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RESUMO

CESAR FILHO, M. S. O. Contribuicdes & analise de estruturas enrijecidas e &
otimizacao topoldgica utilizando o Método dos Elementos de Contorno. 2025.

Dissertagao (Mestrado) - Escola de Engenharia de Sao Carlos, Universidade de Sao Paulo,
Sao Carlos, 2025.

Com o desenvolvimento da engenharia, a proposicao de estruturas constituidas por diferen-
tes materiais de maneira a captar suas vantagens no produto final tornou-se cada vez mais
recorrente devido as necessidades de viabilidade economica e de desempenho dos novos
projetos. Dentre as alternativas para a avaliagdo numérica das grandezas fisicas dessas
estruturas, o acoplamento do Método dos Elementos de Contorno (MEC) com o sua versao
unidimensional, o MEC-1D, tem apresentado excelentes resultados quando comparados
aos de softwares comerciais. Além do acoplamento de materiais, a otimizacao estrutural,
motivada pela possibilidade de reducao de consumo de material, tem adquirido relevancia
no mercado e na academia por questoes financeiras e ambientais. Nesse contexto, o acopla-
mento da formulagao isogeométrica do MEC, o MECIG, com o Método Level Set (MLS) se
apresenta como uma robusta possibilidade a execu¢ao de uma otimizacao topolégica. Assim,
este trabalho tem como objetivo estudar o acoplamento MEC/MEC-1D, para anéalise de
estruturas enrijecidas, e o acoplamento MLS/MECIG, para otimizagao topoldgica, com
ambos se situando no contexto de andlises planas. A partir disso, pretende-se consolidar os
conhecimentos necessarios para desenvolver, em trabalhos subsequentes, um procedimento
de otimizagao topologica via MLS para estruturas enrijecidas utilizando o acoplamento
MEC/MEC-1D para descrigao mecénica do dominio. Ao longo do texto, descrevem-se as
formulacoes do MEC, na versao lagrangiana e isogeométrica, e do MEC-1D, validando-as
mediante solugoes analiticas. Por meio dos exemplos, mostra-se que, para dominios com
contornos geometricamente nao polinomiais, a descri¢ao isogeométrica apresenta resul-
tados mais precisos do que a lagrangiana. Apresenta-se a formulacdo do acoplamento
MEC/MEC-1D e se propoe um procedimento alternativo de discretizagdo de dominios de
inclusao, o qual se mostra mais eficiente do que o espacamento uniforme de fontes. Métodos
de distribuicao aleatéria de dominios de fibra sdo apresentados, enfatizando as precaugoes
a serem tomadas para se evitar integracoes singulares. Corre¢oes sao propostas ao processo
de otimizacao topolégica do acoplamento MLS/MECIG formulada através do método do
lagrangiano aumentado, evitando instabilidades numéricas e falha antes de constatacao
de convergéncia. Além disso, também sdo propostas uma férmula para avaliacao do valor
inicial do coeficiente de peso, uma metodologia de verificagdo de estacionariedade e um

critério de alteracao de topologia.

Palavras-chave: MEC. MEC-1D. Otimizacao topologica. Anélise isogeométrica






ABSTRACT

CESAR FILHO, M. S. O. Contributions to the analysis of stiffened structures
and topology optimization using the Boundary Element Method. 2025.

Dissertation (Master) - Escola de Engenharia de Sao Carlos, Universidade de Sao Paulo,
Sao Carlos, 2025.

With the advancement of engineering, the design of structures composed of different mate-
rials to leverage their advantages in the final product has become increasingly common
due to economic feasibility and performance requirements in new projects. Among the
alternatives for the numerical evaluation of the physical quantities of such structures,
the coupling of the Boundary Element Method (BEM) with its one-dimensional version,
1D-BEM, has shown excellent results when compared to commercial software. In addition
to material coupling, structural optimization—driven by the potential for material con-
sumption reduction—has gained relevance in both industry and academia due to financial
and environmental concerns. In this context, the coupling of the isogeometric formulation of
BEM, known as IGABEM, with the Level Set Method (LSM) emerges as a robust approach
for performing topology optimization. Thus, this work aims to study the BEM/1D-BEM
coupling for the analysis of stiffened structures and the LSM/IGABEM coupling for
topology optimization, both within the scope of two-dimensional analyses. The goal is to
consolidate the necessary knowledge to develop, in future studies, a topology optimization
procedure via LSM for stiffened structures using the BEM/1D-BEM coupling to describe
the mechanical behavior of the domain. The text presents the formulations of BEM, in both
Lagrangian and isogeometric versions, and of 1D-BEM, validating them against analytical
solutions. Through examples, it is demonstrated that for domains with non-polynomial
geometric boundaries, the isogeometric formulation yields more accurate results than the
Lagrangian one. The formulation of the BEM/1D-BEM coupling is introduced, along
with an alternative procedure for discretizing inclusion domains, which proves to be more
efficient than uniform source spacing. Random distribution methods for fiber domains
are discussed, emphasizing precautions to avoid singular integrations. Corrections are
proposed for the topology optimization process of the LSM/IGABEM coupling formulated
using the augmented Lagrangian method to prevent numerical instabilities and premature
failure before convergence is achieved. Additionally, a formula for evaluating the initial
weight coefficient, a methodology for checking stationarity and a topology modification

criteria are also proposed.

Keywords: BEM. 1D-BEM. Topology optimization. Isogeometric analysis.
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1 INTRODUCAO

Ao longo do desenvolvimento tecnolégico da humanidade, os produtos de engenharia
tornaram-se cada vez mais complexos na tentativa de satisfazer as novas demandas da
vida. Partindo de construgoes simplérias e meramente funcionais feitas em pedra, o
homem tornou-se capaz de tocar os céus, com edificios de altura hectométrica e elevada
esbeltez, explorar recursos naturais encontrados no fundo do oceano por meio de pocos
que resistem as enormes pressoes do meio, e de finalmente langar-se ao espaco, com o
desenvolvimento de estacOes espaciais, satélites e espagonaves, produtos de ponta da
engenharia contemporanea. Para possibilitar esses projetos, seja pela propria necessidade
de desempenho ou por questoes de viabilidade econémica, estruturas que antigamente
eram compostas por materiais simplesmente lapidados, nao tao distintos de sua forma
encontrada na natureza, passaram por tentativas de melhoria. Dessa forma, evoluiu-se em

processos de manufatura e combinacao entre materiais.

Um exemplo classico e deveras primordial da associagao entre materiais é o concreto
armado. Na antiguidade, as construgoes civis eram majoritariamente executadas utilizando
pedras, as quais eram lapidadas de maneira a se encaixar no formato requisitado aquilo que
fora idealizado para a sua funcao estrutural. Porém, rochas e o préprio concreto simples
no estagio endurecido possuem comportamento quase-fragil, o qual é caracterizado por
falha brusca e resisténcia a esforcos de tragdo bem inferior a de esforgos de compressao.
Devido a isso, havia uma limitagdo marcante quanto a esbeltez e a prépria configuracao
geométrica da estrutura, que necessitava de um formato em arco, como segue a ponte da
Figura 1. Por meio do qual, minimizava-se o efeito da tragao advinda da flexdo, que é
uma das principais solicitacbes em estruturas civis. A partir da associacao do concreto
com barras de ago imersas em seu meio, surgiu o que atualmente se entende por concreto
armado. O aco, por ser um material dictil, garante resisténcia a esforcos de tracao que

sao desenvolvidos em algumas regioes do material a partir de sua flexao.

Apébs a consolidacao do concreto armado, a industria da construgao civil e a
academia continuaram realizando iteragoes de associagdo entre o aco e concreto, surgindo
posteriormente o concreto protendido. Enquanto as armaduras de ago no concreto armado
sao referenciadas como passivas, pois agem apenas resistindo aos esforgos solicitantes
da estrutura, o concreto protendido conta com uma armadura ativa, a qual aplica ao
macigo de concreto um estado de tensao prévio contrario ao previsto que seja gerado pelos
carregamentos a que a peca estard submetida. Dentre as principais vantagens desse sistema
estrutural em relacao ao tradicional concreto armado, cita-se a sua favoravel utilizacao
em situagoes de longos vaos e altos valores de carga permanente, sua maior esbeltez e

adaptabilidade a tratamentos artisticos, o melhor controle da fissuracdo do macico e a
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Figura 1 — Ponte em Toscana, Italia

Fonte: Proske e Gelder (2009)

redugao da deflexdo perante cargas permanentes e varidveis (Lin; Burns, 1981). A Figura 2
mostra uma ponte em concreto protendido. Por meio dela, é plausivel ressaltar a diferenca

de extensao e esbeltez comparada a da Figura 1.

Figura 2 — Ponte nas Cataratas de St. Anthony do rio Mississipi em Minneapolis

Fonte: Dolan e Hamilton (2019)

Outra possibilidade estudada para o refor¢co do concreto é a de incorporagao de
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fibras em seu macico, as quais podem ser de diferentes materiais e de diferente origens,
como organicas (celulose) e manufaturadas (ago e polimeros). As fibras oferecem diversas
vantagens ao concreto, como maior resisténcia a tragao e ao impacto e minimizacao
do desenvolvimento e propagacao de trincas. A depender do seu tipo, podem ser mais
resistentes a processos de corrosao e degradacao se comparadas a armadura tradicional
passiva de ago. Outro tépico importante do uso desse tipo de refor¢o é seu possivel
impacto na sustentabilidade, reduzindo a quantidade de armaduras de aco empregadas
e consequentemente contribuindo para uma menor pegada de carbono dos sistemas de
concreto estrutural. A Figura 3 sintetiza as possibilidades de aplicacao do concreto

estrutural que foram comentadas, as quais ndo sdo mutuamente exclusivas para uma peca.

Figura 3 — Véarias formas do concreto estrutural
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Fonte: Adaptado de Naaman (2001).

Alternando o ramo de aplicacao, na industria naval sao comumente usados enrije-
cedores nos cascos dos navios de forma a aumentar sua resisténcia estrutural a esforcos
de flexao e torcao. Exemplos de aplicacao desses elementos sao vistas em construcoes de
partes da embarcagdo como anteparas, tanques profundos e tineis de pogo (Eyres; Bruce,

2012). Uma aplicagao de enrijecedores verticais pode ser visualizada na Figura 4.

Ja na industria aeronautica, os enrijecedores desempenham um papel crucial na

construgao de asas, fuselagem e outras partes da aeronave. Eles sao projetados para
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Figura 4 — Antepara impermeavel corrugada
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Fonte: Eyres e Bruce (2012)

suportar as cargas aerodindmicas extremas e as forcas de tor¢ao que ocorrem durante o
voo. Os enrijecedores ajudam a evitar deformagoes excessivas e garantem que a aeronave
mantenha sua forma e integridade estrutural em todas as condig¢oes de voo. Um exemplo

de enrijecedores dispostos longitudinalmente pode ser observado na Figura 5.

Obviamente a inclusao do acoplamento entre materiais aumenta a complexidade
da peca, o que torna sua analise estrutural inviavel de ser procedida através de meios
puramente analiticos. Dessa forma, ao longo do desenvolvimento da matematica e da
engenharia, e com o advento dos computadores, surgiram os Métodos Numéricos. Tais
métodos possibilitaram a solug¢ao de equacoes diferenciais complexas a partir da sua
transformacao para um sistema algébrico de equacoes. Com isso, nasceu o ramo da
Mecanica Computacional, a qual propoe solugoes para problemas complexos de Mecéanica

dos Sélidos via implementacao computacional dos Métodos Numéricos.

Boa parte desses métodos utilizados na analise estrutural partem da ponderacgao
de um residuo ao longo do dominio estudado. Para a defini¢do de residuo, parte-se de uma
equagao diferencial descrita pela equidade a zero das somas de operagoes funcionais e/ou
escalares aplicadas a uma funcao desconhecida. A isso, também poderia ser acrescida uma
soma de funcoes conhecidas. Ao se aproximar a fun¢do desconhecida por uma aproximativa
de formato conhecido, como polinomial de ordem n ou trigonométrica, a equidade a zero
pode nao mais ser atendida para todos os pontos do dominio onde a equacao diferencial
era valida. A imagem dessa aplicacao funcional, atribui-se o nome de residuo. Tal conceito

serd matematicamente explicitado e aplicado em segoes seguintes deste documento.

De acordo com Brebbia e Dominguez (1994), a depender da metodologia de
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Figura 5 — Fuselagem de transporte de passageiros da British Aerospace 146

Fonte: Megson (2010)

aproximacao da funcao de interesse, a qual sujeita a uma série de operagoes forma uma
equacao diferencial, os processos de ponderacao de residuos podem ser divididos em trés

tipos:

a) Se for assumido que a solugdo aproximada é equivalente a analitica no contorno
sob condigoes prescritas, mas nao para as equagodes no dominio, entao se trata

de um método ‘de dominio’;

b) Se as equagoes de campo forem satisfeitas pelas solugdes aproximadas, mas nao

as condig¢oes no contorno, tem-se um método de ‘contorno’;

¢) Se nem as equagoes de campo ou as condigoes de contorno forem satisfeitas

pela solucao aproximada, entao é classificado como um método ‘misto’.

Do primeiro tipo, derivou-se o método numérico mais utilizado nas implementagoes
de softwares comerciais e mais popular em aplicagoes de engenharia, chamado de Método
dos Elementos Finitos (MEF). Tal popularidade advém da facilidade de sua formulagao
e implementagao computacional até mesmo para problemas de elevada complexidade. A
base matematica nao tao complexa para problemas elementares e a boa representatividade
nos mais diversos tipos de problemas da engenharia também foram fatores preponderantes
para sua disseminacao fora do meio académico. Apesar da significativa amplitude de sua
aplicacao, o MEF pode nem sempre ser o método numérico capaz de melhor solucionar um

determinado problema. Por exemplo, problemas com concentragao das grandezas envolvidas
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em uma regiao do dominio, como tensao ou fluxo, podem requerer uma discretizacao de
malha muito elevada, possibilitando casos de nao-convergéncia e polui¢do numérica da

solugao.

Do segundo tipo de método, foi desenvolvido o Método dos Elementos de Contorno
(MEC). Diz-se que, por essa técnica, as equagoes sdo resolvidas no contorno do problema,
de forma que as grandezas de dominio sejam aproximadas de uma forma mais precisa
do que no MEF. Apesar dessa vantagem, o MEC possui uma grande limitagao que é a
necessidade de se conhecer uma solucao denominada de fundamental para o problema,
o que restringe bastante sua amplitude de aplicagoes. Além disso, a sua fundamentagao
matematica mais densa e a sua maior dificuldade de implementagao computacional sao
fatores que dificultaram sua disseminacao fora da academia, que é o oposto do que ocorreu
com o MEF. Embora com essas limitacoes, o MEC pode ser capaz de representar melhor
alguns problemas se comparado ao MEF, a exemplo de concentragoes de grandeza, citada
como uma dificuldade de representacao pelo MEF, e de situagdes onde se tenha um
dominio infinito ou semi-infinito. A Figura 6 mostra dois modelos de discretizacao de uma
chapa: um por elementos finitos; e outro por elementos de contorno. A partir dela, pode-se
perceber claramente a menor complexidade da malha do MEC em relacao a do MEF para
o mesmo problema. Como fundamentalmente apenas o contorno precisa ser discretizado

no MEC, algumas outras vantagens que podem ser citadas em relagao ao MEF sao:

a) a menor esfor¢o na criagdo de dados de entrada do modelo, devido & menor

quantidade de informagcoes nodais e elementares a serem descritas;

b) a melhor adequabilidade no acoplamento com softwares de desenho assistido
por computador (Computer-Aided Design - CAD), ja que eles também utilizam

informagoes geométricas de contorno para representagao dos objetos;

c¢) a maior facilidade da realizacdo de uma andlise isogeométrica, a qual é uma

consequéncia das vantagens (a) e (b);

d) maior viabilidade ao se executar um remalhamento durante a simulacao de

propagagcao de fissuras.

Para o caso de andlise de meios enrijecidos, sao necesséarias discretizagoes tanto do
meio quanto dos enrijecedores, devendo-se realizar um acoplamento entre os elementos.
Esse processo pode ser feito puramente usando o MEF, onde o meio é discretizado por
elementos de solido e os enrijecedores com elementos reticulados, ou como MEC/MEF,
que é uma forma de acoplamento que também é comumente encontrada na literatura.
No tltimo caso, o meio é discretizado por elementos de contorno e os enrijecedores por
elementos finitos reticulados. Devido a melhor solu¢gao do MEC para problemas de fratura,
a representacao do solido por elementos de contorno pode produzir melhores resultados

quando se ha desejo de verificar esse comportamento. Outra possibilidade é de se realizar
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Figura 6 — Malhas de MEF e MEC para um chapa com um orificio
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Fonte: Adaptado de Aliabadi (2002).

um acoplamento MEC/MEC-1D, utilizando elementos de contorno unidimensionais para
a representacao dos enrijecedores. Esse ultimo método tem apresentado vantagens de

compatibilidade e menor oscilagdo numérica em relagao ao MEC/MEF.

Além do acoplamento de materiais, outro procedimento de extrema relevancia
industrial é a otimizacao de processos. O tema adquiriu bastante relevancia apds métodos
de otimizacao desempenharem papel decisivo no resultado da Segunda Guerra Mundial
(Rao, 2019a). A crescente relevancia da area tanto no meio pratico quanto no académico
se da naturalmente pela consonancia com o espectro competitivo do sistema capitalista de
mercado. A prépria maximizacao do lucro, principal objetivo empresarial, trata-se de um
problema de otimizacao que pode ser consequente de outro envolvendo minimizacao de
desperdicios. O 1ltimo ponto vai ao encontro da conscientizacao desenvolvida nos tltimos
ano quanto a nao renovabilidade de recursos naturais, que alcou o interesse global em

desenvolvimento sustentavel.

Ao processo de otimizacao aplicado a pecas estruturais, atribui-se o nome de
otimizacao estrutural. A depender das suas caracteristicas, é possivel dividir a otimizacao

estrutural em trés grandes tipos, conforme ilustra a Figura 7. Na otimizagao paramétrica,
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o dominio da estrutura é previamente conhecido e permanece fixo durante o processo de
otimizacao. Dessa forma, otimiza-se um determinado parametro ao longo dele, como a
drea da se¢do transversal mostrada na Figura 7(a). Na otimizacdo de forma, modifica-se os
contornos ja existentes em um dominio de maneira a obter uma configuracao 6tima. Nela,
nao se cria novos contornos, que é o que pode ocorrer na otimizacao topologica. Na tultima,
o dominio, com excecao da regiao de seus vinculos, pode ser completamente reconfigurado,

tornando-a a mais completa dos trés grandes tipos.

Figura 7 — Tipos de otimizacao estrutural.

(c) otimizagao topoldgica.

Fonte: Adaptada de Bendsge e Sigmund (2004b).

A importancia da otimizacao estrutural se deve a reducao do volume de material
utilizado para confeccionar uma estrutura. A economia de material é relevante para o
mercado pois reduz o custo das pecas, que pode ser convertido em lucro para as empresas
e reducao do preco para o consumidor. Ja para questdes ambientais, é importante para
reducao da emissao de gases de efeito estufa e de producdo de dejetos inerentes de
procedimentos de manufatura e posterior descarte. Essencial a diversas aplicagoes de
engenharia, as industrias de ferro e ago produzem cerca de 2.6 gigatoneladas de diéxido de
carbono anualmente, constituindo 7% do total das emissoes humanas (International Energy
Agency, 2020). Praticamente indispensavel a indistria da construgao civil, a produgao do
cimento é responsavel por cerca de 8% dessas emissoes (Ellis et al., 2020). Como um todo,
a industria da construgao produz cerca de 35% de todo o descarte industrial no mundo e
contribui com 40% do total de emissoes de diéxido de carbono (Solis-Guzmén et al., 2009;

European Comission, 2021).

A aplicacao da otimizacgao topoldgica na engenharia contemporanea ja pode ser

vislumbrada. A Figura 8 ilustra a entrada do Centro de Nacional de Convengoes do Qatar,
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cuja estrutura de suporte que se assemelha a uma estrutura biologica foi concebida através
de otimizacdo topolégica. E notéria a beleza arquitetdnica do monumento, ressaltando
outra qualidade da otimizagao. Outra aplicagao é observada na Figura 9, que ilustra o

escritorio Akutagawa no Japao.

Figura 8 — Centro Nacional de Convengoes do Qatar

Fonte: Donofrio (2016).

Figura 9 — Escritério Akutagawa no Japao

Fonte: Ohmori (2011).
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Devido a popularidade do MEF, boa parte dos métodos de otimizacao mais di-
fundidos foram formulados pensando em um acoplamento com esse método numérico,
como ¢é o caso do Solid Isotropic Material with Penalization (SIMP). O SIMP apresenta
uma formulagdo de otimizacao em gradiente e retorna a melhor maneira de distribuir
material ao longo de um dominio. Outros métodos de implementagao mais acessivel foram
concebidos, como o Evolutionary Structural Optimization (ESO), que retira material de
regioes menos solicitadas do dominio, e uma versao aprimorada chamada de Bi-directional
FEvolutionary Structural Optimization (BESO), que também insere material em regides mais
solicitadas. Ambos os métodos evolucionarios sao mais viaveis de serem implementados

em acoplamento com o MEF.

Uma alternativa que tem apresentado resultados intrigantes para promover uma
otimizacao topologica utilizando as vantagens do MEC ¢é através do seu acoplamento com o
Método Level Set (MLS). O MLS se originou por meio de estudos de topologia, descrevendo
o movimento de interfaces. Em uma aplicacao a otimizacao topoldgica, é possivel utilizar a
funcao level set para representar a evolucao do contorno discretizado pelo MEC. Devido as
possibilidades curvas e complexas do contorno advindo da otimizagao topolégica, conforme
visto nos exemplos de aplicagdo, torna-se conveniente utilizar a formulacao isogeométrica
do MEC, o MECIG, para descricao mecanica do dominio. Um de seus pontos positivos
em relacao ao MEF. Dessa forma, também se tem a possibilidade de acoplamento com
softwares CAD, de forma a entregar um produto topologicamente otimizado que possa ser
impresso. A Figura 10 exemplifica um caso de impressao 3D, em que se mostra o modelo

CAD de uma parede e seu modelo impresso em concreto de alto desempenho. Dentre as

Figura 10 — Modelo CAD para a parede multifuncional (esquerda) e a parede multifunci-
onal de concreto de alto desempenho impressa em 3D (direita)

Fonte: Gosselin et al. (2016).
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vantagens da manufatura aditiva, cita-se a fabricacdo de geometrias complexas com alta
precisao, maximizacao da economia de material, flexibilidade no projeto e customizacao
pessoal (Ngo et al., 2018).

1.1 Objetivos

O objetivo principal deste trabalho é estudar o acoplamento MEC/MEC-1D
para andlise de sélidos enrijecidos e a otimizagao topologica executada via acoplamento
MLS/MECIG. Dessa forma, pretende-se pavimentar o caminho para posterior execucao
dessa otimizagao em estrutura enrijecidas, cujas grandezas mecanicas sao representadas
pelo acoplamento MEC/MEC-1D. Seccionando o objetivo geral em especificos, dos quais

alguns foram estabelecidos ao decorrer da pesquisa, cita-os como:

a) Implementar e validar um cédigo baseado no MECIG para anélise de sélidos

homogéneos;

b) Implementar e validar um cédigo baseado no MEC-1D para andlise de estruturas

reticuladas;

c¢) Implementar o acoplamento MECIG/MEC-1D e verificar seus resultados com

os de softwares comerciais;

d) Verificar o mecanismo de distribui¢ao de dominios de fibra de forma a evitar

integracoes quase-singulares;

e) Corrigir o procedimento ciclico de expansao e contra¢ao do dominio desenvolvido

ao longo do processo de otimizagao topologica do acoplamento MLS/MECIG;

f) Propor alternativas a estimativa do valor inicial do coeficiente de peso do
método do lagrangiano aumentado de forma a reduzir sua volatilidade de

sucesso dependente das caracteristicas do dominio;

g) Propor uma metodologia eficaz quanto a verificagdo de estacionariedade desse

processo de otimizagao;

h) Propor um critério alternativo de alteracao de topologia que seja computacio-
nalmente mais eficiente e preferencialmente menos suscetivel a necessidades de

paradas durante os processamentos.

1.2 Organizacao do documento

No primeiro capitulo foi apresentada uma breve introducao acerca do tema do
trabalho, ressaltando as vantagens do uso conjunto de diferentes materiais. Descreveu-se
algumas diferencas basicas entre o MEF e o MEC, enfatizando pontos em que o segundo

apresenta vantagens quando utilizado. Apresentou-se a defini¢do de otimizacao topoldgica
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e os motivos de sua atual relevancia. Também sao descritos o objetivo principal e os

especificos do estudo.

No Capitulo 2 é apresentada uma revisao bibliografica acerca do MEC e de seus
modelos de acoplamento, ressaltando a sua aplicacdo a meios enrijecidos. Além disso,
também se caracteriza o estado da arte quanto a andalise isogeométrica e a otimizacao

topoldgica, objetivando relevar trabalhos que fizeram uso do MEC.

No Capitulo 3 é apresentada formalmente a formulacao matematica do MEC e
do MECIG, com énfase a andlise de solidos. Busca-se enfatizar a diferenca entre as duas
abordagens. Exemplos de validagao para as implementacoes efetuadas e comparacao de

seus resultados sao apresentados.

Ja no Capitulo 4 é descrita a formulacao do MEC-1D para estruturas axialmente
solicitadas. Valida-se a implementagao com exemplos com disponibilidade de solucao

analitica e numérica.

A formulagdo do acoplamento MEC/MEC-1D para representagao de dominios
com inclusoes esbeltas é apresentada no Capitulo 5. A formulagao é apresentada tanto
para representacao do dominio pelo MEC quanto pelo MECIG. Compara-se entre si os
resultados da implementacao utilizando o acoplamento com as duas abordagens e com
os obtidos por softwares comerciais. Mostram-se alternativas a discretizagao de dominios
de inclusao e ao seu lancamento para a situacao de fibras aleatoriamente espalhadas pelo

dominio.

Apresenta-se o procedimento de otimizacao topologica com o MLS no Capitulo 6.
Descreve-se a funcao level set e a metologia de solugdo da equacao de Hamilton-Jacobi
que define o movimento do contorno. Caracteriza-se o problema de otimizacao e se elucida
a forma de acoplamento do MLS com a representacdo mecanica do dominio pelo MECIG.
Exemplos sao apresentados para averiguagao da correcao de convergéncia proposta, além
da férmula para estimativa do valor inicial do coeficiente de peso e da metodologia de

convergéncia adotadas.

Consideragoes finais acerca de todo o conteiido estudado na presente dissertacao
sao postas no Capitulo 7. Além disso, propoe-se sugestoes de continuidade da expansao do
respectivo estado da arte em trabalhos futuros, tanto para analise de sélidos enrijecidos
pelo MEC/MEC-1D quanto para a otimizagao topolégica via MLS/MECIG.

Com o intuito de nao discutir topicos elementares, mas necessarios ao desenvol-
vimento do estudo, no corpo principal do documento, descrevem-se esses topicos nos
apéndices. No Apéndice A, sdo resumidamente abordados os principais fundamentos
da Teoria da Elasticidade utilizados no desenvolvimento do trabalho. No Apéndice B,
apresenta-se a formulacao forte de um dominio axialmente deformavel. J4 no Apéndice

C, sao apresentados os procedimentos de obtencao das solugdes fundamentais utilizadas
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na ponderacao da Técnica dos Residuos Ponderados aplicada a problemas estaticos de
elasticidade e de estruturas reticuladas solicitadas axialmente. Por fim, no Apéndice D,
descreve-se um procedimento de transformacao cubica da quadratura de Gauss-Legendre,

a qual foi utilizada para as integragoes numéricas do MECIG nos exemplos do Capitulo 6.

1.3 Justificativa

Esse trabalho se justifica em parte devido a importancia do acoplamento de materiais
para engenharia e a relevancia atual e futura da otimizacao topoldgica, especialmente no
tocante a reducdo de consumo de insumos. O investimento no acoplamento MEC/MEC-1D
para representacao mecanica se da em virtude de seus melhores resultados ao tratar de
dominios enrijecidos em comparacao a outras opcoes baseadas no MEF. Escolheu-se efetuar
a otimizagao topoldgica por MLS pela boa consonancia com o MEC quanto a descricao
do processo pelo contorno. A utilizagdo da abordagem isogeométrica do MEC objetiva a
melhor representacao dos possiveis contornos advindos da otimizagao topoldgica. Também
ha serventia pelo acoplamento com ferramentas CAD e pela possibilidade de impressao do

produto final.

1.4 Metodologia

O principio de um estudo é a realizacao de uma revisao bibliografica para que
se possa haver uma compreensao do estado da arte. Foram avaliados trabalhos que
contribuiram na constru¢ao do MEC, com énfase em anélise de sélidos, que retrataram a
formulagdo do MEC-1D e que formularam modelos de acoplamento entre MEC/MEF e
MEC-1D. Apresenta-se como se desenvolveram as pesquisas em andlise isogeométrica e

otimizacao topologica e de que forma utilizam o MEC.

A implementagao computacional das rotinas de cédlculo foi executada em Fortran
90, sob a justificativa de ser uma linguagem que oferece uma maior facilidade ao se
representar sequéncias de operagoes algébricas quando comparada a outras linguagens
também compiladas, como C/C++. Obviamente, a escrita de codigo seria facilitada com
o uso de alguma linguagem interpretada, porém haveria prejuizos quanto ao desempenho
computacional. O autor nao mediu a magnitude desses prejuizos e assim preferiu devido ao
fato de que parte de suas principais referéncias obteve sucesso em resultado e desempenho

ao utilizar o Fortran mesmo sem efetuar paralelizacao de processamento.

O sucesso da implementacao da rotina proposta pelo trabalho e de seus subconjuntos

¢é validado pelas comparagoes com os resultados de:

a) Exemplos cldssicos e analiticos contidos na literatura, para os modelos individu-

ais de solido e enrijecedor;
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b) Exemplos processados em softwares comerciais populares no mercado, para o
modelo de acoplamento MEC/MEC-1D;

c¢) Configuragdes finais obtidas por outras metodologias disponiveis na literatura,

para a otimizacao topologica.
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2 REVISAO BIBLIOGRAFICA

Neste capitulo, sera apresentada uma revisao bibliografica do desenvolvimento
do MEC com énfase a analise de problemas da mecanica dos sélidos e de modelos de
acoplamento envolvendo MEC/MEF e MEC/MEC-1D. Comenta-se acerca da incorporagao
de técnicas de andlise isogeométrica ao método. Além disso, apresentam-se contribuicoes a
area de otimizacao topologica, enfatizando sua abordagem via técnicas tteis ao procedi-
mento executado utilizando o MEC para acesso de grandezas mecanicas. O objetivo do
presente capitulo é caracterizar o estado da arte apresentando contribuicoes relevantes ao
tema estudado. Portanto, economiza-se demonstracoes e desenvolvimentos matematicos

necessarios a construgdo do estudo para que sejam apresentados em tépicos sequentes.

2.1 Método dos Elementos de Contorno

Conforme descrito no capitulo introdutério, Brebbia e Dominguez (1994) indicam
trés possiveis métodos de solucao para a técnica de residuos ponderados, dentre as quais
o MEC encaixa no método ‘de contorno’, motivo pelo qual ficou conhecido dessa forma.
Entao, substituiu-se o que era conhecido por Método das Equacoes Integrais Singulares.
A Figura 11 apresenta um interessante fluxograma sobre a forma como surgem alguns
dos principais métodos numéricos tendo a técnica de residuos ponderados como principio.
Assim, possibilita-se uma situagao da concepc¢ao daquilo que veio a se tornar o MEC. Tal
teve sua base matematica fundamentada a partir da teoria do potencial, a qual é descrita
pelas equacgoes de Laplace e Poisson, e na existéncia e unicidade da solu¢do do Problema
de Valor de Contorno (PVC). Gragas aos teoremas de Gauss e Stokes, torna-se possivel
efetuar uma reducgao espacial na integracdo. Algumas tentativas de solugao numérica
para esse problema foram efetuadas no inicio do século XX, entretanto s6 houve uma
disseminacao de solugdes com o advento dos computadores nos anos 1960. Nessa década,
foi desenvolvida a primeira formulacdo em equagoes integrais singulares para problemas
de elastostatica classica (Rizzo, 1967). O Método dos Elementos de Contorno passou a ser

conhecido dessa forma nos anos 1970, em que teve seu periodo de maior desenvolvimento

(Cheng; Cheng, 2005).

2.1.1 Solugoes fundamentais

Para evitar uma integracao de dominio a qual surge naturalmente da forma em
residuos ponderados de um determinado problema, a técnica do MEC utiliza como funcao
ponderadora uma solugao fundamental. Tal funcao resolve uma forma nao homogénea da

equagao diferencial original mediante uma equidade a uma fung¢ao delta de Dirac, livre de
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Figura 11 — Diferentes técnicas de aproximacao
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Método das integrais
Método de Trefftz classico singulares de contorno

Fonte: Adaptada de Brebbia (1978).

condigoes de contorno (Kythe, 1996). Tal necessidade pode configurar uma restri¢ao ao

uso do método, uma vez que depende de sua obtencao.

Ao utilizar solugoes fundamentais para resolver um problemas de equacoes elipticas
homogéneas, Bogomolny (1985) indica que os procedimentos utilizando essas solugdes
foram vistos pela primeira vez em Kupradze (1964). Antes disso, as solugoes eram desen-
volvidas utilizando o procedimento de Trefftz, em que era usada a solugao da equacgao
diferencial em sua forma homogénea. Para solucao de problemas elasticos bidimensionais e
anisotrépicos, Cruse e Swedlow (1971) desenvolveram uma soluc¢ao fundamental. J& para o
caso tridimensional, uma solu¢ao fundamental também foi desenvolvida por Vogel e Rizzo
(1973), com Wilson e Cruse (1978) apresentando posteriormente uma solugdo numérica

eficiente para esse problema.

2.1.2 Mecéanica da Fratura

Devido aos elevados gradientes de tensao presentes na Mecanica da Fratura, o
MEC oferece vantagens sobre o MEF por precisar discretizar apenas o contorno. Em

uma solugdo por MEF, seria necessario um melhor refinamento de malha préximo aos
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pontos onde se espera concentragao de tensao, o que pode eventualmente causar poluicao
numérica no resultado. Um dos primeiros trabalhos a aplicar formulac¢oes primitivas do
MEC a problemas de fratura foi o de Cruse e Vanburen (1971). A aplicacao foi efetuada a
uma peca tridimensional e homogénea. Em sequéncia, trabalhos com anélise de fraturas
em meios anisotrépicos pelo método comegaram a surgir (Snyder; Cruse, 1975). Numa
tentativa de lidar com problemas de singularidades que eram recorrentes nesse campo de
analise, foi criada uma técnica de multidominio que permitia a discretizagao das superficies
de fissuras (Blandford; Ingraffea; Liggett, 1981). A simulacdo do comportamento mecéanico
de problemas de fratura requer a discretizacao de ambas as faces da fissura. Isso faz com
que pontos de colocagao dividam a mesma posicao geométrica, mostrando-se um empecilho

para o tratamento desses problemas através do MEC.

A questao das singularidades comegaram a ser melhor tratadas no MEC ao se
incorporar dualidade na formulagao. Hong e Chen (1988) desenvolveram a equacao integral
hipersingular do método para elasticidade através da derivagao da formulacao padrao.
A avaliagao das integrais hipersingulares de Green quando é evitada a decomposicao
multidominio foi desenvolvida para a solucao de Kelvin das equacoes de elasticidade linear
tridimensional de Navier. Boa precisao numérica foi apresentada (Gray; Martha; Ingraffea,
1990). Surgiu entao o Método dos Elementos de Contorno Dual (MECD), cujo nome advém
do emprego das formulacdes padrao e hipersingular para distingao da discretizagao das
faces da fissura em sua construgao. Tal variacdo mostrou-se til a solugdo de problemas
de fratura onde as singularidades estavam presentes, o qual em sua primeira aplicacao
mostrou resultados de elevada acurdcia quando Fator de Intensidade de Tensao (FIT)
era avaliado por meio da técnica da integral J (Portela; Aliabadi; Rooke, 1992). Pouco
tempo depois, foi apresentada uma eficiente formulacao tridimensional do MECD para
problemas elastico-lineares de fratura, o qual se mostrou importante para analise de fissuras
de superficie e fissuras internas (Mi; Aliabadi, 1992). Mais tarde Le Van e Royer (1996)
derivam as equagoes integrais e integro-diferencias de contorno para problemas de meios

anisotropicos fissurados, incluindo na formulacao casos de meios finitos e infinitos.

Apbs os desenvolvimentos realizados no ambito de analise de fissuras pelo MECD
durante a década de 1990, o método ganhou bastante relevancia na academia, o que
contribuiu a sua disseminacao e seu uso no desenvolvimento de novos trabalhos. Para analise
de fissuras, o MECD se mostrou mais robusto do que a formulacao singular, a qual levou a
erros na determinacao dos fatores de intensidade tensao por nao descrever corretamente a
geometria da fissura (Leonel, 2006). Formulagoes nao-lineares para propagagao de fissuras
em dominios quase-frageis utilizando um operador constante e outro do tipo tangente
consistente foram apresentadas e discutidas por Leonel (2009) utilizando o MECD. Concluiu-
se que o segundo deles era mais eficiente computacionalmente por requisitar um menor
numero de iteragoes. A técnica da correlagao dos deslocamentos, a técnica com base no

estado de tensao na extremidade da fratura e a técnica da integral J quando aplicadas no
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MECD para avaliacao do FIT mostraram uma tendéncia a apresentacao de bons resultados.

Observou-se que primeira técnica melhora substancialmente com o aumento do refinamento

da malha (Kzam, 2009).

Outra possibilidade de formulacao do MEC aplicada a propagacao de fissuras em
materiais quase-frageis, em que é utilizado um modelo ficticio de fissura e a zona de dano
é representada por tensoes coesivas que tendem a fechar as cavidades, apresentou bons
resultados quando comparada a exemplos praticos. Também foi observado que esse modelo
alternativo apresenta comportamento mais rigido do que o apresentado pelo MECD ao se
comparar a aplica¢do de ambos aos mesmos exemplos (Oliveira, 2013; Oliveira; Leonel,
2013).

Uma técnica para acoplamento de sélidos multifasicos foi desenvolvida, a qual obteve
resultados satisfatorios para problemas elasticos. No mesmo trabalho, tal metodologia
também foi acoplada a formulagao alternativa de ruptura coesiva do MEC com os usos de
operadores constante e tangente averiguados para essa variagao. Para pegas de concreto,
mostra-se que eles nao sao capazes de reproduzir instabilidades que causam perdas criticas
de rigidez, como o snap back. Para pecas de madeira, mostra-se boa representacao do
comportamento nao linear e da carga tultima da estrutura. Embora unido a elevada
sensibilidade perante mudancas nas condi¢oes de contorno em problemas anisotrépicos
(Cordeiro, 2015; Cordeiro; Leonel, 2016).

2.1.3 Método dos Elementos de Contorno Unidimensional (MEC-1D)

Como mencionado, o desenvolvimento inicial do MEC para aplicagoes em problemas
de Mecanica dos Sélidos se deu no contexto da elasticidade bidimensional. No método,
os elementos de contorno tém dimensao inferior em uma unidade ao dominio de andlise,
tornando-os unidimensionais para esse caso. A aplicacdo do MEC a estruturas reticuladas,
ou seja, de dominio unidimensional, é comumente referenciada como MEC-1D, podendo
ser utilizado para solucao de problemas classicos de barras. Os desenvolvimentos pioneiros
dessa versao do método foram efetuados considerando as relagoes cinematicas de Euler-
Bernoulli para problemas estéticos e lineares (Banerjee; Butterfield, 1981). A partir disso,
desenvolveu-se a formulagao para aplicagao a problemas em vigas de estabilidade estatica
linear e dinamicos de vibragoes de flexao, em que, no primeiro caso, chegou-se a uma
excelente acurdcia. J& no segundo, o método se mostrou menos eficiente se comparado ao
MEF (Manolis; Besko; Pineros, 1986; Providakis; Beskos, 1986).

Posteriormente, uma solugao fundamental foi desenvolvida para a teoria de vigas
de Timoshenko, cuja aplicacao via MEC conduz a resultados equivalentes aos previstos
por solucdo analitica (Antes, 2003). Essa teoria de vigas apresenta melhores resultados em
analise dinamica considerando altas frequéncias quando comparada a de Euler-Bernoulli.

Portanto, o desenvolvimento foi utilizado nessa aplicacao, apresentando excelentes resulta-
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dos quando comparados a modelos de MEF, os quais também diferiram bastante quando

era usada a cinemética de Euler-Bernoulli, conforme esperado (Antes; Schanz; Alvermann,

2004).

Desenvolveu-se uma formulagdo do MEC-1D para analise nao linear dindmica da
viga de Timoshenko com simplificacao arbitraria de simetria dupla ou de multiplas se¢oes
transversais conectadas, a qual é submetida a grandes deslocamentos, porém pequenas
deformacoes. Tal formulagao foi validada e apresentou resultados semelhantes aos da
solugdo analitica do problema. Registrou-se boa acuracia ainda com uma quantidade
pequena de nés apresentando resultados bem divergentes quando comparada a analises

lineares (Sapountzakis; Dourakopoulos, 2009a; Sapountzakis; Dourakopoulos, 2009b).

A utilizacdo do MEC-1D foi novamente aplicada em andlises elasticas, tanto
estaticas quanto vibratérias, para porticos planos e espaciais. O modelo foi acoplado a
outro padrao de MEC para dominios semi-infinitos com o intuito de se representar uma
interacao solo-estrutura. Também foi incorporado o modelo de flexo-tor¢ao de Vlasov para
barras de se¢oes abertas de parede fina (Cruz, 2012). Analisou-se dinamicamente pelo
MEC-1D a viga de Timoshenko utilizando uma solu¢ao fundamental nao dependente da
variavel tempo. Deparou-se com novas integrais de dominio, mas seus resultados ainda se

mostraram consistentes (Carrer et al., 2013).

Novas solugoes fundamentais para o método foram apresentadas para analise de
estabilidade estatica ou dinamica sobre base elastica ou nao, considerando as cinematicas de
Euler-Bernoulli e de Timoshenko. Os resultados apresentaram bom desempenho (Passos,
2014). Uma solucao para flexdo dindmica da viga de Euler-Bernoulli utilizando uma
formulagao dependente do tempo do MEC-1D foi apresentada, a qual levou a resultados
muito préximos quando comparados & solugao analitica do problema (Scuciato; Carrer;
Mansur, 2016). Analises estaticas pelo MEC-1D foram conduzidas para os dois modelos
de vigas ja citados, com o desenvolvimento de uma versao baseada na equacao de trés
momentos para se encontrar uma resposta coincidente com a analitica para o modelo de
Timoshenko (Carrer; Scuciato; Garcia, 2020).

2.2 Acoplamento no MEC

Uma maneira de se aproveitar o melhor de cada método numérico é realizando um
acoplamento entre eles, tal que cada sub-regiao ou parte do dominio seja aproximada pelo
método que melhor represente suas caracteristicas. Um acoplamento MEC recorrente na
literatura é o MEC/MEF, o qual teve como um de seus pioneiros Zienkiewicz, Kelly e
Bettess (1977), que incorporou as integrais de contorno a formulagdo do MEF. No trabalho,
ha a sugestao de uso para representacao das singularidades que envolvem problemas de
fratura e para dominios contidos em meios infinitos, em que parte finita seria representada

por elementos finitos e o meio infinito seria resolvido por integrais de contorno. Shaw e
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Falby (1978) ressalta e traz uma aplicagdo da segunda proposta do primeiro, utilizando
a solugdo por MEC em regides infinitas ou semi-infinitas onde nao hé grandes variagoes
dos parametros que governam o problema. Ja a solucao por MEF seria aplicada a uma
‘regiao central’ com grandes variagoes nao necessariamente lineares. Tal abordagem ¢

exemplificada com um problema de ressonancia em portos.

Uma aplicagdo a problemas bidimensionais elastostaticos foi realizada por Brebbia
e Georgiou (1979). Nela, utilizou-se dois procedimentos: o primeiro tratando a regiao
de elementos de contorno como de elementos finitos; e o segundo tratando a regiao
de elementos finitos como uma regidao equivalente de elementos de contorno. Ambos
demostraram resultados muito proximos quando comparados a aproximagoes puras de
MEF e MEC, mas o primeiro foi recomendado para implementacao em pacotes comerciais
pela possibilidade de aproveitamento dos algoritmos padroes do MEF, diferente do segundo.
O trabalho também recomenda a utilizagdo do MEC para representacao de dominios

infinitos e semi-infinitos.

Seguindo as recomendagoes de uso do acoplamento MEC/MEF ao se descrever
o comportamento de meios infinitos e semi-infinitos por meio do MEC, citam-se outros
trabalhos. Como exemplo, tém-se a aplicacao a andlise reoldgica de escavacao de tuneis,
em que o uso de elementos de contorno para a representacao de regides externas e elasticas
do dominio pode facilmente acarretar reducao do custo computacional de processamento
da solugao (Swoboda; Mertz; Beer, 1987). Na andlise estrutural de construgoes civis, esse
acoplamento também pode ser interessante em problemas de interacao solo-estrutura.
Nesses casos, as estruturas de transferéncias de cargas da estrutura para o solo (fundagoes)
podem ser trabalhadas pelo MEF. J& o solo, considerado como um meio semi-infinito,
pode ser tratado com o MEC. O acoplamento MEC/MEF tanto em anélises elastostaticas
quanto elastodinamicas desse tipo de problema apresentou elevada acuracia e estabilidade
numérica (Coda; Venturini; Aliabadi, 1999; Coda; Venturini, 1999).

Ainda que tenham sido mostradas as vantagens do MEC em relacao ao MEF para
na representacao de dominios infinitos e semi-infinitos, nao é vedada a possibilidade de uso
do primeiro em dominios finitos. No caso de problemas elastoplasticos com evolugao de
deformagoes plasticas ocorrendo em pequenas regides do dominio onde ha maior solicitacao,
pode ser interessante discretizar apenas essas regides por elementos finitos. O dominio
complementar de comportamento elastico pode ser representado por elementos de contorno.
Esse procedimento é 1til para evitar problemas de discretizacao do corpo no MEC e modelos
de elementos finitos com elevado ntimero de graus de liberdade, ainda sendo capaz de
apresentar bons resultados (Wearing; Burstow, 1994). Outro exemplo é a representagao
do sélido bidimensional por meio do MEC acoplado a um refor¢co descrito por elementos
finitos unidimensionais (elemento de barra) para andalise elastodindmica, o qual traz bons
resultados devido a excelente acuracia do MEC (Coda; Venturini; Aliabadi, 1997).
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Seguindo os moldes do tdltimo exemplo, um acoplamento MEC/MEF foi desenvol-
vido por Coda (2001) para andlise de s6lidos enrijecidos, como concreto armado e polimeros
reforcados, em que os enrijecedores foram tratados como elementos de trelica com forcas
longitudinais desconhecidas para simular a conexao com o meio. Outras caracteristicas
como a imposicao de forgas residuais no sistema nao-linear de equac¢des no contorno
para simulacao da nao linearidade fisica dos elementos finitos e a criagao de uma linha
de forcas internas dentro do dominio do MEC para possibilitar o acoplamento foram
também executadas. Tal modelo foi validado em andlise estatica com comparacgao a dados
experimentais e foi validado em andlise dinamica ao ter seus resultados comparados com
os de outros modelos numéricos, apresentando resultados estaveis para ambos. Semelhante
a esse método, mas tratando os enrijecedores como sub-regies finas, foi proposta uma
formulacao a qual reduzia os graus de liberdade dos elementos finitos neles utilizados
para apenas 1 por né em andlise bidimensional, transformando-o em um elemento de
barra. Essa formula¢ao apresentou bons resultados quando o dominio é enrijecido por
fibras (enrijecedores finos) (Leite; Coda; Venturini, 2003). Posteriormente, formulou-se o
acoplamento considerando sub-regides do MEC com a inclusdo de elemento finito de viga
(Leite; Venturini, 2005). Buscando reduzir o nimero de incégnitas no sistema de equagoes
que envolvem a aplicacao do acoplamento a esses problemas, Riederer, Duenser e Beer
(2009) apresentam uma forma de solugdo iterativa. A abordagem mostrou-se 1til em casos

de alta quantidade de enrijecedores e comportamento nao linear das inclusoes.

Para uma analise elastostatica, um procedimento nao linear de perda de aderéncia
(escorregamento) entre a matriz e os enrijecedores foi integrado a um modelos de acopla-
mento semelhante aos apresentados para simulacao de sélidos enrijecidos, para o qual um
operador tangente foi consistentemente derivado (Botta; Venturini, 2005). Outras adi¢oes
a essa formulagdo de acoplamento foram a implementacao de um modelo constitutivo
baseado em elastoplasticidade nao linear para os enrijecedores e de um modelo para
propagacao de fissuras no meio (Leonel, 2009). Um elemento de pértico plano com fungoes
de interpolacao de 3° grau também foi testado na representagdo dos enrijecedores com a
consideragao do escorregamento com a matriz. O elemento de portico se mostra necessario
a representacao de casos onde haja desenvolvimento de forcas de contato por agao de
momentos e forgas cortantes entre o enrijecedor e o meio, a exemplo de uma fundacao
profunda (Rocha, 2009; Rocha; Venturini; Coda, 2014).

Um acoplamento baseado no MEC/MEC-1D também foi formulado e comparado
ao MEC/MEF considerando dos enrijecedores como elementos de trelica. O primeiro
apresentou resultados numericamente mais estaveis devido a melhor compatibilidade entre
os métodos acoplados e a reducao de aproximagoes. O segundo sé obteve resultados
parecidos ao serem utilizadas fung¢oes de forma de 4° grau. Foi também verificado que
os enrijecedores governam o comportamento mecanico de meios flexiveis (Buffon, 2018).

Em extensao a esse modelo, foi implementada a técnica de sub-regioes para aplicacao do
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procedimento em dominios ndo homogéneos, sendo também avaliado o desempenho em
estruturas geometricamente mais complexas. Em paralelo, foi considerado um compor-
tamento elastoplastico nao linear para os enrijecedores, o qual apresentou dificuldades
para representar plastificagdo pontual no MEC/MEC-1D. Em geral, observou-se que,
com a discretizacao do dominio pelo MEC, os enrijecedores nao apresentam esfor¢o nas
suas extremidades, o que nao se verifica com o Ansys, e que 0 MEC/MEC-1D apresenta
melhores resultados se comparados a abordagem classica do MEC/MEF (Rodrigues Neto,
2019; Rodrigues Neto; Leonel, 2019). Em seguida, o escorregamento da fibra na matriz
foi formulado para MEC/MEC-1D juntamente a expansdo do modelo anterior a uma
analise tridimensional, a qual foi validada com dados experimentais para o caso estatico
(Rodrigues Neto; Leonel, 2021).

2.3 Analise isogeométrica

O conceito de andlise isogeométrica foi desenvolvido no ambito dos métodos nu-
méricos por Hughes, Cottrell e Bazilevs (2005). A justificativa da abordagem se deu ao
abandono de precisao da representacao geométrica em detrimento do enriquecimento
polinomial (refinamento-p) para aproximacao funcional (Babuska; Szabo; Katz, 1981).
Excelentes resultados foram obtidos em problemas geometricamente complexos de Meca-
nica dos Solidos e dos Fluidos. Com aplicacao da tecnologia ao MEF, o trabalho consistiu
no uso de Non-Uniform Rational Basis Splines (NURBS) como base para as fungoes de
forma. Tais fungoes sao capazes de representar curvas complexas, comumente descritas
por fungdes ndo polinomiais, com precisao tendendo a analitica (Piegl; Tiller, 1996). Sua
construgao é efetuada por meio da ponderacao de Basis Splines (B-splines) (Piegl; Tiller,
1987). Spline consiste em um mecanismo de desenho de curvas suaves. Schoenberg (1988)
cita suas propriedades mateméaticas. Dentre as metodologias de calculo para as B-Splines,
a férmula recursiva apresentada por Cox (1972) e de Boor (1972) se apresenta como a

melhor alternativa em eficiéncia computacional.

O desenvolvimento da andlise isgeométrica continuou a ser promovido em aplicagoes
via MEF. O primeiro trabalho a incorporar a tecnologia ao MEC foi direcionado a Teoria
do Potencial ao resolver o problema exterior de Newmann da Equagao de Laplace (Politis
et al., 2009). Um estudo elementar tratando de aplica¢oes em métodos de colocagao foi
desenvolvido para solugao de equagoes diferenciais com dominio unidimensional (Auricchio
et al., 2010). Posteriormente, foi publicada a primeira formulacao voltada a Mecanica
dos Sélidos do MECIG, considerando problemas planos de elastostatica. Por meio do
estudo, notou-se a vantagem de acuracia com a incorporacao da tecnologia, assim como
a possibilidade de evitar geragao de malha utilizando os préprios pontos de controle das
NURBS como nés (Simpson et al., 2012). Aspectos de implementagao computacional dessa

formulagdo como geragao de malha, acoplamento a modelos CAD e refinamento foram
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discutidos. Além disso, mostrou-se um aumento de precisao significativo em relacao ao uso

de elementos lagrangianos quadraticos (Simpson et al., 2013).

A evolugao para aplicacao a problemas lineares elastostaticos tridimensionais do
MECIG foi possivel com uso de T-splines (Scott et al., 2013). Seu conceito envolve
superficies B-splines nao uniformes com T-junctions, as quais condicionam um refinamento
local (Sederberg et al., 2003). Scott et al. (2012) mostram exemplos de refinamento
e possibilidades de uso de T-splines em analise isogeométrica. Outra alternativa foi
desenvolvida para aplicagoes de elasticidade tridimensional através uso de point based
splines (PB-splines), que permitem uma maior flexibilidade de malha comparado as
NURBS com possibilidade de refinamento local. Seu uso se mostra 1til em evitar diversas
integragoes quase-singulares e singulares (Gu et al., 2015). Também visando evitar esses
tipos de integragao, Wang e Benson (2015) desenvolveram uma formulagao tridimensional

nao singular para multiplos patches (blocos de discretizagao isogeométrica).

Mostrou-se que uma aproximacao independente para grandezas geométricas e
mecanicas pode garantir melhorias no método. Tais como flexibilidade de refinamento,
eficiente avaliagdo de parametros geométricos, possibilidade de colocagoes que lidem com
descontinuidade de forcas de superficie em quinas e reducao do lado direito do sistema de
equagoes. Tal metodologia pode ser aplicada a problemas bidimensionais e tridimensionais.
A precisdo do método nao se mostrou afetada com a aproximagao independente (Marussig
et al., 2015). Outra alternativa a aceleragao do MECIG foi apresentada por Li et al. (2018),
a qual se baseava no black-box Fast Multipole Method (bbFMM). Por meio do tltimo, é
possivel fornecer uma implementacao independente de nucleos mais geral para compressao

de matrizes (Fong; Darve, 2009).

Aplicagbes & Mecanica da Fratura foram efetuadas. Peng et al. (2017) conduziram
o primeiro trabalho em problemas tridimensionais. A abordagem proposta mostra-se
interessante ao nao precisar de geracao ou regeneracao de malha na propagacao da fissura.
Caracteristicas como precisao e estabilidade numérica ressaltam a robustez da formulagao.
Outra abordagem foi desenvolvida baseada em enriquecimento via fung¢oes Heaviside do
MECIG. Tal abordagem consegue recuperar os FITs pelo vetor solu¢ao do sistema, nao
necessitando de pods-processamento. Seus resultados se mostram mais precisos quanto a

esses valores se comparados aos do trabalho anterior (Rocha; Trevelyan; Leonel, 2024).

Quanto a aplicacao da anélise isogeométrica a dominios enrijecidos, Beer et al. (2020)
mostram uma formulagao alternativa considerando a compatibilidade de dominios efetuada
por tensoes iniciais em vez de forcas de dominio. Tal estratégia evita integragoes singulares
no dominio e conduz a uma maior eficiéncia computacional. Também foi formulado um
acoplamento MECIG/MEC-1D para consideragao de fibras. A tal modelo, adicionou-se a
incorporacao de um modelo de fissura coesiva para descrever o comportamento de falhas

nao lineares no meio. Mostrou-se que a formulagao isogeométrica necessita de menos pontos
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de colocacao do que a tradicional formulacao lagrangiana e conduz a erros geométricos
menores para geometrias complexas, apresentando excelente convergéncia com resultados

experimentais (Rodrigues Neto; Leonel, 2022a; Rodrigues Neto, 2023).

Processos de adaptatividade de malha foram aplicados ao MECIG via modificagao
do processo de residuo hipersingular. Testou-os a problemas elastostaticos tridimensionais
homogeéneos e reforgados. O refinamento de superficie NURBS utilizado foi o local, conforme
indicado em Nguyen et al. (2015). Os resultado do método de adaptatividade foram
melhores se comparados ao de refinamento homogéneo (Rodrigues Neto; Leonel, 2022b;
Rodrigues Neto, 2023)

2.4 Otimizacao topologica

Antes da denominacgao otimizacao topoldgica, o primeiro trabalho envolvendo
otimizagdo estrutural pode ser creditado a Michell (1904). Sua proposta consistia na
busca de um volume minimo de uma estrutura trelicada com tensao constante atuante
em seus membros. Tal operagao se configura como o que é atualmente conhecido por
otimizacao de layout. Obviamente, devido as limitagoes operacionais da época, diversas
simplificagoes foram efetuadas. Consequentemente, a validade do estudo s6 englobava
dominios submetidos apenas a forcas externas. Ademais, hd necessidade de equidade
entre as tensoes limite de tragdo e compressao (Rozvany, 2014). As limitagoes existentes
envolvendo solucao de problemas estruturais e de otimizacao foram a principais razoes da
estagnacao de pesquisas a respeito do tema. As quais foram retomadas apds o advento dos

computadores.

Décadas depois, a aplicagao de otimizacao estrutural é retomada. Um método
generalista de otimizagao que performa a integracao da condigdo de 6timo para posterior
distribuicao da rigidez elastica ou da resisténcia plastica foi apresentado para projeto de
estruturas sanduiche (Prager; Taylor, 1968). Ainda no tocante a essas estruturas, uma
formulacao baseada em energia foi desenvolvida de forma a encontrar a distribuicao de
material que tornava a estrutura mais rigida (Taylor, 1969). Masur (1970) estende os
principios de otimizagao de rigidez, antes aplicadas a barras e trelicas, para mais classes

de estruturas.

Para projetos de placas circulares em vibragao, Olhoff (1970) apresenta uma
formulagao analitica, solucionada numericamente, de otimizagao de forma. Com o uso do
MEF, estudou-se a possibilidade de concepcao 6tima de projetos de placas com espessura
variavel (Rossow; Taylor, 1973). Visando otimizagdo de estruturas trelicadas, critérios
de 6timo foram definidos através da energia de deformacdo com restricio na area das
segoes transversais (Taylor; Rossow, 1977). Considerando a teoria de placas finas, tratou-se
como 6timo a maximizacao da rigidez do sélido, assumindo a espessura como variavel de

projeto. Deparou-se com transtornos a obten¢ao do 6timo global mediante uso de fungoes
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suaves ainda que finitamente descontinuas (Cheng; Olhoff, 1981). Além da maximizacao
da rigidez, outros critérios como frequéncia de liberdade e vibragoes transversais foram
consideradas para placas axissimétricas. Importantes conceitos de regularizacao, os quais
aliviam anomalias e dificuldades de obtengdo do 6timo, foram desenvolvidos (Cheng;
Olhoff, 1982). Indo ao encontro de formulagdes com intuito de transpor impossibilidade de
otimizacao, um modelo generalizado de placa enrijecida obtido por meio de homogeneizacao
foi apresentado (Bendsge, 1986).

Seguindo a ideia de homogeneizacao de dominio, desenvolveu-se um método que
evita resultados topoldgicos finais equivalente a iniciais, bem como o remalhamento no
MEF para as etapas de otimizagdo. Tal implementacao alterou os conceitos de otimizacao,
em que se passou a otimizar a distribuicdo do material no dominio inicial (Bendsge;
Kikuchi, 1988). Em seguida, através de uma func¢do de densidade, foi possivel remover a
natureza discreta do problema de otimizacao estrutural (Bendsge, 1989). Uma modificacao
da técnica de homogeneizacao foi apresentada para otimizacdo de estruturas lineares e
elasticas, a qual conduziu a excelentes resultados (Suzuki; Kikuchi, 1991). Outras aplicagoes
desses conceitos foram efetuadas a estruturas reforgadas e com definicao de isotropia por
subdominios (Thomsen, 1991; Thomsen, 1992). Tais conceitos foram utilizados a uma
formulacao de otimizacao de forma considerando multiplos carregamentos no dominio (Diaz;
Bendsge, 1992). Adaptagoes da mecénica do continuo foram efetuadas para a aplicacdo do
procedimento de homogeneizagao a otimizagao de treligas (Zhou; Rozvany, 1991; Diaz;
Belding, 1993). Desenvolveu-se um algoritmo de pré-otimizagao cujas propriedades do
material sdo avaliadas por meio de uma abordagem energética. Aplicagoes tridimensionais
foram efetuadas (Mlejnek; Schirrmacher, 1993). Concebeu-se uma solugao através de
técnicas de otimizagao linear para o problema de otimizacao topoldgica considerando a
técnica de homogeneizacao. Suas vantagens sao a possibilidade de uso de multiplas fungoes

objetivo e restri¢oes de projeto (Yang; Chuang, 1994).

Os desenvolvimentos efetuados no final da década de 80 e no inicio da de 90 esta-
beleceram o que se entende por otimizacao topoldgica. O primeiro livro didatico tratando
de otimizagao topoldgica foi publicado, o qual foi atualizado posteriormente (Bendsge,
1995; Bendsge; Sigmund, 2004a). Seu método mais difundido advém do desenvolvimento
de técnicas de homogeneizacao. O modelo do SIMP atribui uma funcao de densidade ao
material e através dele se obtém uma configuracao topoldgica 6tima por meio de alocacao
de material ao longo do dominio. A denominac¢do do método se tornou conhecida apds o
estabelecimento de um filtro para tratamento da resposta em escala de cinza. Tornando a

estrutura final melhor interpretada (Bendsge; Sigmund, 1999).

Em paralelo ao desenvolvimento do SIMP, outros métodos também foram desenvol-
vidos. Xie e Steven (1993) desenvolveram o que se conhece pelo ESO, em que se remove

do dominio os elementos finitos com tensido de von Mises inferior a um determinado valor.
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O BESO surgiu como uma evolugdao em que também se adiciona material em regices de
elevada concentragao de tensao (Querin; Steven; Xie, 1998). Utilizando o ESO, tém-se uma
equivaléncia entre a otimizacao topoldgica baseada na tensao de von Mises e a visando
minimizagao da flexibilidade (Li; Steven; Xie, 1999). Embora o desenvolvimento do ESO
tenha se focado em solugoes via MEF, ha possibilidades de uso no MEC para a remocao
de porgoes do dominio pouco solicitadas (Cervera; Trevelyan, 2005a; Cervera; Trevelyan,
2005b).

Quanto ao MLS, o trabalho de Osher e Sethian (1988) pode ser considerado como
seu precursor. Nele é apresentado um algoritmo de monitoramento de superficies moveis,
de forma que o contorno fosse representado através de uma curva de nivel de potencial
nulo. Mostra-se que o problema inicial possui a forma da equagao de Hamilton-Jacobi.
Posteriormente, elucidou-se que a abordagem do problema de superficies méveis via
algoritmos de parametrizacao se depara com transtornos decorrente de sua aproximacao
local da fungao. O contrario se provou a representacao como curva de nivel. Aplicagoes
foram efetuadas a exemplos de complexa geometria (Sethian, 1990). Para a aplicagdo do
método a problemas fisicos, metodologias de construcao do campo de velocidades normais

a interface foram apresentadas para processos de crescimento de cristais e de dindmica dos

fluidos (Sethian; Straint, 1992; Mulder; Osher; Sethian, 1992).

Devido a definicao do contorno ser dada por meio de uma curva de nivel de uma
funcao potencial, hd um acréscimo inerente do custo computacional devido ao aumento da
dimensionalidade do problema. Visando sua mitigacao, uma alternativa mais rapida foi
desenvolvida ao se utilizar apenas pontos do grid proximos ao contorno para sua defini¢cao
(Adalsteinsson; Sethian, 1995). Outra contribui¢ao a redugao do custo computacional foi
a construcao do campo de velocidades nas vizinhas do contorno através da aplicagao da
técnica rapida de marcha desenvolvida por Sethian (1996) a solugao de um problema
eikonal e associados. Tal metodologia fornece uma solucao em sub-grid capaz de atualizar
os valores da level set, evitando necessidade de sua reinicializagdo (Adalsteinsson; Sethian,
1999). Para isso, também foi desenvolvida uma metodologia de extrapolagao de grandezas
que s6 podem se propriamente avaliadas na interface da level set para pontos em sua

vizinhanga (Peng et al., 1999).

A primeira aplicagao do MLS a otimizagao topolédgica se deu por Sethian e Wi-
egmann (2000) a um dominio linear elastico bidimensional. No trabalho, as equagoes
da teoria da elasticidade formuladas em deslocamento sao rapidamente resolvidas por
um solucionador elastostatico baseados em diferencas finitas desenvolvido por Wiegmann
e Bube (2000). O campo de velocidades do MLS foi considerado como dependente das
tensoes do atual formato. O processo de otimizagao consiste em remover material de
regioes pouco solicitadas e inserir quando do contrario, dada uma taxa de remocao. O

seu cessar ocorre quando nao ha mais como aumentar o peso enquanto se satisfaz a
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flexibilidade. Posteriormente, foi efetuada a primeira aplicacao utilizando o MEF para
solugao dos problemas mecanicos (Wang; Wang; Guo, 2003). Allaire, Jouve e Toader (2004)
apresentam um procedimento de construcao do campo de velocidades no contorno a partir

da derivada de forma para problemas de elasticidade.

Pouco tempo depois, aplicou-se a otimizacao topoldgica com MLS utilizando o
MEC para avaliar propriedades mecanicas da estrutura atual no lugar do solucionador em
diferencas finitas. Dessa forma, elementos de contorno sao utilizados para discretizar a
curva de nivel. Formulou-se o problema de otimizagao visando minimizacao da flexibilidade
sujeito & restricdo de volume (Abe; Kazama; Koro, 2007). Nesse mesmo periodo, tentou-
se acoplar ao MEC outros procedimentos de otimizagao, como métodos hard-kill de
remocao de material (Marczak, 2007; Anflor; Marczak, 2009). Seguindo com o MLS, uma
formulacao do MEC imersa a malha euleriana da level set, cujos nés do modelo mecanico
se confundiriam com os nés de discretizagao da curva de nivel, foi apresentada (Yamasaki;
Yamada; Matsumoto, 2013).

Derivadas topologicas foram implementadas para insercao automaéatica de furos no
MSL em uma otimizacao topolégica baseada em tensao. Aplicagoes foram conduzidas
a exemplos em duas e trés dimensoes (Allaire; Jouve, 2008). Ullah e Trevelyan (2013)
mostram a correlagao os critérios de von Mises e de derivada topolégica para insercao
de furos na otimizacao via MLS. Nessa comparacao, descreveu-se o contorno através de
NURBS, providenciando uma geometria suave. Entretanto, para a obtengao dos campos
mecanicos do dominio, efetuou-se uma nova segunda discretizagao em elementos de
contorno com interpolacao lagrangiana. Aos mesmos moldes quanto as discretizagoes,
outras aplicagoes do método de insercao pelo critério de von Mises podem contemplados
na literatura (Ullah; Trevelyan; Matthews, 2014). A formulagao base apresentada nesses
trabalhos foi expandida para andlises tridimensionais (Ullah; Trevelyan; Ivrissimtzis, 2015).
Nessa expansao, utilizou-se o algoritmo Marching Cubes para geracao da superficie da
level set via triangulagao, o qual se baseia em aproximacoes lineares por partes (Lorensen;
Cline, 1987). Dessa forma, abdicou-se da descrigao isogeométrica que era aplicada a level
set na implementacgao bidimensional. Retornando a implementacao citada para analises
planas, acoplou-se o método de insercao por meio da derivada topologica a um modelo de
otimizagao baseado em sensibilidade de forma (Ullah; Trevelyan, 2016). Posteriormente,
efetuou-se melhorias nos critérios heuristicos para insercao de cavidades e para construcgao
do campo de velocidades normais a curva de nivel da level set. Essa atualizagdo promoveu
resultados numericamente mais estéveis do que a versao anterior (Ullah; Trevelyan; Islam,
2017).

Uma simplificacdo de que o critério de velocidades, valido para curva zero, pudesse
ser utilizado para as demais curvas, desde que utilizadas suas proprias tensoes locais foi

utilizada. A partir de uma malha densa de elementos de contorno lineares, as variaveis de
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campo foram obtidas com suficiente acuracia (Vitério Junior, 2014; Vitério Junior; Leonel,
2017). Utilizando novamente o MEC e agora a sensibilidade a forma para obtencao do
campo de velocidades normais ao contorno, atestou-se a necessidade de uma extensao
particular de velocidades para o dominio para se manter a estabilidade (Oliveira; Leonel,
2019). Em adicao a isso, incorporou-se efeitos incerteza geométrica. Pelos quais, se mostrou-

se que critérios podem nao conduzir a tomadas de decisdo 6timas (Oliveira, 2017).

Novamente se utilizando da sensibilidade a forma para obtencao do campo de
velocidades, experimentou-se a utilizacao da formulacao isogeométrica do MEC para
avaliagdo dos campos mecanicos na otimizagdo via MLS (Oliveira; Andrade; Leonel,
2020). A partir dessa formulagdo, expandiu-se a otimizagao topoldgica, antes efetuada
sob dominios homogéneos, para dominios enrijecidos por inclusoes lineares. Utilizou-se
o acoplamento MECIG/MEC-1D para avaliacdio de campos mecanicos. As aplicagdes
foram conduzidas considerando apenas enrijecedores longos e apresentaram significativos

problemas de convergéncia (Guimaraes, 2024).



o7

3 METODO DOS ELEMENTOS DE CONTORNO

No presente capitulo, inicia-se a descricao da formulagdo em MEC para problemas
de Mecanica dos Solidos, em que se parte da forma de residuos ponderados, comum a
diversos métodos numeéricos. Descreve-se a obtencao da identidade para esse caso, sua
avaliagdo no contorno via processo limite, a construcao de seus sistemas de equacgoes,
aspectos de implementacao computacional, tratamento dos casos de singularidade que vém
a ocorrer no método e procedimentos para o calculo de grandezas de interesse no dominio.
Ao final, apresentam-se aplicagoes do algoritmo desenvolvido, segundo os fundamentos

apresentados, a problemas com solugao analitica disponivel.

Varios conceitos abordados ao longo desse capitulo partem de um conhecimento
prévio no tocante a Teoria da Elasticidade e as Solugoes Fundamentais que sao aplicadas
no MEC. Tais contetdos sao apresentados de forma resumida para uma consulta rapida

nos Apéndices A e C.

3.1 Técnica de Residuos Ponderados

Seguindo os conceitos da Técnica dos Residuos Ponderados apresentados nos
capitulos anteriores, pode-se aplica-la a um problema estatico de elasticidade. Inicia-se o
procedimento ao se ponderar a equagao de equilibrio translacional, Eq. (A.9), ao longo do

dominio €2 por um tensor de fung¢oes ponderadoras wy;. Com isso, tém-se

/ (041 + b;) w dQ = 0, (3.1)

Q
em que ja se vale da simetria do tensor de tensoes o;; resultante do Teorema de Cauchy,
representado pela Eq. (A.12). O termo b; representa o vetor de forgas distribuidas no
dominio da integracao e 05 é um vetor nulo de dimensao k. A forma representada na Eq.
(3.1) também é chamada de variacional e estabelece que a integragdo ponderada da funcao
residuo (0;; + b;), vetorial nesse caso, deve ser nula no dominio. Nessa forma, ja seria
possivel aplicar um método numérico ao se escolher uma determinada funcao ponderadora,

conforme ja foi ilustrado pela Figura 11.

Para a construcao de uma solucao em MEC, escolhe-se como fun¢ao ponderadora
da forma variacional uma solucdo fundamental do problema original estudado. Apéds
isso, desenvolve-se a forma integral ao realizar integragoes por partes, de forma a reduzir
as condigoes de suavidade das fungoes das grandezas de interesse e aumenta-las para a
fungao peso. Aplicada em uma integracao de dominio, a integracao por partes trata-se do
Teorema da Divergéncia de Gauss. Para o problema em questao, utilizou-se o tensor de

deslocamentos fundamentais u;, da Solu¢do Fundamental de Kelvin, a qual é descrita no
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Apéndice C. Sua aplicagdo modifica a Eq. (3.1) para

/(%‘,j + bi) up; dQ2 = Oy (3.2)
Q

Por meio da aplicacao do Teorema de Gauss ao produto integrado envolvendo o

divergente tensor de tensoes o;;; da Eq. (3.2), conduz-se a
r Q Q

onde ao produto o;; 7; no primeiro termo da parte esquerda, em que 7; € o vetor normal ao
contorno do dominio, pode-se aplicar a Férmula de Cauchy, Eq. (A.5). Ja para o gradiente
do tensor de deslocamentos fundamentais uj; ;, vale a Eq. (A.21) considerando a simetria

de uy,;. Com isso, tém-se

/ pract, dT — / 04 €y A + / b, dSY = Oy, (3.4)
T Q Q

em que p; é o vetor de forgas de superficie e €};; ¢ o tensor de deformagoes fundamentais.

Valendo-se da Eq. (A.23), é possivel aplicd-la ao segundo termo do lado esquerdo
da Eq. (3.4), resultando em

r Q Q

cujos tensores d;jim, € 0y, se tratam respectivamente do tensor de flexibilidade e do tensor

de tensoes fundamentais. Dessa forma, desenvolve-se operando o; d;j;,,, para
[ w0 = [ e oy, a2+ [ b, ae =0y, (3.6)
r Q Q

onde gy, é o tensor de deformagoes. Assim, torna-se conveniente utilizar novamente a Eq.
(A.21), obtendo-se

1 1
/pi Up;” dl' — L/2 Upm, O gy, d€) + / 2 Unn i O gy, dS2
i Q

de tal forma que u;,, € u,,,; sao o gradiente e o gradiente transposto do vetor de deslo-

+/bi WA =0, (3.7)
Q

camentos. Percebe-se que, devido a simetria de oj,,,, é possivel simplificar a Eq. (3.7)

para
/ iy dl — / Ui 0y AL+ / by, ) = Oy, (3.8)
T Q Q

Cabe novamente a aplicagdo do Teorema da Divergéncia agora ao segundo termo

da parte esquerda da Eq. (3.8), transformando-a em

/pi uy,; dl" — /ul O M dF+/ul Thtm.m dQ+/bi uy, dQ) = O, (3.9)
r r Q Q
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em que se pode usar novamente a Féormula de Cauchy, Eq. (A.5), para o transformar o
tensor de tensoes fundamentais o}, em forcas de superficie fundamentais pj;. Com isso,
tém-se

/pi uy,; dl' — /ulp}';l dF+/ul Oktmm dQ+/bi uy,; d2 = 0. (3.10)
r r Q Q

Nota-se que, ao terceiro termo da Eq. (3.10), cabe a substituicdo da Eq. (A.9), resultando

em

/piuzidl“—/ulp,’;ldl“—/ulb,’;ld9+/biuzid9:0k, (3.11)
T r Q Q

com by, representando o tensor de forcas de dominio fundamentais.

Sabe-se que, conforme descrito no Apéndice C, bj; = 6(s, f) 0, em que 6 (o) é 0
operador Delta de Dirac. Aplicando a Eq. (3.11), tém-se

/ piut,dl — / w ply dl — / wé (s, f) O dQ + / bi s, dQ = 0y, (3.12)

que, pelas propriedades da fungdo Delta de Dirac § (s, f) e realizando uma organizagao

dos termos, resulta em

—i—/ul i, (s, f) dT = /pz i, (s, f dF+/b (s, f) 9, (3.13)

a qual é conhecida como Identidade Somigliana. Nela foi explicitada a dependéncia de
cada termo. A letra s significa source, ou fonte, e indica o ponto onde o tensor de forcas de
dominio fundamentais ¢ (s, f) dx € aplicado. J& f significa field, ou campo, e representa os
demais pontos. Ressalta-se que as operagoes utilizadas para se obter a Eq. (3.13) através
da Eq. (3.11) foram possiveis gragas a escolha de uma solu¢ao fundamental como fungao
ponderadora. Dessa forma, torna-se possivel transformar uma integracao de dominio em
uma soma de um termo algébrico, onde um ponto fonte é posicionado, com integrais de

contorno.

Comenta-se que a Eq. (3.11) trata-se de um desenvolvimento da aplicacao do
Teorema da Reciprocidade de Betti, que atribui equivaléncia entre o trabalho de tensoes
reais em deformagoes virtuais e o trabalho de tensoes virtuais em deslocamentos reais,
valendo-se de que as grandezas virtuais possuam relacao de causa e consequéncia. No
desenvolvimento do MEC, utiliza-se como grandezas virtuais as solugoes advindas de um

problema fundamental, ou seja

) )
Partindo dessa aplicacao, torna-se mais direta a obtencao da Eq. (3.13) (Andrade, 2017;
Rodrigues Neto, 2019).

A obtengao da Eq. (3.13) e a solugdo para o problema fundamental de Kelvin sao

procedidas ao se utilizar um ponto fonte no interior do dominio. Entretanto, a formulacao
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do MEC exige a aplicagao desses pontos no contorno (fronteira), necessitando da verificacao

do comportamento da Identidade Somigliana nessa regiao a partir de um processo limite.

3.2 Processo limite

Inicia-se o processo limite efetuando uma expansao do contorno original onde o
ponto fonte s é posicionado, a qual é tomada como semicircular de raio € por questoes
de conveniéncia algébrica. Tal procedimento origina um dominio e um contorno, ambos
virtuais, designados respectivamente por €. e I'.. A Figura 12 ilustra geometricamente o
processo. Nela, observa-se que I' é a porcao do contorno original que foi expandida, o qual

é representado graficamente por linhas tracejadas.

Figura 12 — Processo limite

Fonte: Elaborada pelo autor.

Considerando as modifica¢oes no dominio e no contorno, a Eq. (3.13) é alterada

para

+ / pi (f) ug; (s, f) d (3.15)

em que o dominio e contorno modificados sdo avaliados respectivamente por  + Q. e
[ — T +TI.. De forma a fazer com que o dominio e o contorno modificados tendam aos
originais, a Eq. (3.15) deve ser avaliada no limite de ¢ tendendo a zero. Tal procedimento
demanda consideravel trabalho algébrico, de maneira que se recomenda a leitura de Brebbia
e Dominguez (1994), Aliabadi (2002) e Katsikadelis (2016) para contemplacao das rotinas

de céalculo. Como conclusao do processo tém-se:

tim s [ () w5, ) AU = [ () pi (s, 1) - ;(m w(s):  (3.16)

e—0
—T+T. r
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lim < [ pe () uis (s, ) A0 = [ pi(f) iy (s, f) dT (3.17)

e—0

lim S [ b (f) i (s, f / b (f) uf; (s, f) d. (3.18)
Q+Q.
Na Eq. (3.16), d; é um tensor delta de Kronecker.

Substituindo as equagoes anteriores na Eq. (3.15) apds a anélise limite com &

tendendo a zero, obtém-se
1
§5kl w (s) + /ul( P (s, f) dU = /pZ uy,; (s dF—i—/b uy; (s, f) dQ. (3.19)
r

Ressalta-se que a contragao 0 u; (s) da Eq. (3.16) foi obtida mediante atendimento da
condigao de continuidade de Holder (Muskhelishvili, 1958). Entao, para a validade da Eq.

(3.19), as fontes devem ser posicionadas em pontos onde ha suavidade do contorno.

Finalizado o processo limite, j& é possivel efetuar a discretizagao da Eq. (3.19).
Para o presente estudo, utilizou-se dois tipos de discretizacao isoparamétrica: a primeira
baseada em interpolagao por polinomios de Lagrange, denominada lagrangiana; e a segunda

utilizando curvas NURBS como fungdes de forma, denominada isogeométrica.

Considerando as exigéncias de continuidade, para as aplicacoes aqui desenvolvidas,
diferencia-se né e fonte. O primeiro trata-se do ponto de parametrizacao geométrica do
elemento, enquanto o segundo é propriamente o ponto de aplicacao da fungao delta de
Dirac. Se o n6 estiver localizado em um ponto geometricamente suave, entdo é conveniente
fazer com que a posi¢ao da fonte lhe seja coincidente. Em caso oposto, desloca-se o ponto
fonte do né para uma regiao suave pertencente ao contorno representado pelo elemento a

qual pertence.

A Figura 13 ilustra o processo de deslocamento das fontes em um ponto de
continuidade geométrica C° entre dois elementos de ordens de aproximacio quaisquer.
Adotou-se como valor do deslocamento 25% da distancia da coordenada nodal mais proxima

pertencente ao mesmo elemento, dessa forma:
& =6-025 (& -6 4); (3.20)
§=6+02 (¢,-¢). (3.21)

Nessa explanagao, os indices superiores correspondem ao elemento de cada coordenada,
enquanto os inferiores representam sua posicao. As letras [ e u designam respectivamente
lower e upper bounds, ou seja, o primeiro e o ultimo né do elemento indicado no indice
sobrescrito. O acento circunflexo na coordenada revela que se trata de uma posicao de
ponto fonte. Tais coordenadas se dao em termos do espaco de integracao, aqui considerado
como o espaco gaussiano para uso da quadratura de Gauss-Legendre. O referido espaco
tem como abscissa { € [—1, 1] (Chapra; Canale, 2014).
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Figura 13 — Translacao de fonte

£(€2)

Fonte: Elaborada pelo autor.

3.3 Abordagem lagrangiana

Também conhecida como abordagem classica do MEC, nela a discretizacao é
efetuada por meio de elementos denominados lagrangianos. Tais elementos fazem associacao
direta do espaco de integracdo com o espacgo real de andlise. No caso de problemas
bidimensionais, em que se enquadra o foco do presente estudo, o contorno é unidimensional,
assim como o espago de integragao utilizado. Os elementos sdao construidos a partir de
fungoes interpoladoras de valores de deslocamento e de forga de superficie nos pontos fonte,
as quais sao conhecidas como funcoes de forma. A composicao da funcao de forma consiste
no produto escalar de um tensor de parametros a serem interpolados com um outro tensor
de base funcional com dominio no espago de integragao. Tal base funcional é descrita
classicamente no MEC e em outro métodos numéricos, como o MEF, por polinémios de
Lagrange (Stoer; Bulirsch, 2002). Entao, com a abscissa no espago gaussiano, define-se a

base funcional por

Y
i = , 3.22
0©= 11 = (3.22)

em que n é o nimero de pontos interpolados e os indices 7 e j designam o ponto atual e os
outros pontos, respectivamente. Uma notavel propriedade da base lagrangiana é a forma
como ocorre a reparticdo da unidade. Na Eq. (3.22), se £ for igual a qualquer valor de &,
entao ¢; terd um termo unitario na posicao de equidade e seus demais termos possuirao

valor nulo. A Figura 14 ilustra essa caracteristica.

Através de elementos lagrangianos, a Eq. (3.19) pode ser discretizada para uma
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Figura 14 — Funcao de base lagrangiana:
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(a) linear; (b) quadratica; (c) cubica.

Fonte: Elaborada pelo autor.

fonte s e representada no espaco gaussiano por

ne M1 )
;5kl w (s) = — Z /Uj D15 (&) pr (5,6) J(§) d€
e=1

|
—

—

- (3.23)

pj ©ij (§) uy, (5,€) J(§) dE|

+2
e=1 |~

[ay

em que ne corresponde ao nimero de elementos utilizados na discretizagao. Os tensores u;
e p; correspondem aos valores de deslocamento e forca de superficie nas fontes de cada
elemento do somatério. Logo, o indice j varia de 1 ao nimero de nds que constituem o
respectivo elemento multiplicado pela dimensao do problema. O tensor ®;; carrega os
tensores de fungoes de forma avaliadas nos pontos de integracao. A distribuicao, em 2D, é

dada por

@--<£>=[¢1@ 0 66 0 9O 0| (3.24)
! 0 a©) 0 6 - 0 ()

Uma vez que os Indices i e [ representam dimensoes de andlise na Eq. (3.23), o tensor ®;;
é igualmente representado. O termo J designa o jacobiano da transformacao do espaco de

integracao para o espaco real, definido por

dlEZ‘
J = . 3.25
©=|% (3.29
Definindo, na Eq. (3.25), z; a partir das fungoes de forma, tém-se
do;
J(E =| =Lz =]tl, 3.26
© = G| =1 (3.26)

em que t; ¢ o vetor tangente a curva. O indice 7, na equacao anterior, varia de 1 ao niimero

de fontes que o elemento que representa tal curva contém.

Comenta-se sobre a notagao utilizada na Eq. (3.23), pela qual se seguira ao longo do

texto, que o parametro indicado nas fungdes é o mais especifico necessario. As coordenadas
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no espaco real das fontes sdo conhecidas no processo de integracao. Além disso, para uma
representacao genérica de loop nos elementos, os tensores fundamentais nao dependem
diretamente de sua coordenada gaussiana. Portanto, representa-os, assim como outras

funcoes no texto que se encaixem nessa descricdo, como funcoes de s.

Omitiu-se na Eq. (3.23) a discretizagao da integral da for¢ca de dominio uma vez
que nao sera trabalhada considerando distribuicao de forca continuamente em todo o corpo.
Por ser uma integracao no dominio, necessita-se de técnicas adicionais para sua avaliagao.
Uma opgao é sua execugao via discretizagao de dominio por células de integracao (Brebbia;
Dominguez, 1994). Entretanto, se a for¢ca de dominio for constante, pode-se transformar a
integral para o contorno ao se efetuar manipulagoes no vetor de Galerkin (Katsikadelis,
2016).

Devido ao processo de translagao das fontes descrito no topico 3.2, na implementacgao
do MEC efetuada pelo autor, diferenciou-se os pardmetros de interpolagao na Eq. (3.22)
para grandezas geométricas e funcionais. Para aproximacao geométrica, os termos &;
utilizados sao referentes as coordenadas nodais no espago gaussiano. Ja para aproximagcao

funcional, utilizou-se as coordenadas dos pontos fonte no mesmo espago.

Para cada fonte aplicada sobre o contorno, vale-se de uma equacgao tal qual a Eq.

(3.23). Agrupando-as, é possivel formar um sistema linear de equagbes descrito por
1
5 dijuj + hijuj = gij py, (3.27)

com os indices ¢ e j variando de 1 ao nimero de fontes multiplicado pela dimensao do
problema. Resolve-se a Eq. (3.27) mediante aplicagao de condicoes essenciais e naturais de
contorno, o que acarreta um processo de troca de colunas. Entao, recai-se em um sistema

linearmente independente

aij l’j == bij yj, (328)

em que x; representa o vetor de grandezas desconhecidas, enquanto y; representa o de
grandezas prescritas. Devido a parametrizacao das bases de interpolacao funcional, a
solucao em x; do sistema se d4 nas coordenadas das fontes. Para tanto, as condicoes de

contorno alocadas em y; também devem estar nessas coordenadas.

Na obtencgao dos tensores h;; e g;; da Eq. (3.27), a integracao dos tensores da
solugdo fundamental pode ser fracamente singular com singularidades do tipo O (1/7) e
O (In (1)), respectivamente, as quais ocorrem quando o elemento integrado contém o ponto
fonte (Aliabadi, 2002). Dentre os processos ja desenvolvidos de tratamento dessas integrais,
optou-se pelo Método de Subtragdo da Singularidade (MSS), devido a sua generalidade de
aplicacao (Aliabadi; Hall; Phemister, 1985; Aliabadi; Hall, 1989).
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3.3.1 Subtracgao da singularidade

O MSS consiste em subtrair a parcela singular de uma integracao numérica e a
inserir posteriormente de forma analitica. Para a avaliacdo analitica da parcela singular
da integracao, escreve-se as coordenadas no espacgo real de um ponto campo através de
uma expansao em série de Taylor das coordenadas da fonte. O truncamento de 1* ordem
da série ja é suficiente a conducao de resultados satisfatérios. Dessa forma, escreve-se as

coordenadas do ponto campo como

) ] (é) g, (3.29)
3

em que € = § — é . Sendo a norma do vetor distancia do ponto campo até a fonte definida

por
r=| i@ - (@) (3.30)
ao se aproximar as coordenadas do ponto campo por meio da Eq. (3.29), tém-se
r=J (&) el (3.31)

com simples manipulagao algébrica. Tal desenvolvimento matematico consiste geometri-
camente em uma aproximacao linear do contorno I' no ponto fonte para condugao da

integracao, conforme vislumbrado na Figura 15.

Figura 15 — Aproximacao linear do contorno na fonte

Fonte: Elaborada pelo autor.

Para uma fonte, aplica-se o0 MSS a cada integragao da Eq. (3.23) quando o elemento

integrado contiver essa fonte. Inicia-se a exibigdo do método por meio do nticleo do tensor
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gi;- Dessa forma, divide-se a integracao em trés parcelas:

/ @45 () ufy (.8 J (€) d

1

— [0 (€) i (6.¢) 7 (€) a (3.32)

1

S ERCEACORIGR

-1

A primeira parcela corresponde a integracao padrao, executada numericamente através
da quadratura de Gauss-Legendre. A segunda e a terceira parcela sao equivalentes e
correspondem a singularidade. Nelas, integra-se apenas a parcela singular do tensor de

deslocamentos fundamentais, dada por

. —6 (3—4v)In(J (€
i, (£.6) = — (st)u _(V)(Q |€|), (3.33)

em que ja se aplicou a defini¢do de r via Eq. (3.31). Executa-se a segunda parcela numeri-
camente para subtracao da singularidade, enquanto a terceira é avaliada analiticamente
no sentido do Valor Principal de Cauchy (VPC).

E conveniente dividir a operacao descrita pela Eq. (3.32) em
Uj = Up ™ + U, (3.34)

com USUM referente & parcela de integracdo numérica e Uy;FC a parcela avaliada analiti-

camente no sentido do VPC. Entao, constréi-se a integral da ultima parcela como

o 0w (3—dw) J(6) .
Uy = oy (¢) 8(7T e (1)_V)<£) ][Aln (7 () lel) de, (3.35)
—1-¢

em que ja se fez uma mudanga no dominio da integracao, o qual é transferido para ¢, e se

pOs seus termos constantes em evidéncia. Efetuando a integracao, obtém-se

5141‘ (3_4V) J(é) A(é)

871G (1—v) (3.36)

UVPC _q)ij<é>
A= [0+mE @ (+)+ (1 -9mEE (-9 -2 6

A expressao anterior apresenta indeterminacao quando £ = +1, portanto é necessario

efetuar uma andlise limite para esse caso. Como resultado, tém-se

N\ 0w (3—4v) J (€ R
ey (O OO s @) - e
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Quanto a regularizagao do nucleo do tensor h;;, em procedimento analogo, divide-se

sua integragao na Eq. (3.23) em trés parcelas:

Py = [ @ (€) pia (,) J () de
— [y (€) piu (€€) I (€) ae (3.39)

1
+ [ oy (€) o (€€) T () de.
-1

Cada integracao possui o mesmo significado e a mesma forma de avaliacio em ordem
conforme o explanado para a Eq. (3.32). As integracoes referentes a singularidade sao
procedidas sobre a parcela singular do tensor de forcas de superficie fundamentais, indicada

por

[ 1 . R
i (6:€) = e G (1 =2v) (m (&) rie—me (€) )], (3.40)

em que novamente se aplicou a definigdo de r por meio da Eq. (3.31).

Dividindo o resultado da Eq. (3.39) em uma parcela de avaliagdo numérica e outra
analitica, tém-se
Py = PV + PYTC (3.41)

Constroéi-se a parcela analitica, a qual deve ser avaliada no sentido do VPC, ja transfor-

mando o espaco de integracao para €. Entao,

R 1-2v 3 T — AR ¢
o 200 @l 1

Novamente, termos constantes ja foram postos em evidéncia a integracao. Além disso, ja
se valeu de que o jacobiano na fonte do denominador da Eq. (3.40) produz unidade com o

do numerador da integracao. Efetuando-a, conduz-se a

{(1 —2v) (T]z (é) Tk = Nk (é) 7“1)}

47 (1l —v)

" n(1-8) -1 (1+9)]. @83

Tal resultado apresenta indeterminagao quando f = +1, portanto deve-se avaliar esse caso

via analise limite. Executando-a, obtém-se:

N 1—-2v 1 ¢ e — Nk 3 T N
PP =~y (¢ [ >(Z£i)1_’,,) (8) ) n(2) | £=-1;  (344)
pyre —a, () L2200 im0 el g

47 (1 —v)
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3.3.2 Pontos internos

Apoés a solugao do sistema linear descrito pela Eq. (3.27), tornam-se conhecidos os
valores de deslocamentos e forcas de superficie nos pontos fonte. A partir desses valores, é
possivel avaliar grandezas em um ponto do dominio por colocacao de fonte. Para o calculo
de deslocamentos, modifica-se a Eq. (3.23), escrita para uma fonte sobre o contorno, para

uma fonte posicionada no dominio. Tal operacao resulta em

uj @i (§) P (5,€) J(€) dE

S
©
Il
|
]
—_

o
Il
—
I
—

—

- (3.46)
pj Pij (§) uy, (5,€) J (&) dE|

+2
e=1 |~

—_

o que representa a discretizacao da Identidade Somigliana descrita pela Eq. (3.13).

Para a avaliacdo do tensor tensao de Cauchy, deve-se operar a Eq. (3.13) de forma
a transformar a grandeza na fonte de deslocamento para tensao. Inicia-se aplicando a Eq.
(A.21), o que conduz a
le,m (87 f) +p;<nl,k: (87 f)

con(s) = [ur(1) | : v == [0 i 51y v, @

r r

com o indice m variando de 1 até o nimero de dimensoes do problema. Ressalta-se que as
derivagoes da Eq. (A.21) devem ser feitas em relacao as coordenadas da fonte. Para sua
aplicacao aos tensores advindos da solu¢ao fundamental, funcao da distancia entre a fonte

e o campo, utiliza-se a regra da cadeia, ou seja

dg* (1) . dg*(r) Or _89* (r) or _ dg* (r)
0T, () - Or Oz, (s) N or 0z (f) O, (f) (3.48)

sendo ¢g* () uma funcdo fundamental escalar qualquer dependente da distancia r. Sequenci-
almente, a Eq. (3.47), considerando dominio isotrépico, aplica-se a transformagao descrita

pela Eq. (A.26). Como resultado, tém-se
Ot () [ () St (5, F) AT = [ 9i(F) iy (5. 1) T, (3.49)
r r

em que dy;,, = —0},. €

pltl,m (57 f) + p;knl,k: <57 f)
2

St (5, f) = 26 [ ] AP (5 f) b (3.50)

Na Eq. (3.50), G é o modulo de elasticidade transversal do dominio, dado pela Eq. (A.25),
e X é a constante de Lamé, calculada por meio da Eq. (A.27). O indice n, assim como

os outros, varia de 1 até o nimero de dimensoes de andlise. Desenvolvendo a Eq. (3.50),
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obtém-se
. G or
Smm:4m(1_yyﬂ{28nKl—QW5mT¢+V(&Mmr+%mhﬂ—4hﬂde+
2v (rmry + mrary) — (L —4v) 0y dm+ (3.51)
(1=20) @ an + b+ 70 0t) .
A Eq. (3.49) pode entao ser discretizada como
ne M1 T
T (5) == 2 | [ @15 (€) i (5:€) T (€) dé
e=1 [~
- : (3.52)

pj Pij () diip (8,6) J(§) d§

—

+2.
e=1

i
_

3.3.3 Pontos sobre o contorno

Conhecendo os deslocamentos e as forgas de superficie nas fontes, essas grandezas
podem ser avaliadas em qualquer ponto do contorno por meio das fungoes de forma. Ja no
caso do tensor tensao de Cauchy, destaca-se duas possibilidades: a primeira trata-se da
aplicagao no contorno da Eq. (3.52); e a segunda trata-se de um procedimento alternativo

via relagoes cinematicas, leis constitutivas e equilibrio.

Considerando a aplicagdo da primeira alternativa, releva-se o empecilho da singulari-
dade dos tensores dj;,, € sj;,,- A integracao do primeiro tensor citado é fracamente singular
de ordem O (1/r), enquanto a do segundo ¢é hipersingular de ordem O (1/r?). O tratamento
da singularidade de ordem O (1/r) é procedido de forma andloga a da integracao do
tensor pj;, conforme descrito no item 3.3.1. Entretanto, quanto a integracao hipersingular,
torna-se necessario subtrair e posteriormente adicionar a parcela da singularidade a ser
avaliada mediante parte finita de Hadamard (Hadamard, 1923). O MSS aplicado a esse
caso é contemplado de forma analitica em Guiggiani et al. (1992), com o processo de
integragdo via quadratura facilmente implementado por conta do usuario. Para o presente
estudo, essa metodologia de cédlculo foi descartada devido as vantagens do método indireto.
Portanto, nao estende na formulacao a qual pode ser consultada em Wilde e Aliabadi
(1998).

A outra alternativa, que foi a implementada pelo autor, ndo envolve integracoes. Con-
sequentemente, evita-se o custo computacional inerente a quadratura de Gauss-Legendre,
assim como o tratamento das singularidades. O procedimento apresentado a seguir é uma
simplificacdo suficiente as aplica¢oes aqui trabalhadas do que foi desenvolvido originalmente
considerando elasticidade tridimensional (Sladek; Sladek, 1986).

A Figura 16 ilustra um ponto no contorno em uma coordenada gaussiana &, cujo

estado de tensao é definido em coordenadas locais de referenciais 7; e ¢;. O primeiro termo
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se trata do vetor normal ao contorno, enquanto o segundo é seu vetor tangente unitario

dado por

1 (6) = tjg - (3.53)

Por meio da Terceira Lei de Newton, é evidente que

~—

~—

71 (&) =D1; (&) = i (€) 65 (€) i, (3.54)

onde o traco acima dos termos indica que a grandeza esta avaliada no referencial de
coordenadas local. Os indice ¢ e k variam de 1 ao nimero de dimensoes do problema,
enquanto o indice j varia de 1 ao nimero de fontes que o elemento em que o ponto se
encontra contém. A matriz de rotagdo bidimensional é avaliada em funcao da coordenada

gaussiana por

(3.55)

(€)= [?71 ©) « (s)] |

n2 (§) 12(§)

Considerando a simetria do tensor tensdo de Cauchy, conforme Eq. (A.12), tém-se 7,7 = 71;.

Figura 16 — Estado de tensao em um ponto do contorno

022

Fonte: Elaborada pelo autor.

Na avaliacao de problemas bidimensionais, seja em Estado Plano de Deformacao
(EPD) como em Estado Plano de Tensao (EPT), as componentes cisalhantes referentes a
coordenada perpendicular ao plano sao nulas. A componente normal é nula para o EPT.
Ja no EPD, ela é calculada a posteriori por meio da Eq. (A.28). Dessa forma, a tnica
componente de tensao da Figura 16 que ainda falta o conhecimento é @5,. Considerando
EPD, é possivel calcular a componente de tensao normal no plano com versor de orientacao

na diregao de ¢; através da Eq. (A.26). Entao, escreve-se

1
1—v

T2 (§) =

[vp (§) +2GE» ()] (3.56)

Para o caso de EPT, ajusta-se o coeficiente de Poisson pela Eq. (A.30). A componente

de deformagao presente na Eq. (3.56) pode ser calculada por meio da Eq. (A.21) em
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coordenadas locais. Utilizando a regra cadeia e explicitando os termos calculados via
funcao de forma, tém-se

Oty  duy df 1 do;
— — R Sp— — ul.

T U (5) df i

=) T T dm T

(3.57)

Conhecidas todas as componentes do tensor tensao de Cauchy em coordenadas

locais no ponto de interesse, rotaciona-o para coordenadas globais por

Oim (§) = i (§) Tij (§) 115 (£), (3.58)

com todos os indices variando de 1 ao nimero de dimensoes de anélise.

3.3.4 Flexibilidade

Através da secao 2.4, mostrou-se que a flexibilidade é um parametro relevante a
otimizagao topoldgica. Sua definicao fisica é atribuida ao trabalho interno de uma estrutura.

Matematicamente, isso se traduz em

/Uij gij dQ = /pk U dF, (359)
Q r

em que ja se fez uso da equidade entre o trabalho interno e o trabalho das forcas externas.
Todos os indices da equacao anterior variam de 1 ao nimero de dimensoes do problema.
Por envolver uma integragdo apenas no contorno, é mais conveniente avaliar essa grandeza

mediante integracao numérica da parcela a direita da Eq. (3.59). Discretizando-a, tém-se

ne 1 . )
D=3, [/ 9; (€) 11,95 (€) wr J (€) d&] : (3.60)
e=1 [ 74
em que o indice j varia de 1 ao nimero de fontes do elemento integrado.

3.4 Abordagem isogeométrica

O MECIG implementado para o estudo utiliza curvas NURBS como funcoes de
forma para aproximagao funcional e geométrica. As fungoes B-splines foram construidas
utilizando a férmula recursiva de Cox (1972) e de Boor (1972), tendo em vista melhor
eficiéncia computacional em relagao a outras alternativas. Portanto, define-se essas fungoes

por

Bap (g) - 5__52 Bap-1 (E) + M Boiip-1 (E) , (3.61)

ga—‘,—p £a+p+1 - ga—i-l
com

{ Bao = se ga < g < ga-i-l (362)

B,o =0 caso contréario

Nas Egs. (3.61) to (3.62), £ representa a coordenada do ponto de avaliacdo no espaco

paramétrico das B-splines. Os termos £ seguidos por um indice sao knots. Define-se esse
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termo por nimeros ordenados crescentemente e agrupados em um vetor de knots =, que
governa o espago paramétrico. Esse vetor possui dimensao ¢+ p + 1, em que ¢ é niimero
de pontos de controle e p é a ordem de aproximacao da B-spline. O indice a varia de 0 a
¢+ p, enquanto o indice p varia de 0 até a ordem de aproximacao. Assim, as B-splines sao
definidas por p camadas sequencialmente construidas através de uma combinacao linear
das fungoes da camada imediatamente inferior. A Figura 17 ilustra esse procedimento
para nimeros quaisquer de ordem de aproximacao e pontos de controle. As derivadas das

B-splines podem ser calculadas por

ddf Bap (E) = pg Bap (E) - Bat1p—1 (@ : (3.63)

5a+p ~ Sa a+p+1 = Sa+l

Figura 17 — Construcao das fungoes B-splines

Boo

)

Byy — Bijg—— -

By 4 Bs 1 / :

—_—

32,1/ / |

B

Bs

—_—

e

B3

NINININ

Fonte: Elaborada pelo autor.

Conforme se observa na Figura 18, as fung¢bes B-splines promovem a reparticao
da unidade no trecho aproximado. Tal caracteristica também é vista nos polinémios de
Lagrange. Uma notoéria diferenga estd na nao necessaria equivaléncia da fung¢ao para um
ponto de controle a unidade na sua coordenada paramétrica de projecao na curva. O

mesmo se observa para sua nao necessaria nulidade nas coordenadas de projecao dos outros

Figura 18 — Fungoes B-splines com ordem de aproximagao:

1.2 1.2 1.2

10 1.0 10 — Bus
0.84 0.8 0.84
0.6 — B 0.6 ? 0.6
0.14 — YizoBan 0.4
0.2 0.2 0.2

0.0 0.0 * 0.0 * -

—0.2

T T T T -0.2 T T T T —0.2 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

£ £ 3

(a) linear; (b) quadrética; (c) cubica.

Fonte: Elaborada pelo autor.
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pontos de controle. Tais fatores elucidam a caracteristica nao interpolatéria das fungoes
B-splines, a qual é evidente para os polinémios de Lagrange. Para se aumentar a ordem
de aproximacao das B-splines, deve-se adicionar repeticoes de knot numbers na mesma

quantidade do incremento de ordem.

A construcao de fungbes NURBS através das B-splines se dd mediante uma trans-
formacao R*"™! — R™. O espaco R™"*! é construido por meios dos vetores das grandezas
a serem aproximadas com a adi¢gdo de uma coordenada peso w. No espaco R™, w = 1.
A transformagao é executada mediante projecao de coordenadas, conforme Figura 19.

Matematicamente, efetua-se esse processo por

B(l,p wa
—
Z Bjpw;
=0

Assim como na abordagem lagrangiana, as funcoes de forma sdo construida através da

N,, = (3.64)

contragao simples entre o tensor de grandezas nos pontos de controle e o tensor de fungoes
de base NURBS. Ressalta-se que o valor da grandeza no ponto de controle utilizada para

a aproximacao ¢ a do pertencente ao espaco R™.

Figura 19 — Transformacao de B-splines para NURBS

C2

R’n

Fonte: Elaborada pelo autor.

O suporte no espago paramétrico das fungoes NURBS faz com que ele atue como

intermédio entre o espago de integracao gaussiano e o espago real de analise. Dessa forma,

o jacobiano presente nas integracoes precisa ser calculado utilizando a regra da cadeia. Ou
seja B

16 =|% :\dg -

Escrevendo as coordenadas x; por meio das func¢oes de forma com base NURBS, tém-se

. (3.65)

| s ] |, | |
JOR B B e T (3.60)
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cujo indice p das bases NURBS foi omitido ja se valendo do uso da ultima camada apenas.
Na abordagem isogeométrica, o elemento, com seu devido espago de integragao, é definido
em um knot span nao nulo. Portanto, a funcao de transformagao do espaco gaussiano para
o0 espaco paramétrico é construida mediante simples compatibilizagdo de dominios lineares.
Entao, uma coordenada gaussiana é mapeada para o espago paramétrico por

_ (Ei—&—l - Ez) §+ (gi+1 + gz)
JO . ,

(3.67)

em que os termos & acompanhados de indices sdo knots. A partir dessa definicdo, pode-se
calcular a derivada do espago paramétrico em relagao ao espaco gaussiano presente na Eq.
(3.66) por

Zg _ §i+12— fz‘. (3.68)
Devido a organizagao crescente dos knots em =, a fun¢do modular da Eq. (3.66) é
redundante, pois o valor da derivada sempre sera positivo. Ademais, é conveniente rescrever

essa equagao como

T =J(£©) T, (3.69)
onde J representa o jacobiano da transformacao do espaco de integragao para o espaco
paramétrico e J designa o jacobiano da transformacao do espago paramétrico para o espaco
real. Para o calculo das derivadas das fung¢oes de base NURBS, necessarias a Eq. (3.26),
bem como a outras propriedades, utilizou-se o procedimento descrito por Beer, Marussig e
Duenser (2020). Entao,

Wq i Ba,p (E) — Wq Ba,p (g) ﬁ

FI i il VA o
> By (€) w
=0
com .
> Bip (E) wj
8= - J=0 (3.71)

1 d 5 B :
]z:(:) dE jp(€> wj

Comenta-se que J deve ser calculado mediante uma coordenada paramétrica, a qual,
notadamente, é funcao de uma coordenada gaussiana. Mantendo a consisténcia de notacao
do texto, escreve-se J como func¢ao da variavel independente. A Figura 20 ilustra as de

transformacao de espaco a serem efetuadas.

Diferentemente de funcoes de forma de base lagrangiana, as curvas NURBS podem
nao intersecar seus pontos de controle (nés). Entretanto, para validade da Eq. (3.19), a

formulacao do MEC exige a posi¢ao de fontes sobre o contorno. Comumente, projeta-se



75

Figura 20 — Conexao de espacos na abordagem isogeométrica

Espaco
/ paramétrico \
3
Espaco Espaco de
real integragao
R™ ¢

Fonte: Elaborada pelo autor.

na curva os pontos fora através das abscissas de Greville (Greville, 1964). Descreve-se

matematicamente esse processo por

p
) Z} Cari
s =
£a = a— (3.72)
Devido a aproximacao das curvas NURBS se dar em funcao de valores nos pontos de
controle e de suas respectivas fontes possuirem coordenadas distintas, seja pelo tratamento
de cantos ou pela necessidade de projecao sobre o contorno, faz-se uma modificacao em
relagao a Eq. (3.23) quando da discretizagao isogeométrica da Eq. (3.19). Ou seja, o sistema
de equacodes é construido em func¢ao dos valores nos pontos de controle de cada patch e
nao do ponto fonte. Portanto, torna-se necessario escrever o termo livre, que apresenta
valores de deslocamento em uma fonte, como funcao dos valores dos pontos de controle do

patch que lhe contém. Dessa forma,

;5kl up (s) = ;51%1 aij (é) uj = ;ij (é) uj, (3.73)

em que o tensor cy; carrega os tensores de fungoes de forma avaliadas na posicao no espago

paramétrico dos pontos de integracao. Exemplifica-se uma distribuicao em 2D por

N(E©) 0 M(EE) o

WO NE©) 0 m(E©)
- (3.74)
N;(E©) 0
0 N; (£(9)

Comenta-se que as fungoes de base das curvas NURBS possuem suporte no espaco
paramétrico, cuja obtencao de coordenada é feita mediante transformacao da gaussiana.
Dessa forma, escreve-se o tensor ¢;; como funcao da variavel independente em virtude
de consisténcia de notacao. Outro ponto relevante é que, uma vez que as grandezas base
para a aproximacao sao as localizadas nos pontos de controle, ha a implicacao em uma

desvantagem a abordagem, ja que as condi¢oes de contorno também devem ser prescritas
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nesses pontos. Tal fator restringe consideravelmente suas aplicagoes, embora ainda seja

util a solucao de grande parte dos problemas reais de engenharia.

Detalhada a modificacao do termo livre, escreve-se uma equagcao tensorial para um

ponto fonte por

Loy (@) =3 | [ we (© pia(5.9) T (£06) T(©) de
- (3.75)

pj e (€) up (5,€) T (€(€)) J (€) de|,

fu
[

onde ne corresponde ao nimero de elementos integrados, ou seja, o numero total de knot
spans nao nulos considerando todos os patches utilizados na discretizacao. Em abordagens

bidimensionais, um patch é composto por um unica curva NURBS.
Da forma andloga a abordagem lagrangiana, com cada fonte valendo-se de uma Eq
(3.75), forma-se um sistema linear de equagoes descrito por
1
5 Cij w; + hiju; = gij pj, (3.76)

cujo procedimento de solucao é o mesmo da abordagem lagrangiana. Para a geracao dos
tensores h;; e g;; da Eq. (3.76), também depara-se com integragoes fracamente singulares
quando o elemento integrado contém o ponto fonte. Mostra-se, em seguida, que o tratamento
das singularidades da abordagem isogeométrica também pode ser efetuada mediante o

MSS. Porém, com algumas adaptagoes em relagao a abordagem lagrangiana.

3.4.1 Subtracao da singularidade

Em processo analogo ao da abordagem lagrangiana, utiliza-se a série de Taylor
truncada no primeiro termo para escrever as coordenadas de um ponto campo. Devido a

presenca do espaco paramétrico, necessita-se fazer uso da regra da cadeia. Ou seja,

v (©) = (€(6)) + 2

aa0) ﬂ

em que € conserva o significado daquele da Eq. (3.29). Aplicando a defini¢do de ponto

o dE
(o) e (3.77)

campo da Eq. (3.77) a norma do vetor distdncia do ponto campo até a fonte, vide Eq.
(3.30), tém-se

r=J(€(€)) T (&) el. (3.78)
em que ja se valeu da redundancia da aplicacao da funcao médulo a J devido & organizacao

do vetor de knots.
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Inicia-se o procedimento efetuando a regularizagao do ntcleo do tensor g;;, dividindo

a integracao que lhe resulta em trés parcelas:
= [ (§) i (€) T(E()) I (€) ag (3.79)

Novamente, a primeira parcela corresponde a avaliacdo numérica padrao do nucleo, en-
) b
quanto a segunda e a terceira correspondem a parcela singular. O tensor 4, representa o

termo singular do tensor de deslocamentos fundamentais, o qual é aqui calculado por

. —5ki3—4ylnjiAjA5
iy (6,€) = ( ;WG((l(f(f))) (€)1 D, (3.80)

em que j se aplicou a defini¢do de r via Eq. (3.78). A segunda parcela efetua a subtracao
numérica da singularidade. J& terceira deve ser avaliada analiticamente em sentido do
VPC.

Dividindo a Eq. (3.79) em uma parcela de avaliagdo numérica e outra de avaliagao

analitica, conforme a Eq. (3.34), tém-se, para a ultima,

e G TEQ) IO s

VPC

UYFe = —e; (€) R T ][ n (7 (£(€)) 7 (€) lel) d=.  (3.81)
—1-£

Nela, ja se aplicou a mudanca no dominio da integracao, o qual é transferido para e.

Também ja foram postos em evidéncia os termos contantes em relacao a integracao.

Efetuando-a, obtém-se

O (3—4v) J(€(E )
UVPC —Cij (é) e (1< (i)) ( ) 14(5)7 (382)

onde

§

(3.83)

A(©) =1 +)m(7(€() 7(¢) (1+9))
H-OmIE©) () (-9) -2

A expressao anterior apresenta indeterminacdo quando £ = +1, portanto é necessario

efetuar uma anélise limite para a avaliacao nesse caso. Como resultado, tém-se

e =y () NI e 9) 5 0) 2 o
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Procedimento analogo é efetuado para regularizar as integracoes que geram o tensor

hi;. Dividindo-as em trés parcelas, tém-se

Py = [ (€) pia (5,6) T (£(9)) J (&) d

1

[ @ @9 T E) 7@« -

+ [ (&) i (6.€) T (£(8)) 7 (€) ae,
21
Da mesma forma, a primeira parcela representa a avaliagdo numérica comum da integracao.
A segunda parcela representa a subtragao da singularidade numérica, enquanto a terceira
a insere analiticamente. O tensor pj; designa a parcela singular do tensor de forcas de

superficies fundamentais. J4 se valendo da aproximagao de r pela Eq. (3.78), calcula-o por

ey [0=20 (e (€(9) re—ne(€(E)) )] -
O S A G)F G (3.:86)

A construgao de Py; pode entao ser divida em duas parcelas, conforme Eq. (3.41).
A parcela analitica e singular precisa ser avaliada no sentido do VPC. Pode-se apresenté-la,

com mudanca de dominio de integracao para €, como

PYPC = g, (é) {(1 —2v) (771 (Z @) Tk Tk (E (5)) ”)} }Zé 1. (3.87)

41 (1 —v)

em que ja se fez a simplificacdo de pdr termos constantes em evidéncia a integral. Os
jacobianos no denominador da Eq. (3.86) resultam em unidade com os presentes no

numerador da integral. Efetuando a integracgao, tém-se

e (o 11729 (0 E0) i (€©) n)

47 (1 —v) (3.88)
i (1-€) 1 (1+€)].

cujo resultado apresenta indeterminagao quando & = +1. Dessa forma, avalia-se esse caso

via analise limite, obtendo-se:

A =20) (n (E(E) 7 — e (E(€)) 7 A
Py = —a; (§) [ (o (54(75)()1 ;ku) (£ (E)) ) In(2) | &=-1; (3.89)

R 1—-2v liA T’k—kiA T ~
Y (e 1 11 Y ) P
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3.4.2 Pontos internos

Com a solucao do sistema linear de equagoes representado pela Eq. (3.76), pode-se
utilizar os valores de deslocamentos e forgas de superficie nos pontos de controle para
avaliacao de grandezas em pontos no dominio. Para o caso de deslocamentos, a equacao

discretizada ¢é a obtida mediante posi¢do de uma fonte no dominio. Ou seja,

uj e () pia (5,€) T (€(9) J (&) d¢

S
o
I
I
]
—

)
I
_
I
_

: (3.91)

\H

30| [ pres (© 5.6 T (©)) F(6) de

—_
L

Quanto ao tensor tensdo de Cauchy, necessita-se efetuar as mesmas operacoes a Eq. (3.13)
descritas na Secao 3.3.2, as quais resultam na Eq. (3.49). Discretizando-a para andlise

isogeométrica, tém-se

=
3
=
|
|
g
\ —

uj i (§) St (5,6) T (£(9)) T (€) d¢

|||
—_
L

(3.92)
P € (&) digm (5,€) T (€(€)) J (&) d¢

—

+2
e=1

T
|
—

3.4.3 Pontos sobre o contorno

Quanto a avaliacdo de grandezas no contorno, os deslocamentos e as forgas de
superficie podem ser aproximadas pelas curvas NURBS. O tensor tensao de Cauchy pode
ser avaliado aplicando a Eq. (3.92). Entretanto, recairia-se em uma integragao fracamente

singular de ordem O (1/r), devido ao tensor d e outra integracao hipersingular de ordem

kim>
O (1/r?), devido ao tensor s},,,,. A integragao fracamente singular poderia ser regularizada
com o MSS assim como descrito na se¢ao anterior. Ja a integragao hipersingular necessitaria
de um tratamento mais rebuscado, utilizando processo de regularizacao de Hadamard.
Contudo, o método indireto descrito na Secao 3.3.3 pode ser facilmente adaptado a
abordagem isogeométrica ao se substituir a coordenada gaussiana nas formulas apresentadas
pela paramétrica e considerar que o jacobiano da Eq. (3.56) trata-se do da transformagao
do espago paramétrico para o real. As componentes @y; sdo calculadas pela Eq. (3.54)
utilizando a base isogeométrica em vez da lagrangiana. Resumidamente, o processo que era
efetuado no espago gaussiano, para a abordagem lagrangiana, é equivalente se considerado

no espago paramétrico para a abordagem isogeométrica.

3.4.4 Flexibilidade

Conforme comentado, a flexibilidade é um parametro importante para a otimizacao

topolégica. Da mesma maneira que na abordagem lagrangiana, ¢ mais viavel calcula-la
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através da discretizagao do termo a direita da Eq. (3.59). Dessa forma,
ne 1 ) - o R
D= Zl [/ N; (8(8)) ph N, (€(€)) ul T (€(€)) () de]. (3.93)
=t -1

3.5 Exemplos

Para a validacao das implementacoes desenvolvidas, aplicagoes foram efetuadas
a exemplos com solug¢ao analitica conhecida. De forma a evidenciar a diferenca entre as
formulagoes, buscou-se problemas cuja geometria nao pode ser recuperada via aproximacao
polinomial. Para todos os modelos apresentados nesta secao, utilizou-se 1000 pontos de

integracao. Valor considerado mediante expedicao de erro.

3.5.1 Exemplo 1

O primeiro exemplo foi retirado de Timoshenko e Goodier (1987). Trata-se de
uma chapa infinita com um orificio circular de raio a submetida a forcas de tracao auto-
equilibradas na direcao horizontal de intensidade S. O problema se caracteriza como um

EPT. A Figura 21 apresenta sua geometria.

Figura 21 — Chapa infinita com orificio circular

Fonte: Adaptada de Timoshenko e Goodier (1987)

Por se tratar de um problema de forgas de superficie autoequilibradas e nao envolver
condigoes essenciais de contorno, a solucao existe apenas para os campos de tensao de

Cauchy. Apresenta-os em coordenadas polares:

S a? S 3a*  4ad?
UT_E (1—7&> +§ <1+T4 T > cos (20); (3.94)
S a? S 3a*
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Org = —— 1__+r_ cos (26). (3.96)

Nas equagoes anteriores, sao indicadas a tensao na direcao radial o,, a componente a ela
perpendicular oy e a componente de cisalhamento ¢,9. Todas sao fungoes de um par de

coordenadas polares (r,6).

E conveniente medir o erro de um modelo quanto as tensdes comparando a tensao
de von Mises, que é um importante parametro ao critério de falha de materiais ducteis.

Para a sua avaliagao, utilizou-se a versao definida em Jones (2009). Entao,

oy = \/j2 = \/(Ul —03)" + (o _203)2 e 03)2’ (3.97)

onde o1, 09 € 03 820 as trés tensoes principais. Essa definicao deriva de Jy, que designa o
segundo invariante de tensoes desviadoras. A Figura 22 mostra o campo de tensao de von
Mises para r € [1.0,4.0] cm, considerando a = 1.0ecm e S = 1.0 kN/cem?. Nesse exemplo,
analisou-se apenas esse intervalo pois o, tende a um comportamento constante quanto

maior a distancia do ponto investigado ao orificio da chapa.

Figura 22 — Tensao de von Mises (kN/cm?) no dominio para r € [1.0,4.0] cm

3.00e+00
2.80e+-00
2.60e+00
2.40e+4-00
2.20e+00
- 2.00e+-00
- 1.80e+-00
I 1.60e+-00
- 1.40e+4-00
1.20e+00
1.00e+-00
8.00e-01

6.00e-01

4.00e-01

2.00e-01

0.00e+00

Fonte: Elaborada pelo autor

Para a criacdo modelos discretos de elementos de contorno, comenta-se da necessi-
dade de imposicao de condig¢oes essenciais de contorno e consequente finitude da malha que
representa o meio. Considerou um quadrado de lado de 100 cm. Bem maior que o orificio

de raio unitario parar simular o meio infinito. Cada lado foi discretizado com 1 elemento
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ou patch de aproximacao linear. Quanto as condigdes de contorno, admitiu-se nulidade de
deslocamentos horizontais na face esquerda e nulidade de deslocamentos verticais na face
inferior. Dessa forma, nao se restringe as deformagoes e consequentemente nao ha prejuizo

fisico ao modelo, senao a consideracao de meio infinito.

Comenta-se que, para esse exemplo, a solucao analitica dos campos de tensao nao
depende de parametros do meio, como mddulo de elasticidade e coeficiente de Poisson.
Embora sejam necessarios ao modelo discreto, uma vez que as condigoes de contorno
consideradas tornam livres as suas deformacoes, os parametros citados nao influenciam os

resultados de tensoes.

Dessa forma, trés modelos numéricos foram considerados:

« MEC - 4 elementos lineares (n = 2) para o contorno externo e 12 elementos

quadréticos (n = 3) para o orificio;

« MECIG® - 4 NURBS de reta (¢ =2 e p = 1) para o contorno externo e 4 NURBS

de arco (¢ =3 e p = 2) para o orificio;

« MECIG® - 4 NURBS de reta (c =2 e p = 1) para o contorno externo e 1 NURBS

de circunferéncia (¢ =9 e p = 2) para o orificio.

A Figura 23 mostra a posi¢do das fontes no orificio para cada modelo. Atenta-se ao

reposicionamento de fontes para locais de suavidade do contorno aproximado.

O erro relativo do valor da tensdao de von Mises é representado no dominio pela
Figura 24. Devido a singularidade dos tensores necessarios ao calculo de tensoes de
Cauchy em pontos internos, o erro ali sem regularizacao das integrais impossibilita uma
representagao grafica com r € [1.0,4.0] cm. Entao, fez-se com r € [1.01,4.0] cm. Observa-se
que o erro no MECIG é menor em todo o dominio e aparentemente idéntico entre seus
modelos. Nota-se, em todos os modelos, que o erro aumenta ao se aproximar do contorno,
especialmente para o MEC, onde esse erro é agravado por nao haver representacao perfeita
da geometria. Certamente, todos os modelos apresentariam erros menores, ainda que ja
pequenos, se nao houvesse a imprecisao inerente a representacao do meio infinito por uma

malha finita.

Os resultados de tensdo de von Mises provenientes da solugao analitica e das
numéricas no contorno do orificio circular podem ser contempladas na Figura 25. Devido
a imprecisao geométrica inerente do modelo em discretizagao lagrangiana, seu perimetro
foi normalizado pelo espaco gaussiano. Por meio do grafico, é evidente a melhor precisao
dos modelos isogeométricos e a aparente equivaléncia de seus resultados. Ressalta-se que
os resultados de todos os modelos numéricos seriam ainda melhores se aumentado o

comprimento da malha do contorno externo em virtude da infinitude do meio.
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Figura 23 — Colocagao de fontes
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Fonte: Elaborada pelo autor.

3.5.2  Exemplo 2

O segundo exemplo foi retirado de Chou e Pagano (1992). Trata-se de um anel sob
condigbes de contorno apenas essenciais. A configuragao geométrica do exemplo pode ser
visualizada na Figura 26. O deslocamento radial no contorno externo é nulo, enquanto o

no contorno interno ¢ definido por wy.

Por haver apenas condicoes essenciais de contorno, o campo de deslocamentos pode
ser calculado de maneira independente ao campo de tensoes. A solucao na referéncia é

dada em coordenadas polares. Dessa forma, escreve-se o deslocamento radial como
(3.98)

enquanto o deslocamento na dire¢do angular uy é nulo em todo o dominio. A referéncia nao
apresenta os campos de tensao. Entretanto, eles se tornam facilmente conhecidos mediante

aplicacdo das transformacoes descritas no Apéndice A. Os campos de deformacao em
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Figura 24 — Erro (%) da tensao de von Mises no dominio para r € [1.01,4.0] em
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Fonte: Elaborada pelo autor.

coordenadas polares sao calculados por:

ou a g b\>
T:_:— 1 - , *
€ i + (3.99)
uw 1 Jug a g b\>
=0 T+7” 00 a2 —b? r ’ (3.100)
1(0u, 0
Ep= = | 4 2010 g, (3.101)

2\rod  or r
A transformacao do campo de deformacoes para campo de tensoes pode ser efetuada
mediante Eq. (A.26). Esse problema foi tido como EPD. Para a valida¢do numérica das

formulagoes em contorno implementadas, considerou-se a = 1.0m, b = 2.0m e ug = 1.0 mm.
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Figura 25 — Tensdo de von Mises (kN/cm?) no orificio circular

3.0 — Analitico
I &  MEC
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Fonte: Elaborada pelo autor

Figura 26 — Cilindro oco

v

L1

Fonte: Adaptada de Chou e Pagano (1992)

Adotou-se, para o meio, £ = 200 GPa e v = 0.2. Os campos de deslocamentos radiais e de

tensdo de von Mises, calculado pela Eq. (3.97), estdao apresentados na Figura 27.

Esse exemplo foi discretizado mediante 5 modelos em elementos de contorno, os

quais sao:
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Figura 27 — Solucao analitica em EPD para cilindro oco
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Fonte: Elaborada pelo autor.

« MEC® - 4 elementos quadréticos (n = 3) para cada orificio;

« MEC® = 12 elementos quadréticos (n = 3) para cada orificio;

« MEC® = 2 elementos de 6* ordem (n = 7) para cada orificio;

« MECIG® = 4 NURBS de arco (c = 3 e p = 2) para cada orificio;

« MECIG® = 1 NURBS de circunferéncia (c = 9 e p = 2) para cada orificio.

A Figura 28 ilustra o posicionamento das fontes para cada um dos modelos discretos.

As Figuras 29 e 30 apresentam o erro relativo dos campos de deslocamento radial
e tensao de von Mises. Pelos mesmos motivos do exemplo anterior, os graficos nao foram
plotados com valores de € [1.0, 2.0] m, que englobaria todo o dominio. Para o MEC@® | por
envolver a malha lagrangiana mais pobre e consequentemente maior imprecisao geométrica,
mostra-se os referidos valores com r € [1.1,1.9]. J& para os outros modelos, os valores sdo
exibidos com r € [1.05,1.95].

Observa-se, pelas Figuras 29 e 30, que as discretizagoes isogeométricas apresentam
resultados significativamente mais precisos quando comparados aos das lagrangianas.
Percebe-se que o0 MEC® | com a malha lagrangiana mais pobre, apresenta uma precisao
consideravelmente baixa, a qual é consideravelmente aumentada com o refinamento h no
MEC® . Mostra-se que, para esse caso, a utilizacdo de elementos lagrangianos de alta
ordem confere melhores resultados, conforme sio visualizados para o MEC(®). Percebe-se
que os resultados dos modelos isogeométricos podem ser considerados excelentes, embora
com um pequeno nimero de pontos fonte. O MECIG® possui a mesma quantidade de
fontes do MEC® (24) e o MECIG® possui uma quantidade ainda menor (18). Mesmo



Figura 28 — Colocacao das fontes para cilindro oco
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Fonte: Elaborada pelo autor.

assim, a diferenca de precisao é significante devido a melhor representacao geométrica do
contorno. Especialmente nos modelos que apresentam maior precisao, é possivel perceber
que o erro ¢ maior em regioes de descontinuidade geométrica, inexistente no problema
real, e nas proximidades dos pontos fonte, pela influéncia das singularidades nao tratadas
na integracdo. Nota-se que o erro no MECIG® é levemente menor do que no MECIG(®.
Ressalta-se que o erro nesses dois modelos esta associado a imprecisao na integracao, ja
que os tensores da solu¢ao fundamental nao sao polinomiais e apresentam caracteristica

singular.

A Figura 31 mostra os valores de tensao de von Mises nos contornos externos e
internos para cada um dos modelos. Novamente, mostra-se a precisao muito superior dos
modelos isogeométricos. Nos modelos lagrangianos, ha melhoria consideravel no resultado
executando o refinamento do MEC(® para o MEC®). Entretanto, utilizar elementos de alta
ordem ainda se mostra mais vantajoso. Ressalta-se que, assim como no exemplo anterior,
o valor da coordenada no contorno para os modelos lagrangianos foi normalizada perante

0 espago gaussiano devido a inerente imprecisao geométrica.
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Figura 29 — Erro relativo (%) no deslocamento
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Oom (MPa)

Figura 30 — Erro relativo (%) na tensao de von Mises
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Fonte: Elaborada pelo autor.

Figura 31 — Tensao de von Mises no contorno
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4 METODO DOS ELEMENTOS DE CONTORNO UNIDIMENSIONAL

Este capitulo apresenta a construgao da formulacao do MEC-1D. Parte-se da técnica
de residuos ponderados até a obtencao do sistema de equagoes basico. Posteriormente,
mostra-se como se procede o aumento de ordem de aproximagao mediante inclusao de
equacoes de pontos internos ao dominio. Aborda-se uma metodologia de solugao para
o sistema de equagoes, efetuando aplicagoes a solucdo de barras e trelicas a titulo de

validacao.

4.1 Técnica de Residuos Ponderados

Ao mesmo passo que a Técnica de Residuos Ponderados foi aplicada a problemas
tensoriais de elasticidade no capitulo anterior, aplica-o a um problema elementar de
deslocamento axial em barras, descrito em forma forte pela Eq (B.8). Ainda que o
deslocamento u seja propriamente uma grandeza vetorial, pode-se dizer que se trata de
uma aplicacao escalar da técnica devido a unidimensionalidade do problema. A forma em
residuos ponderados é entao dada por

d*u

/ [EA +b (:v)] w (x) dQ =0, (4.1)

dz?

em que b (z) é uma for¢a de dominio e w (z) é uma funcdo ponderadora escalar. O termo
2 designa um dominio genérico conforme Figura 32, onde os indices 1 e 2 sobrescritos a x
designam primeiro e segundo né, respectivamente. Para o desenvolvimento do MEC-1D,
¢é necessario que a fung¢ao ponderadora seja uma solucao fundamental em deslocamentos

(u*) do problema, a qual é dada pela Eq. (C.22). Aplicando-a a Eq.(4.1), conduz-se a

/ lEAdzu b f)] (s, f) d2 = 0, (4.2)

dax?
Q

Figura 32 — Dominio linear

Fonte: Elaborada pelo autor.
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em que se diferencia as grandezas como dependentes do campo f e da fonte s.

Separando os termos da Eq. (4.2) e aplicando o Teorema de Gauss a derivada de

segunda ordem, obtém-se

(/EAm“w (s, f) dQ = 0. (4.3)

dz dz

Uma segunda aplicacao do Teorema de Gauss pode ser efetuada a primeira integragdo da
Eq. (4.3). Entao, obtém-se

x2 )

EA%U (s, f)

~ BAu(f) O

) Mde+/$ (s, f) dQ = 0.

m?+/EAuU)d
L9

Substituindo a Eq. (C.15) na Eq. (4.4), tém-se
i du*

—EAu(f)

1

du
EA%U (s, f)

+/EAu wﬂgﬂd9+/MﬁuW&ﬁdQ:Q

(4.5)
em que 0 (o) é fungao delta de Dirac, que na Eq. (4.5) estd transladada para a fonte s.

Utilizando sua propriedade quando integrada no dominio, conduz-se a

@ du* |
— FAu(f) o

du
EA%U (s, f)

+/b )dQ=0.  (4.6)

T zl

As tultimas passagens sao o que justifica a utilizagdo de uma solugao fundamental para o
desenvolvimento do método. Sua aplicagdo, em conjunto a do Teorema de Gauss, permite
transformar a integracao em u ( f) em uma subtragao de termos que consistem em avaliagoes
da fungoes real e fundamental de deslocamento e de suas derivadas no contorno do dominio
linear e onde é posicionada a fonte. Aos primeiros termos da Eq. (4.6), pode-se aplicar as
Egs. (B.7) e (C.23). Efetuando essas operagoes e organizando os termos, obtém-se

2

x E3 562 %
wls)+u(f) N (s, DI = N () w (s, 5+ [b() w5, f)d (47)
Q
que é a equagao base para a discretizacao no método.

4.2 Discretizacao

Como o dominio, o qual é representado pela Figura 32, é unidimensional, o seu
contorno, que lhe é inferior em 1 dimensdo, trata-se dos pontos z! e z2. Portanto, a
discretizacao basica do MEC-1D envolve a posicao de duas fontes, uma em cada contorno.

Algebricamente, a Eq. (4.7) pode ser representada por

/b wl (s, ) d9
u | _Niil Ni} ur | —“il “12 Nl , (4.8)
Uz —N31 Ny, Uz Uy Up /b f)d
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em que os indices subscritos nas grandezas reais indicam a posi¢do no contorno conforme
a Figura 32. Nas grandezas fundamentais, optou-se por uma escrita compacta. Nos termos
que as representam com dois indices especificados, o primeiro indica a posi¢ao da fonte,
enquanto o segundo a posi¢cao do campo. Portanto, exprimem-se avaliacoes pontuais das
funcoes advindas da solucao fundamental. J& quando ha apenas um indice especificado,
este indica a posi¢ao da fonte, tendo entao sua coordenada de campo variavel. Ou seja,
representa a fungao proveniente da solugao fundamental aplicada em um determinado

ponto fonte.

Da mesma maneira que a Eq. (3.13), a Eq. (4.7) foi obtida considerando a fonte
inserida no dominio. Dessa forma, as avaliacbes das fungoes da solucdo fundamental
presentes na Eq. (4.8) devem efetuadas no limite da posigao da fonte tendendo a z! ou a
22. As Tabelas 1 e 2 mostram os resultados das andlises limite variando fonte e campo
para as fungoes u* (s, f) e N* (s, f). O indice sobrescrito indica a posigdo do ponto no

contorno.

Tabela 1 — Avaliagao no contorno de u* (s, f)

/! /2
1 0 x? — xl
S —_
2FA
2 .1
52 m x 0
2FA

Fonte: Elaborada pelo autor

Tabela 2 — Avaliacao no contorno de

N* (s, f)
f1 f?
1 1
1 - _
5 2 2
1 1
2 - _
y 2 2

Fonte: Elaborada pelo autor

As integracoes da Eq. (4.8) podem ser calculadas pela quadratura de Gauss-

Legendre. Ou seja,

1

Join w s de = [ o;() bu (s,) 7€) de, (4.9)

Q -1

em que a fungdo b (f) foi aproximada por uma func¢ao de forma de base lagrangiana ¢ (&).

O vetor b; representa o valor das forcas de dominio nas fontes. A fungao J (§) é o jacobiano
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transformacao do espaco de integracao para o espaco real. A transformacdo de dominios

lineares é dada por

2 — ! r! + 22
z(§) = -+ : (4.10)
2 2
em que £ ¢ a coordenada gaussiana. Portanto, calcula-se o jacobiano por
dv 2% —a!
J = = 4.11
©=%="5 (411)

A solugao da Eq. (4.8) pode ser efetuada mediante aplicagao das condigoes de
contorno em deslocamento e esfor¢co normal seguido de troca de colunas, configurando um
sistema

a; T =0b;. (4.12)

Os indices 7 e j variam de 1 a 2. O vetor z; ¢ o vetor de incognitas, enquanto b; ¢ calculado
pela soma do vetor de integrais de forcas de dominio com o produto do vetor de condigoes
de contorno com sua matriz de incidéncia. Quanto as condig¢oes de contorno naturais,
¢ mais conveniente prescrevé-las como forcas do que como esforcos, uma vez que estes
dependem da orientagao da secdo transversal e aqueles apenas do eixo. A operacao é
ilustrada pela Figura 33 e é executada algebricamente substituindo N; por —f;. A Eq.

(4.8) é entao modificado para

b 1 (s, f)dQ2
{ul }+[_N;1 N;2] { " }: [ } { B }+ / () i (s. 1) o
wp [ =Na Npf L [ wn] LB e us o |
Q
podendo ser escrita de forma mais compacta por
o Jo) i (s, ) a2
{m }: [un um} { fi }+ 4 a1
up | |y un| | fo Jo() us (s, pyao
Q

Figura 33 — Transformacao de condi¢oes de contorno naturais de esfor¢cos normais para
forcas

1=Nj Np
—Ny 1+ Ny

Fonte: Elaborada pelo autor.
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Comenta-se que, em tese, os elementos de contorno no MEC-1D sao as fontes
aplicadas no contorno do dominio linear. Portanto, assim como era efetuado nos primordios
do MEC, tratam-se de elementos constantes. Para a discretizacao de uma fibra, varios
dominios, conforme o apresentado, poderiam ser utilizados. Tal metodologia configura
uma técnica de sub-regides do método (Jaworski, 1981; Howell; Doyle, 1983). Entretanto,
devido a possibilidade de analogia com o MEF, é mais conveniente se referir ao elemento de
contorno (fonte) como né e a sub-regido como elemento. Portanto, assim foi convencionado

no texto.

4.2.1 Aumento de ordem de aproximacao

Uma vez que o dominio linear possui apenas dois pontos como contorno, s6 ha
possibilidade de aplicacao de duas fontes nele. Consequentemente, essa discretizagao
concede apenas uma aproximagcao linear do dominio. Uma alternativa a possibilitar um
aumento na ordem de aproximacao do dominio ¢ utilizando equacoes de pontos internos,

dadas por

ug (s) +{ =Np, N,;z}{“l }={uzl s }{ ;; }+/b<f> uj (s, f)dQ,  (4.15)

U2

em que o indice k varia de 1 até o nimero de fontes internas. A Eq. (4.15) pode ser inserida

no sistema da Eq. (4.14), conduzindo a

* * * *
1-=Ny G Ny, Uy upy O ugy N
_Nl:jl 5kl N];kz Uup = u;;1 5kl ’LLI:Q Ol

/ b(f) i (s, f)d9 (4.16)

cujo indice [, assim como k, varia de 1 ao nimero de pontos internos. A matriz d;; é um
tensor delta de Kronecker. Uma limitacao desse tipo de refinamento é a impossibilidade
de prescricao de condicoes de contorno nas fontes adicionadas, ja que se tratam de pontos

internos ao dominio.

Outra consequéncia de fontes extras estarem posicionadas no dominio é que nao ha
necessidade de executar a avaliagao de u* (s, f) e N* (s, f) via limite para elas. Entretanto,
alguma atencdo deve ser concedida a integracao no dominio da funcao u* (s, f). Tal
funcao apresenta continuidade C° na posicao da fonte, conforme visto na Figura 34, e se

configura como um transtorno a integracao via quadratura de Gauss-Legendre. Portanto,
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é conveniente dividi-la no dominio em
/b (f) il (s, f) dS2 = /b £dal + /b b (s, £ AT (4.17)
Q

Conforme ja comentado, nas integragoes de dominio, a for¢a de dominio b (f) é aproximada
por uma func¢do de forma com base lagrangiana ¢ (). Seu suporte é £ € [—1,1], que
engloba todo o elemento. Dessa forma, para utilizar a quadratura de Gauss-Legendre com
maior eficiéncia, torna-se necessario alocar um subespago gaussiano para cada subintegral
da Eq. (4.17).

Figura 34 — Tratamento da integracao de u* (s, f) para fonte interna

Fonte: Elaborada pelo autor.

Para x € [z, 2°], aloca-se o subespaco gaussiano &7, A fungao de transformagio de

suas coordenadas para o espago gaussiano £ é dada por

¢(e) =(¢+1) (5‘2“) ~1, (4.18)

em que & é a coordenada da fonte no espaco gaussiano £. O jacobiano da transformacgao é

calculado, portanto, por

g dE €41

5 4.1
Entdo, transforma-se a primeira integral para o subespaco &/ por
/b(f) i (s, ) dQ = /gb] €1)) by ui (s.€7) 7" de’, (4.20)
st

com o indice j variando de 1 ao nimero de fontes. Ressalta-se que a base lagrangiana deve

ser calculada utilizando as coordenadas &, que sdo expressas em funcdo de &7.

J& para x € [2°, 2?], aloca-se o subespago gaussiano /7. A transformagao de suas

coordenadas para & é dada pela fungao

() = (" +1) ( 5 5) +£. (4.21)
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Portanto, o jacobiano da transformacao é calculado por

A

¢ 1-¢
T === 4.22
T = T 3 (4.22)
Entdo, transforma-se a primeira integral para o subespaco &7 por
x? 1
/ b(f) i (s, 1) d! = [ 0 (€17) by (s,€77) 1 g™, (4.23)
xS —1

donde se vale dos mesmos comentérios para a transformacao &/ — &.

Efetuando o tratamento da integracao, tém-se para cada trecho o produto de uma
fungao linear (deslocamentos fundamentais) com uma fun¢do de forma polinomial. O
integrando em cada trecho ¢ entao um polinémio de ordem superior em uma unidade ao
da funcao de forma. Sabendo que n pontos na quadratura de Gauss-Legendre integram
analiticamente um polinomio de ordem 2n — 1, percebe-se que aplicagoes vidveis do método
nao necessitam de muitos pontos de integracao, uma vez conhecidos os problemas de

instabilidade numérica de elementos com ordem muito elevada.

4.2.2 Expansao da dimensionalidade

O desenvolvimento até agora apresentado é aplicavel a problemas unidimensionais.
Para a validade do sistema da Eq. (4.8) a elementos reticulados em duas ou trés dimensoes,
deve-se incluir linhas e colunas nulas nas matrizes. Esses termos adicionados devem
multiplicar outros, também nulos, em cada vetor, e que, portanto, também devem ser
incluidos. Devido a nova dimensao das matrizes e dos vetores, torna-se mais conveniente

escrever as equagoes totalmente em notacao indicial, como

hi Wy = gij [+ Di» (4.24)
cujos indices i e j variam de 1 ao niimero de fontes multiplicado pela dimensao do problema.
As matrizes g;; e h;; correspondem & avaliacdo no contorno das funcoes de deslocamento
e esfor¢o normal fundamentais, respectivamente. O vetor p; representa a integracao no
dominio da funcao de deslocamento fundamental para uma determinada posi¢ao de fonte.
O traco acima dos vetores indica que sua prescri¢ao esta no referencial local do elemento.
Desse modo a inser¢ao de dimensoes se d& ortogonalmente ao eixo z original da Figura 32.
Tal eixo é representado por T; na Figura 35, a qual mostra o sistema local de coordenadas

T Ty com a expansao dimensional. Nela, o indice d faria de 1 ao nimero de dimensoes (2).

A inclusao dos graus de liberdade referentes as novas dimensoes faz com que a Eq.
(4.24) nao possa mais ser resolvida mediante troca de colunas. Isso se deve ao fato de que a
matriz que multiplica o vetor de incognitas resultante desse procedimento é singular. Para

que se obtenha um sistema passivo de solugao, necessita-se pré-multiplicar a Eq. (4.24)
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Figura 35 — Dominio linear no espaco bidimensional

Fonte: Elaborada pelo autor.

pelo inverso da matriz G, ou seja,
gk~ hijug = gk (95 f5 + piy) (4.25)

podendo ser desenvolvido para
kit = fi + Qs (4.26)

em que o indice k possui a mesma variacao dos indices ¢ e j. Nota-se que tal sistema ¢é
equivalente ao do MEF (Reddy, 2005; Zienkiewicz; Taylor; Zhu, 2013). Pode-se rotacionar
os vetores da Eq. (4.26) para um referencial mais conveniente de se prescrever condigoes
de contorno, chamado de referencial global, descrito pelo plano z; x5 na Figura 35. O
procedimento é efetuado multiplicando cada conjunto nodal dos vetores pela inversa de

uma matriz de rotacao

(4.27)

ros (0) = {cos (0) —sen (9)]

sen (0)  cos(0)
cujo angulo € é o indicado na Figura 35. Sabendo que a matriz de rotagao é ortogonal,
tém-se

Ekj T U= T f T, (4.28)
em que o indice [ possui a mesma variagao dos indices j e k. A matrizes de rotagao
transpostas da equacao anterior sdo construidas mediante alocacao de submatrizes rg4.
de forma que multipliquem as grandezas nodais. Pré-multiplicando a Eq. (4.28) por 7,
tém-se

Pk Kj 15 W = Tongs Tt 1+ Tk Tht G0, (4.29)

que pode ser desenvolvida para
Epity = frn + @m- (4.30)

A Eq. (4.30) se trata da Eq. (4.26) escrita no referencial global. Sua solugdo é conhecida

mediante aplicacao de condi¢oes de contorno conjuntamente a técnicas de solucao dos
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sistemas do MEF, j& que a matriz k,,;, andloga a matriz de rigidez, também ¢é singular.
As condigbes de contorno essenciais nos pontos internos devem ser nulas, de maneira
a respeitar a Eq. (4.16). Nesse estudo, utilizou-se a técnica de construcao de sistema

restringido para a solugdo dos problemas (Cook et al., 2001).

4.2.3 Subregioes

A técnica de subregioes do MEC-1D é andloga a conectividade de elementos no
MEF. Escreve-se a matriz de rigidez global do sistema, a qual é construida mediante
incidéncia nodal. A compatibilidade de dominios se da através do compartilhamento de
deslocamentos em uma fonte que conecta dois ou mais elementos. A Figura 36 ilustra
o procedimento de construcao do sistema global de equacoes para dois elementos. Nela,

mostra-se em azul a contribuicao do primeiro elemento e em vermelho a do segundo.

Figura 36 — Incidéncia de elementos (sub-regioes)

Iu% bl_> . l?é . b2_ . Iug
uy @ ui @ u3 @
I(1 fl 1
e e o o 0 0 u%
e o o o 0 O u% E !
o o (6 o o o u%
o o o o o o u% - B + !
0 O @ o e @ u? E
0 O o o e @ ug
K2 f2 q

Fonte: Elaborada pelo autor.

4.2.4 Grandezas no dominio

Em qualquer ponto no dominio, é possivel interpolar os deslocamentos a partir de
seus valores nas fontes. Quanto ao esforco normal, este poderia ser calculado por meio da
Eq. (B.7). Escrevendo os deslocamentos a partir das fungoes de forma fungoes de forma,
desenvolve-se a equacao para

do.

Se o grau de aproximagao do elemento for maior ou igual o da solugao analitica, conside-

N () = EA

rando que ela seja polinomial, o procedimento fornece valores analiticos para deslocamentos

e esforcos normais.

Em caso de escolha de um grau de aproximagdo menor, a aproximacao do dominio
via funcao de forma nao retorna a solugao analitica. Entretanto, as fontes podem recuperar

os valores analiticos de deslocamentos e forgas internas em seus pontos de aplicacdo. Dessa
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forma, valores analiticos de esfor¢co normal podem ser recuperados através de equilibrio de
um trecho do elemento. Isso é possivel apenas quando sua funcao de forma para forcas de
dominio é capaz de representar a funcao original. A Figura 37 ilustra o procedimento para

uma sec¢ao localizada em x4 (é)

Figura 37 — Céalculo de esfor¢o normal via equilibrio

Fonte: Elaborada pelo autor.

Impondo o equilibrio de forcas na direcao T, tém-se

51(5)
NE@==Fi— [ b dn. (432)

=1
L1

A forga de dominio no referencial local pode ser escrita como uma projecao em Z; do vetor

em coordenadas globais, o qual pode ser avaliado por meio das fun¢des de forma. Entao,

¢
N (€ =~Ti— [ra(8) @ (€) b J de. (4.33)

em que o indice ¢ varia de 1 ao nimero de dimensoes do problema e j varia de 1 ao niimero
de fontes no elemento multiplicado pelo nimero de dimensoes. A matriz ®;; é calculada
pela Eq. (3.24) e o r;; corresponde a primeira coluna da matriz de rotagao descrita pela
Eq. (4.27).

A integragao na Eq. (4.33) pode ser efetuada alocando um espago gaussiano em
[—1, ﬂ O procedimento é analogo ao discutido na secao 4.2.1 para a integracao da regiao

a esquerda da fonte interna, conforme Figura 34. Portanto, escreve-se a Eq. (4.33) como
1

N (€ ==Ti= [ ra(0) @y (¢) by T'de", (4.34)
1

em que J7 é calculado pela Eq. (4.19) com a fungao de transformagao de espagos gaussianos
dada pela Eq (4.18).
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4.3 Exemplos

A formulacao de MEC-1D apresentada foi implementada e aplicada a dois exemplos
a titulo de validagdao. No primeiro, comparou-se os resultados com a solu¢ao analitica, a
qual é recuperada mediante utilizacao de elementos de alta ordem. Enquanto no segundo,
comparou-se os resultados nas fontes com os obtidos pela referéncia, buscando recuperar
valores analiticos de esforco normal mesmo com uso de elementos lineares. Variou-se o

numero de pontos de integragao de acordo com a necessidade do problema.

4.3.1 Exemplo 1

O primeiro exemplo se trata de uma barra submetida a uma forca de dominio

regida por uma funcao do segundo grau. A Figura 38 ilustra geometricamente o problema.

Figura 38 — Barra sob carga axial quadratica

a2, by (21) = 72

L

Fonte: Elaborada pelo autor.

Inicia-se o procedimento de obtencao da solucao analitica substituindo a funcao da

forca de dominio na Eq. (B.8). Portanto,

d’u

Integrando ambos os lados em x duas vezes, tém-se uma familia de solugoes em desloca-

EA

mentos definidas por
u(z) = 7= 12+clx+02 , .

em que c; e ¢y sao constantes de integracao. Seus valores tornam-se conhecidos apds a

aplicagao das condigoes de contorno u (0) = 0 e u (L) = 0. A solugdo analitica é entao

dada por
x (23— L?)
= —° 4,
u(z) S EA (4.37)
Calculando a fungao do esfor¢o normal pela Eq. (B.7), tém-se
4 3 _ L3

Para comparacao com o modelo numérico, adotou-se L = 1m, E = 200G Pa e

A = 1.0cm?. Utilizou-se um elemento de quarta ordem para recuperar os valores analiticos
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de deslocamentos e consequentemente os de esfor¢cos normais em todo o dominio. Suas 5
fontes foram igualmente espacadas. O niimero minimo de pontos de integracao necessarios
a integracao exata é 3, que, portanto, foi o utilizado. A Figura 39 ilustra os resultados de

deslocamento e esforco normal. Pela qual é evidente o sucesso na recuperacao da solucao

analitica.
Figura 39 — Comparacao com a solucao analitica para
3 —1
2.00 722 1o 720
—— Analitico —— Analitico
1.754 © MEC-1D 0.5 4 o MEC-1D
1.50 1
0.0 1
1.25 1
—~ 0.5
o <
£ 1.00 1 =
= Z 1.0
0.75 1
—1.5 1
0.50
0.25 - —201
0.00 T T T T —-2.5 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x (m) x (m)
(a) deslocamentos axiais (b) esforcos normais

Fonte: Elaborada pelo autor.

4.3.2 Exemplo 2

O segundo exemplo foi retirado de Buffon (2018) e se trata de uma treliga isostatica
de trés barras com cargas de dominio. O exemplo é 1til para verificar as rotagdes de sistemas
de coordenadas e a recuperacao de valores analiticos de esforgos normais. A Figura 40 ilustra
a geometria do problema. Nela, os niimeros inscritos em quadrados designam a numeragao
de cada elementos, enquanto os nimeros circunscritos representam as numeragoes nodais.
As letras H e R indicam as reagdes horizontais e verticais respectivamente, ja seus indices
subscritos mencionam o né de atuacao. Na referéncia, apresenta-se a rigidez axial EFA de
cada elemento. Contudo, pelo fato de a estrutura ser isostatica, tais valores nao influenciam

os resultados mecénicos que aqui serdo comparados (esforgo normal e reagoes de apoio).

Todos os elementos foram considerados como de aproximacao linear. Tal grau ja é
suficiente para recuperar os esforcos axiais analiticos em todas as barras, ja que a forga
de dominio de maior ordem é linear, a qual atua no elemento 2. Portanto, utilizou-se
apenas 3 fontes e 2 pontos de integracao. As Tabelas 3 e 4 mostram a comparacao dos
resultados obtidos para reacao de apoio e esfor¢co normal em alguns pontos das barras com
o modelo em MEF da referéncia. O software baseado em MEF utilizado foi o FTOOL, o

qual também recupera valores analiticos de esforgos normais (Technical-Scientific Software
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Figura 40 — Trelica isostatica com membros submetidos a carga axialmente distribuida

Fonte: Adaptada de Buffon (2018).

Tabela 3 — Reagoes de apoio (kN)

Reacao de apoio  Autor  Buffon (2018)

Hy —5.000 —5.000
i —10.250 —10.250
Vs —2.750 —2.750

Fonte: Elaborada pelo autor.

Development Institute, 2024). A comparagao foi efetuada em 3 casas decimais, que é a

precisao exibida pela referéncia. Os resultados comprovam o sucesso da implementacao.
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Tabela 4 — Esfor¢os normais (kN)

Elemento z7 (m) 22 (m) Autor Buffon (2018)
1 0.000 0.000 —0.125 —0.125
4.000 0.000 —4.125 —4.125
4.000  0.000  4.958 4.958
5 3.250 0.500 4.507 4.507
2.500  1.000  3.155 3.155
1.750 1.500 0.901 0.901
1.000  2.000 —2.253 —2.253
3 1.000 2.000 4.752 4.752
0.000 0.000  11.460 11.460

Fonte: Elaborada pelo autor.
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5 ACOPLAMENTO MEC/MEC-1D

Neste capitulo, apresenta-se a formulacao do acoplamento MEC/MEC-1D para
solugdo de problemas de inclusoes esbeltas em meios continuos. A formulacao é apresentada
tanto considerando a abordagem lagrangiana para o meio quanto a isogeométrica. No
caso das inclusoes, foram consideradas apenas com aproximacao lagrangiana, uma vez que
o estudo trata apenas de inclusoes de geometria reta, que é caso de maior aplicacao na
engenharia. Nos exemplos, apresenta-se uma metodologia alternativa de discretizacdo das
inclusoes, a qual se mostra mais eficiente computacionalmente. Apresentam-se resultados
de variagao de flexibilidade mediante variacao da discretizacao dos enrijecedores e através

da variacdo de sua taxa volumétrica.

5.1 Formulacao

Dado um dominio de duas ou trés dimensoes €2 com um dominio linear €2y imerso,
considera-se que o mecanismo de vinculagao entre os dois é a forca de aderéncia existente
entre eles. Portanto, conforme ilustrado pela Figura 41, é valido separéa-los, impondo
nos dominios a forca reativa reciproca de aderéncia, vide Terceira Lei de Newton. O
vetor £ representa acdo da inclusdo no dominio 2, j4 f/ representa a acio desse dominio
na inclusdo. Fisicamente, f¢ = —f/ ¢ ambas sdo representadas como forcas de dominio.
Ademais, considerando a aderéncia perfeita entre os dominios, tém-se que os deslocamentos

de €2y sao iguais aos de ) para 2N €2y, que é propriamente 2.

Figura 41 — Inclusao esbelta em dominio

Fonte: Elaborada pelo autor.

Para a aplicacao de uma fonte sobre o contorno, retorna-se a Identidade Somigliana

ja executado o processo limite, conforme Eq. (3.19). Entao, considera-se como forga de
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volume b; a forca de aderéncia que a inclusao executa sobre o dominio 2. Portanto,

;5k)l Uy (5) +F/Ul (f) p;';l (3,f) Al =

(5.1)
/ () i (5. 1) A+ 52 [ 720 i (5.) .
f=1q s
em que nf é o numero total de inclusdes esbeltas. Uma fonte no contorno adiciona um
numero de incégnitas igual ao nimero de dimensoes da formulacao ao sistema final. A Eq.

(5.1) fornece esse mesmo nimero em equagoes para cada fonte.

Os deslocamentos em )y podem ser obtidos ao se posicionar fontes nessa regiao
do dominio, as quais constituem pontos internos em (2. Dessa forma, pode-se utilizar a
Eq. (3.13) para essa avaliacao. Nela, substitui-se a integragdo do produto do tensor de
deslocamentos fundamentais com as for¢as de dominio pelo mesmo somatoério da Eq. (5.1).

Entao, conduz-se a

+/Ul P (s, f) dl' =

(5.2)
/pz ul, (s, f dF+Z/fd i (s, f) QY.

Cada fonte posicionada no dominio de uma inclusao adiciona em incognitas ao sistema
duas vezes o nimero de dimensoes do problema. Metade dessas incégnitas sao relativas
aos proprios deslocamentos, enquanto a outra metade se da em forcas de aderéncia. A Eq.
(5.2) confere um nimero de equagoes equivalente ao nimero de dimensoes de andlise por
fonte. Portanto, necessita-se de uma equagao para metade das incognitas adicionadas por

cada fonte em Q.

Assumindo que as inclusoes atendam apenas a solicitagoes axiais, que seu com-
portamento é elastico-linear e que a for¢a de aderéncia entre os dominios é o seu tnico
mecanismo vinculador, pode descrever o comportamento das fibras anulando o vetor f,

na Eq. (4.26). Escrevendo-a de forma a evidenciar as forgas de aderéncia, tém-se
T o 1 5
kij ;= b f (5.3)

em que by é dado por gi; ! ci. A matriz ¢; é predominantemente nula, com excecdao dos
seus termos da diagonal correspondentes ao referencial local da direcao axial, os quais sao
calculados pelas integragoes da Eq. (4.16) ao se deixar a forga de dominio em evidéncia.
Adiantando processos de solucao do sistema final do acoplamento, deve-se adicionar uma
unidade nos termos da diagonal de by; correspondentes aos graus de liberdade que néo
sejam relacionados a direcao axial da inclusao. Dessa forma, garante-se que a solugao do
sistema conceda valores de forca de aderéncia apenas na dire¢ao axial, uma vez que esse

procedimento impoe nulidade nas outras diregoes. A transposigao da Eq. (5.3) para o
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referencial global é iniciada pela transposicao dos vetores. Executando o procedimento,

conduz-se a
Ekj Tim U, = Bkl Tin ?7]; (54)

que pré-multiplicada por r,; resulta em
— _ oz =
Tok Kkj Tjm Um = Tok bt Tin [y (5.5)

Os produtos entre matrizes realizam sua transformacao para o referencial global. Entao,

vale-se de
kom U = bon f,{, (56)

em que os indices m e n obviamente possuem a mesma variacdo. Uma vez que f/ = —f%,
o sistema da Eq. (5.6) concede um ntimero equagoes equivalente ao nimero de dimensoes
do problema por fonte posicionada em {2;. Nimero que faltava para a possibilidade de

solugao do sistema final.

5.2 Discretizacao

Ao se tratar da discretizacao da Eq. (5.1), pode-se aproveitar o que foi discutido
nas segoes 3.3 e 3.4. Dessa forma, para os trés primeiros termos, utiliza-se a Eq. (3.23),
em caso de aproximacao lagrangiana do contorno, ou a Eq. (3.75), para uma abordagem
isogométrica. Entao, discute-se a discretizacdo do somatorio das integrais que envolvem
as forgas de aderéncia. Utilizando elementos lagrangianos para as inclusoes, tém-se, para

uma fonte em I,

nf nfe 1
So [ S w5, 1) a2 = 32 [ @ (©) ) i (5,9 T dg, (5T)
fZIQf fe=124

em que nfe é o nimero de elementos de MEC-1D utilizados para a discretizacao conside-
rando todas as inclusdes. O indice j varia de 1 até o nimero de dimensoes do problema
multiplicado pelo nimero de fontes no elemento integrado. A matriz ®;; (§) ¢ calculada
pela Eq. (3.24) e o valor do jacobiano da transformacao do espago gaussiano para o espaco
real J (§) é acessado por meio da Eq. (3.26). Como as fontes de referéncia da Eq. (5.1)

estao no contorno I'; as integracoes da Eq. (5.7) nao sao singulares.

Da mesma maneira que se construiu o sistema da Eq. (3.27), vale-se de uma Eq.

(5.1) para cada fonte posicionada sobre I'. Portanto, é possivel formar um sistema do tipo
1 f pd
3 dij uj + hiju; = gi; pj + g, fre (5.8)

em que a matriz g}, é calculada por meio da Eq. (5.7). O indice k varia de 1 ao niimero de

fontes em €2y multiplicado pela dimensao do problema.
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Para discretizagao da Eq. (5.2), retorna-se ao que foi apresentado nas segoes 3.3.2
e 3.4.2. Para as duas primeiras integrais, pode-se utilizar a Eq. (3.46), para aproximagcao
lagrangiana do contorno, ou a Eq. (3.91), em caso de descri¢ao isogeométrica. Quanto ao
somatoério das integrais que envolvem a forca de aderéncia, sua discretizacao é idéntica a
apresentada na Eq. (5.7), com a ressalva de que a fonte de referéncia agora se encontra em
Q. Isso faz com que a integracao da Eq. (5.7) possa ser fracamente singular de ordem
O (In(1/r)), nesse caso, quando o elemento integrado contiver o ponto fonte. O tratamento
da singularidade pode ser efetuado mediante MSS, conforme discutido para a regularizacao

da integracao do tensor de deslocamentos fundamentais apresentado na secao 3.3.1.

Outra possibilidade de ocorréncia de integracao singular é quando hé o cruzamento
de inclusoes. Se uma fonte de uma inclusao estiver posicionada sobre o dominio de outra,
ha o mesmo caso de integracao fracamente singular. Além disso, a simples proximidade de
fonte com outro dominio de inclusdo pode conduzir a integracoes quase-singulares. A Figura
42 ilustra essa possibilidade quando uma fonte s, em vermelho, contida em §2; é usada
como referéncia a integragdo de um elemento em azul que discretiza €2;. Uma alternativa a
mitigacao desses transtornos se da por meio de desenvolvimento de mecanismos de controle

da discretizacao dos dominios 2.

Figura 42 — Possibilidade de singularidade na integracao de dominio de inclusoes para
fontes internas

Fonte: Elaborada pelo autor.

Visando evitar distribuigoes de fibras com cruzamento de dominio, o algoritmo
de tratamento desenvolvido pelo autor consiste, a principio, em representar a extensao
infinita do comprimento de cada enrijecedor como uma func¢ao afim, conforme se indica
na Figura 43. Nela, escreveu-se uma func¢ao afim f : x1 — x5 para cada dominio de fibra.
Também sao postas as coordenadas de seus pontos extremos como uma variavel x seguida
de um indice subscrito e outro sobrescrito. O indice subscrito tem a simples utilidade
a representacao da dimensao do vetor posicao, e, portanto, varia de 1 a 2. Quanto ao
sobrescrito, a letra A corresponde a ponto extremo do primeiro dominio, enquanto a letra
B se refere ao segundo. Os nimeros que as seguem se referem a ordem dos pontos na

formacao da reta e foram escritos apenas por organizagao.
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Figura 43 — Descricao geométrica funcional para as fibras

.’I/'QA

b
T2 = ag + a1 X1

g by =by+ b7

>

€

Fonte: Elaborada pelo autor.

Supondo que seja lancada a fibra de dominio €2y, enquanto a fibra de dominio
Qs ja exista. Calcula-se os coeficientes das fungoes afins utilizando as coordenadas de

extremidade por:

a | 1o e (5.9)
a; 1 a2 752 ’ '
bo | |1 251 o P! (5.10)
by 1 x’ng_ 52 | .

Em posse desses coeficientes, facilmente se calcula a coordenada horizontal ponto de
intersecao entre as duas fungoes igualando suas imagens. Dessa forma, tém-se

by — a
c 0 0
= -11
Ty a— b, ou (5.11)

C ag — b()
= —. 5.12
:Cl b1 — ay ( )

A coordenada vertical é facilmente obtida ao se utilizar a horizontal em qualquer uma das
duas fung¢oes. Conforme ilustra a Figura 44, ha a intersecao de dominios de inclusao quando
1§ pertencer a ambos. Assim, descarta-se a fibra a ser lancada. Obviamente, para evitar
dominios muito préoximos, que potencialmente também conduziriam a integragoes quase-
singulares, é conveniente adotar um desvio na verificacdo de pertencimento aos dominios.
Esse desvio deve alongar virtualmente os dominios para verificacao de pertencimento do

ponto de intersecao, recusando inclusdes muito préoximas, mas que ainda nao se cruzem.

Apesar de eficaz quando da verificacdo de intersecoes, o algoritmo descrito é incapaz
de recusar o langcamento de uma fibra quase paralela e muito préxima a outra existente.
Claramente, tal ocorréncia também poderia produzir integragoes quase-singulares. Assim,
tendo em vista uma discretizagao prévia, verifica-se a proximidade entre as fontes da
inclusdo a ser lancada e a fontes das inclusoes ja existentes. Se a diferenca para uma das

fontes da fibra a ser lancada for menor do que uma tolerancia, recusa-se esse lancamento.
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Figura 44 — Cruzamento de fungoes geométricas de fibra para

X2 X2
4

T €2

T 1
(c) 2§ ¢ Y e 2§ € Qy (d) 2§ € Y e 2§ € Dy

Fonte: Elaborada pelo autor.

Retornando propriamente a discretizacao das equagoes do acoplamento, sabe-se
que, para cada fonte posicionada em €, vale-se de uma Eq. (5.2). Entao, pode-se formar

um sistema do tipo
S wy + huju; = gy pj + gh [ (5.13)
em que o indice [ tem a mesma variagao do indice k.

Quanto a descrigdo do comportamento mecéanico da inclusao, dado pela Eq. (5.6),
pode-se utilizar as técnicas de aumento de ordem e de sub-regides do MEC-1D descritos

respetivamente nas se¢oes 4.2.1 e 4.2.3. O sistema final para as inclusoes deve ser do tipo

klk U = blk f]f (514)

Agrupando os subsistemas descritos pelas Eq. (5.8), (5.13) e (5.14) em um unico

86, tém-se
8 +hij O —gh| [ 9ij
hy; Ol —glJ; ug ¢ = |gij| Py (5.15)
0y k. g I 015
em que ja se aplicou a identidade f,{ = —fZ. Atesta-se que o sistema tem uma equacao

para cada incognita ja que ¢ + 21 = 7 + 2 k, considerando os valores maximos de cada
indice. As condigoes de contorno sao impostas em u; e p;. Entao, a solucao do sistema

envolve uma troca de colunas em 7, alocando valores conhecidos a direita e desconhecidos
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a esquerda. O processo resulta em

ay 0w —ghl| [ = bij
ai; Ok —glJ; Uy = sz' Yijs (5'16)
O ki 9w e 0

que constitui um sistema linearmente independente.

5.3 Pontos internos

Ap6s solugao do sistema descrito pela Eq. (5.15), tém-se todos os valores de u; € p;
nas fontes no contorno e de uy, e f nas fontes sobre as inclusdes. O cdlculo de grandezas no
dominio envolve a posicao de fontes em seu interior. No caso de deslocamentos, utiliza-se a
Eq. (5.2), cuja discretizacao ja foi comentada. Quanto ao tensor tensao de Cauchy, inclui-se

a parcela da forga aderéncia a Eq. (3.49), conduzindo a

(5.17)
/m o 501 A0 43 [ F05) di (5. ) .

I=1q,
cuja discretizacao das duas primeiras integragoes ja foi posta pela Eq. (3.52). O somatério

da integrais de forgas de aderéncia pode ser discretizado como

nfe
S s mm,dW—Z/% 1) di (5,€) T (€) d&. (5.18)
f= 1Qf fe=1"

O esfor¢o normal em 2y pode ser calculado pelas metodologias discutidas na segao
4.2.4. Nos exemplos de aplicacao, utilizou-se procedimento de calculo por meio do equilibrio

do elemento devido a natural maior precisao.

5.4 Pontos sobre o contorno e flexibilidade

Quanto ao céalculo de grandezas em pontos sobre o contorno I, seria possivel
utilizar a Eq. (5.17). Entretanto, recairia-se nas mesmas questoes de singularidades ja
discutidas nas segoes 3.3.3 e 3.4.3. As formulagoes indiretas discutidas nessas mesmas
secoes, entretanto, continuam validas para I'. Portanto podem ser utilizadas da mesma
maneira que foram escritas. Unido ao fato de nao precisarem de integracao, sdo mais
viaveis de serem utilizadas. A validade também é mantida para a metodologia de cédlculo
da flexibilidade, discutida nas secoes 3.3.4 e 3.4.4.

5.5 Exemplos

Buscou-se aplicar a formulagao implementada a exemplos de desenvolvimento

autoral e a outros provenientes da literatura. Apresenta-se uma metodologia mais eficiente
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de discretizagao dos enrijecedores quanto a obtencdo do esforco normal no primeiro
exemplo, a qual é aplicada nos seguintes e comparada a implementacao de outros autores.
Verifica-se a influéncia da discretizacao das fibras nos resultados de flexibilidade, bem

como a influéncia de sua taxa de distribuicdo volumétrica.

5.5.1 Exemplo 1

O primeiro exemplo tem como objetivo demonstrar a proposta de discretizagao de
inclusodes lineares. Trata-se de uma estrutura elementar com apenas 1 enrijecedor, conforme

ilustrado na Figura 45.

Figura 45 — Configuragao do exemplo de demonstragao da discretizagao de fibra proposta

p1 =1MPa

===
uy = 0m
]
T 1

1m

Fonte: Elaborada pelo autor.

Observando os resultados de Buffon (2018), percebeu-se que o comportamento do
esfor¢co normal nos enrijecedores com o refinamento da malha tende a apresentar elevados
gradientes em suas pontas. Portanto, acredita-se que posicionar mais fontes nas pontas
contribua para uma melhor capitagao desses gradientes, tornando o restante do dominio
da fibra numericamente mais regular. Dessa maneira, torna-se possivel representar bem

essa parcela com um maior espagamento entre fontes.

Entao, propoe-se uma discretizagao irregular para o enrijecedor, posicionando em
torno de 1 elemento linear para cada 1% de comprimento de inclusdo nos primeiros 5% de
cada extremidade. A aproximacao linear dos primeiros elementos é justificada pelos elevados
gradientes nessa regiao, tendo como funcao estabelecer um amortecimento numérico para a
aproximagao do restante do dominio da inclusao. Desse modo, discretizou-se o enrijecedor
com 5 elementos lineares nos 5 primeiros centimetros de cada ponto. Para o restante de
seu dominio, utilizou-se 10 elementos quadraticos, totalizando 31 fontes. Cada lado do
contorno foi discretizado com dois elementos lagrangianos quadraticos, ou seja, 12 fontes

foram utilizadas. A Figura 46 ilustra a posicao das fontes.
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Figura 46 — Posicao das fontes do exemplo de demonstragao da discretizacao de fibra
proposta

1.0 4 X X X
X X
0.8
0.6
E X IMOOOOOOOOOOOOOOOOOKIK X
o™
)
0.4 1
0.2 1
X X
X  Contorno
0.0 - x X  Fibra x
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
z1(m)

Fonte: Elaborada pelo autor.

Utilizou-se a mesma discretizacao de contorno, porém com variagao da discretizagao
do enrijecedor para comparacao de resultados. Para cada uma das outras discretizacoes,
utilizou-se fontes igualmente espagadas entre si. A Figura 47 ilustra os resultados obtidos
para o esforco normal na inclusdo. Pela qual, percebe-se que ha naturalmente uma

necessidade de um ntumero consideravel de fontes para a convergéncia satisfatoria do

Figura 47 — Esforco normal na fibra para diferentes discretizagoes
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1.2 4
m} m}
L0 oootdoaseanetnoonotaidmteotdoese. . o
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0.8 14 o o3
S 4
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=
0.4 O b5s
O 15s
0.2 4 & 4bs
+  135s
0.0 P 81s 4
0.0 0.1 0.2 0.3 0.4 0.5
Qf (m)

Fonte: Elaborada pelo autor.
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esforco normal. Também é evidente que discretizagdo proposta produz resultados quase
tao bons quanto a utilizacao de 135 fontes igualmente espacadas entre si, mesmo com um
numero bem inferior de fontes. Tal método de discretizacdo pode ser capaz de melhorar
bastante o tempo de processamento, uma vez considerando o aumento do sistema da Eq.
(5.8) para cada fonte de fibra. Outro custo a ser reduzido decorre da necessidade de uma
quantidade demasiada de pontos de integracao para a avaliacao das integrais que envolvem

o produto do tensor de deslocamentos fundamentais com a for¢a de aderéncia.

5.5.2  Exemplo 2

O segundo exemplo foi retirado de Buffon (2018) e é representado pela Figura
48. O autor apresenta dados da solucao via MEF utilizando o software comercial Ansys
(ANSYS, Inc, 2024). Também sdo apresentados diversos dados da solugao via acoplamento

MEC/MEC-1D implementado pelo autor, pelo qual se variou a discretizagdo das inclusoes.

Figura 48 — Exemplo retirado de Buffon (2018)
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20cm

20cecm

3kPa
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Fonte: Adaptada de Buffon (2018).

Na referéncia, informa-se da utilizagdo de 16 elementos de contorno. Nao ha
informagao sobre sua continuidade ou distribui¢ao no contorno. Considerou-se entao a
utilizacdo de 4 elementos descontinuos por face, totalizando 48 fontes. Mantendo essa

quantidade, aplicou-se ao exemplo duas discretizagoes de contorno diferentes:

o MEC - 16 elementos quadraticos (n = 3);

« MECIG - 16 NURBS de segmento reto (¢ = 3, p = 2).

Para as duas discretizagoes de contorno, discretizou-se cada fibra com 5 elementos lineares

para os primeiros 15cm de cada extremidade e mais 5 elementos quadraticos para o
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restante do dominio. Portanto, utilizou-se 21 fontes para cada inclusao. As fontes de
contorno foram igualmente posicionadas para ambas as discretizagoes. A Figura 49 ilustra

a posicao das fontes de contorno e as fontes de dominio de fibra para os dois modelos.

Figura 49 — Fontes para o exemplo retirado de Buffon (2018)

0.8 1 X 3 X X X X X X X X X X
0.7 X X
X X
0.6 1 K X X X X X X X X X BB
X X
0.5 1 X X
/g o % N N N » X Contorno % % % " X
g X X Fibra X
0.3 X X
X X
0.2 4 K X X X X X X X X X BB
X X
0.1 1 X X
X X
0.0 4 X X X X X X X X X X X X
T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Fonte: Elaborada pelo autor.

A Figura 50 exibe os resultados de deslocamentos e forcas de superficie no contorno
dos modelos gerados em conjunto com os do modelo no Ansys da referéncia. Para as forgas
de superficies, exibe-se apenas os valores no engaste. A referéncia apresenta resultados
apenas em graficos. Portanto, utilizou-se do WebPlotDigitizer para extragao de pontos
(Rohatgi, 2024). Analisando essas grandezas, percebe-se a boa concordancia dos modelos
com a implementacao do MEF do pacote. Ressalta-se que as discretizacoes lagrangiana e
isogeométrica do autor praticamente nao apresentam diferenca em resultado. Assim era
esperado, ja que ambas sao capazes de representar o contorno reto e possuem aproximacao

quadratica.

As Figuras 51 a 53 exibem os resultados de deslocamentos e esfor¢os normais para
cada fibra. Além dos resultados do Ansys, os gréaficos de esfor¢o normal apresentam os
resultados de um dos modelos em MEC/MEC-1D desenvolvido pela referéncia. O modelo
a ser comparado utiliza 11 elementos quadraticos com 23 fontes para cada enrijecedor. No
texto, ha a informagao de que se posicionou mais elementos nos cantos ja prevendo os
elevados gradientes. Entretanto, nao se encontra mais informagoes acerca da distribuicao.
Os resultados de deslocamentos dos modelos apresentam boa concordancia com aqueles
fornecidos pelo Ansys. Ja os de esforcos normais elucidam a diferencga entre os tratamentos
de problemas de imersao de fibras por meio do MEF e do MEC. No MEF, ndo se obtém
esforco normal nulo nas extremidades do enrijecedor, pelo que se conclui de que ha forca

sendo transmitida naquele n6. Nos modelos de MEC, a nulidade ja é evidente, provando
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Figura 50 — Resposta no contorno para o exemplo de Buffon (2018)
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Fonte: Elaborada pelo autor.

a consisténcia fisica de transmissao de forcas apenas via aderéncia. Também é evidente
a melhor representagao dos esforcos normais por meio da discretizacdo proposta pelo
autor, que faz uso de quase a mesma quantidade de fontes do modelo em MEC/MEC-
1D da referéncia. Os resultados dos modelos lagrangiano e isogeométrico do autor sao

praticamente idénticos, reforcando o que ja se esperava.

5.5.3 Exemplo 3

O terceiro exemplo foi retirado de Guimaraes (2024). Assim como no exemplo
anterior, trata-se de uma chapa engastada, porém com furos e fibras verticais. A Figura 54
ilustra a geometria e indica os pardmetros dos materiais. A referéncia apresenta solucao via

modelo no Ansys assim como por meio de implementagao autoral do MECIG/MEC-1D.
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Figura 51 — Resposta na fibra inferior para o exemplo de Buffon (2018)
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Fonte: Elaborada pelo autor.
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Figura 52 — Resposta na fibra intermedidria para o exemplo de Buffon (2018)
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Fonte: Elaborada pelo autor.
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Figura 53 — Resposta na fibra superior para o exemplo de Buffon (2018)
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Figura 54 — Exemplo retirado de Guimaraes (2024)
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Fonte: Adaptada de Guimaraes (2024).

O contorno externo do modelo implementado na referéncia é composto por 60
NURBS de segmento reto com ordem de aproximacao 2. Posicionou-se 10 em cada face
vertical e 20 em cada face horizontal. 8 NURBS de arco com ordem de aproximagao 4
foram utilizadas para cada quadrante do furo. Portanto, 220 fontes foram utilizadas no
contorno. Cada enrijecedor foi discretizado com 50 elementos lagrangianos quadraticos.

Ou seja, 101 fontes igualmente espacadas foram utilizadas em cada enrijecedor

Para o presente estudo, elaborou-se uma malha lagrangiana e outra isogeométrica
para o contorno. Tentou-se seguir a quantidade de elementos da referéncia, bem como a
posicao de suas fontes no contorno externo. A excecao foi para a representacao dos furos,
em que se optou por reduzir a ordem de aproximacao das NURBS e consequentemente o

numero de fontes. As duas discretizacoes utilizadas foram:

o MEC - 68 elementos quadréticos (n = 3);

« MECIG - 60 NURBS de segmento reto (¢ =3 e p =2) e 8 NURBS de segmento de
arco (c=3ep=2).

Ambas contam com 204 fontes aplicadas sobre o contorno. Os furos em formato circular
tornam distinguiveis as discretizagoes lagrangiana e isogeométrica do contorno. Para
as fibras horizontais, utilizou-se 8 elementos lineares para os primeiros 8 cm de cada

extremidade e 5 elementos de 5° grau para o restante do dominio. Ou seja, 42 foram
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utilizadas para cada. Quanto as fibras verticais, utilizou-se 7 elementos lineares para os
primeiros 7 cm de cada extremidade e 5 elementos ciibicos para o restante do dominio.
Entao, 30 fontes foram utilizadas para os enrijecedores verticais. Justifica-se uma malha
mais pobre para as fibras verticais pelo seu menor comprimento. Tais discretizagoes
propostas apresentam espagamentos semelhantes de fontes para a regiao da malha em
que se espera uma maior estabilidade numérica. Ressalta-se que, para a construcao da
malha das fibras, buscou-se evitar posicionar fontes de um dominio sobre elementos de
outros. Assim, transpoe-se os problemas de singularidade discutidos na sec¢ao 5.2. Como o
elemento de trelica com maior grau ¢ um de 52, necessita-se de 4 pontos de Gauss para
uma integracao analitica. A Figura 55 ilustra a posicao das fontes para as duas malhas
construidas. Devido a geometria circular dos furos, a diferenca entre a posicao das fontes
ocorre apenas nas de extremidade dos elementos usados para representacao do contorno

interno.

A Figura 56 ilustra os valores no contorno externo de deslocamentos forcas de su-
perficie dos modelos desenvolvidos e do modelo no Ansys da referéncia. Apenas resultados
graficos foram disponibilizados, necessitando novamente do auxilio do WebPlotDigitizer
para extracao de pontos. Observa-se excelente conformidade entre todos os modelos. As
Figuras 57 a 62 ilustram os valores de deslocamentos e esfor¢cos normais para todas
as fibras. Em adi¢do aos dados apresentados ao contorno, incorporou-se os dados do
MECIG/MEC-1D implementado pela referéncia para os graficos de esfor¢o normal nas
fibras. Os deslocamentos dos modelos desenvolvidos no estudo apresentam boa concordan-
cia com os fornecidos pelo Ansys. Quanto a representacao de esfor¢co normal, observa-se a
mesma inconsisténcia do exemplo anterior de nao nulidade dos valores nas extremidades
da inclusao pelo Ansys. Comparando as discretizacoes de acoplamento desenvolvidas no
trabalho com a utilizada na referéncia, observa-se que foi possivel reproduzir o compor-
tamento do esforco normal na regiao de estabilidade numérica. Tais resultados foram
alcancados utilizando um ntmero de fontes inferior & metade do que consta na referéncia.
Além disso, nas extremidades das inclusoes, percebe-se melhor estabilidade numérica na

discretizacao proposta.

Para uma avaliagao das grandezas no dominio, comparou-se os resultados da tensao
de von Mises, calculada pela Eq. (3.97), para duas faixas verticais contidas no dominio:
x1 = 0.7m; e z;1 = 1.6 m. Os resultados dos modelos utilizados pelo autor e o Ansys da
referéncia estao dispostos na Figura 63. Novamente, observa-se boa concordancia entre os
métodos. Assim como para os outros resultados apontados, nao se observa consideravel
diferenca entre as discretizagoes lagrangiana e isogeométrica de contorno. Certamente

maior diferenga seria observada em pontos mais préximos aos orificios circulares.
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Figura 55 — Fontes para o exemplo retirado de Guimaraes (2024)
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uy (m)

p1 (kPa)

Figura 56 — Resposta no contorno para o exemplo de Guimaraes (2024)
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Figura 57 — Resposta na fibra horizontal inferior para o exemplo de Guimaraes (2024)
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Figura 58 — Resposta na fibra horizontal intermediaria para o exemplo de Guimaraes

(2024)

N (kN)

uy (m)

5 x10~7
—e— Ansys (Guimaraes, 2024)
o MEC/MEC-1D
4 +  MECIG/MEC-1D

0 T T

000 025 050 075 100 125 150 175
T (m)
(a) deslocamentos horizontais
—6
0.0 x10
. —e— Ansys (Guimares, 2024)
~0.5 1 O MEC/MEC-1D
+  MECIG/MEC-1D
~1.01
—1.5 A
—2.0 A
—2.5 1
—3.0 A
~3.5 1
—4.0 : : : : : : :
000 025 050 075 100 125 150 175
T (m)
(b) deslocamentos verticais
s x10~2
6_
4_
2_
—e— Ansys (Guimardes, 2024)
0f-&—— © MECIG/MEC-1D (GUIMARAES, 2024) —&—
O  MEC/MEC-1D
+  MECIG/MEC-1D
o . : : ; ; .
—0.1 0.2 0.5 0.8 11 1.4 1.7 2.0

T (m)

(c) esforgos normais

Fonte: Elaborada pelo autor.



126

Figura 59 — Resposta na fibra horizontal superior para o exemplo de Guimaraes (2024)
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Figura 60 — Resposta na fibra vertical a esquerda para o exemplo de Guimaraes (2024)
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Figura 61 — Resposta na fibra vertical intermediaria para o exemplo de Guimaraes (2024)
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Figura 62 — Resposta na fibra vertical a direita para o exemplo de Guimaraes (2024)
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Figura 63 — Tensao de von Mises no dominio para o exemplo de Guimaraes (2024)
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5.5.4 Exemplo 4

O quarto exemplo trata de um sélido com fibras (inclusoes finas e curtas) aleatori-
amente distribuidas. A intencao do exemplo é verificar a influéncia da discretizacao das
fibras e de sua taxa de volume na flexibilidade da estrutura. A Figura 64 ilustra o corpo
em que as fibras foram distribuidas. Tratou-o como EPT.

Figura 64 — Exemplo de geometria retangular para distribui¢do randomica de fibras
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Fonte: Elaborada pelo autor.

Para a distribuicao de fibras de aco, utilizou-se parametros obtidos de um processo
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de otimizacao multiobjetivo em que se considerou variaveis de resisténcia e o custo da pega
(Bayramov; Tagdemir; Tagdemir, 2004). Como resultado, tém-se para as fibras comprimento
L = 60mm, didmetro d = 0.791 mm e taxa de distribui¢do volumétrica Vy = 0.558%.
Para o calculo da quantidade total de fibras, foi considerada a distribuicao em 1 mm de
espessura. Valor compativel para distribuicao plana considerando o diametro da fibra. Foi

considerado seu moédulo de elasticidade Fy = 200 G Pa.

A disposicao espacial de cada dominio de fibra foi tomada como um processo aleaté-
rio. A principio sorteou-se um ponto no espaco com distribuicdo uniforme de probabilidade
tal que xP ~ {U (0,2),U (0,1)} m. As coordenadas do segundo ponto sdo obtidas por
meio do angulo de rotacao. Também o considera como variavel de distribuicao uniforme,
ou seja, 0 ~ U (0, 27). Necessita-se verificar se o segundo ponto ainda pertence ao dominio
com alguma folga para evitar integragoes singulares. Se ele nao pertencer, retorna-se ao
sorteio do angulo para a obtencao de outro ponto de extremo. Além disso, também foram
utilizados os procedimentos de verificagao de intersecao e superposicao de dominios, os

quais se encontram na secao 5.2.

O gerador randémico utilizado foi o permuted congruential generator na versao de
64 bits (PCG64), o qual possui um perfodo de 21?8 geragoes (O'Neill, 2014). O gerador
apresentou excelentes resultados em testes estatisticos e graficos comparado a outros
disponiveis (Bhattacharjee; Das, 2022).

Utilizou-se duas discretizacoes diferentes para o contorno:

« MEC - 24 elementos quadraticos (n = 3);

« MECIG - 24 NURBS de segmento de reta (¢ =3 e p = 2).

As posigoes das fontes sao iguais para as duas malhas e é exibida em conjunto com a

posicao de cada fibra na Figura 65.

O valor da flexibilidade considerando o dominio sem adicao de fibras para as duas
discretizagoes de contorno foi de 1.1055246349¢ 2 M J/mm. O mesmo valor de flexibilidade
era esperado para as duas discretizacoes devido a geometria reta do contorno. Considerando
a presenca de fibras, variou-se a discretizacao de seus dominios em elementos quadraticos.
A Figura 66 ilustra os resultados de tempo e de redugao percentual de flexibilidade para
cada numero de fontes por dominio de fibra. Em sua legenda, a letra P indica que, na
implementacao do acoplamento, houve paralelizagao dos lacos em fontes no contorno,
Eq. (5.1), e em fontes no dominio dos enrijecedores, Eq. (5.2). As paralelizagoes foram
efetuadas por meio da interface Open Multi-Processing (OpenMP), com distribuigdo das

rotinas em 4 threads. Nao foi notada melhoria em tempo ao aumentar esse niimero.

Observando a Figura 66, percebe-se que o resultado de reducao de flexibilidade

foi igual para as duas malhas de contorno e para as duas implementacoes de cada,
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Figura 65 — Disposigao das fontes e dos dominios de fibra para contorno retangular
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Figura 66 — Resultados de reducao de flexibilidade e tempo para variagao da discretizacao
das fibras em dominio retangular
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conforme esperado. Pequenas diferencas sao percebidas nos dados de tempo entre as
duas implementagoes sequenciais e as duas implementagoes paralelas. As duas ultimas
apresentaram dados de tempo levemente melhores. Nota-se rapida convergéncia do valor
de redugao de flexibilidade com o aumento do niimero de fontes. Tal fator mostra-se
importante, pois nao ha necessidade de uma malha demasiadamente rica no dominio das
fibras para se obter um valor preciso de flexibilidade. Para o exemplo, uma discretizacao
em cerca de 7 fontes por dominio de fibra (3 elementos quadréticos) ja aparenta conferir
suficiente precisdo. Para a taxa de volume de fibras adotada, percebe-se que a reducao da

flexibilidade é pequena independentemente da discretizacao adotada.

Em seguida, utilizando 7 fontes por dominio de fibra mediante 3 elementos quadra-
ticos, variou-se a taxa de fibras ainda mantendo seus parametros mecanicos e geométricos.
Para a geragdo das coordenadas de extremidade das fibras, controlou-se o nimero de
geracao aleatéria. Dessa forma, ao se aumentar a taxa de fibras, mantém-se as geradas
para a taxa imediatamente inferior. A Figura 67 carrega os resultados para a taxa de
fibras variando de 0% & 1%. Percebe-se o natural crescimento da reducao da flexibilidade,
que ainda se mantém em valores demasiadamente pequenos. Por motivos ja explanados,

os resultados sao praticamente iguais para os dois modelos de discretizacao de contorno.

Figura 67 — Resultados de reducao de flexibilidade mediante variacao da taxa volumétrica
de fibras em dominio retangular
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5.5.5 Exemplo 5

O quinto exemplo traz uma aplicacado semelhante a do quarto, mas com um
dominio de geometria circular com o intuito de enfatizar diferencas entre as discretizacoes
lagrangiana e isogeométrica. A Figura 68 ilustra uma pega anelar em que se distribuiu
fibras com as mesmas caracteristicas do exemplo anterior. Considerou-se o problema como

EPD.

Figura 68 — Exemplo de estrutura anelar para distribui¢ao randoémica de fibras
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Fonte: Elaborada pelo autor.

Para a distribuicao randomica das fibras, é mais viavel, considerando a geometria
do dominio, que o sorteio da primeira coordenada de extremidade seja executado em
coordenadas polares. Dessa forma, x? (r,0”), em que r ~ U (1.5,2.0) m e 0? ~ U (0,2 7).
A segunda coordenada de extremidade foi calculada da mesma maneira que no exemplo
anterior, verificando se o ponto pertence ao dominio e se a fibra resultante nao intercepta
ou se aproxima de superpor as que ja foram lancadas. Como gerador de nimeros aleatorios,
também utilizou-se o PCG64.

Utilizou-se uma discretizacao lagrangiana e outra isogométrica para o contorno.

Descreve-as por:



135

o MEC - 24 elementos quadréticos (n = 3);

« MECIG - 8 NURBS de segmento de arco (¢ =3 e p = 2).

Portanto, tém-se 72 fontes para a discretizagao lagrangiana e 24 para a discretizagao
isogeométrica. As fontes de contorno para as duas discretizagoes assim como os dominios

de fibra podem ser apreciados na Figura 69.

Figura 69 — Disposicao das fontes e dos dominios de fibra para dominio anelar
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Fonte: Elaborada pelo autor.

Sem inclusao de fibras, a discretizacao lagrangiana apresentou uma flexibilidade
de 1.5318353102¢~* M J/mm, enquanto a da isogeométrica resultou em 1.5322863762¢ 4
M J/mm. Considerando a discretizagdo isogométrica como referéncia, tém-se 0.5891% de

diferenca relativa entre as duas discretizacoes.

Assim como no exemplo anterior, verificou-se a principio a convergéncia da redugao
da flexibilidade a partir do enriquecimento da discretizagoes em elementos quadraticos
do dominio das inclusées. A Figura 70 apresenta esses resultados em conjunto com o
tempo de cada processamento. Novamente, além da implementacao sequencial, efetuou-se
paralelizagao em 4 threads para os dois acoplamentos. Por meio da figura supracitada,

verifica-se rapida convergéncia e se observa que com 7 fontes por fibra (3 elementos
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Figura 70 — Resultados de reducao de flexibilidade e tempo para variacao da discretizagao
das fibras em dominio anelar
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Fonte: Elaborada pelo autor.

quadraticos) ja se obtém resultados com precisao satisfatéria, assim como no exemplo
anterior. Também é possivel notar que as implementagoes paralelizadas apresentaram
melhores resultados de tempo. Independentemente da discretizacdo adotada, depara-se,

outra vez, com uma reducao de flexibilidade deveras pequena.

Quanto aos dados de tempo, deve-se comentar que, para o MEC convencional, ha
a necessidade de um maior niimero de fontes para se conseguir representar decentemente a
geometria circular através de elementos lagrangianos. O maior nimero de fontes acrescenta
tempo tanto pelas integracoes das Eqs. (5.1) e (5.2) como pelo aumento do sistema da
Eq. (5.15). Outro fator consiste em que as derivadas das fungées de base NURBS sao
obtidas pelo mesmo lago das proprias fungoes base. Também, uma vez que as aproximagoes
funcionais e geométricas se dao a partir dos pontos de controle, nao ha diferenca entre
os valores de suas bases para uma coordenada em uma curva NURBS. Apesar disso,
a construcao via camadas dessas fungdes, mesmo sendo a computacionalmente mais
eficiente, é mais custosa do que a de bases lagrangianas. Entao, infere-se que os aspectos
computacionais positivos da implementacao da formulacao isogeométrica equilibram os

seus negativos.

Em seguida verificou-se a influéncia da taxa de fibras na reducao da flexibilidade.
De posse dos resultados da analise de convergéncia, utilizou-se 3 elementos lagrangianos

para discretizacao de cada dominio de inclusao. A Figura 71 exibe os resultados para
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Figura 71 — Resultados de reducao de flexibilidade mediante variacao da taxa volumétrica
de fibras em dominio anelar
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o acoplamento do MEC-1D com o MEC e com o MECIG. Por meio dela, nota-se que
a reducao da flexibilidade aumenta ambas as descri¢des, mantendo-se ainda em valores
pequenos. Também é possivel observar que a diferenca na reducgao da flexibilidade entre
o MEC/MEC-1D e o MECIG/MEC-1D aumenta quanto maior taxa de fibras. Pela
discretizagao isogeométrica, a tendéncia para o exemplo é de uma reducao maior na

flexibilidade em relacao a lagrangiana.
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6 OTIMIZACAO TOPOLOGICA

O presente capitulo retrata o procedimento de otimizacao topoldgica a ser utilizado
no trabalho. Comenta-se sobre o algoritmo de solucdo numérica utilizado para o MLS e de
que maneira é construido seu acoplamento com o MECIG. Apresenta-se a formulagao do
procedimento de otimizacao topolédgica efetuado através desse acoplamento e se discute
acerca da atualizacdo dos seus parametros. Propoe-se uma férmula para estimativa do seu
valor inicial de coeficiente de penalizagdao. Descrevem-se os dois critérios evolucionarios de
alteracao de topologia utilizados. Propoe-se uma metodologia de verificacao de estacio-
nariedade do processo de otimizacao. Por fim, verificam-se as implementagoes efetuadas

mediante aplicacdo a exemplos bem conhecidos na literatura.

6.1 A funcao level set

Seja um dominio de projeto D, n-dimensional, em que nele exista um subdominio {2
que contém material. Logicamente, 2 C D. A regiao de fronteira entre D e () é entendida
por contorno ou propriamente fronteira. A ela, atribui-se a mesma letra I' utilizada nos

capitulos anteriores. Define-se, por funcao level set, uma funcao escalar ¢ : R* — R tal que

xeN|op(x)>c
xel|¢o(x)=c , (6.1)
xe€D\Q|o(x)<c

em que ¢ é uma constante arbitraria, normalmente tomada como nula. A Figura 72 ilustra

uma funcao level set.

Figura 72 — Funcao level set

D\Q D

Fonte: Luo et al. (2008).
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Considerando que o se prega na Eq. (6.1) vale para um determinado instante de

tempo t, entao se tém para o contorno
o (x;(t),t)=c Vt,xel(t), (6.2)

cujo indice ¢ varia de 1 ao nimero de dimensoes de D. Derivando a equagao anterior em

relacao a t via regra da cadeia, conduz-se a

da; (t) | 0¢ (x;(t),1)
i o

¢4 (i (t) 1) =0, (6.3)

cujo indice j apresenta a mesma variacado do indice 7. Por meio da aplicacdo da defini¢ao

cinematica de velocidade, a Eq. (6.3) é transformada para

6, (i (0),1) vy (1) + 22 g (6.4

em que v; ¢ o vetor de velocidade.

Sabe-se que a velocidade na dire¢ao normal ao espaco da imagem de uma funcao

potencial é dada por
U(t) == Uj ’I’]j, (65)

onde n; é préprio versor normal ao espaco da imagem. Tal pode ser calculado através da

normalizacao do vetor gradiente da funcao level set. Ou seja,

¢, (xi(t),1)

M= o (@ (0, 0T (6:6)
Substituindo as Eqs. (6.5) e (6.6) na Eq. (6.4), tém-se
6, (a: (0), 1)) w (1) + 220D (6.7

ot

a qual é a Equagao Diferencial Parcial (EPD) que governa a evolugao da fungao level
set ao longo do tempo. Assim, é estabelecido um Problema de Valor Inicial (PVI). Tal
equagao possui a mesma forma da classica equagao de Hamilton-Jacobi, a qual é objeto de

estudo da mecanica hamiltoniana.

A Eq. (6.7) carece de solugao analitica. Para procedimentos de solugdo numérica,
executa-se, a principio, uma discretizacao do tempo, em que aqui se utiliza o Método
de Euler Adiantado (Griffiths; Higham, 2010). Dessa forma, o dominio do tempo, antes
continuo, passa a ser definido por valores discretos ", em que n é o numero de passos da
discretizagao. Portanto, tém-se ¢™ = ¢ (t"). A derivada em relagdo ao tempo da Eq. (6.7)
é substituida por um esquema de diferencas finitas adiantadas, considerando um intervalo
finito de tempo At = t"*1 — " Aplicando essas operacoes, conduz-se a

¢ (") — o (t")

6,5 (i (¢7) ") || v (") + A7 =0, (6.8)
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cujo gradiente de ¢ ainda se mostra um transtorno.

Dentre as diversas possibilidades de solu¢do numérica factiveis a transposicao desse
problema, optou-se por um desenvolvimento baseado em Diferengas Upwind devido a sua
simplicidade e a sua eficiéncia (Patankar, 1980). Um forte ponto positivo ao uso desse
método provém do fato de apresentar velocidade de movimento da interface independente
da funcao level set. Dessa forma, permite-se construcao do campo de velocidades através
das grandezas fisicas do problema a ser descrito pelo MLS. Para a solugao via Diferengas
Upwind, torna-se necessaria a criacao de uma malha de pontos, cujos valores de ¢ e T devem
ser conhecidos a priori em faixas préximas ao contorno. Efetuando esse procedimento
de solugao, para a proxima etapa no tempo da funcao level set, considerando problemas
bidimensionais, tém-se

n+l ¢ — At [maw (i4,0) VT + min (v,5,0) V_] ) (6.9)

)

em que os indices 7 e j representam a posi¢ao segundo a primeira e a segunda coordenadas
respectivamente, conforme estabelecida a base do sistema de coordenadas. Os termos V

com um operador algébrico sobrescrito sao calculados por:

vi=
-

Os termos D;; representam operacoes de diferengas finitas. O operador algébrico que lhe é

maz (D;™,0)" +min (D§*,0)" + maz (D;;*,0)" + min (D}, 0)2] . (6.10)

max (Di‘;“, O)2 + min (Di;“, 0)2 + max (D;;IQ, 0)2 + min (DT“, O)z] . (6.11)

v

sobrescrito indica se é uma diferenga finita progressiva (+) ou regressiva (—). Ja o termo que
lhe resta indica a propria direcao da operacao. Essas operagoes sao efetuadas considerando
os proprios pontos da malha como pontos posteriores ou anteriores. Implicitamente, sua
execuc¢ao constitui uma aproximacao linear da funcao potencial por célula, conforme ilustra
a Figura 73 para uma dimensao. Como a necessidade de refinamento da malha contribui
para a baixa variagao da funcao na célula, essas diferencas finitas se confundem com os

angulos apontados.

Para inicializagao ou reinicializacao da funcao level set, admitiu-se que seus valores
em pontos do grid fossem dados pela menor distancia daquele ponto em relagao ao contorno.
Tal problema pode ser resolvido por um simples algoritmo de otimizacao. Por facilidade
de implementacao e velocidade de convergéncia, optou-se pelo Golden Section Method

(Kiefer, 1953).

Para que a solucao do PVI atenda a critérios de estabilidade, o passo de tempo da
discretizacao precisa atender a condigdo de Courant-Friedrichs-Lewy (Courant; Friedrichs;

Lewy, 1967). Descreve-a por

mazgq (T;; At) < min (Azy, Az, ..., Ax;) . (6.12)
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Figura 73 — Diferencas finitas unidimensionais

Az Ax

Fonte: Elaborada pelo autor.

Como implicacao dessa condicdo, tém-se que a evolucao da level set é limitada em no

maximo uma célula de grid por intervalo de tempo.

6.2 Otimizacao

Para o estudo, considera-se uma formulacao de otimizacao topologica no sentido
de minimizacao de flexibilidade sujeito a uma restricao de igualdade em volume. Dessa

forma, matematicamente se descreve o problema de otimizagao por
min [D ()], (6.13)

sujeito a
/dQ V=0 (6.14)
Q
em que D é flexibilidade da peca e V se trata do seu volume alvo. Tal problema se
configura como uma otimizagao nao linear restrita. Intrinsecamente, esse problema possui
como solugao a configuragao geométrica menos flexivel, ou mais rigida, dado um volume

preestabelecido e de acordo com as condi¢oes de contorno dominio.

Dada a caracterizacao do problema de otimizagao, optou-se por soluciona-lo através
do método do lagrangiano aumentado, devido a sua maior facilidade operacional de solucao,
em relacao a opgoes de solucao direta, e a sua maior estabilidade numérica, em relagao a
outras opgoes de solugdo indireta (Arora, 2017). O procedimento consiste em transformar
um problema de otimizagao restrito em um irrestrito através de uma funcao denominada

lagrangiano aumentado. Escrevendo a funcao lagrangiana do problema de otimizagdo como

LON=D@Q+X(V(Q-V), (6.15)
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em que A é o multiplicador de Lagrange, constroi-se a funcao lagrangiana aumentada
somando-lhe a restricao penalizada por um coeficiente v. Dessa forma, tém-se
— k )
A (2N A) =D (@) + N (V () - V) + % (V-7 (6.16)
O indice sobrescrito que os acompanha alguns termos designa a iteracao do processo.

Para a fungdo da Eq. (6.15), tém-se como condi¢ao necessaria ao 6timo

oL 0D

o0 90

em que A* é o valor do multiplicador de Lagrange no ponto de projeto. Ja para a funcao
da Eq. (6.16), tém-se

F AT =0, (6.17)

04 _ oD
o0 00

Dada a equidade a zero das condigoes necessarias de 6timo para as duas fungoes, é possivel

+ AR (V@) -V) =0 (6.18)

construir uma func¢ao de atualizacao para A dada por
M= A=\ R (V) - 7)), (6.19)
em que se atualiza o valor do coeficiente de penalizagao por
AR = 54k (6.20)

com ¢ > 1. Esse coeficiente de atualizacao é responsavel pela velocidade do processo
de otimizacao. Quanto maior o valor do coeficiente, maior tende a ser essa velocidade.
Entretanto, com o acréscimo desse valor, também se aumenta a probabilidade de mal con-
dicionamento (Bertsekas, 1982; Bertsekas, 2016). A literatura mostra que, para otimizagao
topolégica via MEC e MLS, coeficientes de atualizacao com valores proximos a unidade

costumam ser mais eficazes ao sucesso do Processo.

Como a atualizagao para A é pseudo-analitica, comumente seu valor inicial é tido
como nulo. Ja para 7y, seu valor inicial pondera o atendimento da restrigao no inicio do
processo em detrimento da minimizagao da funcao objetivo. Quanto maior seu valor, mais
o processo tenderd a priorizar o atendimento da restricao. Dessa forma, para uma escolha
de valor inicial adequada, torna-se necessario mensurar a ordem de grandeza dos outros

termos que o acompanham em operacoes.

A principal vantagem do método do lagrangiano aumentado em relagdao a pena-
lizacdo simples é a estabilidade numérica promovida pela inclusao do multiplicador de
Lagrange. Devido a isso, ndo ha necessidade de atualizar o valor do coeficiente de penali-
zagao até o infinito para garantir a convergéncia (Nocedal; Wright, 2006; Arora, 2017).
Portanto, torna-se conveniente parar de atualizar esse valor quando a restri¢ao ja estiver
suficientemente atendida e/ou lhe admitir um valor maximo (Conn; Gould; Toint, 1992;
Rao, 2019b).
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6.2.1 Construcao do campo de velocidades

A alternativa aqui utilizada a construcao do campo de velocidades normais a
funcao level set no contorno foi mediante a equidade ao negativo da derivada de forma do
lagrangiano aumentado, dado pela Eq. (6.16). Dessa forma, impoe-se que as velocidades
normais apontem para a direcao descendente da sensibilidade de forma da funcéo a ser

minimizada. Portanto, calcula-as por

v(m:—g“é:— [E(Q) + X +4"(V(Q) -V)], (6.21)
em que & () = 9D /0N para contornos livres de forgas de superficie. O termo designa a
densidade de trabalho interno. Para a avaliacao da derivada, ¢ mais conveniente utilizar o
lado esquerdo da Eq. (3.59), calculando o tensor tensdo de Cauchy por meio da Eq. (5.17)
ou por meio do procedimento indireto. Ja o tensor de deformagdes pode ser calculado em
fungao das tensoes através da Eq. (A.24). Atribui-se velocidade nula a partes que devem
ser imoveis no contorno, como trechos de aplicacao de condigoes essenciais e condigoes

naturais nao nulas em pelo menos uma direcao.

Para a Eq. (6.9), necessita-se conhecer a velocidade normal também em pontos
nas vizinhancas de I'. Optou-se pela metodologia de se avalid-la mediante um processo
de extrapolacao linear dos valores no contorno. Para manter a estabilidade da solucao,
deve-se utilizar um procedimento de regularizacao, o qual é efetuado por meio da solugao

de
@ 9,5 ()

ot 165 (@i (£) 1)

cujos indices i e j variam de 1 ao nimero de dimensdes. O procedimento de solucao da Eq.

+ Sign (¢ (xz (t) ’t)) || vj (xz (t) 7t> =0, (6‘22)

(6.22) envolve discretizagoes temporais e espaciais analogas as efetuadas para a Eq. (6.7).

Portanto, para uma solu¢do em malha bidimensional, tém-se
vt =T — At 4 |sign (¢57) “r D" + [sign (¢) nit] D™
i = Yy gn\Pij) ;4 ij S1gn (Qiz) M4 ij

X i (6.23)
- {sign (¢i) ngﬂ D" + [sign (stij)'r]sz} D$m}7

cujos indices 7 e j representam as posi¢oes horizontal e vertical na malha. Os termos D;;
com seu indice sobrescrito possuem o mesmo significado dos das Egs. (6.10) e (6.11). O
operador [e]" representa maz (e,0), enquanto [¢]~ designa min (e,0). Por fim, ;; sdo
componentes do vetor normal a curva de nivel na direcao dos indices que os sobrescrevem.

Essas componentes podem ser calculadas por diferencas finitas centrais.

6.2.2 Definicao do valor inicial do coeficiente de penalizagao

Tendo em vista a construgao do campo de velocidades por meio da densidade de
trabalho interno somada a penalizagoes de restrigdo, vide Eq. (6.21), cabe uma metodo-

logia de conformagao numérica para atribuicao de um valor inicial para o coeficiente de
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penalizacao. De forma a generalizar a escolha, cabe escrever seu valor inicial como um
numero representante de magnitude, definido por O, divido pelo valor inicial da restrigao
de volume. Assim, ainda falta normalizar o valor inicial do coeficiente de penalizacao de
acordo com as grandezas de rigidez e de solicitacdo do dominio. Admitindo a razao anterior
como base para calibragao sob consideragao de unidade desses parametros e mediante a
proporcionalidade de efeitos da analise elastica e linear, tém-se uma paridade numérica

quando se define
O P?
P = . (6.24)
Eh%(Q)

Na equacao, E se refere ao mdédulo de elasticidade do material e P a sua solicitagao. A
formula é justificada pois, devido a proporcionalidade de efeitos da andlise linear eldstica,
um aumento em £ promoveria uma redugao proporcional na densidade de trabalho interno.
Quanto a um aumento de P, essa densidade é aumentada quadraticamente. Assim, a

variabilidade de escolha de ~° estd no niimero O.

Quanto a variabilidade do coeficiente de Poisson, obviamente interfere na densidade
de trabalho interno. Porém, seus valores para materiais reais se concentram majoritaria-
mente entre 0.25 e 0.35 (Callister; Rethwisch, 2018). Além do pequeno intervalo frente a
possibilidade de variacao dos outros parametros, a ordem de grandeza desses valores é a
mesma. Dessa maneira, embora existente, nao se espera grandes modifica¢oes na densidade

de trabalho interno. Tal fator justifica ndo o considerar para o calculo de ~°.

6.2.3 Critério de convergéncia

Na teoria classica de otimizacdo, a condi¢do necessaria ao 6timo advém da nulidade
do gradiente da funcao objetivo. Em casos de procedimentos numéricos, além da condicao
supracitada atendida segundo alguma tolerancia preestabelecida, verifica-se a variacao da
funcao objetivo da atual iteragdo em relacao a imediatamente anterior. Se essa variagao
for muito pequena, afirma-se que o critério de convergéncia foi atendido e que aquela
coordenada no espago de projeto trata-se de um ponto estacionario. Apesar de tais critérios
nao serem capazes de informar se um ponto de convergéncia é de fato um ponto de minimo
e se nao é um minimo local, ainda sao severamente utilizados para averiguar o sucesso
de procedimentos numéricos de otimizagao. Quanto a verificacdo da condicao suficiente
ao Otimo por meio da definicdo da matriz hessiana da func¢ao objetivo, nem sempre sua

obtencao é acessivel, especialmente em técnicas numéricas.

Para a verificacao de convergéncia de otimizagao topoldgica via MLS, é mais factivel
utilizar o critério de variagdo da fun¢ao objetivo. Entretanto, diferentemente da otimizacao
classica, convém-se efetuar essa verificagao mediante o histérico de iteragdes e nao somente
em relacao a ultima. Isso evita a parada por coincidéncias numéricas no processo advindas

por imprecisao ou por sua natural lentidao, como serda mostrado nos exemplos.
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Na verificagao da diferenca de flexibilidade na iteracao atual para uma sequéncia
de iteragoes anteriores, deve-se alertar quanto ao eventual equivoco acerca da presuncao
de convergéncia quando essa diferenca é medida iteracao a iteracao. Por exemplo, se for
prescrita uma tolerancia de 1072 e a variacao de flexibilidade atender ao critério ao longo
de um determinado nimero de iteragoes, pode-se admitir convergéncia em situagoes de
descendéncia da fungao objetivo. A Figura 74 ilustra esse processo de falsa convergéncia

aproximando o angulo da reta pela diferenca da iteragao mais recente para a atual.

Figura 74 — Falsa convergéncia segundo histérico da func¢ao objetivo

n iteragoes

Fonte: Elaborada pelo autor.

A alternativa aqui utilizada consiste em verificar, para cada iteracdo, a diferenca do
valor da fungdo objetivo na iteracdo atual perante todos os valores de um recente histérico
salvo em memoria. Dessa forma, evita-se o caso de falsa convergéncia retratado pois ha
necessidade de que a diferenca entre a funcao objetivo da iteragao atual e a primeira do
histérico também se enquadre na tolerancia preestabelecida. Embora mitigue a ocorréncia
supracitada, ha ainda a possibilidade, conforme sera verificado nos exemplos, da level set
apresentar estacionariedade por um periodo e, apos isso, continuar nitidamente evoluindo,
ainda que lentamente. Devido a isso, torna-se conveniente aumentar o histérico salvo
em memoria para evitar parada por estacionariedade local. Também deve ser citado que
a utilizacao de um histérico muito elevado pode dificultar a captacdo da convergéncia
verdadeira devido a natural imprecisao do modelo mecanico, em especial ao se mencionar

a possibilidade de ocorréncia de integragoes quase-singulares durante o processo.

6.3 Alteracao de topologia

A formulagao da otimizagao topoldgica em duas dimensdes via MLS nao é capaz
de efetuar insercao de orificios, mas é capaz de unir os ja existentes. Assim, seria possivel

conduzir o processo partindo de uma estrutura inicial com varios orificios ja dispostos.
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Figura 75 — Exemplos de configuragoes iniciais com orificios distribuidos para otimizagao
via MSL

(b) Emmendoerfer Jr. e Fancello (2014) e Em-
(a) Yamasaki, Yamada e Matsumoto (2013) mendoerfer Jr. (2015)

Fonte: Adaptada pelo autor.

A Figura 75 ilustra alguns exemplos dessa ocasido. Entretanto, é conveniente que se
desenvolva alguma metodologia de insercao de furos ao longo do processo de otimizacao de

forma a reduzir a dependéncia de seu sucesso segundo a configuracao do dominio inicial.

As duas alternativas que aqui foram utilizadas sao heuristicas e baseadas na
verificagao da solicitacao em pontos do ¢rid contidos no dominio da estrutura em cada
iteragao. Inspirando-se no que é disposto em teoria de critérios de falha, comparou-se essa
solicitagao no ponto a uma tensao relevante as caracteristicas do material do dominio.
Tendo em vista a admissao de um modelo homogéneo e isotropico, optou-se por efetuar
tal comparacao com a tensao de von Mises, cujo critério descreve bem a falha de materiais
ducteis. Ou seja, em geral, produz-se orificios se 07/" < po™*, em que p é a taxa de remogao
de material e 0* é uma tensao que seja relevante a pega. A Figura 76 ilustra a verificacao

da inequacao para pontos internos e a criagdo de um novo contorno.

Figura 76 — Geragao de orificios pelo critério de alteracao de topologia
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(a) verificagdo para pontos internos (b) criagdo de um novo contorno

Fonte: Adaptada pelo autor.



148

Comenta-se que, para a verificacdo da tensao de von Mises em um ponto interno de
um dominio, utiliza-se a Eq. (3.92). Em caso de existéncia de inclusoes, deve-se utilizar a Eq.
(5.17). Em ambas equagoes, a integracao do tensor sj,,, pode ser quase-singular, havendo
consideravel maior possibilidade de ocorréncia para os dominios enrijecidos, conforme o
explanado na secao 5.2. Dessa forma, para mitigacdo desse problema, pode ser tutil um

controle tanto na geracao de seus dominios quanto na sua discretizacao.

6.3.1 Primeiro critério

O primeiro critério utilizado é semelhante ao proposto por Ullah e Trevelyan (2013)
e consiste em efetuar a verificacdo supracitada a cada evolugao do MLS. Considera-se
que a tensdo de interesse o* é a maxima tensao de von Mises da configuracao inicial do
dominio a ser otimizado. Outros trabalhos que utilizaram o acoplamento do MLS/MEC
para execuc¢ao de uma otimizacao topologica também adotaram critérios baseados no da
referéncia (Ullah; Trevelyan; Matthews, 2014; Ullah; Trevelyan; Islam, 2017; Oliveira, 2017;
Oliveira; Leonel, 2019; Oliveira; Andrade; Leonel, 2020; Guimaraes, 2024).

Devido a tendéncia de acréscimo de tensao nos pontos enquanto a processo de
otimizacao reduz o volume do elemento estrutural, torna-se conveniente incrementar p
ao longo das iteragoes para que se tenha insercao de orificios em estagios de estagios de
topologia mais desenvolvida. Conforme sera verificado nos exemplos, isso pode contribuir
para alternancias de convergéncia em casos em que o processo estaria a caminho da
obtencao de um valor de fungao objetivo ainda poderia decrescer. Contudo, o incremento
ininterrupto da taxa de remocao pode ocasionar em elevadas retiradas de material em

iteragoes distantes do inicio do processo, as quais podem degenerar o dominio.

Outro fator que possibilita o confronto com um transtorno é a existéncia de
regioes, ainda que pequenas, com baixa tensao préximas a estacionariedade do processo de
otimizacao. Se esse critério nao for cessado, inicia-se a inser¢ao de pequenos orificios nessas
regioes, os quais tendem a ser fechados pela evolugao do MLS. A ciclicidade desse processo
obviamente impede o desenvolvimento do algoritmo até a obtencao de uma configuracao

geométrica estacionaria.

Portanto, para esse critério de alteracao de topologia, torna-se interessante que a
taxa seja incrementada ao longo das iteragoes, mas que esse incremento seja cessado ou
que o proprio critério seja interrompido. Infelizmente, é dificil prever quando tais agoes
devem ser efetuadas no algoritmo sem que se efetue um primeiro processamento ou que se

tenha nocao da configuracao 6tima para um determinado dominio inicial.

Cabe-se comentar que, através desse critério, provoca-se um modificacao do dominio
nao prevista segundo o método de otimizacao utilizado. Estudou-se a possibilidade de
reinicializacao dos parametros de otimizacao a cada alteracao evolucionaria de topologia,

tornando cada dominio modificado pelas inser¢oes como o novo ponto inicial do algoritmo
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de otimizagao. Entretanto, adianta-se que a alternativa nao se mostrou vantajosa devido a
promocao de instabilidades no processo de otimizacao. Portanto, os resultados obtidos

através dela nao foram exibidos nos exemplos.

6.3.2 Segundo critério

A segunda alternativa, a qual é proposta pelo autor, consiste em efetuar o processo
de alteracao de topologia antes do inicio das iteragoes via evolugao de contorno do MLS.
Analogamente, busca-se obter configuragoes como as da Figura 75 por um subprocesso
heuristico de otimizacao, reduzindo a dependéncia do sucesso do processo global de

otimizacao topologica em relagdo a metodologia de distribui¢ao manual dos orificios.

Assim, antes do inicio do processo de evolugao do MLS, efetuam-se insercoes
continuamente no dominio. A cada iteracao heuristica, calcula-se a média da tensao de von
Mises em pontos do dominio, a qual funciona como tensao de relevancia ¢*. Se nao houver
remocao para uma taxa inicial especificada, esta é incrementada até que se possibilite
uma inser¢ao. Esse processo pode ser cessado se cruzada a restricao de volume de valores
superiores para inferiores ou em caso de saturacao de orificios no dominio, em que o
novo volume de uma iteracao nao difere tanto do anterior ou em que a prépria taxa seja

atualizada infinitamente.

Escolheu-se a média da tensdao de von Mises nos pontos como tensao de referéncia
devido a possibilidade de a tensdo mais alta ser obtida através de integragoes quase-
singulares. Devido a isso, ha a possibilidade da tensdo maxima ser um valor extremamente
mais elevado do que as tensoes em outros pontos. Assim, mesmo com a prescricao de valores
pequenos para taxa inicial de remocao e seu incremento, possibilita-se a degeneragao do

dominio por uma elevada remoc¢ao de material em uma tnica iteracao.

Essa alternativa de alteracao topoldgica pode se mostrar vantajosa em relacao
a anterior pois nao promove modificagdes no dominio imprevistas pelo algoritmo de
otimizacao adotado. O valor inicial da restricao da restricao de volume para o calculo do
valor inicial do coeficiente de penalizagao a partir da Eq. (6.24) é tido como a avaliagao da
restricdo na configuragao final desse processo evolucionario. Tal configuracao é a inicial
para a evolucao do contorno via MLS. Além disso, por meio dela, nao ha necessidade de
constante verificagao do critério ao longo de um grande niimero de iteragoes do processo
de otimizacgao, como o que pode ocorrer para o anterior se nao for cessado precocemente.
Assim, evita-se contantes avaliagoes de integrais para tensao em pontos internos e ocasionais
procedimentos de remalhamento, tornando essa segunda alternativa computacionalmente

mais barata.
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6.4 Exemplos

Apresentam-se exemplos de otimizacao topoldgica efetuados com as metodologias
descritas. Exibem-se os dados dos processos considerando as duas metodologias de alteracao
topolégica descritas. Comparam-se os resultados finais com os de outros procedimentos
envolvendo tanto o MEC como o MEF. Verifica-se, para cada exemplo, a influéncia da

atualizacao dos parametros do lagrangiano aumentado no processo de convergéncia.

Também se deve comentar que, visando contornar possiveis transtornos quanto
a integragoes quase-singulares no MECIG, foi utilizado um esquema de transformagao
cibica para as coordenadas dos pontos de integragio (Telles, 1987; Telles; Oliveira, 1994).
Através dela, posicionam-se os pontos de integracao concentradamente no cume da funcao
integrada, aumentando a precisao do processo. O processo se encontra descrito em mais
detalhes no Apéndice D.

6.4.1 Exemplo 1

O primeiro exemplo se trata de uma chapa tracionada em sua regiao central lateral
e foi analisado por Oliveira, Andrade e Leonel (2020). Resultados para configuragoes
geométricas semelhantes em que também se utilizou o acoplamento MLS/MEC, embora
adotando discretizacao lagrangiana para o tltimo, também estao disponiveis (Oliveira,
2017). A Figura 77 ilustra a configuragdo geométrica do exemplo, suas condigbes de
contorno e os parametros elasticos considerados a principio. Para cada segmento de
reta com diferentes condigdes de contorno, utilizou-se, como discretiza¢ao inicial, uma

NURBS com 50 pontos de integracao para cada elemento isogeométrico. Aplicou-se grid de

Figura 77 — Exemplo de tracao horizontal
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Fonte: Elaborada pelo autor.
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dimensdes 160 x 288 mm? com espacamento de 4 mm em ambas as dimensdes. O volume

alvo foi tido como 30% do volume inicial.

6.4.1.1 Primeiro critério de alteragao topoldgica

Para os primeiros processamentos, utilizou-se a metodologia de atualizacao ilimitada
que foi efetuada no artigo de referéncia desse exemplo. O multiplicador de Lagrange inicial
foi tido como 0, enquanto foi utilizada a Eq. (6.24) para o célculo do valor inicial do
coeficiente de penalizagdo. Adotando o primeiro critério descrito na secao 6.3.1 para
alteracao de topologia, utilizou-se p = 5 %. Considerou-se uma atualizagao de soma de
1% a esse valor a cada 20 iteracoes do MLS. Adianta-se que, para esse exemplo, forma-se
uma regiao de baixa tensao em iteracoes proximas as da estrutura estacionéria segundo o
critério de verificacao utilizado. Portanto, para evitar problemas de convergéncia advindos
de criacao e fechamento ciclicos de orificios, foi necessario parar a execucao de iteragoes

evolucionarias a partir da iteracao do MLS de nimero 50.

A Figura 78 ilustra os graficos de convergéncia de volume e flexibilidade com
diferentes valores de O que nao culminaram em falha critica do processo. A partir dela,
torna-se evidente a influéncia da escolha da ordem de grandeza para o calculo do pardmetro
inicial de penalizacdo. Quanto maior for seu valor, mais o processo priorizara o atendimento
da restricdo em detrimento da minimizacao da func¢do objetivo. Coeficiente iniciais de
penalizacao calculados com ordens de grandeza superiores as apresentadas tendem a
promover uma contracao brusca do dominio devido a alta prioridade dada ao atendimento
da restricdo. Em virtude disso, o algoritmo falha nas primeiras itera¢goes. Em caso de
coeficientes obtidos por ordens de grandeza inferiores as apresentadas, o algoritmo tende

a minimizar a flexibilidade sem consentimento do atendimento da restricdo. Assim, a

Figura 78 — Convergéncia para exemplo de tracao em chapa
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Fonte: Elaborada pelo autor.
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Figura 79 — Falhas da otimizacio topoldgica por contragio brusca (O = 10')

(a) geometria

Fonte: Elaborada pelo autor.

Figura 80 — Falhas da otimizagdo topolégica por expansao irrestrita (O = 107%)

(a) geometria

Fonte: Elaborada pelo autor.

estrutura se expande de maneira a curva de nivel de referéncia da level set sair do grid,
provocando também falha subita. A Figura 79 ilustra o primeiro caso de falha enquanto a
Figura 80 ilustra o segundo. Obviamente, como a falha envolve o remalhamento, ambas

as figuras apresentam os dados da iteragao imediatamente antes da falha.

Novamente observando a Figura 78, nota-se que, a partir de determinada iteracao,
os processos de otimizacao apresentam falhas de convergéncia. Geometricamente, tém-
se que o dominio entra em um ciclo de contragao e expansao sem cessao ou até que o
remalhamento falhe. Alegando que a estrutura 6tima seja aquela obtida imediatamente
antes do inicio desse processo, obtém-se, como resultado final, as ilustradas por meio da
Figura 81. Observando-a, também é evidente que esses dominios estariam de acordo com

a topologia final da referéncia, embora pequenas diferencas sejam percebidas.



153

Figura 81 — Topologias finais do exemplo de chapa tracionada para

(a) O = 10° (b) O =101 (c) O =102

(e) Oliveira, Andrade e Leo-
(d) O=1073 nel (2020)

Fonte: Elaborada pelo autor.

Buscando alternativas para evitar o ciclo de expansao e contracao da topologia,
testou-se alterar a metodologia de atualizacao dos parametros A e v, efetuando-a de acordo
com Arora (2017). Entretanto, ndo houve sucesso. Analisando o crescimento do valor de 7y
ao decorrer do processo original, percebeu-se que o inicio das oscilagoes ocorria quando
ele atingia uma faixa parecida de valores variando seu valor inicial. A Figura 82 ilustra a
evolucao dos valores normalizados dos coeficientes de penalizagao até a deteccao do inicio
dos ciclos. A sequéncia tracejada das linhas indica uma incerteza do inicio das oscilagoes,

ja que foi efetuada via observagao de variagao do valor da restrigao.

Assim, verificou-se a possibilidade de evitar essas oscilagoes mediante uso da
propriedade do método do lagrangiano aumentado de nao necessitar que o valor do
coeficiente de penalizagao tenda a infinito para que se tenha convergéncia ou para que o
processo de otimizacao tenha continuidade. Para isso, primeiro foi estabelecido um valor
maximo para o coeficiente de penalizacao. Novamente observando a Figura 82, percebe-se
que, para todos os casos, as oscilacdes se iniciam apenas apés o valor de 5.10° para o
valor normalizado do coeficiente. Portanto, ele foi tido como maximo. Apds alcancado,
apenas o valor de A é atualizado no processo. Uma linha tracejada negra representa esse

valor maximo de ordem de grandeza na mesma figura.

Além disso, também se evitou continuar a atualizar o valor do coeficiente de
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Figura 82 — Progressao dos valores de coeficiente de penalizagdo normalizados para o
exemplo de chapa tracionada até o inicio das oscilagoes
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Fonte: Elaborada pelo autor.

penalizacao uma vez que a restri¢ao ja se encontrasse suficientemente atendida mediante
uma tolerancia. Para isso, atribuiu-se um valor de 1072 a tal. Dessa forma, busca-se impedir

aumentos desnecessarios de priorizacao do atendimento da restricao no processo.

Implementando as metodologias de atualizacao citadas, efetuou-se novamente o
processo de otimizacao topoldgica considerando os valores de ordem grandeza anteriores
que nao produziram falha subita. A Figura 83 ilustra o comportamento da convergéncia do
processo para cada um dos valores utilizados. Por meio dela, verifica-se que as oscilagoes do
processo de contracao e expansao foram tratadas com sucesso. As evolugoes dos coeficientes
de penalizagdo normalizados podem ser apreciadas na Figura 84. Observando-a, percebe-se
que, para a maioria dos casos, nao foi necessario que seu valor atingisse o maximo prescrito

para que a estrutura continuasse a convergir.

Alguns pequenos picos sao observados na convergéncia da flexibilidade. Dada a sua
auséncia no grafico de convergéncia de volume, pode-se suspeitar que possivelmente sao con-
sequentes da singularidade do MEC para obtencdo de campos mecanicos. Aparentemente,
esses picos isolados nao afetam significantemente o andamento do processo. Ademais, o
simples aumento do niimero de pontos de integracao ja é capaz de mitiga-lo, conforme
se observa na Figura 85. Pela qual, mostra-se que, apresentando pequena melhoria, tal

aumento nao se justificaria pelo acréscimo de tempo do processo.

Ainda com os 50 pontos de integracao por elemento previamente utilizados, exibe-se,

através da Figura 86, as topologias finais obtidas pela corre¢ao da atualizagao do valor
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Figura 83 — Convergéncia corrigida para exemplo de tracao em chapa
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Fonte: Elaborada pelo autor.

Figura 84 — Progressao limitada dos valores de coeficiente de penalizacao normalizados
para o exemplo de chapa tracionada
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Fonte: Elaborada pelo autor.

do coeficiente de penalizagao. A diferenca entre as topologias é notadamente pequena
Nota-se que, com o decorrer do processo, antes prejudicado pelas oscilagoes, ha a tendéncia
de remocao de material na regiao do menor angulo formado pelas duas barras. Devido a
incidéncia das oscilagoes ser o quanto antes no processo conforme o aumento da ordem
de grandeza do coeficiente de penalizacao, verifica-se uma diferenca maior de topologia
para valores iniciais maiores. Permitida a continuidade dos processos com menores valores

iniciais, haveria a tendéncia de obtencao, em iteracoes posteriores a de niimero 500, de
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Figura 85 — Convergéncia para exemplo de tragdo em chapa com aumento do ntimero de
pontos de integragao
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Fonte: Elaborada pelo autor.

Figura 86 — Topologias finais corrigidas do exemplo de chapa tracionada para

(a) O =10° (b) O =101 (c) O =102 (d) O=1073

Fonte: Elaborada pelo autor.

topologias mais préoximas as fornecidas pelos maiores valores iniciais de coeficiente de
penalizacao. Assim, devido a maior velocidade de convergéncia, torna-se preferivel iniciar

0 processo com os maiores valores possiveis de ordem de grandeza.

Em seguida, verificou-se o comportamento da convergéncia do processo segundo
variacao dos parametros elasticos e de solicitacao. Considerando seguranca e velocidade do
processo, optou-se por utilizar O = 10~!. Conforme ji citado, os coeficientes de Poisson
de materiais reais se concentram na maior parte em uma faixa de 0.25 e 0.35. Tais valores
apresentam mesma magnitude. Portanto, nao se prevé drasticas alteragoes na convergéncia
segundo o mesmo valor inicial do coeficiente de penalizacao. Assim é verificado por meio

dos resultados visualizados na Figura 87.

Quanto ao modulo de elasticidade e ao carregamento, esses promovem significativo
impacto na densidade de trabalho interno. Contudo, devido as consideragoes de linearidade

fisica e geométrica do problema, as modificagdes nessas grandezas impactam proporcional-
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Figura 87 — Convergéncia com variagao de coeficiente de Poisson para exemplo de tragao
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Fonte: Elaborada pelo autor.

mente a densidade de energia de deformacao. O valor \° foi tido como nulo e os valores
iniciais e maximos de vy foram calibrados considerando a unidade para esses parametros.
Por meio da Eq. (6.24), pode-se facilmente calcular os novos valores iniciais de 7. Assim
como tal, é cabivel utilizar o mesmo preceito da férmula para adaptacao do valor maximo

mensurado na Figura 84 segundo os novos parametros de rigidez e solicitagdo do dominio.

Portanto, foram analisados trés diferentes casos com valores distintos de médulo
de elasticidade e de carregamento. Seus valores, assim como o inicial e o maximo para o
coeficiente de penalizacdo, estao dispostos na Tabela 5. A Figura 88 ilustra a convergéncia
para cada um dos casos. A partir dela, notadamente se percebe a semelhanca da evolucao

do processo, o que valida a abordagem.

Uma vez que, para esse exemplo, a estrutura final ndo possui contornos internos,
ela também poderia ser obtida diretamente apenas com uma otimizacao de forma. Consi-
derando esse processo, na Figura 89, ilustram-se os resultados de geometria final (iteragao

500) e de convergéncia de volume e flexibilidade, considerando O = 10~!. Comparando a

Tabela 5 — Parametros variados para exemplo de chapa tracio-
nada

Processo E (N/mm?) P (N/mm?) ~°h%(Q) ~™®hd(Q)

a 109 109 101 5.0-10°
b 102 10° 1072 5.0-1071
b 103 10° 109 5.0 - 10!

Fonte: Elaborada pelo autor.
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Figura 88 — Convergéncia considerando variacao de pardmetros para exemplo de tracao
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Fonte: Elaborada pelo autor.

Figura 89 — Resultados finais (iteracao 500) para o exemplo de tragdo em chapa com
convergéncia corrigida e O = 107!
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Fonte: Elaborada pelo autor.

geometria na iteracao designada com as verificadas na Figura 86 e o desenvolvimento da
flexibilidade e do volume ao longo do processo com os dados da Figura 83, é evidente o
sucesso do processo de otimizacao de forma para esse exemplo. Assim, para esse caso, nao
se verifica dependéncia significativa dos parametros de alteracao topologica e, consequen-
temente, do proprio critério. Além disso, pode ser observado um comportamento mais
estavel da evolucao do volume e da flexibilidade, pois nao ha modifica¢bes no dominio

promovidas pelo critério de alteracao de topologia ao longo da conducao da otimizacao
via MLS.
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6.4.1.2 Segundo critério de alteracao topologica

Conforme os resultados de otimizacao de forma para esse exemplo descritos anterior-
mente, nao se espera interferéncia no sucesso da otimizacao pela consideragao desse segundo
critério de alteracao de topologia. Sua aplicacao aqui objetiva meramente a verificacao da
sua implementacao. Entao, considerou-se uma p = 15% com um incremento em progressao
aritmética. Ressalta-se que esse valor de taxa de remocao ¢ bem superior ao inicial do
critério anterior pois a tensao de referéncia agora é uma média e ndo mais um valor
maximo. A configuracao final obtida pelo processo evolucionario pode ser contemplada na

Figura 90.

Figura 90 — Dominio obtido heuristicamente para chapa tracionada
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Fonte: Elaborada pelo autor.

Sequencialmente, tomando o dominio ilustrado na Figura 90 como o inicial para
processo de atualizacao via MLS, obtém-se os dados graficos da Figura 91. Para essa
otimizacao, ja se utilizou da metodologia para correcao de convergéncia discutida para
o critério anterior. As topologias finais para esse caso podem ser apreciadas na Figura
92. A partir dela, percebe-se que as geometrias finais sao praticamente idénticas entre si
e as apresentadas na Figura 86, especialmente se tomada a obtida com O = 10° como
referéncia. Embora o sucesso naturalmente seja o esperado devido a nao haver necessidade
de alteracao de topologia para esse exemplo, pelos fatores descritos, os resultados aqui
apresentados corroboram com o sucesso da implementagao, que era o objetivo para esse

Ccaso.

6.4.2 Exemplo 2

O segundo exemplo consiste em uma chapa curta submetida a flexdao por um
carregamento aplicado no canto direito de sua face inferior. A Figura 93 ilustra sua

geometria e apresenta seus parametros elasticos e sua solicitagao. Trabalhos inseridos
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Figura 91 — Convergéncia para chapa sob tracao utilizando a segunda alternativa de
alteracao de topologia
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Fonte: Elaborada pelo autor.

Figura 92 — Topologias finais corrigidas do exemplo de chapa tracionada para
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Fonte: Elaborada pelo autor.

no contexto da otimizacao topoldgica via acoplamento MLS/MEC também apresentam
resultados para esse exemplo (Oliveira, 2017; Oliveira; Leonel, 2019; Oliveira; Andrade;
Leonel, 2020). Outros apresentam resultados para geometria e propriedades um pouco
diferentes (Yamasaki; Yamada; Matsumoto, 2013; Ullah; Trevelyan; Matthews, 2014;
Guimaraes, 2024). Resultados utilizando o SIMP cléssico e outras varia¢oes também estao
disponiveis para diferentes propriedades (Valdez et al., 2017).

O procedimento de discretizagao utilizado foi analogo ao do exemplo anterior e
também com 50 pontos de integragao por elemento isogeométrico. Utilizou-se um grid
de 168 x 112mm? com espacamento de 2.8 mm em ambas as dire¢des. O volume alvo foi

considerado como 30% do volume inicial. O valor inicial do coeficiente de penalizagao foi
calculado via Eq. (6.24).
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Figura 93 — Exemplo de chapa curta flexionada por carregamento aplicado no canto direito
de sua face inferior
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Fonte: Elaborada pelo autor.

6.4.2.1 Primeiro critério de alteragdo topoldgica

Para o primeiro critério apresentado de alteragao de topologia, considerou-se
p = 3%, ja que o valor para o exemplo anterior promovia uma brusca redugao de volume
na primeira iteracao evolucionaria para esse caso. A Figura 94 ilustra a degeneracao de
dominio promovida por essa alta remocao de material. Devido a brusca reducao de volume,
dominio tende a se expandir tanto para o atendimento da restri¢ao, a qual foi cruzada
de valores mais altos para mais baixos, como para a minimizacao da flexibilidade. Dessa

forma, hé a possibilidade de se deparar com o ja citado transtorno de a curva de nivel de

Figura 94 — Falha por degeneracao do dominio devido ao critério de alteracao de topologia

(a) geometria (b) grid

Fonte: Elaborada pelo autor.
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referéncia level set sair da extensao do grid, impossibilitando o remalhamento.

O incremento da taxa foi efetuado ao mesmo modo. Nesse exemplo, buscou-se
evoluir a taxa até um certo niimero iteracoes para evitar altas remocoes de material em
estruturas proximas ao 6timo. Diferente do exemplo anterior, mesmo apds a parada do
acréscimo da taxa de remocao, continuou-se a verificar o critério de alteracao topologica
para impedir possiveis convergéncias para minimos locais. A depender da taxa final, nao se
verifica problemas de insercao de orificios para posterior remocao via evolucao da level set
por convecgao, ja que a evolugdo para os menores valores de flexibilidade desse exemplo

tende a nao apresentar regioes com tensoes muito baixas em relacao a média.

Sem efetuar o controle da evolucao do coeficiente de penalizagao, a Figura 95
ilustra os resultados de convergéncia para volume e flexibilidade, considerando diferentes
valores para O que nao culminaram em falha brusca. As observacoes quanto a priorizacao
da minimizagao da flexibilidade ou do atendimento da restricao de volume quando da
variacao do valor inicial do coeficiente de penalizacao sao andlogas as do exemplo anterior.
Novamente, observou-se os problemas de convergéncia devido a expansao e contragao
ciclica da estrutura. Os resultados logo antes da ocorréncia desses ciclos estao dispostos
na Figura 96. Os excelentes resultados obtidos por O = 107! ¢ O = 1072, em comparacao
com o do SIMP, devem-se a excelente estacionariedade observada segundo o critério de
verificagao adotado antes da ocorréncia dos ciclos. Nao se vale da mesma observagao
para o caso de O = 10°, cuja convergéncia ao 6timo notoriamente ainda se encontra em

andamento.

O valor superior de O, em relagado aos que apresentaram relativo sucesso, testado

foi de 10'. Nao ocorreu o problema de contracao stbita contemplado no exemplo anterior.

Figura 95 — Convergéncia para exemplo de flexdo em chapa curta por aplicacao de carre-
gamento no canto de sua face inferior
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Fonte: Elaborada pelo autor.
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Figura 96 — Topologias finais do exemplo de flexdo em chapa curta por aplicacao de
carregamento no canto de sua face inferior para
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Fonte: Elaborada pelo autor.

Entretanto, os efeitos ciclicos de expansao e contracao se iniciaram antes mesmo de ser
atendida a restrigao, conforme ilustra a Figura 97. Ja para o valor imediatamente inferior
testado, O = 1073, ocorreu o processo de extrapolacao da curva de nivel de referéncia da
level set perante o grid, analogo ao observado para o exemplo anterior. Esse tipo de falha
ocorreu, entretanto, para um valor maior de O pois foi dado menos folga em extensao
do grid em relacdo ao dominio inicial, conforme pode ser visto na Figura 98. Ressalta-se
que, quanto mais extenso for o grid, maior deve ser o niimero de pontos para que se tenha
um espagamento pequeno o suficiente para uma precisao decente. Logicamente, aumentar
o numero de pontos encarece computacionalmente a andlise, especialmente quanto ao

critério de alteragao topoldgica.

Ao mesmo passo que no exemplo anterior, verificou-se se a metodologia de atu-
alizacdo de pardmetros proposta disponivel em Arora (2017) seria capaz de mitigar as
oscilagao de expansao e contracao da estrutura, nao se obtendo éxito. Entao, seguiu-se
com a metodologia efetiva para o exemplo anterior. Analogamente, mensurou-se um valor
maximo para <y, conforme ilustra a Figura 99, e se evitou sua atualizagdo em caso de

atendimento suficiente de restricdo, também com uma tolerancia de 1073,

A Figura 100 apresenta a convergéncia satisfatoriamente corrigida do processo de
otimizagao. A evolucgao de cada valor de coeficiente de penalizagao é apresentada na Figura
101. Por meio dela, ressalta-se que nao ha necessidade de sempre atualizar o valor do

coeficiente para a evolugao do processo. Além disso, adotando o critério de nao o atualizar
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Figura 97 — Falha ao se iniciar os ciclos de contracao e expansao antes de atender a
restricao de volume para exemplo de flexao em chapa curta por carregamento
aplicado no canto de sua face inferior
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Fonte: Elaborada pelo autor.

Figura 98 — Falhas da otimizacdo topolégica por expansao irrestrita (O = 1073)
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Fonte: Elaborada pelo autor.

se suficientemente atendida a restri¢ao, é possivel que nao seja necessario prescrever um
valor maximo para 7. J& a Figura 102 ilustra as geometrias na iteracao 500 para cada valor
inicial do coeficiente de penalizacdo, seguindo a variacao do niimero O. Conforme esperado
em virtude da observacao de estacionariedade segundo o critério proposto antes dos ciclos
de expansdo e contracdo, as geometrias finais para O = 107! ¢ O = 1072 conduzem

a excelentes resultados em comparacdo com os fornecidos pelo SIMP. Obviamente, a
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Figura 99 — Progressao dos valores de coeficiente de penalizacao até o inicio das oscilagoes

para exemplo de flexdo em chapa curta por aplicacao de carregamento no
canto de sua face inferior
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Fonte: Elaborada pelo autor.

Figura 100 — Convergéncia corrigida para exemplo de flexao em chapa curta por aplicagao
de carregamento no canto de sua face inferior
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Fonte: Elaborada pelo autor.

geometria para O = 10° ainda se encontra em evolucdo. Isso se deve, pois, as atualizacoes
por gradiente estavam conduzindo a estrutura a um minimo local. Por volta da iteragao
geral de niimero 80, o critério de alteracao topoldgica gera um orificio pelo qual se evoluiu
até atingir uma condi¢ao de menor flexibilidade. A Figura 103 elucida a etapa de alteragao

topoldgica enquanto a Figura 104 ilustra o resultado final estacionario e seus dados de
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Figura 101 — Progressao dos valores de coeficiente de penalizagdo para exemplo de flexao
em chapa curta por aplicacao de carregamento no canto de sua face inferior
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Figura 102 — Topologias finais (iteracao 500) do exemplo de flexdo em chapa curta por
aplicacao de carregamento no canto de sua face inferior para
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Fonte: Elaborada pelo autor.

convergéncia. Por meio do gréafico de convergéncia da ultima figura citada, observa-se a
possivel duracao em iteragoes do processo. Devido a baixa reducao de flexibilidade iteracao
a iteracao, embora com clara tendéncia de decaimento ao longo do processo, observou-se
um transtorno quanto a adog¢ao do critério de convergéncia. Em adi¢ao a isso, alguns
periodos de estacionariedade também foram observados para posterior decaimento da
funcao objetivo. O tultimo fator também complicou severamente a ado¢ao do critério, de
forma que, para a obtencao dos resultados apresentados, a consideracao de estacionariedade
foi verificada por inspecao visual. Tal processo é extremamente simples e de facil acerto

quando efetuado mediante video da evolugao do dominio. O sucesso dessa otimizacao é
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Figura 103 — Alteragao topologica do exemplo de flexao em chapa curta por aplicacao de
carregamento no canto de sua face inferior
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Fonte: Elaborada pelo autor.
Figura 104 — Resultados até a estacionariedade para o exemplo de flexdo em chapa curta

por aplicacao de carregamento no canto de sua face inferior com convergéncia
corrigida e O = 10°
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Fonte: Elaborada pelo autor.

corroborado pela geometria final semelhante as obtidas para outros valores de O.

Portanto, claramente é verificada a mitigagao dos ciclos de contragdo e expansao
pela correcao adotada. Apesar de que excelentes resultados poderiam ser obtidos antes
desses ciclos ao se utilizar O = 107! ou O = 1072, o término em exceléncia para O = 10° s6
foi possivel gracas a essa correcao. Além disso, todos os resultados obtidos em convergéncia
corrigida para esse exemplo se mostram em melhor conformidade com o proveniente do

SIMP quando comparados a outras abordagens envolvendo o acoplamento do MLS/MEC.

Quanto a sensibilidade ao critério de alteracao topoldgica, ja se comentou acerca
da possibilidade de falha stbita se adotados valores mais elevados para p. Para o sucesso
desse exemplo, verifica-se que o fator critico é a insercao do orificio que resulta no contorno
interno das geometrias até entao exibidas. O natural incremento ao valor inicial cessado em
alguma iteragao, de forma a evitar aparecimento constante de furos com posterior remocao,

’

ja é suficiente para evitar o minimo local indicado na Figura 103, desde que o processo de
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Figura 105 — Resultados até a estacionariedade para o exemplo de flexdo em chapa curta
por aplicacao de carregamento no canto de sua face inferior com convergéncia
corrigida, O =107 e p = 2%
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Fonte: Elaborada pelo autor.

alteracao topologica nao seja interrompido. Contudo, a alteragdo do valor inicial de p pode
alterar significativamente a conducao da convergéncia. A Figura 105 ilustra os resultados
para O = 107! com reducao de p para 2%. Dessa forma, verifica-se convergéncia similar
a obtida para O = 10° e p = 3%, a qual s6 fornece resultados satisfatérios se efetuado o
procedimento de limitacao do crescimento do coeficiente de penalizacao. Tal fator ressalta

a necessidade da correcao.

6.4.2.2 Segundo critério de alteracao topologica

Na consideracao do segundo critério de alteracao de topologia, notou-se que uma
saturacao de orificios pequenos no dominio tendia a condugao do processo a minimos locais.
Dessa forma, utilizou-se p = 25% com atualizacao em progressao aritmética. Obviamente, a
tendéncia é que maiores taxas de remo¢ao promovam maiores orificios no dominio. Também
se observa que, maiores taxas tendem a promover uma maior redugao de volume antes
da saturacao de orificios. Notou-se que, quanto maior essa redugao sem a promocao da
degeneracao do dominio, a qual é vislumbrada na Figura 94, maiores sao as probabilidades
de obtencao de menores valores de flexibilidade para esse exemplo. Assim, o dominio

obtido pelas iteragdes evolucionarias se encontra caracterizado pela Figura 106.

Tomando o dominio da Figura 106 como inicial ao processo de otimizagao via MLS
e aproveitando as corregoes de convergéncia apresentadas para o critério anterior, obteve-se
os dados de convergéncia em flexibilidade e em volume dispostos na Figura 107. Para
a obtencao desses resultados foram considerados apenas os valores de O bem-sucedidos
para o critério anterior. As configuragdes geométricas finais dos processamentos podem ser
contempladas na Figura 108. Pela qual, nota-se que as geometrias obtidas sao praticamente

iguais se comparadas entre si e aos casos que apresentaram estacionariedade, segundo a
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Figura 106 — Dominio heuristicamente obtido para exemplo de flexao em chapa curta por
aplicacao de carregamento no canto direito de sua face inferior
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os casos de processamento tratados nessa se¢ao demonstraram estacionariedade antes da
valores utilizados para O. Acrescenta-se que o valor intermedidrio desse tltimo parametro
de topologia. Possivelmente, isso se deve ao melhor balanceamento de priorizacao do

foi propositalmente considerado como o citado para a obtencao de sucesso mediante os trés
mitiga a dependéncia do sucesso mediante os pardametros relativos ao critério de alteracao
algoritmo de otimizagdo entre minimizar a funcdo objetivo ou atender a restricdo de

metologia de verificag
referida iterag
segundo esse crit
volume.
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Figura 108 — Topologias finais do exemplo de flexao em chapa por aplicacao de carrega-
mento na extremidade de sua face inferior para

= N\ &\ & N

(a) O = 10° (b) O =101 (c) O =102

Fonte: Elaborada pelo autor.

6.4.3 Exemplo 3

O terceiro exemplo se trata de uma chapa em flexdo por um carregamento aplicado
no centro de sua face lateral. A Figura 109 ilustra sua configuracdo geométrica e suas
condigoes de contorno, além de também descrever seus parametros elasticos e de solicitagao.
Para os mesmos dados, a literatura apresenta resultados obtidos através de outras variagoes
de otimizagao topoldgica utilizando o acoplamento MLS/MEC (Oliveira; Andrade; Leonel,
2020). Para configuragdes e pardmetros levemente diferentes, resultados semelhantes
também podem ser encontrados (Yamasaki; Yamada; Matsumoto, 2013; Ullah; Trevelyan;
Matthews, 2014). Também com dados um pouco diferentes, depara-se com resultados

produzidos pelo SIMP cléssico e por algumas de suas variagoes (Bendsge; Sigmund, 1999;

Figura 109 — Exemplo de chapa flexionada por carregamento aplicado no centro de sua
face lateral
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Fonte: Elaborada pelo autor.
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Valdez et al., 2017).

A configuracao inicial foi discretizada de maneira andloga aos exemplos anteriores.
Também foram utilizados 50 pontos de integracao por elemento isogeométrico. Adotou-se

um grid para a descricdo numérica da level set de 168 x 126 mm?

com um espagamento de
2.8 mm em ambas as dimensoes. Diferentemente dos outros dois exemplos, considerou-se o

volume alvo como 40% do original.

6.4.3.1 Primeiro critério de alteragao topoldgica

Quanto a aplicagao do primeiro critério de alteracao topoldgica, utilizou-se p = 4%.
O valor foi incrementado em 3% a cada 5 iteragoes globais. Para evitar remocao excessiva
em iteragoes mais avangadas, cessou-se a atualizacao desse parametro na iteragao global
de nimero 20, ainda permitindo alteracao de topologia apdés isso. Logo apods a obtencao
dos resultados base para esse exemplo, serd mostrado que a escolha desses parametros

pode influenciar significativamente na obten¢ao de um 6timo nesse caso.

Inicialmente efetuando o procedimento mediante atualizagao ilimitada do valor
do coeficiente de penalizagao, a Figura 110 ilustra os resultados de convergéncia para
flexibilidade e volume em casos de O que nao apresentaram falha subita. Novamente,
sao observados os ciclos de expansao e contracao da estrutura, os quais cessam em falha.
As configuracoes geométricas inicialmente anteriores as oscila¢ées podem ser observadas
na Figura 111 em conjunto com resultados provenientes da literatura. Observando os
resultados, é evidente a melhor consonancia dos obtidos no presente estudo com o SIMP
se comparado ao outro obtido também pela formulacao de acoplamento do MLS com o

MECIG em que o presente estudo é baseado. Em seu contexto, o fato de as estruturas

Figura 110 — Convergéncia para exemplo de flexdo em chapa por aplicagio de carregamento
no centro de sua face lateral
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Figura 111 — Topologias finais do exemplo de flexdo em chapa curta por aplicagao de
carregamento no canto de sua face inferior para
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Fonte: Elaborada pelo autor.

ilustradas ja apresentarem estacionariedade segundo o critério proposto antes da ocorréncia

das oscilagoes contribui para a qualidade dos resultados.

Retratando os casos de falha para outros valores de O testados, a Figura 112 ilustra
o caso para O = 10°. Observando o grafico de convergéncia, percebe-se que os ciclos de
expansao e contragao se iniciaram antes do atendimento da restricao de volume. J& para
O = 1073, devido a inicial tendéncia de expansao do dominio, a curva de nivel de referéncia
da level set sai do grid, impossibilitando a geracao de uma malha de MECIG fechada. A
Figura 113 ilustra a geometria da estrutura e a situagao dos pontos do grid imediatamente
antes da ocorréncia da falha. Essa falha para esse valor de O se justifica pela menor
margem da extensao do grid dada em relagao a configuracao inicial se comparada a do

primeiro exemplo, conforme também ocorreu para o segundo.

Em seguida, objetivando a mitigacao dos ciclos de expansao e contracao do dominio,
procura-se por um valor maximo de coeficiente de penalizagao observando sua evolugao
ao longo das iteragoes e estimando as posi¢oes de inicio desses ciclos. O procedimento é
analogo aos efetuados para os dois primeiros exemplos. A Figura 114 retrata essa evolugao
normalizada perante os valores de restricao inicial, resisténcia e solicitagao. Dessa forma,

estima-se um valor maximo representado pela linha horizontal tracejada (2.0 - 10°).

Além da restricdo em um valor maximo do coeficiente, seu crescimento também
foi cessado se atendida a restricio em volume com uma tolerdncia de 1073, Dessa forma,

foram obtidos os resultados de convergéncia os quais sao apresentados na Figura 115. Por
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Figura 112 — Falha ao se iniciar os ciclos de contracao e expansao antes de atender a
restricao de volume para exemplo de flexdao em chapa por carregamento
aplicado no centro de sua face lateral
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meio de seus graficos, é evidente a corre¢ao dos ciclos de expansao e contracao promovida
por esses procedimentos. As geometrias finais (iteracdo 500) dos processos podem ser
apreciadas na Figura 116. Conforme esperado, devido aos bons sinais de convergéncia ja
apresentados antes dos efeitos ciclicos discutidos, nao se percebe mudancas significativas
em relacao as suas geometrias prévias. Comparando ambas, também se nota diferenca pifia.
Observando a evolugao do coeficiente de penalizagao por meio da Figura 117, conclui-se
que nao haveria necessidade em nenhum dos casos de prescri¢do de valor maximo, ja que
nao foi atingido durante o processo. Obviamente, a estacionariedade segundo o critério
proposto observada para estrutura antes dos ciclos que conduzem a falha também contribui

para isso.

Por fim, variando os parametros de alteragao topoldgica, observa-se alternagao
entre as configuracoes finais obtidas, as quais sdo estao ilustradas na Figura 118. Os dados

relativos ao critério de alteracao topoldgica para cada processamento sao:

(a) p = 5% com atualizagao de 3% a cada 2 iteragoes;
(b) p=5% com atualizacdo de 4% a cada 2 iteragoes;

(c¢) p=>5% com atualizagdo de 1% a cada 20 iteragoes.



174

Figura 113 — Falhas da otimizacdo topoldgica por expansio irrestrita (O = 1073) para
exemplo de flexdo em chapa por carregamento aplicado no centro de sua face

lateral
- T Q\
Vo %
D@
)%
- = ® OOO )
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Fonte: Elaborada pelo autor.

Figura 114 — Progressao dos valores de coeficiente de penalizacao até o inicio das oscilagoes

para exemplo de flexdo em chapa por aplicacgdo de carregamento no centro
de sua face lateral
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Fonte: Elaborada pelo autor.

Para todos, utilizou-se O = 107!, Visualizando da esquerda para direita, apesar das duas
primeiras geometrias se apresentarem levemente diferentes dos resultados da Figura 116,
seus valores de flexibilidade s@o muito préximos. Dessa forma, o presente exemplo fornece
vales de func@o objetivo localizados muito proximos entre si dentro do dominio de projeto.

A partir dessa caracteristica, pode-se levar a conclusao, se considerada uma tolerancia de
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Figura 115 — Convergéncia corrigida para exemplo de flexao em chapa por aplicagao de
carregamento no centro de sua face lateral
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Fonte: Elaborada pelo autor.

Figura 116 — Topologias finais corrigidas do exemplo de flexdo em chapa por aplicacao de
carregamento no centro de sua face lateral para

Fonte: Elaborada pelo autor.

precisao, da existéncia de diversos 6timos. Ja a tltima configuragao se caracteriza como um
minimo local devido a seu valor de flexibilidade ser mais elevado, embora com o processo
apresentando estacionariedade segundo o critério proposto nessa posi¢ao do dominio de

projeto.

Além disso, mediante os ultimos resultados, comenta-se da necessidade de uma
agressiva alteracao topolégica nas primeiras iteracoes para se evitar a obtengao do minimo
local (ultimo resultado) da Figura 118. Essa configuracao é a moda dos resultados de uma
extensiva variacao dos parametros de alteragao topologica, em que se evitou apresentar
todos eles para preservar o texto de saturacao. Também ¢é véalido ressaltar que muitos desses
resultados s6 atingiram o ponto de estacionariedade gracgas a limitagao da atualizacao
do valor do coeficiente de penalizacao efetuada. No geral, quanto mais agressiva for a
insercao de orificios, maior é a tendéncia de se atingir a estacionariedade antes dos ciclos

de expansao e contragao do dominio, desde que as inclusdes conduzam a um 6timo. Esse
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Figura 117 — Progressao restringida dos valores de coeficiente de penalizagdo para exemplo
de flexao em chapa curta por aplicagao de carregamento no canto de sua
face inferior
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Fonte: Elaborada pelo autor.

Figura 118 — Topologias finais (iteracao 500) do exemplo de flexdo em chapa por aplicagio
de carregamento no centro de sua face lateral para:

(a) (b) (c)

Fonte: Elaborada pelo autor.

fator justifica a utilizacdo do outro critério de alteracao de topologia, o qual foi proposto.

6.4.3.2 Segundo critério de alteracao topologica

Ao se adotar o segundo critério de alteragao topoldgica, utilizou-se p = 16% com
atualizacado em progressao aritmética. Acerca da influéncia do valor da taxa de remocao na
obtencao de menores valores para a flexibilidade discutidos na se¢ao anterior, vale-se dos

mesmos comentarios tecidos para o exemplo anterior. Quanto maior o volume removido



177

pela insercao de orificios sem a degeneracao do dominio, maior é a taxa de sucesso do
algoritmo. Consequentemente, opta-se pela saturacao do dominio com remogoes maiores.
Dados e justificados os parametros para o critério de alteragao topoldgica, a Figura 119
ilustra o dominio heuristicamente obtido.

Figura 119 — Dominio heuristicamente obtido para exemplo de flexdo em chapa por apli-
cacdo de carregamento no centro de sua face lateral

(a) geometria

Fonte: Elaborada pelo autor.

Utilizando o dominio disposto na Figura 119 como inicial a conducao da otimizagao
topolédgica via MLS, geram-se os dados de convergéncia de flexibilidade e volume dispostos
na Figura 120. Ao mesmo modo que nos exemplos anteriores, utilizou-se apenas valores
que O que culminaram no sucesso do procedimento quanto a obtencao de um minimo ao

menos proximo ao que se espera do global quando da adog¢ao do primeiro critério. Por

Figura 120 — Convergéncia para exemplo de flexao em chapa por aplicagao de carga na
centro de sua face lateral utilizando a segunda alternativa de alteracao de
topologia
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Figura 121 — Topologias finais do exemplo de flexdo em chapa por aplicacdo de carre-
gamento no centro de sua face lateral considerando o segundo critério de
alteragao topologica para

(a) O =10"1 (b) O =102

Fonte: Elaborada pelo autor.

meio dos processamentos cujos dados de convergéncia foram apresentados, sao ilustradas
suas geometrias finais na Figura 121. Analisando-a, é evidente a semelhanca entre as
duas geometrias ilustradas e em relagao as apresentadas na Figura 116. Assim como os
que forneceram as geometrias dessa ultima figura citada, os processamentos poderiam
ter cessado por confirmacao de estacionariedade significativamente antes da iteracao
500. Apresentados os resultados para esse exemplo, tém-se como evidente o sucesso da

metodologia proposta.
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7 CONCLUSAO

Essa dissertacao, em sumula, tratou de aplica¢gbes do MEC a anélise de estruturas
enrijecidas e a otimizagao topoldgica, ambas em contexto plano. Representou-se estruturas
enrijecidas através do acoplamento MEC/MEC-1D, com a formula¢ao unidimensional
utilizada para descricdo das inclusdes em dominios planos. Foram verificadas e compa-
radas as aplicacoes do modelo classico de discretizacao em elementos lagrangianos e do
modelo de discretizacao isogeométrica. Acerca do processo de otimizacgao topoldgica, este
foi conduzido pelo MLS, enquanto se utilizou do MECIG para avaliacao mecanica do
dominio e consequente fornecimento de dados para a solucao do PVI descrito pela Equa-
¢ao de Hamilton-Jacobi. Ao longo do texto, diversos exemplos foram satisfatoriamente

apresentados para retratar todas essas aplicacoes do MEC estudadas.

7.1 Consideracoes finais

No Capitulo 3, foram apresentadas as formulagoes lagrangiana e isogeométrica do
MEC. Por meio de dois exemplos, um em EPT e o outro em EPD, ambos com solugao
analitica disponivel, foram verificadas e comparadas as duas abordagens. Observou-se que
a abordagem isogeométrica apresenta menor erro para geometrias curvas, mesmo com
um nimero menor de fontes, se comparada a lagrangiana. Para a tltima, verficou-se que,

mesmo com uma malha pobre, é possivel obter resultados razoavelmente precisos.

No Capitulo 4, apresentou-se a formulacao unidimensional do MEC. Dois exemplos
foram utilizados para verificar a implementagao. O primeiro provou a recuperagao da
solugdo analitica em todo o dominio para deslocamentos axiais e esforgos normais. Ja
o segundo retratou a possibilidade de recuperacao analitica de esforcos normais mesmo
quando a fun¢ao aproximativa nao é capaz de recuperar a funcao de deslocamento axial

analitica, bastando que represente com exatidao a funcao de forca de dominio.

No Capitulo 5, foi apresentada a formulacao do acoplamento do MEC com o
MEC-1D para representacao mecanica de dominios enrijecidos. Nos primeiros exemplos,
provou-se a eficiéncia da alternativa de discretizagao de enrijecedores proposta. A qual
consiste em um refinamento linear concentrado nas pontas para possibilitar a captacao dos
elevados gradientes ali previstos. Dessa forma, torna-se factivel uma boa representatividade
do esfor¢co normal no dominio do enrijecedor utilizando uma discretizacao mais pobre para
o trecho interno, cujos valores sao numericamente melhores comportados. Tal eficiéncia foi
comprovada para as abordagens lagrangiana e isogeométrica do MEC, quando da discreti-
zacao do meio, mediante trés exemplos. Neles, devido as suas caracteristicas geométricas,
nao se observaram diferencas significativas entre os usos dessas duas discretizacoes para

o meio. Além disso, também utilizando ambas, foi possivel obter resultados de esforgo
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normal nos enrijecedores fisicamente mais consistentes do que os fornecidos por modelos

purante em MEF do software comercial Ansys.

Outra discussao no capitulo foi quanto a possibilidade da presenca de quase-
singularidades envolvendo a integragao da equacao de pontos internos para fontes pertencen-
tes ao dominio de um enrijecedor. Dessa forma, torna-se necessario um pré-processamento
para evitar o cruzamento e a superposicao do dominio de fibras, os quais também sdo
fisicamente inconsistentes. Foram apresentadas duas metodologias de distribuicao alea-
toria de fibras: uma para dominios retangulares; e outra para anelares. Os resultados de
flexibilidade mediante variacao de taxa de fibras evidenciam o sucesso da representacao
mecanica da discretizagdo ao conduzir a resultados fisicamente consistentes. Ademais, por
meio do exemplo de geometria anelar, clarifica-se a diferenca de resultados em caso do uso

de uma discretizacao lagrangiana ou isogeométrica para o meio.

Ainda nos exemplos com distribuicao aleatoria de fibras, mostrou-se que, ao se
utilizar dimensoes, parametros elasticos e taxas de distribuicao de magnitudes realisticas, a
influéncia na flexibilidade do dominio é muito pequena. Além disso, a partir de resultados
advindos de convergéncia mediante refinamento em elementos quadraticos do MEC-1D,
mostra-se que o ganho de precisao quanto a flexibilidade é pouco influenciado pela
discretizacao e que cai significativamente apds a utilizagdo de 15 fontes por fibra. Por meio
dessa analise, também foi mostrado que o aumento do niimero de fontes de fibra contribui
bastante com o custo computacional do processamento. Conforme discutido, o ultimo fato
advém principalmente do acréscimo de integracoes devido a necessidade de equacoes de

deslocamento de pontos internos.

No Capitulo 6, dissertou-se acerca do problema de superficies méveis que constitui
o MLS. Descreveu-se sua solugao de primeira ordem no tempo e no espago. O primeiro
efetuado pelo Método de Euler e o segundo por Diferencas Upwind. Apresentou-se a
formulagdo do processo de otimizagao por meio do método do lagrangiano aumentado,
conjugando o negativo do gradiente da func¢ao lagrangiana aumentada a velocidade normal
ao espaco de imagem da funcao level set. Tal gradiente envolve grandezas mecanicas as
quais sao avaliadas pelo MECIG. Por meio desse processo, constroi-se o acoplamento entre
os dois métodos, admitindo que a level set evolua no sentido de minimizagao da funcao

lagrangiana aumentada.

Apresentada a formulacao de otimizacao topologica, descrevem-se dois critérios
heuristicos para alteracao de topologia via inclusao de orificios no dominio. O primeiro
ja era utilizado com sutis variagoes na literatura, enquanto o segundo foi proposto pelo
autor na tentativa de evitar a necessidades de parada do primeiro critério ao longo do
processamento ou do cessar da atualizacao de sua taxa de remocao. Além disso, visa-se
uma economia de custo computacional em se fazer a verificagdo de tensao em pontos do

dominio apenas em poucas iteragoes antes de propriamente iniciado o MLS. Também sao
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propostas metodologias para avaliagdo do valor inicial do coeficiente de penalidade do
método do lagrangiano aumentado, a qual é baseada na paridade numérica dos parametros
fisicos utilizados na construcao do campo de velocidades normais, e para verificacdo da

estacionariedade do processo, visando a identificacdo de um 6timo.

Para todos os exemplos retratados, verificou-se o desenvolvimento de ciclos de
contracao e expansao do dominio, os quais podem prejudicar a condug¢ao processo de
otimizacao se surgirem antes de verificada a estacionariedade do valor de flexibilidade
da estrutura. Tal transtorno foi solucionado ao se impor limites ao crescimento do valor
coeficiente de penalidade. Parar de atualiza-lo quando do atendimento da restrigao de
volume mediante uma tolerdncia se mostrou uma alternativa bastante eficaz e versatil.
Se essa restricao nao for o suficiente para controlar o crescimento desse valor, também é
mostrado que ha a possibilidade de se estabelecer um valor maximo para esse coeficiente.
Ao se evitar tais ciclos, possibilita-se o sucesso da otimizac¢do para uma maior variedade
de valores para os parametros de alteragao topoldgica e propriamente para o coeficiente
de penalidade. Consequentemente, torna-se o sucesso do processo menos suscetivel a tais

variabilidades.

A férmula proposta para o valor inicial do coeficiente de penalidade se mostrou
util em normalizar a escolha do pardmetro a um nimero menos dependente de pardmetros
fisicos da estrutura, tornando os valores aqui utilizados possivelmente gerais a diversas
configuragoes estruturais. Mostrou-se os problemas ao se adotar valores iniciais muito
elevados ou muito pequenos e como eles influenciam no processo dado o grau de priorizacao

do atendimento da restrigio de volume em detrimento da minimizac¢ao da funcao objetivo.

O critério de convergéncia proposto mostrou utilidade em captar 6timos, evitando
parada em trechos descendentes, ainda que de baixa inclinacdo. Aparentemente, o critério
¢é efetivo nessa captagao quando a convergéncia da estrutura é relativamente réapida. No
segundo exemplo, quando inserido o orificio que altera a conducao da otimizagao, o processo
passa a ocorrer de forma muito mais lenta. Nisso, pode haver regides de estacionariedade
parcial que prejudiquem o desempenho da metodologia. Dessa forma, recomenda-se que
seja salvo em memoria um historico relativamente extenso de valores de flexibilidade e

volume para evitar cessao do processo alguma dessas regioes.

Considerados os procedimentos supracitados, o processo de otimizacao topologica
conduzido ao se utilizar do primeiro critério de alteracao de topologia produziu excelentes
resultados se comparados aos consolidados do SIMP. Nessa comparacao, percebe melhoria
em relagdo aos obtidos por outros autores também utilizando o acoplamento MLS/MEC. As
comparagoes foram diretamente efetuadas em texto apenas com trabalhos que utilizaram as
mesmas condigoes fisicas e geométricas iniciais. Se observados os trabalhos com condi¢oes
semelhantes, os quais foram devidamente citados ao inicio de cada exemplo, também se

verifica a exceléncia dos resultados aqui obtidos.
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Por fim, ao se utilizar o segundo critério de alteracao de topologia, foi possivel obter
resultados igualmente consistentes se comparados aos melhores fornecidos se utilizado o
primeiro critério. Notou-se que os resultados finais da otimizacao por esse critério tendem a
ser melhores quanto maior a remocao de volume promovida pelas iteracoes evolucionarias
sem que o dominio seja degenerado. Também foi observado, e isso seria deveras esperado,
que a geracao de orificios maiores tende a promover essa maior redugao de volume antes

de sua satura¢ao no dominio.

7.2 Sugestées para trabalhos futuros

Como continuidade e tratamento mais formal a discretizagao dos enrijecedores,
sugere-se um procedimento de refinamento adaptativo para verificacao da eficiéncia da
saturacao de fontes nas extremidades do dominio. Ademais, tendo em vista o comum caso
de enrijecimento de matrizes anisotropicas, como o que ocorre nas variantes do concreto
estrutural, seria relevante a utilizacao de um modelo anisotrépico ao MEC, o qual pode ser
facilmente implementado via alteracao da solugao fundamental. Em adicao a isso, modelos
de fratura poderiam ser incorporados a andlise. Outra contribuicao seria a utilizagao da
formulagao de portico do MEC-1D para representacdo mecanica dos enrijecedores. Com
isso, poderia ser verificada a atuacao do efeito pino no corpo sélido, em caso de uma fissura

cruzar o enrijecedor.

Quanto as possibilidades de continuidade aos procedimentos de otimizacao to-
polégica, depara-se com uma vastidao. Pretende-se dar continuidade aos estudos aqui
executados utilizando o acoplamento MEC/MEC-1D com o MLS para otimizac¢ao to-
pologica de estruturas enrijecidas. Também sao validas a consideracdo de um modelo
anisotrépico para o MEC e a escrita da formulagao da otimizacao topologica no sentido de
minimizacao de volume sujeito a restricao de tensao. A tltima pavimentaria o caminho ao
desenvolvimento de otimizagoes topolégicas baseadas em confiabilidade (Reliability-based
Topology Optimization - RBTO) ao se escrever a restricdo de estado limite em fungao
da probabilidade de falha da estrutura. Ainda mantendo a otimizacdo no sentido de
minimizacao de flexibilidade sujeito a uma restricao de igualdade de volume, seria possivel
incorporar aleatoriedades para transformar a otimizagao topoldgica em robusta (Robust
Topology Optimization - RTO). Por fim, incluindo a formulagao atual dessa dissertagao,
qualquer extensao para contexto tridimensional mantendo a caracteristica isogeométrica

seria disruptiva.
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APENDICE A - FUNDAMENTOS DE ELASTICIDADE

Incorporando-se maior formalismo matematico as teorias elementares de Resisténcia
dos Materiais, a Teoria da Elasticidade é um ramo da Mecanica dos Meios Continuos
que busca descrever matematicamente o comportamento mecéanico de solidos os quais
apresentam tendéncias fisicas elasticas, ou seja, que retornam da configuracao deformada a
inicial ao cessar de uma solicitagdo. A partir de hipéteses de continuidade do meio, busca-se
descrever tais relagoes através de fungoes continuas ainda que por partes, tornando-se

possivel a inser¢cao nos modelos matematicos das ferramentas do Calculo.

Neste capitulo, busca-se discutir os fundamentos de elasticidade tratados no traba-
lho, como os conceitos de tensao e deformacao, forcas de superficie, equagoes de equilibrio
e propriedades constitutivas de materiais elasticos. Sua intencao nao é de substituir textos
classicos e consolidados na literatura, dentre os quais podem ser citados Timoshenko e
Goodier (1987) e Chou e Pagano (1992), mas de possibilitar ao leitor rapida consulta aos

fundamentos utilizados no texto.

A.1 Tensao de Cauchy

Para se definir o conceito de tensao, leva-se em conta um sélido submetido a um
conjunto de forcas cujo somatorio de contribuigoes ao equilibrio provoque uma nulidade
(diz-se autoequilibradas), conforme pode ser visto na Figura A.1(a). Ao se partir o elemento
em duas unidades, no plano de secao é identificada uma distribuicao de forcas, a qual
deve existir de maneira que ambas as partes resultantes da divisao do sélido primordial
satisfagam o equilibrio, a qual é ilustrada na Figura A.1(b). Ao se efetuar tal equilibrio para
uma das porgoes, verifica-se que a resultante da distribui¢do possui médulo equivalente,
porém direcao oposta a das agoes aplicadas na por¢ao analisada. Ou seja, possui modulo
equivalente e mesma direcao das acoes aplicadas a outra parte do solido, uma vez que se

encontrava em equilibrio.

Ao se extrair um infinitésimo de area da secao de divisao do sélido, como ilustra a

Figura A.1(c), define-se tensdao como
(A1)

em que o vetor dF', em notacao diadica, ou dF; em notagao indicial ou ‘de Einstein’,
representa o vetor de forgas infinitesimais atuantes sob a area infinitesimal dA da segao
extraida. Em uma razao entre essas duas grandezas, no limite da area tendendo a zero,

define-se o vetor tensao t, ou t;, o qual possui a mesma direcao do vetor dF;.
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Figura A.1 — (a) Sélido sob agdes autoequilibradas. (b) Por¢ao do sélido. (¢) Infinitésimo
de area da secao de particao.

’dﬁ
By i
dAé{(
Q< (af - 7)
(a) (b) (c) 4F - (aF -

Fonte: Elaborada pelo autor.

~

E possivel decompor o vetor tensdo em uma componente normal e outra tangencial
A 4rea onde ele atua. Para o primeiro caso, efetua-se o produto escalar de ¢ com um versor
7 de diregdo normal ao plano de dA e no sentido de saida do s6lido remanescente. Com o
escalar resultante da operacao, basta multiplica-lo pelo versor 7 para se definir o vetor
de projecdo de ¢ nessa direcdo. A obtencio do vetor na direcdo tangencial pode ser feita
simplesmente pela subtragdo do vetor original por sua projecao na dire¢do normal. A Figura
A.1(c) mostra esse procedimento para o vetor dF , porém como a area é uma grandeza
escalar, executar a operacao para esse vetor e depois dividi-lo pela area é equivalente a se
calcular o vetor tensao na direcao de dF e depois definir suas componentes nas diregoes
de interesse. E a partir dessa propriedade que se verifica que o vetor tensdo possui de fato

as propriedades de um vetor, pois elas sao conservadas do vetor de forcas.

A partir de 6 planos de corte, paralelos aos pares, com distancias nulas entre si e
ortogonais aos eixos coordenados, retira-se um ponto do sélido da Figura A.1(a), que pelas
caracteristicas de seus planos de corte, assume a geometria de cubo virtual de distancia
nula entre suas faces, conforme Figura A.2. As faces cujo versor normal na dire¢ao externa
ao cubo possui mesmo sentido ao do eixo coordenado que lhes é ortogonal sao ditas como
‘de saida’, em caso oposto diz-se ‘de entrada’. Pela Terceira Lei de Newton, identifica-se
que o vetor tensao atuante em uma face de entrada possui mesmo modulo, porém direcao
oposta ao da face de saida que lhe é paralela. Além disso, é conveniente referenciar o vetor
tensao em cada face por suas componentes normais e tangenciais a ela, para cada qual
atribui-se a letra o, que em notacao indicial é acompanhada por dois indices: 7 para a face
em que a tensdo atua; e j para a direcdo que ela segue. Tais indices variam conforme as
dimensoes de analise, mas para o caso geral (tridimensional) i = 1,2,3 e j =1,2,3. Se
face for de saida, a convencao de sinais comumente utilizada na Mecéanica dos Sélidos é de

que as tensoes apresentam sinais positivos quando seguem o sentido dos eixos coordenados,
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com o oposto no tocante aos sinais valendo para faces de entrada. Com isso, verifica-se

que tensoes normais de tragdo sao positivas, enquanto tensdes compressivas sao negativas.

Figura A.2 — Estado de tensao

z3
A
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——> 032
031 /
023

013
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011

Z1

Fonte: Elaborada pelo autor.

Ao estado de solicitacdo no ponto representado pela Figura A.2 atribuiu-se o nome
de ‘estado de tensao’, o qual representa as direcoes atuantes em cada uma de suas faces,
sendo identificada em cada direcao de atuagao. O estado de tensdo em um ponto é avaliado
por

011 012 013
Oij = |021 022 023|, (A.2)

031 032 033

que é chamado de Tensor de Tensoes de Cauchy, cujo indice i, representante das faces,
designa as linhas do tensor em representagao matricial, e o indice j, representante da

direcao, designa suas colunas.

Se algum dos planos de corte anterior nao respeitar as condigoes de paralelismo
com um par e consequentemente ortogonalidade com os outros, o ponto extraido possui a
geometria virtual conforme a Figura A.3, a qual representa o Tetraedro de Cauchy. Na
face inclinada, de drea dA, atua um vetor tensio t, j4 nas outras faces, atuam as tensoes
que constituem o Tensor de Tensoes de Cauchy, Eq. (A.2). Impondo o equilibrio estético

ao ponto, tem-se o sistema de equagoes

tl dA = 011N dA + 0921 N2 dA + 031 N3 dA
thA:O'unl dA+022n2dA+032n3dA s (AS)
t3 dA = 013 M1 dA + 0923 Mo dA + 033 N3 dA

em que a linha 7 representa o equilibrio de forcas na direcao x;. Dividindo o sistema pelo
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escalar dA, tal pode ser representado matricialmente como

1 011 021 031 i
to ¢ = |012 022 O3 M2 ¢ (A.4)
t3 013 023 033 73

que também pode ser representado de uma forma mais compacta por notacao indicial por

ti =04 1;- (A5)

Figura A.3 — Tetraedro de Cauchy

T

Fonte: Elaborada pelo autor.

As Egs. (A.4) e (A.5) sao formas distintas de se escrever a Férmula de Cauchy, a
qual relaciona um vetor tensao atuante em um plano qualquer com o estado de tensao
pontual em um sistema de coordenadas arbitrario. Se o plano de orientacao genérica 7 se
tratar da superficie do sélido, entao diz-se que nela atua um vetor de tensoes de superficie
7, que nesse caso substitui o vetor ¢ na Férmula de Cauchy, a qual ndo possui a limitacio

de aplicagao apenas no interior do sélido.

A.2 Equacoes de equilibrio

Até o momento, analisou-se apenas espacos pontuais de um continuo, ja quando
se analisa um infinitésimo, torna-se necessario supor varia¢oes das grandezas de analise
ao longo das dimensoes infinitesimais do novo espago de analise. Utilizando a Expansao
de Taylor para representar essas variacgoes, devido a ordem de grandeza dos infinitésimos,
¢é factivel anular seus produtos entre si, restando apenas o termo linear na série. Para

representar o processo de forma visualmente mais pragmatica, faz-se a andlise por planos
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Figura A.4 — Variacao das tensoes
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Fonte: Elaborada pelo autor.

base do volume infinitesimal ctibico, como o exemplificado na Figura A.4, que retrata o

plano xy xs.

As Séries de Taylor utilizadas para calcular as tensoes nas faces do volume in-
finitesimal foram centradas na origem do sistema de coordenadas, a qual também é o
centroide do cubo. Para a imposicao do equilibrio, transforma-se as tensoes em forgas ao
multiplica-las pelas dimensoes das faces em que atuam. Por o dominio ser de dimensoes
infinitesimais, é pertinente tratar as tensdes como distribuigoes constantes ao longo de
cada face a qual cada uma atua, o que faz com a forga resultante esteja localizada nos

seus centroides.

A.2.1 Equilibrio translacional

Para o estabelecimento do equilibrio de um corpo quanto a graus de liberdade de
translacao, parte-se das trés equacoes fundamentais da estatica de equilibrio de forcas, as
quais prescrevem nulidade da resultante em trés dire¢oes base linearmente independentes
entre si. Para o infinitésimo aqui tratado, analisou-se as dire¢oes de seus eixos coordenados.

No eixo z1, tem-se

Joqy dx 0oy dx

o11 + 813111 71 d.TQ dl‘g — | 011 — 8;11 71 dl’g dl’3+
0oy dx 0091 dx

0921 + 81'221 72 d.’ﬂl d.’L’g — | 021 — Wzl 72 dl’l dil?3+ (A6)
dosz; dx 0dosy dx

o3 + 81'331 73 dlL’l dl’z — | 031 — 87331 73 dl’l d$2+

b1 d[El dlEQ dl’3 = 0,
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em que b; é a componente na dire¢do x; de uma forca distribuida ao longo do dominio. A
expansao de o3; ndo aparece na Figura A.4 para evitar poluicao visual, mas, de forma

analoga ela poderia ser representada ao se analisar o plano x; 3.

O procedimento para obtencdo das equagoes de equilibrio segundo os eixos z2 € x3
é analogo ao mostrado para x;. Analisando a Eq. (A.6), nota-se que os termos de base da
expansao podem ser cancelados, restando apenas termos multiplicados por dx; dxs dxs.
Tal produto representa fisicamente o volume infinitesimal dV de andlise, pelo qual se pode

dividir as trés equacoes de equilibrio, resultando em

o ooy dosy
8271 61‘2 01’3

0012 0029 0032
by = AT
8$1 + 81‘2 + 01‘3 t o 0 ’ ( )

Jo do do
13 00 | 0033

8ZE1 8952 (%3

o qual pode ser escrito de forma compacta por

+b1:O

+by=0

o'V (e)+b=0, (A8)

=

onde V (e) é vetor operador derivada parcial, ou em notagao indicial como
Oij,i + bj =0. (AQ)

A.2.2 Equilibrio rotacional

Quanto aos graus de liberdade de rotacao, as equagoes fundamentais de estatica as
quais garantem o equilibrio estabelecem nulidade de momento em relagao a trés diregoes
linearmente independentes. De forma analoga ao equilibrio translacional, foram utilizadas
as dire¢oes dos eixos coordenados, cuja coincidéncia de sua origem com o centroide do
volume infinitesimal acarreta momento nulo devido as forcas normais aos planos. Realizando
o somatorio de momentos em relagdo ao eixo g, conduz-se-se a

Jdoyy dx dx Joqy dx dx
((712 + 8;12 21> d;UQ d:c?, 71 + <0’12 - aZL’lf 21> dl‘g dxg 71_

60'21 diL‘Q dl’g 80'21 d$1 dﬂ?g
T2 oy das 2 — gy — D2 T Gy day 2 =
<Uz1+ 9z, 2 ) 1 drs — (Uzl oz, 2 > 1 dry — 0

. (A10)

cujos termos de primeira derivada se anulam, restando apenas termos base da expansao, os
quais sdo multiplicados por dV/4, pelo qual também se pode dividir a equagao, resultando
em

012 = O91. (A.11)

Ao se executar o mesmo procedimento para os eixos ' e x, tem-se o Teorema de
Cauchy, representado por
aij = Ujia (A12)

que confere simetria ao tensor da Eq. (A.2).
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A.3 Deformacao linear

Os deslocamentos de cada ponto de um corpo sao descritos por uma funcao vetorial
de deslocamentos , ou u; em notacao indicial, cujo indice ¢ varia 1 a 3 ao se considerar o
caso mais geral (trés dimensoes). Esse vetor tem como significado fisico o vetor posicao
final de um ponto apds os efeitos de uma agdo em um corpo subtraida do seu vetor posicao
inicial de andlise. Ja por deformacao entende-se como a medida relativa da mudanca
de configuracao do espaco ocupado (dominio) de um corpo apéds a aplicagdo de uma
determinada acao. Os campos de deformacgao sao obtidos através de relacoes cinematicas
entre as componentes do vetor de deslocamentos, e quando estes e as rotagoes do corpo sao
tidos como pequenos em relacao a ordem de grandeza do dominio de analise, assim como
as proprias deformagoes por eles obtidas, elas sao ditas ‘lineares’. Essa hipotese permite a
simplificacao de fungoes trigonométricas como: sen (0) = 0; cos (#) = 1; e tg(f) = 1. Em

que 6 descreve a rotagao de um ponto.

A Figura A.5 retrata os deslocamentos no plano x; o de um elemento infinitesimal,
por meio da qual torna-se possivel extrair as relacdes cinematicas para a construcao dos
campos deformacao. De forma analoga ao procedimento para avaliacdo de tensoes em cada
face na secao anterior, utilizou-se a Série de Taylor centrada no vértice A para a avaliagio
dos deslocamentos nos outros vértices. Novamente, desconsiderando os produtos entre

infinitésimos devido a sua ordem de grandeza, resta apenas a parte linear da expansao.

Figura A.5 — Deslocamentos no plano z x»

T24
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A - - - == +
B I !
c D] !
| |
| |
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1 ]a Bl ! :
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Fonte: Elaborada pelo autor.
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A deformagao longitudinal de um seguimento reto é avaliada por

. [ —1y
1= )
lo

(A.13)

em que [ é comprimento final do seguimento e [y o inicial. Ao se analisar o seguimento AB
da Figura A.5, tém-se que seu comprimento inicial é o infinitésimo dz, ja na configuragao

deslocada

AP = dzy + w1 + 2 gy — u1> ey + g, (A.14)

1
cos (bz7) < 01 0y

Substituindo Iy por AB e [ por A’B’ na Eq. (A.13), obtém-se a deformacao longitudinal

do seguimento AB, descrita por
8u1

Avaliando o comportamento do seguimento AC, de comprimento inicial dxs, seu

comprimento final é escrito como

_ 8uz 8u2
AC = —— (d —dxy — =d —= dxs. A.16
oS (QTC,) < To + Ug + ax2 T2 u2> To + 8372 i) ( )
Substituindo ambos de forma analoga ao executado para o seguimento AB na Eq A.13,
chega-se a
3u2
—_ = —. A.17
Eac 07y ( )

Quanto a distor¢cao de um vértice, essa por ser avaliada por quanto foi a reducao
do seu angulo interno. Em caso de aumento desse angulo, convenciona-se que a distorcao
possui sinal negativo. No caso do vértice A, a sua distorcao ¢ calculada pela soma de 055

e 04757, com o primeiro sendo definido por

8U2d
—dzx
Oy~ sen(Bggy) — 20— 02 A
N sellag) = =5 — =5 = (A.18)
e o segundo por
0u1 d
o ou
Ozer = sen(Oger) = IdeQ = ax;. (A.19)
Portanto, a distor¢ao do vértice resulta em
0 0
f2 o (A.20)

VAZETEI 87:@

Definindo um tensor de deformagoes para um ponto aos moldes do tensor de tensoes
para a entao avaliacao do agora ‘estado de deformacao’, considera-se que e €117 = €45,
€99 = E4 € €12 = €21 = Ya/2, podendo escrevé-lo em notacao indicial como

Uit Uy

iy = ST, (A.21)
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o qual é a parte simétrica do gradiente do vetor de deslocamentos do ponto. A divisao
por 2 da distor¢ao v4 ¢ em sentido de média e da origem a distor¢ao matematica, a qual
confere propriedades tensoriais de rotacao ao tensor de deformacoes nao existentes quando

se considera a distor¢ao v por defini¢ao.

A obtengao da Eq. (A.21) foi feita a partir de uma andlise bidimensional no plano
x1 x9. Entretanto, procedimento andlogo pode ser executado para os planos z1 x3 e x5 3,
cujo acoplamento para uma analise tridimensional nao altera a validade da Eq. (A.21). A
mudanga ocorre apenas nos seus indices, os quais variam de 1 a 2 para o caso bidimensional

e de 1 a 3 para o tridimensional.

A.4 Leis constitutivas

Em um problema tridimensional de elasticidade, depara-se com 9 incognitas de
tensao, 9 de deformacao e 3 de deslocamento, totalizando 21. Das simetrias dos tensores
de tensoes e deformacodes reduz-se esse nimero para 15. Confere-se que do equilibrio
translacional tém-se 3 equacoes e da compatibilidade entre deslocamentos e deformacoes
tém-se mais 6 equagoes. As 6 equagoes restantes sao extraidas de dados experimentais os
quais buscam catalogar a relagao entre tensao aplicada e deformacgao para cada material.
Da modelagem matematica entre essas relagoes, denominam-se as Leis Constitutivas, que

para uma relagao linear e elastica entre as grandezas de interesse, tém-se a Lei de Hooke.

Matematicamente, a relagao geral entre tensao e deformagao para materiais elasticos
¢é descrita por
Tij = Cijkl Ekls (A.22)

com 7, j, k,l = 1,2,3 para o caso geral. O tensor de quarta ordem c;;; ¢ denominado tensor
constitutivo elastico e carrega as informagcdes das 81 constantes elasticas que relacionam

as grandezas de interesse. Também ¢ valida a relacao inversa
€ij = dijki Ok, (A.23)
em que o tensor d;jp ¢ o inverso de c¢;;,; e é denominado tensor de flexibilidade.

Devido a simetria do tensor de tensoes de Cauchy e a do tensor de deformagoes
lineares, os tensores constitutivo elastico e de flexibilidade possuem simetria entre i e j e
entre k e [, o que faz com o que o nimero de constantes reduza para 36. Ainda por relagoes
energéticas, é possivel mostrar que também a uma simetria entre 75 e kl, reduzindo o
numero de termos distintos para um material anisotrépico para 21. J& para um caso de
isotropia, as Unicas constantes necessarias sao o modulo de elasticidade E e o coeficiente

de Poisson v, os quais nao variam com a dire¢ao de solicitacao.

Tendo em vista um material isotrépico, é possivel escrever a Eq. (A.23) como

1
S (A.24)

5567 |
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em que 0;; ¢ tensor Delta de Kronecker e G é chamado de médulo de elasticidade transversal,

o qual ¢é calculado como

E
G- __ 2 A25
2(1+v) ( )
Para Eq. (A.24), também é vélida a relagdo inversa equivalente a Eq. (A.22),

descrita como
05 = QGEU + )\Skkz (Sij, (A26)

onde ), intitulada Constante de Lamé, é avaliada por

Ev
A:(1+u)(1—2y)' (A.27)

A.5 Estados planos

Em alguns problemas tipicos de engenharia, torna-se conveniente fazer uma redugao
da dimensionalidade da analise geral de problemas de elasticidade para casos planos
(bidimensionais). Isso torna-se vidvel quando por alguma simplificagdo plausivel os termos
do tensor de deformagoes ou do tensor de tensoes referentes a uma das trés dimensoes base
sejam nulos. Se isso ocorrer para o tensor de deformacoes, entao se trata de um Estado
Plano de Deformacao (EPD), ja se ocorrer para o tensor de tensoes, entdo se trata de um
Estado Plano de Tensao (EPT).

A.5.1 Estado Plano de Deformacao

Uma simplificacdo via EPD pode ser abordada a problemas em que uma das
dimensoes de analise seja largamente superior as outras duas. Um caso tipico de aplicacao
na engenharia civil é na andlise de tensoes e deformacao de taludes e barragens, os quais

tipicamente respeitam essa condigao.

As diregoes do sistema de coordenadas para problemas de elasticidade sao arbitrarias
desde que em andlises cartesianas seja mantida sua independéncia linear, portanto é
conveniente anular as deformagoes da terceira direcao de andlise (e13 = 0, g953 = 0 e
e33 = 0), de forma que agora em notacao indicial se trabalhe com indices variando de 1 a
2. Desta forma ainda é possivel se utilizar a Eq. (A.26), com a tensdao normal na diregao 3

podendo ser calculada a posteriori por
o33 = —v (011 + 022) (A.28)

enquanto as componentes de tensao cisalhamento atuantes na face perpendicular a terceira

direcao sao nulas pois dependem apenas das distor¢oes nela.

A relacao inversa descrita pela Eq. (A.24) entretanto precisa de uma adaptagao
devido a possivel nao nulidade de o33, escrevendo-se

1 _
— Z Okl 52']" (A29)

%567 T F
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em que 7 é o coeficiente de Poisson adaptado, o qual é descrito por

(1+v)

U =

(A.30)

A 5.2 Estado Plano de Tensao

A simplificacdo por meio do EPT é conveniente em problemas cujo dominio possui
uma dimensao muito inferior as demais e cujas faces representantes do contorno do
problema perpendiculares a essa mesma dire¢ao apresentem condi¢ao de nulidade tensoes.
De forma andloga ao descrito para o EPT, é conveniente tratar os termos de tensao
referentes a face perpendicular a terceira dire¢do como nulos (013 = 0, 093 = 0 € 033 = 0).
Analisando as condi¢oes descritas que tornam conveniente a abordagem via EPT, nota-se
que pode haver tensoes na terceira direcao com a variacao da coordenada da terceira
dimensao, entretanto como seu suporte é pequeno e no contorno essas componentes sao

nulas, cabe seu desprezo no dominio.

O EPT é vastamente aplicado em problemas de engenharia envolvendo chapas e
vasos de pressao. Ao se analisar as condi¢goes matematicas da abordagem, nota-se que a Eq.
(A.24) ainda possui validade com a mudanca na variagao dos indices, com a deformacao

normal na terceira direcao podendo ser calculada a posteriori por

v
f3=—f (011 + 022), (A.31)

enquanto as componentes de distorcao em faces perpendiculares a essa mesma dire¢ao sao

nulas pois dependem apenas das tensoes de cisalhamento nelas atuantes.

No caso da Eq. (A.26), para essa é necessaria uma modificagao devido a possivel

nao nulidade de £33, a qual pode ser escrita como
045 = QGEZ‘]‘ —f—XEkk 5ij7 (A32)

em que A se trata de uma adaptacdo da Constante de Lamé, agora definida por

Ev
1+v)(1-v)

A= (A.33)

A.6 Solucao de problemas de elasticidade

Com a adicao das leis constitutivas, completa-se 15 equagoes para as 15 incdgnitas
de um problema geral de elasticidade, o qual se caracteriza como um PVC em que as
condigoes de contorno essenciais sao de deslocamento e as naturais sao de forcas superficiais,
as quais sdo dadas perante aplicacdo da férmula de Cauchy, descrita pela Eq. (A.5), aplicada
no contorno, em que p; substitui ¢;. A Figura A.6 mostra um sélido cujo contorno apresenta
condigoes essenciais (u), naturais (p) e mistas, quando as duas acontecem em uma mesma

regiao.
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Figura A.6 — Deslocamentos no plano x;

S

Fonte: Elaborada pelo autor.

Existem varias formas de solugdo do PVC em elasticidade, porém serdao apresentadas
ao longo do texto apenas a Funcao de Tensao de Airy, representando uma forma de solucao
classica em tensoes, e a Equagao de Navier-Cauchy utilizando o Vetor de Galerkin, a
qual representa uma forma de solug¢ao em deslocamentos 1til a construgao de solugoes

fundamentais para o MEC.

A.6.1 Fungado de Tensao de Airy

A presente técnica foi inicialmente conceituada para solucao de problemas bidimen-
sionais de elasticidade, mas que hé serventia como base para a estratégia de problemas
tridimensionais através das Fungoes de Tensao de Beltrami. Devido a caracteristica dessa
solucao ser dada em tensoes, é necessario que as condi¢des no contorno sejam integral-
mente naturais, de forma que sua aplicagao é feita a dominios que possuam solicitagoes

autoequilibradas.

Inicia-se a técnica definindo duas fungoes potenciais ¢ e V', as quais sdo meramente
artificios matematicos e nao possuem significado fisico relevante, mas que por meio delas

sejam definidos:

o1 = ¢+ V; (A.34)
0929 — ¢711 + V, (A35)
O12 = =P 12. (A.36)

Tais equagoes podem ser utilizadas na imposicao do equilibrio estatico translacional,
descrito pela Eq. (A.9), obtendo-se perante sua satisfacio o vetor de forgas de dominio

descrito por
b =—-V,, (A.37)

)

o que implica que elas sejam conservativas.
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Partindo-se de uma abordagem via EPT, através da Eq. (A.21) é possivel a obtencao
de equacgoes de compatibilidade de deformagoes, mas, perante as simplificagdes do estado,
convém-se atender apenas a

E11,22 T €22,11 = 2€12,12, (A.38)

uma vez que as outras apresentam tendéncia a satisfagdo natural com a reducao da menor

dimensao do sdlido.

Por meio da aplicagdo da Lei de Hooke a Eq. (A.38) e com alguma manipulagao
algébrica, mostra-se que
011, =+ 022 kk = — (1 + I/) bu. (A39)

Enquanto em caso de assuncao de EPD, a equacao obtida seguindo o mesmo procedimento

seria
1

Tt (A.40)

O114i + O22kk = —

Devido ao mantimento da Eq. (A.26) para esse estado, é conveniente escrever a relacao

para EPT de forma semelhante. Para isso, pode-se usar a Eq. (A.30), transformando a Eq.

(A.39) em
1

a-n"
Substituindo as Eqgs. (A.34), (A.35) e (A.37) na Eq. (A.41) e ao se desenvolver

algebricamente, mostra-se que

011, + 022k = — (A.41)

O iikk = _((21u_—1/1>) Vau, (A.42)

a qual pode ser escrita em notagao dyadica como

27— 1)
vig= 27"V gy A43
o=-Cr v (A43)
em que V2 (e) é o divergente do vetor operador derivada parcial (vetor gradiente), o qual
também é referenciado como operador laplaciano, e V* (e) é tal operador aplicado a ele

mesmo, também conhecido como operador bi-harmonico.

Para uma abordagem via EPD, a tnica mudanga nas Eqs. (A.42) e (A.43) é de
que o coeficiente de Poisson v utilizado é padrao e nao o adaptado 7. Além disso, em caso
de nulidade das forgas de dominio, as abordagens via EPD e EPT conduzem igualmente a
forma homogénea das Eqs. (A.42) e (A.43).

A.6.2 Equacao de Navier-Cauchy

Quando as condic¢oes de contorno do problema sao integralmente essenciais, torna-se
conveniente trabalhar com equagoes em deslocamentos, obtendo-se uma solugao primaria

baseada na mesma grandeza. Para o PVC em elasticidade, isso pode ser feito ao se
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transformar a Eq. (A.9) escrita em tensoes para deslocamentos. Nesse caso, busca-se a
principio converter a Eq. (A.26), que escreve o tensor de tensdes como fungdo do tensor
de deformacgoes, para uma fungao do vetor de deslocamentos. Isso é facilmente executado

por meio da Eq. (A.21), conduzindo a

055 = G (um + UM) + )\Uk,k 513 (A44)

Substituindo a Eq. (A.44) na Eq. (A.9), considerando a simetria do tensor de

tensoes e operando algebricamente, é possivel chegar a
Guijj+ A+ G) i+ b =0, (A.45)

a qual é a forma estatica da Equacao de Navier-Cauchy. Dentre as possiveis formas de
solucao dessa equacao, aqui é apresentada a que de fato possui utilidade ao trabalho

desenvolvido, chamada de Vetor de Galerkin.

A.6.2.1 Vetor de Galerkin

Para a solucao da Equagdo de Navier-Cauchy por esse método, é conveniente
substituir a Eq. (A.27) na Eq. (A.45) e dividi-la pelo médulo de elasticidade transversal

G, resultando em
1
Ui jj + Ujii + G b; = 0. (A.46)

(1-2v)

Admite-se que exista uma funcao vetorial F , chamada de Vetor de Galerkin, a qual

possui funcao de artificio matematico e carece de significado fisico relevante, de tal forma

que
1
U 7, 2(1—v) ™ ( )
Efetuando-se seu divergente, chega-se a
1
Ujj = Fjmmj — 2(1—) Fojmi (A.48)
cujo gradiente é calculado, obtendo-se
1
Ujji = Ljmmgi — 21— Fon jmji- (A.49)

Nota-se que a troca do indice j na Eq. (A.47) por um indice i ndo altera a assuncao

desde que ambos variem no mesmo intervalo, possibilitando escrever

1

i = Fymm — 77— Fmims A.50
B I (A.50)
da qual se calcula o laplaciano
1
Ui jj = Fimmgj — 21— Fonimjj - (A.51)
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Multiplicando a Eq. (A.49) por 1/ (1 — 2v), somando-a a Eq. (A.51) e considerando
o Teorema de Schwarz no tocante a derivadas cruzadas dos termos do Vetor de Galerkin,
tém-se

1
Ui jj + =21 W) ji = Fimmyj (A.52)

que pode ser substituida na Eq. (A.46), conduzindo a

1
Fmejj + E bz = 0, (A53)

a qual constitui trés equagoes diferenciais parciais desacopladas, que podem ser resolvidas
para cada termo do Vetor de Galerkin. Com sua obtencao, o vetor de deslocamentos é
conhecido pela Eq. (A.50). Em caso de inexisténcia de forgas de dominio, vale a forma
homogénea da Eq. (A.53).

Para um caso de EPD, a Eq. (A.27) no processo de transformagao de deformagao
para tensdo permanece a mesma, portanto a Eq. (A.46) e o desenvolvimento do Vetor de
Galerkin mostrado continuam validos. Ja para o caso de EPT, ainda é possivel fazer uso
das equagoes aqui mostradas utilizando o coeficiente de Poisson modificado mostrado na

Eq. (A.30).
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APENDICE B - EQUACAO DIFERENCIAL DE DESLOCAMENTO AXIAL

Esta parte do apéndice tem como objetivo apresentar uma deducao para a equagao
diferencial de deslocamento axial de forma a servir de referéncia para outras passagens
do texto. Ressalta-se a relevancia dessa se¢ao ao ser necessaria a demonstracao de sua
solucao fundamental e a formulacao dos enrijecedores utilizados no trabalho. Modelados

por elementos de contorno unidimensionais de treliga.

Parte-se da relacao cinematica do modelo. Acompanha-se a mudanca de configuracao
de uma sec¢ao infinitesimal qualquer de um corpo na Figura B.1, cuja posicao inicial é

representada por x e a final por y. Observando a figura, é evidente que
r+u(r)+dy=x+dr+u(r+de), (B.1)

em que u é a fungdo de deslocamento axial. Simplificando e dividindo por dx, obtém-se

dy —dv  u(v+dzr)—u(z)
dr dr ' (B-2)

Nota-se que o termo a esquerda da equacao anterior é a deformacao longitudinal conforme
defini¢ao via Eq. (A.13). Quanto ao termo a direita, se dz for pequeno, seu valor tende a

derivada de v em relacao a x. Como o regime ¢ de linearidade geométrica,

du

5l:£»

(B.3)
assim como na Eq. (A.21).

Figura B.1 — Relacao cinematica de deslocamentos axiais

dz
 —
x u(x + dz)
d
b Y
u(x)
, y

Fonte: Elaborada pelo autor.

Efetua-se agora o equilibrio de uma secao infinitesimal qualquer sob solicitagoes
conforme ilustrado pelo Figura B.2. Impondo a nulidade do somatorio de forgas na diregao

horizontal, tém-se

N(:B)—l—cil];fdib—l-b($) dx = N (x), (B.4)
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em que se fez uso da série de Taylor para representacao do esforgo normal em (z + dx).

Anulando N (z) nos dois lados e dividindo a equagao por dz, conduz-se a

dN

—+b(@) =0, (B.5)

Figura B.2 — Equilibrio de se¢ao infinitesimal

dz
N () . N (z + dx)
b(x)

Fonte: Elaborada pelo autor.

Assumindo distribuicao de tensao constante ao longo da area da secao transversal,

o esfor¢o normal pode ser calculado por

N = / o dA. (B.6)

Substituindo na equagao anterior a Lei de Hooke e posteriormente a Eq. (B.3), conduz-se a

du
N (z) = EA%. (B.7)

Derivando a equagao resultante em relacao a x e substituindo a derivada do esfor¢co normal

pela Eq. (B.5), obtém-se
AT L p@) =0 (B.8)
dx? o '

que se trata de uma Equacao de Poisson unidimensional.



223

APENDICE C - SOLUCOES FUNDAMENTAIS

Nesta parte do apéndice, serao mostradas as dedugoes das solugdes fundamentais
utilizadas no estudo para ponderar as formas em residuos ponderados das equagoes de
elasticidade e de barras. A primeira delas é conhecida como Solugdo Fundamental de
Kelvin e foi apresentada para um dominio infinito bidimensional, a qual é utilizada na
solugdo de problemas de elasticidade via MEC. Outra solu¢ao fundamental citada ao longo

do texto ¢ a de barra ou de deslocamento axial, que ¢é util ao MEC-1D.

C.1 Solucao Fundamental de Kelvin

Essa solucao consiste em resolver um problema de elasticidade estatico via desloca-
mentos ao se utilizar a Equacao de Navier-Cauchy com uma solugdao baseada no Vetor
de Galerkin, conforme a Eq. (A.53), considerando a interpretagao do vetor de forgas
de dominio b; como funcgoes Delta de Dirac em cada uma de suas diregoes, a qual é
representada por ¢ (s, f), com f significando field (campo) e s source (fonte). Se f # s,

entdo 0 (s, f) =0,ese f =3, 0(s, f) =o0. Por meio dessa propriedade, é valido que

/ 5 (s, f) dQ =1, (C.1)
Qoo
na qual €, representa um dominio infinito com condig¢oes de contorno nulas. Tal aplicacao
possibilita que o problema geral seja decomposto em niimero de problemas equivalente a
dimensionalidade da andlise (dois nesse caso), em que é verificada a influéncia da fungao
Delta de Dirac individualmente em cada caso a principio, os quais sdo superpostos ao final.
A Figura C.1 ilustra esse procedimento, em que I', representa um contorno infinito, uma

vez que assim é o seu dominio.

Figura C.1 — (a) Problema de Kelvin. (b) Componente horizontal. (¢) Componente vertical.

xu 372“ xzu
//’—§\\ //’—§\\ //’—§\\
N\ \ N\
// “____f\ // - T T T A //5 ) U ) G
| | S e AN
/ (s, f)-e2| 7 | \\ / P fl \\ (5, 1) ez 7 fl \
I I I
’ -t = ’ —t + ’ —t>
‘ MG ) e = ! 516 (s, f).e1 71 ! = z
\ / \ / \ /
\ / \ / \ /
\Qoo / \Q°° / w ’
N 7/ N / N //
~ 7 ~ 7 ~ -
=== FOO I Foo Il e Foo
(@) (b) (©)

Fonte: Elaborada pelo autor.
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O primeiro problema representado na Figura C.1(b) se constitui na aplica¢ao do
Delta de Dirac na dire¢ao horizontal e pode ser equacionado por
(s, f) _

Fl,mmjj + I =0 (02)
FQ,mmjj =0

em que a solucao para o primeiro laplaciano de F; pode ser obtida em coordenadas polares

ao se realizar a abstracao de um contorno circular infinito, a qual é dada por

1 1
Frmm = i () (C.3)

onde r é norma do vetor de posi¢ao do ponto campo em relagao ao ponto fonte, definido

por
ri=a; (f) —xi(s), (C4)
em que x; (f) sdo coordenadas do ponto campo e z; (s) sdo as coordenadas do ponto fonte.

Para a solucao do segundo laplaciano, propoe-se o Vetor de Galerkin

1
= 2

1= grg ml) (C.5)
F2:0

que satisfaz a Eq. (C.3).

O segundo problema se trata da aplicacao da funcao Delta de Dirac associada ao

versor da dire¢ao vertical, conforme Figura C.1(c), sendo matematicamente descrito por

Fl,mmjj =0
O(5.0) _ (C.6)
G

A solucao é para esse caso idéntica para o primeiro problema com uma troca de termos

FZ,mmjj

por direcao, resultando em

F1:0

B, — 1 : (C.7)

_ 2
87TGT In (r)

Através da superposicao entre os problemas 1 e 2, é possivel construir um tensor

contendo os Vetores de Galerkin fundamentais, o qual é representado por

1
Fro— _
K StQG

cujo simbolo (x) sobrescrito designa uma grandeza fundamental. De posse do qual, calcula-

r* In (r) 0y, (C.8)

se o tensor de deslocamentos fundamentais substituindo a Eq. (C.8) na Eq. (A.50), dado

por
-1 7T—8v

uy; = ST G 11 (B3—4v)In(r) 6;; —rjr + 5 iz - (C.9)
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Nota-se que o termo (7 — 8v) /2 nao depende de qualquer relagdo entre pontos fonte e

campo, tratando-se fisicamente de um deslocamento de corpo rigido.

Aplicando Eq. (A.21) com a Eq. (C.9), encontra-se o tensor de deformagoes funda-
mentais, descrito por
1
¥ oo=— 1
Sijk 87TG(1—V)1"[<

_2V)(5ijrk+5ik7aj)+27ai7’j7"k_5jk7ni], (ClO)

que pode ser usado na Eq. (A.26) para calcular
. 1
Tijk = _47r(1 —v)r {

representando o tensor de tensdes fundamentais de Kelvin. Os gradientes da distancia

1-2 V) (5U r7k + 52]6 ij + 5jk 7’7,') + 2 T‘J‘ T7j ’I",k] s (C.ll)

entre os pontos campo e fonte podem ser avaliados por

ri= zi (f) — (S) (C.12)

r

Por fim, através da aplicagao da Eq. (C.11) na férmula de Cauchy, Eq. (A.5),
obtém-se
. 1 or
P = “Iad-u)r {377 (1—=2v) 6 +2rpri] + (1 —=2v) (mery —m rk)} ,  (C.13)
a qual representa o tensor de forcas de superficies fundamentais. A derivada da distancia

em relacao a direcdo normal a superficie pode ser feita por um simples produto escalar

or

— =Tr;n. 14
877 T,lnl (C )

A solucao fundamental apresentada foi formulada considerando um EPD. Para
a sua validade mediante um EPT, pode-se alterar o coeficiente de Poisson presente nos

tensores deduzidos por meio da Eq. (A.30).

C.2 Solucao Fundamental de Barra

A solucao fundamental de barra ou de deslocamentos axiais é a solucao da Eq.
(B.8) considerando a aplicagdo de uma carga de dominio representada por uma fungao
delta de Dirac em um meio infinito. A Figura C.2 ilustra o problema que matematicamente

¢é dado por
d?u*
dx?

A solucao dessa equacao é conduzida através de testes para u* que atendam as condigoes

EA

+ (s, f) =0. (C.15)

necessarias.

Testa-se uma fun¢do uma vez diferenciavel em R\ {s}, de forma que sua derivada
seja constante com uma descontinuidade nas coordenadas da fonte. Dessa forma, uma
funcao possivel é

, (C.16)
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Figura C.2 — Problema fundamental de deslocamento axial.

oo

b* (s, f)

|
|
L
|
|
|
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&

R4

5 (s, f)

Fonte: Elaborada pelo autor.

cujos indices sobrescritos f e s correspondem a grandezas de campo e da fonte, respecti-
vamente. Por meio de uma combinacao linear e uma translagdo, gera-se uma familia de

fungdes a partir de f (s, f) que também atendem & condi¢ao necesséaria. Dessa forma,

g(saf>:a1f(57f>+a07 (C17)

onde ag é o parametro de translacao e a; é o parametro de combinacao.

A primeira condicdo envolve continuidade C° em xzf — 2°, j4 satisfeita pela funcéo
testada. Conforme se observa,
FEA| lim g¢g(s,f)— lim g(s,f)| =ao—ay=0. (C.18)
xf —zst+ of —xpsi—
Dessa condigao, conclui-se que ag pode ser um valor qualquer. Convenientemente, atribui-se

valor nulo.

A segunda condi¢ao advém de que a diferenca entre as imagens da funcao derivada
quando x/ — z* deve ser igual a —1, caracteristica do negativo da funcdo de Heaviside.

Portanto,
EA( lim dg ) =—1. (C.19)
zf—zs+ dx of

A derivada da funcado g (s, f) em relagao a coordenada = é dada por

. dg
— lim =
of zf—zs— dx

gi = ay sign (xf - .%'S> : (C.20)
com sign (e) retornando o sinal da operacdo. Operando entéo a Eq. (C.19), tém-se
EAla; — (—a1)]=—1 — a1 = —2;14. (C.21)
A solugao fundamental em deslocamentos é entao dada por
‘xf —a°
u (s, /) =9 f) = =5 (C.22)

enquanto solugdo para esfor¢os normais pode ser obtida através da Eq. (B.7). Portanto,

sign (xf — x*
N* (s, f) = -2 (2 ) (C.23)
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APENDICE D - TRANSFORMACAO CUBICA DA QUADRATURA DE
GAUSS-LEGENDRE

Devido a caracteristica singular dos niicleos de integracao do MEC, ha uma ten-
déncia de integracao quase-singular quando uma fonte se encontra muito préxima a um
elemento integrado e este nao contém aquela. Esse ocorréncia consiste na formagao de
um cume na fungao a ser integrada, o qual prejudica o desempenho da integragao via
quadratura padrao de Gauss-Legendre. Visando mitigar esse problema, Telles (1987) e
Telles e Oliveira (1994) propuseram um esquema de transformacao cibica das coordenadas
dos pontos de integragao, o qual tende a posiciona-los sobre o cume. Foi observado que

esse procedimento aprimorava a precisao da integracao.

A transformagao de coordenadas de Gauss £ para as novas coordenadas de integracao

¢ é obtida através de um polindémio ctibico dado por
S(€) =ao+aé+ar €’ + a3’ (D.1)

em que a;, com ¢ variando de 0 a 3, designa os coeficientes da fungao polinomial. Tais coefi-
ciente advém da soluc¢do de um sistema de equagoes de compatibilidade de transformacao,

o qual pode ser representado por

1 1 1 1 ao 1
1 -1 1 -1 a -1
L, Pl=¢ (D.2)
0 1 2¢& 3¢ as T
0 0 2 6&|| as 0

As duas primeiras equagoes do sistema anterior representam a compatibilidade de suporte
limitado de —1 a 1, ja as duas ultimas advém da primeira e da segunda derivacao da Eq.

(D.1) avaliada em uma coordenada gaussiana &, a qual é calculada por

. 3
§=\3/—q+\/92+p3+\?’/—q—\/q2+p3+1+2r, (D.3)

em que
< 1 _ 2¢?
1= 50127 [1+27’<3_2r_1+27’)_1] © (D4)
p= M 47 (1-7) +3(1-7%)]. (D.5)

Para a avaliacao das equacoes anteriores, define-se < como a coordenada do ponto
de integracao do elemento onde se verifica a minima distancia r,,;, em relagdo ao ponto

fonte. O outro parametro de interesse 7 é calculado a partir dessa minima distancia
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adimensionalizada pelo comprimento L do elemento no espago real. Assim, calcula-se essa

minima distancia adimensionalizada por

27
D ==""" D.
L (D.6)

Através de faixas de valores de D, definem-se expressdes para 7 como

2.62D | D < 0.05

0.85+0.24InD |0.05< D <1.3
0.8934+0.0832InD | 1.3 < D < 3.618
1| D> 3.618

=3I
Il

(D.7)

Comenta-se que, definindo 7 = 1, tém-se uma transformacao identidade, a qual recupera a
quadratura de Gauss-Legendre. Assim, o valor de 3.618 para D representa o limite superior

para que tenha alguma vantagem em se utilizar esta transformagao cibica.

Finalmente, com todos os pardmetros explicitados, tém-se o vetor de solugao do

sistema representado pela Eq. (D.2) escrito por

ap 3]{3(1—?)2

a2
ar | k:(r—i—S ), | (D.8)

as 3k (F—1)¢

as k?(l—?)

em que .

k=-———5. D.9
(1+3¢) (D9)

Obviamente, para a execucao numérica da integral, deve-se incluir um outro
jacobiano referente a transformacao descrita. Facilmente, calcula-se esse jacobiano através

de sua definicdo unidimensional, ou seja,

Jt(ﬁ):flzza1+2a2§+3a3§2. (D.10)
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