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RESUMO

CÉSAR FILHO, M. S. O. Contribuições à análise de estruturas enrijecidas e à
otimização topológica utilizando o Método dos Elementos de Contorno. 2025.
Dissertação (Mestrado) - Escola de Engenharia de São Carlos, Universidade de São Paulo,
São Carlos, 2025.

Com o desenvolvimento da engenharia, a proposição de estruturas constituídas por diferen-
tes materiais de maneira a captar suas vantagens no produto final tornou-se cada vez mais
recorrente devido às necessidades de viabilidade econômica e de desempenho dos novos
projetos. Dentre as alternativas para a avaliação numérica das grandezas físicas dessas
estruturas, o acoplamento do Método dos Elementos de Contorno (MEC) com o sua versão
unidimensional, o MEC-1D, tem apresentado excelentes resultados quando comparados
aos de softwares comerciais. Além do acoplamento de materiais, a otimização estrutural,
motivada pela possibilidade de redução de consumo de material, tem adquirido relevância
no mercado e na academia por questões financeiras e ambientais. Nesse contexto, o acopla-
mento da formulação isogeométrica do MEC, o MECIG, com o Método Level Set (MLS) se
apresenta como uma robusta possibilidade à execução de uma otimização topológica. Assim,
este trabalho tem como objetivo estudar o acoplamento MEC/MEC-1D, para análise de
estruturas enrijecidas, e o acoplamento MLS/MECIG, para otimização topológica, com
ambos se situando no contexto de análises planas. A partir disso, pretende-se consolidar os
conhecimentos necessários para desenvolver, em trabalhos subsequentes, um procedimento
de otimização topológica via MLS para estruturas enrijecidas utilizando o acoplamento
MEC/MEC-1D para descrição mecânica do domínio. Ao longo do texto, descrevem-se as
formulações do MEC, na versão lagrangiana e isogeométrica, e do MEC-1D, validando-as
mediante soluções analíticas. Por meio dos exemplos, mostra-se que, para domínios com
contornos geometricamente não polinomiais, a descrição isogeométrica apresenta resul-
tados mais precisos do que a lagrangiana. Apresenta-se a formulação do acoplamento
MEC/MEC-1D e se propõe um procedimento alternativo de discretização de domínios de
inclusão, o qual se mostra mais eficiente do que o espaçamento uniforme de fontes. Métodos
de distribuição aleatória de domínios de fibra são apresentados, enfatizando as precauções
a serem tomadas para se evitar integrações singulares. Correções são propostas ao processo
de otimização topológica do acoplamento MLS/MECIG formulada através do método do
lagrangiano aumentado, evitando instabilidades numéricas e falha antes de constatação
de convergência. Além disso, também são propostas uma fórmula para avaliação do valor
inicial do coeficiente de peso, uma metodologia de verificação de estacionariedade e um
critério de alteração de topologia.

Palavras-chave: MEC. MEC-1D. Otimização topológica. Análise isogeométrica





ABSTRACT

CÉSAR FILHO, M. S. O. Contributions to the analysis of stiffened structures
and topology optimization using the Boundary Element Method. 2025.
Dissertation (Master) - Escola de Engenharia de São Carlos, Universidade de São Paulo,
São Carlos, 2025.

With the advancement of engineering, the design of structures composed of different mate-
rials to leverage their advantages in the final product has become increasingly common
due to economic feasibility and performance requirements in new projects. Among the
alternatives for the numerical evaluation of the physical quantities of such structures,
the coupling of the Boundary Element Method (BEM) with its one-dimensional version,
1D-BEM, has shown excellent results when compared to commercial software. In addition
to material coupling, structural optimization—driven by the potential for material con-
sumption reduction—has gained relevance in both industry and academia due to financial
and environmental concerns. In this context, the coupling of the isogeometric formulation of
BEM, known as IGABEM, with the Level Set Method (LSM) emerges as a robust approach
for performing topology optimization. Thus, this work aims to study the BEM/1D-BEM
coupling for the analysis of stiffened structures and the LSM/IGABEM coupling for
topology optimization, both within the scope of two-dimensional analyses. The goal is to
consolidate the necessary knowledge to develop, in future studies, a topology optimization
procedure via LSM for stiffened structures using the BEM/1D-BEM coupling to describe
the mechanical behavior of the domain. The text presents the formulations of BEM, in both
Lagrangian and isogeometric versions, and of 1D-BEM, validating them against analytical
solutions. Through examples, it is demonstrated that for domains with non-polynomial
geometric boundaries, the isogeometric formulation yields more accurate results than the
Lagrangian one. The formulation of the BEM/1D-BEM coupling is introduced, along
with an alternative procedure for discretizing inclusion domains, which proves to be more
efficient than uniform source spacing. Random distribution methods for fiber domains
are discussed, emphasizing precautions to avoid singular integrations. Corrections are
proposed for the topology optimization process of the LSM/IGABEM coupling formulated
using the augmented Lagrangian method to prevent numerical instabilities and premature
failure before convergence is achieved. Additionally, a formula for evaluating the initial
weight coefficient, a methodology for checking stationarity and a topology modification
criteria are also proposed.

Keywords: BEM. 1D-BEM. Topology optimization. Isogeometric analysis.
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1 INTRODUÇÃO

Ao longo do desenvolvimento tecnológico da humanidade, os produtos de engenharia
tornaram-se cada vez mais complexos na tentativa de satisfazer as novas demandas da
vida. Partindo de construções simplórias e meramente funcionais feitas em pedra, o
homem tornou-se capaz de tocar os céus, com edifícios de altura hectométrica e elevada
esbeltez, explorar recursos naturais encontrados no fundo do oceano por meio de poços
que resistem às enormes pressões do meio, e de finalmente lançar-se ao espaço, com o
desenvolvimento de estações espaciais, satélites e espaçonaves, produtos de ponta da
engenharia contemporânea. Para possibilitar esses projetos, seja pela própria necessidade
de desempenho ou por questões de viabilidade econômica, estruturas que antigamente
eram compostas por materiais simplesmente lapidados, não tão distintos de sua forma
encontrada na natureza, passaram por tentativas de melhoria. Dessa forma, evoluiu-se em
processos de manufatura e combinação entre materiais.

Um exemplo clássico e deveras primordial da associação entre materiais é o concreto
armado. Na antiguidade, as construções civis eram majoritariamente executadas utilizando
pedras, as quais eram lapidadas de maneira a se encaixar no formato requisitado àquilo que
fora idealizado para a sua função estrutural. Porém, rochas e o próprio concreto simples
no estágio endurecido possuem comportamento quase-frágil, o qual é caracterizado por
falha brusca e resistência a esforços de tração bem inferior à de esforços de compressão.
Devido a isso, havia uma limitação marcante quanto à esbeltez e à própria configuração
geométrica da estrutura, que necessitava de um formato em arco, como segue a ponte da
Figura 1. Por meio do qual, minimizava-se o efeito da tração advinda da flexão, que é
uma das principais solicitações em estruturas civis. A partir da associação do concreto
com barras de aço imersas em seu meio, surgiu o que atualmente se entende por concreto
armado. O aço, por ser um material dúctil, garante resistência a esforços de tração que
são desenvolvidos em algumas regiões do material a partir de sua flexão.

Após a consolidação do concreto armado, a indústria da construção civil e a
academia continuaram realizando iterações de associação entre o aço e concreto, surgindo
posteriormente o concreto protendido. Enquanto as armaduras de aço no concreto armado
são referenciadas como passivas, pois agem apenas resistindo aos esforços solicitantes
da estrutura, o concreto protendido conta com uma armadura ativa, a qual aplica ao
maciço de concreto um estado de tensão prévio contrário ao previsto que seja gerado pelos
carregamentos a que a peça estará submetida. Dentre as principais vantagens desse sistema
estrutural em relação ao tradicional concreto armado, cita-se a sua favorável utilização
em situações de longos vãos e altos valores de carga permanente, sua maior esbeltez e
adaptabilidade a tratamentos artísticos, o melhor controle da fissuração do maciço e a
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Figura 1 – Ponte em Toscana, Itália

Fonte: Proske e Gelder (2009)

redução da deflexão perante cargas permanentes e variáveis (Lin; Burns, 1981). A Figura 2
mostra uma ponte em concreto protendido. Por meio dela, é plausível ressaltar a diferença
de extensão e esbeltez comparada a da Figura 1.

Figura 2 – Ponte nas Cataratas de St. Anthony do rio Mississípi em Minneapolis

Fonte: Dolan e Hamilton (2019)

Outra possibilidade estudada para o reforço do concreto é a de incorporação de
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fibras em seu maciço, as quais podem ser de diferentes materiais e de diferente origens,
como orgânicas (celulose) e manufaturadas (aço e polímeros). As fibras oferecem diversas
vantagens ao concreto, como maior resistência à tração e ao impacto e minimização
do desenvolvimento e propagação de trincas. A depender do seu tipo, podem ser mais
resistentes a processos de corrosão e degradação se comparadas à armadura tradicional
passiva de aço. Outro tópico importante do uso desse tipo de reforço é seu possível
impacto na sustentabilidade, reduzindo a quantidade de armaduras de aço empregadas
e consequentemente contribuindo para uma menor pegada de carbono dos sistemas de
concreto estrutural. A Figura 3 sintetiza as possibilidades de aplicação do concreto
estrutural que foram comentadas, as quais não são mutuamente exclusivas para uma peça.

Figura 3 – Várias formas do concreto estrutural

Concreto Estrutural Híbrido

Concreto Reforçado com Fibras

Concreto Parcialmente Protendido

Concreto Protendido

Concreto Armado

Concreto Simples

Cabo de protensão 

Armadura 

Fonte: Adaptado de Naaman (2001).

Alternando o ramo de aplicação, na indústria naval são comumente usados enrije-
cedores nos cascos dos navios de forma a aumentar sua resistência estrutural a esforços
de flexão e torção. Exemplos de aplicação desses elementos são vistas em construções de
partes da embarcação como anteparas, tanques profundos e túneis de poço (Eyres; Bruce,
2012). Uma aplicação de enrijecedores verticais pode ser visualizada na Figura 4.

Já na indústria aeronáutica, os enrijecedores desempenham um papel crucial na
construção de asas, fuselagem e outras partes da aeronave. Eles são projetados para
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Figura 4 – Antepara impermeável corrugada

Fonte: Eyres e Bruce (2012)

suportar as cargas aerodinâmicas extremas e as forças de torção que ocorrem durante o
voo. Os enrijecedores ajudam a evitar deformações excessivas e garantem que a aeronave
mantenha sua forma e integridade estrutural em todas as condições de voo. Um exemplo
de enrijecedores dispostos longitudinalmente pode ser observado na Figura 5.

Obviamente a inclusão do acoplamento entre materiais aumenta a complexidade
da peça, o que torna sua análise estrutural inviável de ser procedida através de meios
puramente analíticos. Dessa forma, ao longo do desenvolvimento da matemática e da
engenharia, e com o advento dos computadores, surgiram os Métodos Numéricos. Tais
métodos possibilitaram a solução de equações diferenciais complexas a partir da sua
transformação para um sistema algébrico de equações. Com isso, nasceu o ramo da
Mecânica Computacional, a qual propõe soluções para problemas complexos de Mecânica
dos Sólidos via implementação computacional dos Métodos Numéricos.

Boa parte desses métodos utilizados na análise estrutural partem da ponderação
de um resíduo ao longo do domínio estudado. Para a definição de resíduo, parte-se de uma
equação diferencial descrita pela equidade a zero das somas de operações funcionais e/ou
escalares aplicadas a uma função desconhecida. A isso, também poderia ser acrescida uma
soma de funções conhecidas. Ao se aproximar a função desconhecida por uma aproximativa
de formato conhecido, como polinomial de ordem n ou trigonométrica, a equidade a zero
pode não mais ser atendida para todos os pontos do domínio onde a equação diferencial
era válida. À imagem dessa aplicação funcional, atribui-se o nome de resíduo. Tal conceito
será matematicamente explicitado e aplicado em seções seguintes deste documento.

De acordo com Brebbia e Dominguez (1994), a depender da metodologia de
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Figura 5 – Fuselagem de transporte de passageiros da British Aerospace 146

Fonte: Megson (2010)

aproximação da função de interesse, a qual sujeita a uma série de operações forma uma
equação diferencial, os processos de ponderação de resíduos podem ser divididos em três
tipos:

a) Se for assumido que a solução aproximada é equivalente à analítica no contorno
sob condições prescritas, mas não para as equações no domínio, então se trata
de um método ‘de domínio’;

b) Se as equações de campo forem satisfeitas pelas soluções aproximadas, mas não
as condições no contorno, tem-se um método de ‘contorno’;

c) Se nem as equações de campo ou as condições de contorno forem satisfeitas
pela solução aproximada, então é classificado como um método ‘misto’.

Do primeiro tipo, derivou-se o método numérico mais utilizado nas implementações
de softwares comerciais e mais popular em aplicações de engenharia, chamado de Método
dos Elementos Finitos (MEF). Tal popularidade advém da facilidade de sua formulação
e implementação computacional até mesmo para problemas de elevada complexidade. A
base matemática não tão complexa para problemas elementares e a boa representatividade
nos mais diversos tipos de problemas da engenharia também foram fatores preponderantes
para sua disseminação fora do meio acadêmico. Apesar da significativa amplitude de sua
aplicação, o MEF pode nem sempre ser o método numérico capaz de melhor solucionar um
determinado problema. Por exemplo, problemas com concentração das grandezas envolvidas
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em uma região do domínio, como tensão ou fluxo, podem requerer uma discretização de
malha muito elevada, possibilitando casos de não-convergência e poluição numérica da
solução.

Do segundo tipo de método, foi desenvolvido o Método dos Elementos de Contorno
(MEC). Diz-se que, por essa técnica, as equações são resolvidas no contorno do problema,
de forma que as grandezas de domínio sejam aproximadas de uma forma mais precisa
do que no MEF. Apesar dessa vantagem, o MEC possui uma grande limitação que é a
necessidade de se conhecer uma solução denominada de fundamental para o problema,
o que restringe bastante sua amplitude de aplicações. Além disso, a sua fundamentação
matemática mais densa e a sua maior dificuldade de implementação computacional são
fatores que dificultaram sua disseminação fora da academia, que é o oposto do que ocorreu
com o MEF. Embora com essas limitações, o MEC pode ser capaz de representar melhor
alguns problemas se comparado ao MEF, a exemplo de concentrações de grandeza, citada
como uma dificuldade de representação pelo MEF, e de situações onde se tenha um
domínio infinito ou semi-infinito. A Figura 6 mostra dois modelos de discretização de uma
chapa: um por elementos finitos; e outro por elementos de contorno. A partir dela, pode-se
perceber claramente a menor complexidade da malha do MEC em relação a do MEF para
o mesmo problema. Como fundamentalmente apenas o contorno precisa ser discretizado
no MEC, algumas outras vantagens que podem ser citadas em relação ao MEF são:

a) a menor esforço na criação de dados de entrada do modelo, devido à menor
quantidade de informações nodais e elementares a serem descritas;

b) a melhor adequabilidade no acoplamento com softwares de desenho assistido
por computador (Computer-Aided Design - CAD), já que eles também utilizam
informações geométricas de contorno para representação dos objetos;

c) a maior facilidade da realização de uma análise isogeométrica, a qual é uma
consequência das vantagens (a) e (b);

d) maior viabilidade ao se executar um remalhamento durante a simulação de
propagação de fissuras.

Para o caso de análise de meios enrijecidos, são necessárias discretizações tanto do
meio quanto dos enrijecedores, devendo-se realizar um acoplamento entre os elementos.
Esse processo pode ser feito puramente usando o MEF, onde o meio é discretizado por
elementos de sólido e os enrijecedores com elementos reticulados, ou como MEC/MEF,
que é uma forma de acoplamento que também é comumente encontrada na literatura.
No último caso, o meio é discretizado por elementos de contorno e os enrijecedores por
elementos finitos reticulados. Devido à melhor solução do MEC para problemas de fratura,
a representação do sólido por elementos de contorno pode produzir melhores resultados
quando se há desejo de verificar esse comportamento. Outra possibilidade é de se realizar
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Figura 6 – Malhas de MEF e MEC para um chapa com um orifício

m

MEF MEC

Fonte: Adaptado de Aliabadi (2002).

um acoplamento MEC/MEC-1D, utilizando elementos de contorno unidimensionais para
a representação dos enrijecedores. Esse último método tem apresentado vantagens de
compatibilidade e menor oscilação numérica em relação ao MEC/MEF.

Além do acoplamento de materiais, outro procedimento de extrema relevância
industrial é a otimização de processos. O tema adquiriu bastante relevância após métodos
de otimização desempenharem papel decisivo no resultado da Segunda Guerra Mundial
(Rao, 2019a). A crescente relevância da área tanto no meio prático quanto no acadêmico
se dá naturalmente pela consonância com o espectro competitivo do sistema capitalista de
mercado. A própria maximização do lucro, principal objetivo empresarial, trata-se de um
problema de otimização que pode ser consequente de outro envolvendo minimização de
desperdícios. O último ponto vai ao encontro da conscientização desenvolvida nos últimos
ano quanto a não renovabilidade de recursos naturais, que alçou o interesse global em
desenvolvimento sustentável.

Ao processo de otimização aplicado a peças estruturais, atribui-se o nome de
otimização estrutural. A depender das suas características, é possível dividir a otimização
estrutural em três grandes tipos, conforme ilustra a Figura 7. Na otimização paramétrica,
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o domínio da estrutura é previamente conhecido e permanece fixo durante o processo de
otimização. Dessa forma, otimiza-se um determinado parâmetro ao longo dele, como a
área da seção transversal mostrada na Figura 7(a). Na otimização de forma, modifica-se os
contornos já existentes em um domínio de maneira a obter uma configuração ótima. Nela,
não se cria novos contornos, que é o que pode ocorrer na otimização topológica. Na última,
o domínio, com exceção da região de seus vínculos, pode ser completamente reconfigurado,
tornando-a a mais completa dos três grandes tipos.

Figura 7 – Tipos de otimização estrutural.

(a) otimização paramétrica;

(b) otimização de forma;

(c) otimização topológica.

Fonte: Adaptada de Bendsøe e Sigmund (2004b).

A importância da otimização estrutural se deve à redução do volume de material
utilizado para confeccionar uma estrutura. A economia de material é relevante para o
mercado pois reduz o custo das peças, que pode ser convertido em lucro para as empresas
e redução do preço para o consumidor. Já para questões ambientais, é importante para
redução da emissão de gases de efeito estufa e de produção de dejetos inerentes de
procedimentos de manufatura e posterior descarte. Essencial a diversas aplicações de
engenharia, as indústrias de ferro e aço produzem cerca de 2.6 gigatoneladas de dióxido de
carbono anualmente, constituindo 7% do total das emissões humanas (International Energy
Agency, 2020). Praticamente indispensável à indústria da construção civil, a produção do
cimento é responsável por cerca de 8% dessas emissões (Ellis et al., 2020). Como um todo,
a indústria da construção produz cerca de 35% de todo o descarte industrial no mundo e
contribui com 40% do total de emissões de dióxido de carbono (Solís-Guzmán et al., 2009;
European Comission, 2021).

A aplicação da otimização topológica na engenharia contemporânea já pode ser
vislumbrada. A Figura 8 ilustra a entrada do Centro de Nacional de Convenções do Qatar,
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cuja estrutura de suporte que se assemelha a uma estrutura biológica foi concebida através
de otimização topológica. É notória a beleza arquitetônica do monumento, ressaltando
outra qualidade da otimização. Outra aplicação é observada na Figura 9, que ilustra o
escritório Akutagawa no Japão.

Figura 8 – Centro Nacional de Convenções do Qatar

Fonte: Donofrio (2016).

Figura 9 – Escritório Akutagawa no Japão

Fonte: Ohmori (2011).
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Devido à popularidade do MEF, boa parte dos métodos de otimização mais di-
fundidos foram formulados pensando em um acoplamento com esse método numérico,
como é o caso do Solid Isotropic Material with Penalization (SIMP). O SIMP apresenta
uma formulação de otimização em gradiente e retorna a melhor maneira de distribuir
material ao longo de um domínio. Outros métodos de implementação mais acessível foram
concebidos, como o Evolutionary Structural Optimization (ESO), que retira material de
regiões menos solicitadas do domínio, e uma versão aprimorada chamada de Bi-directional
Evolutionary Structural Optimization (BESO), que também insere material em regiões mais
solicitadas. Ambos os métodos evolucionários são mais viáveis de serem implementados
em acoplamento com o MEF.

Uma alternativa que tem apresentado resultados intrigantes para promover uma
otimização topológica utilizando as vantagens do MEC é através do seu acoplamento com o
Método Level Set (MLS). O MLS se originou por meio de estudos de topologia, descrevendo
o movimento de interfaces. Em uma aplicação à otimização topológica, é possível utilizar a
função level set para representar a evolução do contorno discretizado pelo MEC. Devido às
possibilidades curvas e complexas do contorno advindo da otimização topológica, conforme
visto nos exemplos de aplicação, torna-se conveniente utilizar a formulação isogeométrica
do MEC, o MECIG, para descrição mecânica do domínio. Um de seus pontos positivos
em relação ao MEF. Dessa forma, também se tem a possibilidade de acoplamento com
softwares CAD, de forma a entregar um produto topologicamente otimizado que possa ser
impresso. A Figura 10 exemplifica um caso de impressão 3D, em que se mostra o modelo
CAD de uma parede e seu modelo impresso em concreto de alto desempenho. Dentre as

Figura 10 – Modelo CAD para a parede multifuncional (esquerda) e a parede multifunci-
onal de concreto de alto desempenho impressa em 3D (direita)

Fonte: Gosselin et al. (2016).
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vantagens da manufatura aditiva, cita-se a fabricação de geometrias complexas com alta
precisão, maximização da economia de material, flexibilidade no projeto e customização
pessoal (Ngo et al., 2018).

1.1 Objetivos

O objetivo principal deste trabalho é estudar o acoplamento MEC/MEC-1D
para análise de sólidos enrijecidos e a otimização topológica executada via acoplamento
MLS/MECIG. Dessa forma, pretende-se pavimentar o caminho para posterior execução
dessa otimização em estrutura enrijecidas, cujas grandezas mecânicas são representadas
pelo acoplamento MEC/MEC-1D. Seccionando o objetivo geral em específicos, dos quais
alguns foram estabelecidos ao decorrer da pesquisa, cita-os como:

a) Implementar e validar um código baseado no MECIG para análise de sólidos
homogêneos;

b) Implementar e validar um código baseado no MEC-1D para análise de estruturas
reticuladas;

c) Implementar o acoplamento MECIG/MEC-1D e verificar seus resultados com
os de softwares comerciais;

d) Verificar o mecanismo de distribuição de domínios de fibra de forma a evitar
integrações quase-singulares;

e) Corrigir o procedimento cíclico de expansão e contração do domínio desenvolvido
ao longo do processo de otimização topológica do acoplamento MLS/MECIG;

f) Propor alternativas a estimativa do valor inicial do coeficiente de peso do
método do lagrangiano aumentado de forma a reduzir sua volatilidade de
sucesso dependente das características do domínio;

g) Propor uma metodologia eficaz quanto à verificação de estacionariedade desse
processo de otimização;

h) Propor um critério alternativo de alteração de topologia que seja computacio-
nalmente mais eficiente e preferencialmente menos suscetível a necessidades de
paradas durante os processamentos.

1.2 Organização do documento

No primeiro capítulo foi apresentada uma breve introdução acerca do tema do
trabalho, ressaltando as vantagens do uso conjunto de diferentes materiais. Descreveu-se
algumas diferenças básicas entre o MEF e o MEC, enfatizando pontos em que o segundo
apresenta vantagens quando utilizado. Apresentou-se a definição de otimização topológica
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e os motivos de sua atual relevância. Também são descritos o objetivo principal e os
específicos do estudo.

No Capítulo 2 é apresentada uma revisão bibliográfica acerca do MEC e de seus
modelos de acoplamento, ressaltando a sua aplicação a meios enrijecidos. Além disso,
também se caracteriza o estado da arte quanto à análise isogeométrica e à otimização
topológica, objetivando relevar trabalhos que fizeram uso do MEC.

No Capítulo 3 é apresentada formalmente a formulação matemática do MEC e
do MECIG, com ênfase à análise de sólidos. Busca-se enfatizar a diferença entre as duas
abordagens. Exemplos de validação para as implementações efetuadas e comparação de
seus resultados são apresentados.

Já no Capítulo 4 é descrita a formulação do MEC-1D para estruturas axialmente
solicitadas. Valida-se a implementação com exemplos com disponibilidade de solução
analítica e numérica.

A formulação do acoplamento MEC/MEC-1D para representação de domínios
com inclusões esbeltas é apresentada no Capítulo 5. A formulação é apresentada tanto
para representação do domínio pelo MEC quanto pelo MECIG. Compara-se entre si os
resultados da implementação utilizando o acoplamento com as duas abordagens e com
os obtidos por softwares comerciais. Mostram-se alternativas à discretização de domínios
de inclusão e ao seu lançamento para a situação de fibras aleatoriamente espalhadas pelo
domínio.

Apresenta-se o procedimento de otimização topológica com o MLS no Capítulo 6.
Descreve-se a função level set e a metologia de solução da equação de Hamilton-Jacobi
que define o movimento do contorno. Caracteriza-se o problema de otimização e se elucida
a forma de acoplamento do MLS com a representação mecânica do domínio pelo MECIG.
Exemplos são apresentados para averiguação da correção de convergência proposta, além
da fórmula para estimativa do valor inicial do coeficiente de peso e da metodologia de
convergência adotadas.

Considerações finais acerca de todo o conteúdo estudado na presente dissertação
são postas no Capítulo 7. Além disso, propõe-se sugestões de continuidade da expansão do
respectivo estado da arte em trabalhos futuros, tanto para análise de sólidos enrijecidos
pelo MEC/MEC-1D quanto para a otimização topológica via MLS/MECIG.

Com o intuito de não discutir tópicos elementares, mas necessários ao desenvol-
vimento do estudo, no corpo principal do documento, descrevem-se esses tópicos nos
apêndices. No Apêndice A, são resumidamente abordados os principais fundamentos
da Teoria da Elasticidade utilizados no desenvolvimento do trabalho. No Apêndice B,
apresenta-se a formulação forte de um domínio axialmente deformável. Já no Apêndice
C, são apresentados os procedimentos de obtenção das soluções fundamentais utilizadas
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na ponderação da Técnica dos Resíduos Ponderados aplicada à problemas estáticos de
elasticidade e de estruturas reticuladas solicitadas axialmente. Por fim, no Apêndice D,
descreve-se um procedimento de transformação cúbica da quadratura de Gauss-Legendre,
a qual foi utilizada para as integrações numéricas do MECIG nos exemplos do Capítulo 6.

1.3 Justificativa

Esse trabalho se justifica em parte devido à importância do acoplamento de materiais
para engenharia e à relevância atual e futura da otimização topológica, especialmente no
tocante à redução de consumo de insumos. O investimento no acoplamento MEC/MEC-1D
para representação mecânica se dá em virtude de seus melhores resultados ao tratar de
domínios enrijecidos em comparação a outras opções baseadas no MEF. Escolheu-se efetuar
a otimização topológica por MLS pela boa consonância com o MEC quanto à descrição
do processo pelo contorno. A utilização da abordagem isogeométrica do MEC objetiva a
melhor representação dos possíveis contornos advindos da otimização topológica. Também
há serventia pelo acoplamento com ferramentas CAD e pela possibilidade de impressão do
produto final.

1.4 Metodologia

O princípio de um estudo é a realização de uma revisão bibliográfica para que
se possa haver uma compreensão do estado da arte. Foram avaliados trabalhos que
contribuíram na construção do MEC, com ênfase em análise de sólidos, que retrataram a
formulação do MEC-1D e que formularam modelos de acoplamento entre MEC/MEF e
MEC-1D. Apresenta-se como se desenvolveram as pesquisas em análise isogeométrica e
otimização topológica e de que forma utilizam o MEC.

A implementação computacional das rotinas de cálculo foi executada em Fortran
90, sob a justificativa de ser uma linguagem que oferece uma maior facilidade ao se
representar sequências de operações algébricas quando comparada a outras linguagens
também compiladas, como C/C++. Obviamente, a escrita de código seria facilitada com
o uso de alguma linguagem interpretada, porém haveria prejuízos quanto ao desempenho
computacional. O autor não mediu a magnitude desses prejuízos e assim preferiu devido ao
fato de que parte de suas principais referências obteve sucesso em resultado e desempenho
ao utilizar o Fortran mesmo sem efetuar paralelização de processamento.

O sucesso da implementação da rotina proposta pelo trabalho e de seus subconjuntos
é validado pelas comparações com os resultados de:

a) Exemplos clássicos e analíticos contidos na literatura, para os modelos individu-
ais de sólido e enrijecedor;
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b) Exemplos processados em softwares comerciais populares no mercado, para o
modelo de acoplamento MEC/MEC-1D;

c) Configurações finais obtidas por outras metodologias disponíveis na literatura,
para a otimização topológica.
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2 REVISÃO BIBLIOGRÁFICA

Neste capítulo, será apresentada uma revisão bibliográfica do desenvolvimento
do MEC com ênfase à análise de problemas da mecânica dos sólidos e de modelos de
acoplamento envolvendo MEC/MEF e MEC/MEC-1D. Comenta-se acerca da incorporação
de técnicas de análise isogeométrica ao método. Além disso, apresentam-se contribuições à
área de otimização topológica, enfatizando sua abordagem via técnicas úteis ao procedi-
mento executado utilizando o MEC para acesso de grandezas mecânicas. O objetivo do
presente capítulo é caracterizar o estado da arte apresentando contribuições relevantes ao
tema estudado. Portanto, economiza-se demonstrações e desenvolvimentos matemáticos
necessários à construção do estudo para que sejam apresentados em tópicos sequentes.

2.1 Método dos Elementos de Contorno

Conforme descrito no capítulo introdutório, Brebbia e Dominguez (1994) indicam
três possíveis métodos de solução para a técnica de resíduos ponderados, dentre as quais
o MEC encaixa no método ‘de contorno’, motivo pelo qual ficou conhecido dessa forma.
Então, substituiu-se o que era conhecido por Método das Equações Integrais Singulares.
A Figura 11 apresenta um interessante fluxograma sobre a forma como surgem alguns
dos principais métodos numéricos tendo a técnica de resíduos ponderados como princípio.
Assim, possibilita-se uma situação da concepção daquilo que veio a se tornar o MEC. Tal
teve sua base matemática fundamentada a partir da teoria do potencial, a qual é descrita
pelas equações de Laplace e Poisson, e na existência e unicidade da solução do Problema
de Valor de Contorno (PVC). Graças aos teoremas de Gauss e Stokes, torna-se possível
efetuar uma redução espacial na integração. Algumas tentativas de solução numérica
para esse problema foram efetuadas no início do século XX, entretanto só houve uma
disseminação de soluções com o advento dos computadores nos anos 1960. Nessa década,
foi desenvolvida a primeira formulação em equações integrais singulares para problemas
de elastostática clássica (Rizzo, 1967). O Método dos Elementos de Contorno passou a ser
conhecido dessa forma nos anos 1970, em que teve seu período de maior desenvolvimento
(Cheng; Cheng, 2005).

2.1.1 Soluções fundamentais

Para evitar uma integração de domínio a qual surge naturalmente da forma em
resíduos ponderados de um determinado problema, a técnica do MEC utiliza como função
ponderadora uma solução fundamental. Tal função resolve uma forma não homogênea da
equação diferencial original mediante uma equidade a uma função delta de Dirac, livre de
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Figura 11 – Diferentes técnicas de aproximação

Fonte: Adaptada de Brebbia (1978).

condições de contorno (Kythe, 1996). Tal necessidade pode configurar uma restrição ao
uso do método, uma vez que depende de sua obtenção.

Ao utilizar soluções fundamentais para resolver um problemas de equações elípticas
homogêneas, Bogomolny (1985) indica que os procedimentos utilizando essas soluções
foram vistos pela primeira vez em Kupradze (1964). Antes disso, as soluções eram desen-
volvidas utilizando o procedimento de Trefftz, em que era usada a solução da equação
diferencial em sua forma homogênea. Para solução de problemas elásticos bidimensionais e
anisotrópicos, Cruse e Swedlow (1971) desenvolveram uma solução fundamental. Já para o
caso tridimensional, uma solução fundamental também foi desenvolvida por Vogel e Rizzo
(1973), com Wilson e Cruse (1978) apresentando posteriormente uma solução numérica
eficiente para esse problema.

2.1.2 Mecânica da Fratura

Devido aos elevados gradientes de tensão presentes na Mecânica da Fratura, o
MEC oferece vantagens sobre o MEF por precisar discretizar apenas o contorno. Em
uma solução por MEF, seria necessário um melhor refinamento de malha próximo aos
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pontos onde se espera concentração de tensão, o que pode eventualmente causar poluição
numérica no resultado. Um dos primeiros trabalhos a aplicar formulações primitivas do
MEC a problemas de fratura foi o de Cruse e Vanburen (1971). A aplicação foi efetuada a
uma peça tridimensional e homogênea. Em sequência, trabalhos com análise de fraturas
em meios anisotrópicos pelo método começaram a surgir (Snyder; Cruse, 1975). Numa
tentativa de lidar com problemas de singularidades que eram recorrentes nesse campo de
análise, foi criada uma técnica de multidomínio que permitia a discretização das superfícies
de fissuras (Blandford; Ingraffea; Liggett, 1981). A simulação do comportamento mecânico
de problemas de fratura requer a discretização de ambas as faces da fissura. Isso faz com
que pontos de colocação dividam a mesma posição geométrica, mostrando-se um empecilho
para o tratamento desses problemas através do MEC.

A questão das singularidades começaram a ser melhor tratadas no MEC ao se
incorporar dualidade na formulação. Hong e Chen (1988) desenvolveram a equação integral
hipersingular do método para elasticidade através da derivação da formulação padrão.
A avaliação das integrais hipersingulares de Green quando é evitada a decomposição
multidomínio foi desenvolvida para a solução de Kelvin das equações de elasticidade linear
tridimensional de Navier. Boa precisão numérica foi apresentada (Gray; Martha; Ingraffea,
1990). Surgiu então o Método dos Elementos de Contorno Dual (MECD), cujo nome advém
do emprego das formulações padrão e hipersingular para distinção da discretização das
faces da fissura em sua construção. Tal variação mostrou-se útil à solução de problemas
de fratura onde as singularidades estavam presentes, o qual em sua primeira aplicação
mostrou resultados de elevada acurácia quando Fator de Intensidade de Tensão (FIT)
era avaliado por meio da técnica da integral J (Portela; Aliabadi; Rooke, 1992). Pouco
tempo depois, foi apresentada uma eficiente formulação tridimensional do MECD para
problemas elástico-lineares de fratura, o qual se mostrou importante para análise de fissuras
de superfície e fissuras internas (Mi; Aliabadi, 1992). Mais tarde Le Van e Royer (1996)
derivam as equações integrais e integro-diferencias de contorno para problemas de meios
anisotrópicos fissurados, incluindo na formulação casos de meios finitos e infinitos.

Após os desenvolvimentos realizados no âmbito de análise de fissuras pelo MECD
durante a década de 1990, o método ganhou bastante relevância na academia, o que
contribuiu a sua disseminação e seu uso no desenvolvimento de novos trabalhos. Para análise
de fissuras, o MECD se mostrou mais robusto do que a formulação singular, a qual levou a
erros na determinação dos fatores de intensidade tensão por não descrever corretamente a
geometria da fissura (Leonel, 2006). Formulações não-lineares para propagação de fissuras
em domínios quase-frágeis utilizando um operador constante e outro do tipo tangente
consistente foram apresentadas e discutidas por Leonel (2009) utilizando o MECD. Concluiu-
se que o segundo deles era mais eficiente computacionalmente por requisitar um menor
número de iterações. A técnica da correlação dos deslocamentos, a técnica com base no
estado de tensão na extremidade da fratura e a técnica da integral J quando aplicadas no
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MECD para avaliação do FIT mostraram uma tendência à apresentação de bons resultados.
Observou-se que primeira técnica melhora substancialmente com o aumento do refinamento
da malha (Kzam, 2009).

Outra possibilidade de formulação do MEC aplicada à propagação de fissuras em
materiais quase-frágeis, em que é utilizado um modelo fictício de fissura e a zona de dano
é representada por tensões coesivas que tendem a fechar as cavidades, apresentou bons
resultados quando comparada a exemplos práticos. Também foi observado que esse modelo
alternativo apresenta comportamento mais rígido do que o apresentado pelo MECD ao se
comparar a aplicação de ambos aos mesmos exemplos (Oliveira, 2013; Oliveira; Leonel,
2013).

Uma técnica para acoplamento de sólidos multifásicos foi desenvolvida, a qual obteve
resultados satisfatórios para problemas elásticos. No mesmo trabalho, tal metodologia
também foi acoplada à formulação alternativa de ruptura coesiva do MEC com os usos de
operadores constante e tangente averiguados para essa variação. Para peças de concreto,
mostra-se que eles não são capazes de reproduzir instabilidades que causam perdas críticas
de rigidez, como o snap back. Para peças de madeira, mostra-se boa representação do
comportamento não linear e da carga última da estrutura. Embora unido à elevada
sensibilidade perante mudanças nas condições de contorno em problemas anisotrópicos
(Cordeiro, 2015; Cordeiro; Leonel, 2016).

2.1.3 Método dos Elementos de Contorno Unidimensional (MEC-1D)

Como mencionado, o desenvolvimento inicial do MEC para aplicações em problemas
de Mecânica dos Sólidos se deu no contexto da elasticidade bidimensional. No método,
os elementos de contorno têm dimensão inferior em uma unidade ao domínio de análise,
tornando-os unidimensionais para esse caso. A aplicação do MEC a estruturas reticuladas,
ou seja, de domínio unidimensional, é comumente referenciada como MEC-1D, podendo
ser utilizado para solução de problemas clássicos de barras. Os desenvolvimentos pioneiros
dessa versão do método foram efetuados considerando as relações cinemáticas de Euler-
Bernoulli para problemas estáticos e lineares (Banerjee; Butterfield, 1981). A partir disso,
desenvolveu-se a formulação para aplicação a problemas em vigas de estabilidade estática
linear e dinâmicos de vibrações de flexão, em que, no primeiro caso, chegou-se a uma
excelente acurácia. Já no segundo, o método se mostrou menos eficiente se comparado ao
MEF (Manolis; Besko; Pineros, 1986; Providakis; Beskos, 1986).

Posteriormente, uma solução fundamental foi desenvolvida para a teoria de vigas
de Timoshenko, cuja aplicação via MEC conduz a resultados equivalentes aos previstos
por solução analítica (Antes, 2003). Essa teoria de vigas apresenta melhores resultados em
análise dinâmica considerando altas frequências quando comparada a de Euler-Bernoulli.
Portanto, o desenvolvimento foi utilizado nessa aplicação, apresentando excelentes resulta-



47

dos quando comparados a modelos de MEF, os quais também diferiram bastante quando
era usada a cinemática de Euler-Bernoulli, conforme esperado (Antes; Schanz; Alvermann,
2004).

Desenvolveu-se uma formulação do MEC-1D para análise não linear dinâmica da
viga de Timoshenko com simplificação arbitrária de simetria dupla ou de múltiplas seções
transversais conectadas, a qual é submetida a grandes deslocamentos, porém pequenas
deformações. Tal formulação foi validada e apresentou resultados semelhantes aos da
solução analítica do problema. Registrou-se boa acurácia ainda com uma quantidade
pequena de nós apresentando resultados bem divergentes quando comparada a análises
lineares (Sapountzakis; Dourakopoulos, 2009a; Sapountzakis; Dourakopoulos, 2009b).

A utilização do MEC-1D foi novamente aplicada em análises elásticas, tanto
estáticas quanto vibratórias, para pórticos planos e espaciais. O modelo foi acoplado a
outro padrão de MEC para domínios semi-infinitos com o intuito de se representar uma
interação solo-estrutura. Também foi incorporado o modelo de flexo-torção de Vlasov para
barras de seções abertas de parede fina (Cruz, 2012). Analisou-se dinamicamente pelo
MEC-1D a viga de Timoshenko utilizando uma solução fundamental não dependente da
variável tempo. Deparou-se com novas integrais de domínio, mas seus resultados ainda se
mostraram consistentes (Carrer et al., 2013).

Novas soluções fundamentais para o método foram apresentadas para análise de
estabilidade estática ou dinâmica sobre base elástica ou não, considerando as cinemáticas de
Euler-Bernoulli e de Timoshenko. Os resultados apresentaram bom desempenho (Passos,
2014). Uma solução para flexão dinâmica da viga de Euler-Bernoulli utilizando uma
formulação dependente do tempo do MEC-1D foi apresentada, a qual levou a resultados
muito próximos quando comparados à solução analítica do problema (Scuciato; Carrer;
Mansur, 2016). Análises estáticas pelo MEC-1D foram conduzidas para os dois modelos
de vigas já citados, com o desenvolvimento de uma versão baseada na equação de três
momentos para se encontrar uma resposta coincidente com a analítica para o modelo de
Timoshenko (Carrer; Scuciato; Garcia, 2020).

2.2 Acoplamento no MEC

Uma maneira de se aproveitar o melhor de cada método numérico é realizando um
acoplamento entre eles, tal que cada sub-região ou parte do domínio seja aproximada pelo
método que melhor represente suas características. Um acoplamento MEC recorrente na
literatura é o MEC/MEF, o qual teve como um de seus pioneiros Zienkiewicz, Kelly e
Bettess (1977), que incorporou as integrais de contorno à formulação do MEF. No trabalho,
há a sugestão de uso para representação das singularidades que envolvem problemas de
fratura e para domínios contidos em meios infinitos, em que parte finita seria representada
por elementos finitos e o meio infinito seria resolvido por integrais de contorno. Shaw e
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Falby (1978) ressalta e traz uma aplicação da segunda proposta do primeiro, utilizando
a solução por MEC em regiões infinitas ou semi-infinitas onde não há grandes variações
dos parâmetros que governam o problema. Já a solução por MEF seria aplicada a uma
‘região central’ com grandes variações não necessariamente lineares. Tal abordagem é
exemplificada com um problema de ressonância em portos.

Uma aplicação a problemas bidimensionais elastostáticos foi realizada por Brebbia
e Georgiou (1979). Nela, utilizou-se dois procedimentos: o primeiro tratando a região
de elementos de contorno como de elementos finitos; e o segundo tratando a região
de elementos finitos como uma região equivalente de elementos de contorno. Ambos
demostraram resultados muito próximos quando comparados a aproximações puras de
MEF e MEC, mas o primeiro foi recomendado para implementação em pacotes comerciais
pela possibilidade de aproveitamento dos algoritmos padrões do MEF, diferente do segundo.
O trabalho também recomenda a utilização do MEC para representação de domínios
infinitos e semi-infinitos.

Seguindo as recomendações de uso do acoplamento MEC/MEF ao se descrever
o comportamento de meios infinitos e semi-infinitos por meio do MEC, citam-se outros
trabalhos. Como exemplo, têm-se a aplicação à análise reológica de escavação de túneis,
em que o uso de elementos de contorno para a representação de regiões externas e elásticas
do domínio pode facilmente acarretar redução do custo computacional de processamento
da solução (Swoboda; Mertz; Beer, 1987). Na análise estrutural de construções civis, esse
acoplamento também pode ser interessante em problemas de interação solo-estrutura.
Nesses casos, as estruturas de transferências de cargas da estrutura para o solo (fundações)
podem ser trabalhadas pelo MEF. Já o solo, considerado como um meio semi-infinito,
pode ser tratado com o MEC. O acoplamento MEC/MEF tanto em análises elastostáticas
quanto elastodinâmicas desse tipo de problema apresentou elevada acurácia e estabilidade
numérica (Coda; Venturini; Aliabadi, 1999; Coda; Venturini, 1999).

Ainda que tenham sido mostradas as vantagens do MEC em relação ao MEF para
na representação de domínios infinitos e semi-infinitos, não é vedada a possibilidade de uso
do primeiro em domínios finitos. No caso de problemas elastoplásticos com evolução de
deformações plásticas ocorrendo em pequenas regiões do domínio onde há maior solicitação,
pode ser interessante discretizar apenas essas regiões por elementos finitos. O domínio
complementar de comportamento elástico pode ser representado por elementos de contorno.
Esse procedimento é útil para evitar problemas de discretização do corpo no MEC e modelos
de elementos finitos com elevado número de graus de liberdade, ainda sendo capaz de
apresentar bons resultados (Wearing; Burstow, 1994). Outro exemplo é a representação
do sólido bidimensional por meio do MEC acoplado a um reforço descrito por elementos
finitos unidimensionais (elemento de barra) para análise elastodinâmica, o qual traz bons
resultados devido à excelente acurácia do MEC (Coda; Venturini; Aliabadi, 1997).
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Seguindo os moldes do último exemplo, um acoplamento MEC/MEF foi desenvol-
vido por Coda (2001) para análise de sólidos enrijecidos, como concreto armado e polímeros
reforçados, em que os enrijecedores foram tratados como elementos de treliça com forças
longitudinais desconhecidas para simular a conexão com o meio. Outras características
como a imposição de forças residuais no sistema não-linear de equações no contorno
para simulação da não linearidade física dos elementos finitos e a criação de uma linha
de forças internas dentro do domínio do MEC para possibilitar o acoplamento foram
também executadas. Tal modelo foi validado em análise estática com comparação a dados
experimentais e foi validado em análise dinâmica ao ter seus resultados comparados com
os de outros modelos numéricos, apresentando resultados estáveis para ambos. Semelhante
a esse método, mas tratando os enrijecedores como sub-regiões finas, foi proposta uma
formulação a qual reduzia os graus de liberdade dos elementos finitos neles utilizados
para apenas 1 por nó em análise bidimensional, transformando-o em um elemento de
barra. Essa formulação apresentou bons resultados quando o domínio é enrijecido por
fibras (enrijecedores finos) (Leite; Coda; Venturini, 2003). Posteriormente, formulou-se o
acoplamento considerando sub-regiões do MEC com a inclusão de elemento finito de viga
(Leite; Venturini, 2005). Buscando reduzir o número de incógnitas no sistema de equações
que envolvem a aplicação do acoplamento a esses problemas, Riederer, Duenser e Beer
(2009) apresentam uma forma de solução iterativa. A abordagem mostrou-se útil em casos
de alta quantidade de enrijecedores e comportamento não linear das inclusões.

Para uma análise elastostática, um procedimento não linear de perda de aderência
(escorregamento) entre a matriz e os enrijecedores foi integrado a um modelos de acopla-
mento semelhante aos apresentados para simulação de sólidos enrijecidos, para o qual um
operador tangente foi consistentemente derivado (Botta; Venturini, 2005). Outras adições
a essa formulação de acoplamento foram a implementação de um modelo constitutivo
baseado em elastoplasticidade não linear para os enrijecedores e de um modelo para
propagação de fissuras no meio (Leonel, 2009). Um elemento de pórtico plano com funções
de interpolação de 3º grau também foi testado na representação dos enrijecedores com a
consideração do escorregamento com a matriz. O elemento de pórtico se mostra necessário
à representação de casos onde haja desenvolvimento de forças de contato por ação de
momentos e forças cortantes entre o enrijecedor e o meio, a exemplo de uma fundação
profunda (Rocha, 2009; Rocha; Venturini; Coda, 2014).

Um acoplamento baseado no MEC/MEC-1D também foi formulado e comparado
ao MEC/MEF considerando dos enrijecedores como elementos de treliça. O primeiro
apresentou resultados numericamente mais estáveis devido à melhor compatibilidade entre
os métodos acoplados e à redução de aproximações. O segundo só obteve resultados
parecidos ao serem utilizadas funções de forma de 4º grau. Foi também verificado que
os enrijecedores governam o comportamento mecânico de meios flexíveis (Buffon, 2018).
Em extensão a esse modelo, foi implementada a técnica de sub-regiões para aplicação do
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procedimento em domínios não homogêneos, sendo também avaliado o desempenho em
estruturas geometricamente mais complexas. Em paralelo, foi considerado um compor-
tamento elastoplástico não linear para os enrijecedores, o qual apresentou dificuldades
para representar plastificação pontual no MEC/MEC-1D. Em geral, observou-se que,
com a discretização do domínio pelo MEC, os enrijecedores não apresentam esforço nas
suas extremidades, o que não se verifica com o Ansys, e que o MEC/MEC-1D apresenta
melhores resultados se comparados a abordagem clássica do MEC/MEF (Rodrigues Neto,
2019; Rodrigues Neto; Leonel, 2019). Em seguida, o escorregamento da fibra na matriz
foi formulado para MEC/MEC-1D juntamente à expansão do modelo anterior a uma
análise tridimensional, a qual foi validada com dados experimentais para o caso estático
(Rodrigues Neto; Leonel, 2021).

2.3 Análise isogeométrica

O conceito de análise isogeométrica foi desenvolvido no âmbito dos métodos nu-
méricos por Hughes, Cottrell e Bazilevs (2005). A justificativa da abordagem se deu ao
abandono de precisão da representação geométrica em detrimento do enriquecimento
polinomial (refinamento-p) para aproximação funcional (Babuska; Szabo; Katz, 1981).
Excelentes resultados foram obtidos em problemas geometricamente complexos de Mecâ-
nica dos Sólidos e dos Fluidos. Com aplicação da tecnologia ao MEF, o trabalho consistiu
no uso de Non-Uniform Rational Basis Splines (NURBS) como base para as funções de
forma. Tais funções são capazes de representar curvas complexas, comumente descritas
por funções não polinomiais, com precisão tendendo à analítica (Piegl; Tiller, 1996). Sua
construção é efetuada por meio da ponderação de Basis Splines (B-splines) (Piegl; Tiller,
1987). Spline consiste em um mecanismo de desenho de curvas suaves. Schoenberg (1988)
cita suas propriedades matemáticas. Dentre as metodologias de cálculo para as B-Splines,
a fórmula recursiva apresentada por Cox (1972) e de Boor (1972) se apresenta como a
melhor alternativa em eficiência computacional.

O desenvolvimento da análise isgeométrica continuou a ser promovido em aplicações
via MEF. O primeiro trabalho a incorporar a tecnologia ao MEC foi direcionado à Teoria
do Potencial ao resolver o problema exterior de Newmann da Equação de Laplace (Politis
et al., 2009). Um estudo elementar tratando de aplicações em métodos de colocação foi
desenvolvido para solução de equações diferenciais com domínio unidimensional (Auricchio
et al., 2010). Posteriormente, foi publicada a primeira formulação voltada à Mecânica
dos Sólidos do MECIG, considerando problemas planos de elastostática. Por meio do
estudo, notou-se a vantagem de acurácia com a incorporação da tecnologia, assim como
a possibilidade de evitar geração de malha utilizando os próprios pontos de controle das
NURBS como nós (Simpson et al., 2012). Aspectos de implementação computacional dessa
formulação como geração de malha, acoplamento a modelos CAD e refinamento foram
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discutidos. Além disso, mostrou-se um aumento de precisão significativo em relação ao uso
de elementos lagrangianos quadráticos (Simpson et al., 2013).

A evolução para aplicação a problemas lineares elastostáticos tridimensionais do
MECIG foi possível com uso de T-splines (Scott et al., 2013). Seu conceito envolve
superfícies B-splines não uniformes com T-junctions, as quais condicionam um refinamento
local (Sederberg et al., 2003). Scott et al. (2012) mostram exemplos de refinamento
e possibilidades de uso de T-splines em análise isogeométrica. Outra alternativa foi
desenvolvida para aplicações de elasticidade tridimensional através uso de point based
splines (PB-splines), que permitem uma maior flexibilidade de malha comparado às
NURBS com possibilidade de refinamento local. Seu uso se mostra útil em evitar diversas
integrações quase-singulares e singulares (Gu et al., 2015). Também visando evitar esses
tipos de integração, Wang e Benson (2015) desenvolveram uma formulação tridimensional
não singular para múltiplos patches (blocos de discretização isogeométrica).

Mostrou-se que uma aproximação independente para grandezas geométricas e
mecânicas pode garantir melhorias no método. Tais como flexibilidade de refinamento,
eficiente avaliação de parâmetros geométricos, possibilidade de colocações que lidem com
descontinuidade de forças de superfície em quinas e redução do lado direito do sistema de
equações. Tal metodologia pode ser aplicada à problemas bidimensionais e tridimensionais.
A precisão do método não se mostrou afetada com a aproximação independente (Marussig
et al., 2015). Outra alternativa à aceleração do MECIG foi apresentada por Li et al. (2018),
a qual se baseava no black-box Fast Multipole Method (bbFMM). Por meio do último, é
possível fornecer uma implementação independente de núcleos mais geral para compressão
de matrizes (Fong; Darve, 2009).

Aplicações à Mecânica da Fratura foram efetuadas. Peng et al. (2017) conduziram
o primeiro trabalho em problemas tridimensionais. A abordagem proposta mostra-se
interessante ao não precisar de geração ou regeneração de malha na propagação da fissura.
Características como precisão e estabilidade numérica ressaltam a robustez da formulação.
Outra abordagem foi desenvolvida baseada em enriquecimento via funções Heaviside do
MECIG. Tal abordagem consegue recuperar os FITs pelo vetor solução do sistema, não
necessitando de pós-processamento. Seus resultados se mostram mais precisos quanto a
esses valores se comparados aos do trabalho anterior (Rocha; Trevelyan; Leonel, 2024).

Quanto à aplicação da análise isogeométrica a domínios enrijecidos, Beer et al. (2020)
mostram uma formulação alternativa considerando a compatibilidade de domínios efetuada
por tensões iniciais em vez de forças de domínio. Tal estratégia evita integrações singulares
no domínio e conduz a uma maior eficiência computacional. Também foi formulado um
acoplamento MECIG/MEC-1D para consideração de fibras. A tal modelo, adicionou-se a
incorporação de um modelo de fissura coesiva para descrever o comportamento de falhas
não lineares no meio. Mostrou-se que a formulação isogeométrica necessita de menos pontos
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de colocação do que a tradicional formulação lagrangiana e conduz a erros geométricos
menores para geometrias complexas, apresentando excelente convergência com resultados
experimentais (Rodrigues Neto; Leonel, 2022a; Rodrigues Neto, 2023).

Processos de adaptatividade de malha foram aplicados ao MECIG via modificação
do processo de resíduo hipersingular. Testou-os a problemas elastostáticos tridimensionais
homogêneos e reforçados. O refinamento de superfície NURBS utilizado foi o local, conforme
indicado em Nguyen et al. (2015). Os resultado do método de adaptatividade foram
melhores se comparados ao de refinamento homogêneo (Rodrigues Neto; Leonel, 2022b;
Rodrigues Neto, 2023)

2.4 Otimização topológica

Antes da denominação otimização topológica, o primeiro trabalho envolvendo
otimização estrutural pode ser creditado à Michell (1904). Sua proposta consistia na
busca de um volume mínimo de uma estrutura treliçada com tensão constante atuante
em seus membros. Tal operação se configura como o que é atualmente conhecido por
otimização de layout. Obviamente, devido às limitações operacionais da época, diversas
simplificações foram efetuadas. Consequentemente, a validade do estudo só englobava
domínios submetidos apenas a forças externas. Ademais, há necessidade de equidade
entre as tensões limite de tração e compressão (Rozvany, 2014). As limitações existentes
envolvendo solução de problemas estruturais e de otimização foram a principais razões da
estagnação de pesquisas a respeito do tema. As quais foram retomadas após o advento dos
computadores.

Décadas depois, a aplicação de otimização estrutural é retomada. Um método
generalista de otimização que performa a integração da condição de ótimo para posterior
distribuição da rigidez elástica ou da resistência plástica foi apresentado para projeto de
estruturas sanduíche (Prager; Taylor, 1968). Ainda no tocante a essas estruturas, uma
formulação baseada em energia foi desenvolvida de forma a encontrar a distribuição de
material que tornava a estrutura mais rígida (Taylor, 1969). Masur (1970) estende os
princípios de otimização de rigidez, antes aplicadas a barras e treliças, para mais classes
de estruturas.

Para projetos de placas circulares em vibração, Olhoff (1970) apresenta uma
formulação analítica, solucionada numericamente, de otimização de forma. Com o uso do
MEF, estudou-se a possibilidade de concepção ótima de projetos de placas com espessura
variável (Rossow; Taylor, 1973). Visando otimização de estruturas treliçadas, critérios
de ótimo foram definidos através da energia de deformação com restrição na área das
seções transversais (Taylor; Rossow, 1977). Considerando a teoria de placas finas, tratou-se
como ótimo a maximização da rigidez do sólido, assumindo a espessura como variável de
projeto. Deparou-se com transtornos à obtenção do ótimo global mediante uso de funções
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suaves ainda que finitamente descontínuas (Cheng; Olhoff, 1981). Além da maximização
da rigidez, outros critérios como frequência de liberdade e vibrações transversais foram
consideradas para placas axissimétricas. Importantes conceitos de regularização, os quais
aliviam anomalias e dificuldades de obtenção do ótimo, foram desenvolvidos (Cheng;
Olhoff, 1982). Indo ao encontro de formulações com intuito de transpor impossibilidade de
otimização, um modelo generalizado de placa enrijecida obtido por meio de homogeneização
foi apresentado (Bendsøe, 1986).

Seguindo a ideia de homogeneização de domínio, desenvolveu-se um método que
evita resultados topológicos finais equivalente a iniciais, bem como o remalhamento no
MEF para as etapas de otimização. Tal implementação alterou os conceitos de otimização,
em que se passou a otimizar a distribuição do material no domínio inicial (Bendsøe;
Kikuchi, 1988). Em seguida, através de uma função de densidade, foi possível remover a
natureza discreta do problema de otimização estrutural (Bendsøe, 1989). Uma modificação
da técnica de homogeneização foi apresentada para otimização de estruturas lineares e
elásticas, a qual conduziu a excelentes resultados (Suzuki; Kikuchi, 1991). Outras aplicações
desses conceitos foram efetuadas a estruturas reforçadas e com definição de isotropia por
subdomínios (Thomsen, 1991; Thomsen, 1992). Tais conceitos foram utilizados a uma
formulação de otimização de forma considerando múltiplos carregamentos no domínio (Díaz;
Bendsøe, 1992). Adaptações da mecânica do contínuo foram efetuadas para a aplicação do
procedimento de homogeneização à otimização de treliças (Zhou; Rozvany, 1991; Díaz;
Belding, 1993). Desenvolveu-se um algoritmo de pré-otimização cujas propriedades do
material são avaliadas por meio de uma abordagem energética. Aplicações tridimensionais
foram efetuadas (Mlejnek; Schirrmacher, 1993). Concebeu-se uma solução através de
técnicas de otimização linear para o problema de otimização topológica considerando a
técnica de homogeneização. Suas vantagens são a possibilidade de uso de múltiplas funções
objetivo e restrições de projeto (Yang; Chuang, 1994).

Os desenvolvimentos efetuados no final da década de 80 e no início da de 90 esta-
beleceram o que se entende por otimização topológica. O primeiro livro didático tratando
de otimização topológica foi publicado, o qual foi atualizado posteriormente (Bendsøe,
1995; Bendsøe; Sigmund, 2004a). Seu método mais difundido advém do desenvolvimento
de técnicas de homogeneização. O modelo do SIMP atribui uma função de densidade ao
material e através dele se obtém uma configuração topológica ótima por meio de alocação
de material ao longo do domínio. A denominação do método se tornou conhecida após o
estabelecimento de um filtro para tratamento da resposta em escala de cinza. Tornando a
estrutura final melhor interpretada (Bendsøe; Sigmund, 1999).

Em paralelo ao desenvolvimento do SIMP, outros métodos também foram desenvol-
vidos. Xie e Steven (1993) desenvolveram o que se conhece pelo ESO, em que se remove
do domínio os elementos finitos com tensão de von Mises inferior a um determinado valor.
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O BESO surgiu como uma evolução em que também se adiciona material em regiões de
elevada concentração de tensão (Querin; Steven; Xie, 1998). Utilizando o ESO, têm-se uma
equivalência entre a otimização topológica baseada na tensão de von Mises e a visando
minimização da flexibilidade (Li; Steven; Xie, 1999). Embora o desenvolvimento do ESO
tenha se focado em soluções via MEF, há possibilidades de uso no MEC para a remoção
de porções do domínio pouco solicitadas (Cervera; Trevelyan, 2005a; Cervera; Trevelyan,
2005b).

Quanto ao MLS, o trabalho de Osher e Sethian (1988) pode ser considerado como
seu precursor. Nele é apresentado um algoritmo de monitoramento de superfícies móveis,
de forma que o contorno fosse representado através de uma curva de nível de potencial
nulo. Mostra-se que o problema inicial possui a forma da equação de Hamilton-Jacobi.
Posteriormente, elucidou-se que a abordagem do problema de superfícies móveis via
algoritmos de parametrização se depara com transtornos decorrente de sua aproximação
local da função. O contrário se provou à representação como curva de nível. Aplicações
foram efetuadas à exemplos de complexa geometria (Sethian, 1990). Para a aplicação do
método a problemas físicos, metodologias de construção do campo de velocidades normais
à interface foram apresentadas para processos de crescimento de cristais e de dinâmica dos
fluidos (Sethian; Straint, 1992; Mulder; Osher; Sethian, 1992).

Devido à definição do contorno ser dada por meio de uma curva de nível de uma
função potencial, há um acréscimo inerente do custo computacional devido ao aumento da
dimensionalidade do problema. Visando sua mitigação, uma alternativa mais rápida foi
desenvolvida ao se utilizar apenas pontos do grid próximos ao contorno para sua definição
(Adalsteinsson; Sethian, 1995). Outra contribuição à redução do custo computacional foi
a construção do campo de velocidades nas vizinhas do contorno através da aplicação da
técnica rápida de marcha desenvolvida por Sethian (1996) à solução de um problema
eikonal e associados. Tal metodologia fornece uma solução em sub-grid capaz de atualizar
os valores da level set, evitando necessidade de sua reinicialização (Adalsteinsson; Sethian,
1999). Para isso, também foi desenvolvida uma metodologia de extrapolação de grandezas
que só podem se propriamente avaliadas na interface da level set para pontos em sua
vizinhança (Peng et al., 1999).

A primeira aplicação do MLS à otimização topológica se deu por Sethian e Wi-
egmann (2000) a um domínio linear elástico bidimensional. No trabalho, as equações
da teoria da elasticidade formuladas em deslocamento são rapidamente resolvidas por
um solucionador elastostático baseados em diferenças finitas desenvolvido por Wiegmann
e Bube (2000). O campo de velocidades do MLS foi considerado como dependente das
tensões do atual formato. O processo de otimização consiste em remover material de
regiões pouco solicitadas e inserir quando do contrário, dada uma taxa de remoção. O
seu cessar ocorre quando não há mais como aumentar o peso enquanto se satisfaz a
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flexibilidade. Posteriormente, foi efetuada a primeira aplicação utilizando o MEF para
solução dos problemas mecânicos (Wang; Wang; Guo, 2003). Allaire, Jouve e Toader (2004)
apresentam um procedimento de construção do campo de velocidades no contorno a partir
da derivada de forma para problemas de elasticidade.

Pouco tempo depois, aplicou-se a otimização topológica com MLS utilizando o
MEC para avaliar propriedades mecânicas da estrutura atual no lugar do solucionador em
diferenças finitas. Dessa forma, elementos de contorno são utilizados para discretizar a
curva de nível. Formulou-se o problema de otimização visando minimização da flexibilidade
sujeito à restrição de volume (Abe; Kazama; Koro, 2007). Nesse mesmo período, tentou-
se acoplar ao MEC outros procedimentos de otimização, como métodos hard-kill de
remoção de material (Marczak, 2007; Anflor; Marczak, 2009). Seguindo com o MLS, uma
formulação do MEC imersa à malha euleriana da level set, cujos nós do modelo mecânico
se confundiriam com os nós de discretização da curva de nível, foi apresentada (Yamasaki;
Yamada; Matsumoto, 2013).

Derivadas topológicas foram implementadas para inserção automática de furos no
MSL em uma otimização topológica baseada em tensão. Aplicações foram conduzidas
a exemplos em duas e três dimensões (Allaire; Jouve, 2008). Ullah e Trevelyan (2013)
mostram a correlação os critérios de von Mises e de derivada topológica para inserção
de furos na otimização via MLS. Nessa comparação, descreveu-se o contorno através de
NURBS, providenciando uma geometria suave. Entretanto, para a obtenção dos campos
mecânicos do domínio, efetuou-se uma nova segunda discretização em elementos de
contorno com interpolação lagrangiana. Aos mesmos moldes quanto às discretizações,
outras aplicações do método de inserção pelo critério de von Mises podem contemplados
na literatura (Ullah; Trevelyan; Matthews, 2014). A formulação base apresentada nesses
trabalhos foi expandida para análises tridimensionais (Ullah; Trevelyan; Ivrissimtzis, 2015).
Nessa expansão, utilizou-se o algoritmo Marching Cubes para geração da superfície da
level set via triangulação, o qual se baseia em aproximações lineares por partes (Lorensen;
Cline, 1987). Dessa forma, abdicou-se da descrição isogeométrica que era aplicada à level
set na implementação bidimensional. Retornando à implementação citada para análises
planas, acoplou-se o método de inserção por meio da derivada topológica a um modelo de
otimização baseado em sensibilidade de forma (Ullah; Trevelyan, 2016). Posteriormente,
efetuou-se melhorias nos critérios heurísticos para inserção de cavidades e para construção
do campo de velocidades normais à curva de nível da level set. Essa atualização promoveu
resultados numericamente mais estáveis do que a versão anterior (Ullah; Trevelyan; Islam,
2017).

Uma simplificação de que o critério de velocidades, válido para curva zero, pudesse
ser utilizado para as demais curvas, desde que utilizadas suas próprias tensões locais foi
utilizada. A partir de uma malha densa de elementos de contorno lineares, as variáveis de
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campo foram obtidas com suficiente acurácia (Vitório Junior, 2014; Vitório Junior; Leonel,
2017). Utilizando novamente o MEC e agora a sensibilidade à forma para obtenção do
campo de velocidades normais ao contorno, atestou-se a necessidade de uma extensão
particular de velocidades para o domínio para se manter a estabilidade (Oliveira; Leonel,
2019). Em adição a isso, incorporou-se efeitos incerteza geométrica. Pelos quais, se mostrou-
se que critérios podem não conduzir a tomadas de decisão ótimas (Oliveira, 2017).

Novamente se utilizando da sensibilidade à forma para obtenção do campo de
velocidades, experimentou-se a utilização da formulação isogeométrica do MEC para
avaliação dos campos mecânicos na otimização via MLS (Oliveira; Andrade; Leonel,
2020). A partir dessa formulação, expandiu-se a otimização topológica, antes efetuada
sob domínios homogêneos, para domínios enrijecidos por inclusões lineares. Utilizou-se
o acoplamento MECIG/MEC-1D para avaliação de campos mecânicos. As aplicações
foram conduzidas considerando apenas enrijecedores longos e apresentaram significativos
problemas de convergência (Guimarães, 2024).
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3 MÉTODO DOS ELEMENTOS DE CONTORNO

No presente capítulo, inicia-se a descrição da formulação em MEC para problemas
de Mecânica dos Sólidos, em que se parte da forma de resíduos ponderados, comum a
diversos métodos numéricos. Descreve-se a obtenção da identidade para esse caso, sua
avaliação no contorno via processo limite, a construção de seus sistemas de equações,
aspectos de implementação computacional, tratamento dos casos de singularidade que vêm
a ocorrer no método e procedimentos para o cálculo de grandezas de interesse no domínio.
Ao final, apresentam-se aplicações do algoritmo desenvolvido, segundo os fundamentos
apresentados, a problemas com solução analítica disponível.

Vários conceitos abordados ao longo desse capítulo partem de um conhecimento
prévio no tocante à Teoria da Elasticidade e às Soluções Fundamentais que são aplicadas
no MEC. Tais conteúdos são apresentados de forma resumida para uma consulta rápida
nos Apêndices A e C.

3.1 Técnica de Resíduos Ponderados

Seguindo os conceitos da Técnica dos Resíduos Ponderados apresentados nos
capítulos anteriores, pode-se aplicá-la a um problema estático de elasticidade. Inicia-se o
procedimento ao se ponderar a equação de equilíbrio translacional, Eq. (A.9), ao longo do
domínio Ω por um tensor de funções ponderadoras wki. Com isso, têm-se∫

Ω

(σij,j + bi) wki dΩ = 0k, (3.1)

em que já se vale da simetria do tensor de tensões σij resultante do Teorema de Cauchy,
representado pela Eq. (A.12). O termo bi representa o vetor de forças distribuídas no
domínio da integração e 0k é um vetor nulo de dimensão k. A forma representada na Eq.
(3.1) também é chamada de variacional e estabelece que a integração ponderada da função
resíduo (σij,j + bi), vetorial nesse caso, deve ser nula no domínio. Nessa forma, já seria
possível aplicar um método numérico ao se escolher uma determinada função ponderadora,
conforme já foi ilustrado pela Figura 11.

Para a construção de uma solução em MEC, escolhe-se como função ponderadora
da forma variacional uma solução fundamental do problema original estudado. Após
isso, desenvolve-se a forma integral ao realizar integrações por partes, de forma a reduzir
as condições de suavidade das funções das grandezas de interesse e aumentá-las para a
função peso. Aplicada em uma integração de domínio, a integração por partes trata-se do
Teorema da Divergência de Gauss. Para o problema em questão, utilizou-se o tensor de
deslocamentos fundamentais u∗

ki da Solução Fundamental de Kelvin, a qual é descrita no
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Apêndice C. Sua aplicação modifica a Eq. (3.1) para∫
Ω

(σij,j + bi) u∗
ki dΩ = 0k. (3.2)

Por meio da aplicação do Teorema de Gauss ao produto integrado envolvendo o
divergente tensor de tensões σij,j da Eq. (3.2), conduz-se a∫

Γ

(σij u∗
ki ηj) dΓ −

∫
Ω

(
σij u∗

ki,j

)
dΩ +

∫
Ω

bi u∗
ki dΩ = 0k, (3.3)

onde ao produto σij ηj no primeiro termo da parte esquerda, em que ηj é o vetor normal ao
contorno do domínio, pode-se aplicar a Fórmula de Cauchy, Eq. (A.5). Já para o gradiente
do tensor de deslocamentos fundamentais u∗

ki,j, vale a Eq. (A.21) considerando a simetria
de u∗

ki. Com isso, têm-se∫
Γ

pi u∗
ki dΓ −

∫
Ω

σij ε∗
kij dΩ +

∫
Ω

bi u∗
ki dΩ = 0k, (3.4)

em que pi é o vetor de forças de superfície e ε∗
kij é o tensor de deformações fundamentais.

Valendo-se da Eq. (A.23), é possível aplicá-la ao segundo termo do lado esquerdo
da Eq. (3.4), resultando em∫

Γ

pi u∗
ki dΓ −

∫
Ω

σij dijlm σ∗
klm dΩ +

∫
Ω

bi u∗
ki dΩ = 0k, (3.5)

cujos tensores dijlm e σ∗
klm se tratam respectivamente do tensor de flexibilidade e do tensor

de tensões fundamentais. Dessa forma, desenvolve-se operando σij dijlm para∫
Γ

pi u∗
ki dΓ −

∫
Ω

εlm σ∗
klm dΩ +

∫
Ω

bi u∗
ki dΩ = 0k, (3.6)

onde εlm é o tensor de deformações. Assim, torna-se conveniente utilizar novamente a Eq.
(A.21), obtendo-se

∫
Γ

pi uki
∗ dΓ −

∫
Ω

1
2 ul,m σ∗

klm dΩ +
∫
Ω

1
2 um,l σ∗

klm dΩ
+

∫
Ω

bi u∗
ki dΩ = 0k, (3.7)

de tal forma que ul,m e um,l são o gradiente e o gradiente transposto do vetor de deslo-
camentos. Percebe-se que, devido à simetria de σ∗

klm, é possível simplificar a Eq. (3.7)
para ∫

Γ

pi u∗
ki dΓ −

∫
Ω

ul,m σ∗
klm dΩ +

∫
Ω

bi u∗
ki dΩ = 0k. (3.8)

Cabe novamente a aplicação do Teorema da Divergência agora ao segundo termo
da parte esquerda da Eq. (3.8), transformando-a em∫

Γ

pi u∗
ki dΓ −

∫
Γ

ul σ∗
klm ηm dΓ +

∫
Ω

ul σ∗
klm,m dΩ +

∫
Ω

bi u∗
ki dΩ = 0k, (3.9)
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em que se pode usar novamente a Fórmula de Cauchy, Eq. (A.5), para o transformar o
tensor de tensões fundamentais σ∗

klm em forças de superfície fundamentais p∗
kl. Com isso,

têm-se ∫
Γ

pi u∗
ki dΓ −

∫
Γ

ul p∗
kl dΓ +

∫
Ω

ul σ∗
klm,m dΩ +

∫
Ω

bi u∗
ki dΩ = 0k. (3.10)

Nota-se que, ao terceiro termo da Eq. (3.10), cabe a substituição da Eq. (A.9), resultando
em ∫

Γ

pi u∗
ki dΓ −

∫
Γ

ul p∗
kl dΓ −

∫
Ω

ul b∗
kl dΩ +

∫
Ω

bi u∗
ki dΩ = 0k, (3.11)

com b∗
kl representando o tensor de forças de domínio fundamentais.

Sabe-se que, conforme descrito no Apêndice C, b∗
kl = δ(s, f) δkl, em que δ (•) é o

operador Delta de Dirac. Aplicando à Eq. (3.11), têm-se∫
Γ

pi u∗
ki dΓ −

∫
Γ

ul p∗
kl dΓ −

∫
Ω

ul δ (s, f) δkl dΩ +
∫
Ω

bi u∗
ki dΩ = 0k, (3.12)

que, pelas propriedades da função Delta de Dirac δ (s, f) e realizando uma organização
dos termos, resulta em

uk (s) +
∫
Γ

ul (f) p∗
kl (s, f) dΓ =

∫
Γ

pi (f) u∗
ki (s, f) dΓ +

∫
Ω

bi (f) u∗
ki (s, f) dΩ, (3.13)

a qual é conhecida como Identidade Somigliana. Nela foi explicitada a dependência de
cada termo. A letra s significa source, ou fonte, e indica o ponto onde o tensor de forças de
domínio fundamentais δ (s, f) δkl é aplicado. Já f significa field, ou campo, e representa os
demais pontos. Ressalta-se que as operações utilizadas para se obter a Eq. (3.13) através
da Eq. (3.11) foram possíveis graças à escolha de uma solução fundamental como função
ponderadora. Dessa forma, torna-se possível transformar uma integração de domínio em
uma soma de um termo algébrico, onde um ponto fonte é posicionado, com integrais de
contorno.

Comenta-se que a Eq. (3.11) trata-se de um desenvolvimento da aplicação do
Teorema da Reciprocidade de Betti, que atribui equivalência entre o trabalho de tensões
reais em deformações virtuais e o trabalho de tensões virtuais em deslocamentos reais,
valendo-se de que as grandezas virtuais possuam relação de causa e consequência. No
desenvolvimento do MEC, utiliza-se como grandezas virtuais as soluções advindas de um
problema fundamental, ou seja∫

Ω

σij ε∗
kij dΩ =

∫
Ω

σ∗
kij εij dΩ. (3.14)

Partindo dessa aplicação, torna-se mais direta a obtenção da Eq. (3.13) (Andrade, 2017;
Rodrigues Neto, 2019).

A obtenção da Eq. (3.13) e a solução para o problema fundamental de Kelvin são
procedidas ao se utilizar um ponto fonte no interior do domínio. Entretanto, a formulação
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do MEC exige a aplicação desses pontos no contorno (fronteira), necessitando da verificação
do comportamento da Identidade Somigliana nessa região a partir de um processo limite.

3.2 Processo limite

Inicia-se o processo limite efetuando uma expansão do contorno original onde o
ponto fonte s é posicionado, a qual é tomada como semicircular de raio ε por questões
de conveniência algébrica. Tal procedimento origina um domínio e um contorno, ambos
virtuais, designados respectivamente por Ωε e Γε. A Figura 12 ilustra geometricamente o
processo. Nela, observa-se que Γ é a porção do contorno original que foi expandida, o qual
é representado graficamente por linhas tracejadas.

Figura 12 – Processo limite

Fonte: Elaborada pelo autor.

Considerando as modificações no domínio e no contorno, a Eq. (3.13) é alterada
para

uk (s) = −
∫

Γ−Γ+Γε

ul (f) p∗
kl (s, f) dΓ

+
∫

Γ−Γ+Γε

pi (f) u∗
ki (s, f) dΓ

+
∫

Ω+Ωε

bi (f) u∗
ki (s, f) dΩ,

(3.15)

em que o domínio e contorno modificados são avaliados respectivamente por Ω + Ωε e
Γ − Γ + Γε. De forma a fazer com que o domínio e o contorno modificados tendam aos
originais, a Eq. (3.15) deve ser avaliada no limite de ε tendendo a zero. Tal procedimento
demanda considerável trabalho algébrico, de maneira que se recomenda a leitura de Brebbia
e Dominguez (1994), Aliabadi (2002) e Katsikadelis (2016) para contemplação das rotinas
de cálculo. Como conclusão do processo têm-se:

lim
ε→0


∫

Γ−Γ+Γε

ul (f) p∗
kl (s, f) dΓ

 =
∫
Γ

ul (f) p∗
kl (s, f) dΓ − 1

2 δkl ul (s) ; (3.16)
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lim
ε→0


∫

Γ−Γ+Γε

pi (f) u∗
ki (s, f) dΓ

 =
∫
Γ

pi (f) u∗
ki (s, f) dΓ; (3.17)

lim
ε→0


∫

Ω+Ωε

bi (f) u∗
ki (s, f) dΩ

 =
∫
Ω

bi (f) u∗
ki (s, f) dΩ. (3.18)

Na Eq. (3.16), δkl é um tensor delta de Kronecker.

Substituindo as equações anteriores na Eq. (3.15) após a análise limite com ε

tendendo a zero, obtêm-se
1
2 δkl ul (s) +

∫
Γ

ul (f) p∗
kl (s, f) dΓ =

∫
Γ

pi (f) u∗
ki (s, f) dΓ +

∫
Ω

bi (f) u∗
ki (s, f) dΩ. (3.19)

Ressalta-se que a contração δkl ul (s) da Eq. (3.16) foi obtida mediante atendimento da
condição de continuidade de Hölder (Muskhelishvili, 1958). Então, para a validade da Eq.
(3.19), as fontes devem ser posicionadas em pontos onde há suavidade do contorno.

Finalizado o processo limite, já é possível efetuar a discretização da Eq. (3.19).
Para o presente estudo, utilizou-se dois tipos de discretização isoparamétrica: a primeira
baseada em interpolação por polinômios de Lagrange, denominada lagrangiana; e a segunda
utilizando curvas NURBS como funções de forma, denominada isogeométrica.

Considerando as exigências de continuidade, para as aplicações aqui desenvolvidas,
diferencia-se nó e fonte. O primeiro trata-se do ponto de parametrização geométrica do
elemento, enquanto o segundo é propriamente o ponto de aplicação da função delta de
Dirac. Se o nó estiver localizado em um ponto geometricamente suave, então é conveniente
fazer com que a posição da fonte lhe seja coincidente. Em caso oposto, desloca-se o ponto
fonte do nó para uma região suave pertencente ao contorno representado pelo elemento a
qual pertence.

A Figura 13 ilustra o processo de deslocamento das fontes em um ponto de
continuidade geométrica C0 entre dois elementos de ordens de aproximação quaisquer.
Adotou-se como valor do deslocamento 25% da distância da coordenada nodal mais próxima
pertencente ao mesmo elemento, dessa forma:

ξ̂1
u = ξ1

u − 0.25
(
ξ1

u − ξ1
u−1

)
; (3.20)

ξ̂2
l = ξ2

l + 0.25
(
ξ1

l−1 − ξ1
l

)
. (3.21)

Nessa explanação, os índices superiores correspondem ao elemento de cada coordenada,
enquanto os inferiores representam sua posição. As letras l e u designam respectivamente
lower e upper bounds, ou seja, o primeiro e o último nó do elemento indicado no índice
sobrescrito. O acento circunflexo na coordenada revela que se trata de uma posição de
ponto fonte. Tais coordenadas se dão em termos do espaço de integração, aqui considerado
como o espaço gaussiano para uso da quadratura de Gauss-Legendre. O referido espaço
tem como abscissa ξ ∈ [−1, 1] (Chapra; Canale, 2014).
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Figura 13 – Translação de fonte

Fonte: Elaborada pelo autor.

3.3 Abordagem lagrangiana

Também conhecida como abordagem clássica do MEC, nela a discretização é
efetuada por meio de elementos denominados lagrangianos. Tais elementos fazem associação
direta do espaço de integração com o espaço real de análise. No caso de problemas
bidimensionais, em que se enquadra o foco do presente estudo, o contorno é unidimensional,
assim como o espaço de integração utilizado. Os elementos são construídos a partir de
funções interpoladoras de valores de deslocamento e de força de superfície nos pontos fonte,
as quais são conhecidas como funções de forma. A composição da função de forma consiste
no produto escalar de um tensor de parâmetros a serem interpolados com um outro tensor
de base funcional com domínio no espaço de integração. Tal base funcional é descrita
classicamente no MEC e em outro métodos numéricos, como o MEF, por polinômios de
Lagrange (Stoer; Bulirsch, 2002). Então, com a abscissa no espaço gaussiano, define-se a
base funcional por

ϕi (ξ) =
n∏

j=0,i ̸=j

ξ − ξj

ξi − ξj

, (3.22)

em que n é o número de pontos interpolados e os índices i e j designam o ponto atual e os
outros pontos, respectivamente. Uma notável propriedade da base lagrangiana é a forma
como ocorre a repartição da unidade. Na Eq. (3.22), se ξ for igual a qualquer valor de ξi,
então ϕi terá um termo unitário na posição de equidade e seus demais termos possuirão
valor nulo. A Figura 14 ilustra essa característica.

Através de elementos lagrangianos, a Eq. (3.19) pode ser discretizada para uma
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Figura 14 – Função de base lagrangiana:
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Fonte: Elaborada pelo autor.

fonte s e representada no espaço gaussiano por

1
2 δkl ul (s) = −

ne∑
e=1

 1∫
−1

uj Φlj (ξ) p∗
kl (s, ξ) J (ξ) dξ


+

ne∑
e=1

 1∫
−1

pj Φij (ξ) u∗
ki (s, ξ) J (ξ) dξ

 ,

(3.23)

em que ne corresponde ao número de elementos utilizados na discretização. Os tensores uj

e pj correspondem aos valores de deslocamento e força de superfície nas fontes de cada
elemento do somatório. Logo, o índice j varia de 1 ao número de nós que constituem o
respectivo elemento multiplicado pela dimensão do problema. O tensor Φij carrega os
tensores de funções de forma avaliadas nos pontos de integração. A distribuição, em 2D, é
dada por

Φij (ξ) =
ϕ1 (ξ) 0 ϕ2 (ξ) 0 ... ϕj (ξ) 0

0 ϕ1 (ξ) 0 ϕ2 (ξ) ... 0 ϕj (ξ)

 . (3.24)

Uma vez que os índices i e l representam dimensões de análise na Eq. (3.23), o tensor Φlj

é igualmente representado. O termo J designa o jacobiano da transformação do espaço de
integração para o espaço real, definido por

J (ξ) =
∥∥∥∥∥dxi

dξ

∥∥∥∥∥ . (3.25)

Definindo, na Eq. (3.25), xi a partir das funções de forma, têm-se

J (ξ) =
∥∥∥∥∥ dϕj

dξ
xj

i

∥∥∥∥∥ = ∥ ti∥ , (3.26)

em que ti é o vetor tangente à curva. O índice j, na equação anterior, varia de 1 ao número
de fontes que o elemento que representa tal curva contém.

Comenta-se sobre a notação utilizada na Eq. (3.23), pela qual se seguirá ao longo do
texto, que o parâmetro indicado nas funções é o mais específico necessário. As coordenadas
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no espaço real das fontes são conhecidas no processo de integração. Além disso, para uma
representação genérica de loop nos elementos, os tensores fundamentais não dependem
diretamente de sua coordenada gaussiana. Portanto, representa-os, assim como outras
funções no texto que se encaixem nessa descrição, como funções de s.

Omitiu-se na Eq. (3.23) a discretização da integral da força de domínio uma vez
que não será trabalhada considerando distribuição de força continuamente em todo o corpo.
Por ser uma integração no domínio, necessita-se de técnicas adicionais para sua avaliação.
Uma opção é sua execução via discretização de domínio por células de integração (Brebbia;
Dominguez, 1994). Entretanto, se a força de domínio for constante, pode-se transformar a
integral para o contorno ao se efetuar manipulações no vetor de Galerkin (Katsikadelis,
2016).

Devido ao processo de translação das fontes descrito no tópico 3.2, na implementação
do MEC efetuada pelo autor, diferenciou-se os parâmetros de interpolação na Eq. (3.22)
para grandezas geométricas e funcionais. Para aproximação geométrica, os termos ξi

utilizados são referentes às coordenadas nodais no espaço gaussiano. Já para aproximação
funcional, utilizou-se as coordenadas dos pontos fonte no mesmo espaço.

Para cada fonte aplicada sobre o contorno, vale-se de uma equação tal qual a Eq.
(3.23). Agrupando-as, é possível formar um sistema linear de equações descrito por

1
2 δij uj + hij uj = gij pj, (3.27)

com os índices i e j variando de 1 ao número de fontes multiplicado pela dimensão do
problema. Resolve-se a Eq. (3.27) mediante aplicação de condições essenciais e naturais de
contorno, o que acarreta um processo de troca de colunas. Então, recai-se em um sistema
linearmente independente

aij xj = bij yj, (3.28)

em que xj representa o vetor de grandezas desconhecidas, enquanto yj representa o de
grandezas prescritas. Devido à parametrização das bases de interpolação funcional, a
solução em xj do sistema se dá nas coordenadas das fontes. Para tanto, as condições de
contorno alocadas em yj também devem estar nessas coordenadas.

Na obtenção dos tensores hij e gij da Eq. (3.27), a integração dos tensores da
solução fundamental pode ser fracamente singular com singularidades do tipo O (1/r) e
O (ln (r)), respectivamente, as quais ocorrem quando o elemento integrado contém o ponto
fonte (Aliabadi, 2002). Dentre os processos já desenvolvidos de tratamento dessas integrais,
optou-se pelo Método de Subtração da Singularidade (MSS), devido a sua generalidade de
aplicação (Aliabadi; Hall; Phemister, 1985; Aliabadi; Hall, 1989).
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3.3.1 Subtração da singularidade

O MSS consiste em subtrair a parcela singular de uma integração numérica e a
inserir posteriormente de forma analítica. Para a avaliação analítica da parcela singular
da integração, escreve-se as coordenadas no espaço real de um ponto campo através de
uma expansão em série de Taylor das coordenadas da fonte. O truncamento de 1ª ordem
da série já é suficiente à condução de resultados satisfatórios. Dessa forma, escreve-se as
coordenadas do ponto campo como

xi (ξ) = xi

(
ξ̂
)

+ dϕj

dξ

∣∣∣∣∣
ξ̂

xj
i

(
ξ̂
)

ε, (3.29)

em que ε = ξ − ξ̂. Sendo a norma do vetor distância do ponto campo até a fonte definida
por

r =
∥∥∥ xi (ξ) − xi

(
ξ̂
)∥∥∥ , (3.30)

ao se aproximar as coordenadas do ponto campo por meio da Eq. (3.29), têm-se

r = J
(
ξ̂
)

|ε| (3.31)

com simples manipulação algébrica. Tal desenvolvimento matemático consiste geometri-
camente em uma aproximação linear do contorno Γ̂ no ponto fonte para condução da
integração, conforme vislumbrado na Figura 15.

Figura 15 – Aproximação linear do contorno na fonte

Fonte: Elaborada pelo autor.

Para uma fonte, aplica-se o MSS a cada integração da Eq. (3.23) quando o elemento
integrado contiver essa fonte. Inicia-se a exibição do método por meio do núcleo do tensor
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gij. Dessa forma, divide-se a integração em três parcelas:

Ukj =
1∫

−1

Φij (ξ) u∗
ki (s, ξ) J (ξ) dξ

−
1∫

−1

Φij

(
ξ̂
)

û∗
ki

(
ξ̂, ξ

)
J
(
ξ̂
)

dξ

+
1∫

−1

Φij

(
ξ̂
)

û∗
ki

(
ξ̂, ξ

)
J
(
ξ̂
)

dξ.

(3.32)

A primeira parcela corresponde à integração padrão, executada numericamente através
da quadratura de Gauss-Legendre. A segunda e a terceira parcela são equivalentes e
correspondem à singularidade. Nelas, integra-se apenas a parcela singular do tensor de
deslocamentos fundamentais, dada por

û∗
ki

(
ξ̂, ξ

)
=

−δki (3 − 4 ν) ln
(
J
(
ξ̂
)

|ε|
)

8 π G (1 − ν) , (3.33)

em que já se aplicou a definição de r via Eq. (3.31). Executa-se a segunda parcela numeri-
camente para subtração da singularidade, enquanto a terceira é avaliada analiticamente
no sentido do Valor Principal de Cauchy (VPC).

É conveniente dividir a operação descrita pela Eq. (3.32) em

Ukj = UNUM
kj + UV P C

kj , (3.34)

com UNUM
kj referente à parcela de integração numérica e UV P C

kj à parcela avaliada analiti-
camente no sentido do VPC. Então, constrói-se a integral da última parcela como

UV P C
kj = −Φij

(
ξ̂
) δki (3 − 4 ν) J

(
ξ̂
)

8 π G (1 − ν) −
1−ξ̂∫

−1−ξ̂

ln
(
J
(
ξ̂
)

|ε|
)

dε, (3.35)

em que já se fez uma mudança no domínio da integração, o qual é transferido para ε, e se
pôs seus termos constantes em evidência. Efetuando a integração, obtêm-se

UV P C
kj = −Φij

(
ξ̂
) δki (3 − 4 ν) J

(
ξ̂
)

8 π G (1 − ν) A
(
ξ̂
)

, (3.36)

em que

A
(
ξ̂
)

=
[(

1 + ξ̂
)

ln
(
J
(
ξ̂
) (

1 + ξ̂
))

+
(
1 − ξ̂

)
ln
(
J
(
ξ̂
) (

1 − ξ̂
))

− 2
]

. (3.37)

A expressão anterior apresenta indeterminação quando ξ̂ = ±1, portanto é necessário
efetuar uma análise limite para esse caso. Como resultado, têm-se

UV P C
kj = −Φij

(
ξ̂
) δki (3 − 4 ν) J

(
ξ̂
)

8 π G (1 − ν)
[
2 ln

(
2 J

(
ξ̂
))

− 2
]

. (3.38)
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Quanto à regularização do núcleo do tensor hij , em procedimento análogo, divide-se
sua integração na Eq. (3.23) em três parcelas:

Pkj =
1∫

−1

Φlj (ξ) p∗
kl (s, ξ) J (ξ) dξ

−
1∫

−1

Φlj

(
ξ̂
)

p̂∗
kl

(
ξ̂, ξ

)
J
(
ξ̂
)

dξ

+
1∫

−1

Φlj

(
ξ̂
)

p̂∗
kl

(
ξ̂, ξ

)
J
(
ξ̂
)

dξ.

(3.39)

Cada integração possui o mesmo significado e a mesma forma de avaliação em ordem
conforme o explanado para a Eq. (3.32). As integrações referentes à singularidade são
procedidas sobre a parcela singular do tensor de forças de superfície fundamentais, indicada
por

p̂∗
kl

(
ξ̂, ξ

)
= − 1

4 π (1 − ν) J
(
ξ̂
)

|ε|

[
(1 − 2 ν)

(
ηl

(
ξ̂
)

r,k − ηk

(
ξ̂
)

rl

)]
, (3.40)

em que novamente se aplicou a definição de r por meio da Eq. (3.31).

Dividindo o resultado da Eq. (3.39) em uma parcela de avaliação numérica e outra
analítica, têm-se

Pkj = P NUM
kj + P V P C

kj . (3.41)

Constrói-se a parcela analítica, a qual deve ser avaliada no sentido do VPC, já transfor-
mando o espaço de integração para ε. Então,

P V P C
kj = −Φlj

(
ξ̂
) [(1 − 2 ν)

(
ηl

(
ξ̂
)

r,k − ηk

(
ξ̂
)

rl

)]
4 π (1 − ν) −

1−ξ̂∫
−1−ξ̂

1
|ε|

dε. (3.42)

Novamente, termos constantes já foram postos em evidência à integração. Além disso, já
se valeu de que o jacobiano na fonte do denominador da Eq. (3.40) produz unidade com o
do numerador da integração. Efetuando-a, conduz-se a

P V P C
kj = −Φlj

(
ξ̂
) [(1 − 2 ν)

(
ηl

(
ξ̂
)

r,k − ηk

(
ξ̂
)

rl

)]
4 π (1 − ν)

[
ln
(
1 − ξ̂

)
− ln

(
1 + ξ̂

)]
. (3.43)

Tal resultado apresenta indeterminação quando ξ̂ = ±1, portanto deve-se avaliar esse caso
via análise limite. Executando-a, obtêm-se:

P V P C
kj = −Φlj

(
ξ̂
) [(1 − 2 ν)

(
ηl

(
ξ̂
)

r,k − ηk

(
ξ̂
)

rl

)]
4 π (1 − ν) ln (2) | ξ̂ = −1; (3.44)

P V P C
kj = Φlj

(
ξ̂
) [(1 − 2 ν)

(
ηl

(
ξ̂
)

r,k − ηk

(
ξ̂
)

rl

)]
4 π (1 − ν) ln (2) | ξ̂ = 1. (3.45)
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3.3.2 Pontos internos

Após a solução do sistema linear descrito pela Eq. (3.27), tornam-se conhecidos os
valores de deslocamentos e forças de superfície nos pontos fonte. A partir desses valores, é
possível avaliar grandezas em um ponto do domínio por colocação de fonte. Para o cálculo
de deslocamentos, modifica-se a Eq. (3.23), escrita para uma fonte sobre o contorno, para
uma fonte posicionada no domínio. Tal operação resulta em

uk (s) = −
ne∑

e=1

 1∫
−1

uj Φlj (ξ) p∗
kl (s, ξ) J (ξ) dξ


+

ne∑
e=1

 1∫
−1

pj Φij (ξ) u∗
ki (s, ξ) J (ξ) dξ

 ,

(3.46)

o que representa a discretização da Identidade Somigliana descrita pela Eq. (3.13).

Para a avaliação do tensor tensão de Cauchy, deve-se operar a Eq. (3.13) de forma
a transformar a grandeza na fonte de deslocamento para tensão. Inicia-se aplicando a Eq.
(A.21), o que conduz a

εkm (s) −
∫
Γ

ul (f)
[

p∗
kl,m (s, f) + p∗

ml,k (s, f)
2

]
dΓ = −

∫
Γ

pi (f) ε∗
kim (s, f) dΓ, (3.47)

com o índice m variando de 1 até o número de dimensões do problema. Ressalta-se que as
derivações da Eq. (A.21) devem ser feitas em relação às coordenadas da fonte. Para sua
aplicação aos tensores advindos da solução fundamental, função da distância entre a fonte
e o campo, utiliza-se a regra da cadeia, ou seja

∂g∗ (r)
∂xm (s) = ∂g∗ (r)

∂r

∂r

∂xm (s) = −∂g∗ (r)
∂r

∂r

∂xm (f) = − ∂g∗ (r)
∂xm (f) , (3.48)

sendo g∗ (r) uma função fundamental escalar qualquer dependente da distância r. Sequenci-
almente, à Eq. (3.47), considerando domínio isotrópico, aplica-se a transformação descrita
pela Eq. (A.26). Como resultado, têm-se

σkm (s) +
∫
Γ

ul (f) s∗
klm (s, f) dΓ =

∫
Γ

pi (f) d∗
kim (s, f) dΓ, (3.49)

em que d∗
kim = −σ∗

kim e

s∗
klm (s, f) = 2 G

[
p∗

kl,m (s, f) + p∗
ml,k (s, f)

2

]
+ λ p∗

mnn (s, f) δkl. (3.50)

Na Eq. (3.50), G é o modulo de elasticidade transversal do domínio, dado pela Eq. (A.25),
e λ é a constante de Lamé, calculada por meio da Eq. (A.27). O índice n, assim como
os outros, varia de 1 até o número de dimensões de análise. Desenvolvendo a Eq. (3.50),
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obtêm-se

s∗
klm = G

4 π (1 − ν) r2

{
2 ∂r

∂η
[(1 − 2ν) δlm r,k + ν (δlk r,m + δmk r,l) − 4 r,l r,m rk] +

2 ν (ηl r,m r,k + ηm r,l r,k) − (1 − 4 ν) ηk δlm+

(1 − 2 ν) (2 ηk r,l r,m + ηm δlk + ηl δmk)
}

.

(3.51)

A Eq. (3.49) pode então ser discretizada como

σkm (s) = −
ne∑

e=1

 1∫
−1

uj Φlj (ξ) s∗
klm (s, ξ) J (ξ) dξ


+

ne∑
e=1

 1∫
−1

pj Φij (ξ) d∗
kim (s, ξ) J (ξ) dξ

 .

(3.52)

3.3.3 Pontos sobre o contorno

Conhecendo os deslocamentos e as forças de superfície nas fontes, essas grandezas
podem ser avaliadas em qualquer ponto do contorno por meio das funções de forma. Já no
caso do tensor tensão de Cauchy, destaca-se duas possibilidades: a primeira trata-se da
aplicação no contorno da Eq. (3.52); e a segunda trata-se de um procedimento alternativo
via relações cinemáticas, leis constitutivas e equilíbrio.

Considerando a aplicação da primeira alternativa, releva-se o empecilho da singulari-
dade dos tensores d∗

kim e s∗
klm. A integração do primeiro tensor citado é fracamente singular

de ordem O (1/r), enquanto a do segundo é hipersingular de ordem O (1/r2). O tratamento
da singularidade de ordem O (1/r) é procedido de forma análoga a da integração do
tensor p∗

kl, conforme descrito no item 3.3.1. Entretanto, quanto à integração hipersingular,
torna-se necessário subtrair e posteriormente adicionar a parcela da singularidade a ser
avaliada mediante parte finita de Hadamard (Hadamard, 1923). O MSS aplicado a esse
caso é contemplado de forma analítica em Guiggiani et al. (1992), com o processo de
integração via quadratura facilmente implementado por conta do usuário. Para o presente
estudo, essa metodologia de cálculo foi descartada devido às vantagens do método indireto.
Portanto, não estende na formulação a qual pode ser consultada em Wilde e Aliabadi
(1998).

A outra alternativa, que foi a implementada pelo autor, não envolve integrações. Con-
sequentemente, evita-se o custo computacional inerente à quadratura de Gauss-Legendre,
assim como o tratamento das singularidades. O procedimento apresentado a seguir é uma
simplificação suficiente às aplicações aqui trabalhadas do que foi desenvolvido originalmente
considerando elasticidade tridimensional (Sládek; Sládek, 1986).

A Figura 16 ilustra um ponto no contorno em uma coordenada gaussiana ξ, cujo
estado de tensão é definido em coordenadas locais de referenciais ηi e ιi. O primeiro termo
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se trata do vetor normal ao contorno, enquanto o segundo é seu vetor tangente unitário
dado por

ιi (ξ) = ti (ξ)
J (ξ) . (3.53)

Por meio da Terceira Lei de Newton, é evidente que

σ1i (ξ) = pi (ξ) = rki (ξ) ϕj (ξ) pj
k, (3.54)

onde o traço acima dos termos indica que a grandeza está avaliada no referencial de
coordenadas local. Os índice i e k variam de 1 ao número de dimensões do problema,
enquanto o índice j varia de 1 ao número de fontes que o elemento em que o ponto se
encontra contém. A matriz de rotação bidimensional é avaliada em função da coordenada
gaussiana por

rki (ξ) =
η1 (ξ) ι1 (ξ)
η2 (ξ) ι2 (ξ)

 . (3.55)

Considerando a simetria do tensor tensão de Cauchy, conforme Eq. (A.12), têm-se σi1 = σ1i.

Figura 16 – Estado de tensão em um ponto do contorno

Fonte: Elaborada pelo autor.

Na avaliação de problemas bidimensionais, seja em Estado Plano de Deformação
(EPD) como em Estado Plano de Tensão (EPT), as componentes cisalhantes referentes à
coordenada perpendicular ao plano são nulas. A componente normal é nula para o EPT.
Já no EPD, ela é calculada a posteriori por meio da Eq. (A.28). Dessa forma, a única
componente de tensão da Figura 16 que ainda falta o conhecimento é σ22. Considerando
EPD, é possível calcular a componente de tensão normal no plano com versor de orientação
na direção de ιi através da Eq. (A.26). Então, escreve-se

σ22 (ξ) = 1
1 − ν

[ν p1 (ξ) + 2 G ε22 (ξ)] . (3.56)

Para o caso de EPT, ajusta-se o coeficiente de Poisson pela Eq. (A.30). A componente
de deformação presente na Eq. (3.56) pode ser calculada por meio da Eq. (A.21) em
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coordenadas locais. Utilizando a regra cadeia e explicitando os termos calculados via
função de forma, têm-se

ε22 (ξ) = ∂u2

∂x2
= du2

dξ

dξ

dx2
= 1

J (ξ) ιi (ξ) dϕj

dξ
uj

i . (3.57)

Conhecidas todas as componentes do tensor tensão de Cauchy em coordenadas
locais no ponto de interesse, rotaciona-o para coordenadas globais por

σlm (ξ) = rki (ξ) σij (ξ) rlj (ξ) , (3.58)

com todos os índices variando de 1 ao número de dimensões de análise.

3.3.4 Flexibilidade

Através da seção 2.4, mostrou-se que a flexibilidade é um parâmetro relevante à
otimização topológica. Sua definição física é atribuída ao trabalho interno de uma estrutura.
Matematicamente, isso se traduz em∫

Ω

σij εij dΩ =
∫
Γ

pk uk dΓ, (3.59)

em que já se fez uso da equidade entre o trabalho interno e o trabalho das forças externas.
Todos os índices da equação anterior variam de 1 ao número de dimensões do problema.
Por envolver uma integração apenas no contorno, é mais conveniente avaliar essa grandeza
mediante integração numérica da parcela à direita da Eq. (3.59). Discretizando-a, têm-se

D =
ne∑

e=1

 1∫
−1

ϕj (ξ) pj
k ϕj (ξ) uj

k J (ξ) dξ

 , (3.60)

em que o índice j varia de 1 ao número de fontes do elemento integrado.

3.4 Abordagem isogeométrica

O MECIG implementado para o estudo utiliza curvas NURBS como funções de
forma para aproximação funcional e geométrica. As funções B-splines foram construídas
utilizando a fórmula recursiva de Cox (1972) e de Boor (1972), tendo em vista melhor
eficiência computacional em relação a outras alternativas. Portanto, define-se essas funções
por

Ba,p

(
ξ
)

= ξ − ξa

ξa+p − ξa

Ba,p−1
(
ξ
)

+
ξa+p+1 − ξ

ξa+p+1 − ξa+1
Ba+1,p−1

(
ξ
)

, (3.61)

com  Ba,0 = 1 se ξa ≤ ξ < ξa+1

Ba,0 = 0 caso contrário
. (3.62)

Nas Eqs. (3.61) to (3.62), ξ representa a coordenada do ponto de avaliação no espaço
paramétrico das B-splines. Os termos ξ seguidos por um índice são knots. Define-se esse
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termo por números ordenados crescentemente e agrupados em um vetor de knots Ξ, que
governa o espaço paramétrico. Esse vetor possui dimensão c + p + 1, em que c é número
de pontos de controle e p é a ordem de aproximação da B-spline. O índice a varia de 0 a
c + p, enquanto o índice p varia de 0 até a ordem de aproximação. Assim, as B-splines são
definidas por p camadas sequencialmente construídas através de uma combinação linear
das funções da camada imediatamente inferior. A Figura 17 ilustra esse procedimento
para números quaisquer de ordem de aproximação e pontos de controle. As derivadas das
B-splines podem ser calculadas por

d

d ξ
Ba,p

(
ξ
)

= p

ξa+p − ξa

Ba,p−1
(
ξ
)

− p

ξa+p+1 − ξa+1
Ba+1,p−1

(
ξ
)

. (3.63)

Figura 17 – Construção das funções B-splines

Fonte: Elaborada pelo autor.

Conforme se observa na Figura 18, as funções B-splines promovem a repartição
da unidade no trecho aproximado. Tal característica também é vista nos polinômios de
Lagrange. Uma notória diferença está na não necessária equivalência da função para um
ponto de controle à unidade na sua coordenada paramétrica de projeção na curva. O
mesmo se observa para sua não necessária nulidade nas coordenadas de projeção dos outros

Figura 18 – Funções B-splines com ordem de aproximação:
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Fonte: Elaborada pelo autor.
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pontos de controle. Tais fatores elucidam a característica não interpolatória das funções
B-splines, a qual é evidente para os polinômios de Lagrange. Para se aumentar a ordem
de aproximação das B-splines, deve-se adicionar repetições de knot numbers na mesma
quantidade do incremento de ordem.

A construção de funções NURBS através das B-splines se dá mediante uma trans-
formação Rn+1 → Rn. O espaço Rn+1 é construído por meios dos vetores das grandezas
a serem aproximadas com a adição de uma coordenada peso w. No espaço Rn, w = 1.
A transformação é executada mediante projeção de coordenadas, conforme Figura 19.
Matematicamente, efetua-se esse processo por

Na,p = Ba,p wa
c∑

j=0
Bj,p wj

. (3.64)

Assim como na abordagem lagrangiana, as funções de forma são construída através da
contração simples entre o tensor de grandezas nos pontos de controle e o tensor de funções
de base NURBS. Ressalta-se que o valor da grandeza no ponto de controle utilizada para
a aproximação é a do pertencente ao espaço Rn+1.

Figura 19 – Transformação de B-splines para NURBS

Fonte: Elaborada pelo autor.

O suporte no espaço paramétrico das funções NURBS faz com que ele atue como
intermédio entre o espaço de integração gaussiano e o espaço real de análise. Dessa forma,
o jacobiano presente nas integrações precisa ser calculado utilizando a regra da cadeia. Ou
seja

J (ξ) =
∥∥∥∥∥dxi

dξ

∥∥∥∥∥ =
∥∥∥∥∥dxi

dξ

dξ

dξ

∥∥∥∥∥ . (3.65)

Escrevendo as coordenadas xi por meio das funções de forma com base NURBS, têm-se

J (ξ) =
∥∥∥∥∥ dNj

dξ
xj

i

dξ

dξ

∥∥∥∥∥ =
∥∥∥∥∥ ti

dξ

dξ

∥∥∥∥∥ , =
∣∣∣∣∣dξ

dξ

∣∣∣∣∣ ∥ ti∥ , (3.66)
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cujo índice p das bases NURBS foi omitido já se valendo do uso da última camada apenas.
Na abordagem isogeométrica, o elemento, com seu devido espaço de integração, é definido
em um knot span não nulo. Portanto, a função de transformação do espaço gaussiano para
o espaço paramétrico é construída mediante simples compatibilização de domínios lineares.
Então, uma coordenada gaussiana é mapeada para o espaço paramétrico por

ξ (ξ) =

(
ξi+1 − ξi

)
ξ +

(
ξi+1 + ξi

)
2 , (3.67)

em que os termos ξ acompanhados de índices são knots. A partir dessa definição, pode-se
calcular a derivada do espaço paramétrico em relação ao espaço gaussiano presente na Eq.
(3.66) por

dξ

dξ
= ξi+1 − ξi

2 . (3.68)

Devido à organização crescente dos knots em Ξ, a função modular da Eq. (3.66) é
redundante, pois o valor da derivada sempre será positivo. Ademais, é conveniente rescrever
essa equação como

J (ξ) = J̃
(
ξ (ξ)

)
Ĵ (ξ) , (3.69)

onde Ĵ representa o jacobiano da transformação do espaço de integração para o espaço
paramétrico e J̃ designa o jacobiano da transformação do espaço paramétrico para o espaço
real. Para o cálculo das derivadas das funções de base NURBS, necessárias à Eq. (3.26),
bem como a outras propriedades, utilizou-se o procedimento descrito por Beer, Marussig e
Duenser (2020). Então,

d

d ξ
Na,p

(
ξ
)

=
wa

d

d ξ
Ba,p

(
ξ
)

− wa Ba,p

(
ξ
)

β

c−1∑
j=0

Bj,p

(
ξ
)

wj

, (3.70)

com

β =

c−1∑
j=0

Bj,p

(
ξ
)

wj

c−1∑
j=0

d

d ξ
Bj,p

(
ξ
)

wj

. (3.71)

Comenta-se que J̃ deve ser calculado mediante uma coordenada paramétrica, a qual,
notadamente, é função de uma coordenada gaussiana. Mantendo a consistência de notação
do texto, escreve-se J como função da variável independente. A Figura 20 ilustra as de
transformação de espaço a serem efetuadas.

Diferentemente de funções de forma de base lagrangiana, as curvas NURBS podem
não intersecar seus pontos de controle (nós). Entretanto, para validade da Eq. (3.19), a
formulação do MEC exige a posição de fontes sobre o contorno. Comumente, projeta-se
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Figura 20 – Conexão de espaços na abordagem isogeométrica

Fonte: Elaborada pelo autor.

na curva os pontos fora através das abscissas de Greville (Greville, 1964). Descreve-se
matematicamente esse processo por

ξ̂a =

p∑
i=1

ξa+i

p
. (3.72)

Devido à aproximação das curvas NURBS se dar em função de valores nos pontos de
controle e de suas respectivas fontes possuírem coordenadas distintas, seja pelo tratamento
de cantos ou pela necessidade de projeção sobre o contorno, faz-se uma modificação em
relação à Eq. (3.23) quando da discretização isogeométrica da Eq. (3.19). Ou seja, o sistema
de equações é construído em função dos valores nos pontos de controle de cada patch e
não do ponto fonte. Portanto, torna-se necessário escrever o termo livre, que apresenta
valores de deslocamento em uma fonte, como função dos valores dos pontos de controle do
patch que lhe contém. Dessa forma,

1
2 δkl ul (s) = 1

2 δkl clj

(
ξ̂
)

uj = 1
2 ckj

(
ξ̂
)

uj, (3.73)

em que o tensor ckj carrega os tensores de funções de forma avaliadas na posição no espaço
paramétrico dos pontos de integração. Exemplifica-se uma distribuição em 2D por

ckj (ξ) =
 N1

(
ξ (ξ)

)
0 N2

(
ξ (ξ)

)
0 ...

0 N1
(
ξ (ξ)

)
0 N2

(
ξ (ξ)

)
...

... Nj

(
ξ (ξ)

)
0

... 0 Nj

(
ξ (ξ)

)  (3.74)

Comenta-se que as funções de base das curvas NURBS possuem suporte no espaço
paramétrico, cuja obtenção de coordenada é feita mediante transformação da gaussiana.
Dessa forma, escreve-se o tensor ckj como função da variável independente em virtude
de consistência de notação. Outro ponto relevante é que, uma vez que as grandezas base
para a aproximação são as localizadas nos pontos de controle, há a implicação em uma
desvantagem à abordagem, já que as condições de contorno também devem ser prescritas
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nesses pontos. Tal fator restringe consideravelmente suas aplicações, embora ainda seja
útil à solução de grande parte dos problemas reais de engenharia.

Detalhada a modificação do termo livre, escreve-se uma equação tensorial para um
ponto fonte por

1
2 ckj

(
ξ̂
)

uj = −
ne∑

p=1

 1∫
−1

uj clj (ξ) p∗
kl (s, ξ) J̃

(
ξ (ξ)

)
Ĵ (ξ) dξ


+

ne∑
p=1

 1∫
−1

pj cij (ξ) u∗
ki (s, ξ) J̃

(
ξ (ξ)

)
Ĵ (ξ) dξ

 ,

(3.75)

onde ne corresponde ao número de elementos integrados, ou seja, o número total de knot
spans não nulos considerando todos os patches utilizados na discretização. Em abordagens
bidimensionais, um patch é composto por um única curva NURBS.

Da forma análoga à abordagem lagrangiana, com cada fonte valendo-se de uma Eq
(3.75), forma-se um sistema linear de equações descrito por

1
2 cij uj + hij uj = gij pj, (3.76)

cujo procedimento de solução é o mesmo da abordagem lagrangiana. Para a geração dos
tensores hij e gij da Eq. (3.76), também depara-se com integrações fracamente singulares
quando o elemento integrado contém o ponto fonte. Mostra-se, em seguida, que o tratamento
das singularidades da abordagem isogeométrica também pode ser efetuada mediante o
MSS. Porém, com algumas adaptações em relação à abordagem lagrangiana.

3.4.1 Subtração da singularidade

Em processo análogo ao da abordagem lagrangiana, utiliza-se a série de Taylor
truncada no primeiro termo para escrever as coordenadas de um ponto campo. Devido à
presença do espaço paramétrico, necessita-se fazer uso da regra da cadeia. Ou seja,

xi (ξ) = xi

(
ξ
(
ξ̂
))

+ dNj

dξ

∣∣∣∣∣
ξ(ξ̂)

dξ

dξ

∣∣∣∣∣
ξ̂

xj
i

(
ξ
(
ξ̂
))

ε

= xi

(
ξ
(
ξ̂
))

+ dNj

dξ

∣∣∣∣∣
ξ(ξ̂)

Ĵ
(
ξ̂
)

xj
i

(
ξ
(
ξ̂
))

ε,

(3.77)

em que ε conserva o significado daquele da Eq. (3.29). Aplicando a definição de ponto
campo da Eq. (3.77) à norma do vetor distância do ponto campo até a fonte, vide Eq.
(3.30), têm-se

r = J̃
(
ξ
(
ξ̂
))

Ĵ
(
ξ̂
)

|ε|, (3.78)

em que já se valeu da redundância da aplicação da função módulo a Ĵ devido à organização
do vetor de knots.
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Inicia-se o procedimento efetuando a regularização do núcleo do tensor gij , dividindo
a integração que lhe resulta em três parcelas:

Ukj =
1∫

−1

cij (ξ) u∗
ki (s, ξ) J̃

(
ξ (ξ)

)
Ĵ (ξ) dξ

−
1∫

−1

cij

(
ξ̂
)

û∗
ki

(
ξ̂, ξ

)
J̃
(
ξ
(
ξ̂
))

Ĵ
(
ξ̂
)

dξ

+
1∫

−1

cij

(
ξ̂
)

û∗
ki

(
ξ̂, ξ

)
J̃
(
ξ
(
ξ̂
))

Ĵ
(
ξ̂
)

dξ.

(3.79)

Novamente, a primeira parcela corresponde à avaliação numérica padrão do núcleo, en-
quanto a segunda e a terceira correspondem à parcela singular. O tensor û∗

ki representa o
termo singular do tensor de deslocamentos fundamentais, o qual é aqui calculado por

û∗
ki

(
ξ̂, ξ

)
=

−δki (3 − 4 ν) ln
(
J̃
(
ξ
(
ξ̂
))

Ĵ
(
ξ̂
)

|ε|
)

8 π G (1 − ν) , (3.80)

em que já se aplicou a definição de r via Eq. (3.78). A segunda parcela efetua a subtração
numérica da singularidade. Já terceira deve ser avaliada analiticamente em sentido do
VPC.

Dividindo a Eq. (3.79) em uma parcela de avaliação numérica e outra de avaliação
analítica, conforme a Eq. (3.34), têm-se, para a última,

UV P C
kj = −cij

(
ξ̂
) δki (3 − 4 ν) J̃

(
ξ
(
ξ̂
))

Ĵ
(
ξ̂
)

8 π G (1 − ν) −
1−ξ̂∫

−1−ξ̂

ln
(
J̃
(
ξ
(
ξ̂
))

Ĵ
(
ξ̂
)

|ε|
)

dε. (3.81)

Nela, já se aplicou a mudança no domínio da integração, o qual é transferido para ε.
Também já foram postos em evidência os termos contantes em relação à integração.
Efetuando-a, obtêm-se

UV P C
kj = −cij

(
ξ̂
) δki (3 − 4 ν) J̃

(
ξ
(
ξ̂
))

Ĵ
(
ξ̂
)

8 π G (1 − ν) A
(
ξ̂
)

, (3.82)

onde

A
(
ξ̂
)

=
[(

1 + ξ̂
)

ln
(
J̃
(
ξ
(
ξ̂
))

Ĵ
(
ξ̂
) (

1 + ξ̂
))

+
(
1 − ξ̂

)
ln
(
J̃
(
ξ
(
ξ̂
))

Ĵ
(
ξ̂
) (

1 − ξ̂
))

− 2
]
.

(3.83)

A expressão anterior apresenta indeterminação quando ξ̂ = ±1, portanto é necessário
efetuar uma análise limite para a avaliação nesse caso. Como resultado, têm-se

UV P C
kj = −cij

(
ξ̂
) δki (3 − 4 ν) J̃

(
ξ
(
ξ̂
))

Ĵ
(
ξ̂
)

8 π G (1 − ν)
[
2 ln

(
2 J̃

(
ξ
(
ξ̂
))

Ĵ
(
ξ̂
))

− 2
]

. (3.84)
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Procedimento análogo é efetuado para regularizar as integrações que geram o tensor
hij. Dividindo-as em três parcelas, têm-se

Pkj =
1∫

−1

clj (ξ) p∗
kl (s, ξ) J̃

(
ξ (ξ)

)
Ĵ (ξ) dξ

−
1∫

−1

clj

(
ξ̂
)

p̂∗
kl

(
ξ̂, ξ

)
J̃
(
ξ
(
ξ̂
))

Ĵ
(
ξ̂
)

dξ

+
1∫

−1

clj

(
ξ̂
)

p̂∗
kl

(
ξ̂, ξ

)
J̃
(
ξ
(
ξ̂
))

Ĵ
(
ξ̂
)

dξ,

(3.85)

Da mesma forma, a primeira parcela representa a avaliação numérica comum da integração.
A segunda parcela representa a subtração da singularidade numérica, enquanto a terceira
a insere analiticamente. O tensor p̂∗

kl designa a parcela singular do tensor de forças de
superfícies fundamentais. Já se valendo da aproximação de r pela Eq. (3.78), calcula-o por

p̂∗
kl

(
ξ̂, ξ

)
= −

[
(1 − 2 ν)

(
ηl

(
ξ
(
ξ̂
))

r,k − ηk

(
ξ
(
ξ̂
))

rl

)]
4 π (1 − ν) J̃

(
ξ
(
ξ̂
))

Ĵ
(
ξ̂
)

|ε|
. (3.86)

A construção de Pkj pode então ser divida em duas parcelas, conforme Eq. (3.41).
A parcela analítica e singular precisa ser avaliada no sentido do VPC. Pode-se apresentá-la,
com mudança de domínio de integração para ε, como

P V P C
kj = −clj

(
ξ̂
) [(1 − 2 ν)

(
ηl

(
ξ
(
ξ̂
))

r,k − ηk

(
ξ
(
ξ̂
))

rl

)]
4 π (1 − ν) −

1−ξ̂∫
−1−ξ̂

1
|ε|

dε, (3.87)

em que já se fez a simplificação de pôr termos constantes em evidência à integral. Os
jacobianos no denominador da Eq. (3.86) resultam em unidade com os presentes no
numerador da integral. Efetuando a integração, têm-se

P V P C
kj = −clj

(
ξ̂
) [(1 − 2 ν)

(
ηl

(
ξ
(
ξ̂
))

r,k − ηk

(
ξ
(
ξ̂
))

rl

)]
4 π (1 − ν)

·
[
ln
(
1 − ξ̂

)
− ln

(
1 + ξ̂

)]
,

(3.88)

cujo resultado apresenta indeterminação quando ξ̂ = ±1. Dessa forma, avalia-se esse caso
via análise limite, obtendo-se:

P V P C
kj = −clj

(
ξ̂
) [(1 − 2 ν)

(
ηl

(
ξ
(
ξ̂
))

r,k − ηk

(
ξ
(
ξ̂
))

rl

)]
4 π (1 − ν) ln (2) | ξ̂ = −1; (3.89)

P V P C
kj = clj

(
ξ̂
) [(1 − 2 ν)

(
ηl

(
ξ
(
ξ̂
))

r,k − ηk

(
ξ
(
ξ̂
))

rl

)]
4 π (1 − ν) ln (2) | ξ̂ = 1. (3.90)
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3.4.2 Pontos internos

Com a solução do sistema linear de equações representado pela Eq. (3.76), pode-se
utilizar os valores de deslocamentos e forças de superfície nos pontos de controle para
avaliação de grandezas em pontos no domínio. Para o caso de deslocamentos, a equação
discretizada é a obtida mediante posição de uma fonte no domínio. Ou seja,

uk (s) = −
ne∑

e=1

 1∫
−1

uj clj (ξ) p∗
kl (s, ξ) J̃

(
ξ (ξ)

)
Ĵ (ξ) dξ


+

ne∑
e=1

 1∫
−1

pj cij (ξ) u∗
ki (s, ξ) J̃

(
ξ (ξ)

)
Ĵ (ξ) dξ

 .

(3.91)

Quanto ao tensor tensão de Cauchy, necessita-se efetuar as mesmas operações à Eq. (3.13)
descritas na Seção 3.3.2, as quais resultam na Eq. (3.49). Discretizando-a para análise
isogeométrica, têm-se

σkm (s) = −
ne∑

e=1

 1∫
−1

uj clj (ξ) s∗
klm (s, ξ) J̃

(
ξ (ξ)

)
Ĵ (ξ) dξ


+

ne∑
e=1

 1∫
−1

pj cij (ξ) d∗
kim (s, ξ) J̃

(
ξ (ξ)

)
Ĵ (ξ) dξ

 .

(3.92)

3.4.3 Pontos sobre o contorno

Quanto à avaliação de grandezas no contorno, os deslocamentos e as forças de
superfície podem ser aproximadas pelas curvas NURBS. O tensor tensão de Cauchy pode
ser avaliado aplicando a Eq. (3.92). Entretanto, recairia-se em uma integração fracamente
singular de ordem O (1/r), devido ao tensor d∗

kim, e outra integração hipersingular de ordem
O (1/r2), devido ao tensor s∗

klm. A integração fracamente singular poderia ser regularizada
com o MSS assim como descrito na seção anterior. Já a integração hipersingular necessitaria
de um tratamento mais rebuscado, utilizando processo de regularização de Hadamard.
Contudo, o método indireto descrito na Seção 3.3.3 pode ser facilmente adaptado à
abordagem isogeométrica ao se substituir a coordenada gaussiana nas fórmulas apresentadas
pela paramétrica e considerar que o jacobiano da Eq. (3.56) trata-se do da transformação
do espaço paramétrico para o real. As componentes σ1i são calculadas pela Eq. (3.54)
utilizando a base isogeométrica em vez da lagrangiana. Resumidamente, o processo que era
efetuado no espaço gaussiano, para a abordagem lagrangiana, é equivalente se considerado
no espaço paramétrico para a abordagem isogeométrica.

3.4.4 Flexibilidade

Conforme comentado, a flexibilidade é um parâmetro importante para a otimização
topológica. Da mesma maneira que na abordagem lagrangiana, é mais viável calculá-la



80

através da discretização do termo à direita da Eq. (3.59). Dessa forma,

D =
ne∑

e=1

 1∫
−1

Nj

(
ξ (ξ)

)
pj

k Nj

(
ξ (ξ)

)
uj

k J̃
(
ξ (ξ)

)
Ĵ (ξ) dξ

 . (3.93)

3.5 Exemplos

Para a validação das implementações desenvolvidas, aplicações foram efetuadas
a exemplos com solução analítica conhecida. De forma a evidenciar a diferença entre as
formulações, buscou-se problemas cuja geometria não pode ser recuperada via aproximação
polinomial. Para todos os modelos apresentados nesta seção, utilizou-se 1000 pontos de
integração. Valor considerado mediante expedição de erro.

3.5.1 Exemplo 1

O primeiro exemplo foi retirado de Timoshenko e Goodier (1987). Trata-se de
uma chapa infinita com um orifício circular de raio a submetida a forças de tração auto-
equilibradas na direção horizontal de intensidade S. O problema se caracteriza como um
EPT. A Figura 21 apresenta sua geometria.

Figura 21 – Chapa infinita com orifício circular

Fonte: Adaptada de Timoshenko e Goodier (1987)

Por se tratar de um problema de forças de superfície autoequilibradas e não envolver
condições essenciais de contorno, a solução existe apenas para os campos de tensão de
Cauchy. Apresenta-os em coordenadas polares:

σr = S

2

(
1 − a2

r2

)
+ S

2

(
1 + 3 a4

r4 − 4 a2

r2

)
cos (2 θ); (3.94)

σθ = S

2

(
1 + a2

r2

)
− S

2

(
1 + 3 a4

r4

)
cos (2 θ); (3.95)
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σr θ = −S

2

(
1 − 3 a4

r4 + 4 a2

r2

)
cos (2 θ). (3.96)

Nas equações anteriores, são indicadas a tensão na direção radial σr, a componente a ela
perpendicular σθ e a componente de cisalhamento σrθ. Todas são funções de um par de
coordenadas polares (r, θ).

É conveniente medir o erro de um modelo quanto às tensões comparando a tensão
de von Mises, que é um importante parâmetro ao critério de falha de materiais dúcteis.
Para a sua avaliação, utilizou-se a versão definida em Jones (2009). Então,

σv =
√

J2 =
√

(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2

2 , (3.97)

onde σ1, σ2 e σ3 são as três tensões principais. Essa definição deriva de J2, que designa o
segundo invariante de tensões desviadoras. A Figura 22 mostra o campo de tensão de von
Mises para r ∈ [1.0, 4.0] cm, considerando a = 1.0 cm e S = 1.0 kN/cm2. Nesse exemplo,
analisou-se apenas esse intervalo pois σv tende a um comportamento constante quanto
maior a distância do ponto investigado ao orifício da chapa.

Figura 22 – Tensão de von Mises (kN/cm2) no domínio para r ∈ [1.0, 4.0] cm
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Fonte: Elaborada pelo autor

Para a criação modelos discretos de elementos de contorno, comenta-se da necessi-
dade de imposição de condições essenciais de contorno e consequente finitude da malha que
representa o meio. Considerou um quadrado de lado de 100 cm. Bem maior que o orifício
de raio unitário parar simular o meio infinito. Cada lado foi discretizado com 1 elemento
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ou patch de aproximação linear. Quanto às condições de contorno, admitiu-se nulidade de
deslocamentos horizontais na face esquerda e nulidade de deslocamentos verticais na face
inferior. Dessa forma, não se restringe as deformações e consequentemente não há prejuízo
físico ao modelo, senão a consideração de meio infinito.

Comenta-se que, para esse exemplo, a solução analítica dos campos de tensão não
depende de parâmetros do meio, como módulo de elasticidade e coeficiente de Poisson.
Embora sejam necessários ao modelo discreto, uma vez que as condições de contorno
consideradas tornam livres as suas deformações, os parâmetros citados não influenciam os
resultados de tensões.

Dessa forma, três modelos numéricos foram considerados:

• MEC - 4 elementos lineares (n = 2) para o contorno externo e 12 elementos
quadráticos (n = 3) para o orifício;

• MECIG(a) - 4 NURBS de reta (c = 2 e p = 1) para o contorno externo e 4 NURBS
de arco (c = 3 e p = 2) para o orifício;

• MECIG(b) - 4 NURBS de reta (c = 2 e p = 1) para o contorno externo e 1 NURBS
de circunferência (c = 9 e p = 2) para o orifício.

A Figura 23 mostra a posição das fontes no orifício para cada modelo. Atenta-se ao
reposicionamento de fontes para locais de suavidade do contorno aproximado.

O erro relativo do valor da tensão de von Mises é representado no domínio pela
Figura 24. Devido à singularidade dos tensores necessários ao cálculo de tensões de
Cauchy em pontos internos, o erro ali sem regularização das integrais impossibilita uma
representação gráfica com r ∈ [1.0, 4.0] cm. Então, fez-se com r ∈ [1.01, 4.0] cm. Observa-se
que o erro no MECIG é menor em todo o domínio e aparentemente idêntico entre seus
modelos. Nota-se, em todos os modelos, que o erro aumenta ao se aproximar do contorno,
especialmente para o MEC, onde esse erro é agravado por não haver representação perfeita
da geometria. Certamente, todos os modelos apresentariam erros menores, ainda que já
pequenos, se não houvesse a imprecisão inerente à representação do meio infinito por uma
malha finita.

Os resultados de tensão de von Mises provenientes da solução analítica e das
numéricas no contorno do orifício circular podem ser contempladas na Figura 25. Devido
à imprecisão geométrica inerente do modelo em discretização lagrangiana, seu perímetro
foi normalizado pelo espaço gaussiano. Por meio do gráfico, é evidente a melhor precisão
dos modelos isogeométricos e a aparente equivalência de seus resultados. Ressalta-se que
os resultados de todos os modelos numéricos seriam ainda melhores se aumentado o
comprimento da malha do contorno externo em virtude da infinitude do meio.
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Figura 23 – Colocação de fontes
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Fonte: Elaborada pelo autor.

3.5.2 Exemplo 2

O segundo exemplo foi retirado de Chou e Pagano (1992). Trata-se de um anel sob
condições de contorno apenas essenciais. A configuração geométrica do exemplo pode ser
visualizada na Figura 26. O deslocamento radial no contorno externo é nulo, enquanto o
no contorno interno é definido por u0.

Por haver apenas condições essenciais de contorno, o campo de deslocamentos pode
ser calculado de maneira independente ao campo de tensões. A solução na referência é
dada em coordenadas polares. Dessa forma, escreve-se o deslocamento radial como

ur (r) = a u0

a2 − b2

[
r − b2

r

]
, (3.98)

enquanto o deslocamento na direção angular uθ é nulo em todo o domínio. A referência não
apresenta os campos de tensão. Entretanto, eles se tornam facilmente conhecidos mediante
aplicação das transformações descritas no Apêndice A. Os campos de deformação em
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Figura 24 – Erro (%) da tensão de von Mises no domínio para r ∈ [1.01, 4.0] cm
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Fonte: Elaborada pelo autor.

coordenadas polares são calculados por:

εr = ∂u

∂r
= a u0

a2 − b2

1 +
(

b

r

)2
 ; (3.99)

εθ = u

r
+ 1

r

∂uθ

∂θ
= a u0

a2 − b2

1 −
(

b

r

)2
 ; (3.100)

εrθ = 1
2

(
∂ur

r ∂θ
+ ∂uθ

∂r
− uθ

r

)
= 0. (3.101)

A transformação do campo de deformações para campo de tensões pode ser efetuada
mediante Eq. (A.26). Esse problema foi tido como EPD. Para a validação numérica das
formulações em contorno implementadas, considerou-se a = 1.0 m, b = 2.0 m e u0 = 1.0 mm.
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Figura 25 – Tensão de von Mises (kN/cm2) no orifício circular
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Figura 26 – Cilindro oco

Fonte: Adaptada de Chou e Pagano (1992)

Adotou-se, para o meio, E = 200 GPa e ν = 0.2. Os campos de deslocamentos radiais e de
tensão de von Mises, calculado pela Eq. (3.97), estão apresentados na Figura 27.

Esse exemplo foi discretizado mediante 5 modelos em elementos de contorno, os
quais são:
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Figura 27 – Solução analítica em EPD para cilindro oco
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• MEC(a) - 4 elementos quadráticos (n = 3) para cada orifício;

• MEC(b) = 12 elementos quadráticos (n = 3) para cada orifício;

• MEC(c) = 2 elementos de 6ª ordem (n = 7) para cada orifício;

• MECIG(a) = 4 NURBS de arco (c = 3 e p = 2) para cada orifício;

• MECIG(b) = 1 NURBS de circunferência (c = 9 e p = 2) para cada orifício.

A Figura 28 ilustra o posicionamento das fontes para cada um dos modelos discretos.

As Figuras 29 e 30 apresentam o erro relativo dos campos de deslocamento radial
e tensão de von Mises. Pelos mesmos motivos do exemplo anterior, os gráficos não foram
plotados com valores de r ∈ [1.0, 2.0] m, que englobaria todo o domínio. Para o MEC(a), por
envolver a malha lagrangiana mais pobre e consequentemente maior imprecisão geométrica,
mostra-se os referidos valores com r ∈ [1.1, 1.9]. Já para os outros modelos, os valores são
exibidos com r ∈ [1.05, 1.95].

Observa-se, pelas Figuras 29 e 30, que as discretizações isogeométricas apresentam
resultados significativamente mais precisos quando comparados aos das lagrangianas.
Percebe-se que o MEC(a), com a malha lagrangiana mais pobre, apresenta uma precisão
consideravelmente baixa, a qual é consideravelmente aumentada com o refinamento h no
MEC(b). Mostra-se que, para esse caso, a utilização de elementos lagrangianos de alta
ordem confere melhores resultados, conforme são visualizados para o MEC(c). Percebe-se
que os resultados dos modelos isogeométricos podem ser considerados excelentes, embora
com um pequeno número de pontos fonte. O MECIG(a) possui a mesma quantidade de
fontes do MEC(a) (24) e o MECIG(b) possui uma quantidade ainda menor (18). Mesmo
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Figura 28 – Colocação das fontes para cilindro oco
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Fonte: Elaborada pelo autor.

assim, a diferença de precisão é significante devido à melhor representação geométrica do
contorno. Especialmente nos modelos que apresentam maior precisão, é possível perceber
que o erro é maior em regiões de descontinuidade geométrica, inexistente no problema
real, e nas proximidades dos pontos fonte, pela influência das singularidades não tratadas
na integração. Nota-se que o erro no MECIG(b) é levemente menor do que no MECIG(a).
Ressalta-se que o erro nesses dois modelos está associado à imprecisão na integração, já
que os tensores da solução fundamental não são polinomiais e apresentam característica
singular.

A Figura 31 mostra os valores de tensão de von Mises nos contornos externos e
internos para cada um dos modelos. Novamente, mostra-se a precisão muito superior dos
modelos isogeométricos. Nos modelos lagrangianos, há melhoria considerável no resultado
executando o refinamento do MEC(a) para o MEC(b). Entretanto, utilizar elementos de alta
ordem ainda se mostra mais vantajoso. Ressalta-se que, assim como no exemplo anterior,
o valor da coordenada no contorno para os modelos lagrangianos foi normalizada perante
o espaço gaussiano devido à inerente imprecisão geométrica.
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Figura 29 – Erro relativo (%) no deslocamento radial
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Fonte: Elaborada pelo autor.
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Figura 30 – Erro relativo (%) na tensão de von Mises
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Fonte: Elaborada pelo autor.

Figura 31 – Tensão de von Mises no contorno
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4 MÉTODO DOS ELEMENTOS DE CONTORNO UNIDIMENSIONAL

Este capítulo apresenta a construção da formulação do MEC-1D. Parte-se da técnica
de resíduos ponderados até a obtenção do sistema de equações básico. Posteriormente,
mostra-se como se procede o aumento de ordem de aproximação mediante inclusão de
equações de pontos internos ao domínio. Aborda-se uma metodologia de solução para
o sistema de equações, efetuando aplicações à solução de barras e treliças a título de
validação.

4.1 Técnica de Resíduos Ponderados

Ao mesmo passo que a Técnica de Resíduos Ponderados foi aplicada a problemas
tensoriais de elasticidade no capítulo anterior, aplica-o a um problema elementar de
deslocamento axial em barras, descrito em forma forte pela Eq (B.8). Ainda que o
deslocamento u seja propriamente uma grandeza vetorial, pode-se dizer que se trata de
uma aplicação escalar da técnica devido à unidimensionalidade do problema. A forma em
resíduos ponderados é então dada por

∫
Ω

[
EA

d2u

dx2 + b (x)
]

w (x) dΩ = 0, (4.1)

em que b (x) é uma força de domínio e w (x) é uma função ponderadora escalar. O termo
Ω designa um domínio genérico conforme Figura 32, onde os índices 1 e 2 sobrescritos a x

designam primeiro e segundo nó, respectivamente. Para o desenvolvimento do MEC-1D,
é necessário que a função ponderadora seja uma solução fundamental em deslocamentos
(u∗) do problema, a qual é dada pela Eq. (C.22). Aplicando-a à Eq.(4.1), conduz-se a

∫
Ω

[
EA

d2u

dx2 + b (f)
]

u∗ (s, f) dΩ = 0, (4.2)

Figura 32 – Domínio linear

Fonte: Elaborada pelo autor.
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em que se diferencia as grandezas como dependentes do campo f e da fonte s.

Separando os termos da Eq. (4.2) e aplicando o Teorema de Gauss à derivada de
segunda ordem, obtêm-se

EA
du

dx
u∗ (s, f)

∣∣∣∣∣
x2

x1
−
∫
Ω

EA
du

dx

du∗

dx
dΩ +

∫
Ω

b (f) u∗ (s, f) dΩ = 0. (4.3)

Uma segunda aplicação do Teorema de Gauss pode ser efetuada à primeira integração da
Eq. (4.3). Então, obtêm-se

EA
du

dx
u∗ (s, f)

∣∣∣∣∣
x2

x1
− EA u (f) du∗

dx

∣∣∣∣∣
x2

x1
+
∫
Ω

EA u (f) d2u∗

dx2 dΩ +
∫
Ω

b (f) u∗ (s, f) dΩ = 0.

(4.4)
Substituindo a Eq. (C.15) na Eq. (4.4), têm-se

EA
du

dx
u∗ (s, f)

∣∣∣∣∣
x2

x1
− EA u (f) du∗

dx

∣∣∣∣∣
x2

x1
+
∫
Ω

EA u (f) δ (s, f) dΩ +
∫
Ω

b (f) u∗ (s, f) dΩ = 0,

(4.5)
em que δ (•) é função delta de Dirac, que na Eq. (4.5) está transladada para a fonte s.
Utilizando sua propriedade quando integrada no domínio, conduz-se a

EA
du

dx
u∗ (s, f)

∣∣∣∣∣
x2

x1
− EA u (f) du∗

dx

∣∣∣∣∣
x2

x1
− u (s) +

∫
Ω

b (f) u∗ (s, f) dΩ = 0. (4.6)

As últimas passagens são o que justifica a utilização de uma solução fundamental para o
desenvolvimento do método. Sua aplicação, em conjunto à do Teorema de Gauss, permite
transformar a integração em u (f) em uma subtração de termos que consistem em avaliações
da funções real e fundamental de deslocamento e de suas derivadas no contorno do domínio
linear e onde é posicionada a fonte. Aos primeiros termos da Eq. (4.6), pode-se aplicar as
Eqs. (B.7) e (C.23). Efetuando essas operações e organizando os termos, obtêm-se

u (s) + u (f) N∗ (s, f)|x
2

x1 = N (f) u∗ (s, f)|x
2

x1 +
∫
Ω

b (f) u∗ (s, f) dΩ, (4.7)

que é a equação base para a discretização no método.

4.2 Discretização

Como o domínio, o qual é representado pela Figura 32, é unidimensional, o seu
contorno, que lhe é inferior em 1 dimensão, trata-se dos pontos x1 e x2. Portanto, a
discretização básica do MEC-1D envolve a posição de duas fontes, uma em cada contorno.
Algebricamente, a Eq. (4.7) pode ser representada por

 u1

u2

+
−N∗

11 N∗
12

−N∗
21 N∗

22

 u1

u2

 =
−u∗

11 u∗
12

−u∗
21 u∗

22

 N1

N2

+



∫
Ω

b (f) u∗
1 (s, f) dΩ∫

Ω

b (f) u∗
2 (s, f) dΩ

 , (4.8)
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em que os índices subscritos nas grandezas reais indicam a posição no contorno conforme
a Figura 32. Nas grandezas fundamentais, optou-se por uma escrita compacta. Nos termos
que as representam com dois índices especificados, o primeiro indica a posição da fonte,
enquanto o segundo a posição do campo. Portanto, exprimem-se avaliações pontuais das
funções advindas da solução fundamental. Já quando há apenas um índice especificado,
este indica a posição da fonte, tendo então sua coordenada de campo variável. Ou seja,
representa a função proveniente da solução fundamental aplicada em um determinado
ponto fonte.

Da mesma maneira que a Eq. (3.13), a Eq. (4.7) foi obtida considerando a fonte
inserida no domínio. Dessa forma, as avaliações das funções da solução fundamental
presentes na Eq. (4.8) devem efetuadas no limite da posição da fonte tendendo a x1 ou a
x2. As Tabelas 1 e 2 mostram os resultados das análises limite variando fonte e campo
para as funções u∗ (s, f) e N∗ (s, f). O índice sobrescrito indica a posição do ponto no
contorno.

Tabela 1 – Avaliação no contorno de u∗ (s, f)

f1 f2

s1 0 −x2 − x1

2EA

s2 x2 − x1

2EA
0

Fonte: Elaborada pelo autor

Tabela 2 – Avaliação no contorno de
N∗ (s, f)

f1 f2

s1 1
2 −1

2

s2 1
2 −1

2
Fonte: Elaborada pelo autor

As integrações da Eq. (4.8) podem ser calculadas pela quadratura de Gauss-
Legendre. Ou seja,

∫
Ω

b (f) u∗ (s, f) dΩ =
1∫

−1

ϕj (ξ) bj u∗ (s, ξ) J (ξ) dξ, (4.9)

em que a função b (f) foi aproximada por uma função de forma de base lagrangiana ϕ (ξ).
O vetor bj representa o valor das forças de domínio nas fontes. A função J (ξ) é o jacobiano
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transformação do espaço de integração para o espaço real. A transformação de domínios
lineares é dada por

x (ξ) =
(

x2 − x1

2

)
ξ + x1 + x2

2 , (4.10)

em que ξ é a coordenada gaussiana. Portanto, calcula-se o jacobiano por

J (ξ) = dx

dξ
= x2 − x1

2 . (4.11)

A solução da Eq. (4.8) pode ser efetuada mediante aplicação das condições de
contorno em deslocamento e esforço normal seguido de troca de colunas, configurando um
sistema

aij xj = bi. (4.12)

Os índices i e j variam de 1 à 2. O vetor xj é o vetor de incógnitas, enquanto bi é calculado
pela soma do vetor de integrais de forças de domínio com o produto do vetor de condições
de contorno com sua matriz de incidência. Quanto às condições de contorno naturais,
é mais conveniente prescrevê-las como forças do que como esforços, uma vez que estes
dependem da orientação da seção transversal e aqueles apenas do eixo. A operação é
ilustrada pela Figura 33 e é executada algebricamente substituindo N1 por −f1. A Eq.
(4.8) é então modificado para

 u1

u2

+
−N∗

11 N∗
12

−N∗
21 N∗

22

 u1

u2

 =
u∗

11 u∗
12

u∗
21 u∗

22

 f1

f2

+



∫
Ω

b (f) u∗
1 (s, f) dΩ∫

Ω

b (f) u∗
2 (s, f) dΩ

 , (4.13)

podendo ser escrita de forma mais compacta por

1 − N∗
11 N∗

12

−N∗
21 1 + N∗

22

 u1

u2

 =
u∗

11 u∗
12

u∗
21 u∗

22

 f1

f2

+



∫
Ω

b (f) u∗
1 (s, f) dΩ∫

Ω

b (f) u∗
2 (s, f) dΩ

 . (4.14)

Figura 33 – Transformação de condições de contorno naturais de esforços normais para
forças

Fonte: Elaborada pelo autor.
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Comenta-se que, em tese, os elementos de contorno no MEC-1D são as fontes
aplicadas no contorno do domínio linear. Portanto, assim como era efetuado nos primórdios
do MEC, tratam-se de elementos constantes. Para a discretização de uma fibra, vários
domínios, conforme o apresentado, poderiam ser utilizados. Tal metodologia configura
uma técnica de sub-regiões do método (Jaworski, 1981; Howell; Doyle, 1983). Entretanto,
devido à possibilidade de analogia com o MEF, é mais conveniente se referir ao elemento de
contorno (fonte) como nó e à sub-região como elemento. Portanto, assim foi convencionado
no texto.

4.2.1 Aumento de ordem de aproximação

Uma vez que o domínio linear possui apenas dois pontos como contorno, só há
possibilidade de aplicação de duas fontes nele. Consequentemente, essa discretização
concede apenas uma aproximação linear do domínio. Uma alternativa a possibilitar um
aumento na ordem de aproximação do domínio é utilizando equações de pontos internos,
dadas por

uk (s) +
{

−N∗
k1 N∗

k2

} u1

u2

 =
{

u∗
k1 u∗

k2

} f1

f2

+
∫
Ω

b (f) u∗
k (s, f) dΩ, (4.15)

em que o índice k varia de 1 até o número de fontes internas. A Eq. (4.15) pode ser inserida
no sistema da Eq. (4.14), conduzindo a

1 − N∗
11 0l N∗

12

−N∗
k1 δkl N∗

k2

−N∗
21 0l 1 + N∗

22




u1

ul

u2

 =


u∗

11 0l u∗
12

u∗
k1 δkl u∗

k2

u∗
21 0l u∗

22




f1

0l

f2



+



∫
Ω

b (f) u∗
1 (s, f) dΩ∫

Ω

b (f) u∗
k (s, f) dΩ∫

Ω

b (f) u∗
2 (s, f) dΩ


,

(4.16)

cujo índice l, assim como k, varia de 1 ao número de pontos internos. A matriz δkl é um
tensor delta de Kronecker. Uma limitação desse tipo de refinamento é a impossibilidade
de prescrição de condições de contorno nas fontes adicionadas, já que se tratam de pontos
internos ao domínio.

Outra consequência de fontes extras estarem posicionadas no domínio é que não há
necessidade de executar a avaliação de u∗ (s, f) e N∗ (s, f) via limite para elas. Entretanto,
alguma atenção deve ser concedida à integração no domínio da função u∗ (s, f). Tal
função apresenta continuidade C0 na posição da fonte, conforme visto na Figura 34, e se
configura como um transtorno à integração via quadratura de Gauss-Legendre. Portanto,
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é conveniente dividi-la no domínio em
∫
Ω

b (f) u∗
k (s, f) dΩ =

xs∫
x1

b (f) u∗
k (s, f) dΩI +

x2∫
xs

b (f) u∗
k (s, f) dΩII . (4.17)

Conforme já comentado, nas integrações de domínio, a força de domínio b (f) é aproximada
por uma função de forma com base lagrangiana ϕ (ξ). Seu suporte é ξ ∈ [−1, 1], que
engloba todo o elemento. Dessa forma, para utilizar a quadratura de Gauss-Legendre com
maior eficiência, torna-se necessário alocar um subespaço gaussiano para cada subintegral
da Eq. (4.17).

Figura 34 – Tratamento da integração de u∗ (s, f) para fonte interna

Fonte: Elaborada pelo autor.

Para x ∈ [x1, xs], aloca-se o subespaço gaussiano ξI . A função de transformação de
suas coordenadas para o espaço gaussiano ξ é dada por

ξ
(
ξI
)

=
(
ξI + 1

) ξ̂ + 1
2

− 1, (4.18)

em que ξ̂ é a coordenada da fonte no espaço gaussiano ξ. O jacobiano da transformação é
calculado, portanto, por

J I = dξ

dξI
= ξ̂ + 1

2 . (4.19)

Então, transforma-se a primeira integral para o subespaço ξI por
xs∫

x1

b (f) u∗
k (s, f) dΩI =

1∫
−1

ϕj

(
ξ
(
ξI
))

bj u∗
k

(
s, ξI

)
J I dξI , (4.20)

com o índice j variando de 1 ao número de fontes. Ressalta-se que a base lagrangiana deve
ser calculada utilizando as coordenadas ξ, que são expressas em função de ξI .

Já para x ∈ [xs, x2], aloca-se o subespaço gaussiano ξII . A transformação de suas
coordenadas para ξ é dada pela função

ξ
(
ξII
)

=
(
ξII + 1

)1 − ξ̂

2

+ ξ̂. (4.21)
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Portanto, o jacobiano da transformação é calculado por

J II = dξ

dξII
= 1 − ξ̂

2 . (4.22)

Então, transforma-se a primeira integral para o subespaço ξII por

x2∫
xs

b (f) u∗
k (s, f) dΩII =

1∫
−1

ϕj

(
ξII
)

bj u∗
k

(
s, ξII

)
J II dξII , (4.23)

donde se vale dos mesmos comentários para a transformação ξI → ξ.

Efetuando o tratamento da integração, têm-se para cada trecho o produto de uma
função linear (deslocamentos fundamentais) com uma função de forma polinomial. O
integrando em cada trecho é então um polinômio de ordem superior em uma unidade ao
da função de forma. Sabendo que n pontos na quadratura de Gauss-Legendre integram
analiticamente um polinômio de ordem 2 n−1, percebe-se que aplicações viáveis do método
não necessitam de muitos pontos de integração, uma vez conhecidos os problemas de
instabilidade numérica de elementos com ordem muito elevada.

4.2.2 Expansão da dimensionalidade

O desenvolvimento até agora apresentado é aplicável à problemas unidimensionais.
Para a validade do sistema da Eq. (4.8) a elementos reticulados em duas ou três dimensões,
deve-se incluir linhas e colunas nulas nas matrizes. Esses termos adicionados devem
multiplicar outros, também nulos, em cada vetor, e que, portanto, também devem ser
incluídos. Devido à nova dimensão das matrizes e dos vetores, torna-se mais conveniente
escrever as equações totalmente em notação indicial, como

hij uj = gij f j + pi, (4.24)

cujos índices i e j variam de 1 ao número de fontes multiplicado pela dimensão do problema.
As matrizes gij e hij correspondem à avaliação no contorno das funções de deslocamento
e esforço normal fundamentais, respectivamente. O vetor pi representa a integração no
domínio da função de deslocamento fundamental para uma determinada posição de fonte.
O traço acima dos vetores indica que sua prescrição está no referencial local do elemento.
Desse modo a inserção de dimensões se dá ortogonalmente ao eixo x original da Figura 32.
Tal eixo é representado por x1 na Figura 35, a qual mostra o sistema local de coordenadas
x1 x2 com a expansão dimensional. Nela, o índice d faria de 1 ao número de dimensões (2).

A inclusão dos graus de liberdade referentes às novas dimensões faz com que a Eq.
(4.24) não possa mais ser resolvida mediante troca de colunas. Isso se deve ao fato de que a
matriz que multiplica o vetor de incógnitas resultante desse procedimento é singular. Para
que se obtenha um sistema passivo de solução, necessita-se pré-multiplicar a Eq. (4.24)
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Figura 35 – Domínio linear no espaço bidimensional

Fonte: Elaborada pelo autor.

pelo inverso da matriz G, ou seja,

gki
−1 hij uj = gki

−1 (gij fj + pi, ) (4.25)

podendo ser desenvolvido para
kkj uj = fk + qk, (4.26)

em que o índice k possui a mesma variação dos índices i e j. Nota-se que tal sistema é
equivalente ao do MEF (Reddy, 2005; Zienkiewicz; Taylor; Zhu, 2013). Pode-se rotacionar
os vetores da Eq. (4.26) para um referencial mais conveniente de se prescrever condições
de contorno, chamado de referencial global, descrito pelo plano x1 x2 na Figura 35. O
procedimento é efetuado multiplicando cada conjunto nodal dos vetores pela inversa de
uma matriz de rotação

rcd (θ) =
cos (θ) −sen (θ)
sen (θ) cos (θ)

 , (4.27)

cujo ângulo θ é o indicado na Figura 35. Sabendo que a matriz de rotação é ortogonal,
têm-se

kkj rlj ul = rkl fl + rkl ql, (4.28)

em que o índice l possui a mesma variação dos índices j e k. A matrizes de rotação
transpostas da equação anterior são construídas mediante alocação de submatrizes rdc

de forma que multipliquem as grandezas nodais. Pré-multiplicando a Eq. (4.28) por rmk,
têm-se

rmk kkj rlj ul = rmk rkl fl + rmk rkl ql, (4.29)

que pode ser desenvolvida para

kml ul = fm + qm. (4.30)

A Eq. (4.30) se trata da Eq. (4.26) escrita no referencial global. Sua solução é conhecida
mediante aplicação de condições de contorno conjuntamente a técnicas de solução dos
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sistemas do MEF, já que a matriz kml, análoga a matriz de rigidez, também é singular.
As condições de contorno essenciais nos pontos internos devem ser nulas, de maneira
a respeitar a Eq. (4.16). Nesse estudo, utilizou-se a técnica de construção de sistema
restringido para a solução dos problemas (Cook et al., 2001).

4.2.3 Subregiões

A técnica de subregiões do MEC-1D é análoga à conectividade de elementos no
MEF. Escreve-se a matriz de rigidez global do sistema, a qual é construída mediante
incidência nodal. A compatibilidade de domínios se dá através do compartilhamento de
deslocamentos em uma fonte que conecta dois ou mais elementos. A Figura 36 ilustra
o procedimento de construção do sistema global de equações para dois elementos. Nela,
mostra-se em azul a contribuição do primeiro elemento e em vermelho a do segundo.

Figura 36 – Incidência de elementos (sub-regiões)

Fonte: Elaborada pelo autor.

4.2.4 Grandezas no domínio

Em qualquer ponto no domínio, é possível interpolar os deslocamentos a partir de
seus valores nas fontes. Quanto ao esforço normal, este poderia ser calculado por meio da
Eq. (B.7). Escrevendo os deslocamentos a partir das funções de forma funções de forma,
desenvolve-se a equação para

N (ξ) = EA
dϕj

dξ
uj. (4.31)

Se o grau de aproximação do elemento for maior ou igual o da solução analítica, conside-
rando que ela seja polinomial, o procedimento fornece valores analíticos para deslocamentos
e esforços normais.

Em caso de escolha de um grau de aproximação menor, a aproximação do domínio
via função de forma não retorna a solução analítica. Entretanto, as fontes podem recuperar
os valores analíticos de deslocamentos e forças internas em seus pontos de aplicação. Dessa
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forma, valores analíticos de esforço normal podem ser recuperados através de equilíbrio de
um trecho do elemento. Isso é possível apenas quando sua função de forma para forças de
domínio é capaz de representar a função original. A Figura 37 ilustra o procedimento para
uma seção localizada em xd

(
ξ̂
)
.

Figura 37 – Cálculo de esforço normal via equilíbrio

Fonte: Elaborada pelo autor.

Impondo o equilíbrio de forças na direção x1, têm-se

N (ξ) = −f 1 −
x1(ξ̂)∫
x1

1

b1 (ξ) dx1. (4.32)

A força de domínio no referencial local pode ser escrita como uma projeção em x1 do vetor
em coordenadas globais, o qual pode ser avaliado por meio das funções de forma. Então,

N (ξ) = −f 1 −
ξ̂∫

−1

ri1 (θ) Φij

(
ξ̂
)

bj J dξ, (4.33)

em que o índice i varia de 1 ao número de dimensões do problema e j varia de 1 ao número
de fontes no elemento multiplicado pelo número de dimensões. A matriz Φij é calculada
pela Eq. (3.24) e o ri1 corresponde à primeira coluna da matriz de rotação descrita pela
Eq. (4.27).

A integração na Eq. (4.33) pode ser efetuada alocando um espaço gaussiano em[
−1, ξ̂

]
. O procedimento é análogo ao discutido na seção 4.2.1 para a integração da região

à esquerda da fonte interna, conforme Figura 34. Portanto, escreve-se a Eq. (4.33) como

N (ξ) = −f 1 −
1∫

−1

ri1 (θ) Φij

(
ξI
)

bj J J IdξI , (4.34)

em que J I é calculado pela Eq. (4.19) com a função de transformação de espaços gaussianos
dada pela Eq (4.18).
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4.3 Exemplos

A formulação de MEC-1D apresentada foi implementada e aplicada a dois exemplos
a título de validação. No primeiro, comparou-se os resultados com a solução analítica, a
qual é recuperada mediante utilização de elementos de alta ordem. Enquanto no segundo,
comparou-se os resultados nas fontes com os obtidos pela referência, buscando recuperar
valores analíticos de esforço normal mesmo com uso de elementos lineares. Variou-se o
número de pontos de integração de acordo com a necessidade do problema.

4.3.1 Exemplo 1

O primeiro exemplo se trata de uma barra submetida à uma força de domínio
regida por uma função do segundo grau. A Figura 38 ilustra geometricamente o problema.

Figura 38 – Barra sob carga axial quadrática

Fonte: Elaborada pelo autor.

Inicia-se o procedimento de obtenção da solução analítica substituindo a função da
força de domínio na Eq. (B.8). Portanto,

EA
d2u

dx2 = −x2. (4.35)

Integrando ambos os lados em x duas vezes, têm-se uma família de soluções em desloca-
mentos definidas por

u (x) = 1
EA

(
x4

12 + c1 x + c2

)
, (4.36)

em que c1 e c2 são constantes de integração. Seus valores tornam-se conhecidos após a
aplicação das condições de contorno u (0) = 0 e u (L) = 0. A solução analítica é então
dada por

u (x) = x (x3 − L3)
12 EA

. (4.37)

Calculando a função do esforço normal pela Eq. (B.7), têm-se

N (x) = 4x3 − L3

12 . (4.38)

Para comparação com o modelo numérico, adotou-se L = 1 m, E = 200 GPa e
A = 1.0 cm2. Utilizou-se um elemento de quarta ordem para recuperar os valores analíticos
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de deslocamentos e consequentemente os de esforços normais em todo o domínio. Suas 5
fontes foram igualmente espaçadas. O número mínimo de pontos de integração necessários
à integração exata é 3, que, portanto, foi o utilizado. A Figura 39 ilustra os resultados de
deslocamento e esforço normal. Pela qual é evidente o sucesso na recuperação da solução
analítica.

Figura 39 – Comparação com a solução analítica para
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Fonte: Elaborada pelo autor.

4.3.2 Exemplo 2

O segundo exemplo foi retirado de Buffon (2018) e se trata de uma treliça isostática
de três barras com cargas de domínio. O exemplo é útil para verificar as rotações de sistemas
de coordenadas e a recuperação de valores analíticos de esforços normais. A Figura 40 ilustra
a geometria do problema. Nela, os números inscritos em quadrados designam a numeração
de cada elementos, enquanto os números circunscritos representam as numerações nodais.
As letras H e R indicam as reações horizontais e verticais respectivamente, já seus índices
subscritos mencionam o nó de atuação. Na referência, apresenta-se a rigidez axial EA de
cada elemento. Contudo, pelo fato de a estrutura ser isostática, tais valores não influenciam
os resultados mecânicos que aqui serão comparados (esforço normal e reações de apoio).

Todos os elementos foram considerados como de aproximação linear. Tal grau já é
suficiente para recuperar os esforços axiais analíticos em todas as barras, já que a força
de domínio de maior ordem é linear, a qual atua no elemento 2. Portanto, utilizou-se
apenas 3 fontes e 2 pontos de integração. As Tabelas 3 e 4 mostram a comparação dos
resultados obtidos para reação de apoio e esforço normal em alguns pontos das barras com
o modelo em MEF da referência. O software baseado em MEF utilizado foi o FTOOL, o
qual também recupera valores analíticos de esforços normais (Technical-Scientific Software
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Figura 40 – Treliça isostática com membros submetidos à carga axialmente distribuída

Fonte: Adaptada de Buffon (2018).

Tabela 3 – Reações de apoio (kN)

Reação de apoio Autor Buffon (2018)

H1 −5.000 −5.000

V1 −10.250 −10.250

V2 −2.750 −2.750
Fonte: Elaborada pelo autor.

Development Institute, 2024). A comparação foi efetuada em 3 casas decimais, que é a
precisão exibida pela referência. Os resultados comprovam o sucesso da implementação.
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Tabela 4 – Esforços normais (kN)

Elemento x1 (m) x2 (m) Autor Buffon (2018)

1 0.000 0.000 −0.125 −0.125

4.000 0.000 −4.125 −4.125

2

4.000 0.000 4.958 4.958

3.250 0.500 4.507 4.507

2.500 1.000 3.155 3.155

1.750 1.500 0.901 0.901

1.000 2.000 −2.253 −2.253

3 1.000 2.000 4.752 4.752

0.000 0.000 11.460 11.460
Fonte: Elaborada pelo autor.
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5 ACOPLAMENTO MEC/MEC-1D

Neste capítulo, apresenta-se a formulação do acoplamento MEC/MEC-1D para
solução de problemas de inclusões esbeltas em meios contínuos. A formulação é apresentada
tanto considerando a abordagem lagrangiana para o meio quanto a isogeométrica. No
caso das inclusões, foram consideradas apenas com aproximação lagrangiana, uma vez que
o estudo trata apenas de inclusões de geometria reta, que é caso de maior aplicação na
engenharia. Nos exemplos, apresenta-se uma metodologia alternativa de discretização das
inclusões, a qual se mostra mais eficiente computacionalmente. Apresentam-se resultados
de variação de flexibilidade mediante variação da discretização dos enrijecedores e através
da variação de sua taxa volumétrica.

5.1 Formulação

Dado um domínio de duas ou três dimensões Ω com um domínio linear Ωf imerso,
considera-se que o mecanismo de vinculação entre os dois é a força de aderência existente
entre eles. Portanto, conforme ilustrado pela Figura 41, é válido separá-los, impondo
nos domínios a força reativa recíproca de aderência, vide Terceira Lei de Newton. O
vetor fd representa ação da inclusão no domínio Ω, já f f representa a ação desse domínio
na inclusão. Fisicamente, fd = −f f e ambas são representadas como forças de domínio.
Ademais, considerando a aderência perfeita entre os domínios, têm-se que os deslocamentos
de Ωf são iguais aos de Ω para Ω ∩ Ωf , que é propriamente Ωf .

Figura 41 – Inclusão esbelta em domínio

Fonte: Elaborada pelo autor.

Para a aplicação de uma fonte sobre o contorno, retorna-se à Identidade Somigliana
já executado o processo limite, conforme Eq. (3.19). Então, considera-se como força de
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volume bi a força de aderência que a inclusão executa sobre o domínio Ω. Portanto,
1
2 δkl ul (s) +

∫
Γ

ul (f) p∗
kl (s, f) dΓ =

∫
Γ

pi (f) u∗
ki (s, f) dΓ +

nf∑
f=1

∫
Ωf

fd
i (f) u∗

ki (s, f) dΩf ,

(5.1)

em que nf é o número total de inclusões esbeltas. Uma fonte no contorno adiciona um
número de incógnitas igual ao número de dimensões da formulação ao sistema final. A Eq.
(5.1) fornece esse mesmo número em equações para cada fonte.

Os deslocamentos em Ωf podem ser obtidos ao se posicionar fontes nessa região
do domínio, as quais constituem pontos internos em Ω. Dessa forma, pode-se utilizar a
Eq. (3.13) para essa avaliação. Nela, substitui-se a integração do produto do tensor de
deslocamentos fundamentais com as forças de domínio pelo mesmo somatório da Eq. (5.1).
Então, conduz-se a

uk (s) +
∫
Γ

ul (f) p∗
kl (s, f) dΓ =

∫
Γ

pi (f) u∗
ki (s, f) dΓ +

nf∑
f=1

∫
Ωf

fd
i (f) u∗

ki (s, f) dΩf .
(5.2)

Cada fonte posicionada no domínio de uma inclusão adiciona em incógnitas ao sistema
duas vezes o número de dimensões do problema. Metade dessas incógnitas são relativas
aos próprios deslocamentos, enquanto a outra metade se dá em forças de aderência. A Eq.
(5.2) confere um número de equações equivalente ao número de dimensões de análise por
fonte. Portanto, necessita-se de uma equação para metade das incógnitas adicionadas por
cada fonte em Ωf .

Assumindo que as inclusões atendam apenas a solicitações axiais, que seu com-
portamento é elástico-linear e que a força de aderência entre os domínios é o seu único
mecanismo vinculador, pode descrever o comportamento das fibras anulando o vetor fk

na Eq. (4.26). Escrevendo-a de forma a evidenciar as forças de aderência, têm-se

kkj uj = bkl f
f

l , (5.3)

em que bkl é dado por gki
−1 cil. A matriz cil é predominantemente nula, com exceção dos

seus termos da diagonal correspondentes ao referencial local da direção axial, os quais são
calculados pelas integrações da Eq. (4.16) ao se deixar a força de domínio em evidência.
Adiantando processos de solução do sistema final do acoplamento, deve-se adicionar uma
unidade nos termos da diagonal de bkl correspondentes aos graus de liberdade que não
sejam relacionados à direção axial da inclusão. Dessa forma, garante-se que a solução do
sistema conceda valores de força de aderência apenas na direção axial, uma vez que esse
procedimento impõe nulidade nas outras direções. A transposição da Eq. (5.3) para o
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referencial global é iniciada pela transposição dos vetores. Executando o procedimento,
conduz-se a

kkj rjm um = bkl rln f
f

n, (5.4)

que pré-multiplicada por rok resulta em

rok kkj rjm um = rok bkl rln f
f

n. (5.5)

Os produtos entre matrizes realizam sua transformação para o referencial global. Então,
vale-se de

kom um = bon f f
n , (5.6)

em que os índices m e n obviamente possuem a mesma variação. Uma vez que f f = −fd,
o sistema da Eq. (5.6) concede um número equações equivalente ao número de dimensões
do problema por fonte posicionada em Ωf . Número que faltava para a possibilidade de
solução do sistema final.

5.2 Discretização

Ao se tratar da discretização da Eq. (5.1), pode-se aproveitar o que foi discutido
nas seções 3.3 e 3.4. Dessa forma, para os três primeiros termos, utiliza-se a Eq. (3.23),
em caso de aproximação lagrangiana do contorno, ou a Eq. (3.75), para uma abordagem
isogométrica. Então, discute-se a discretização do somatório das integrais que envolvem
as forças de aderência. Utilizando elementos lagrangianos para as inclusões, têm-se, para
uma fonte em Γ,

nf∑
f=1

∫
Ωf

fd
i (f) u∗

ki (s, f) dΩf =
nfe∑

fe=1

1∫
−1

Φij (ξ) fd
j (f) u∗

ki (s, ξ) J (ξ) dξ, (5.7)

em que nfe é o número de elementos de MEC-1D utilizados para a discretização conside-
rando todas as inclusões. O índice j varia de 1 até o número de dimensões do problema
multiplicado pelo número de fontes no elemento integrado. A matriz Φij (ξ) é calculada
pela Eq. (3.24) e o valor do jacobiano da transformação do espaço gaussiano para o espaço
real J (ξ) é acessado por meio da Eq. (3.26). Como as fontes de referência da Eq. (5.1)
estão no contorno Γ, as integrações da Eq. (5.7) não são singulares.

Da mesma maneira que se construiu o sistema da Eq. (3.27), vale-se de uma Eq.
(5.1) para cada fonte posicionada sobre Γ. Portanto, é possível formar um sistema do tipo

1
2 δij uj + hij uj = gij pj + gf

ik fd
k , (5.8)

em que a matriz gf
ik é calculada por meio da Eq. (5.7). O índice k varia de 1 ao número de

fontes em Ωf multiplicado pela dimensão do problema.



108

Para discretização da Eq. (5.2), retorna-se ao que foi apresentado nas seções 3.3.2
e 3.4.2. Para as duas primeiras integrais, pode-se utilizar a Eq. (3.46), para aproximação
lagrangiana do contorno, ou a Eq. (3.91), em caso de descrição isogeométrica. Quanto ao
somatório das integrais que envolvem a força de aderência, sua discretização é idêntica à
apresentada na Eq. (5.7), com a ressalva de que a fonte de referência agora se encontra em
Ωf . Isso faz com que a integração da Eq. (5.7) possa ser fracamente singular de ordem
O (ln (1/r)), nesse caso, quando o elemento integrado contiver o ponto fonte. O tratamento
da singularidade pode ser efetuado mediante MSS, conforme discutido para a regularização
da integração do tensor de deslocamentos fundamentais apresentado na seção 3.3.1.

Outra possibilidade de ocorrência de integração singular é quando há o cruzamento
de inclusões. Se uma fonte de uma inclusão estiver posicionada sobre o domínio de outra,
há o mesmo caso de integração fracamente singular. Além disso, a simples proximidade de
fonte com outro domínio de inclusão pode conduzir a integrações quase-singulares. A Figura
42 ilustra essa possibilidade quando uma fonte s, em vermelho, contida em Ω1 é usada
como referência à integração de um elemento em azul que discretiza Ω2. Uma alternativa à
mitigação desses transtornos se dá por meio de desenvolvimento de mecanismos de controle
da discretização dos domínios Ωf .

Figura 42 – Possibilidade de singularidade na integração de domínio de inclusões para
fontes internas

Fonte: Elaborada pelo autor.

Visando evitar distribuições de fibras com cruzamento de domínio, o algoritmo
de tratamento desenvolvido pelo autor consiste, a princípio, em representar a extensão
infinita do comprimento de cada enrijecedor como uma função afim, conforme se indica
na Figura 43. Nela, escreveu-se uma função afim f : x1 → x2 para cada domínio de fibra.
Também são postas as coordenadas de seus pontos extremos como uma variável x seguida
de um índice subscrito e outro sobrescrito. O índice subscrito tem a simples utilidade
a representação da dimensão do vetor posição, e, portanto, varia de 1 a 2. Quanto ao
sobrescrito, a letra A corresponde a ponto extremo do primeiro domínio, enquanto a letra
B se refere ao segundo. Os números que as seguem se referem à ordem dos pontos na
formação da reta e foram escritos apenas por organização.
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Figura 43 – Descrição geométrica funcional para as fibras

Fonte: Elaborada pelo autor.

Supondo que seja lançada a fibra de domínio Ω1, enquanto a fibra de domínio
Ω2 já exista. Calcula-se os coeficientes das funções afins utilizando as coordenadas de
extremidade por:  a0

a1

 =
1 xA1

1

1 xA2
1

−1 xA1
2

xA2
2

 ; (5.9)

 b0

b1

 =
1 xB1

1

1 xB2
1

−1 xB1
2

xB2
2

 . (5.10)

Em posse desses coeficientes, facilmente se calcula a coordenada horizontal ponto de
interseção entre as duas funções igualando suas imagens. Dessa forma, têm-se

xC
1 = b0 − a0

a1 − b1
, ou (5.11)

xC
1 = a0 − b0

b1 − a1
. (5.12)

A coordenada vertical é facilmente obtida ao se utilizar a horizontal em qualquer uma das
duas funções. Conforme ilustra a Figura 44, há a interseção de domínios de inclusão quando
xC

d pertencer a ambos. Assim, descarta-se a fibra a ser lançada. Obviamente, para evitar
domínios muito próximos, que potencialmente também conduziriam a integrações quase-
singulares, é conveniente adotar um desvio na verificação de pertencimento aos domínios.
Esse desvio deve alongar virtualmente os domínios para verificação de pertencimento do
ponto de interseção, recusando inclusões muito próximas, mas que ainda não se cruzem.

Apesar de eficaz quando da verificação de interseções, o algoritmo descrito é incapaz
de recusar o lançamento de uma fibra quase paralela e muito próxima a outra existente.
Claramente, tal ocorrência também poderia produzir integrações quase-singulares. Assim,
tendo em vista uma discretização prévia, verifica-se a proximidade entre as fontes da
inclusão a ser lançada e a fontes das inclusões já existentes. Se a diferença para uma das
fontes da fibra a ser lançada for menor do que uma tolerância, recusa-se esse lançamento.
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Figura 44 – Cruzamento de funções geométricas de fibra para

(a) xC
d ̸∈ Ω1 e xC

d ̸∈ Ω2 (b) xC
d ∈ Ω1 e xC

d ̸∈ Ω2

(c) xC
d ̸∈ Ω1 e xC

d ∈ Ω2 (d) xC
d ∈ Ω1 e xC

d ∈ Ω2

Fonte: Elaborada pelo autor.

Retornando propriamente à discretização das equações do acoplamento, sabe-se
que, para cada fonte posicionada em Ωf , vale-se de uma Eq. (5.2). Então, pode-se formar
um sistema do tipo

δlk uk + hlj uj = glj pj + gf
lk fd

k , (5.13)

em que o índice l tem a mesma variação do índice k.

Quanto à descrição do comportamento mecânico da inclusão, dado pela Eq. (5.6),
pode-se utilizar as técnicas de aumento de ordem e de sub-regiões do MEC-1D descritos
respetivamente nas seções 4.2.1 e 4.2.3. O sistema final para as inclusões deve ser do tipo

klk uk = blk f f
k . (5.14)

Agrupando os subsistemas descritos pelas Eq. (5.8), (5.13) e (5.14) em um único
só, têm-se 

δij + hij 0ik −gf
ik

hlj δlk −gf
lk

0lj klk glk




uj

uk

fd
k

 =


gij

glj

0lj

 pj, (5.15)

em que já se aplicou a identidade f f
k = −fd

k . Atesta-se que o sistema tem uma equação
para cada incógnita já que i + 2 l = i + 2 k, considerando os valores máximos de cada
índice. As condições de contorno são impostas em uj e pj. Então, a solução do sistema
envolve uma troca de colunas em j, alocando valores conhecidos à direita e desconhecidos
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à esquerda. O processo resulta em
aij 0ik −gf

ik

alj δlk −gf
lk

0lj klk glk




xj

uk

fd
k

 =


bij

blj

0lj

 yj, (5.16)

que constitui um sistema linearmente independente.

5.3 Pontos internos

Após solução do sistema descrito pela Eq. (5.15), têm-se todos os valores de uj e pj

nas fontes no contorno e de uk e fd
k nas fontes sobre as inclusões. O cálculo de grandezas no

domínio envolve a posição de fontes em seu interior. No caso de deslocamentos, utiliza-se a
Eq. (5.2), cuja discretização já foi comentada. Quanto ao tensor tensão de Cauchy, inclui-se
a parcela da força aderência à Eq. (3.49), conduzindo a

σkm (s) +
∫
Γ

ul (f) s∗
klm (s, f) dΓ =

∫
Γ

pi (f) d∗
kim (s, f) dΓ +

nf∑
f=1

∫
Ωf

fd
i (f) d∗

kim (s, f) dΩf ,
(5.17)

cuja discretização das duas primeiras integrações já foi posta pela Eq. (3.52). O somatório
da integrais de forças de aderência pode ser discretizado como

nf∑
f=1

∫
Ωf

fd
i (f) d∗

kim (s, f) dΩf =
nfe∑

fe=1

1∫
−1

Φij (ξ) fd
j (f) d∗

kim (s, ξ) J (ξ) dξ. (5.18)

O esforço normal em Ωf pode ser calculado pelas metodologias discutidas na seção
4.2.4. Nos exemplos de aplicação, utilizou-se procedimento de cálculo por meio do equilíbrio
do elemento devido à natural maior precisão.

5.4 Pontos sobre o contorno e flexibilidade

Quanto ao cálculo de grandezas em pontos sobre o contorno Γ, seria possível
utilizar a Eq. (5.17). Entretanto, recairia-se nas mesmas questões de singularidades já
discutidas nas seções 3.3.3 e 3.4.3. As formulações indiretas discutidas nessas mesmas
seções, entretanto, continuam válidas para Γ. Portanto podem ser utilizadas da mesma
maneira que foram escritas. Unido ao fato de não precisarem de integração, são mais
viáveis de serem utilizadas. A validade também é mantida para a metodologia de cálculo
da flexibilidade, discutida nas seções 3.3.4 e 3.4.4.

5.5 Exemplos

Buscou-se aplicar a formulação implementada a exemplos de desenvolvimento
autoral e a outros provenientes da literatura. Apresenta-se uma metodologia mais eficiente
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de discretização dos enrijecedores quanto à obtenção do esforço normal no primeiro
exemplo, a qual é aplicada nos seguintes e comparada à implementação de outros autores.
Verifica-se a influência da discretização das fibras nos resultados de flexibilidade, bem
como a influência de sua taxa de distribuição volumétrica.

5.5.1 Exemplo 1

O primeiro exemplo tem como objetivo demonstrar a proposta de discretização de
inclusões lineares. Trata-se de uma estrutura elementar com apenas 1 enrijecedor, conforme
ilustrado na Figura 45.

Figura 45 – Configuração do exemplo de demonstração da discretização de fibra proposta

Fonte: Elaborada pelo autor.

Observando os resultados de Buffon (2018), percebeu-se que o comportamento do
esforço normal nos enrijecedores com o refinamento da malha tende a apresentar elevados
gradientes em suas pontas. Portanto, acredita-se que posicionar mais fontes nas pontas
contribua para uma melhor capitação desses gradientes, tornando o restante do domínio
da fibra numericamente mais regular. Dessa maneira, torna-se possível representar bem
essa parcela com um maior espaçamento entre fontes.

Então, propõe-se uma discretização irregular para o enrijecedor, posicionando em
torno de 1 elemento linear para cada 1% de comprimento de inclusão nos primeiros 5% de
cada extremidade. A aproximação linear dos primeiros elementos é justificada pelos elevados
gradientes nessa região, tendo como função estabelecer um amortecimento numérico para a
aproximação do restante do domínio da inclusão. Desse modo, discretizou-se o enrijecedor
com 5 elementos lineares nos 5 primeiros centímetros de cada ponto. Para o restante de
seu domínio, utilizou-se 10 elementos quadráticos, totalizando 31 fontes. Cada lado do
contorno foi discretizado com dois elementos lagrangianos quadráticos, ou seja, 12 fontes
foram utilizadas. A Figura 46 ilustra a posição das fontes.
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Figura 46 – Posição das fontes do exemplo de demonstração da discretização de fibra
proposta
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Fonte: Elaborada pelo autor.

Utilizou-se a mesma discretização de contorno, porém com variação da discretização
do enrijecedor para comparação de resultados. Para cada uma das outras discretizações,
utilizou-se fontes igualmente espaçadas entre si. A Figura 47 ilustra os resultados obtidos
para o esforço normal na inclusão. Pela qual, percebe-se que há naturalmente uma
necessidade de um número considerável de fontes para a convergência satisfatória do

Figura 47 – Esforço normal na fibra para diferentes discretizações
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Fonte: Elaborada pelo autor.
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esforço normal. Também é evidente que discretização proposta produz resultados quase
tão bons quanto à utilização de 135 fontes igualmente espaçadas entre si, mesmo com um
número bem inferior de fontes. Tal método de discretização pode ser capaz de melhorar
bastante o tempo de processamento, uma vez considerando o aumento do sistema da Eq.
(5.8) para cada fonte de fibra. Outro custo a ser reduzido decorre da necessidade de uma
quantidade demasiada de pontos de integração para a avaliação das integrais que envolvem
o produto do tensor de deslocamentos fundamentais com a força de aderência.

5.5.2 Exemplo 2

O segundo exemplo foi retirado de Buffon (2018) e é representado pela Figura
48. O autor apresenta dados da solução via MEF utilizando o software comercial Ansys
(ANSYS, Inc, 2024). Também são apresentados diversos dados da solução via acoplamento
MEC/MEC-1D implementado pelo autor, pelo qual se variou a discretização das inclusões.

Figura 48 – Exemplo retirado de Buffon (2018)

Fonte: Adaptada de Buffon (2018).

Na referência, informa-se da utilização de 16 elementos de contorno. Não há
informação sobre sua continuidade ou distribuição no contorno. Considerou-se então a
utilização de 4 elementos descontínuos por face, totalizando 48 fontes. Mantendo essa
quantidade, aplicou-se ao exemplo duas discretizações de contorno diferentes:

• MEC - 16 elementos quadráticos (n = 3);

• MECIG - 16 NURBS de segmento reto (c = 3, p = 2).

Para as duas discretizações de contorno, discretizou-se cada fibra com 5 elementos lineares
para os primeiros 15 cm de cada extremidade e mais 5 elementos quadráticos para o
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restante do domínio. Portanto, utilizou-se 21 fontes para cada inclusão. As fontes de
contorno foram igualmente posicionadas para ambas as discretizações. A Figura 49 ilustra
a posição das fontes de contorno e as fontes de domínio de fibra para os dois modelos.

Figura 49 – Fontes para o exemplo retirado de Buffon (2018)
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Fonte: Elaborada pelo autor.

A Figura 50 exibe os resultados de deslocamentos e forças de superfície no contorno
dos modelos gerados em conjunto com os do modelo no Ansys da referência. Para as forças
de superfícies, exibe-se apenas os valores no engaste. A referência apresenta resultados
apenas em gráficos. Portanto, utilizou-se do WebPlotDigitizer para extração de pontos
(Rohatgi, 2024). Analisando essas grandezas, percebe-se a boa concordância dos modelos
com a implementação do MEF do pacote. Ressalta-se que as discretizações lagrangiana e
isogeométrica do autor praticamente não apresentam diferença em resultado. Assim era
esperado, já que ambas são capazes de representar o contorno reto e possuem aproximação
quadrática.

As Figuras 51 à 53 exibem os resultados de deslocamentos e esforços normais para
cada fibra. Além dos resultados do Ansys, os gráficos de esforço normal apresentam os
resultados de um dos modelos em MEC/MEC-1D desenvolvido pela referência. O modelo
a ser comparado utiliza 11 elementos quadráticos com 23 fontes para cada enrijecedor. No
texto, há a informação de que se posicionou mais elementos nos cantos já prevendo os
elevados gradientes. Entretanto, não se encontra mais informações acerca da distribuição.
Os resultados de deslocamentos dos modelos apresentam boa concordância com àqueles
fornecidos pelo Ansys. Já os de esforços normais elucidam a diferença entre os tratamentos
de problemas de imersão de fibras por meio do MEF e do MEC. No MEF, não se obtém
esforço normal nulo nas extremidades do enrijecedor, pelo que se conclui de que há força
sendo transmitida naquele nó. Nos modelos de MEC, a nulidade já é evidente, provando
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Figura 50 – Resposta no contorno para o exemplo de Buffon (2018)
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Fonte: Elaborada pelo autor.

a consistência física de transmissão de forças apenas via aderência. Também é evidente
a melhor representação dos esforços normais por meio da discretização proposta pelo
autor, que faz uso de quase a mesma quantidade de fontes do modelo em MEC/MEC-
1D da referência. Os resultados dos modelos lagrangiano e isogeométrico do autor são
praticamente idênticos, reforçando o que já se esperava.

5.5.3 Exemplo 3

O terceiro exemplo foi retirado de Guimarães (2024). Assim como no exemplo
anterior, trata-se de uma chapa engastada, porém com furos e fibras verticais. A Figura 54
ilustra a geometria e indica os parâmetros dos materiais. A referência apresenta solução via
modelo no Ansys assim como por meio de implementação autoral do MECIG/MEC-1D.
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Figura 51 – Resposta na fibra inferior para o exemplo de Buffon (2018)
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Figura 52 – Resposta na fibra intermediária para o exemplo de Buffon (2018)
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Figura 53 – Resposta na fibra superior para o exemplo de Buffon (2018)
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Figura 54 – Exemplo retirado de Guimarães (2024)

Fonte: Adaptada de Guimarães (2024).

O contorno externo do modelo implementado na referência é composto por 60
NURBS de segmento reto com ordem de aproximação 2. Posicionou-se 10 em cada face
vertical e 20 em cada face horizontal. 8 NURBS de arco com ordem de aproximação 4
foram utilizadas para cada quadrante do furo. Portanto, 220 fontes foram utilizadas no
contorno. Cada enrijecedor foi discretizado com 50 elementos lagrangianos quadráticos.
Ou seja, 101 fontes igualmente espaçadas foram utilizadas em cada enrijecedor

Para o presente estudo, elaborou-se uma malha lagrangiana e outra isogeométrica
para o contorno. Tentou-se seguir a quantidade de elementos da referência, bem como a
posição de suas fontes no contorno externo. A exceção foi para a representação dos furos,
em que se optou por reduzir a ordem de aproximação das NURBS e consequentemente o
número de fontes. As duas discretizações utilizadas foram:

• MEC - 68 elementos quadráticos (n = 3);

• MECIG - 60 NURBS de segmento reto (c = 3 e p = 2) e 8 NURBS de segmento de
arco (c = 3 e p = 2).

Ambas contam com 204 fontes aplicadas sobre o contorno. Os furos em formato circular
tornam distinguíveis as discretizações lagrangiana e isogeométrica do contorno. Para
as fibras horizontais, utilizou-se 8 elementos lineares para os primeiros 8 cm de cada
extremidade e 5 elementos de 5º grau para o restante do domínio. Ou seja, 42 foram



121

utilizadas para cada. Quanto às fibras verticais, utilizou-se 7 elementos lineares para os
primeiros 7 cm de cada extremidade e 5 elementos cúbicos para o restante do domínio.
Então, 30 fontes foram utilizadas para os enrijecedores verticais. Justifica-se uma malha
mais pobre para as fibras verticais pelo seu menor comprimento. Tais discretizações
propostas apresentam espaçamentos semelhantes de fontes para a região da malha em
que se espera uma maior estabilidade numérica. Ressalta-se que, para a construção da
malha das fibras, buscou-se evitar posicionar fontes de um domínio sobre elementos de
outros. Assim, transpõe-se os problemas de singularidade discutidos na seção 5.2. Como o
elemento de treliça com maior grau é um de 5º, necessita-se de 4 pontos de Gauss para
uma integração analítica. A Figura 55 ilustra a posição das fontes para as duas malhas
construídas. Devido à geometria circular dos furos, a diferença entre a posição das fontes
ocorre apenas nas de extremidade dos elementos usados para representação do contorno
interno.

A Figura 56 ilustra os valores no contorno externo de deslocamentos forças de su-
perfície dos modelos desenvolvidos e do modelo no Ansys da referência. Apenas resultados
gráficos foram disponibilizados, necessitando novamente do auxílio do WebPlotDigitizer
para extração de pontos. Observa-se excelente conformidade entre todos os modelos. As
Figuras 57 à 62 ilustram os valores de deslocamentos e esforços normais para todas
as fibras. Em adição aos dados apresentados ao contorno, incorporou-se os dados do
MECIG/MEC-1D implementado pela referência para os gráficos de esforço normal nas
fibras. Os deslocamentos dos modelos desenvolvidos no estudo apresentam boa concordân-
cia com os fornecidos pelo Ansys. Quanto à representação de esforço normal, observa-se a
mesma inconsistência do exemplo anterior de não nulidade dos valores nas extremidades
da inclusão pelo Ansys. Comparando as discretizações de acoplamento desenvolvidas no
trabalho com a utilizada na referência, observa-se que foi possível reproduzir o compor-
tamento do esforço normal na região de estabilidade numérica. Tais resultados foram
alcançados utilizando um número de fontes inferior à metade do que consta na referência.
Além disso, nas extremidades das inclusões, percebe-se melhor estabilidade numérica na
discretização proposta.

Para uma avaliação das grandezas no domínio, comparou-se os resultados da tensão
de von Mises, calculada pela Eq. (3.97), para duas faixas verticais contidas no domínio:
x1 = 0.7 m; e x1 = 1.6 m. Os resultados dos modelos utilizados pelo autor e o Ansys da
referência estão dispostos na Figura 63. Novamente, observa-se boa concordância entre os
métodos. Assim como para os outros resultados apontados, não se observa considerável
diferença entre as discretizações lagrangiana e isogeométrica de contorno. Certamente
maior diferença seria observada em pontos mais próximos aos orifícios circulares.
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Figura 55 – Fontes para o exemplo retirado de Guimarães (2024)
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Figura 56 – Resposta no contorno para o exemplo de Guimarães (2024)
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Figura 57 – Resposta na fibra horizontal inferior para o exemplo de Guimarães (2024)
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MECIG/MEC-1D (Guimarães, 2024)
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Figura 58 – Resposta na fibra horizontal intermediária para o exemplo de Guimarães
(2024)
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Figura 59 – Resposta na fibra horizontal superior para o exemplo de Guimarães (2024)
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Figura 60 – Resposta na fibra vertical à esquerda para o exemplo de Guimarães (2024)
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Figura 61 – Resposta na fibra vertical intermediária para o exemplo de Guimarães (2024)
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Figura 62 – Resposta na fibra vertical à direita para o exemplo de Guimarães (2024)
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Fonte: Elaborada pelo autor.
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Figura 63 – Tensão de von Mises no domínio para o exemplo de Guimarães (2024)

0.2 0.4 0.6 0.8 1.0

x2 (m)

1.0

1.5

2.0

2.5

3.0

3.5

√
2
σ
v
m

(M
P
a
)

×10−2

Ansys (Guimarâes, 2024)
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Fonte: Elaborada pelo autor.

5.5.4 Exemplo 4

O quarto exemplo trata de um sólido com fibras (inclusões finas e curtas) aleatori-
amente distribuídas. A intenção do exemplo é verificar a influência da discretização das
fibras e de sua taxa de volume na flexibilidade da estrutura. A Figura 64 ilustra o corpo
em que as fibras foram distribuídas. Tratou-o como EPT.

Figura 64 – Exemplo de geometria retangular para distribuição randômica de fibras

Fonte: Elaborada pelo autor.

Para a distribuição de fibras de aço, utilizou-se parâmetros obtidos de um processo
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de otimização multiobjetivo em que se considerou variáveis de resistência e o custo da peça
(Bayramov; Taşdemir; Taşdemir, 2004). Como resultado, têm-se para as fibras comprimento
L = 60 mm, diâmetro d = 0.791 mm e taxa de distribuição volumétrica Vf = 0.558%.
Para o cálculo da quantidade total de fibras, foi considerada a distribuição em 1 mm de
espessura. Valor compatível para distribuição plana considerando o diâmetro da fibra. Foi
considerado seu módulo de elasticidade Ef = 200 GPa.

A disposição espacial de cada domínio de fibra foi tomada como um processo aleató-
rio. A princípio sorteou-se um ponto no espaço com distribuição uniforme de probabilidade
tal que xp ∼ {U (0, 2) , U (0, 1)} m. As coordenadas do segundo ponto são obtidas por
meio do ângulo de rotação. Também o considera como variável de distribuição uniforme,
ou seja, θ ∼ U (0, 2π). Necessita-se verificar se o segundo ponto ainda pertence ao domínio
com alguma folga para evitar integrações singulares. Se ele não pertencer, retorna-se ao
sorteio do ângulo para a obtenção de outro ponto de extremo. Além disso, também foram
utilizados os procedimentos de verificação de interseção e superposição de domínios, os
quais se encontram na seção 5.2.

O gerador randômico utilizado foi o permuted congruential generator na versão de
64 bits (PCG64), o qual possui um período de 2128 gerações (O’Neill, 2014). O gerador
apresentou excelentes resultados em testes estatísticos e gráficos comparado a outros
disponíveis (Bhattacharjee; Das, 2022).

Utilizou-se duas discretizações diferentes para o contorno:

• MEC - 24 elementos quadráticos (n = 3);

• MECIG - 24 NURBS de segmento de reta (c = 3 e p = 2).

As posições das fontes são iguais para as duas malhas e é exibida em conjunto com a
posição de cada fibra na Figura 65.

O valor da flexibilidade considerando o domínio sem adição de fibras para as duas
discretizações de contorno foi de 1.1055246349e−3 MJ/mm. O mesmo valor de flexibilidade
era esperado para as duas discretizações devido à geometria reta do contorno. Considerando
a presença de fibras, variou-se a discretização de seus domínios em elementos quadráticos.
A Figura 66 ilustra os resultados de tempo e de redução percentual de flexibilidade para
cada número de fontes por domínio de fibra. Em sua legenda, a letra P indica que, na
implementação do acoplamento, houve paralelização dos laços em fontes no contorno,
Eq. (5.1), e em fontes no domínio dos enrijecedores, Eq. (5.2). As paralelizações foram
efetuadas por meio da interface Open Multi-Processing (OpenMP), com distribuição das
rotinas em 4 threads. Não foi notada melhoria em tempo ao aumentar esse número.

Observando a Figura 66, percebe-se que o resultado de redução de flexibilidade
foi igual para as duas malhas de contorno e para as duas implementações de cada,
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Figura 65 – Disposição das fontes e dos domínios de fibra para contorno retangular
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Fonte: Elaborada pelo autor.

Figura 66 – Resultados de redução de flexibilidade e tempo para variação da discretização
das fibras em domínio retangular
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conforme esperado. Pequenas diferenças são percebidas nos dados de tempo entre as
duas implementações sequenciais e as duas implementações paralelas. As duas últimas
apresentaram dados de tempo levemente melhores. Nota-se rápida convergência do valor
de redução de flexibilidade com o aumento do número de fontes. Tal fator mostra-se
importante, pois não há necessidade de uma malha demasiadamente rica no domínio das
fibras para se obter um valor preciso de flexibilidade. Para o exemplo, uma discretização
em cerca de 7 fontes por domínio de fibra (3 elementos quadráticos) já aparenta conferir
suficiente precisão. Para a taxa de volume de fibras adotada, percebe-se que a redução da
flexibilidade é pequena independentemente da discretização adotada.

Em seguida, utilizando 7 fontes por domínio de fibra mediante 3 elementos quadrá-
ticos, variou-se a taxa de fibras ainda mantendo seus parâmetros mecânicos e geométricos.
Para a geração das coordenadas de extremidade das fibras, controlou-se o número de
geração aleatória. Dessa forma, ao se aumentar a taxa de fibras, mantém-se as geradas
para a taxa imediatamente inferior. A Figura 67 carrega os resultados para a taxa de
fibras variando de 0% à 1%. Percebe-se o natural crescimento da redução da flexibilidade,
que ainda se mantém em valores demasiadamente pequenos. Por motivos já explanados,
os resultados são praticamente iguais para os dois modelos de discretização de contorno.

Figura 67 – Resultados de redução de flexibilidade mediante variação da taxa volumétrica
de fibras em domínio retangular
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5.5.5 Exemplo 5

O quinto exemplo traz uma aplicação semelhante à do quarto, mas com um
domínio de geometria circular com o intuito de enfatizar diferenças entre as discretizações
lagrangiana e isogeométrica. A Figura 68 ilustra uma peça anelar em que se distribuiu
fibras com as mesmas características do exemplo anterior. Considerou-se o problema como
EPD.

Figura 68 – Exemplo de estrutura anelar para distribuição randômica de fibras

Fonte: Elaborada pelo autor.

Para a distribuição randômica das fibras, é mais viável, considerando a geometria
do domínio, que o sorteio da primeira coordenada de extremidade seja executado em
coordenadas polares. Dessa forma, xp (r, θp), em que r ∼ U (1.5, 2.0) m e θp ∼ U (0, 2 π).
A segunda coordenada de extremidade foi calculada da mesma maneira que no exemplo
anterior, verificando se o ponto pertence ao domínio e se a fibra resultante não intercepta
ou se aproxima de superpor as que já foram lançadas. Como gerador de números aleatórios,
também utilizou-se o PCG64.

Utilizou-se uma discretização lagrangiana e outra isogométrica para o contorno.
Descreve-as por:
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• MEC - 24 elementos quadráticos (n = 3);

• MECIG - 8 NURBS de segmento de arco (c = 3 e p = 2).

Portanto, têm-se 72 fontes para a discretização lagrangiana e 24 para a discretização
isogeométrica. As fontes de contorno para as duas discretizações assim como os domínios
de fibra podem ser apreciados na Figura 69.

Figura 69 – Disposição das fontes e dos domínios de fibra para domínio anelar
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Fonte: Elaborada pelo autor.

Sem inclusão de fibras, a discretização lagrangiana apresentou uma flexibilidade
de 1.5318353102e−4 MJ/mm, enquanto a da isogeométrica resultou em 1.5322863762e−4

MJ/mm. Considerando a discretização isogométrica como referência, têm-se 0.5891% de
diferença relativa entre as duas discretizações.

Assim como no exemplo anterior, verificou-se a princípio a convergência da redução
da flexibilidade a partir do enriquecimento da discretizações em elementos quadráticos
do domínio das inclusões. A Figura 70 apresenta esses resultados em conjunto com o
tempo de cada processamento. Novamente, além da implementação sequencial, efetuou-se
paralelização em 4 threads para os dois acoplamentos. Por meio da figura supracitada,
verifica-se rápida convergência e se observa que com 7 fontes por fibra (3 elementos
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Figura 70 – Resultados de redução de flexibilidade e tempo para variação da discretização
das fibras em domínio anelar
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Fonte: Elaborada pelo autor.

quadráticos) já se obtêm resultados com precisão satisfatória, assim como no exemplo
anterior. Também é possível notar que as implementações paralelizadas apresentaram
melhores resultados de tempo. Independentemente da discretização adotada, depara-se,
outra vez, com uma redução de flexibilidade deveras pequena.

Quanto aos dados de tempo, deve-se comentar que, para o MEC convencional, há
a necessidade de um maior número de fontes para se conseguir representar decentemente a
geometria circular através de elementos lagrangianos. O maior número de fontes acrescenta
tempo tanto pelas integrações das Eqs. (5.1) e (5.2) como pelo aumento do sistema da
Eq. (5.15). Outro fator consiste em que as derivadas das funções de base NURBS são
obtidas pelo mesmo laço das próprias funções base. Também, uma vez que as aproximações
funcionais e geométricas se dão a partir dos pontos de controle, não há diferença entre
os valores de suas bases para uma coordenada em uma curva NURBS. Apesar disso,
a construção via camadas dessas funções, mesmo sendo a computacionalmente mais
eficiente, é mais custosa do que a de bases lagrangianas. Então, infere-se que os aspectos
computacionais positivos da implementação da formulação isogeométrica equilibram os
seus negativos.

Em seguida verificou-se a influência da taxa de fibras na redução da flexibilidade.
De posse dos resultados da análise de convergência, utilizou-se 3 elementos lagrangianos
para discretização de cada domínio de inclusão. A Figura 71 exibe os resultados para
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Figura 71 – Resultados de redução de flexibilidade mediante variação da taxa volumétrica
de fibras em domínio anelar

0.0 0.2 0.4 0.6 0.8 1.0

Taxa de fibras (%)

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
ed

u
çã
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o acoplamento do MEC-1D com o MEC e com o MECIG. Por meio dela, nota-se que
a redução da flexibilidade aumenta ambas as descrições, mantendo-se ainda em valores
pequenos. Também é possível observar que a diferença na redução da flexibilidade entre
o MEC/MEC-1D e o MECIG/MEC-1D aumenta quanto maior taxa de fibras. Pela
discretização isogeométrica, a tendência para o exemplo é de uma redução maior na
flexibilidade em relação à lagrangiana.
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6 OTIMIZAÇÃO TOPOLÓGICA

O presente capítulo retrata o procedimento de otimização topológica a ser utilizado
no trabalho. Comenta-se sobre o algoritmo de solução numérica utilizado para o MLS e de
que maneira é construído seu acoplamento com o MECIG. Apresenta-se a formulação do
procedimento de otimização topológica efetuado através desse acoplamento e se discute
acerca da atualização dos seus parâmetros. Propõe-se uma fórmula para estimativa do seu
valor inicial de coeficiente de penalização. Descrevem-se os dois critérios evolucionários de
alteração de topologia utilizados. Propõe-se uma metodologia de verificação de estacio-
nariedade do processo de otimização. Por fim, verificam-se as implementações efetuadas
mediante aplicação a exemplos bem conhecidos na literatura.

6.1 A função level set

Seja um domínio de projeto D, n-dimensional, em que nele exista um subdomínio Ω
que contém material. Logicamente, Ω ⊂ D. A região de fronteira entre D e Ω é entendida
por contorno ou propriamente fronteira. À ela, atribui-se a mesma letra Γ utilizada nos
capítulos anteriores. Define-se, por função level set, uma função escalar ϕ : Rn → R tal que


x ∈ Ω | ϕ (x) > c

x ∈ Γ | ϕ (x) = c

x ∈ D\Ω | ϕ (x) < c

, (6.1)

em que c é uma constante arbitrária, normalmente tomada como nula. A Figura 72 ilustra
uma função level set.

Figura 72 – Função level set

2. Implicit level set representation

The basic idea behind the level set representation is expressing a curve or surface as the zero level set or
isophote of a high-dimensional function in an implicit manner, and then traces the deformation of the curve
or surface via the evolvement of the higher-dimensional level set function [48]. As shown in Fig. 1a, where D is
a fixed working domain which includes all admissible shapes X (a smooth bounded open set). Fig. 1b is the
level set model showing that a 2D interface can be represented with a 3D scalar level set function, which is
a signed distance function being Lipschitz continuous. Supposing the level set function U(x) is defined as

UðxÞ > 0() 8x 2 X=oX ðinside the domainÞ
UðxÞ ¼ 0() 8x 2 oX ðon the boundaryÞ
UðxÞ < 0() 8x 2 D=X ðoutside the domainÞ

8><
>: ð1Þ

where U(x) > 0, U(x) < 0 and U(x) = 0 denotes the solid, void and boundary, respectively.
In structural optimization, the boundary oX(x) of X(x) is represented as the zero level set

oXðxÞ ¼ fx 2 Rd j/ðxÞ ¼ 0g ðd ¼ 2 or 3Þ ð2Þ
Letting the level set function evolve dynamically in time t with a normal velocity, then the motion of the struc-
tural boundary can be expressed as follows:

oXðtÞ ¼ fUðxðtÞ; tÞ ¼ 0g 8xðtÞ 2 oXðtÞ ð3Þ
Differentiating Eq. (3) with respect to t on both sides yields

oU
ot
þ dx

dt
� rU ¼ oU

ot
þ v � rU ¼ 0 ð4Þ

Consider a normal velocity vn = v � n with an outward defined direction n = $U/|$U|, then the Hamilton–Ja-
cobi PDE can be defined as [48,43]

oUðx; tÞ
ot

þ vnjrUj ¼ 0; Uðx; 0Þ ¼ U0ðxÞ ð5Þ

As a result, the evaluation of the dynamic boundary can be implemented via the level set equation given in (5).
It is noted that both the variations of the reference domain D and the shape boundary oX have been involved.
If the velocity vn on the boundary is known, transporting U by the level set model is equivalent to moving the
boundary oX along the normal direction.

In general, an analytical function for the scalar level set function is unknown. Hence, a numerical procedure
is often indispensable to enable the discrete level set processing, such as an explicit finite difference scheme with
a capturing Eulerian approach [43]. However, as noted in [35], the Hamilton–Jacobi type PDE is rarely easy to
implement. Several numerical considerations should be handled carefully during the numerical implementa-
tion [33], such as the upwind schemes, the reinitilization procedures and the velocity extension algorithms [48].

Fig. 1. Level set description of a two-dimensional design.

5564 J. Luo et al. / Journal of Computational Physics 227 (2008) 5561–5581

Fonte: Luo et al. (2008).
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Considerando que o se prega na Eq. (6.1) vale para um determinado instante de
tempo t, então se têm para o contorno

ϕ (xi (t) , t) = c ∀t, x ∈ Γ (t) , (6.2)

cujo índice i varia de 1 ao número de dimensões de D. Derivando a equação anterior em
relação a t via regra da cadeia, conduz-se a

ϕ,j (xi (t) , t) dxi (t)
dt

+ ∂ϕ (xj (t) , t)
∂t

= 0, (6.3)

cujo índice j apresenta a mesma variação do índice i. Por meio da aplicação da definição
cinemática de velocidade, a Eq. (6.3) é transformada para

ϕ,j (xi (t) , t) vj (t) + ∂ϕ (xi (t) , t)
∂t

= 0, (6.4)

em que vj é o vetor de velocidade.

Sabe-se que a velocidade na direção normal ao espaço da imagem de uma função
potencial é dada por

v (t) = vj ηj, (6.5)

onde ηj é próprio versor normal ao espaço da imagem. Tal pode ser calculado através da
normalização do vetor gradiente da função level set. Ou seja,

ηj = ϕ,j (xi (t) , t)
∥ϕ,j (xi (t) , t)∥ . (6.6)

Substituindo as Eqs. (6.5) e (6.6) na Eq. (6.4), têm-se

∥ϕ,j (xi (t) , t)∥ v (t) + ∂ϕ (xi (t) , t)
∂t

= 0, (6.7)

a qual é a Equação Diferencial Parcial (EPD) que governa a evolução da função level
set ao longo do tempo. Assim, é estabelecido um Problema de Valor Inicial (PVI). Tal
equação possui a mesma forma da clássica equação de Hamilton-Jacobi, a qual é objeto de
estudo da mecânica hamiltoniana.

A Eq. (6.7) carece de solução analítica. Para procedimentos de solução numérica,
executa-se, a princípio, uma discretização do tempo, em que aqui se utiliza o Método
de Euler Adiantado (Griffiths; Higham, 2010). Dessa forma, o domínio do tempo, antes
contínuo, passa a ser definido por valores discretos tn, em que n é o número de passos da
discretização. Portanto, têm-se ϕn = ϕ (tn). A derivada em relação ao tempo da Eq. (6.7)
é substituída por um esquema de diferenças finitas adiantadas, considerando um intervalo
finito de tempo ∆t = tn+1 − tn. Aplicando essas operações, conduz-se a

∥ϕ,j (xi (tn) , tn)∥ v (tn) + ϕ (tn+1) − ϕ (tn)
∆t

= 0, (6.8)
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cujo gradiente de ϕ ainda se mostra um transtorno.

Dentre as diversas possibilidades de solução numérica factíveis à transposição desse
problema, optou-se por um desenvolvimento baseado em Diferenças Upwind devido a sua
simplicidade e a sua eficiência (Patankar, 1980). Um forte ponto positivo ao uso desse
método provém do fato de apresentar velocidade de movimento da interface independente
da função level set. Dessa forma, permite-se construção do campo de velocidades através
das grandezas físicas do problema a ser descrito pelo MLS. Para a solução via Diferenças
Upwind, torna-se necessária a criação de uma malha de pontos, cujos valores de ϕ e v devem
ser conhecidos a priori em faixas próximas ao contorno. Efetuando esse procedimento
de solução, para a próxima etapa no tempo da função level set, considerando problemas
bidimensionais, têm-se

ϕn+1
ij = ϕn

ij − ∆t
[
max (vij, 0) ∇+ + min (vij, 0) ∇−

]
, (6.9)

em que os índices i e j representam a posição segundo a primeira e a segunda coordenadas
respectivamente, conforme estabelecida a base do sistema de coordenadas. Os termos ∇
com um operador algébrico sobrescrito são calculados por:

∇+ =
√[

max
(
D−x1

ij , 0
)2

+ min
(
D+x1

ij , 0
)2

+ max
(
D−x2

ij , 0
)2

+ min
(
D+x2

ij , 0
)2
]
; (6.10)

∇− =
√[

max
(
D+x1

ij , 0
)2

+ min
(
D−x1

ij , 0
)2

+ max
(
D+x2

ij , 0
)2

+ min
(
D−x2

ij , 0
)2
]
. (6.11)

Os termos Dij representam operações de diferenças finitas. O operador algébrico que lhe é
sobrescrito indica se é uma diferença finita progressiva (+) ou regressiva (−). Já o termo que
lhe resta indica a própria direção da operação. Essas operações são efetuadas considerando
os próprios pontos da malha como pontos posteriores ou anteriores. Implicitamente, sua
execução constitui uma aproximação linear da função potencial por célula, conforme ilustra
a Figura 73 para uma dimensão. Como a necessidade de refinamento da malha contribui
para a baixa variação da função na célula, essas diferenças finitas se confundem com os
ângulos apontados.

Para inicialização ou reinicialização da função level set, admitiu-se que seus valores
em pontos do grid fossem dados pela menor distância daquele ponto em relação ao contorno.
Tal problema pode ser resolvido por um simples algoritmo de otimização. Por facilidade
de implementação e velocidade de convergência, optou-se pelo Golden Section Method
(Kiefer, 1953).

Para que a solução do PVI atenda a critérios de estabilidade, o passo de tempo da
discretização precisa atender à condição de Courant-Friedrichs-Lewy (Courant; Friedrichs;
Lewy, 1967). Descreve-a por

maxΩ (vij ∆t) ≤ min (∆x1, ∆x2, ..., ∆xi) . (6.12)
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Figura 73 – Diferenças finitas unidimensionais

Fonte: Elaborada pelo autor.

Como implicação dessa condição, têm-se que a evolução da level set é limitada em no
máximo uma célula de grid por intervalo de tempo.

6.2 Otimização

Para o estudo, considera-se uma formulação de otimização topológica no sentido
de minimização de flexibilidade sujeito a uma restrição de igualdade em volume. Dessa
forma, matematicamente se descreve o problema de otimização por

min [D (Ω)] , (6.13)

sujeito à ∫
Ω

dΩ − V = 0, (6.14)

em que D é flexibilidade da peça e V se trata do seu volume alvo. Tal problema se
configura como uma otimização não linear restrita. Intrinsecamente, esse problema possui
como solução a configuração geométrica menos flexível, ou mais rígida, dado um volume
preestabelecido e de acordo com as condições de contorno domínio.

Dada a caracterização do problema de otimização, optou-se por solucioná-lo através
do método do lagrangiano aumentado, devido a sua maior facilidade operacional de solução,
em relação a opções de solução direta, e a sua maior estabilidade numérica, em relação a
outras opções de solução indireta (Arora, 2017). O procedimento consiste em transformar
um problema de otimização restrito em um irrestrito através de uma função denominada
lagrangiano aumentado. Escrevendo a função lagrangiana do problema de otimização como

L (Ω, λ) = D (Ω) + λ
(
V (Ω) − V

)
, (6.15)
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em que λ é o multiplicador de Lagrange, constrói-se a função lagrangiana aumentada
somando-lhe a restrição penalizada por um coeficiente γ. Dessa forma, têm-se

A
(
Ω, λk, γk

)
= D (Ω) + λk

(
V (Ω) − V

)
+ γk

2
(
V (Ω) − V

)2
. (6.16)

O índice sobrescrito que os acompanha alguns termos designa a iteração do processo.

Para a função da Eq. (6.15), têm-se como condição necessária ao ótimo

∂L
∂Ω = ∂D

∂Ω + λ∗ = 0, (6.17)

em que λ∗ é o valor do multiplicador de Lagrange no ponto de projeto. Já para a função
da Eq. (6.16), têm-se

∂A
∂Ω = ∂D

∂Ω + λk + γk
(
V (Ω) − V

)
= 0. (6.18)

Dada a equidade a zero das condições necessárias de ótimo para as duas funções, é possível
construir uma função de atualização para λ dada por

λ∗ = λk+1 = λk + γk
(
V (Ω) − V

)
, (6.19)

em que se atualiza o valor do coeficiente de penalização por

γk+1 = δ γk, (6.20)

com δ > 1. Esse coeficiente de atualização é responsável pela velocidade do processo
de otimização. Quanto maior o valor do coeficiente, maior tende a ser essa velocidade.
Entretanto, com o acréscimo desse valor, também se aumenta a probabilidade de mal con-
dicionamento (Bertsekas, 1982; Bertsekas, 2016). A literatura mostra que, para otimização
topológica via MEC e MLS, coeficientes de atualização com valores próximos à unidade
costumam ser mais eficazes ao sucesso do processo.

Como a atualização para λ é pseudo-analítica, comumente seu valor inicial é tido
como nulo. Já para γ, seu valor inicial pondera o atendimento da restrição no início do
processo em detrimento da minimização da função objetivo. Quanto maior seu valor, mais
o processo tenderá a priorizar o atendimento da restrição. Dessa forma, para uma escolha
de valor inicial adequada, torna-se necessário mensurar a ordem de grandeza dos outros
termos que o acompanham em operações.

A principal vantagem do método do lagrangiano aumentado em relação à pena-
lização simples é a estabilidade numérica promovida pela inclusão do multiplicador de
Lagrange. Devido a isso, não há necessidade de atualizar o valor do coeficiente de penali-
zação até o infinito para garantir a convergência (Nocedal; Wright, 2006; Arora, 2017).
Portanto, torna-se conveniente parar de atualizar esse valor quando a restrição já estiver
suficientemente atendida e/ou lhe admitir um valor máximo (Conn; Gould; Toint, 1992;
Rao, 2019b).
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6.2.1 Construção do campo de velocidades

A alternativa aqui utilizada à construção do campo de velocidades normais à
função level set no contorno foi mediante a equidade ao negativo da derivada de forma do
lagrangiano aumentado, dado pela Eq. (6.16). Dessa forma, impõe-se que as velocidades
normais apontem para a direção descendente da sensibilidade de forma da função a ser
minimizada. Portanto, calcula-as por

v (Γ) = −∂A
∂Ω = −

[
E (Ω) + λk + γk

(
V (Ω) − V

)]
, (6.21)

em que E (Ω) = ∂D/∂Ω para contornos livres de forças de superfície. O termo designa a
densidade de trabalho interno. Para a avaliação da derivada, é mais conveniente utilizar o
lado esquerdo da Eq. (3.59), calculando o tensor tensão de Cauchy por meio da Eq. (5.17)
ou por meio do procedimento indireto. Já o tensor de deformações pode ser calculado em
função das tensões através da Eq. (A.24). Atribui-se velocidade nula a partes que devem
ser imóveis no contorno, como trechos de aplicação de condições essenciais e condições
naturais não nulas em pelo menos uma direção.

Para a Eq. (6.9), necessita-se conhecer a velocidade normal também em pontos
nas vizinhanças de Γ. Optou-se pela metodologia de se avaliá-la mediante um processo
de extrapolação linear dos valores no contorno. Para manter a estabilidade da solução,
deve-se utilizar um procedimento de regularização, o qual é efetuado por meio da solução
de

∂v

∂t
+ sign (ϕ (xi (t) , t)) ϕ,j (xi)

∥ϕ,j (xi (t) , t)∥ v,j (xi (t) , t) = 0, (6.22)

cujos índices i e j variam de 1 ao número de dimensões. O procedimento de solução da Eq.
(6.22) envolve discretizações temporais e espaciais análogas às efetuadas para a Eq. (6.7).
Portanto, para uma solução em malha bidimensional, têm-se

vn+1
ij = vn

ij − ∆t
{[

sign (ϕij) ηx1
ij

]+
D−x1

ij +
[
sign (ϕij) ηx1

ij

]−
D+x1

ij

+
[
sign (ϕij) ηx2

ij

]+
D−x2

ij +
[
sign (ϕij) ηx2

ij

]−
D+x2

ij

}
,

(6.23)

cujos índices i e j representam as posições horizontal e vertical na malha. Os termos Dij

com seu índice sobrescrito possuem o mesmo significado dos das Eqs. (6.10) e (6.11). O
operador [•]+ representa max (•, 0), enquanto [•]− designa min (•, 0). Por fim, ηij são
componentes do vetor normal à curva de nível na direção dos índices que os sobrescrevem.
Essas componentes podem ser calculadas por diferenças finitas centrais.

6.2.2 Definição do valor inicial do coeficiente de penalização

Tendo em vista a construção do campo de velocidades por meio da densidade de
trabalho interno somada a penalizações de restrição, vide Eq. (6.21), cabe uma metodo-
logia de conformação numérica para atribuição de um valor inicial para o coeficiente de
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penalização. De forma a generalizar a escolha, cabe escrever seu valor inicial como um
número representante de magnitude, definido por O, divido pelo valor inicial da restrição
de volume. Assim, ainda falta normalizar o valor inicial do coeficiente de penalização de
acordo com as grandezas de rigidez e de solicitação do domínio. Admitindo a razão anterior
como base para calibração sob consideração de unidade desses parâmetros e mediante à
proporcionalidade de efeitos da análise elástica e linear, têm-se uma paridade numérica
quando se define

γ0 = O P 2

E h0 (Ω) . (6.24)

Na equação, E se refere ao módulo de elasticidade do material e P a sua solicitação. A
fórmula é justificada pois, devido à proporcionalidade de efeitos da análise linear elástica,
um aumento em E promoveria uma redução proporcional na densidade de trabalho interno.
Quanto a um aumento de P , essa densidade é aumentada quadraticamente. Assim, a
variabilidade de escolha de γ0 está no número O.

Quanto à variabilidade do coeficiente de Poisson, obviamente interfere na densidade
de trabalho interno. Porém, seus valores para materiais reais se concentram majoritaria-
mente entre 0.25 e 0.35 (Callister; Rethwisch, 2018). Além do pequeno intervalo frente à
possibilidade de variação dos outros parâmetros, a ordem de grandeza desses valores é a
mesma. Dessa maneira, embora existente, não se espera grandes modificações na densidade
de trabalho interno. Tal fator justifica não o considerar para o cálculo de γ0.

6.2.3 Critério de convergência

Na teoria clássica de otimização, a condição necessária ao ótimo advém da nulidade
do gradiente da função objetivo. Em casos de procedimentos numéricos, além da condição
supracitada atendida segundo alguma tolerância preestabelecida, verifica-se a variação da
função objetivo da atual iteração em relação à imediatamente anterior. Se essa variação
for muito pequena, afirma-se que o critério de convergência foi atendido e que aquela
coordenada no espaço de projeto trata-se de um ponto estacionário. Apesar de tais critérios
não serem capazes de informar se um ponto de convergência é de fato um ponto de mínimo
e se não é um mínimo local, ainda são severamente utilizados para averiguar o sucesso
de procedimentos numéricos de otimização. Quanto à verificação da condição suficiente
ao ótimo por meio da definição da matriz hessiana da função objetivo, nem sempre sua
obtenção é acessível, especialmente em técnicas numéricas.

Para a verificação de convergência de otimização topológica via MLS, é mais factível
utilizar o critério de variação da função objetivo. Entretanto, diferentemente da otimização
clássica, convém-se efetuar essa verificação mediante o histórico de iterações e não somente
em relação à última. Isso evita a parada por coincidências numéricas no processo advindas
por imprecisão ou por sua natural lentidão, como será mostrado nos exemplos.
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Na verificação da diferença de flexibilidade na iteração atual para uma sequência
de iterações anteriores, deve-se alertar quanto ao eventual equívoco acerca da presunção
de convergência quando essa diferença é medida iteração a iteração. Por exemplo, se for
prescrita uma tolerância de 10−3 e a variação de flexibilidade atender ao critério ao longo
de um determinado número de iterações, pode-se admitir convergência em situações de
descendência da função objetivo. A Figura 74 ilustra esse processo de falsa convergência
aproximando o ângulo da reta pela diferença da iteração mais recente para a atual.

Figura 74 – Falsa convergência segundo histórico da função objetivo

Fonte: Elaborada pelo autor.

A alternativa aqui utilizada consiste em verificar, para cada iteração, a diferença do
valor da função objetivo na iteração atual perante todos os valores de um recente histórico
salvo em memória. Dessa forma, evita-se o caso de falsa convergência retratado pois há
necessidade de que a diferença entre a função objetivo da iteração atual e a primeira do
histórico também se enquadre na tolerância preestabelecida. Embora mitigue a ocorrência
supracitada, há ainda a possibilidade, conforme será verificado nos exemplos, da level set
apresentar estacionariedade por um período e, após isso, continuar nitidamente evoluindo,
ainda que lentamente. Devido a isso, torna-se conveniente aumentar o histórico salvo
em memória para evitar parada por estacionariedade local. Também deve ser citado que
a utilização de um histórico muito elevado pode dificultar a captação da convergência
verdadeira devido à natural imprecisão do modelo mecânico, em especial ao se mencionar
a possibilidade de ocorrência de integrações quase-singulares durante o processo.

6.3 Alteração de topologia

A formulação da otimização topológica em duas dimensões via MLS não é capaz
de efetuar inserção de orifícios, mas é capaz de unir os já existentes. Assim, seria possível
conduzir o processo partindo de uma estrutura inicial com vários orifícios já dispostos.



147

Figura 75 – Exemplos de configurações iniciais com orifícios distribuídos para otimização
via MSL

(a) Yamasaki, Yamada e Matsumoto (2013)
(b) Emmendoerfer Jr. e Fancello (2014) e Em-

mendoerfer Jr. (2015)

Fonte: Adaptada pelo autor.

A Figura 75 ilustra alguns exemplos dessa ocasião. Entretanto, é conveniente que se
desenvolva alguma metodologia de inserção de furos ao longo do processo de otimização de
forma a reduzir a dependência de seu sucesso segundo a configuração do domínio inicial.

As duas alternativas que aqui foram utilizadas são heurísticas e baseadas na
verificação da solicitação em pontos do grid contidos no domínio da estrutura em cada
iteração. Inspirando-se no que é disposto em teoria de critérios de falha, comparou-se essa
solicitação no ponto a uma tensão relevante às características do material do domínio.
Tendo em vista a admissão de um modelo homogêneo e isotrópico, optou-se por efetuar
tal comparação com a tensão de von Mises, cujo critério descreve bem a falha de materiais
dúcteis. Ou seja, em geral, produz-se orifícios se σvm

ij ≤ ρ σ∗, em que ρ é a taxa de remoção
de material e σ∗ é uma tensão que seja relevante à peça. A Figura 76 ilustra a verificação
da inequação para pontos internos e a criação de um novo contorno.

Figura 76 – Geração de orifícios pelo critério de alteração de topologia

(a) verificação para pontos internos (b) criação de um novo contorno

Fonte: Adaptada pelo autor.
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Comenta-se que, para a verificação da tensão de von Mises em um ponto interno de
um domínio, utiliza-se a Eq. (3.92). Em caso de existência de inclusões, deve-se utilizar a Eq.
(5.17). Em ambas equações, a integração do tensor s∗

klm pode ser quase-singular, havendo
considerável maior possibilidade de ocorrência para os domínios enrijecidos, conforme o
explanado na seção 5.2. Dessa forma, para mitigação desse problema, pode ser útil um
controle tanto na geração de seus domínios quanto na sua discretização.

6.3.1 Primeiro critério

O primeiro critério utilizado é semelhante ao proposto por Ullah e Trevelyan (2013)
e consiste em efetuar a verificação supracitada a cada evolução do MLS. Considera-se
que a tensão de interesse σ∗ é a máxima tensão de von Mises da configuração inicial do
domínio a ser otimizado. Outros trabalhos que utilizaram o acoplamento do MLS/MEC
para execução de uma otimização topológica também adotaram critérios baseados no da
referência (Ullah; Trevelyan; Matthews, 2014; Ullah; Trevelyan; Islam, 2017; Oliveira, 2017;
Oliveira; Leonel, 2019; Oliveira; Andrade; Leonel, 2020; Guimarães, 2024).

Devido à tendência de acréscimo de tensão nos pontos enquanto a processo de
otimização reduz o volume do elemento estrutural, torna-se conveniente incrementar ρ

ao longo das iterações para que se tenha inserção de orifícios em estágios de estágios de
topologia mais desenvolvida. Conforme será verificado nos exemplos, isso pode contribuir
para alternâncias de convergência em casos em que o processo estaria a caminho da
obtenção de um valor de função objetivo ainda poderia decrescer. Contudo, o incremento
ininterrupto da taxa de remoção pode ocasionar em elevadas retiradas de material em
iterações distantes do início do processo, as quais podem degenerar o domínio.

Outro fator que possibilita o confronto com um transtorno é a existência de
regiões, ainda que pequenas, com baixa tensão próximas à estacionariedade do processo de
otimização. Se esse critério não for cessado, inicia-se a inserção de pequenos orifícios nessas
regiões, os quais tendem a ser fechados pela evolução do MLS. A ciclicidade desse processo
obviamente impede o desenvolvimento do algoritmo até a obtenção de uma configuração
geométrica estacionária.

Portanto, para esse critério de alteração de topologia, torna-se interessante que a
taxa seja incrementada ao longo das iterações, mas que esse incremento seja cessado ou
que o próprio critério seja interrompido. Infelizmente, é difícil prever quando tais ações
devem ser efetuadas no algoritmo sem que se efetue um primeiro processamento ou que se
tenha noção da configuração ótima para um determinado domínio inicial.

Cabe-se comentar que, através desse critério, provoca-se um modificação do domínio
não prevista segundo o método de otimização utilizado. Estudou-se a possibilidade de
reinicialização dos parâmetros de otimização a cada alteração evolucionária de topologia,
tornando cada domínio modificado pelas inserções como o novo ponto inicial do algoritmo
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de otimização. Entretanto, adianta-se que a alternativa não se mostrou vantajosa devido à
promoção de instabilidades no processo de otimização. Portanto, os resultados obtidos
através dela não foram exibidos nos exemplos.

6.3.2 Segundo critério

A segunda alternativa, a qual é proposta pelo autor, consiste em efetuar o processo
de alteração de topologia antes do início das iterações via evolução de contorno do MLS.
Analogamente, busca-se obter configurações como as da Figura 75 por um subprocesso
heurístico de otimização, reduzindo a dependência do sucesso do processo global de
otimização topológica em relação à metodologia de distribuição manual dos orifícios.

Assim, antes do início do processo de evolução do MLS, efetuam-se inserções
continuamente no domínio. A cada iteração heurística, calcula-se a média da tensão de von
Mises em pontos do domínio, a qual funciona como tensão de relevância σ∗. Se não houver
remoção para uma taxa inicial especificada, esta é incrementada até que se possibilite
uma inserção. Esse processo pode ser cessado se cruzada a restrição de volume de valores
superiores para inferiores ou em caso de saturação de orifícios no domínio, em que o
novo volume de uma iteração não difere tanto do anterior ou em que a própria taxa seja
atualizada infinitamente.

Escolheu-se a média da tensão de von Mises nos pontos como tensão de referência
devido à possibilidade de a tensão mais alta ser obtida através de integrações quase-
singulares. Devido a isso, há a possibilidade da tensão máxima ser um valor extremamente
mais elevado do que as tensões em outros pontos. Assim, mesmo com a prescrição de valores
pequenos para taxa inicial de remoção e seu incremento, possibilita-se a degeneração do
domínio por uma elevada remoção de material em uma única iteração.

Essa alternativa de alteração topológica pode se mostrar vantajosa em relação
à anterior pois não promove modificações no domínio imprevistas pelo algoritmo de
otimização adotado. O valor inicial da restrição da restrição de volume para o cálculo do
valor inicial do coeficiente de penalização a partir da Eq. (6.24) é tido como a avaliação da
restrição na configuração final desse processo evolucionário. Tal configuração é a inicial
para a evolução do contorno via MLS. Além disso, por meio dela, não há necessidade de
constante verificação do critério ao longo de um grande número de iterações do processo
de otimização, como o que pode ocorrer para o anterior se não for cessado precocemente.
Assim, evita-se contantes avaliações de integrais para tensão em pontos internos e ocasionais
procedimentos de remalhamento, tornando essa segunda alternativa computacionalmente
mais barata.
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6.4 Exemplos

Apresentam-se exemplos de otimização topológica efetuados com as metodologias
descritas. Exibem-se os dados dos processos considerando as duas metodologias de alteração
topológica descritas. Comparam-se os resultados finais com os de outros procedimentos
envolvendo tanto o MEC como o MEF. Verifica-se, para cada exemplo, a influência da
atualização dos parâmetros do lagrangiano aumentado no processo de convergência.

Também se deve comentar que, visando contornar possíveis transtornos quanto
a integrações quase-singulares no MECIG, foi utilizado um esquema de transformação
cúbica para as coordenadas dos pontos de integração (Telles, 1987; Telles; Oliveira, 1994).
Através dela, posicionam-se os pontos de integração concentradamente no cume da função
integrada, aumentando a precisão do processo. O processo se encontra descrito em mais
detalhes no Apêndice D.

6.4.1 Exemplo 1

O primeiro exemplo se trata de uma chapa tracionada em sua região central lateral
e foi analisado por Oliveira, Andrade e Leonel (2020). Resultados para configurações
geométricas semelhantes em que também se utilizou o acoplamento MLS/MEC, embora
adotando discretização lagrangiana para o último, também estão disponíveis (Oliveira,
2017). A Figura 77 ilustra a configuração geométrica do exemplo, suas condições de
contorno e os parâmetros elásticos considerados a princípio. Para cada segmento de
reta com diferentes condições de contorno, utilizou-se, como discretização inicial, uma
NURBS com 50 pontos de integração para cada elemento isogeométrico. Aplicou-se grid de

Figura 77 – Exemplo de tração horizontal

Fonte: Elaborada pelo autor.
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dimensões 160 × 288 mm2 com espaçamento de 4 mm em ambas as dimensões. O volume
alvo foi tido como 30% do volume inicial.

6.4.1.1 Primeiro critério de alteração topológica

Para os primeiros processamentos, utilizou-se a metodologia de atualização ilimitada
que foi efetuada no artigo de referência desse exemplo. O multiplicador de Lagrange inicial
foi tido como 0, enquanto foi utilizada a Eq. (6.24) para o cálculo do valor inicial do
coeficiente de penalização. Adotando o primeiro critério descrito na seção 6.3.1 para
alteração de topologia, utilizou-se ρ = 5 %. Considerou-se uma atualização de soma de
1 % a esse valor a cada 20 iterações do MLS. Adianta-se que, para esse exemplo, forma-se
uma região de baixa tensão em iterações próximas às da estrutura estacionária segundo o
critério de verificação utilizado. Portanto, para evitar problemas de convergência advindos
de criação e fechamento cíclicos de orifícios, foi necessário parar a execução de iterações
evolucionárias a partir da iteração do MLS de número 50.

A Figura 78 ilustra os gráficos de convergência de volume e flexibilidade com
diferentes valores de O que não culminaram em falha crítica do processo. A partir dela,
torna-se evidente a influência da escolha da ordem de grandeza para o cálculo do parâmetro
inicial de penalização. Quanto maior for seu valor, mais o processo priorizará o atendimento
da restrição em detrimento da minimização da função objetivo. Coeficiente iniciais de
penalização calculados com ordens de grandeza superiores às apresentadas tendem a
promover uma contração brusca do domínio devido à alta prioridade dada ao atendimento
da restrição. Em virtude disso, o algoritmo falha nas primeiras iterações. Em caso de
coeficientes obtidos por ordens de grandeza inferiores às apresentadas, o algoritmo tende
a minimizar a flexibilidade sem consentimento do atendimento da restrição. Assim, a

Figura 78 – Convergência para exemplo de tração em chapa
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Fonte: Elaborada pelo autor.
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Figura 79 – Falhas da otimização topológica por contração brusca (O = 101)Geometry 20

(a) geometria

Grid Mesh

(b) grid

Fonte: Elaborada pelo autor.

Figura 80 – Falhas da otimização topológica por expansão irrestrita (O = 10−4)Geometry 57

(a) geometria

Grid Mesh

(b) grid

Fonte: Elaborada pelo autor.

estrutura se expande de maneira à curva de nível de referência da level set sair do grid,
provocando também falha súbita. A Figura 79 ilustra o primeiro caso de falha enquanto a
Figura 80 ilustra o segundo. Obviamente, como a falha envolve o remalhamento, ambas
as figuras apresentam os dados da iteração imediatamente antes da falha.

Novamente observando a Figura 78, nota-se que, a partir de determinada iteração,
os processos de otimização apresentam falhas de convergência. Geometricamente, têm-
se que o domínio entra em um ciclo de contração e expansão sem cessão ou até que o
remalhamento falhe. Alegando que a estrutura ótima seja aquela obtida imediatamente
antes do início desse processo, obtêm-se, como resultado final, as ilustradas por meio da
Figura 81. Observando-a, também é evidente que esses domínios estariam de acordo com
a topologia final da referência, embora pequenas diferenças sejam percebidas.
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Figura 81 – Topologias finais do exemplo de chapa tracionada para
Geometry 158
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Geometry 250
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Geometry 349
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Geometry 501

(d) O = 10−3
(e) Oliveira, Andrade e Leo-

nel (2020)

Fonte: Elaborada pelo autor.

Buscando alternativas para evitar o ciclo de expansão e contração da topologia,
testou-se alterar a metodologia de atualização dos parâmetros λ e γ, efetuando-a de acordo
com Arora (2017). Entretanto, não houve sucesso. Analisando o crescimento do valor de γ

ao decorrer do processo original, percebeu-se que o início das oscilações ocorria quando
ele atingia uma faixa parecida de valores variando seu valor inicial. A Figura 82 ilustra a
evolução dos valores normalizados dos coeficientes de penalização até a detecção do início
dos ciclos. A sequência tracejada das linhas indica uma incerteza do início das oscilações,
já que foi efetuada via observação de variação do valor da restrição.

Assim, verificou-se a possibilidade de evitar essas oscilações mediante uso da
propriedade do método do lagrangiano aumentado de não necessitar que o valor do
coeficiente de penalização tenda à infinito para que se tenha convergência ou para que o
processo de otimização tenha continuidade. Para isso, primeiro foi estabelecido um valor
máximo para o coeficiente de penalização. Novamente observando a Figura 82, percebe-se
que, para todos os casos, as oscilações se iniciam apenas após o valor de 5 . 100 para o
valor normalizado do coeficiente. Portanto, ele foi tido como máximo. Após alcançado,
apenas o valor de λ é atualizado no processo. Uma linha tracejada negra representa esse
valor máximo de ordem de grandeza na mesma figura.

Além disso, também se evitou continuar a atualizar o valor do coeficiente de
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Figura 82 – Progressão dos valores de coeficiente de penalização normalizados para o
exemplo de chapa tracionada até o início das oscilações
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Fonte: Elaborada pelo autor.

penalização uma vez que a restrição já se encontrasse suficientemente atendida mediante
uma tolerância. Para isso, atribuiu-se um valor de 10−3 a tal. Dessa forma, busca-se impedir
aumentos desnecessários de priorização do atendimento da restrição no processo.

Implementando as metodologias de atualização citadas, efetuou-se novamente o
processo de otimização topológica considerando os valores de ordem grandeza anteriores
que não produziram falha súbita. A Figura 83 ilustra o comportamento da convergência do
processo para cada um dos valores utilizados. Por meio dela, verifica-se que as oscilações do
processo de contração e expansão foram tratadas com sucesso. As evoluções dos coeficientes
de penalização normalizados podem ser apreciadas na Figura 84. Observando-a, percebe-se
que, para a maioria dos casos, não foi necessário que seu valor atingisse o máximo prescrito
para que a estrutura continuasse a convergir.

Alguns pequenos picos são observados na convergência da flexibilidade. Dada a sua
ausência no gráfico de convergência de volume, pode-se suspeitar que possivelmente são con-
sequentes da singularidade do MEC para obtenção de campos mecânicos. Aparentemente,
esses picos isolados não afetam significantemente o andamento do processo. Ademais, o
simples aumento do número de pontos de integração já é capaz de mitigá-lo, conforme
se observa na Figura 85. Pela qual, mostra-se que, apresentando pequena melhoria, tal
aumento não se justificaria pelo acréscimo de tempo do processo.

Ainda com os 50 pontos de integração por elemento previamente utilizados, exibe-se,
através da Figura 86, as topologias finais obtidas pela correção da atualização do valor
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Figura 83 – Convergência corrigida para exemplo de tração em chapa
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Fonte: Elaborada pelo autor.

Figura 84 – Progressão limitada dos valores de coeficiente de penalização normalizados
para o exemplo de chapa tracionada
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Fonte: Elaborada pelo autor.

do coeficiente de penalização. A diferença entre as topologias é notadamente pequena.
Nota-se que, com o decorrer do processo, antes prejudicado pelas oscilações, há a tendência
de remoção de material na região do menor ângulo formado pelas duas barras. Devido à
incidência das oscilações ser o quanto antes no processo conforme o aumento da ordem
de grandeza do coeficiente de penalização, verifica-se uma diferença maior de topologia
para valores iniciais maiores. Permitida a continuidade dos processos com menores valores
iniciais, haveria a tendência de obtenção, em iterações posteriores à de número 500, de
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Figura 85 – Convergência para exemplo de tração em chapa com aumento do número de
pontos de integração
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Fonte: Elaborada pelo autor.

Figura 86 – Topologias finais corrigidas do exemplo de chapa tracionada para
Geometry 499
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Geometry 500
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Geometry 491
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Geometry 491

(d) O = 10−3

Fonte: Elaborada pelo autor.

topologias mais próximas às fornecidas pelos maiores valores iniciais de coeficiente de
penalização. Assim, devido à maior velocidade de convergência, torna-se preferível iniciar
o processo com os maiores valores possíveis de ordem de grandeza.

Em seguida, verificou-se o comportamento da convergência do processo segundo
variação dos parâmetros elásticos e de solicitação. Considerando segurança e velocidade do
processo, optou-se por utilizar O = 10−1. Conforme já citado, os coeficientes de Poisson
de materiais reais se concentram na maior parte em uma faixa de 0.25 e 0.35. Tais valores
apresentam mesma magnitude. Portanto, não se prevê drásticas alterações na convergência
segundo o mesmo valor inicial do coeficiente de penalização. Assim é verificado por meio
dos resultados visualizados na Figura 87.

Quanto ao módulo de elasticidade e ao carregamento, esses promovem significativo
impacto na densidade de trabalho interno. Contudo, devido às considerações de linearidade
física e geométrica do problema, as modificações nessas grandezas impactam proporcional-



157

Figura 87 – Convergência com variação de coeficiente de Poisson para exemplo de tração
em chapa
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Fonte: Elaborada pelo autor.

mente a densidade de energia de deformação. O valor λ0 foi tido como nulo e os valores
iniciais e máximos de γ foram calibrados considerando a unidade para esses parâmetros.
Por meio da Eq. (6.24), pode-se facilmente calcular os novos valores iniciais de γ. Assim
como tal, é cabível utilizar o mesmo preceito da fórmula para adaptação do valor máximo
mensurado na Figura 84 segundo os novos parâmetros de rigidez e solicitação do domínio.

Portanto, foram analisados três diferentes casos com valores distintos de módulo
de elasticidade e de carregamento. Seus valores, assim como o inicial e o máximo para o
coeficiente de penalização, estão dispostos na Tabela 5. A Figura 88 ilustra a convergência
para cada um dos casos. A partir dela, notadamente se percebe a semelhança da evolução
do processo, o que valida a abordagem.

Uma vez que, para esse exemplo, a estrutura final não possui contornos internos,
ela também poderia ser obtida diretamente apenas com uma otimização de forma. Consi-
derando esse processo, na Figura 89, ilustram-se os resultados de geometria final (iteração
500) e de convergência de volume e flexibilidade, considerando O = 10−1. Comparando a

Tabela 5 – Parâmetros variados para exemplo de chapa tracio-
nada

Processo E
(
N/mm2) P

(
N/mm2) γ0 h0 (Ω) γmax h0 (Ω)

a 100 100 10−1 5.0 · 100

b 102 105 10−2 5.0 · 10−1

b 103 105 100 5.0 · 101

Fonte: Elaborada pelo autor.
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Figura 88 – Convergência considerando variação de parâmetros para exemplo de tração
em chapa
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Figura 89 – Resultados finais (iteração 500) para o exemplo de tração em chapa com
convergência corrigida e O = 10−1
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Fonte: Elaborada pelo autor.

geometria na iteração designada com as verificadas na Figura 86 e o desenvolvimento da
flexibilidade e do volume ao longo do processo com os dados da Figura 83, é evidente o
sucesso do processo de otimização de forma para esse exemplo. Assim, para esse caso, não
se verifica dependência significativa dos parâmetros de alteração topológica e, consequen-
temente, do próprio critério. Além disso, pode ser observado um comportamento mais
estável da evolução do volume e da flexibilidade, pois não há modificações no domínio
promovidas pelo critério de alteração de topologia ao longo da condução da otimização
via MLS.
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6.4.1.2 Segundo critério de alteração topológica

Conforme os resultados de otimização de forma para esse exemplo descritos anterior-
mente, não se espera interferência no sucesso da otimização pela consideração desse segundo
critério de alteração de topologia. Sua aplicação aqui objetiva meramente a verificação da
sua implementação. Então, considerou-se uma ρ = 15% com um incremento em progressão
aritmética. Ressalta-se que esse valor de taxa de remoção é bem superior ao inicial do
critério anterior pois a tensão de referência agora é uma média e não mais um valor
máximo. A configuração final obtida pelo processo evolucionário pode ser contemplada na
Figura 90.

Figura 90 – Domínio obtido heuristicamente para chapa tracionadaGeometry 15

(a) geometria

Grid Mesh

(b) grid

Fonte: Elaborada pelo autor.

Sequencialmente, tomando o domínio ilustrado na Figura 90 como o inicial para
processo de atualização via MLS, obtém-se os dados gráficos da Figura 91. Para essa
otimização, já se utilizou da metodologia para correção de convergência discutida para
o critério anterior. As topologias finais para esse caso podem ser apreciadas na Figura
92. A partir dela, percebe-se que as geometrias finais são praticamente idênticas entre si
e às apresentadas na Figura 86, especialmente se tomada a obtida com O = 100 como
referência. Embora o sucesso naturalmente seja o esperado devido a não haver necessidade
de alteração de topologia para esse exemplo, pelos fatores descritos, os resultados aqui
apresentados corroboram com o sucesso da implementação, que era o objetivo para esse
caso.

6.4.2 Exemplo 2

O segundo exemplo consiste em uma chapa curta submetida à flexão por um
carregamento aplicado no canto direito de sua face inferior. A Figura 93 ilustra sua
geometria e apresenta seus parâmetros elásticos e sua solicitação. Trabalhos inseridos
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Figura 91 – Convergência para chapa sob tração utilizando a segunda alternativa de
alteração de topologia
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Figura 92 – Topologias finais corrigidas do exemplo de chapa tracionada para
Geometry 501
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Fonte: Elaborada pelo autor.

no contexto da otimização topológica via acoplamento MLS/MEC também apresentam
resultados para esse exemplo (Oliveira, 2017; Oliveira; Leonel, 2019; Oliveira; Andrade;
Leonel, 2020). Outros apresentam resultados para geometria e propriedades um pouco
diferentes (Yamasaki; Yamada; Matsumoto, 2013; Ullah; Trevelyan; Matthews, 2014;
Guimarães, 2024). Resultados utilizando o SIMP clássico e outras variações também estão
disponíveis para diferentes propriedades (Valdez et al., 2017).

O procedimento de discretização utilizado foi análogo ao do exemplo anterior e
também com 50 pontos de integração por elemento isogeométrico. Utilizou-se um grid
de 168 × 112 mm2 com espaçamento de 2.8 mm em ambas as direções. O volume alvo foi
considerado como 30% do volume inicial. O valor inicial do coeficiente de penalização foi
calculado via Eq. (6.24).
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Figura 93 – Exemplo de chapa curta flexionada por carregamento aplicado no canto direito
de sua face inferior

Fonte: Elaborada pelo autor.

6.4.2.1 Primeiro critério de alteração topológica

Para o primeiro critério apresentado de alteração de topologia, considerou-se
ρ = 3%, já que o valor para o exemplo anterior promovia uma brusca redução de volume
na primeira iteração evolucionária para esse caso. A Figura 94 ilustra a degeneração de
domínio promovida por essa alta remoção de material. Devido à brusca redução de volume,
domínio tende a se expandir tanto para o atendimento da restrição, a qual foi cruzada
de valores mais altos para mais baixos, como para a minimização da flexibilidade. Dessa
forma, há a possibilidade de se deparar com o já citado transtorno de a curva de nível de

Figura 94 – Falha por degeneração do domínio devido ao critério de alteração de topologiaGeometry 33

(a) geometria

Grid Mesh

(b) grid

Fonte: Elaborada pelo autor.
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referência level set sair da extensão do grid, impossibilitando o remalhamento.

O incremento da taxa foi efetuado ao mesmo modo. Nesse exemplo, buscou-se
evoluir a taxa até um certo número iterações para evitar altas remoções de material em
estruturas próximas ao ótimo. Diferente do exemplo anterior, mesmo após a parada do
acréscimo da taxa de remoção, continuou-se a verificar o critério de alteração topológica
para impedir possíveis convergências para mínimos locais. A depender da taxa final, não se
verifica problemas de inserção de orifícios para posterior remoção via evolução da level set
por convecção, já que a evolução para os menores valores de flexibilidade desse exemplo
tende a não apresentar regiões com tensões muito baixas em relação à média.

Sem efetuar o controle da evolução do coeficiente de penalização, a Figura 95
ilustra os resultados de convergência para volume e flexibilidade, considerando diferentes
valores para O que não culminaram em falha brusca. As observações quanto à priorização
da minimização da flexibilidade ou do atendimento da restrição de volume quando da
variação do valor inicial do coeficiente de penalização são análogas às do exemplo anterior.
Novamente, observou-se os problemas de convergência devido à expansão e contração
cíclica da estrutura. Os resultados logo antes da ocorrência desses ciclos estão dispostos
na Figura 96. Os excelentes resultados obtidos por O = 10−1 e O = 10−2, em comparação
com o do SIMP, devem-se à excelente estacionariedade observada segundo o critério de
verificação adotado antes da ocorrência dos ciclos. Não se vale da mesma observação
para o caso de O = 100, cuja convergência ao ótimo notoriamente ainda se encontra em
andamento.

O valor superior de O, em relação aos que apresentaram relativo sucesso, testado
foi de 101. Não ocorreu o problema de contração súbita contemplado no exemplo anterior.

Figura 95 – Convergência para exemplo de flexão em chapa curta por aplicação de carre-
gamento no canto de sua face inferior
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Fonte: Elaborada pelo autor.
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Figura 96 – Topologias finais do exemplo de flexão em chapa curta por aplicação de
carregamento no canto de sua face inferior paraGeometry 180

(a) O = 100

Geometry 300

(b) O = 10−1

Geometry 440

(c) O = 10−2

(d) Oliveira e Leonel (2019)
(e) Oliveira, Andrade e Leo-

nel (2020)
(f) Oliveira, Andrade e Leo-

nel (2020) - SIMP

Fonte: Elaborada pelo autor.

Entretanto, os efeitos cíclicos de expansão e contração se iniciaram antes mesmo de ser
atendida a restrição, conforme ilustra a Figura 97. Já para o valor imediatamente inferior
testado, O = 10−3, ocorreu o processo de extrapolação da curva de nível de referência da
level set perante o grid, análogo ao observado para o exemplo anterior. Esse tipo de falha
ocorreu, entretanto, para um valor maior de O pois foi dado menos folga em extensão
do grid em relação ao domínio inicial, conforme pode ser visto na Figura 98. Ressalta-se
que, quanto mais extenso for o grid, maior deve ser o número de pontos para que se tenha
um espaçamento pequeno o suficiente para uma precisão decente. Logicamente, aumentar
o número de pontos encarece computacionalmente a análise, especialmente quanto ao
critério de alteração topológica.

Ao mesmo passo que no exemplo anterior, verificou-se se a metodologia de atu-
alização de parâmetros proposta disponível em Arora (2017) seria capaz de mitigar as
oscilação de expansão e contração da estrutura, não se obtendo êxito. Então, seguiu-se
com a metodologia efetiva para o exemplo anterior. Analogamente, mensurou-se um valor
máximo para γ, conforme ilustra a Figura 99, e se evitou sua atualização em caso de
atendimento suficiente de restrição, também com uma tolerância de 10−3.

A Figura 100 apresenta a convergência satisfatoriamente corrigida do processo de
otimização. A evolução de cada valor de coeficiente de penalização é apresentada na Figura
101. Por meio dela, ressalta-se que não há necessidade de sempre atualizar o valor do
coeficiente para a evolução do processo. Além disso, adotando o critério de não o atualizar
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Figura 97 – Falha ao se iniciar os ciclos de contração e expansão antes de atender à
restrição de volume para exemplo de flexão em chapa curta por carregamento
aplicado no canto de sua face inferior
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Fonte: Elaborada pelo autor.

Figura 98 – Falhas da otimização topológica por expansão irrestrita (O = 10−3)Geometry 44

(a) geometria

Grid Mesh

(b) grid

Fonte: Elaborada pelo autor.

se suficientemente atendida a restrição, é possível que não seja necessário prescrever um
valor máximo para γ. Já a Figura 102 ilustra as geometrias na iteração 500 para cada valor
inicial do coeficiente de penalização, seguindo a variação do número O. Conforme esperado
em virtude da observação de estacionariedade segundo o critério proposto antes dos ciclos
de expansão e contração, as geometrias finais para O = 10−1 e O = 10−2 conduzem
a excelentes resultados em comparação com os fornecidos pelo SIMP. Obviamente, a
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Figura 99 – Progressão dos valores de coeficiente de penalização até o início das oscilações
para exemplo de flexão em chapa curta por aplicação de carregamento no
canto de sua face inferior
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Figura 100 – Convergência corrigida para exemplo de flexão em chapa curta por aplicação
de carregamento no canto de sua face inferior
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Fonte: Elaborada pelo autor.

geometria para O = 100 ainda se encontra em evolução. Isso se deve, pois, às atualizações
por gradiente estavam conduzindo a estrutura a um mínimo local. Por volta da iteração
geral de número 80, o critério de alteração topológica gera um orifício pelo qual se evoluiu
até atingir uma condição de menor flexibilidade. A Figura 103 elucida a etapa de alteração
topológica enquanto a Figura 104 ilustra o resultado final estacionário e seus dados de



166

Figura 101 – Progressão dos valores de coeficiente de penalização para exemplo de flexão
em chapa curta por aplicação de carregamento no canto de sua face inferior
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Fonte: Elaborada pelo autor.

Figura 102 – Topologias finais (iteração 500) do exemplo de flexão em chapa curta por
aplicação de carregamento no canto de sua face inferior paraGeometry 501
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Fonte: Elaborada pelo autor.

convergência. Por meio do gráfico de convergência da última figura citada, observa-se a
possível duração em iterações do processo. Devido à baixa redução de flexibilidade iteração
a iteração, embora com clara tendência de decaimento ao longo do processo, observou-se
um transtorno quanto à adoção do critério de convergência. Em adição a isso, alguns
períodos de estacionariedade também foram observados para posterior decaimento da
função objetivo. O último fator também complicou severamente a adoção do critério, de
forma que, para a obtenção dos resultados apresentados, a consideração de estacionariedade
foi verificada por inspeção visual. Tal processo é extremamente simples e de fácil acerto
quando efetuado mediante vídeo da evolução do domínio. O sucesso dessa otimização é
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Figura 103 – Alteração topológica do exemplo de flexão em chapa curta por aplicação de
carregamento no canto de sua face inferiorGeometry 85

(a) condução a um mínimo local

Geometry 86

(b) alteração topológica

Fonte: Elaborada pelo autor.

Figura 104 – Resultados até a estacionariedade para o exemplo de flexão em chapa curta
por aplicação de carregamento no canto de sua face inferior com convergência
corrigida e O = 100
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Fonte: Elaborada pelo autor.

corroborado pela geometria final semelhante às obtidas para outros valores de O.

Portanto, claramente é verificada a mitigação dos ciclos de contração e expansão
pela correção adotada. Apesar de que excelentes resultados poderiam ser obtidos antes
desses ciclos ao se utilizar O = 10−1 ou O = 10−2, o término em excelência para O = 100 só
foi possível graças à essa correção. Além disso, todos os resultados obtidos em convergência
corrigida para esse exemplo se mostram em melhor conformidade com o proveniente do
SIMP quando comparados a outras abordagens envolvendo o acoplamento do MLS/MEC.

Quanto à sensibilidade ao critério de alteração topológica, já se comentou acerca
da possibilidade de falha súbita se adotados valores mais elevados para ρ. Para o sucesso
desse exemplo, verifica-se que o fator crítico é a inserção do orifício que resulta no contorno
interno das geometrias até então exibidas. O natural incremento ao valor inicial cessado em
alguma iteração, de forma a evitar aparecimento constante de furos com posterior remoção,
já é suficiente para evitar o mínimo local indicado na Figura 103, desde que o processo de
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Figura 105 – Resultados até a estacionariedade para o exemplo de flexão em chapa curta
por aplicação de carregamento no canto de sua face inferior com convergência
corrigida, O = 10−1 e ρ = 2%
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Fonte: Elaborada pelo autor.

alteração topológica não seja interrompido. Contudo, a alteração do valor inicial de ρ pode
alterar significativamente a condução da convergência. A Figura 105 ilustra os resultados
para O = 10−1 com redução de ρ para 2%. Dessa forma, verifica-se convergência similar
à obtida para O = 100 e ρ = 3%, a qual só fornece resultados satisfatórios se efetuado o
procedimento de limitação do crescimento do coeficiente de penalização. Tal fator ressalta
a necessidade da correção.

6.4.2.2 Segundo critério de alteração topológica

Na consideração do segundo critério de alteração de topologia, notou-se que uma
saturação de orifícios pequenos no domínio tendia à condução do processo à mínimos locais.
Dessa forma, utilizou-se ρ = 25% com atualização em progressão aritmética. Obviamente, a
tendência é que maiores taxas de remoção promovam maiores orifícios no domínio. Também
se observa que, maiores taxas tendem a promover uma maior redução de volume antes
da saturação de orifícios. Notou-se que, quanto maior essa redução sem a promoção da
degeneração do domínio, a qual é vislumbrada na Figura 94, maiores são as probabilidades
de obtenção de menores valores de flexibilidade para esse exemplo. Assim, o domínio
obtido pelas iterações evolucionárias se encontra caracterizado pela Figura 106.

Tomando o domínio da Figura 106 como inicial ao processo de otimização via MLS
e aproveitando as correções de convergência apresentadas para o critério anterior, obteve-se
os dados de convergência em flexibilidade e em volume dispostos na Figura 107. Para
a obtenção desses resultados foram considerados apenas os valores de O bem-sucedidos
para o critério anterior. As configurações geométricas finais dos processamentos podem ser
contempladas na Figura 108. Pela qual, nota-se que as geometrias obtidas são praticamente
iguais se comparadas entre si e aos casos que apresentaram estacionariedade, segundo a
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Figura 106 – Domínio heuristicamente obtido para exemplo de flexão em chapa curta por
aplicação de carregamento no canto direito de sua face inferiorGeometry 4

(a) geometria

Grid Mesh

(b) grid

Fonte: Elaborada pelo autor.

Figura 107 – Convergência para exemplo de flexão em chapa curta por aplicação de carga
no canto de sua face inferior utilizando a segunda alternativa de alteração
de topologia
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Fonte: Elaborada pelo autor

metologia de verificação adotada, antes da iteração 500 na Figura 102. Releva-se que todos
os casos de processamento tratados nessa seção demonstraram estacionariedade antes da
referida iteração. O conjunto de dados apresentados ressalta o sucesso dos processamentos
segundo esse critério. Deve-se comentar que o valor para taxa de remoção e sua atualização
foi propositalmente considerado como o citado para a obtenção de sucesso mediante os três
valores utilizados para O. Acrescenta-se que o valor intermediário desse último parâmetro
mitiga a dependência do sucesso mediante os parâmetros relativos ao critério de alteração
de topologia. Possivelmente, isso se deve ao melhor balanceamento de priorização do
algoritmo de otimização entre minimizar a função objetivo ou atender à restrição de
volume.
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Figura 108 – Topologias finais do exemplo de flexão em chapa por aplicação de carrega-
mento na extremidade de sua face inferior para

Geometry 501

(a) O = 100

Geometry 501

(b) O = 10−1

Geometry 501

(c) O = 10−2

Fonte: Elaborada pelo autor.

6.4.3 Exemplo 3

O terceiro exemplo se trata de uma chapa em flexão por um carregamento aplicado
no centro de sua face lateral. A Figura 109 ilustra sua configuração geométrica e suas
condições de contorno, além de também descrever seus parâmetros elásticos e de solicitação.
Para os mesmos dados, a literatura apresenta resultados obtidos através de outras variações
de otimização topológica utilizando o acoplamento MLS/MEC (Oliveira; Andrade; Leonel,
2020). Para configurações e parâmetros levemente diferentes, resultados semelhantes
também podem ser encontrados (Yamasaki; Yamada; Matsumoto, 2013; Ullah; Trevelyan;
Matthews, 2014). Também com dados um pouco diferentes, depara-se com resultados
produzidos pelo SIMP clássico e por algumas de suas variações (Bendsøe; Sigmund, 1999;

Figura 109 – Exemplo de chapa flexionada por carregamento aplicado no centro de sua
face lateral

Fonte: Elaborada pelo autor.
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Valdez et al., 2017).

A configuração inicial foi discretizada de maneira análoga aos exemplos anteriores.
Também foram utilizados 50 pontos de integração por elemento isogeométrico. Adotou-se
um grid para a descrição numérica da level set de 168 × 126 mm2 com um espaçamento de
2.8 mm em ambas as dimensões. Diferentemente dos outros dois exemplos, considerou-se o
volume alvo como 40% do original.

6.4.3.1 Primeiro critério de alteração topológica

Quanto à aplicação do primeiro critério de alteração topológica, utilizou-se ρ = 4%.
O valor foi incrementado em 3% a cada 5 iterações globais. Para evitar remoção excessiva
em iterações mais avançadas, cessou-se a atualização desse parâmetro na iteração global
de número 20, ainda permitindo alteração de topologia após isso. Logo após a obtenção
dos resultados base para esse exemplo, será mostrado que a escolha desses parâmetros
pode influenciar significativamente na obtenção de um ótimo nesse caso.

Inicialmente efetuando o procedimento mediante atualização ilimitada do valor
do coeficiente de penalização, a Figura 110 ilustra os resultados de convergência para
flexibilidade e volume em casos de O que não apresentaram falha súbita. Novamente,
são observados os ciclos de expansão e contração da estrutura, os quais cessam em falha.
As configurações geométricas inicialmente anteriores às oscilações podem ser observadas
na Figura 111 em conjunto com resultados provenientes da literatura. Observando os
resultados, é evidente a melhor consonância dos obtidos no presente estudo com o SIMP
se comparado ao outro obtido também pela formulação de acoplamento do MLS com o
MECIG em que o presente estudo é baseado. Em seu contexto, o fato de as estruturas

Figura 110 – Convergência para exemplo de flexão em chapa por aplicação de carregamento
no centro de sua face lateral
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Figura 111 – Topologias finais do exemplo de flexão em chapa curta por aplicação de
carregamento no canto de sua face inferior para
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(a) O = 10−1

Geometry 380
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(c) Oliveira, Andrade e Leonel (2020) (d) Oliveira, Andrade e Leonel (2020) - SIMP

Fonte: Elaborada pelo autor.

ilustradas já apresentarem estacionariedade segundo o critério proposto antes da ocorrência
das oscilações contribui para a qualidade dos resultados.

Retratando os casos de falha para outros valores de O testados, a Figura 112 ilustra
o caso para O = 100. Observando o gráfico de convergência, percebe-se que os ciclos de
expansão e contração se iniciaram antes do atendimento da restrição de volume. Já para
O = 10−3, devido à inicial tendência de expansão do domínio, a curva de nível de referência
da level set sai do grid, impossibilitando a geração de uma malha de MECIG fechada. A
Figura 113 ilustra a geometria da estrutura e a situação dos pontos do grid imediatamente
antes da ocorrência da falha. Essa falha para esse valor de O se justifica pela menor
margem da extensão do grid dada em relação à configuração inicial se comparada à do
primeiro exemplo, conforme também ocorreu para o segundo.

Em seguida, objetivando a mitigação dos ciclos de expansão e contração do domínio,
procura-se por um valor máximo de coeficiente de penalização observando sua evolução
ao longo das iterações e estimando as posições de início desses ciclos. O procedimento é
análogo aos efetuados para os dois primeiros exemplos. A Figura 114 retrata essa evolução
normalizada perante os valores de restrição inicial, resistência e solicitação. Dessa forma,
estima-se um valor máximo representado pela linha horizontal tracejada (2.0 · 100).

Além da restrição em um valor máximo do coeficiente, seu crescimento também
foi cessado se atendida a restrição em volume com uma tolerância de 10−3. Dessa forma,
foram obtidos os resultados de convergência os quais são apresentados na Figura 115. Por
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Figura 112 – Falha ao se iniciar os ciclos de contração e expansão antes de atender à
restrição de volume para exemplo de flexão em chapa por carregamento
aplicado no centro de sua face lateral
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meio de seus gráficos, é evidente a correção dos ciclos de expansão e contração promovida
por esses procedimentos. As geometrias finais (iteração 500) dos processos podem ser
apreciadas na Figura 116. Conforme esperado, devido aos bons sinais de convergência já
apresentados antes dos efeitos cíclicos discutidos, não se percebe mudanças significativas
em relação as suas geometrias prévias. Comparando ambas, também se nota diferença pífia.
Observando a evolução do coeficiente de penalização por meio da Figura 117, conclui-se
que não haveria necessidade em nenhum dos casos de prescrição de valor máximo, já que
não foi atingido durante o processo. Obviamente, a estacionariedade segundo o critério
proposto observada para estrutura antes dos ciclos que conduzem à falha também contribui
para isso.

Por fim, variando os parâmetros de alteração topológica, observa-se alternação
entre as configurações finais obtidas, as quais são estão ilustradas na Figura 118. Os dados
relativos ao critério de alteração topológica para cada processamento são:

(a) ρ = 5% com atualização de 3% a cada 2 iterações;

(b) ρ = 5% com atualização de 4% a cada 2 iterações;

(c) ρ = 5% com atualização de 1% a cada 20 iterações.
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Figura 113 – Falhas da otimização topológica por expansão irrestrita (O = 10−3) para
exemplo de flexão em chapa por carregamento aplicado no centro de sua face
lateralGeometry 17

(a) geometria

Grid Mesh

(b) grid

Fonte: Elaborada pelo autor.

Figura 114 – Progressão dos valores de coeficiente de penalização até o início das oscilações
para exemplo de flexão em chapa por aplicação de carregamento no centro
de sua face lateral
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Fonte: Elaborada pelo autor.

Para todos, utilizou-se O = 10−1. Visualizando da esquerda para direita, apesar das duas
primeiras geometrias se apresentarem levemente diferentes dos resultados da Figura 116,
seus valores de flexibilidade são muito próximos. Dessa forma, o presente exemplo fornece
vales de função objetivo localizados muito próximos entre si dentro do domínio de projeto.
A partir dessa característica, pode-se levar a conclusão, se considerada uma tolerância de
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Figura 115 – Convergência corrigida para exemplo de flexão em chapa por aplicação de
carregamento no centro de sua face lateral
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Fonte: Elaborada pelo autor.

Figura 116 – Topologias finais corrigidas do exemplo de flexão em chapa por aplicação de
carregamento no centro de sua face lateral para
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(a) O = 10−1

Geometry 501

(b) O = 10−2

Fonte: Elaborada pelo autor.

precisão, da existência de diversos ótimos. Já a última configuração se caracteriza como um
mínimo local devido a seu valor de flexibilidade ser mais elevado, embora com o processo
apresentando estacionariedade segundo o critério proposto nessa posição do domínio de
projeto.

Além disso, mediante os últimos resultados, comenta-se da necessidade de uma
agressiva alteração topológica nas primeiras iterações para se evitar a obtenção do mínimo
local (último resultado) da Figura 118. Essa configuração é a moda dos resultados de uma
extensiva variação dos parâmetros de alteração topológica, em que se evitou apresentar
todos eles para preservar o texto de saturação. Também é válido ressaltar que muitos desses
resultados só atingiram o ponto de estacionariedade graças à limitação da atualização
do valor do coeficiente de penalização efetuada. No geral, quanto mais agressiva for a
inserção de orifícios, maior é a tendência de se atingir a estacionariedade antes dos ciclos
de expansão e contração do domínio, desde que as inclusões conduzam a um ótimo. Esse



176

Figura 117 – Progressão restringida dos valores de coeficiente de penalização para exemplo
de flexão em chapa curta por aplicação de carregamento no canto de sua
face inferior
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Fonte: Elaborada pelo autor.

Figura 118 – Topologias finais (iteração 500) do exemplo de flexão em chapa por aplicação
de carregamento no centro de sua face lateral para:
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Fonte: Elaborada pelo autor.

fator justifica a utilização do outro critério de alteração de topologia, o qual foi proposto.

6.4.3.2 Segundo critério de alteração topológica

Ao se adotar o segundo critério de alteração topológica, utilizou-se ρ = 16% com
atualização em progressão aritmética. Acerca da influência do valor da taxa de remoção na
obtenção de menores valores para a flexibilidade discutidos na seção anterior, vale-se dos
mesmos comentários tecidos para o exemplo anterior. Quanto maior o volume removido
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pela inserção de orifícios sem a degeneração do domínio, maior é a taxa de sucesso do
algoritmo. Consequentemente, opta-se pela saturação do domínio com remoções maiores.
Dados e justificados os parâmetros para o critério de alteração topológica, a Figura 119
ilustra o domínio heuristicamente obtido.

Figura 119 – Domínio heuristicamente obtido para exemplo de flexão em chapa por apli-
cação de carregamento no centro de sua face lateral
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(a) geometria

Grid Mesh

(b) grid

Fonte: Elaborada pelo autor.

Utilizando o domínio disposto na Figura 119 como inicial à condução da otimização
topológica via MLS, geram-se os dados de convergência de flexibilidade e volume dispostos
na Figura 120. Ao mesmo modo que nos exemplos anteriores, utilizou-se apenas valores
que O que culminaram no sucesso do procedimento quanto à obtenção de um mínimo ao
menos próximo ao que se espera do global quando da adoção do primeiro critério. Por

Figura 120 – Convergência para exemplo de flexão em chapa por aplicação de carga na
centro de sua face lateral utilizando a segunda alternativa de alteração de
topologia
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Figura 121 – Topologias finais do exemplo de flexão em chapa por aplicação de carre-
gamento no centro de sua face lateral considerando o segundo critério de
alteração topológica para
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Fonte: Elaborada pelo autor.

meio dos processamentos cujos dados de convergência foram apresentados, são ilustradas
suas geometrias finais na Figura 121. Analisando-a, é evidente a semelhança entre as
duas geometrias ilustradas e em relação às apresentadas na Figura 116. Assim como os
que forneceram as geometrias dessa última figura citada, os processamentos poderiam
ter cessado por confirmação de estacionariedade significativamente antes da iteração
500. Apresentados os resultados para esse exemplo, têm-se como evidente o sucesso da
metodologia proposta.
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7 CONCLUSÃO

Essa dissertação, em súmula, tratou de aplicações do MEC à análise de estruturas
enrijecidas e à otimização topológica, ambas em contexto plano. Representou-se estruturas
enrijecidas através do acoplamento MEC/MEC-1D, com a formulação unidimensional
utilizada para descrição das inclusões em domínios planos. Foram verificadas e compa-
radas as aplicações do modelo clássico de discretização em elementos lagrangianos e do
modelo de discretização isogeométrica. Acerca do processo de otimização topológica, este
foi conduzido pelo MLS, enquanto se utilizou do MECIG para avaliação mecânica do
domínio e consequente fornecimento de dados para a solução do PVI descrito pela Equa-
ção de Hamilton-Jacobi. Ao longo do texto, diversos exemplos foram satisfatoriamente
apresentados para retratar todas essas aplicações do MEC estudadas.

7.1 Considerações finais

No Capítulo 3, foram apresentadas as formulações lagrangiana e isogeométrica do
MEC. Por meio de dois exemplos, um em EPT e o outro em EPD, ambos com solução
analítica disponível, foram verificadas e comparadas as duas abordagens. Observou-se que
a abordagem isogeométrica apresenta menor erro para geometrias curvas, mesmo com
um número menor de fontes, se comparada à lagrangiana. Para a última, verficou-se que,
mesmo com uma malha pobre, é possível obter resultados razoavelmente precisos.

No Capítulo 4, apresentou-se a formulação unidimensional do MEC. Dois exemplos
foram utilizados para verificar a implementação. O primeiro provou a recuperação da
solução analítica em todo o domínio para deslocamentos axiais e esforços normais. Já
o segundo retratou a possibilidade de recuperação analítica de esforços normais mesmo
quando a função aproximativa não é capaz de recuperar a função de deslocamento axial
analítica, bastando que represente com exatidão a função de força de domínio.

No Capítulo 5, foi apresentada a formulação do acoplamento do MEC com o
MEC-1D para representação mecânica de domínios enrijecidos. Nos primeiros exemplos,
provou-se a eficiência da alternativa de discretização de enrijecedores proposta. A qual
consiste em um refinamento linear concentrado nas pontas para possibilitar a captação dos
elevados gradientes ali previstos. Dessa forma, torna-se factível uma boa representatividade
do esforço normal no domínio do enrijecedor utilizando uma discretização mais pobre para
o trecho interno, cujos valores são numericamente melhores comportados. Tal eficiência foi
comprovada para as abordagens lagrangiana e isogeométrica do MEC, quando da discreti-
zação do meio, mediante três exemplos. Neles, devido às suas características geométricas,
não se observaram diferenças significativas entre os usos dessas duas discretizações para
o meio. Além disso, também utilizando ambas, foi possível obter resultados de esforço
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normal nos enrijecedores fisicamente mais consistentes do que os fornecidos por modelos
purante em MEF do software comercial Ansys.

Outra discussão no capítulo foi quanto à possibilidade da presença de quase-
singularidades envolvendo a integração da equação de pontos internos para fontes pertencen-
tes ao domínio de um enrijecedor. Dessa forma, torna-se necessário um pré-processamento
para evitar o cruzamento e a superposição do domínio de fibras, os quais também são
fisicamente inconsistentes. Foram apresentadas duas metodologias de distribuição alea-
tória de fibras: uma para domínios retangulares; e outra para anelares. Os resultados de
flexibilidade mediante variação de taxa de fibras evidenciam o sucesso da representação
mecânica da discretização ao conduzir a resultados fisicamente consistentes. Ademais, por
meio do exemplo de geometria anelar, clarifica-se a diferença de resultados em caso do uso
de uma discretização lagrangiana ou isogeométrica para o meio.

Ainda nos exemplos com distribuição aleatória de fibras, mostrou-se que, ao se
utilizar dimensões, parâmetros elásticos e taxas de distribuição de magnitudes realísticas, a
influência na flexibilidade do domínio é muito pequena. Além disso, a partir de resultados
advindos de convergência mediante refinamento em elementos quadráticos do MEC-1D,
mostra-se que o ganho de precisão quanto à flexibilidade é pouco influenciado pela
discretização e que cai significativamente após a utilização de 15 fontes por fibra. Por meio
dessa análise, também foi mostrado que o aumento do número de fontes de fibra contribui
bastante com o custo computacional do processamento. Conforme discutido, o último fato
advém principalmente do acréscimo de integrações devido à necessidade de equações de
deslocamento de pontos internos.

No Capítulo 6, dissertou-se acerca do problema de superfícies móveis que constitui
o MLS. Descreveu-se sua solução de primeira ordem no tempo e no espaço. O primeiro
efetuado pelo Método de Euler e o segundo por Diferenças Upwind. Apresentou-se a
formulação do processo de otimização por meio do método do lagrangiano aumentado,
conjugando o negativo do gradiente da função lagrangiana aumentada à velocidade normal
ao espaço de imagem da função level set. Tal gradiente envolve grandezas mecânicas as
quais são avaliadas pelo MECIG. Por meio desse processo, constrói-se o acoplamento entre
os dois métodos, admitindo que a level set evolua no sentido de minimização da função
lagrangiana aumentada.

Apresentada a formulação de otimização topológica, descrevem-se dois critérios
heurísticos para alteração de topologia via inclusão de orifícios no domínio. O primeiro
já era utilizado com sutis variações na literatura, enquanto o segundo foi proposto pelo
autor na tentativa de evitar a necessidades de parada do primeiro critério ao longo do
processamento ou do cessar da atualização de sua taxa de remoção. Além disso, visa-se
uma economia de custo computacional em se fazer a verificação de tensão em pontos do
domínio apenas em poucas iterações antes de propriamente iniciado o MLS. Também são
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propostas metodologias para avaliação do valor inicial do coeficiente de penalidade do
método do lagrangiano aumentado, a qual é baseada na paridade numérica dos parâmetros
físicos utilizados na construção do campo de velocidades normais, e para verificação da
estacionariedade do processo, visando a identificação de um ótimo.

Para todos os exemplos retratados, verificou-se o desenvolvimento de ciclos de
contração e expansão do domínio, os quais podem prejudicar a condução processo de
otimização se surgirem antes de verificada a estacionariedade do valor de flexibilidade
da estrutura. Tal transtorno foi solucionado ao se impor limites ao crescimento do valor
coeficiente de penalidade. Parar de atualizá-lo quando do atendimento da restrição de
volume mediante uma tolerância se mostrou uma alternativa bastante eficaz e versátil.
Se essa restrição não for o suficiente para controlar o crescimento desse valor, também é
mostrado que há a possibilidade de se estabelecer um valor máximo para esse coeficiente.
Ao se evitar tais ciclos, possibilita-se o sucesso da otimização para uma maior variedade
de valores para os parâmetros de alteração topológica e propriamente para o coeficiente
de penalidade. Consequentemente, torna-se o sucesso do processo menos suscetível a tais
variabilidades.

A fórmula proposta para o valor inicial do coeficiente de penalidade se mostrou
útil em normalizar a escolha do parâmetro a um número menos dependente de parâmetros
físicos da estrutura, tornando os valores aqui utilizados possivelmente gerais a diversas
configurações estruturais. Mostrou-se os problemas ao se adotar valores iniciais muito
elevados ou muito pequenos e como eles influenciam no processo dado o grau de priorização
do atendimento da restrição de volume em detrimento da minimização da função objetivo.

O critério de convergência proposto mostrou utilidade em captar ótimos, evitando
parada em trechos descendentes, ainda que de baixa inclinação. Aparentemente, o critério
é efetivo nessa captação quando a convergência da estrutura é relativamente rápida. No
segundo exemplo, quando inserido o orifício que altera a condução da otimização, o processo
passa a ocorrer de forma muito mais lenta. Nisso, pode haver regiões de estacionariedade
parcial que prejudiquem o desempenho da metodologia. Dessa forma, recomenda-se que
seja salvo em memória um histórico relativamente extenso de valores de flexibilidade e
volume para evitar cessão do processo alguma dessas regiões.

Considerados os procedimentos supracitados, o processo de otimização topológica
conduzido ao se utilizar do primeiro critério de alteração de topologia produziu excelentes
resultados se comparados aos consolidados do SIMP. Nessa comparação, percebe melhoria
em relação aos obtidos por outros autores também utilizando o acoplamento MLS/MEC. As
comparações foram diretamente efetuadas em texto apenas com trabalhos que utilizaram as
mesmas condições físicas e geométricas iniciais. Se observados os trabalhos com condições
semelhantes, os quais foram devidamente citados ao início de cada exemplo, também se
verifica a excelência dos resultados aqui obtidos.
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Por fim, ao se utilizar o segundo critério de alteração de topologia, foi possível obter
resultados igualmente consistentes se comparados aos melhores fornecidos se utilizado o
primeiro critério. Notou-se que os resultados finais da otimização por esse critério tendem a
ser melhores quanto maior a remoção de volume promovida pelas iterações evolucionárias
sem que o domínio seja degenerado. Também foi observado, e isso seria deveras esperado,
que a geração de orifícios maiores tende a promover essa maior redução de volume antes
de sua saturação no domínio.

7.2 Sugestões para trabalhos futuros

Como continuidade e tratamento mais formal à discretização dos enrijecedores,
sugere-se um procedimento de refinamento adaptativo para verificação da eficiência da
saturação de fontes nas extremidades do domínio. Ademais, tendo em vista o comum caso
de enrijecimento de matrizes anisotrópicas, como o que ocorre nas variantes do concreto
estrutural, seria relevante a utilização de um modelo anisotrópico ao MEC, o qual pode ser
facilmente implementado via alteração da solução fundamental. Em adição a isso, modelos
de fratura poderiam ser incorporados à análise. Outra contribuição seria a utilização da
formulação de pórtico do MEC-1D para representação mecânica dos enrijecedores. Com
isso, poderia ser verificada a atuação do efeito pino no corpo sólido, em caso de uma fissura
cruzar o enrijecedor.

Quanto às possibilidades de continuidade aos procedimentos de otimização to-
pológica, depara-se com uma vastidão. Pretende-se dar continuidade aos estudos aqui
executados utilizando o acoplamento MEC/MEC-1D com o MLS para otimização to-
pológica de estruturas enrijecidas. Também são válidas a consideração de um modelo
anisotrópico para o MEC e a escrita da formulação da otimização topológica no sentido de
minimização de volume sujeito à restrição de tensão. A última pavimentaria o caminho ao
desenvolvimento de otimizações topológicas baseadas em confiabilidade (Reliability-based
Topology Optimization - RBTO) ao se escrever a restrição de estado limite em função
da probabilidade de falha da estrutura. Ainda mantendo a otimização no sentido de
minimização de flexibilidade sujeito a uma restrição de igualdade de volume, seria possível
incorporar aleatoriedades para transformar a otimização topológica em robusta (Robust
Topology Optimization - RTO). Por fim, incluindo a formulação atual dessa dissertação,
qualquer extensão para contexto tridimensional mantendo a característica isogeométrica
seria disruptiva.
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APÊNDICE A – FUNDAMENTOS DE ELASTICIDADE

Incorporando-se maior formalismo matemático às teorias elementares de Resistência
dos Materiais, a Teoria da Elasticidade é um ramo da Mecânica dos Meios Contínuos
que busca descrever matematicamente o comportamento mecânico de sólidos os quais
apresentam tendências físicas elásticas, ou seja, que retornam da configuração deformada à
inicial ao cessar de uma solicitação. A partir de hipóteses de continuidade do meio, busca-se
descrever tais relações através de funções contínuas ainda que por partes, tornando-se
possível a inserção nos modelos matemáticos das ferramentas do Cálculo.

Neste capítulo, busca-se discutir os fundamentos de elasticidade tratados no traba-
lho, como os conceitos de tensão e deformação, forças de superfície, equações de equilíbrio
e propriedades constitutivas de materiais elásticos. Sua intenção não é de substituir textos
clássicos e consolidados na literatura, dentre os quais podem ser citados Timoshenko e
Goodier (1987) e Chou e Pagano (1992), mas de possibilitar ao leitor rápida consulta aos
fundamentos utilizados no texto.

A.1 Tensão de Cauchy

Para se definir o conceito de tensão, leva-se em conta um sólido submetido a um
conjunto de forças cujo somatório de contribuições ao equilíbrio provoque uma nulidade
(diz-se autoequilibradas), conforme pode ser visto na Figura A.1(a). Ao se partir o elemento
em duas unidades, no plano de seção é identificada uma distribuição de forças, a qual
deve existir de maneira que ambas as partes resultantes da divisão do sólido primordial
satisfaçam o equilíbrio, a qual é ilustrada na Figura A.1(b). Ao se efetuar tal equilíbrio para
uma das porções, verifica-se que a resultante da distribuição possui módulo equivalente,
porém direção oposta à das ações aplicadas na porção analisada. Ou seja, possui módulo
equivalente e mesma direção das ações aplicadas à outra parte do sólido, uma vez que se
encontrava em equilíbrio.

Ao se extrair um infinitésimo de área da seção de divisão do sólido, como ilustra a
Figura A.1(c), define-se tensão como

t⃗ = dF⃗

dA
≡ ti = dFi

dA
, (A.1)

em que o vetor dF⃗ , em notação diádica, ou dFi em notação indicial ou ‘de Einstein’,
representa o vetor de forças infinitesimais atuantes sob a área infinitesimal dA da seção
extraída. Em uma razão entre essas duas grandezas, no limite da área tendendo a zero,
define-se o vetor tensão t⃗, ou ti, o qual possui a mesma direção do vetor dFi.
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Figura A.1 – (a) Sólido sob ações autoequilibradas. (b) Porção do sólido. (c) Infinitésimo
de área da seção de partição.

(a) (b) (c)

Fonte: Elaborada pelo autor.

É possível decompor o vetor tensão em uma componente normal e outra tangencial
à área onde ele atua. Para o primeiro caso, efetua-se o produto escalar de t⃗ com um versor
n⃗ de direção normal ao plano de dA e no sentido de saída do sólido remanescente. Com o
escalar resultante da operação, basta multiplicá-lo pelo versor n⃗ para se definir o vetor
de projeção de t⃗ nessa direção. A obtenção do vetor na direção tangencial pode ser feita
simplesmente pela subtração do vetor original por sua projeção na direção normal. A Figura
A.1(c) mostra esse procedimento para o vetor dF⃗ , porém como a área é uma grandeza
escalar, executar a operação para esse vetor e depois dividi-lo pela área é equivalente a se
calcular o vetor tensão na direção de dF⃗ e depois definir suas componentes nas direções
de interesse. É a partir dessa propriedade que se verifica que o vetor tensão possui de fato
as propriedades de um vetor, pois elas são conservadas do vetor de forças.

A partir de 6 planos de corte, paralelos aos pares, com distâncias nulas entre si e
ortogonais aos eixos coordenados, retira-se um ponto do sólido da Figura A.1(a), que pelas
características de seus planos de corte, assume a geometria de cubo virtual de distância
nula entre suas faces, conforme Figura A.2. As faces cujo versor normal na direção externa
ao cubo possui mesmo sentido ao do eixo coordenado que lhes é ortogonal são ditas como
‘de saída’, em caso oposto diz-se ‘de entrada’. Pela Terceira Lei de Newton, identifica-se
que o vetor tensão atuante em uma face de entrada possui mesmo módulo, porém direção
oposta ao da face de saída que lhe é paralela. Além disso, é conveniente referenciar o vetor
tensão em cada face por suas componentes normais e tangenciais a ela, para cada qual
atribui-se a letra σ, que em notação indicial é acompanhada por dois índices: i para a face
em que a tensão atua; e j para a direção que ela segue. Tais índices variam conforme as
dimensões de análise, mas para o caso geral (tridimensional) i = 1, 2, 3 e j = 1, 2, 3. Se
face for de saída, a convenção de sinais comumente utilizada na Mecânica dos Sólidos é de
que as tensões apresentam sinais positivos quando seguem o sentido dos eixos coordenados,
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com o oposto no tocante aos sinais valendo para faces de entrada. Com isso, verifica-se
que tensões normais de tração são positivas, enquanto tensões compressivas são negativas.

Figura A.2 – Estado de tensão

Fonte: Elaborada pelo autor.

Ao estado de solicitação no ponto representado pela Figura A.2 atribuiu-se o nome
de ‘estado de tensão’, o qual representa as direções atuantes em cada uma de suas faces,
sendo identificada em cada direção de atuação. O estado de tensão em um ponto é avaliado
por

σij =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 , (A.2)

que é chamado de Tensor de Tensões de Cauchy, cujo índice i, representante das faces,
designa as linhas do tensor em representação matricial, e o índice j, representante da
direção, designa suas colunas.

Se algum dos planos de corte anterior não respeitar as condições de paralelismo
com um par e consequentemente ortogonalidade com os outros, o ponto extraído possui a
geometria virtual conforme a Figura A.3, a qual representa o Tetraedro de Cauchy. Na
face inclinada, de área dA, atua um vetor tensão t⃗, já nas outras faces, atuam as tensões
que constituem o Tensor de Tensões de Cauchy, Eq. (A.2). Impondo o equilíbrio estático
ao ponto, tem-se o sistema de equações

t1 dA = σ11 n1 dA + σ21 n2 dA + σ31 n3 dA

t2 dA = σ12 n1 dA + σ22 n2 dA + σ32 n3 dA

t3 dA = σ13 n1 dA + σ23 n2 dA + σ33 n3 dA

, (A.3)

em que a linha i representa o equilíbrio de forças na direção xi. Dividindo o sistema pelo
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escalar dA, tal pode ser representado matricialmente como
t1

t2

t3

 =


σ11 σ21 σ31

σ12 σ22 σ32

σ13 σ23 σ33




η1

η2

η3

 , (A.4)

que também pode ser representado de uma forma mais compacta por notação indicial por

ti = σji ηj. (A.5)

Figura A.3 – Tetraedro de Cauchy

Fonte: Elaborada pelo autor.

As Eqs. (A.4) e (A.5) são formas distintas de se escrever a Fórmula de Cauchy, a
qual relaciona um vetor tensão atuante em um plano qualquer com o estado de tensão
pontual em um sistema de coordenadas arbitrário. Se o plano de orientação genérica η⃗ se
tratar da superfície do sólido, então diz-se que nela atua um vetor de tensões de superfície
p⃗, que nesse caso substitui o vetor t⃗ na Fórmula de Cauchy, a qual não possui a limitação
de aplicação apenas no interior do sólido.

A.2 Equações de equilíbrio

Até o momento, analisou-se apenas espaços pontuais de um contínuo, já quando
se analisa um infinitésimo, torna-se necessário supor variações das grandezas de análise
ao longo das dimensões infinitesimais do novo espaço de análise. Utilizando a Expansão
de Taylor para representar essas variações, devido à ordem de grandeza dos infinitésimos,
é factível anular seus produtos entre si, restando apenas o termo linear na série. Para
representar o processo de forma visualmente mais pragmática, faz-se a análise por planos
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Figura A.4 – Variação das tensões

Fonte: Elaborada pelo autor.

base do volume infinitesimal cúbico, como o exemplificado na Figura A.4, que retrata o
plano x1 x2.

As Séries de Taylor utilizadas para calcular as tensões nas faces do volume in-
finitesimal foram centradas na origem do sistema de coordenadas, a qual também é o
centroide do cubo. Para a imposição do equilíbrio, transforma-se as tensões em forças ao
multiplicá-las pelas dimensões das faces em que atuam. Por o domínio ser de dimensões
infinitesimais, é pertinente tratar as tensões como distribuições constantes ao longo de
cada face a qual cada uma atua, o que faz com a força resultante esteja localizada nos
seus centroides.

A.2.1 Equilíbrio translacional

Para o estabelecimento do equilíbrio de um corpo quanto a graus de liberdade de
translação, parte-se das três equações fundamentais da estática de equilíbrio de forças, as
quais prescrevem nulidade da resultante em três direções base linearmente independentes
entre si. Para o infinitésimo aqui tratado, analisou-se as direções de seus eixos coordenados.
No eixo x1, tem-se(

σ11 + ∂σ11

∂x1

dx1

2

)
dx2 dx3 −

(
σ11 − ∂σ11

∂x1

dx1

2

)
dx2 dx3+(

σ21 + ∂σ21

∂x2

dx2

2

)
dx1 dx3 −

(
σ21 − ∂σ21

∂x2

dx2

2

)
dx1 dx3+(

σ31 + ∂σ31

∂x3

dx3

2

)
dx1 dx2 −

(
σ31 − ∂σ31

∂x3

dx3

2

)
dx1 dx2+

b1 dx1 dx2 dx3 = 0,

(A.6)
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em que b1 é a componente na direção x1 de uma força distribuída ao longo do domínio. A
expansão de σ31 não aparece na Figura A.4 para evitar poluição visual, mas, de forma
análoga ela poderia ser representada ao se analisar o plano x1 x3.

O procedimento para obtenção das equações de equilíbrio segundo os eixos x2 e x3

é análogo ao mostrado para x1. Analisando a Eq. (A.6), nota-se que os termos de base da
expansão podem ser cancelados, restando apenas termos multiplicados por dx1 dx2 dx3.
Tal produto representa fisicamente o volume infinitesimal dV de análise, pelo qual se pode
dividir as três equações de equilíbrio, resultando em

∂σ11

∂x1
+ ∂σ21

∂x2
+ ∂σ31

∂x3
+ b1 = 0

∂σ12

∂x1
+ ∂σ22

∂x2
+ ∂σ32

∂x3
+ b2 = 0

∂σ13

∂x1
+ ∂σ23

∂x2
+ ∂σ33

∂x3
+ b3 = 0

, (A.7)

o qual pode ser escrito de forma compacta por

σt ∇⃗ (•) + b⃗ = 0, (A.8)

onde ∇⃗ (•) é vetor operador derivada parcial, ou em notação indicial como

σij,i + bj = 0. (A.9)

A.2.2 Equilíbrio rotacional

Quanto aos graus de liberdade de rotação, as equações fundamentais de estática as
quais garantem o equilíbrio estabelecem nulidade de momento em relação a três direções
linearmente independentes. De forma análoga ao equilíbrio translacional, foram utilizadas
as direções dos eixos coordenados, cuja coincidência de sua origem com o centroide do
volume infinitesimal acarreta momento nulo devido às forças normais aos planos. Realizando
o somatório de momentos em relação ao eixo x3, conduz-se-se a(

σ12 + ∂σ12

∂x1

dx1

2

)
dx2 dx3

dx1

2 +
(

σ12 − ∂σ12

∂x1

dx1

2

)
dx2 dx3

dx1

2 −(
σ21 + ∂σ21

∂x1

dx2

2

)
dx1 dx3

dx2

2 −
(

σ21 − ∂σ21

∂x1

dx1

2

)
dx1 dx3

dx2

2 = 0
, (A.10)

cujos termos de primeira derivada se anulam, restando apenas termos base da expansão, os
quais são multiplicados por dV/4, pelo qual também se pode dividir a equação, resultando
em

σ12 = σ21. (A.11)

Ao se executar o mesmo procedimento para os eixos x1 e x2, tem-se o Teorema de
Cauchy, representado por

σij = σji, (A.12)

que confere simetria ao tensor da Eq. (A.2).
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A.3 Deformação linear

Os deslocamentos de cada ponto de um corpo são descritos por uma função vetorial
de deslocamentos u⃗, ou ui em notação indicial, cujo índice i varia 1 a 3 ao se considerar o
caso mais geral (três dimensões). Esse vetor tem como significado físico o vetor posição
final de um ponto após os efeitos de uma ação em um corpo subtraída do seu vetor posição
inicial de análise. Já por deformação entende-se como a medida relativa da mudança
de configuração do espaço ocupado (domínio) de um corpo após a aplicação de uma
determinada ação. Os campos de deformação são obtidos através de relações cinemáticas
entre as componentes do vetor de deslocamentos, e quando estes e as rotações do corpo são
tidos como pequenos em relação a ordem de grandeza do domínio de análise, assim como
as próprias deformações por eles obtidas, elas são ditas ‘lineares’. Essa hipótese permite a
simplificação de funções trigonométricas como: sen (θ) = θ; cos (θ) = 1; e tg (θ) = 1. Em
que θ descreve a rotação de um ponto.

A Figura A.5 retrata os deslocamentos no plano x1 x2 de um elemento infinitesimal,
por meio da qual torna-se possível extrair as relações cinemáticas para a construção dos
campos deformação. De forma análoga ao procedimento para avaliação de tensões em cada
face na seção anterior, utilizou-se a Série de Taylor centrada no vértice A para a avaliação
dos deslocamentos nos outros vértices. Novamente, desconsiderando os produtos entre
infinitésimos devido a sua ordem de grandeza, resta apenas a parte linear da expansão.

Figura A.5 – Deslocamentos no plano x1 x2

Fonte: Elaborada pelo autor.
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A deformação longitudinal de um seguimento reto é avaliada por

εl = l − l0
l0

, (A.13)

em que l é comprimento final do seguimento e l0 o inicial. Ao se analisar o seguimento AB

da Figura A.5, têm-se que seu comprimento inicial é o infinitésimo dx1, já na configuração
deslocada

A′B′ = 1
cos (θA′B′)

(
dx1 + u1 + ∂u1

∂x1
dx1 − u1

)
= dx1 + ∂u1

∂x1
dx1. (A.14)

Substituindo l0 por AB e l por A′B′ na Eq. (A.13), obtêm-se a deformação longitudinal
do seguimento AB, descrita por

εAB = ∂u1

∂x1
. (A.15)

Avaliando o comportamento do seguimento AC, de comprimento inicial dx2, seu
comprimento final é escrito como

A′C ′ = 1
cos (θA′C′)

(
dx2 + u2 + ∂u2

∂x2
dx2 − u2

)
= dx2 + ∂u2

∂x2
dx2. (A.16)

Substituindo ambos de forma análoga ao executado para o seguimento AB na Eq A.13,
chega-se a

εAC = ∂u2

∂x2
. (A.17)

Quanto a distorção de um vértice, essa por ser avaliada por quanto foi a redução
do seu ângulo interno. Em caso de aumento desse ângulo, convenciona-se que a distorção
possui sinal negativo. No caso do vértice A, a sua distorção é calculada pela soma de θA′B′

e θA′C′ , com o primeiro sendo definido por

θA′B′ ≈ sen(θA′B′) =

∂u2

∂x1
dx1

dx1
= ∂u2

∂x1
, (A.18)

e o segundo por

θA′C′ ≈ sen(θA′C′) =

∂u1

∂x2
dx2

dx2
= ∂u1

∂x2
. (A.19)

Portanto, a distorção do vértice resulta em

γA = ∂u2

∂x1
+ ∂u1

∂x2
. (A.20)

Definindo um tensor de deformações para um ponto aos moldes do tensor de tensões
para a então avaliação do agora ‘estado de deformação’, considera-se que e ε11 = εAB,
ε22 = εAC e ε12 = ε21 = γA/2, podendo escrevê-lo em notação indicial como

εij = ui,j + uj,i

2 , (A.21)
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o qual é a parte simétrica do gradiente do vetor de deslocamentos do ponto. A divisão
por 2 da distorção γA é em sentido de média e dá origem à distorção matemática, a qual
confere propriedades tensoriais de rotação ao tensor de deformações não existentes quando
se considera a distorção γ por definição.

A obtenção da Eq. (A.21) foi feita a partir de uma análise bidimensional no plano
x1 x2. Entretanto, procedimento análogo pode ser executado para os planos x1 x3 e x2 x3,
cujo acoplamento para uma análise tridimensional não altera a validade da Eq. (A.21). A
mudança ocorre apenas nos seus índices, os quais variam de 1 a 2 para o caso bidimensional
e de 1 a 3 para o tridimensional.

A.4 Leis constitutivas

Em um problema tridimensional de elasticidade, depara-se com 9 incógnitas de
tensão, 9 de deformação e 3 de deslocamento, totalizando 21. Das simetrias dos tensores
de tensões e deformações reduz-se esse número para 15. Confere-se que do equilíbrio
translacional têm-se 3 equações e da compatibilidade entre deslocamentos e deformações
têm-se mais 6 equações. As 6 equações restantes são extraídas de dados experimentais os
quais buscam catalogar a relação entre tensão aplicada e deformação para cada material.
Da modelagem matemática entre essas relações, denominam-se as Leis Constitutivas, que
para uma relação linear e elástica entre as grandezas de interesse, têm-se a Lei de Hooke.

Matematicamente, a relação geral entre tensão e deformação para materiais elásticos
é descrita por

σij = cijkl εkl, (A.22)

com i, j, k, l = 1, 2, 3 para o caso geral. O tensor de quarta ordem cijkl é denominado tensor
constitutivo elástico e carrega as informações das 81 constantes elásticas que relacionam
as grandezas de interesse. Também é válida a relação inversa

εij = dijkl σkl, (A.23)

em que o tensor dijkl é o inverso de cijkl e é denominado tensor de flexibilidade.

Devido à simetria do tensor de tensões de Cauchy e à do tensor de deformações
lineares, os tensores constitutivo elástico e de flexibilidade possuem simetria entre i e j e
entre k e l, o que faz com o que o número de constantes reduza para 36. Ainda por relações
energéticas, é possível mostrar que também a uma simetria entre ij e kl, reduzindo o
número de termos distintos para um material anisotrópico para 21. Já para um caso de
isotropia, as únicas constantes necessárias são o módulo de elasticidade E e o coeficiente
de Poisson ν, os quais não variam com a direção de solicitação.

Tendo em vista um material isotrópico, é possível escrever a Eq. (A.23) como

εij = 1
2 G

σij − ν

E
σkk δij, (A.24)
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em que δij é tensor Delta de Kronecker e G é chamado de módulo de elasticidade transversal,
o qual é calculado como

G = E

2 (1 + ν) (A.25)

Para Eq. (A.24), também é válida a relação inversa equivalente à Eq. (A.22),
descrita como

σij = 2 G εij + λ εkk δij, (A.26)

onde λ, intitulada Constante de Lamé, é avaliada por

λ = E ν

(1 + ν) (1 − 2 ν) . (A.27)

A.5 Estados planos

Em alguns problemas típicos de engenharia, torna-se conveniente fazer uma redução
da dimensionalidade da análise geral de problemas de elasticidade para casos planos
(bidimensionais). Isso torna-se viável quando por alguma simplificação plausível os termos
do tensor de deformações ou do tensor de tensões referentes a uma das três dimensões base
sejam nulos. Se isso ocorrer para o tensor de deformações, então se trata de um Estado
Plano de Deformação (EPD), já se ocorrer para o tensor de tensões, então se trata de um
Estado Plano de Tensão (EPT).

A.5.1 Estado Plano de Deformação

Uma simplificação via EPD pode ser abordada a problemas em que uma das
dimensões de análise seja largamente superior as outras duas. Um caso típico de aplicação
na engenharia civil é na análise de tensões e deformação de taludes e barragens, os quais
tipicamente respeitam essa condição.

As direções do sistema de coordenadas para problemas de elasticidade são arbitrárias
desde que em análises cartesianas seja mantida sua independência linear, portanto é
conveniente anular as deformações da terceira direção de análise (ε13 = 0, ε23 = 0 e
ε33 = 0), de forma que agora em notação indicial se trabalhe com índices variando de 1 a
2. Desta forma ainda é possível se utilizar a Eq. (A.26), com a tensão normal na direção 3
podendo ser calculada a posteriori por

σ33 = −ν (σ11 + σ22) , (A.28)

enquanto as componentes de tensão cisalhamento atuantes na face perpendicular à terceira
direção são nulas pois dependem apenas das distorções nela.

A relação inversa descrita pela Eq. (A.24) entretanto precisa de uma adaptação
devido à possível não nulidade de σ33, escrevendo-se

εij = 1
2 G

σij − ν

E
σkk δij, (A.29)
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em que ν é o coeficiente de Poisson adaptado, o qual é descrito por

ν = ν

(1 + ν) . (A.30)

A.5.2 Estado Plano de Tensão

A simplificação por meio do EPT é conveniente em problemas cujo domínio possui
uma dimensão muito inferior às demais e cujas faces representantes do contorno do
problema perpendiculares a essa mesma direção apresentem condição de nulidade tensões.
De forma análoga ao descrito para o EPT, é conveniente tratar os termos de tensão
referentes à face perpendicular à terceira direção como nulos (σ13 = 0, σ23 = 0 e σ33 = 0).
Analisando as condições descritas que tornam conveniente a abordagem via EPT, nota-se
que pode haver tensões na terceira direção com a variação da coordenada da terceira
dimensão, entretanto como seu suporte é pequeno e no contorno essas componentes são
nulas, cabe seu desprezo no domínio.

O EPT é vastamente aplicado em problemas de engenharia envolvendo chapas e
vasos de pressão. Ao se analisar as condições matemáticas da abordagem, nota-se que a Eq.
(A.24) ainda possui validade com a mudança na variação dos índices, com a deformação
normal na terceira direção podendo ser calculada a posteriori por

ε33 = − ν

E
(σ11 + σ22) , (A.31)

enquanto as componentes de distorção em faces perpendiculares a essa mesma direção são
nulas pois dependem apenas das tensões de cisalhamento nelas atuantes.

No caso da Eq. (A.26), para essa é necessária uma modificação devido à possível
não nulidade de ε33, a qual pode ser escrita como

σij = 2 G εij + λ εkk δij, (A.32)

em que λ se trata de uma adaptação da Constante de Lamé, agora definida por

λ = E ν

(1 + ν) (1 − ν) . (A.33)

A.6 Solução de problemas de elasticidade

Com a adição das leis constitutivas, completa-se 15 equações para as 15 incógnitas
de um problema geral de elasticidade, o qual se caracteriza como um PVC em que as
condições de contorno essenciais são de deslocamento e as naturais são de forças superficiais,
as quais são dadas perante aplicação da fórmula de Cauchy, descrita pela Eq. (A.5), aplicada
no contorno, em que pi substitui ti. A Figura A.6 mostra um sólido cujo contorno apresenta
condições essenciais (u), naturais (p) e mistas, quando as duas acontecem em uma mesma
região.
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Figura A.6 – Deslocamentos no plano x1 x2

Fonte: Elaborada pelo autor.

Existem várias formas de solução do PVC em elasticidade, porém serão apresentadas
ao longo do texto apenas a Função de Tensão de Airy, representando uma forma de solução
clássica em tensões, e a Equação de Navier-Cauchy utilizando o Vetor de Galerkin, a
qual representa uma forma de solução em deslocamentos útil à construção de soluções
fundamentais para o MEC.

A.6.1 Função de Tensão de Airy

A presente técnica foi inicialmente conceituada para solução de problemas bidimen-
sionais de elasticidade, mas que há serventia como base para a estratégia de problemas
tridimensionais através das Funções de Tensão de Beltrami. Devido à característica dessa
solução ser dada em tensões, é necessário que as condições no contorno sejam integral-
mente naturais, de forma que sua aplicação é feita a domínios que possuam solicitações
autoequilibradas.

Inicia-se a técnica definindo duas funções potenciais ϕ e V , as quais são meramente
artifícios matemáticos e não possuem significado físico relevante, mas que por meio delas
sejam definidos:

σ11 = ϕ,22 + V ; (A.34)

σ22 = ϕ,11 + V ; (A.35)

σ12 = −ϕ,12. (A.36)

Tais equações podem ser utilizadas na imposição do equilíbrio estático translacional,
descrito pela Eq. (A.9), obtendo-se perante sua satisfação o vetor de forças de domínio
descrito por

bi = −V,i, (A.37)

o que implica que elas sejam conservativas.
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Partindo-se de uma abordagem via EPT, através da Eq. (A.21) é possível a obtenção
de equações de compatibilidade de deformações, mas, perante às simplificações do estado,
convém-se atender apenas a

ε11,22 + ε22,11 = 2 ε12,12, (A.38)

uma vez que as outras apresentam tendência à satisfação natural com a redução da menor
dimensão do sólido.

Por meio da aplicação da Lei de Hooke à Eq. (A.38) e com alguma manipulação
algébrica, mostra-se que

σ11,ii + σ22,kk = − (1 + ν) bl,l. (A.39)

Enquanto em caso de assunção de EPD, a equação obtida seguindo o mesmo procedimento
seria

σ11,ii + σ22,kk = − 1
(1 − ν) bl,l. (A.40)

Devido ao mantimento da Eq. (A.26) para esse estado, é conveniente escrever a relação
para EPT de forma semelhante. Para isso, pode-se usar a Eq. (A.30), transformando a Eq.
(A.39) em

σ11,ii + σ22,kk = − 1
(1 − ν) bl,l. (A.41)

Substituindo as Eqs. (A.34), (A.35) e (A.37) na Eq. (A.41) e ao se desenvolver
algebricamente, mostra-se que

ϕ,iikk = −(2 ν − 1)
(1 − ν) V,ll, (A.42)

a qual pode ser escrita em notação dyadica como

∇4ϕ = −(2 ν − 1)
(1 − ν) ∇2V, (A.43)

em que ∇2 (•) é o divergente do vetor operador derivada parcial (vetor gradiente), o qual
também é referenciado como operador laplaciano, e ∇4 (•) é tal operador aplicado a ele
mesmo, também conhecido como operador bi-harmônico.

Para uma abordagem via EPD, a única mudança nas Eqs. (A.42) e (A.43) é de
que o coeficiente de Poisson ν utilizado é padrão e não o adaptado ν. Além disso, em caso
de nulidade das forças de domínio, as abordagens via EPD e EPT conduzem igualmente à
forma homogênea das Eqs. (A.42) e (A.43).

A.6.2 Equação de Navier-Cauchy

Quando as condições de contorno do problema são integralmente essenciais, torna-se
conveniente trabalhar com equações em deslocamentos, obtendo-se uma solução primária
baseada na mesma grandeza. Para o PVC em elasticidade, isso pode ser feito ao se
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transformar a Eq. (A.9) escrita em tensões para deslocamentos. Nesse caso, busca-se a
princípio converter a Eq. (A.26), que escreve o tensor de tensões como função do tensor
de deformações, para uma função do vetor de deslocamentos. Isso é facilmente executado
por meio da Eq. (A.21), conduzindo a

σij = G (ui,j + uj,i) + λ uk,k δij. (A.44)

Substituindo a Eq. (A.44) na Eq. (A.9), considerando a simetria do tensor de
tensões e operando algebricamente, é possível chegar a

G ui,jj + (λ + G) uj,ii + bi = 0, (A.45)

a qual é a forma estática da Equação de Navier-Cauchy. Dentre as possíveis formas de
solução dessa equação, aqui é apresentada a que de fato possui utilidade ao trabalho
desenvolvido, chamada de Vetor de Galerkin.

A.6.2.1 Vetor de Galerkin

Para a solução da Equação de Navier-Cauchy por esse método, é conveniente
substituir a Eq. (A.27) na Eq. (A.45) e dividi-la pelo módulo de elasticidade transversal
G, resultando em

ui,jj + 1
(1 − 2 ν) uj,ii + 1

G
bi = 0. (A.46)

Admite-se que exista uma função vetorial F⃗ , chamada de Vetor de Galerkin, a qual
possui função de artifício matemático e carece de significado físico relevante, de tal forma
que

uj = Fj,mm − 1
2 (1 − ν) Fm,jm. (A.47)

Efetuando-se seu divergente, chega-se a

uj,j = Fj,mmj − 1
2 (1 − ν) Fm,jmj, (A.48)

cujo gradiente é calculado, obtendo-se

uj,ji = Fj,mmji − 1
2 (1 − ν) Fm,jmji. (A.49)

Nota-se que a troca do índice j na Eq. (A.47) por um índice i não altera a assunção
desde que ambos variem no mesmo intervalo, possibilitando escrever

ui = Fi,mm − 1
2 (1 − ν) Fm,im, (A.50)

da qual se calcula o laplaciano

ui,jj = Fi,mmjj − 1
2 (1 − ν) Fm,imjj. (A.51)
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Multiplicando a Eq. (A.49) por 1/ (1 − 2 ν), somando-a à Eq. (A.51) e considerando
o Teorema de Schwarz no tocante a derivadas cruzadas dos termos do Vetor de Galerkin,
têm-se

ui,jj + 1
(1 − 2 ν) uj,ji = Fi,mmjj, (A.52)

que pode ser substituída na Eq. (A.46), conduzindo a

Fi,mmjj + 1
G

bi = 0, (A.53)

a qual constitui três equações diferenciais parciais desacopladas, que podem ser resolvidas
para cada termo do Vetor de Galerkin. Com sua obtenção, o vetor de deslocamentos é
conhecido pela Eq. (A.50). Em caso de inexistência de forças de domínio, vale a forma
homogênea da Eq. (A.53).

Para um caso de EPD, a Eq. (A.27) no processo de transformação de deformação
para tensão permanece a mesma, portanto a Eq. (A.46) e o desenvolvimento do Vetor de
Galerkin mostrado continuam válidos. Já para o caso de EPT, ainda é possível fazer uso
das equações aqui mostradas utilizando o coeficiente de Poisson modificado mostrado na
Eq. (A.30).
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APÊNDICE B – EQUAÇÃO DIFERENCIAL DE DESLOCAMENTO AXIAL

Esta parte do apêndice tem como objetivo apresentar uma dedução para a equação
diferencial de deslocamento axial de forma a servir de referência para outras passagens
do texto. Ressalta-se a relevância dessa seção ao ser necessária à demonstração de sua
solução fundamental e à formulação dos enrijecedores utilizados no trabalho. Modelados
por elementos de contorno unidimensionais de treliça.

Parte-se da relação cinemática do modelo. Acompanha-se a mudança de configuração
de uma seção infinitesimal qualquer de um corpo na Figura B.1, cuja posição inicial é
representada por x e a final por y. Observando a figura, é evidente que

x + u (x) + dy = x + dx + u (x + dx) , (B.1)

em que u é a função de deslocamento axial. Simplificando e dividindo por dx, obtêm-se

dy − dx

dx
= u (x + dx) − u (x)

dx
. (B.2)

Nota-se que o termo à esquerda da equação anterior é a deformação longitudinal conforme
definição via Eq. (A.13). Quanto ao termo à direita, se dx for pequeno, seu valor tende a
derivada de u em relação a x. Como o regime é de linearidade geométrica,

εl = du

dx
, (B.3)

assim como na Eq. (A.21).

Figura B.1 – Relação cinemática de deslocamentos axiais

Fonte: Elaborada pelo autor.

Efetua-se agora o equilíbrio de uma seção infinitesimal qualquer sob solicitações
conforme ilustrado pelo Figura B.2. Impondo a nulidade do somatório de forças na direção
horizontal, têm-se

N (x) + dN

dx
dx + b (x) dx = N (x) , (B.4)
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em que se fez uso da série de Taylor para representação do esforço normal em (x + dx).
Anulando N (x) nos dois lados e dividindo a equação por dx, conduz-se a

dN

dx
+ b (x) = 0. (B.5)

Figura B.2 – Equilíbrio de seção infinitesimal

Fonte: Elaborada pelo autor.

Assumindo distribuição de tensão constante ao longo da área da seção transversal,
o esforço normal pode ser calculado por

N =
∫
A

σ dA. (B.6)

Substituindo na equação anterior a Lei de Hooke e posteriormente a Eq. (B.3), conduz-se a

N (x) = EA
du

dx
. (B.7)

Derivando a equação resultante em relação a x e substituindo a derivada do esforço normal
pela Eq. (B.5), obtêm-se

EA
d2u

dx2 + b (x) = 0, (B.8)

que se trata de uma Equação de Poisson unidimensional.
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APÊNDICE C – SOLUÇÕES FUNDAMENTAIS

Nesta parte do apêndice, serão mostradas as deduções das soluções fundamentais
utilizadas no estudo para ponderar as formas em resíduos ponderados das equações de
elasticidade e de barras. A primeira delas é conhecida como Solução Fundamental de
Kelvin e foi apresentada para um domínio infinito bidimensional, a qual é utilizada na
solução de problemas de elasticidade via MEC. Outra solução fundamental citada ao longo
do texto é a de barra ou de deslocamento axial, que é útil ao MEC-1D.

C.1 Solução Fundamental de Kelvin

Essa solução consiste em resolver um problema de elasticidade estático via desloca-
mentos ao se utilizar a Equação de Navier-Cauchy com uma solução baseada no Vetor
de Galerkin, conforme a Eq. (A.53), considerando a interpretação do vetor de forças
de domínio bi como funções Delta de Dirac em cada uma de suas direções, a qual é
representada por δ (s, f), com f significando field (campo) e s source (fonte). Se f ̸= s,
então δ (s, f) = 0, e se f = s, δ (s, f) = ∞. Por meio dessa propriedade, é válido que∫

Ω∞

δ (s, f) dΩ = 1, (C.1)

na qual Ω∞ representa um domínio infinito com condições de contorno nulas. Tal aplicação
possibilita que o problema geral seja decomposto em número de problemas equivalente à
dimensionalidade da análise (dois nesse caso), em que é verificada a influência da função
Delta de Dirac individualmente em cada caso a princípio, os quais são superpostos ao final.
A Figura C.1 ilustra esse procedimento, em que Γ∞ representa um contorno infinito, uma
vez que assim é o seu domínio.

Figura C.1 – (a) Problema de Kelvin. (b) Componente horizontal. (c) Componente vertical.

(a)

= +

(b) (c)

Fonte: Elaborada pelo autor.



224

O primeiro problema representado na Figura C.1(b) se constitui na aplicação do
Delta de Dirac na direção horizontal e pode ser equacionado por F1,mmjj + δ (s, f)

G
= 0

F2,mmjj = 0
, (C.2)

em que a solução para o primeiro laplaciano de Fi pode ser obtida em coordenadas polares
ao se realizar a abstração de um contorno circular infinito, a qual é dada por F1,mm = 1

2 π G
ln
(1

r

)
F2,mm = 0

, (C.3)

onde r é norma do vetor de posição do ponto campo em relação ao ponto fonte, definido
por

ri = xi (f) − xi (s) , (C.4)

em que xi (f) são coordenadas do ponto campo e xi (s) são as coordenadas do ponto fonte.

Para a solução do segundo laplaciano, propõe-se o Vetor de Galerkin F1 = − 1
8 π G

r2 ln (r)
F2 = 0

, (C.5)

que satisfaz a Eq. (C.3).

O segundo problema se trata da aplicação da função Delta de Dirac associada ao
versor da direção vertical, conforme Figura C.1(c), sendo matematicamente descrito por

F1,mmjj = 0

F2,mmjj + δ (s, f)
G

= 0
. (C.6)

A solução é para esse caso idêntica para o primeiro problema com uma troca de termos
por direção, resultando em 

F1 = 0
F2 = − 1

8 π G
r2 ln (r)

. (C.7)

Através da superposição entre os problemas 1 e 2, é possível construir um tensor
contendo os Vetores de Galerkin fundamentais, o qual é representado por

F ∗
ij = − 1

8 π G
r2 ln (r) δij, (C.8)

cujo símbolo (∗) sobrescrito designa uma grandeza fundamental. De posse do qual, calcula-
se o tensor de deslocamentos fundamentais substituindo a Eq. (C.8) na Eq. (A.50), dado
por

u∗
ij = −1

8 π G (1 − ν)

[
(3 − 4 ν) ln (r) δij − rj ri + 7 − 8 ν

2 δij

]
. (C.9)
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Nota-se que o termo (7 − 8 ν) /2 não depende de qualquer relação entre pontos fonte e
campo, tratando-se fisicamente de um deslocamento de corpo rígido.

Aplicando Eq. (A.21) com a Eq. (C.9), encontra-se o tensor de deformações funda-
mentais, descrito por

ε∗
ijk = − 1

8 π G (1 − ν) r
[(1 − 2 ν) (δij rk + δik rj) + 2 ri rj rk − δjk ri] , (C.10)

que pode ser usado na Eq. (A.26) para calcular

σ∗
ijk = − 1

4 π (1 − ν) r
[(1 − 2 ν) (δij r,k + δik r,j + δjk r,i) + 2 r,i r,j r,k] , (C.11)

representando o tensor de tensões fundamentais de Kelvin. Os gradientes da distância
entre os pontos campo e fonte podem ser avaliados por

r,i = xi (f) − xi (s)
r

. (C.12)

Por fim, através da aplicação da Eq. (C.11) na fórmula de Cauchy, Eq. (A.5),
obtêm-se

p∗
ik = − 1

4 π (1 − ν) r

{
∂r

∂η
[(1 − 2 ν) δik + 2 r,k r,i] + (1 − 2 ν) (ηk r,i − ηi rk)

}
, (C.13)

a qual representa o tensor de forças de superfícies fundamentais. A derivada da distância
em relação à direção normal à superfície pode ser feita por um simples produto escalar

∂r

∂η
= r,i ηi. (C.14)

A solução fundamental apresentada foi formulada considerando um EPD. Para
a sua validade mediante um EPT, pode-se alterar o coeficiente de Poisson presente nos
tensores deduzidos por meio da Eq. (A.30).

C.2 Solução Fundamental de Barra

A solução fundamental de barra ou de deslocamentos axiais é a solução da Eq.
(B.8) considerando a aplicação de uma carga de domínio representada por uma função
delta de Dirac em um meio infinito. A Figura C.2 ilustra o problema que matematicamente
é dado por

EA
d2u∗

dx2 + δ (s, f) = 0. (C.15)

A solução dessa equação é conduzida através de testes para u∗ que atendam às condições
necessárias.

Testa-se uma função uma vez diferenciável em R \ {s}, de forma que sua derivada
seja constante com uma descontinuidade nas coordenadas da fonte. Dessa forma, uma
função possível é

f (s, f) =
∣∣∣xf − xs

∣∣∣ , (C.16)
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Figura C.2 – Problema fundamental de deslocamento axial.

Fonte: Elaborada pelo autor.

cujos índices sobrescritos f e s correspondem a grandezas de campo e da fonte, respecti-
vamente. Por meio de uma combinação linear e uma translação, gera-se uma família de
funções a partir de f (s, f) que também atendem à condição necessária. Dessa forma,

g (s, f) = a1 f (s, f) + a0, (C.17)

onde a0 é o parâmetro de translação e a1 é o parâmetro de combinação.

A primeira condição envolve continuidade C0 em xf → xs, já satisfeita pela função
testada. Conforme se observa,

EA
[

lim
xf →xs,+

g (s, f) − lim
xf →xs,−

g (s, f)
]

= a0 − a0 = 0. (C.18)

Dessa condição, conclui-se que a0 pode ser um valor qualquer. Convenientemente, atribui-se
valor nulo.

A segunda condição advém de que a diferença entre as imagens da função derivada
quando xf → xs deve ser igual a −1, característica do negativo da função de Heaviside.
Portanto,

EA

(
lim

xf →xs,+

dg

dx

∣∣∣∣∣
xf

− lim
xf →xs,−

dg

dx

∣∣∣∣∣
xf

)
= −1. (C.19)

A derivada da função g (s, f) em relação à coordenada x é dada por
dg

dx
= a1 sign

(
xf − xs

)
, (C.20)

com sign (•) retornando o sinal da operação. Operando então a Eq. (C.19), têm-se

EA [a1 − (−a1)] = −1 → a1 = − 1
2 EA

. (C.21)

A solução fundamental em deslocamentos é então dada por

u∗ (s, f) = g (s, f) = −

∣∣∣xf − xs
∣∣∣

2 EA
, (C.22)

enquanto solução para esforços normais pode ser obtida através da Eq. (B.7). Portanto,

N∗ (s, f) = −
sign

(
xf − xs

)
2 . (C.23)
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APÊNDICE D – TRANSFORMAÇÃO CÚBICA DA QUADRATURA DE
GAUSS-LEGENDRE

Devido à característica singular dos núcleos de integração do MEC, há uma ten-
dência de integração quase-singular quando uma fonte se encontra muito próxima a um
elemento integrado e este não contém aquela. Esse ocorrência consiste na formação de
um cume na função a ser integrada, o qual prejudica o desempenho da integração via
quadratura padrão de Gauss-Legendre. Visando mitigar esse problema, Telles (1987) e
Telles e Oliveira (1994) propuseram um esquema de transformação cúbica das coordenadas
dos pontos de integração, o qual tende a posicioná-los sobre o cume. Foi observado que
esse procedimento aprimorava a precisão da integração.

A transformação de coordenadas de Gauss ξ para as novas coordenadas de integração
ς é obtida através de um polinômio cúbico dado por

ς (ξ) = a0 + a1 ξ + a2 ξ2 + a3 ξ3, (D.1)

em que ai, com i variando de 0 a 3, designa os coeficientes da função polinomial. Tais coefi-
ciente advém da solução de um sistema de equações de compatibilidade de transformação,
o qual pode ser representado por

1 1 1 1
1 −1 1 −1
0 1 2 ξ 3 ξ

2

0 0 2 6 ξ





a0

a1

a2

a3


=



1
−1
r

0


. (D.2)

As duas primeiras equações do sistema anterior representam a compatibilidade de suporte
limitado de −1 a 1, já as duas últimas advêm da primeira e da segunda derivação da Eq.
(D.1) avaliada em uma coordenada gaussiana ξ, a qual é calculada por

ξ = 3
√

−q +
√

q2 + p3 + 3
√

−q −
√

q2 + p3 + ς

1 + 2 r
, (D.3)

em que

q = ς

2 (1 + 2 r)

[
1

1 + 2 r

(
3 − 2 r − 2 ς2

1 + 2 r

)
− 1

]
e (D.4)

p = 1
3 (1 + 2 r)2

[
4 r (1 − r) + 3

(
1 − ς2

)]
. (D.5)

Para a avaliação das equações anteriores, define-se ς como a coordenada do ponto
de integração do elemento onde se verifica a mínima distância rmin em relação ao ponto
fonte. O outro parâmetro de interesse r é calculado a partir dessa mínima distância
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adimensionalizada pelo comprimento L do elemento no espaço real. Assim, calcula-se essa
mínima distância adimensionalizada por

D = 2 rmin

L
. (D.6)

Através de faixas de valores de D, definem-se expressões para r como

r =



2.62 D | D ≤ 0.05
0.85 + 0.24 ln D | 0.05 < D ≤ 1.3
0.893 + 0.0832 ln D | 1.3 < D ≤ 3.618
1 | D > 3.618

. (D.7)

Comenta-se que, definindo r = 1, têm-se uma transformação identidade, a qual recupera a
quadratura de Gauss-Legendre. Assim, o valor de 3.618 para D representa o limite superior
para que tenha alguma vantagem em se utilizar esta transformação cúbica.

Finalmente, com todos os parâmetros explicitados, têm-se o vetor de solução do
sistema representado pela Eq. (D.2) escrito por

a0

a1

a2

a3


=



3 k (1 − r) ξ

k
(
r + 3 ξ

2)
3 k (r − 1) ξ

k (1 − r)


, (D.8)

em que
k = 1(

1 + 3 ξ
2) . (D.9)

Obviamente, para a execução numérica da integral, deve-se incluir um outro
jacobiano referente à transformação descrita. Facilmente, calcula-se esse jacobiano através
de sua definição unidimensional, ou seja,

J t (ξ) = d ς

d ξ
= a1 + 2 a2 ξ + 3 a3 ξ2. (D.10)
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