub®. Desta forma, a plataforma pode ser utilizada em novas pesquisas, otimizando
o tempo de desenvolvimento, além de proporcionar uma documentação muito didática
e visual, facilitando o entendimento da arquitetura geral do código, assim como da
implementação de cada uma de suas classes.

Todas as funcionalidades implementadas foram testadas e validadas, comparando
os resultados obtidos com trabalhos de referência e/ou soluções analíticas para os mesmos
problemas. Desta forma, os objetivos propostos foram atingidos, ao criar e implementar
uma plataforma orientada a objetos escalonável para o Método dos Elementos Finitos
Posicional, devidamente documentada e disponível para toda a comunidade científica por
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meio de repositório público.

Com base nestas conclusões, visto que o método dos elementos finitos posicional já
demonstrou sua eficácia em diferentes problemas de engenharia, e que a plataforma foi
construída com a finalidade de auxiliar no desenvolvimento de novas pesquisas, sugerem-se
as seguintes melhorias e/ou linhas de pesquisa:

a) Implementação de novos tipos de elementos, incluindo deslocamentos associados a
rotação, envolvendo elementos de pórtico e casca;

b) Implementação de elementos imersos de partícula;

c) Adaptação da plataforma e implementação de elementos prismáticos de faces ativas para
análise de painéis-sanduíche com núcleo em colmeia (CARRAZEDO; PACCOLA;
CODA, 2018);

d) Adaptação da plataforma e implementação de novos campos de análises, como com-
portamento viscoelástico, térmico, termomecânico, análise de danos, etc.



89

REFERÊNCIAS

ANICHE, M.; YODER, J. W.; KON, F. Current challenges in practical object-oriented
software design. In: IEEE/ACM INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING: new ideas and emerging results, 41., 2019, Montreal. Proceedings [...],
p. 113–116. DOI: 10.1109/ICSE–NIER.2019.00037.

AVANCINI, G.; SANCHES, R. A. K. A total lagrangian position-based finite element
formulation for free-surface imcompressible flows. Finite Elements in Analysis and
Design, v. 169, 2020.

BECKER, A. A. The boundary element method in engineering: a complete course.
London: McGraw-Hill International, 1992.

BONET, J. et al. Finite element analysis of air supported membrane structures.
Computer Methods in Applied Mechanics and Engineering, v. 190, n. 5-7, p.
579–595, 2000.

BOOCH, G. et al. Object-Oriented Analysis and Design with Applications. 3. ed.
[S.l.: s.n.]: Addison-Wesley, 2007. 720 p.

BORLAND INTERNATIONAL INC. Turbo pascal reference manual. 3. ed. San Jose,
California: Alpha Systems Corporation, 1988. 221 p.

BOSE, A.; CAREY, G. F. A class of data structures and object-oriented implementation
for finite element methods on distributed memory systems. Computer Methods in
Applied Mechanics and Engineering, v. 171, p. 109–121, 1999.

BOWER, A. F. Applied Mechanics of Solids. Florida: Taylor and Francis Group, 2010.

CARRAZEDO, R. Estudo e desenvolvimento de código computacional para
análise de impacto entre estruturas levando em consideração efeitos térmicos.
2009. Tese (Doutorado em Engenharia de Estruturas) — Escola de Engenharia de São
Carlos, Universidade de São Paulo, São Carlos, 2009.

CARRAZEDO, R.; CODA, H. B. Alternative positional FEM applied to thermomechanical
impact of truss structures. Finite Elements in Analysis and Design, v. 46, n. 11, p.
1008–1016, 2010.

CARRAZEDO, R.; PACCOLA, R. R.; CODA, H. B. Active face prismatic positional
finite element for linear and geometrically nonlinear analysis of honeycomb sandwich
plates and shells. Composite Structures, v. 200, p. 849–863, 2018.

CARRAZEDO, R. et al. O2P2: Pre-alpha release (v0.2.0). Zenodo.
https://doi.org/10.5281/zenodo.8283439. 2023.

CARVALHO, B. L. Desenvolvimento de formulação alternativa em deformações
finitas para sólidos viscoelásticos e fluidos viscosos pelo MEF Posicional. 2019.
Dissertação (Mestrado em Engenharia de Estruturas) — Escola de Engenharia de São
Carlos, Universidade de São Paulo, São Carlos, 2019.



90

CARVALHO, P. R. P.; CODA, H. B.; SANCHES, R. A. K. Positional finite element
formulation for two-dimensional analysis of elasto-plastic solids with contact applied to
cold forming processes simulation. Journal of the Brazilian Society of Mechanical
Sciences and Engineering, 2020.

CAVALCANTE, J. P. de B.; MACIEL, D. N.; GRECO, M. Impact response of flying
objects modeled by positional finite element method. International Journal of
Structural Stability and Dynamics, v. 18, n. 6, 2018.

CODA, H. B. An exact FEM geometric non-linear analysis of frames based on position
description. In: International Congress of mechanical engineering. São Carlos:
ABCM, 2003.

CODA, H. B. O Método dos Elementos Finitos Posicional : Sólidos e Estruturas
– Não Linearidade Geométrica e Dinâmica. São Carlos: EESC/USP, 2018. 248 p.

CODA, H. B.; GRECO, M. A simple fem formulation for large deflection 2d frame
analysis based on position description. Computer Methods in Applied Mechanics
and Engineering, v. 193, n. 33-35, p. 3541–3557, 2004.

CODA, H. B.; PACCOLA, R. R. AcadView: Software para pós-processamento
em elementos finitos 2D e 3D. São Carlos: Escola de Engenharia de São Carlos,
Universidade de São Paulo, 2005.

CODA, H. B.; PACCOLA, R. R. An alternative positional FEM formulation for
geometrically non-linear analysis of shells: Curved triangular isoparametric elements.
Computational Mechanics, v. 40, n. 1, p. 185–200, 2007.

CODA, H. B.; PACCOLA, R. R. A positional FEM formulation for geometrical non-linear
analysis of shells. Latin American Journal of Solids and Structures, v. 5, n. 3, p.
205–223, 2008.

COMMEND, S.; ZIMMERMANN, T. Object-oriented nonlinear finite element
programming: A primer. Advances in Engineering Software, v. 32, n. 8, p. 611–628,
2001.

DING, J.; YU, T.; BUI, T. Q. Modeling strong/weak discontinuities by local mesh
refinement variable node XFEM with object-oriented implementation. Theoretical and
Applied Fracture Mechanics, v. 106, p. 102434, 2020.

DING, J. et al. An efficient variable-node XFEM for modeling multiple crack growth: A
matlab object-oriented implementation. Advances in Engineering Software, v. 140, p.
102750, 2020.

DODDS, R. H.; LOPEZ, L. A. A generalized software system for non-linear analysis.
Advances in Engineering Software, v. 2, n. 4, p. 161–168, 1978.

DUARTE, C. A.; BABUŠKA, I.; ODEN, J. T. Generalized finite element methods for
three-dimensional structural mechanics problems. Computers and Structures, v. 77,
n. 2, p. 215–232, 2000.

DUBOIS-PÈLERIN, Y.; ZIMMERMANN, T. Object-oriented finite element programming:
III. An efficient implementation in C++. Computer Methods in Applied Mechanics
and Engineering, v. 108, p. 165–183, 1993.



91

DUBOIS-PÈLERIN, Y.; ZIMMERMANN, T.; BOMME, P. Object-oriented finite element
programming: II. A prototype program in Smalltalk. Computer Methods in Applied
Mechanics and Engineering, v. 98, p. 361–397, 1992.

ÉLETRICITÉ DE FRANCE. code-aster. France: Életricité de France, 1989.

ERIKSSON, H.-E. et al. UML 2 Toolkit. Indianápolis, Indiana: Wiley, 2004.

FELIX, E. F. Modelagem da Deformação do concreto armado devido à formação
de produtos de corrosão. 2018. Dissertação (Mestrado em Engenharia de Estruturas) —
Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2018.

FELIX, E. F. Estudo numérico-experimental da fadiga em concretos submetidos
à compressão cíclica: proposição de um modelo de dano acumulado. 2022.
Tese (Doutorado em Engenharia de Estruturas) — Escola de Engenharia de São Carlos,
Universidade de São Paulo, São Carlos, 2022.

FERNANDES, J. W. D.; CODA, H. B.; SANCHES, R. A. K. ALE incompressible
fluid–shell coupling based on a higher-order auxiliarymesh and positional shell finite
element. Computational Mechanics, v. 63, p. 555–569, 2019.

FERNANDES, V. A. Análise elastoplástica bidimensional de meios reforçados
com fibras. 2016. Dissertação (Mestrado em Engenharia de Estruturas) — Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2016.

FISH, J.; BELYTSCHKO, T. A first course in finite elements. Chichester: John
Wiley and sons, 2007.

FORDE, B. W. R.; FOSCHI, R. .; STIEME, S. F. Object-oriented finite element analysis.
Computers and Structures, v. 34, p. 355–374, 1990.

FUJII, F. A simple mixed formulation for elastica problems. Computers and
Structures, v. 17, p. 79–88, 1983.

GHANAM, Y.; MAURER, F.; ABRAHAMSSON, P. Making the leap to a software
platform strategy: Issues and challenges. Information and Software Technology,
v. 54, n. 9, p. 968–984, 2012. ISSN 0950-5849. Acesso em: 05/04/2023. Disponível em:
https://www.sciencedirect.com/science/article/pii/S0950584912000547.

GONG, J. et al. A coupled meshless-SBFEM-FEM approach in simulating soil-structure
interaction with cross-scale model. Soil Dynamics and Earthquake Engineering,
v. 136, p. 106214, 2020.

GRECO, M. Análise de problemas de contato/impacto em estruturas de
comportamento não linear pelo método dos elementos finitos. 2004. Tese
(Doutorado em Engenharia de Estruturas) — Escola de Engenharia de São Carlos,
Universidade de São Paulo, São Carlos, 2004.

GRECO, M.; CODA, H. B. Positional FEM formulation for flexible multi-body dynamic
analysis. Journal of Sound and Vibration, v. 290, n. 3-5, p. 1141–1174, 2006.

GRECO, M. et al. Nonlinear positional formulation for space truss analysis. Finite
Elements in Analysis and Design, v. 42, n. 12, p. 1079–1086, 2006.

https://www.sciencedirect.com/science/article/pii/S0950584912000547


92

HAMMER, P. C.; MARLOWE, O. J.; STROUD, A. H. Numerical integration over
simplexes and cones. Mathematical Tables and Other Aids to Computation, X, p.
130–137, 1956.

INSANE - INTERACTIVE STRUCTURAL ANALYSIS ENVIRONMENT. Minas Gerais:
UFMG, 2007.

IWAKI, T.; MAEDA, A.; ISHII, T. MISA - a general purpose FEM program. Computers
and Structures, v. 10, p. 311–322, 1979.

JAYESH, S. W.; JEYAKARTHIKEYAN, P. V.; YOGESHWARAN, R. Object oriented
programming based matlab toolbox to solve transient quasi-harmonic equation using finite
element methods. In: 2nd International conference on Advances in Mechanical
Engineering (ICAME 2018). Kattankulathur: IOP Publishing, 2018.

KOENIG, A.; MOO, B. E. Accelerated C ++ Practical Programming by Example.
Upper Saddle River: Pearson, 2000. 453 p.

KOLEV, T.; DOBREV, V. Modular Finite Element Methods (MFEM). Livermore,
CA, USA: Lawrence Livermore National Lab. (LLNL), 2010.

KULESZA, U. Técnicas de orientação a objetos para projeto de sistemas
adaptáveis. 2000. Dissertação (Mestrado em Ciências da Computação) — Instituto de
Matemática e Estatística, Universidade de São Paulo, São Paulo, 2000.

LAMPRECHT, G. Introduction to Simula 67. 2. ed. Braunschweig: Springer
Fachmedien Wiesbaden, 1983.

LI, H.; ZHOU, Y. State of art and key problems of oop for FE programming in engineering
analysis. In: International Conference on Graphic and Image Processing (ICGIP
2012). Singapore: SPIE, 2013. v. 8768.

MACKERLE, J. Object-oriented programming in FEM and BEM: a bibliography
(1990–2003). Advances in Engineering Software, v. 35, p. 325–336, 2004.

MACKIE, R. I. Object oriented programming of the finite element method. International
Journal for Numerical Methods in Engineering, v. 35, p. 425–436, 1992.

MARQUES, A. N. Modelagem numérica não-linear do concreto armado
considerando a perda de aderência da armadura. 2023. Dissertação (Mestrado em
Engenharia de Estruturas) — Escola de Engenharia de São Carlos, Universidade de São
Paulo, São Carlos, 2023.

MARQUES, G. C. dos S. C. Estudo e desenvolvimento de código computacional
baseado no método dos elementos finitos para análise dinâmica não linear
geométrica de sólidos bidimensionais. 2006. Dissertação (Mestrado em Engenharia
de Estruturas) — Escola de Engenharia de São Carlos, Universidade de São Paulo, São
Carlos, 2006.

MATTIASSON, K. Numerical results from large deflection beam and frame problems
analysed by means of elliptic integrals. International journal for numerical methods
in engineering, v. 17, p. 145–153, 1981.



93

MCKENNA, F. T. Object-Oriented Finite Element Programming: Frameworks
for Analysis, Algorithms and Parallel Computing. 1997. Tese (PhD in Civil
Engineering) — University of California, Berkeley, California, 1997.

MOURA, C. A. Aplicação de formulação baseada no método dos elementos
finitos posicional na análise bidimensional elástica de compósitos particulados.
2015. Dissertação (Mestrado em Engenharia de Estruturas) — Escola de Engenharia de
São Carlos, Universidade de São Paulo, São Carlos, 2015.

NOGUEIRA, G. V.; PACCOLA, R. R.; CODA, H. B. A positional unconstrained vector
layerwise (UVLWT) FEM formulation for laminated frame element modeling. Composite
Structures, v. 148, p. 97–112, 2016.

OHTSUBO, H.; KAWAMURA, Y.; KUBOTA, A. Development of the object-oriented
finite element modeling system - modify. Engineering with Computers, p. 187–197,
1993.

OÑATE, E. et al. The particle finite element method — an overview. International
Journal of Computational Methods, v. 1, n. 2, p. 267–307, 2004.

PACCOLA, R. R.; CODA, H. B. A direct FEM approach for particulate reinforced elastic
solids. Composite Structures, v. 141, p. 282–291, 2016.

PASCON, J. P. A large strain one-dimensional ductile damage model for space truss
analysis considering gurson’s porous plasticity, thermal effects and mixed hardening.
Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022.

PATZÁK, B.; BITTNAR, Z. Design of object oriented finite element code. Advances in
Engineering Software, v. 32, p. 759–767, 2001.

PAULINO, D. M. S.; LEONEL, E. D. Topology optimization and geometric nonlinear
modeling using positional finite elements. Optimization and Engineering, 2021.

PIEDADE NETO, D. On the Generalized Finite Element Method in Nonlinear
Solid Mechanics Analysis. 2013. Tese (Doutorado em Engenharia de Estruturas) —
Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2013.

PIEDADE NETO, D.; FAGA JÚNIOR, R.; PACCOLA, R. R. AcadMesh2D. [S.l.: s.n.],
2012.

RABELO, J. ao M. G. et al. Modeling the creep behavior of GRFP truss structures with
positional finite element method. Latin American Journal of Solids and Structures,
v. 15, n. 17, 2018.

RAMOS, E. S. Modelagem numérica da propagação da corrosão por cloretos
em estruturas de concreto armado. 2020. Dissertação (Mestrado em Engenharia de
Estruturas) — Escola de Engenharia de São Carlos, Universidade de São Paulo, São
Carlos, 2020.

RAMOS, E. S.; CARRAZEDO, R. Cross-section modeling of the non-uniform corrosion
due to chloride ingress using the positional finite element method. Journal of the
Brazilian Society of Mechanical Sciences and Engineering, v. 42, n. 548, 2020.



94

REIS, M. C. J.; CODA, H. B. Physical and geometrical non-linear analysis of plane
frames considering elastoplastic semi-rigid connections by the positional FEM. Latin
American Journal of Solids and Structures, v. 11, p. 1163–1189, 2014.

SALOMãO, R. C. Termomecânica em compósitos reforçados com fibras e na
presença de elementos particulados. 2021. Tese (Doutorado em Engenharia de
Estruturas) — Escola de Engenharia de São Carlos, Universidade de São Paulo, São
Carlos, 2021.

SAMPAIO, M. do S. M. Análise não linear geométrica de cascas laminadas
reforçadas com fibras. 2014. Tese (Doutorado em Engenharia de Estruturas) — Escola
de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2014.

SANCHES, R. A.; CODA, H. B. Unconstrained vector nonlinear dynamic shell formulation
applied to fluid structure interaction. Computer Methods in Applied Mechanics
and Engineering, v. 259, p. 177–196, 2013.

SANCHES, R. A.; CODA, H. B. On fluid-shell coupling using an arbitrary
lagrangian-eulerian fluid solver coupled to a positional lagrangian shell solver. Applied
Mathematical Modelling, v. 38, n. 14, p. 3401–3418, 2014.

SANNER, T. A.; NIELSEN, P. Software platforms for inclusive innovation". In: NIELSEN,
P.; KIMARO, H. C. (ed.). Information and Communication Technologies for
Development. Strengthening Southern-Driven Cooperation as a Catalyst
for ICT4D. Cham: Springer International Publishing, 2019. p. 218–230. ISBN
978-3-030-18400-1.

SCHOLZ, S. P. Elements of an object-oriented FEM++ program in C++. Computers
and Structures, v. 43, n. 3, p. 517–529, 1992.

SEED, G. M. An introduction to object-oriented programming in C++. London:
Springer, 1996. 1048 p.

SENGUPTA, S.; KOROBKIN, C. P. C++ Object-oriented data structures. New
York: Springer, 1994. 728 p.

SIMO, J. C.; HJELMSTAD, K. D.; TAYLOR, R. L. Numerical formulations of
elasto-vistoplastic response of beams accounting for the effect of shear. Computer
methods in applied mechanics and engineering, v. 42, p. 301–330, 1984.

SIQUEIRA, T. M. Ligações deslizantes para análise dinâmica não linear
geométrica de estruturas e mecanismos tridimensionais pelo método dos
elementos finitos posicional. 2019. Tese (Doutorado em Engenharia de Estruturas) —
Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2019.

SMALLTALK/V 286. Tutorial and programming handbook. Los Angeles, DIGITALK,
1998. 561 p.

SOARES, H. B.; PACCOLA, R. R.; CODA, H. B. Unconstrained vector positional shell
FEM formulation applied to thinwalled members instability analysis. Thin-walled
Structures, v. 136, p. 246–257, 2019.



95

SOARES, H. B.; PACCOLA, R. R.; CODA, H. B. A conjugate modal force strategy for
instability analysis of thin-walled structures: an unconstrained vector positional finite
element approach. Latin American Journal of Solids and Structures, v. 18, n. 344,
2021.

TAN, B. et al. openVFIFE: An object-oriented structure analysis platform based on
vector form intrinsic finite element method. Buildings, v. 11, 2021.

TAVARES, M. de G. Simulação da perda de protensão aderente em elementos
de concreto. 2020. Dissertação (Mestrado em Engenharia de Estruturas) — Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2020.

VANALLI, L. O MEC e o MEF aplicados à análise de problemas viscoplásticos
em meios anisotrópicos e compostos. 2004. Tese (Doutorado em Engenharia de
Estruturas) — Escola de Engenharia de São Carlos, Universidade de São Paulo, São
Carlos, 2004.

WILLS, C. M. R.; ROE, D. NASTRAN - a finite element problem for structural analysis.
Computer-Aided Design, p. 172–175, 1972.

WRIGGERS, P. Nonlinear finite element methods. Hannover: Springer, 2008.

YAMASSAKI, R. T. Um programa de elementos finitos em GPU e orientado a
objetos para análise dinâmica não linear de estruturas. 2014. Tese (Doutorado em
Engenharia Mecânica de Projeto e Fabricação) — Escola Politécnica, Universidade de São
Paulo, São Paulo, 2014.

ZEGLINSKI, G. W.; HAN, R. P. S.; AITCHISON, P. Object oriented matrix classes
for use in a finite element code using C++. International Journal for Numerical
Methods in Engineering, v. 37, p. 3921–3937, 1994.

ZIENKIEWICZ, O.; HUANG, G.; LIU, Y. Adaptive FEM computation of forming
processes-application to porous and non-porous materials. International Journal for
numerical methods in engineering, v. 30, p. 1527–1553, 1990.

ZIMMERMANN, T.; DUBOIS-PÈLERIN, Y.; BOMME, P. Object-oriented finite element
programming: I. Governing principles. Computer Methods in Applied Mechanics
and Engineering, v. 98, p. 291–303, 1992.




	Folha de rosto
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de figuras
	Sumário
	Introdução
	Metodologia
	Estrutura do trabalho
	Delimitação do tema
	Objetivos
	Objetivos específicos

	Justificativa

	Estado da arte
	O Método dos Elementos Finitos Posicional
	Programação orientada a objetos no MEF

	Método dos elementos finitos posicional
	Funções aproximadoras
	Polinômios de Lagrange
	Funções aproximadoras em elementos com base triangular
	Modelo Constitutivo de Saint-Venant-Kirchhoff
	Integração numérica

	Princípio da estacionariedade
	Potencial das forças externas
	Energia de deformação
	Energia cinética
	Energia de dissipação

	Método de Newton-Raphson
	Problemas dinâmicos (Newmark + Newton-Raphson)
	Elementos imersos
	Elemento finito de barra simples
	Estratégia de acoplamento entre matriz e reforço


	Proposta de plataforma para o MEF Posicional
	Programação orientada a objetos
	Objetos e classes
	Encapsulamento
	Herança
	Polimorfismo
	Templates
	Relacionamentos

	Estrutura do código
	Diagramas de classes
	Documentação do código


	Exemplos de aplicação
	Exemplo 1: Linha elástica de Euler
	Exemplo 2: Viga engastada-livre com carga transversal aplicada na extremidade
	Exemplo 3: Viga engastada-livre com amortecimento
	Exemplo 4: Viga engastada-livre com carga variável em função do tempo
	Exemplo 5: Viga engastada-livre reforçada com carga distribuída

	Conclusão
	Referências

