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RESUMO

SPINOLA, G. B. Aplicacdo de modelos hipereléasticos e ligaces deslizantes na modelagem
do comportamento mecanico de estruturas musculoesqueléticas. 2024. 145 p. Dissertacdo
(Mestrado em Ciéncias - Engenharia Civil (Engenharia de Estruturas)) — Escola de Engenharia
de Séo Carlos, Universidade de S&o Paulo, So Carlos, 2024.

A geracdo de movimento e a producéo de forca realizadas pelo conjunto formado por musculos,
tenddes, 0ssos e ligamentos em diversas partes do corpo é tema de alto interesse em pesquisas
académicas, que buscam contribuir para a saide e o bem-estar dos seres humanos. Com o intuito
de colaborar para a construcdo do conhecimento existente, este trabalho tem como objetivo a
simulacdo numérica do comportamento mecanico plano de membros do corpo humano por
meio da atuacdo de musculos esqueléticos e do movimento de articulagBes adjuntas. Tal
simulacdo é realizada através de um codigo computacional desenvolvido com base no Método
dos Elementos Finitos Posicional (MEFP), capaz de realizar analises nao-lineares geométricas
de maneira direta em sua formulacdo. A modelagem proposta trata o tecido biolégico como
uma matriz tridimensional composta com elementos de barra simples, que representam as fibras
musculares. S8o empregadas leis constitutivas visco-hiperelasticas com o intuito de reproduzir
de maneira mais consistente a relacdo entre tensées e deformacGes no material e é considerada
a possibilidade de contracdo nas fibras para representar o comportamento muscular ativo. As
articulagdes préximas aos musculos estudados sdo modeladas por meio da formulagdo de
ligacOes deslizantes, permitindo um movimento relativo entre superficies conectadas. As
condicdes cinematicas impostas ao sistema para promover o deslizamento sdo introduzidas ao
problema com o uso de multiplicadores de Lagrange. A aplica¢do biomecéanica foca no membro
superior do corpo humano, utilizando uma geometria baseada em imagens de tomografia
computadorizada de uma paciente, obtidas no repositério aberto Harvard Dataverse
Repository. O modelo proposto apresenta potencial para descrever a resposta mecanica de

membros do corpo humano de maneira simplificada.

Palavras-chave: modelagem numérica; Método dos Elementos Finitos Posicional; musculo;

articulacoes.



ABSTRACT

SPINOLA, G. B. Use of hyperelastic models and sliding connections to model the
mechanical behavior of musculoskeletal structures. 2024. 145 p. Dissertation (M. Sc. in
Civil Engineering (Structural Engineering)) — School of Engineering of S&o Carlos, University
of S&o Paulo, Sdo Carlos, 2024.

The generation of movement and force by the ensemble of muscles, tendons, bones, and
ligaments in various parts of the body is a topic of great interest in academic research, aiming
to contribute to the health and well-being of humans. With the aim of contributing to the
construction of existing knowledge, this work aims to numerically simulate the planar
mechanical behavior of human body members through the action of skeletal muscles and the
movement of adjacent joints. Such simulation uses a computational code based on the Positional
Finite Element Method (PFEM), which directly performs nonlinear geometric analyses in its
formulation. The proposed modeling treats biological tissue as a three-dimensional matrix
composed of simple bar elements representing muscle fibers. This work employs visco-
hyperelastic constitutive laws to more consistently reproduce the stress-strain relationship in
the material and considers the possibility of fiber contraction to represent active muscle
behavior. The joints near the studied muscles are modeled using the formulation of sliding
connections, allowing relative movement between connected surfaces. The code uses Lagrange
multipliers to introduce the kinematic conditions imposed on the system in order to promote
sliding. The biomechanical application focuses on the upper limb of the human body, using
geometry based on computational tomography scan images of a patient, obtained from the open
repository Harvard Dataverse Repository. The proposed model shows potential for describing
the mechanical response of human body limbs.

Keywords: numerical modelling; Positional Finite Element Method; muscle; joints.
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1 INTRODUCAO

Este capitulo é dedico a apresentar o contexto em que este trabalho é realizado,
apresentando a motivacdo, 0s objetivos e as justificativas que conduziram ao Seu
desenvolvimento. Além disso, € a realizada uma revisdo bibliografica em relacdo aos diversos

topicos aqui tratados.

1.1 CONSIDERACOES INICIAIS

O musculo é um tecido biolégico composto por um conjunto de células especializadas
com formato alongado, também chamadas fibras musculares, que sdo capazes de se contrair.
Sua fungdo no organismo é promover o movimento de estruturas ligadas a ele, como 0s 0ssos,
e, consequentemente, do corpo. Permite ainda a realizacdo de movimentos relacionados as
atividades de 6rgéos internos, a exemplo do batimento do coracdo e da impulsdo do alimento
ao longo do sistema digestario.

Dentre os tipos musculares existentes, aquele que se liga ao esqueleto e esta sob controle
voluntario é denominado estriado esquelético, ou simplesmente esquelético. Sua estrutura é
composta por feixes de fibras cilindricas muito longas organizadas em um padrao regular, que
podem ser contraidas de forma rapida e vigorosa em resposta a um estimulo do sistema nervoso
conscientemente controlado pelo individuo (Montanari, 2016). A Figura 1 apresenta um
exemplo de muasculo pertencente a esse grupo: o biceps, situado na parte superior do braco e
composto por um trecho de cabeca longa e outro de cabeca curta.

Figura 1 - Localizagdo do biceps

"‘, . 3 T
. Cabega longa \j ’I, ‘.f o §

. Cabega curta K b j

~ Braco

Cotovelo

Antebraco

Fonte: Adaptado de Database Center for Life Science (2009).
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As referidas fibras sdo mantidas unidas por meio de tecidos conjuntivos, que recebem
esse home devido a sua fungdo de conectar, sustentar e preencher outros tecidos do corpo,
conforme ilustrado na Figura 2. Formados por células e por uma matriz extracelular de
composicao bem variada, possuem elasticidade e atuam na transmisséo das forcas produzidas
pelo musculo durante a contragdo. As fibras musculares sao envolvidas por uma camada externa
de tecido conjuntivo, que recobre o musculo inteiro. Dessa camada derivam-se finos septos que
se dirigem para o interior do musculo, envolvendo os feixes e separando-0s uns dos outros.
Entre as fibras musculares hd ainda uma delicada camada formada por fibras reticulares e
células. Além disso, o tecido conjuntivo do musculo contém vasos sanguineos responsaveis
pelo transporte de nutrientes.

A ligacdo entre os musculos esquelético e o esqueleto é estabelecida por estruturas
alongadas e cilindricas de tecido conjuntivo, denominados tenddes, também ilustrados na
Figura 2. Sdo formados por feixes densos e paralelos de fibras de colageno, o que os torna
inextensiveis e Ihes confere uma coloragdo branca. Alguns musculos, inclusive, se afilam nas
extremidades, observando-se uma transicao gradual do material muscular para o tendao.

Figura 2 - Organizacdo de um musculo estriado esquelético

Tenddo

Camadas de Vasos
tecido conjuntivo sanguineos

Feixe de
fibras

Fibra muscular

Fonte: Adaptado de National Cancer Institute (2022).
O esqueleto, por sua vez, € a estrutura que serve de suporte para os tecidos moles e de

protecdo para 0s Orgdos vitais. Também proporciona apoio aos musculos esqueléticos,
transformando suas contra¢cGes em movimentos Uteis ao individuo, bem como constitui um
sistema de alavancas que amplia as forcas originadas na contracdo muscular. Seu principal

componente € o tecido 6sseo, formado por células e por material extracelular calcificado.
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Os diversos 0ssos que compdem o esqueleto unem-se uns aos outros por meio de
ligamentos, que sdo estruturas formadas por tecido conjuntivo denso de fibras coldgenas
paralelas, capazes de resistir a tracdo exercida em um determinado sentido. Essa conexdo entre
0ss0s ocorre em regifes denominadas articulacdes. Aquelas dotadas de grande mobilidade,
geralmente responsaveis por unir 0ssos longos, séo classificadas como diartroses, a exemplo do
cotovelo e do ombro, indicados na Figura 1. Nessas articulag@es existe uma capsula que liga as
extremidades 0Osseas, delimitando uma cavidade fechada — a cavidade articular —, conforme
esquematizado na Figura 3. Essa cavidade contém um liquido incolor, transparente e viscoso,
denominado o liquido sinovial, que possui um efeito lubrificante e, assim, facilita o
deslizamento das superficies articulares. Os musculos esqueléticos se encontram dispostos ao
redor dos 0ssos, geralmente organizados em grupos opostos em torno das articulagdes
(Junqgueira; Carneiro, 2017).

Figura 3 - Esquema de uma diartrose

Osso

Cavidade articular

Osso

Fonte: Adaptado de Junqueira e Carneiro (2017).
A geragdo de movimento e a producéo de forca realizadas pelo conjunto formado por

musculos, tenddes, 0ssos e ligamentos em diversas partes do corpo é tema de alto interesse em
pesquisas nos ultimos anos. O conhecimento cada vez mais detalhado e preciso do
comportamento biomecanico dessas estruturas € requisitado para atender as demandas de
cuidado a saude e ao bem-estar do homem. Dentre elas, pode-se citar a elaboragcdo de
procedimentos cirdrgicos, o desenvolvimento de proteses e valvulas, bem como o
aprimoramento de dispositivos de protecdo, a exemplo de cintos de seguranca e airbags.
Entretanto, o estudo atraves de ensaios in vivo em condicdes reais € dificil de ser

realizado e, em alguns casos, a baixa taxa de reprodutibilidade de experimentos pode levar a
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resultados inconclusivos, em face a grande dispersdo de resultados. Além disso, as técnicas
empregadas podem ser muito invasivas para os voluntarios (Humphrey, 2003).

Uma alternativa muito usada na industria automobilistica, por exemplo, € 0 uso de
manequins para representar os ocupantes de veiculos nos testes de colisdo em escala real. A
partir de normas que definem os procedimentos e os parametros desses ensaios, avaliam-se 0s
danos que ocorreriam ao sistema do corpo humano em acidentes. Nessa situa¢ao, no entanto,
juntas de ligaces complexas representadas por ligagdes mecanicas simplificadas, tecidos moles
substituidos por espumas e materiais sintéticos, dentre outras simplificacbes, acabam
prejudicando a qualidade dos resultados obtidos (Muggenthaler, 2006).

Diante desse cenario, a modelagem numérica se apresenta como uma opcao bastante
viavel e promissora. Simulac@es computacionais robustas, que reproduzam o comportamento
do corpo humano de forma mais confiavel, podem trazer resultados mais representativos da
realidade e, assim, contribuir, por exemplo, com a elaboracdo de sistemas mais seguros e
dispositivos biomecanicos de melhor desempenho.

A0 passo que a caracterizacdo dos 0ssos se encontra hum estagio bem consolidado, o0s
principais desafios existentes dizem respeito a implementacdo de modelos constitutivos
adequados para os tecidos moles, isto €, musculos, tenddes e ligamentos. Essas estruturas
apresentam  propriedades anisotropicas, viscoelasticas, ndo-homogéneas e quase
incompressiveis, além de normalmente estarem submetidas a niveis altos de deformagéo. Soma-
se a isso a necessidade de descrever, ao mesmo tempo, 0 movimento das articulacdes
desencadeado pela atuacdo muscular, levando em conta padr6es de contato e deslizamento entre

as superficies 6sseas e a posic¢ao variante do eixo de rotacdo (Humphrey, 2003).

1.2 OBJETIVOS DO ESTUDO

Este trabalho tem como objetivo geral simular numericamente 0 comportamento
mecanico plano de membros do corpo humano, considerando tanto a atuacdo de musculos
esqueléticos quanto o movimento de articulagdes adjuntas. De maneira a alcancar tal proposito,
sdo estabelecidos os seguintes objetivos especificos:

a) Elaborar um cddigo computacional baseado no Método dos Elementos Finitos
Posicional empregando elementos finitos prismaticos de base triangular e de barra
simples;

b) Introduzir o comportamento ativo e lei constitutiva viscoelastica aos elementos de barra

simples;



13

c) Implementar lei constitutiva visco-hiperelastica para os elementos finitos prismaticos;

d) Aplicar estratégia de imersdo de elementos finitos de barra simples em elementos
prismaticos;

e) Implementar formulacéo de ligacGes deslizantes para representar o movimento relativo
entre elementos prismaticos;

f) Gerar a geometria de estruturas musculoesqueléticas tomando como referéncia imagens

de tomografia computadorizada.

1.3 JUSTIFICATIVA

Seja para desenvolver dispositivos biomecanicos, definir procedimentos de cirurgia e
reabilitacdo, ou aperfeicoar equipamentos de protecdo em sistemas de transporte, uma
modelagem biomecéanica que represente bem o comportamento do corpo humano se faz
extremamente necessaria. No entanto, devido a complexidade de se desenvolver modelos que
descrevam de forma precisa a reposta mecanica em face de diversas solicitagdes externas, a
implementacdo computacional de modelos mecanicos para tecidos biologicos e articulacdes
tem sido tema de uma grande quantidade de producdes cientificas nos Gltimos anos. Nesse
contexto, este trabalho se mostra relevante por trazer resultados de simulagcGes numéricas a
partir do modelo proposto, contribuindo para o conhecimento existente e dando continuidade a
linha de pesquisa em modelagem de tecidos bioldgicos do Departamento de Engenharia de
Estruturas da EESC/USP (SET).

Embora a literatura seja vasta na area em estudo, alguns topicos ainda permanecem
pouco explorados. Em primeiro lugar, é pequena a quantidade de publicacdes que levam em
consideracdo o comportamento ativo dos musculos esqueléticos. A estratégia normalmente
utilizada considera apenas o comportamento passivo desses elementos, de maneira que as fibras
musculares sdo empregadas somente com a fungdo de enrijecedores da matriz em que se
inserem (Calvo et al., 2010; Weiss; Maker; Govindjee, 1996; Yousefi et al., 2018).

Um segundo ponto é que, enquanto o uso de leis constitutivas hiperelasticas diversas é
recorrente na modelagem mecanica dos tecidos moles, pouco se encontra a respeito do emprego
de leis viscoelasticas. Dessa forma, fendmenos caracteristicos do comportamento muscular,
como histerese, relaxagéo e fluéncia, acabam sendo desprezados.

No tocante as articulagdes, varios autores apontam que 0 movimento nessas regioes

ocorre de maneira a haver deslizamento entre as superficies de contato dos 0ssos envolvidos.
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Sendo assim, a implementacdo de um modelo de ligacao deslizante que seja capaz de reproduzir
esse comportamento se mostra pertinente e configura, inclusive, um aprimoramento nos
modelos desenvolvidos em pesquisas anteriores no SET.

Além disso, grande parte dos trabalhos se direciona para uma das seguintes abordagens:
ou investem em modelagens musculares mais robustas em detrimento de descrever com mais
qualidade o movimento de articulagdes adjuntas e a atuacdo de ligamentos estabilizantes, ou o
contrario. Assim, a literatura carece de modelos que representem de maneira mais fiel o
comportamento dos membros do corpo humano.

Por fim, com relagdo a utilizar o Método dos Elementos Finitos Posicional, vale ressaltar
que este trabalho se insere no grupo de pesquisa em métodos numéricos do SET e deixa sua
contribuicdo em demonstrar a aplicabilidade do método na resolucdo de problemas da

elasticidade ndo-linear.

1.4 REVISAO DA BIBLIOGRAFIA

A modelagem numérica voltada para o comportamento mecanico tanto de tecidos
bioldgicos quanto das diversas articulacdes presentes no organismo € um tema bastante
estudado ao longo das ultimas seis décadas e atualmente conta com uma extensa literatura.
Entretanto, maior ainda é o caminho que resta a ser percorrido até que essa vertente da
biomecanica atinja o seu verdadeiro potencial na colaboracdo para a salude. Dessa maneira,
diversos autores continuam se empenhando em conduzir simulacbes numéricas e ensaios
experimentais para revelar novos detalhes acerca da geometria, composicdo e atividade de
estruturas bioldgicas, fundamentando-se sempre no conhecimento j& adquirido.

Na revisdo realizada por Humphrey (2003), é possivel encontrar uma breve descricao
da historia da biomecéanica, partindo desde a ldade Moderna até o estado da arte atual. Sao
apresentadas as contribuicdes de nomes bem famosos, tais como Leonardo da Vinci (1452-
1519), Robert Hooke (1635-1703) e Leonard Euler (1707-1783), bem como séo discutidas as
principais descobertas mais recentes, ao longo do século XX, e as lacunas que ainda
permanecem abertas. O autor destaca que 0s avancos da biomecanica moderna s6 foram
possiveis em razdo do progresso tedrico na Mecénica do Continuo, da evolucdo do aporte
computacional e do desenvolvimento de métodos matematicos mais sofisticados.

De acordo com Tang; Zhang e Tsui (2009), existem dois modelos classicos para

reproduzir o comportamento mecanico de tecidos musculares esqueléticos: 0 modelo de Hill
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(1938) e o de Huxley (1957), ambos unidimensionais. O primeiro é fenomenoldgico e adota
uma abordagem macroscopica, tornando-se adequado para descrever o comportamento passivo
do tecido mole e das fibras musculares, conforme feito por Tang et al. (2007), Hoffman et al.
(2012), Pham, Xue e Zheng (2018) e Pavan et al. (2019). O segundo é fisiologico, construido a
partir de experimentos bioquimicos, mecéanicos e termodindmicos para retratar o
comportamento muscular a nivel molecular, sendo apropriado para modelar fibras musculares
ativas, a exemplo do trabalho de Oomens et al. (2003).

Com relacdo a modelagem do comportamento passivo de tecidos bioldgicos, € comum
a implementacdo de leis constitutivas hiperelasticas. Nesses modelos, a energia especifica de
deformacéo é escrita mediante uma expressao que relaciona um campo tensorial de tensdes ou
de deformacdes a um campo escalar. Hoss (2009) apresenta um historico da evolucdo dessas
leis, bem como estuda varios modelos constitutivos para elastbmeros incompressiveis
utilizando dados obtidos em ensaios de trac&o unixial e biaxial e cisalhamento puro para calibrar
constantes.

Dentre as principais leis constitutivas hiperelasticas utilizadas na literatura, cita-se o
modelo de Mooney (1940) generalizado por Rivlin e Saunders (1951), que mais tarde originou
a familia polinomial (Teran et al., 2003; Yamamura et al., 2014; Zhan; Gao, 2012). Dentre
esses, destaca-se 0 modelo de Yeoh (1990) diante da sua simplicidade e do bom desempenho
para a modelagem de borrachas.

Cabe mencionar também o modelo de Hart-Smith (1966), formulado com expressdes
logaritmicas e exponenciais, que é utilizado pelo HUMOS (Human Model for Safety) um
projeto da Unido Europeia voltado para a criacdo de modelos numéricos para ocupantes de
veiculos. E tem-se ainda 0 modelo de Ogden (1972), que define a energia de deformacdo com
base nos alongamentos principais (Calvo et al., 2010; Gras at al., 2012).

Outros estudos também vém sendo realizados com o intuito de calibrar leis constitutivas
e, com isso, propor novos modelos que representem de forma mais fiel o comportamento
passivo verificado na pratica. Nesse sentido, Bosboom et al. (2001) realizaram testes de
compressdo na musculatura da tibia de ratos entre placas paralelas, medindo a forca necessaria
para controlar o deslocamento dessas placas. Os resultados obtidos foram entéo utilizados para
calibrar um modelo ndo linear viscoelastico do comportamento muscular passivo em uma
simula¢do numérica do mesmo experimento.

Calvo et al. (2010) propdem um modelo constitutivo para representar o comportamento

passivo ndo s6 da matriz, mas também das fibras. Com esse intuito, sdo realizados ensaios
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uniaxiais nos musculos de ratos, cujos resultados levam a formulacdo de um modelo
hiperelastico polinomial para a matriz e exponencial para a fibra.

Para tratar a distribuicdo e orientacdo das fibras, Weiss, Maker e Govindjee (1996)
propdem uma formulacéo hiperelastica incompressivel transversalmente isotrépica, em que as
tensdes no ponto dependem tanto do gradiente de deformacgdo quanto da orientacéo das fibras
do tecido. Mais recentemente, Yousefi et al. (2018) estudaram o comportamento passivo de
tecidos musculares em modelos tridimensionais considerando orientacdes diferentes entre as
fibras musculares e as fibras de colageno que as revestem, a partir de imagens médicas.

No que diz respeito a representacdo do comportamento ativo dos tecidos musculares,
Martins et al. (1998) introduziram um modelo de comportamento ativo das fibras ao termo
correspondente a energia especifica de deformacéo das referidas fibras no modelo constitutivo
hiperelastico. Com isso, tornou-se possivel relacionar a resposta do tecido bioldgico a funcédo
de ativagé&o.

Os trabalhos de Muggenthaler (2006) e Muggenthaler et al. (2008) realizaram
experimentos em voluntarios para avaliar a influéncia da atividade muscular na cinematica e
nas propriedades musculares. Em seguida, os mesmos experimentos foram repetidos em
simulagBes numéricas, utilizando modelos em elementos finitos, e 0os modelos constitutivos
foram aprimorados de forma iterativa até que os resultados coincidissem com os valores reais
medidos experimentalmente.

Todros et al. (2020) investigam a influéncia do comportamento muscular ativo na regido
abdominal saudavel por meio de um modelo numérico construido a partir de imagens médicas.
Os tecidos conjuntivos foram modelados segundo leis constitutivas hiperelasticas com reforgo
de fibras, atribuindo ao meio isotropia transversal e incompressibilidade. J& os tecidos
musculares foram modelados por meio de elementos de barra segundo o modelo de Hill.

As propriedades viscoelasticas dos musculos sdo levadas em conta por poucos autores.
Vannah e Childress (1996) realizaram ensaios experimentais e simula¢fes numéricas com 0s
musculos da perna. Observou-se que, para pequenos carregamentos, os fendmenos
viscoelasticos ocorreram nos primeiros 5 segundos apo6s a aplicagdo das forgas.

Lu et al. (2010) elaboraram um modelo visco-hiperelastico e avaliaram seu desempenho
por meio de estudos experimentais do musculo tibial anterior de um coelho. Os resultados
revelaram que o modelo era capaz de reproduzir o comportamento do masculo tanto passivo

quanto ativo sob taxas de deformagéo elevadas.



17

Pham, Xue e Zheng (2018) desenvolveram um modelo tridimensional para as cordas
vocais capaz de descrever os alongamentos ciclicos caracteristicos do musculo, considerando
os efeitos viscosos.

No ambito das articulacdes, diversos trabalhos tém realizado estudos acerca da
cinematica e da estabilidade dos mais variados complexos articulares presentes no corpo
humano, a exemplo do ombro, tornozelo, joelho, cotovelo e quadril. Cada um deles desempenha
funcbes de grande importancia para atividades cotidianas e apresenta particularidades que
necessitam ser investigadas.

Abordando o comportamento do ombro, Biichler et al. (2002) apontam que a literatura
carece de modelo numérico do ombro capaz de determinar as variagdes na distribuicdo de
esforcos na escapula em funcao do formato na cabeca do Umero ou da superficie de contato do
glenoide. Para contribuir com o preenchimento dessa lacuna, os autores quantificam a
influéncia do formato da cabeca do Umero na distribuicdo de tensdes na escapula atraves de
uma modelagem computacional. Os musculos séo tratados como estruturas passivas € 0S
resultados de forcas tangenciais e normais na articulacdo glenoumeral revelam que o contato
entre 0s 0ss0s nessa articulacédo é deslizante para grandes rotacgoes.

Koehle e Hull (2010) representaram a articulagdo do joelho em simulag¢bes dinamicas
por meio dos 3 modelos mais comumente utilizados para descrever o contato entre as
superficies articulares, estudando, inclusive, a sensibilidade das forgas de contato na ligagdo em
relacdo a qual deles foi adotado. Dois modelos reproduziam o rolamento e o deslizamento da
tibia no fémur, enquanto o terceiro era constituido apenas por uma rétula simples. A conclusédo
obtida foi que, se as forcas de reacdo na ligagdo e nos musculos forem de interesse, um dos dois
modelos deslizantes deveria ser empregado.

Leardini, O’Connor e Giannini (2014) trazem um levantamento das principais questdes
envolvendo o complexo do tornozelo disponiveis na literatura. Por tratar-se de um sistema
anatdbmico complicado, os experimentos e as modelagens numéricas ainda ndo conseguiram
descrever completamente seu mecanismo, mas ja existe um consenso sobre algumas questoes.
A posicao instantanea do eixo de rotacdo varia conforme os movimentos de dorsi-flexdo e
flexdo plantar se desenvolvem, sugerindo que o modelo de ligacdo em dobradica é uma
simplificacdo. Além disso, pesquisas mais recentes mostram que a area de contato muda na
regido anterior da mortise do tornozelo, implicando que ocorre um movimento combinado de
deslizamento e rolamento.

De maneira geral, a conexdo entre dois corpos, também chamada de par cinemaético ou

simplesmente junta, é considerada ideal, ou seja, os efeitos de atrito, desgastes e folgas séo
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desprezados com o intuito de simplificar o modelo. Para articulagdes em condicdo saudavel, a
desconsideracdo de atrito e desgaste é aceitavel, tendo em vista que o coeficiente de atrito nas
superficies de contato é extremamente baixo em razao da cartilagem que as revestem (Synek;
Settles; Stillfried, 2012). Por outro lado, esses parametros sdo levados em conta em alguns
trabalhos que se empenham em simular casos de artrose, a exemplo de Bichler et al. (2002),
visando a compreender melhor a causa e as consequéncias de situa¢fes patoldgicas, bem como
a aprimorar técnicas de tratamento.

Uma maneira de tratar as articulacbes em formulacdes matematicas € impor restricdes
cinemaéticas as variaveis envolvidas no problema. Uma vez que as varidveis atendam tais
condi¢Oes, fica garantida a continuidade entre os corpos conectados, subdominios do problema.

As restricBes cinematicas associadas a uma determinada ligagdo sdo matematicamente
representadas mediante equacdes de compatibilidade, na forma algébrica ou diferencial,
recebendo uma classificagdo em duas categorias: holondmicas e ndo-holonémicas. No primeiro
tipo, estdo aquelas formuladas como funcBes implicitas das coordenadas generalizadas e,
ocasionalmente, do tempo. J& o segundo tipo sdo as restricdes escritas como equacles
diferenciais ou envolvendo desigualdades. Em sentido fisico, a diferenca reside no fato de que
as condic¢des holonémicas representam um conjunto de configuracdes possiveis do sistema, ao
passo que as condigdes ndo-holondmicas constituem restricbes no comportamento de um
sistema para ir de uma configuracdo a outra (Géradin; Cardona, 2001).

Na literatura existem diferentes técnicas para introduzir as condi¢des de compatibilidade
mencionadas. Dentre as mais utilizadas, cita-se os multiplicadores de Lagrange, as fungdes de
penalizacdo, a compatibilidade cinemética e 0 método lagrangiano aumentado.

A técnica dos multiplicadores de Lagrange pode ser encontrada, por exemplo, no
trabalho de Jelenic e Crisfield (2001). O procedimento consiste em empregar um multiplicador
para cada restricdo que se deseja introduzir no sistema, adicionando assim termos
independentes ao problema. Como consequéncia, as equacdes de restricdo se misturam com as
equac0es diferenciais de movimento, de maneira que as incognitas de ambas sdo determinadas
simultaneamente através da resolugdo do sistema.

O trabalho de Avello, De Jalon e Bayo (1991), por sua vez, mostra a aplicacdo de
funcbes de penalizacdo. Nessa abordagem, os parametros de penalizacdo ndo adicionam
incognitas ao problema e podem ser interpretados, em certos casos, como a rigidez da ligacao.
Em contrapartida, a precisdo dessa técnica depende do valor dos parametros empregados e pode

ocorrer mau condicionamento do sistema.
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O método da compatibilidade cinematica é utilizado para tratar juntas rotacionais. Nesse
sentido, 0s nds da estrutura compartilham seus respectivos graus de liberdade translacionais e
liberam os graus de rotacdo. Ligacfes modeladas de acordo com essa estratégia podem ser
encontradas em Park et al. (1991).

O meétodo do Lagrangiano aumentado, por sua vez, foi criado a fim de estabilizar as
equacdes de movimento, combinando as vantagens da técnica dos multiplicadores de Lagrange
e da técnica das funcGes de penalizacdo. Embora os multiplicadores permanecam incognitas
adicionais do sistema, o método traz uma simplificacao, pois elimina as equacdes algébricas e
reduz o problema a um sistema de equacdes diferenciais, definindo uma matriz hessiana
positiva para regifes de equilibrio estdvel. Géradin e Cardona (2001) desenvolvem seu trabalho
com aplicacéo dessa técnica.

Sobre os temas discutidos até aqui, que servem de base para a modelagem numerica de
estruturas bioldgicas, sdo vérias as contribuicbes deixadas também pelas pesquisas
desenvolvidas no grupo de Mecanica Computacional do SET.

Pascon (2008) empregou elementos finitos de barra simples e leis constitutivas
hiperelasticas polinomiais com a imposicdo de deformacdes a volume constante para simular
materiais poliméricos naturais. Comparando seus resultados com dados experimentais, o autor
constatou que o modelo de Yeoh (1990) reproduz adequadamente o comportamento ndo s6 em
pequenas deformacBes, mas também em grandes, enquanto os modelos Neo-Hookeano e de
Mooney-Rivlin, apenas em pequenas deformac6es. Pascon (2012) estendeu a formulacao para
elementos solidos e ainda acrescentou plasticidade as leis utilizadas.

Madeira e Coda (2016) estudaram um modelo de dispositivo massa-mola-amortecedor
para controlar a vibracdo em trelicas que desenvolvem grandes deslocamentos. A estrutura foi
discretizada em elementos de barra simples, cujo comportamento foi representado por meio do
modelo viscoelastico de Kelvin-Voigt.

Pascon e Coda (2017) propuseram uma formulacdo para analisar 0 comportamento
viscoelastico de materiais em grandes deformacdes, aplicada a elementos tetraédricos. Os
autores empregaram o0 modelo hiperelastico Neo-Hookeano juntamente com o modelo
viscoelastico de Zener, associando em paralelo uma componente elastica com um conjunto de
um amortecedor viscoso em série com uma segunda componente elastica. A formulagéo é capaz
de reproduzir fluéncia, relaxacéo e enrijecimento com dependéncia da taxa de deformacéo.

Empregando conceitos abordados por Madeira e Coda (2016), o trabalho de Carvalho
(2019) aplicou o modelo viscoelastico de Kelvin-Voigt a elementos prismaticos de base

triangular. O autor associou tal modelo as leis constitutivas de Saint-Venant-Kirchhoff e de
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Rivlin-Saunders-Hartmann-Neff, gerando um modelo visco-hiperleastico com essa Gltima,
adequado ao regime de grandes deformacdes. A aplicacdo do modelo foi feita ndo somente a
solidos, mas também a fluidos altamente viscosos, e se mostrou consistente.

Kishino, V. H. (2022) trabalhou com a modelagem de perfis metalicos conformados a
frio, visando a representar com mais precisdo Seu comportamento mecanico quando
consideradas imperfeicGes geométricas e tensdes residuais. O autor discretizou seu objeto de
estudo em elementos prismaticos de base triangular e implementou o modelo constitutivo
hiperelastico de Rivlin-Saunders-Hartmann-Neff, além de um modelo de plasticidade para
grandes deformagoes.

No mesmo ano, Kishino, R. T. (2022) propos uma formulacéo alternativa para modelar
tanto solidos viscoplasticos quanto fluidos altamente viscosos em regime de grandes
deformacdes. Foram empregados elementos prismaticos de base triangular com o modelo
constitutivo hiperelastico de Rivlin-Saunders-Hartmann-Neff e modelos de plasticidade e
viscosidade também obtidos a partir da decomposicao multiplicativa de Flory.

Vanalli (2004) estudou o comportamento elastico, viscoelastico e viscoplastico de
estruturas bidimensionais com caracteristicas tanto isotropicas quanto anisotropicas. Alguns
anos depois, Vanalli, Paccola e Coda (2008) apresentaram uma estratégia simples para insercao
de fibras em elementos finitos de chapa sem a necessidade de reordenacdo da malha e sem
aumento do numero de graus de liberdade. Foram adotados elementos triangulares planos de
lados retos com aproximacao cubica para a matriz e elementos de barra lineares para as fibras.

Sampaio, Paccola e Coda (2013) e Sampaio (2014), ampliaram a referida metodologia
de incluséo de fibras em elementos bidimensionais. Com isso, a formulagdo passou a considerar
elementos de barra ndo s retos, mas também curvos, bem como elementos planos triangulares
de chapa ou casca, seja com lados retos ou curvos. A conformidade entre a fibra e a matriz é
garantida contanto que o grau de aproximacdo adotado para as fibras seja, no minimo, igual ao
grau de aproximacdo da matriz.

Fazendo uso dessa técnica, Baiocco, Coda e Paccola (2013) iniciaram a aplicacdo do
MEFP a problemas biomecénicos. Os autores propuseram uma modelagem em duas dimensdes
do tecido muscular do biceps e do triceps associado com 0ssos. A lei constitutiva hiperelastica
implementada foi a de Saint-Venant-Kirchhoff e o comportamento ativo foi considerado por
meio da imposicdo de uma contracdo desejada diretamente as fibras. Os autores chegaram a
concluséo de que a matriz se deforma a fim de acomodar as distensdes e contra¢des das fibras

e sugeriram melhorias para o comportamento ativo e passivo das referidas fibras.
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Dando continuidade as aplicacbes biomecénicas, Friedel (2016) tomou a mesma
geometria desenvolvida por Baiocco, Coda e Paccola (2013) e, adaptando o modelo muscular
de Hill, também simulou o comportamento do biceps e do triceps. O autor incluiu propriedades
viscosas ao comportamento das fibras ativas e atestou potencial para elementos de barra simples
que usam a medida de deformacdo ndo linear de engenharia. Além disso, comparou duas leis
constitutivas hiperelasticas distintas: a de Saint-Venant-Kirchhoff e a Neo-Hookeana. Os
resultados revelaram que o primeiro modelo permite a auto-intersec¢do de material, enquanto
0 segundo foi fisicamente mais consistente.

O trabalho de Pereira (2015) mostrou a aplicacdo da técnica para introducdo de fibras
para problemas tridimensionais. O dominio solido foi discretizado em elementos finitos
tetraédricos de ordem qualquer e a validade da formulacéo foi constatada para elementos de
barra com comprimento longo ou curto, cuja insercdo foi feita tanto de forma aleatoria quanto
ordenada.

Também no &mbito da modelagem em trés dimensdes, Ramirez (2018) trouxe mais uma
contribuicdo para as aplicacGes biomecanicas: elaborou a geometria do musculo tibial anterior
a partir da renderizacdo de imagens tomograficas e desenvolveu um modelo em elementos
finitos para simular seu comportamento mecanico. A autora estudou a influéncia da densidade
de fibras musculares na geracao de forca e implementou os modelos constitutivos hiperelasticos
desacoplados de Rivlin-Saunders e Hartmann-Neff, empregando a energia livre de Helmholtz,
com o intuito de incluir a condicao de quase-incompressibilidade da estrutura do masculo.

Em relacdo a ligacdo deslizantes, Siqueira (2016) desenvolveu uma formulagédo
Lagrangiana total do método dos elementos finitos para realizar a analise dindmica de estruturas
e mecanismos reticulados planos contendo as referidas ligagbes sujeitas a grandes
deslocamentos e rotacdes. Os tipos de conexdes estudados foram as juntas prismaticas e
cilindricas e as restricdes cinematicas foram introduzidas ao sistema mecanico através de
multiplicadores de Lagrange.

Mais tarde, Siqueira (2019) estendeu a formulacdo a elementos finitos de portico
espacial e de casca, e avaliou aspectos como rugosidade e dissipagdo por atrito, ndo
considerados anteriormente. Além disso, utilizou ndo sé o método dos multiplicadores de
Lagrange, mas também o método Lagrangiano aumentado e as func¢des de penalizagdo como
forma de impor as restri¢cdes cinematicas, estabelecendo comparagdes entre essas técnicas.

Rodriguez (2017), por sua vez, elaborou um modelo numérico para a ligagdo deslizante
entre elementos sélidos bidimensionais, visando a simulagdo de sistemas de isolagdo de base

para estruturas. Tomando proveito da formulacdo apresentada por Siqueira (2016), elementos
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de pdrtico foram usados para representar as superficies de contato e, para cada né contido na
trajetoria de deslizamento, foi definida uma junta cilindrica. O autor concluiu que sua proposta
se mostrou capaz de representar os fendbmenos de isolacdo e absorcdo, apresentando
estabilidade numeérica.

Alguns anos depois, Siqueira, Rodriguez e Coda (2022) aplicaram a estratégia de
deslizamento entre solidos bidimensionais considerando perfis de rugosidade nas superficies
deslizantes e a existéncia de forcas de atrito. A formulacéo foi aplicada a problemas dindmicos
envolvendo mecanismos e sistemas de controle de vibracdo e se mostrou eficiente na descricao
do comportamento dessas estruturas.

Vale destacar que praticamente todos os trabalhos desenvolvidos no SET citados nesta
secdo empregam o Método dos Elementos Finitos Posicional (MEFP), seguindo a formulacéo
introduzida por meio das publicacdes de Bonet et al. (2000) e Coda (2003).

Da mesma maneira que a metodologia convencional do Métodos dos Elementos Finitos
(MEF), seu uso é destinado a resolver equagfes diferenciais em problemas que envolvem
geometrias complexas a partir da discretiza¢do do dominio de interesse continuo em um numero
finito de regides chamadas elementos finitos. Em cada um desses subdominios é entdo realizada
a aproximacdo das variaveis de interesse, ao invés de buscar uma solucdo que satisfaca as
condigdes de contorno em todo o dominio (Assan, 2020).

A particularidade da abordagem posicional se encontra nas incognitas escolhidas para o
problema: os autores propdem a adocdo das posi¢cGes nodais no espaco, em detrimento dos
deslocamentos associados a cada no, utilizados pelo método classico. Com isso, uma grande
vantagem que se apresenta € a possibilidade de considerar a ndo-linearidade geométrica de
maneira direta na formulacgéo, tornando mais eficiente a resolucdo de problemas que envolvem
grandes deslocamentos e rotacdes.

Desde sua proposicéo, o grupo de Mecéanica Computacional do SET tem se dedicado a
demonstrar a eficiéncia do método para a analise de diversos tipos de estruturas: porticos em
regimes estatico e dindmico (Coda; Paccola, 2014; Siqueira, 2016, 2019) espaciais estaticas
(Greco et al., 2006), placas, chapas e cascas (Pascon, 2012; Rodriguez, 2017) , elementos de
barra geral tridimensionais (Coda, 2009; Coda; Paccola, 2010), elementos sdlidos
tridimensionais (Pereira, 2015; Ramirez, 2018), materiais compositos reforcados com fibras
(Friedel, 2016; Ramirez, 2018; Sampaio, 2014; Sampaio; Paccola; Coda, 2013; Vanalli, 2004;

Vanalli; Paccola; Coda, 2008), dentre outros.
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1.5 ESTRUTURA DO TEXTO

Este capitulo inicial situa o contexto em que este trabalho é desenvolvido. S&o
apresentas as questbes que motivaram a escolha do tema de pesquisa, 0s objetivos que se
desejava alcancar e as justificativas que tornam o trabalho pertinente. Além disso, é a realizada
uma revisdo bibliogréafica acerca dos varios topicos aqui abordados, apontando contribuicdes
trazidas por autores tanto do préprio Departamento de Engenharia de Estruturas da EESC/USP
(SET) quanto de outras instituicdes.

O Capitulo 2 descreve a formulacdo posicional do Método dos Elementos Finitos, que
constitui a ferramenta numérica empregada para realizar as analises estruturais propostas.
Considerando inicialmente um corpo qualquer, desenvolvem-se as equacgdes de equilibrio e a
solugéo do sistema ndo linear correspondente. Em seguida, particularizam-se as expressdes para
os elementos finitos empregados neste trabalho.

O Capitulo 3, por sua vez, trata da elaboracdo do modelo constitutivo empregado no
trabalho. Sao apresentados os modelos hiperlasticos de Saint-Venant-Kirchhoff e de Rivlin-
Saunders-Hartmann-Neff e 0 modelo viscoelastico de Kelvin-Voigt, a partir dos quais é obtido
um modelo visco-hiperelastico completo.

O Capitulo 4 é dedicado a apresentar a formulacao das ligacdes deslizantes, que permite
considerar o deslizamento entre superficies num problema mecénico. Detalha-se como esse
movimento relativo entre as partes de uma estrutura pode ser tratado na resolugdo de um
problema via MEFP a partir da formulacéo apresentada no Capitulo 2.

Os Capitulos 2 a 4 constituem o referencial tedrico deste trabalho, utilizado para elaborar
um cddigo computacional capaz de realizar as analises estruturais propostas. Assim, ao final de
cada uma dessas se¢des, constam exemplos numéricos que visam a validar as implementac6es
realizadas.

O Capitulo 5 demonstra a aplicacdo do Método dos Elementos Finitos Posicional, dos
modelos constitutivos hiperelasticos e visco-hiperelasticos e da formulacdo de ligagdes
deslizantes a modelagem do comportamento mecénico de estruturas bioldgicas. Um modelo
biomecanico € proposto e, em seguida, submetido a alguns testes a fim de simular a resposta
mecanica de estruturas bioldgicas.

Por fim, o Capitulo 6 traz um resumo dos resultados obtidos e as conclusdes que podem
ser obtidas a partir deles. Sdo comentadas ainda algumas sugestfes para desenvolvimentos

futuros do tema.
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2 METODO DOS ELEMENTOS FINITOS POSICIONAL

Este capitulo é dedicado a discutir os principais aspectos que compdem a formulagéo
do MEFP. Em primeiro lugar, apresenta-se o conjunto de equacgdes de equilibrio ndo-lineares
de um sistema mecanico obtidas a partir do Principio da Estacionariedade da Energia Mecanica.
Em seguida, detalha-se o processo de solucdo dessas equacdes para problemas tanto estaticos
quanto dindmicos. Por fim, descreve-se a cinematica dos elementos finitos empregados neste
trabalho e se discutem alguns problemas com o intuito de validar a implementagdo
computacional.

Embora empregados no desenvolvimento da formulacao discutida neste capitulo, alguns
contetidos sdo apenas mencionados, mas ndo detalhados, a exemplo do teorema da conservagao
da massa, do Principio da Estacionariedade da Energia Mecanica e do conceito de conjugado
energético. Os trabalhos de Ogden (1997), Holzapfel (2000), Bonet et al. (2000) e,
principalmente, Coda (2018) podem ser consultados para maiores esclarecimentos acerca

desses e de outros tdpicos referentes a teoria de grandes deslocamentos.

2.1 ENERGIA MECANICA E EQUACOES DE EQUILIBRIO

A energia mecanica total de um sistema, denotada por 11, pode ser escrita da seguinte

maneira;
N=-P+U+K+Q (2.1)

em gue P é o potencial das forcas externas, U é a energia de deformacao, KK é a energia cinética
e Q é o potencial dissipativo.

Visando a abordagem posicional do MEF, tais parcelas de energia sdo escritas em
funcéo das posicdes dos nos do sistema em analise, reunidas num vetor Y. Para o caso em que
o referido sistema é um sélido com volume inicial V,, e area de superficie inicial S,, procede-se
0 desenvolvimento da Equacéo 2.1.

Em primeiro lugar, trata-se o potencial IP. Impondo que a nulidade do trabalho das forcas
externas que atuam sobre o corpo ocorre na origem do sistema de referéncia, essa parcela de

energia fica expressa como:

[Pzﬁ-?+Jc?-37dSO+ B - ydv, 2.2)

So Vo
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em que y sdo as posicoes dos pontos materiais do sistema, F sdo forcas concentradas, ¢ sdo
forcgas distribuidas sobre a superficie S, e b si0 a forcas distribuidos no volume V.

A segunda parcela, isto é, a energia de deformacéo U, corresponde a integral da energia
especifica de deformacéo u sobre o volume inicial do sistema:

U= f u (E(Y))dvq (2.3)

Vo
A energia especifica de deformacéo u é funcéo do estado de deformacgéo E, que, por sua
vez, deve ser escrito a partir das posi¢fes nodais Y em conformidade com a proposta do MEFP.
No item 2.3 encontram-se detalhes sobre descri¢do posicional da cinematica dos elementos
finitos empregados neste trabalho.

Jé& a energia cinética KK é escrita como:

1 505
K= Ef poy "y dVy (2.4)
Yo

em que p, é a densidade inicial do s6lido e 37 é a velocidade dos seus pontos materiais.

O ultimo termo que resta desenvolver é o potencial dissipativo Q. No entanto, ndo é
possivel determinar uma expressao explicita para essa energia, pois ndo se trata de uma
grandeza conservativa (Lanczos, 1970; Warburton, 1976). Por outro lado, é possivel escrever a
sua variacdo e, assim, dar sequéncia com a consideracdo dessa grandeza na analise, conforme
comentado mais adiante.

A energia mecénica total € entdo escrita como:

M=—F-7- [ G-5ds,— | B-yavo+ | w(B@)dv+ [ p-Fav+a  @s)
S Vo Vo Vo

0

E importante mencionar que a formulagio do MEFP é Lagrangiana total, ou seja, 0
sistema de referéncia adotado para as varidveis estaticas e cinematicas em todo o
desenvolvimento é a configuracdo inicial, conforme é possivel notar nos dominios de
integracdo. Essa abordagem, também denominada de descricdo material, normalmente se
mostra mais natural e eficaz na analise de solidos e estruturas do que a descri¢do Euleriana, em
que o sistema de referéncia é a configuraco atual.

Pelo Principio da Estacionariedade da energia mecanica, o equilibrio de um sistema

ocorre quando a varia¢ao da sua energia mecanica e nula:
Sl =0 (2.6)

Vale salientar que o referido principio € normalmente empregado em problemas

conservativos, pois, em caso contrario, a energia decai ao longo do tempo. No entanto, é
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possivel fazer sua aplicacdo na presenca de mecanismos dissipativos considerando um sistema
de maior energia no qual esta contido uma parcela relacionada a dissipacdo (Madeira; Coda,
2016). Desse modo, a energia mecanica total, Equacdo 2.1 esta em conformidade com o
desenvolvimento aqui apresentado.

Uma vez que as varidveis do problema sdo as posi¢des dos pontos materiais do sistema,

contidas em Y, desenvolve-se a Equacao 2.6 como:

P _ U . 0K
Sl =—8P+8U+8K+6Q=—6V+—:0Y +—-67¥ +5Q =0 2.7)
oY oY oY

Explicitando as parcelas da energia mecanica total, escreve-se:

E

% %, oy F stav
Y oY °

R o - o Jdu
6H=—F-6Y—f q - éYdsS, —f b-—=-46YdV, +f —:
NPT ° oy °" )y, OF
+f poy —=:60YdVy+6Q =0

V. ay

0

em que foi empregado o teorema da conservacdo da massa para desenvolver a variagdo da

(2.8)

energia cinética IK, Equacéo 2.4.

Organizam-se entdo os termos da Equacédo 2.8 em quatro vetores de for¢as da seguinte

maneira;
) ) 99 .9 2.9
So d Vo ay
N ou OE JE '
Fmt — —u : —_)dVO = J S: _—>dVO (2 10)
Vo JOE Vo aY
N a7 - 211
Frer = [ oo Zavy=m ¥ (211)
Vo oY

Fext & o vetor de forcas externas, reunindo as forgas concentradas e as forcas

distribuidas no formato de cargas nodais equivalentes. F"* ¢ o vetor de forcas internas, em que

foi aplicada a propriedade do conjugado energético (S = du/dE) para definir o tensor de

tensGes S. Fi"e™ é o vetor de forcas inerciais, em que aparecem a matriz de massa M e o vetor

de aceleracao )7 dos pontos nodais do sélido. De acordo com o que esta exposto mais adiante,
no item 2.3, sobre a descrigdo dos elementos finitos, a referida matriz de massa é constante.
Conforme ja mencionado, a expressdo explicita para energia Q nao é conhecida, mas
sua variacdo 6Q sim. O desenvolvimento dessa parcela é deixado para o Capitulo 3, onde é
abordada a dissipacao de energia por meio de amortecimento viscoso. No entanto, ja se adianta

que a referida variagéo pode ser escrita como:
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§Q = Fais. Y = 0 (2.12)

em que F95 é vetor de forcas de dissipacio
Considera-se entdo a arbitrariedade da variacdo das posicOes, isto é, cada uma de suas
componentes pode assumir qualquer valor real, ndo havendo dependéncia alguma do valor
assumido por outra componente. Assim, chega-se a expressao condensada das equagdes de
equilibrio ndo linear geométrico:
_Fext 4 pint 4 Finer 4 pdis — (2.13)
O objetivo da aplicacdo do MEFP é determinar as posi¢6es que possibilitem verificar a

igualdade da Equagéo 2.13. Os vetores de forca, Equacdes 2.9 a 2.11, séo detalhados no item

2.3, onde as expressdes sdo particularizadas para cada tipo de elemento adotado neste trabalho.
2.2 PROCESSO DE SOLUCAO

Neste item, sdo apresentadas as estratégias empregadas na solucdo de problemas tanto

estaticos e quanto dindmicos, bem como as grandezas envolvidas no processo.

2.2.1 Formulacgdo estatica

No problema estatico, as parcelas da energia cinética e do potencial dissipativo sdo

desprezadas e o equilibrio é verificado quando a seguinte Equacao € satisfeita:
—Fext 4 Fint(Y) =0 (2.14)
Observa-se que as forgas internas sdo funcgdes ndo-lineares das posi¢oes Y, incognitas
do problema. Isso caracteriza a ndo-linearidade das equacdes de equilibrio, cuja solucdo pode
ser alcancada mediante a aplicacdo do método de Newton-Raphson.

A estratégia de solugdo se inicia com a definicdo do vetor g, conforme a expressao

abaixo:
g = —fext 4 ﬁint(?) =0 (2.15)
A Equacdo 2.15 s0 retorna valor nulo quando se obtém a posicdo de equilibrio exata.

Portanto, para uma posicao arbitrada Yo, g se torna o vetor de desbalanceamento mecanico.
Sua expansdo em serie de Taylor na vizinhanca de uma posi¢édo tentativa resulta na seguinte

expressao:
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IR _
§(¥) = (¥°) + % AV +02 =0 (2.16)

?0

Desprezando os termos de ordem superior 02, reescreve-se a segunda igualdade da

Equagéo 2.16:

ﬂ agl \ .-
AY = —|—= q(Y?° 2.17
(M) §(7°) @.17)

em que AY éa corregéo da posicéo.
A partir da Equacdo 2.17, define-se a matriz Hessiana H, também chamada de matriz
de rigidez tangente do problema, para a posi¢éo tentativa. Considerando que as forgas externas

sdo conservativas, isto €, independem das posi¢des, escreve-se:

g 02U
H=—| =—77—7— (2.18)
0Ylgo  0Y ® 0Ylpo
A solucdo tentativa € entdo atualizada fazendo-se:

Com o novo valor de posicdo tentativa, retorna-se a Equacgdo 2.15 para calcular o novo
desbalanceamento, e em seguida a Equacdo 2.17 para calcular a correcdo da posicdo. Essa
sequéncia de etapas é repetida até que AY seja suficientemente pequeno dentro de uma
determinada tolerdncia estabelecida, adotando como critério de convergéncia a seguinte
expressao:

47|
1|

Na primeira iteracdo, adota-se como posicao tentativa a propria configuracdo inicial. O

< tolerancia (2.20)

nivel de carga pode ser aumentado de forma incremental para se percorrer o caminho de

equilibrio da estrutura analisada e identificar a existéncia de pontos ou trechos de instabilidade.

2.2.2 Formulacéo dindmica

A estrategia de solucdo apresentada nesse item € voltada para problemas dinamicos do
tipo transiente, ou seja, aquele em que a forca externa varia ao longo do tempo. A energia
mecanica é escrita retomando as parcelas de energia cinética e de potencial de dissipativo. A
expressao do vetor de desbalanceamento mecénico entdo assume a forma:

- —

—ert(0) + Fine(7) + Fver (V) + s (7) = © @221)
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Explicitando as forcas inerciais, pois serd necessario para 0S pProximos
desenvolvimentos, o vetor de desbalanceamento mecénico € escrito da seguinte maneira:

G = —Fext(t) + Fnt(V) + M - Y + Fis (17) =0 (2.22)

Observa-se que a Equacdo 2.22 depende ndo so das posi¢des, mas também do tempo,

presente no termo da forca externa. Embora essa variavel seja continua e a Equagdo 2.22 seja

valida em qualquer instante, a utilizagdo de um método numérico impde que o tempo deva ser

tratado de maneira discreta. Assim, o tempo atual é calculado como o instante anterior acrescido

de um passo ou intervalo de tempo:
ts11 = tg + At (2.23)
em que t,,; € 0 instante atual, t; é o instante anterior e At € o intervalo de tempo adotado.
Mantendo a coeréncia com a discretizacdo do tempo, as posic¢Oes e velocidades devem
ser atualizadas a cada a instante. 1sso é feito por meio do algoritmo de integracdo temporal de

Newmark, que apresenta simplicidade aliada a um bom desempenho em anélises nao lineares.

As aproximagdes utilizadas nesse método s&o:

Viss = Vs + Vo At + [(% = B) Y, + .| 4t (2.24)
Viar = Yy + (1 — ALY, + yAtY,,, (2.25)
em que S e y sao parametros livres do algoritmo, usualmente adotados com os valores § = 1/4
e y = 1/2 para representar aceleracdo constante em um passo de tempo.
A partir das Equacdes 2.62 e 2.63, escrevem-se a velocidade e a aceleragdo em fungéo
das incognitas do problema, isto é, as posi¢des, e de valores conhecidos do passo anterior:

-

3 Y 1 -

Foos = o= 0, (2.26)
= y - - -
Yop1 = WYS+1 + R; — yAtQq (2.27)

em gue Q, e R, sdo vetores auxiliares, dados pelas expressoes:

. 175 17 1 e
= —_3\y (2.28)

Os LAt? + pAt? + (2 ﬁ) s
B, =V +4t(1 -y, (2.29)

Substituindo as Equacdes 2.26 e 2.27 na Equacdo 2.22, o vetor de desbalanceamento

mecanico assume a forma:

S/ = - M - — =T o = -
§(¥ssa) = F™(Ysua) + gz Yorr = M- Qs+ FO (Vo) = F¥(tsa) =0 (2:30)
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Vale salientar que, devido & aproximagao temporal, o vetor de forcas dissipativas F 4
passa a ser dependente das posi¢des nodais e ndo mais das velocidades nodais. No entanto, para
essa parcela de forca, a aproximacdo é realizada via método das diferencas finitas, conforme

detalhado mais adiante no Capitulo 3.

A Equacdo 2.30 é ndo-linear em relacdo a incognita 175+1 e sua resolucao é desenvolvida
segundo o método de Newton-Raphson. Para tanto, € feita a expansdo em série de Taylor do
vetor de desbalanceamento mecanico g, desprezando o termo de ordem superior. Considerando
que as forcas externas sdo conservativas, a expressao resultante é semelhante & Equacdo 2.17
da formulacdo estatica, mas a matriz Hessiana passa a receber contribuicdo das parcelas
dependentes da matriz de massa e do mecanismo de dissipacdo, assumindo a forma:

g M ,
H=-—=| =Hestat 4 4 giis 2.31
0y, pact &
Na Equacdo 2.31, HeSt* é a matriz hessiana da analise estatica, igual a segunda derivada
da energia de deformagao em relacdo as posicdes, conforme a Equacéo 2.18. Por sua vez, H%iS

é a parcela da matriz hessiana do problema dindmico proveniente dos mecanismos dissipativos,

matematicamente igual a 613‘”5/617. Da mesma forma que o vetor de forgas dissipativas, essa
ultima parcela da matriz hessiana é detalhada apenas no Capitulo 3.

A posicao é corrigida da mesma maneira apresentada na anélise estatica, de acordo com
a Equacdo 2.19. Em seguida, atualizam-se os valores de aceleracdo e velocidade,
respectivamente, através das Equacles 2.26 e 2.27. O critério de convergéncia utilizado € o
mesmo ja apresentado na Equacéo 2.20.

Na primeira iteracdo, também se adota como posicao tentativa a prépria configuracédo
inicial, enquanto a velocidade pode ser atribuido valor nulo. A aceleracdo, por sua vez, é
calculada a partir da Equacdo de equilibrio dindmico, Equacdo 2.22, que assume o0 seguinte

formato apds rearranjo dos seus termos:
Yo = M—l[ﬁéaxt _ If’voint _ IE’vOdis] (2.32)
Na implementagdo computacional, entretanto, a aceleracdo é determinada através da

resolucdo do seguinte sistema de equagdes lineares, sendo necessario impor as condi¢cdes de

contorno do problema & matriz de massa e ao vetor resultante no segundo membro da Equacao:

M- YO = Fget — Fint — s (2.33)
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2.3 DESCRICAO POSICIONAL DOS ELEMENTOS FINITOS

Um soélido deformével em equilibrio, submetido a a¢Bes externas, sofre alteragdes em
sua forma, passando de uma configuracéo inicial B, para uma configuracdo denominada atual

B, conforme ilustrado na Figura 4. Segundo uma abordagem Lagrangiana total, essa mudanca

pode ser descrita por meio de uma funcdo mudanca de configuracédo f que adota como
referéncia a configuracdo inicial do corpo. Reitera-se que esse tipo de descricdo € mais
interessante do que a descricdo Euleriana na analise de solidos e estruturas.

Figura 4 - Mudanca de configuracdo de um sélido qualquer

X1,¥;3

Fonte: Autor.

O estado de deformacdo em que o corpo se encontra na configuracdo atual é um
parametro necessario para determinar a posicao de equilibrio desse corpo por meio do MEFP.
Isso se deve ao fato de que a formulacdo do referido método parte do Principio da
Estacionariedade da energia mecanica, sendo necessario determinar a parcela de energia de
deformacdo armazenada no corpo.

Neste trabalho, é empregada a medida de deformacéo de Green, denotada por E, que é
uma medida objetiva (Holzapfel, 2000; Ogden, 1997) e se expressa por:

1 1 .

em que I é o tensor identidade de segunda ordem, A é o gradiente da funcdo mudanca de

configuracéo f e C = A' - A é o tensor de alongamento a direita de Cauchy-Green.
Nos subitens a seguir, apresenta-se a cinematica dos corpos deformaveis particularizada

para os elementos finitos utilizados neste trabalho, detalhando tanto a mudanca de configuracao
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quanto o estado de deformacdo segundo a abordagem posicional. Além disso, sdo também
particularizadas as grandezas envolvidas no processo de solugéo via MEFP.

Dois elementos sdo empregados: o elemento de barra simples com ativacdo e o elemento
prismatico de base triangular. Primeiramente é tratada a descricdo individual de cada elemento
e, por ultimo, é apresentada uma estratégia de imersdo de elementos de barra num dominio
prismético, de maneira a representar o comportamento conjunto de desses dois elementos numa

matriz reforcada com fibras.

2.3.1 Elemento de barra simples com ativacao

O elemento de barra simples, ou barra de trelica, possui aproximacéo linear e dispde,
portanto, de um n6 em cada uma de suas extremidades, conforme apresentado por (Coda, 2018;
Madeira; Coda, 2016). As deformac6es ocorrem somente ao longo do seu eixo longitudinal,
adotando-se a hipotese de que a area da sua sec¢do transversal se mantém constante para qualquer
nivel de deformacéo.

A esse elemento também ¢é atribuida uma ativacdo, isto é, a capacidade de controlar a
distancia entre suas extremidades por meio da mudanca no seu comprimento. A estratégia
utilizada para promover essa caracteristica foi proposta por Coda, Silva, Paccola (2020) e toma
proveito da descricdo Lagrangiana total: o deslocamento no atuador é controlado por meio de
uma variagdo no comprimento inicial do elemento. Com isso, a barra simples ativada se
comporta como um atuador flexivel.

A Figura 5 ilustra o referido elemento na configuracéo inicial B, e na configuracéo atual
B, ap6s a mudanca de configuracao f imposta por aplicacdo de carga externa, imposicao de
deslocamento ou ativagéo.

Figura 5 — Mudanca de configuracdo de uma barra de trelica

\ A
~

Fonte: Coda (2018).
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O comprimento inicial do elemento de barra simples é denotado por L, € 0 seu

comprimento atual, ap6s mudanca de configuracdo, por L. Esses termos séo calculados como:

Lo = J(Xf —XD)2 4 (X2 = XD1)? 4 (X2 — X1 )? (2.35)

L= \/(Yf -V )2+ (Y2 -V )2+ (Y -V )2 (2.36)

posicbes nodais atuais. Os indices numéricos sobrescritos e subscritos indicam,
respectivamente, o no e a direcdo cartesiana correspondentes.

Para a descrigdo uniaxial adotada no elemento de barra, a deformacdo de Green,
Equacéo 2.34, assume o seguinte formato:

E—1<L2 1) (2.37)
_2 LOn2 .

em que Ly, € o comprimento inicial natural do elemento, correspondendo ao comprimento

inicial L, acrescido de um incremento AL, ou seja:
Lon = Lo + AL (2.38)

Dois pontos precisam ser destacados em relacdo ao modo como a deformagdo Green
estd escrita na Equacdo 2.37. O primeiro é que, por ser funcdo do comprimento atual, essa
grandeza ja esta escrita em funcdo das posicbes. O segundo diz respeito ao comprimento de
referéncia adotado na expressao, que tradicionalmente é o comprimento inicial L,. A utilizacdo
do comprimento natural L,,, em detrimento de L, € justamente a estratégia de ativacdo proposta
por Coda, Silva e Paccola (2020). Com isso, controla-se o comprimento de referéncia do
elemento, efetuando a aplicacdo do incremento AL em passos de tempo da discretizagédo
temporal ou em passos de carga do algoritmo de Newton-Raphson.

Uma vez descrita a cinematica do elemento de barra simples, particularizam-se as
expressdes do vetor de forcas internas, da matriz de massa e da matriz hessiana, envolvidas no
processo de solugéo via MEFP. As expressdes apresentadas a seguir para essas grandezas sao
locais, isto &, tém sua aproximacéo realizada no dominio do elemento. Apés avaliadas, devem
ser contribuidas em suas respectivas grandezas globais para tratar o problema completo, de
acordo com a incidéncia nodal do elemento nos graus de liberdade do corpo discretizado.

A forca interna, Equacgéo 2.10, é expressa para um elemento de barra simples por:

ﬁint—fS‘aEdV —SaEAL 2.39
R A (2.39)

0
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Na Equacéo 2.39, as grandezas tensoriais de tensdo S e de deformacdo E se tornam
escalares devido ao carater unidimensional do elemento de barra simples. Além disso, essas
grandezas sdo constantes em todo o dominio do elemento em razdo da aproximag&o linear,
sendo o volume V/, tomado como o produto entre a rea A, e 0 comprimento L,,.

Desenvolvendo a derivada contida na Equacdo 2.39 chega-se a seguinte expressao,

escrita em notacao indicial:

int (_ )l
(F)"™ =54, T

Y? -vhH (2.40)
on

em que i representa as direcGes cartesianas e [ representa os nos do elemento, sendo i = 1,2,3
el=1,2.

A matriz hessiana do problema estatico, Equacdo 2.18, € particularizada para o elemento
de barra simples como:

o
Hug: = avlayz

2 Ao Y2 _ Yil gZ _ Ygl
= (—1Di(- 1) - Lo Lo + S, (2.41)

Na Equacdo 2.41, [E ¢ mddulo de elasticidade do material e §;, € o delta de Kronecker.

Assim como os indices i e [, os indices g e z representam, respectivamente, as diregdes
cartesianas e 0s nos do elemento, sendo g = 1,23 ez = 1,2.

Embora sejam usados 2 indices para expressar o vetor de for¢as internas e 4 indices para
a matriz hessiana, essas grandezas sdo, de fato, tensores de primeira e de segunda ordem
respectivamente. De maneira a deixar clara a ordem dessas grandezas, o vetor de forga interna
pode ser denotado por (F,)™ e a matriz hessiana por Hyj, sendo k,j = 1,2, ...,6 0s graus de
liberdade do elemento. A relagdo entre no-direcdo e os graus de liberdade é dada por k =
3-1D)+iej=3(z—-1)+g.

A matriz de massa em problemas dindmicos é considerada de maneira discreta,
concentrando a massa dos elementos de barra em seus nos. Dessa forma, a matriz de massa é

expressa como:

pAoLo
Mkj = 2
em que p € a densidade do material constituinte e y; € o delta de Kronecker. Os indices k, j =

8 (2.42)

1,2, ...,6 sdo os graus de liberdade do elemento, conforme ja comentado.

Tanto o vetor de forga interna quanto a matriz hessiana séo afetados pela mudanca no
comprimento inicial com o incremento AL, dando origem a uma nova configuracdo de
equilibrio. Essa atualizagdo do comprimento inicial, no entanto, ndo se aplica a matriz de massa,

que é calculada uma Gnica vez no inicio do processo de solugdo fazendo uso de L, em sua
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expressdo, e ndo de L,,. Isso se deve a massa total do sistema se conservar durante a analise.
Cabe ressaltar ainda que, caso ndo se deseje utilizar a barra simples como atuador, mas apenas
como um elemento flexivel, basta atribuir valor nulo a AL.

Por fim, comenta-se que a parcela das forcas externas é composta apenas pelas forcas
nodais, que incidem nas extremidades dos elementos. As for¢as de superficie e as forgas de

volume séo desconsideradas em funcgéo das hipoteses cinematicas adotadas.

2.3.2 Elemento prismatico de base triangular

O elemento prismatico de base triangular é um elemento tridimensional concebido a
partir da extrusdo de uma base triangular, conforme descrito por Carrazedo e Coda (2017). Da
maneira como foi proposto, é possivel que a aproximacdo tanto para base quanto para a
dimensao resultante da extrusao, referida daqui em diante como espessura do elemento, seja de
qualquer ordem. Neste trabalho, opta-se pela aproximacao cubica na base e linear na espessura,
gerando um elemento que possui um total de 20 nos.

A Figura 6 ilustra o elemento em questdo submetido a uma funcdo mudanca de

configuracéo f passando de uma configuracdo inicial B, referenciada ao sistema de eixos
coordenados (x;, x5, x3), para uma configuracdo atual B, referenciada ao sistema (y;, y,, ¥3).
Estd ilustrada também a configuracdo de um elemento prisméatico, de mesmas ordens de
aproximacdo, contido num espaco adimensional. Tal elemento possui nés igualmente
espacados no plano e esta referenciado a um sistema de eixos ortogonais (&;,&5,&3). As
coordenadas ¢; e &, estdo definidas no intervalo [0,1] e seus respectivos eixos tomam direcédo
paralela a duas das trés arestas que delimitam a base triangular. O terceiro eixo, por sua vez, se
orienta segundo a espessura, e sua coordenada &5 esta definida no intervalo [-1,1].

As coordenadas x;, na configuracdo inicial, e y;, na configuracdo atual, de qualquer
ponto pertencente ao dominio do elemento prismatico podem ser escritas a partir do elemento

prismético do espaco adimensional, por meio das seguintes expressoes:
X; (s?) =Py (g)Xlk (2.43)
yi(§) = Yr ()Y (2.44)
em que XX e Y;* sdo as posicdes do n6 k segundo a direcdo i nas configuragdes inicial e atual

respectivamente, ¥, € a funcdo de forma associada ao né k e & sdo as coordenadas
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adimensionais do ponto pertencente a configuracéo inicial ou final. As varia¢6es dos indices
sdo i = 1,2,3, correspondendo a dimensdo do problema, e k = 1,2, ...,20, o total de nds.

Figura 6 — Mudanga de configuragcdo do elemento
prismatico de base triangular

XY,

Fonte: Carrazedo e Coda (2017).
As Equacles 2.43 e 2.44 também sdo denominadas funcGes de mapeamento, pois

relacionam o espaco adimensional as coordenadas reais do elemento. Conforme ilustrado na
Figura 6, 0 mapeamento inicial é denotado por f°, enquanto o mapeamento atual é representado

por f1. Por sua vez, a fungdo mudanca de configuracdo f, que relaciona a configuragéo inicial
com a configuracdo atual do corpo, pode ser escrita como a composicdo das duas funcdes de

mapeamento:
N N > —1
f=flo (fo) (2.45)
A partir disso, avalia-se o gradiente da fun¢do mudanca de configuragdo aplicando a
regra da cadeia no segundo membro da Equacédo 2.45. O resultado obtido é a Equacéo 2.46, ndo

sendo necessario, portanto, conhecer a inversa do mapeamento inicial para dar continuidade a

resolugéo do problema.
A= Al. A1 (2.46)

em que A, e A; sdo matrizes (3x3) e representam, respectivamente, os gradientes das funcées

de mapeamento inicial e atual, expressas por:

afio al/)k k

=——<x! 2.47
L= % = %y.k
1 af] a{:] 2

0 _
Al'j—

(2.48)
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Uma vez que a deformacdo de Green é obtida a partir do tensor de alongamento a direita
de Cauchy-Green, Equacao2.34, é possivel escrevé-la em funcao das posi¢des com o auxilio da

Equacdo 2.46:
E=2(C— D=7 (TA—D) = ()T - ()T - a1 () D) (249)

Uma vez descrita a cinematica do elemento prismatico, particularizam-se as expresses
dos vetores de forcas internas e externas, da matriz de massa e da matriz hessiana. Da mesma
maneira que comentado para o elemento de barra simples ativada, as expressdes apresentadas
a seguir para as grandezas envolvidas no processo de solucéo via MEFP sdo locais e devem ser
posteriormente contribuidas em suas respectivas grandezas globais.

E importante adiantar que todas as integrais existentes na formulacdo s&o resolvidas
numericamente através da quadratura de Hammer (Hammer; Marlowe; Stroud, 1956), da
quadratura de Gauss—Legendre ou mesmo da combinagdo de ambas, conforme apresentado nas
expressoes adiante. Nota-se que surge nessas expressoes o jacobiano J,, realiza a mudanca do
dominio de integracdo do espaco real para o espago adimensional. Para realizar a integracéo na
base triangular, sdo empregados 12 pontos de Hammer, enquanto a integracdo na espessura do
elemento emprega 2 pontos de Gauss, sendo utilizado, portanto, um total de 24 pontos de
integracdo no volume do elemento. Os pesos de Hammer e de Gauss em cada ponto séo
representados respectivamente por wy, e wy.

A parcela das forcas internas, Equacéo 4.10, é expressa para um elemento prismético de

base triangular por:

2 12
int
(Fil)m = | flav, = Z z fHown Wy (2.50)
Vo g=1h=1
em que:
Eqp
fl = Sap (2.51)
l a aYll

Os indices a,f = 1,2,3 correspondem a dimensdo dos tensores de tensdes S e de
deformagdes E, enquanto i = 1,23 e [ =1,2,...,20 sdo, respectivamente, as diregdes do
problema e os nés do elemento. O termo J, presente na Equagdo 2.50 € denominado jacobiano
da transformacéo e é utilizado para promover a mudanca do dominio de integracdo para o
espaco adimensional, consistindo no determinante do gradiente do mapeamento da
configuracdo inicial, isto €:

Jo = Det(A°) (2.52)
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A derivada do tensor de deformacGes de Green em relagdo as posi¢fes nodais, presente
na Equacéo 2.51, € escrita como:

1

0E,; 1 , [9AYY ) . . 04 )
aYilB=§((A0) (a_yll> 'Al'(AO) 1+(A0) '(Al) W(AO) 1) (2.53)

l

Na Equacéo 2.53, foi empregada uma notagdo mista, tanto indicial quanto compacta. A

derivada do gradiente do mapeamento atual em relacdo as posi¢des nodais tem o seguinte

formato:

Al  [Yi1 Y2 i3]

—=|l0 0 o0 (2.54)
l

oY, L 0 0 0

oal | 0 0 0 T

Pyl Vi1 Y2 Y3 (2.55)
2 L 0 0 0 |
1 [0 0 0 1

94 1o o o (2.56)

oY}
3 (Y11 Y2 Yl

Com as expressdes das Equacdes 2.52 a 2.56, pode-se calcular o vetor de forgas internas
dado pelas Equagdes 2.50 e 2.51.

As forcas externas atuantes sobre o elemento prismatico, por sua vez, sdo constituidas
das trés componentes apresentadas na Equacdo 2.2 — as forcas concentradas, as forcas de
superficie e as forcas de volume. De maneira andloga a geometria, 0s carregamentos
distribuidos sobre a superficie e sobre o0 volume também sdo aproximados por intermédio de

funcbes de forma e dos valores nodais das respectivas variaveis:
q:(§) = n(£)Q (2.57)
bi(§) = ¥m()BI™ (2.58)

Nas Equacbes 2.57 e 2.58, ¢, e Y, sdo as funcOes de forma para aproximacao,
respectivamente, do carregamento de superficie e de volume, enquanto Q" e B™° sio,
respectivamente, o valor das forcas de superficie e das forcas de volume sobre os nos na
configuracdo inicial. O indice n representa os nés do elemento auxiliar de superficie, conforme
comentado mais adiante, e tem sua variacdo dependente do tipo de elemento auxiliar. J4 o indice
m representa os nés do elemento prismatico e varia, portanto, de 1 a 20.

Assim, a expressao das forgas externas assume a forma:

(FY™ =F + ) bn(§) 1 (£)dA,Q1° + jV (O (E)dVoB™®  (2.50)
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As forgas F} tém valor igual as proprias forgas externas aplicadas diretamente nos nos

do problema. As forcas de volume, por sua vez, sdo determinadas por:

2

12
(E™™ = . D m@wi(Eown wy |57 (260)

g=1h=1
J& as forcas de superficie sdo determinadas primeiramente sobre elementos auxiliares e,
em seguida, incididas sobre nds do problema, sendo necessario haver uma correspondéncia dos
nos do elemento auxiliar com os nés do problema. Dois elementos auxiliares distintos podem
ser adotados, conforme ilustra a Figura 7, e, portanto, a determinacgdo das forcas de superficie
pode ocorrer de duas maneiras.

Figura 7 — Elementos auxiliares para aplicacdo de forcas de
superficie nos elementos prisméaticos de base triangular
com aproximacao linear na espessura

A E_,z 14; &i

1

-1 &1 1‘22

L \ 4 \ 4 9 d " g

1 -1

Fonte: Autor.

Os elementos auxiliares do tipo triangular sdo utilizados para considerar carregamentos
distribuidos no plano da base do elemento. Nesse caso, a integracdo € resolvida mediante a

quadratura de Hammer:

(Fil)ext'sup = <Z ¢n(§)¢l(g)jowh> i (2.61)
h=1

emquen =1,2,..,10e gé o0 vetor de coordenadas adimensionais dos pontos de Hammer sobre
o0 elemento auxiliar triangular, com apenas duas componentes.

Por outro lado, os elementos auxiliares do tipo retangular sdo adotados para considerar
carregamentos distribuidos em faces perpendiculares ao plano da base do elemento. Nessa

situacdo, emprega-se a quadratura de Gauss-Legendre em duas direcdes:

2 2

(F)™ = D0 D ea@d(EVowy, w,, |Qi° (262

g1=1g2=1



40

emquen = 1,2,...,8 e £ é 0 vetor de coordenadas adimensionais dos pontos de Gauss sobre 0
elemento auxiliar retangular, com apenas duas componentes.
Por sua vez, a matriz hessiana do problema estatico, Equacdo 2.18 € particularizada para

0 elemento prismatico como:

Hilgz = aY aYZ f hlngdVO = Z Z hlng]OWth (2.63)

g=1h=
em que:
2

higz, = 6—1{; aByu % + Sap ;Yil—]j;‘zz (2.64)

Nessa ultima expressdo, Cqp,,, também denotado por € em notagcdo compacta,
corresponde ao tensor constitutivo eléstico de quarta ordem do modelo constitutivo empregado.
Os indicesi,g = 1,2,3e [,z =1,2,...,20 sdo, respectivamente, as dire¢des do problema e 0s
nos do elemento. Ja os indices a, B, y, u = 1,2,3 correspondem as dimensfes dos tensores €. A
segunda derivada do tensor de deformacGes de Green E em relacdo as posi¢fes nodais Y é dada
por:

Egp 1 9A\" oAl 9At\" 9A!
—— =AD" | 7] o @D+ A — (A7) (265
3¥Tar; 2(( ) (ay;) a7 (4D + (4% (aygz> ST (A7) @69)

O mesmo comentario feito para o elemento de barra em relacéo a verdadeira ordem dos
tensores de forca e da matriz hessiana valem também para o elemento tratado neste item. A
relagdo entre no-direcéo e os graus de liberdade de Fy e Hyj é dadapork =3(l—1) +iej =
3z—-1) +g.

Por fim, apresenta-se a matriz de massa do elemento prismatico. Para obter essa
grandeza, é necessario desenvolver a expressdo das forcas inerciais, Equacdo 2.11. Considera-

se, entdo, a aproximacéao das posi¢des atuais y para avaliar sua derivada em relagéo as posicdes

nodais ¥ e aplica-se sobre a aceleragdo a mesma aproximacao usada para as posicdes, isto é:
= P (E)V (2.66)
Com isso, obtém-se a seguinte expressdo para a vetor de forcas inerciais:
iner 2\ ik > ok
(F)" = | povr (&)Y (8)dvy = MY, (2.67)
Vo
em que:

My, = vaod)k(g)d)l(g)dvo (2.68)
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2.3.3 Imerséo de barras simples em elementos prismaticos de base triangular

A imersdo de elementos finitos de barra simples em elementos tridimensionais
prismaticos tem o objetivo de representar o comportamento de uma matriz reforgada com fibras.
A estratégia numérica para realizar tal imersdo consiste numa simples extensao para o dominio
em trés dimensdes do procedimento trabalhado por Vanalli (2004), Sampaio (2014). Também
cabe destacar a contribuicdo do trabalho de Radtke, Simone e Sluys (2010), que abordou o

problema do acoplamento de maneira semelhante.

A estratégia consiste em utilizar as funcdes de forma lpk(g?) do elemento prismatico
para escrever as posicdes dos nés das barras em funcdo das posi¢des dos nos do elemento da
matriz no qual estéo inseridos os referidos nds das barras. Esse procedimento permite inserir
barras em qualquer posi¢cdo do dominio sem aumentar os graus de liberdade do problema e sem
ser necessaria a coincidéncia dos nés das barras com os nos da matriz (Vanalli, 2004).

As expressdes apresentadas a seguir tratam da imersdo de um Unico elemento de barra
no dominio prismatico, podendo ser aplicadas quantas vezes for necessério de acordo com o
numero total de elementos de barra existentes no problema. No desenvolvimento algébrico
deste item, adota-se (*) para os parametros relacionados ao elemento de barra e (+), ao
elemento prismatico.

Em primeiro lugar, as posicdes iniciais X e finais ¥ do n6 k de uma barra sio escritas
respectivamente como:

X =9 (E9)Em (2.69)

7 = e (E @270
em que 5" séo coordenadas adimensionais do né k da barra no dominio do elemento prismatico,
)?jm e 17]-’” séo as posi¢cdes do n6 m do elemento prismatico nas configuracdes inicial e atual
respectivamente, e i, € a funcdo de forma correspondente ao n6 m. Salienta-se que as
Equacdes 2.69 e 2.69 garantem a aderéncia perfeita entre as barras e a matriz.

A energia de deformacdo armazenada em um corpo reforcado é dada pela soma das
energias de deformagéo acumuladas na matriz e nas barras. Assim, a forga interna de um nd [
de um elemento da matriz, na direcdo i, que contém um no k de elemento de barra é dada por:

(ryme =20+ _ 90, 98 9%
aY; ay;  aY;* ay;

= F} + FFy,(8%) (2.71)
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em que F} é o vetor de forgas internas da matriz, obtida pela Equagio 2.50, e F} é o vetor de
forcas internas da barra, calculada pela Equacdo 2.40.
A matriz hessiana, por sua vez, é obtida pela segunda derivada da energia de deformacéo
do corpo reforcado em relagéo as posi¢es nodais o elemento da matriz. Assim, escreve-se:
NN N I
ay;oYy  oy;oyYgs oY oYn oy; oYy (2.72)
= Hyg, + Hikgnl/)l(gk)l/)z (s?n)

em que ﬁilgz € a matriz hessiana do elemento prismatico, calculada pela Equacéo 2.63, e Hl-kgn

é a matriz hessiana do elemento de barra, calculada pela Equacéo 2.41.

De maneira a simplificar o procedimento numérico, as operagdes Fiy,(€%) e
Hiegn1 (%), (E™), presentes nas Equagdes 2.70 e 2.71 respectivamente, s&o organizadas em
formato matricial. O procedimento a ser realizado consiste na expansdo do vetor de forgas
internas [6x1] e da matriz hessiana da barra [6x6], respectivamente, para os formatos [61Vx1]
e [6Nx6N], sendo N o niimero de nés do elemento prismatico. Uma vez que o elemento

prismatico adotado dispde de 20 nds, escreve-se:

[Fexp]120x1 = [¢T]120x6 [F]le (2.73)

[H*P] 1505120 = [W" 120x6[H]6x6[W]6x120 (2.74)

As grandezas F,; e He s80 referentes ao elemento de barra, obtidas pelas Equacdes
2.40 e 2.41 respectivamente, conforme ja comentado. O sobrescrito exp indica que as grandezas
estdo no formato expandido, podendo ser feita sua contribuicdo nas respectivas grandezas
globais do problema, evitando a soma direta ao elemento da matriz, e deve respeitar a incidéncia
dos elementos da referida matriz (Sampaio, 2014).

O termo [Y]ex120 € UMa matriz que contém as funcdes de forma do elemento prismatico,

arranjadas da seguinte maneira:

Pt 0 0 ..y, O 0 0O O O 0 0 0]

0 P! 0 0 Yy 0 0 0 O 0 0 0

0 0 yi.. 0 0 ¥ 0 0 0 0 0 0
Wleazo =l o 0 .. 0 0 o0 v 0 0 J, 00 (2.75)

0 0 0 0 0 0 0 ¥ 0 0 ¥, 0

[0 0 0 0 0 0 0 0w .. 0 0 ¥
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em que o indice i indica que a funcdo de forma 1, € avaliada nas coordenadas 5 em que se
situa 0 n6 inicial do elemento de barra e o indice j, de maneira andloga para o no final do
elemento de barra.

Ressalta-se que a formulacdo de imersdo de barras estd apresentada de maneira
generalista, possibilitando a introducéo dos nos desse elementos em qualquer ponto do dominio
prismatico. Neste trabalho, no entanto, as fibras sdo inseridas apenas no plano médio da matriz
prismatica, caracterizado por &é; =0, de maneira a garantir a simetria da geometria
tridimensional.

E importante mencionar ainda que, nas anélises dindmicas, a mesma operacéo realizada
para a matriz hessiana do elemento de barra deve ser efetuada para a matriz de massa. Assim,
a matriz de massa é calculada para cada barra pela Equacdo 2.42 e, em seguida, expandida de
maneira analoga a matriz hessiana, Equacéo 2.73. Por fim, realiza-se sua contribui¢do a matriz

de massa global do problema.

2.4 EXEMPLOS DE VALIDACAO

Neste item sdo apresentados alguns exemplos com o intuito de validar o correto
funcionamento do codigo computacional implementado para os elementos finitos descritos nos
itens anteriores. Tanto exemplos estaticos quanto dindmicos sdo apresentados, sendo gue nos
problemas dindmicos ndo se consideram a atuacdo de mecanismos de dissipacdo, ou seja, 0
potencial dissipativo da energia mecanica € desprezado. Problemas envolvendo essa parcela de
energia sdo apresentados no Capitulo 3.

Embora nenhum comentario acerca de modelos constitutivos tenha sido feito neste
capitulo, é empregado o modelo de Saint-Venant-Kirchhoff tanto para os elementos de barra
quanto para os elementos prismaticos nos exemplos que seguem. Com isso, vale uma relacdo
linear entre a tensdo de Piola-Kirchhoff de segunda espécie e a deformacéo de Green. Mais

detalhes sobre esse e outros modelos constitutivos sdo encontrados também no Capitulo 3.
2.4.1 Atuador linear flexivel
Este exemplo realiza a comparagdo entre 0 comportamento dinamico de um atuador

uniaxial flexivel e um sistema massa-mola equivalente com um Unico grau de liberdade,

ilustrados na Figura 8. O atuador ¢ representado por uma barra com comprimento L, de 1,0 m,
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com secdo transversal quadrada de 0,10 m de lado e sem massa. Sua extremidade direita esta
fixa, enquanto sua extremidade esquerda esta livre para se movimentar na dire¢do x,. Nessa
extremidade livre é colocada ainda uma massa concentrada m de 0,4947 kg. O mddulo de
elasticidade E do material constituinte € de 200 MPa, o que corresponde a uma rigidez k =
EAq/Lq de 2.10° N/m para a mola.

Figura 8 — a) Atuador uniaxial flexivel e b) sistema massa-mola equivalente

EEALe  Fy=koL(
m x1 /
/ 5_’ m i —— —
LO 7771777 X,u
a) ’ b)

Fonte: Autor.

O controle do comprimento inicial natural é feito por meio de um incremento de
comprimento, em metros, expresso por:

_ (sen(314,1425t) -1073 set <0,05s
AL(E) = {0 set>0,05s (2.76)

Isso significa que o comprimento natural € imposto durante os primeiros 0,05 s de
analise e, apos esse periodo, 0 elemento passa a vibrar livremente. Ja o sistema massa-mola é
submetido a uma forca externa F(t) = kAL(t), que corresponde a forca necessaria para gerar
0 deslocamento AL(t) na extremidade esquerda. A analise dindmica é realizada durante 0,10 s,
sendo utilizado um incremento At de 0,0001 s para o algoritmo de Newmark e uma tolerancia
de 10°® para a convergéncia da solugéo.

Uma vez que pequenos deslocamentos sdo desenvolvidos neste exemplo, o sistema
massa-mola pode ser analisado como um problema de vibracdo forcada (Warburton, 1976),
descrito pela seguinte Equacéo diferencial:

mii + ku = F(t) (2.77)

em que u e ii sdo, respectivamente, o deslocamento e a acelera¢do da massa m.

Esse tipo problema pode ser solucionado analiticamente e, assim, servir de comparagéo
para a solucdo numeérica via MEFP aplicada ao atuador. A Figura 9 ilustra o deslocamento na
extremidade livre para trés modelos similares: o atuador, o elemento de barra simples sem
controle de comprimento, mas sujeito a forca externa equivalente na extremidade livre; e o
sistema massa-mola. Como ja se esperava, todos 0s modelos apresentam curvas coincidentes,

0 que evidencia o bom funcionamento do elemento de barra simples com ativacao.
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Figura 9 - Deslocamento da extremidade livre
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Fonte: Autor.

2.4.2 Viga engastada e livre com carregamento dindmico

Uma viga engastada e livre é submetida a uma forca transversal concentrada variavel
no tempo aplicada na extremidade livre, conforme ilustrado na Figura 10. A estrutura possui
comprimento de 120 in e se¢do transversal retangular com base de 1 in e altura de 10,627 in. O
modulo de elasticidade E do material constituinte € de 3.10 psi, o coeficiente de Poisson v é
nulo e a massa especifica p, é de 0,0094116 Ib.s?/in*. As unidades de todos esses parametros ja
estdo compativeis.

Figura 10 - Viga engastada e livre, submetida a forga transversal concentrada na
extremidade livre
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Fonte: Autor.

A forca transversal que solicita a viga é variavel no tempo conforme o grafico da Figura
11 sendo definida por meio da expresséo:

S5F,:t set<0.2s

Fo= { Frix set>02s (2.78)
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Figura 11 — Variagéo de F(t)
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Fonte: Autor.

A0 termo F,,;, é atribuido, primeiramente, o valor de 1.10° Ib e, em seguida, de 5.10°
Ib, gerando dois casos de analise. Em ambos, a estrutura desenvolve grandes deslocamentos,
mas ainda se insere no regime de pequenas deformacdes, conforme ja discutido anteriormente
por (Greco, 2004; Kishino, V. H., 2022; Rodriguez, 2017).

A viga é modelada com geometria tridimensional, conforme ilustrado na Figura 12,
dispondo de 32 elementos finitos prismaticos. Os nos da face x = 0 m tem seu deslocamento
restrito tanto na direcdo x; quanto na direcdo x,, representando o engaste existente no
problema. Uma vez que a viga é esbelta, os n6s da face x; = 0 m sdo restritos na direcdo x;
para evitar o efeito de instabilidade lateral.

Figura 12 — Discretizacdo da viga engastada e livre

Fonte: Autor.

Além disso, as faces dos elementos situadas no plano x; = 120 in recebem uma carga
superficialmente distribuida dada por 0,0941F (t), com unidade em Ib/in? e orientada no
sentido negativo do eixo x,, equivalente ao carregamento concentrado F(t) do problema
original. A andlise dinamica ¢é realizada durante 1,0 s, sendo utilizado um incremento At de

0,01 s para o algoritmo de Newmark e uma tolerancia de 10 para a convergéncia da solucéo.
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Os deslocamentos horizontal e vertical ao longo do tempo da extremidade livre,
avaliados no né central da face de aplicacdo do carregamento, estdo apresentados nas Figuras
13 e 14, respectivamente. A titulo de comparacdo, também séo exibidos os valores obtidos por
(Kishino, V. H., 2022) que modelou este mesmo problema também utilizando elementos
prismaticos e a lei de Saint-Venant-Kirchhoff. Observa-se uma boa concordéncia entre 0s
resultados, o que revela o bom funcionamento da implementacdo do elemento prismético de
base triangular.

Figura 13 — Deslocamentos horizontais na extremidade livre
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0 e N e e
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Fonte: Autor.

Figura 14 - Deslocamentos verticais na extremidade livre
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Fonte: Autor.
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2.4.3 Viga reforgada com fibras

Uma viga engastada e livre, reforcada com fibras, é solicitada a um carregamento
uniformemente distribuido, conforme ilustra a Figura 15. O mddulo de elasticidade E,;4, do
material da viga é de 2,1.10° N/cm? e o coeficiente de Poisson v é considerado nulo. Ja as fibras
possuem area de secdo transversal A, de 1,0 cm? e seu material constituinte apresenta modulo
de elasticidade Ef;, de 2,1.10" N/cm?.

Figura 15 — Viga engastada e livre, reforcada com fibras

50 N/cm
RS S A A A A5 —er
transversal
Z N [Bj 2,5 cm
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X2 7 300 ¢ -
LXI !: om » 1 cm

Fonte: Autor.

O problema se insere no regime de pequenas deformacGes, mas desenvolve grandes
deslocamentos, e sua funcéo € avaliar se a estratégia de acoplamento de fibras com uma matriz
estd funcionando de maneira adequada. Além disso, para mostrar que as fibras reforcam a
estrutura e a tornam mais rigida, os deslocamentos também séo avaliados para a viga sem fibras
imersas, de maneira a possibilitar a comparacao.

A viga reforcada € modelada com 300 elementos prismaticos, conforme ilustrado na
Figura 16. As fibras sdo inseridas no plano x; = 0,5 cm e estdo destacadas em vermelho. Os
nos da face x = 0 cm tem seu deslocamento restrito tanto na direcdo x; quanto na direcao x,,
representando o engaste existente no problema, enquanto os nos da face x; = 0 cm sao restritos
na direcdo x5 para evitar o efeito de instabilidade lateral. Além disso, a face dos elementos
prismaticos situadas sobre o plano x, = 10 cm recebem uma carga superficialmente distribuida
sobre a superficie 50 N/cm?, orientada no sentido negativo do eixo x,, equivalente ao
carregamento linearmente distribuido do problema original. E realizada uma anélise estatica em
5 passos de carga com tolerancia de 10 para a convergéncia da solugao.

Os deslocamentos no no central da extremidade livre sdo comparados na Tabela 1 com
os valores de referéncia obtidos por Coda (2009) e Sampaio (2014). O primeiro autor utiliza
uma formulacdo denominada barra geral 3D que emprega a cinematica de Timoshenko-
Reissner e a lei constitutiva de Saint-Venant-Kirchhoff. O segundo, por sua vez, modela a

estrutura por meio de elementos de chapa, adotando o mesmo modelo constitutivo. Observa-se
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que os resultados sdo muito proximos, principalmente com os valores de Sampaio (2014), cuja
formulag&o é mais proxima a deste trabalho. Outro ponto a ser destacado € que o deslocamento
na situacdo com presenca de reforco resulta inferior ao mesmo deslocamento na condi¢do sem
reforco. Com isso, considera-se validada a implementacédo da estratégia para imersdo de barras
simples em matriz prismatica.

Figura 16 — Discretizacdo da viga reforgada com fibras

Fonte: Autor.

Tabela 1 — Deslocamento da extremidade

Discretizagao Autor  Coda (2009) Diferenga Sampaio (2014) Diferenga
Sem fibras 193,109 189,269 2,03% 193,053 0,03%
Com fibras 106,286 104,351 1,85% 106,393 -0,10%

Fonte: Autor.

2.4.4 Matriz reforcada com fibras ativas

Esta aplicacdo é inspirada nos exemplos tratados por Friedel (2016) e Ramirez (2018)
tem o intuito de apresentar o comportamento de uma matriz reforcada quando ocorre a
contracdo das barras imersas. O problema esta ilustrado na Figura 17 e compreende uma chapa
de dimens®es unitarias na qual estdo inseridas 3 fibras retas igualmente espacadas, com area de
secdo transversal de 0,1. A face esquerda da chapa esta impedida de se movimentar tanto na
direcdo x; quanto na direcdo x,. Tanto o material da matriz quanto o das barras possui médulo
de elasticidade E de 2,1.10°, sendo nulo o coeficiente de Poisson v da matriz.

A chapa é modelada como um cubo de lados unitarios, conforme ilustra a Figura 18,
sendo a matriz discretizada em 8 elementos, enquanto as barras sdo discretizadas de trés
maneiras distintas: a primeira, M1, com um Unico elemento; a segunda, M2, com 3 elementos;

e aterceira, M3, com 5 elementos. Em todos os modelos de discretizagao, as barras sdo inseridas
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no plano x; = 0,5. Os nos da face x; = 0 tém seu deslocamento impedido ndo so6 nas direces
X1 € x5, como indica o problema plano na Figura 21, mas também na direcdo x5, para garantir
a vinculacdo necessaria no espaco tridimensional.

Figura 17 — Chapa reforgada com fibras
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0,3333
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X2
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Fonte: Autor.

Figura 18 — Discretizacdo da matriz reforgada

Fonte: Autor.

Em todos os trés modelos, € imposta uma variagdo de comprimento para cada elemento
de barra igual -30% do seu comprimento inicial. Isso equivale a um encurtamento de 0,3 no
modelo M1, de 0,1 no M2 e de 0,06 no M3. E realizada uma analise estatica em 10 passos de
carga com tolerancia de 10 para a convergéncia da solucio.

Na Figura 22 estdo apresentados os resultados de deslocamento na dire¢do x; para o

modelo de contragdo proposto, nas discrteizagdes M1, M2 e M3. Em todas as situagdes, as
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barras obtiveram deslocamento maximo igual ao deslocamento maximo da matriz, o que valida
mais uma vez o acoplamento fibra-matriz. Além disso, observa-se que a discretizacao das barras
influencia o deslocamento maximo na matriz, ainda que de forma minima, pois a taxa de
transferéncia da forca dos elementos de barra para a matriz € menor quanto melhor é a
discretizagdo. Sampaio (2014) relatou que a influéncia da discretizagdo das barras, de fato, é
pequena, entretanto, a utilizacdo de elementos finitos de barra com comprimento igual a
dimensdo do lado do elemento finito de chapa — neste caso, a dimensdo do lado da base
triangular do elemento prismatico — garante a conformidade da discretizacdo e melhora o
comportamento global do sistema. Isso pode ser verificado, inclusive, no trecho circulado em
preto na Figura 21a, em que os deslocamentos na barra de elemento Unico apresentam
discordancias com os deslocamentos da matriz. Esse fendmeno, no entanto, praticamente nao
ocorre nas outras discretizacdes.

Figura 19 — Deslocamentos na direcdo x para as discretizacdes a) M1, b) M2 e ¢) M3
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Fonte: Autor.

Outro ponto a ser destacado € que o deslocamento nos elementos de barra ndo é igual a
contracdo imposta e a explicacdo para isso reside no fato de que a deformagéo no elemento de
barra é dependente da rigidez da matriz. Conforme ja apresentado por Friedel (2016) e Ramirez
(2018), impor uma reducdo no comprimento dos elementos de barra também provoca a
contracdo da matriz, que resiste a esse movimento e gera, portanto, uma forga oposta nas barras.

A posicao final é entdo resultado do equilibrio de forcas entre ambos os materiais. Assim,
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quanto for a rigidez do conjunto de fibras em relacdo a rigidez da matriz, mais préximo o

deslocamento final sera do valor imposto.
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3 MODELO CONSTITUTIVO VISCO-HIPERELASTICO

Neste capitulo sdo abordados os pontos pertinentes sobre a elaboragdo do modelo visco-
hiperleastico empregado no trabalho. Primeiramente, apresentam-se os modelos hiperlasticos
de Saint-Venant-Kirchhoff e de Rivlin-Saunders-Hartmann-Neff. Ambos sdo detalhados no
formato tridimensional, mas, enquanto o segundo é de aplicacdo exclusiva em trés dimensdes,
0 primeiro é também particularizado para o caso uniaxial, com a intencédo de ser aplicado ao
elemento de barra simples.

Em seguida, apresenta-se o modelo viscoelastico de Kelvin-Voigt, utilizado para
representar o comportamento de materiais que desenvolvem deformagdes ao longo do tempo.
Duas versoes desse modelo sdo descritas: uma para o regime de pequenas deformacdes a partir
do modelo de Saint-Venant-Kirchhoff, e outra para o regime de grandes deformac6es, com base
no modelo de Rivlin-Saunders-Hartmann-Neff, que resulta em um modelo visco-hiperelastico
completo. Por fim, é detalhada a introducéo do comportamento viscoelastico na formulacdo do
MEFP, particularizando as expressdes para o elemento de barra simples com ativacao e para o

elemento prismatico.

3.1 CONSIDERACOES INICIAIS SOBRE MODELOS HIPERELASTICOS

Um modelo constitutivo hiperelastico é aquele que dispbe explicitamente de uma
expressdo para a energia especifica de deformacdo ¥, também chamada energia livre de
Helmholtz (Holzapfel, 2000; Ogden, 1997). As principais referéncias consultadas sobre esse
tema sdo Ogden (1997), Holzapfel (2000) e Coda (2018) , além dos trabalhos de Pascon (2008),
Pascon (2012), Ramirez (2018) e Kishino (2022). Ogden (1997) ressalta, inclusive, que a
expressdo da energia especifica de deformacéo, para gerar leis constitutivas consistentes, deve
ser convexa, de maneira a possibilitar a resolucdo do problema de minimizacdo no equilibrio,
conforme discutido mais adiante.

No caso de materiais homogéneos e isotropicos, a energia especifica de deformagéo

pode ser escrita nos seguintes formatos lagrangianos:
Y(A) =¥(C) =¥(E) =¥y, 15 13) = ¥(A1,22,43) 3.1)
Na Equacdo 3.1, A é o gradiente da funcdo mudanca de configuracdo, C é o tensor de

alongamento a direita de Cauchy-Green, E é o tensor de deformacéo de Green, I;, I, e I3 sdo

os invariantes de C e 4,, 4, e A3 sd0 0s alongamentos principais. A isotropia, no entanto, é
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necessariamente imposta somente por meio das duas Gltimas formas, uma vez que a escolha
dos eixos de andlise ndo influencia nem os invariantes nem os alongamentos principais tomados
como argumentos das expressdes.

Em qualquer analise mecanica a ser feita, existem algumas condic¢des que todo modelo
constitutivo hiperelastico deve satisfazer. Em primeiro lugar, a relagdo entre os volumes final
V¢ e inicial V; deve ser sempre superior a zero, isto é:

Vs
v =J>0 (3.2)
em que J € chamado jacobiano da funcdo mudanca de configuracao.

O modelo deve ser capaz de impor a restricdo da Equacédo 3.2, principalmente quando
se trabalha com grandes deformacdes. Isso é feito para evitar que, fisicamente, o material
apresente autointerse¢do. Quando o modelo ndo atende tal condicdo, seu uso deve ser limitado
ao desenvolvimento de deformacgdes moderadas.

Outras duas condicfes béasicas a serem atendidas sdo normalizacdo e crescimento,

descritas respectivamente por:

Y(C=D)=%E=0)=0 (3.3)

+
{ Y - 4+ooquando ] - 0 (3.4)

¥ — 400 quando | - +oo
A condicdo de normalizacdo representa que é nula a energia especifica de deformacéo
nos pontos em que um material ndo desenvolve deformac6es, mas apenas movimento de corpo
rigido. Ja a condicdo de crescimento diz que, para extinguir um material (/ = 0) ou expandi-lo
infinitamente (/ — +0), é necessaria uma quantia infinita de energia de deformacéo. Para que
a segunda condicdo, Equacdo 3.4, seja respeitada, € preciso que pelo menos um termo escrito
em funcdo do jacobiano esteja presente na expressdo da energia especifica de deformacao.
Nos itens a seguir sdo apresentados dois modelos constitutivos hipereléasticos. Ambos
sdo empregados na modelagem proposta nesse trabalho, conforme € detalhado no Capitulo 5.

3.2 MODELO HIPERELASTICO DE SAINT-VENANT-KIRCHHOFF

O modelo constitutivo de Saint-Venant-Kirchhoff € um dos modelos mais simples para
descrever o comportamento hiperleastico de um material, estabelecendo uma relagéo linear
entre a deformacdo de Green E e a tensdo de Piola-Kirchhoff de segunda espécie S, seu

conjugado energético. Consiste em uma extensdo direta da Lei de Hooke para o regime nao-
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linear geométrico, inclusive apresentando coincidéncia para pequenas deformacdes. A energia

de deformac&o desse modelo € expressa por:
1
Y(E) = inj@ijszkl (3.5)

em que € é o tensor constitutivo elastico desse modelo.

A tensdo de Piola-Kirchhoff de segunda espécie resulta da derivada da Equacao 3.5 em
relacdo a deformacéo de Green. A expressdo que a define é linear em relacdo a deformacéo,
conforme ja mencionado, e € dada por:

oY
ij= E
Para materiais isotropicos, a energia de deformacéo fica escrita da seguinte maneira:

S = CijriEr (3.6)

G (1 —Vv)(EE + EZ, + E23) + 2v(E 1 Eop + E11E33 + Egy + E33)

Y= 3.7
1-2v +(1 = 2v)(Ef, + EZ, + EZ + E2, + EZ; + EZ) 3.7)
em que v € o coeficiente de Poisson e G € o modulo de elasticidade transversal, dado por:
G = b (3.8)
214 v) '

Nessa situacdo, as componentes da tensdo de Piola-Kirchhoff de segunda espécie sao

escritas como:

oV 2G
Su =g = 7oy (= VB + vz + By (3.9)
oV 2G
S22 = g~ = T gy {1 = VB2 +v(Ewy + B3s)l (3.10)
oV 2G
S35 = 35 T 1=y |~ VB Hv(En + B)] (3.11)
oY v
S =58, = = = 2GE;, = 2G4 (3.12)
JE,, O0E,;
oY v
S13 = 521 = = = 2GE 3 = 2G34 (3.13)
J0E,; 0E3
oV v
Sz3 = S32 = 57— = 7 = 2GEy3 = 2G 3.14
23 32 0E,; OEs, 23 32 ( )

As Equacdes 3.9 a 3.14 podem ser resumidas numa Unica expressdo fazendo uso de
notacdo indicial:

em que A é a constante de Lame, dada por:
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_ 2Gv
S 1-2v
E importante mencionar que o modelo de Saint-Venant-Kirchhoff nio apresenta

(3.16)

nenhum termo escrito em funcéo do jacobiano, portanto néo respeita a condicao de crescimento.
Com esse modelo, é possivel obter, por exemplo, valores de tensdo que tendem a zero a medida
que 0 jacobiano tambem tende a zero. Assim, ndo deve ser utilizado em problemas que
desenvolvam grandes deformacdes (Ciarlet, 1988).

Na descricéo de elementos finitos unidimensionais, como é o caso da barra simples com
ativacdo apresentada o item 2.3.1, os tensores envolvidos nas expressdes do modelo de Saint-

Venant-Kirchhoff assumem a dimensao escalar. Assim, para esse elemento, escreve-se:
S =EE (3.17)

em que E é o mddulo de elasticidade longitudinal do material e E é a deformacdo de Green

uniaxial, ja apresentada na Equacéo 2.37.

3.3 MODELO HIPERELASTICO DE RIVLIN-SAUNDERS-HARTMANN-NEFF

O modelo constitutivo hipereléstico de Rivlin-Saunders-Hartmann-Neff € um modelo
isotrépico cuja expressdo para a energia especifica de deformacdo é escrita como a soma de
duas parcelas: uma volumétrica, que gera energia apenas pela variacdo de volume, e outra
isocorica, que € insensivel a mudancas de volume. Devido a essa separacdo das parcelas, tal
modelo € classificado como desacoplado, e pode ser utilizado para descrever a condi¢do de
quase-incompressibilidade de um material. Neste item é apresentada sucintamente a formulacao
desse modelo, podendo ser consultadas maiores informacdes em Pascon (2008), Coda (2018),
Ramirez (2018) e Kishino, R. T. (2022) e Kishino, V. H. (2022).

Para promover a separacdo entre 0s termos volumétrico e isocorico, a estratégia
empregada é a decomposicao multiplicativa de Flory (Flory, 1961), que consiste em tomar o
gradiente da funcfo mudanca de configuracdo como o produto dos termos 4 = JY/3I e A =
J~1/3A. Com certo desenvolvimento algébrico, é possivel também escrever essa decomposicio

multiplicativa diretamente em termos do tensor de alongamento a direita de Cauchy-Green:
c=C-C (3.18)
em que C e C sdo, respectivamente, as componentes volumétrica e isocérica do tensor €, dadas
por:
C=J*I (3.19)
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Cc=]?%3cC (3.20)

Com isso, a expressao para a energia de deformacéo pode ser decomposta da seguinte

maneira:
@ = ol (Det(f‘)) + @iso(C) = wrol()) + Yiso(() (3.21)
Como o modelo de Rivlin-Saunders-Hartmann-Neff é isotrépico, rescreve-se a Equacao
(3.20) como:

Y =wrol()) + wiso(], 1) (3.22)

em que I; e I, sdo os invariantes da parcela isocorica do tensor de alongamento a direita
de Cauchy-Green.

As expressdes que compdem a energia especifica de deformacéo do referido modelo séo
oriundas dos modelos de Rivlin-Saunders e de Hartmann-Neff. O primeiro contribui com a
parcela isocorica, enquanto o segundo fornece a parcela volumétrica.

Rivlin e Saunders (1951) propuseram uma formula¢do polinomial para descrever o
comportamento mecanico de borrachas vulcanizadas, de comportamento incompressivel e
isotropico. Tomando como base a expressdo deduzida anteriormente por Mooney (1940) os
autores escreveram a energia especifica de deformagdo em funcdo dos invariantes de
deformagéo I; e I,:

Y(ly, 1) =CU;—3) + f(, —3) (3.23)
em que C é uma constante e f é uma funcéo.

Com o objetivo de que o modelo de Rivlin-Saunders possua compatibilidade com a
resposta obtida por meio da lei de Saint-Venant-Kirchhoff em pequenas deformacdes, 0s

parametros da energia especifica de deformacao podem ser determinados a partir de uma analise

comparativa. Como resultado, a Equacéo (3.22) toma a forma:
YOIy, L) = WOr (1) + W% () = co (I — 3) + ¢10(1; = 3) (3.24)
As constantes ¢y, € cy; ha Equacgdo 3.24 sdo determinadas através de aproximacdes em
pequenas deformacdes quando apenas uma das parcelas, ¥°! ou Wis°2, é empregada na

formulacdo. Conclui-se que tais constantes devem obedecer a relagdo c;o + co1 = G/2 e,

conforme sugerido por Coda (2018), adota-se:

G
o= =7 (3.25)
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Na Equacéo 3.24 por coeréncia com a decomposicéo de Flory, os termos passam a ser
expressos em fungéo dos invariantes da parcela isocorica do tensor de alongamento a direita de
Cauchy-Green.

Hartmann e Neff (2003) por sua vez, propuseram expressdes para a parcela volumétrica
da energia especifica de deformac&o para a descricdo do comportamento mecanico de materiais
isétropos quase incompressiveis. Uma das expressdes propostas no estudo é:

1
pvol(1) = gvol(j2n 4 j=2n _ )l comn > E;l >1 (3.26)

em que k7°! é uma constante elastica e n e [ sio constantes do modelo que servem para regular
a rigidez volumétrica do problema.

De maneira andloga ao que foi realizado para a parcela isocérica da energia de
deformacéo, determina-se a constante elastica também por meio da comparagdo com o modelo

de Saint-Venant-Kirchhoff em pequenas deformaces. Adotando-se [ = 1, obtém-se:

K
kvol = ) (3.27)
em que K € o médulo volumétrico, também conhecido como Bulk-Modulus, expresso por:
E

Na Equacdo 3.27, adota-se n = 1, mas essa constante é mantida no desenvolvimento
das expressdes a seguir.

Compondo de forma aditiva a parcela volumétrica e as parcelas isocoricas, apresentadas
nas Equacles 3.26 e 3.24, respectivamente, escreve-se a energia especifica de deformacéo do
modelo de Rivlin-Saunders-Hartmann-Neff da seguinte forma:

W = @vol(]) 4 Wisol([) 4 Wiso2([) =

T (3.29)
=gVt =D+ -3+, -3)

Observa-se que existe um termo na Equacdo 3.29 que é dado em func¢éo do jacobiano,
sendo, portanto, a condicdo de crescimento satisfeita pelo modelo. Além disso, quando ndo
existe deformacdo em um determinado ponto, ou seja, quando é valida a igualdade C = I,
obtém-se os resultados J = 1 e I, = I, = 3. Assim, verifica-se que a energia especifica de
deformac&o possui valor nulo nesse ponto, de maneira que a condi¢do de normalizagéo também
é atendida.

Quanto mais expressivo for o valor da parcela volumétrica em relagdo as parcelas
isocoricas, maior é o trabalho necessario para produzir deformac6es volumétricas (Pascon,

2012; Ramirez, 2018). Assim, o comportamento de materiais quase-incompressiveis pode ser
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representado por meio do aumento da parcela volumétrica de energia. Tomando proveito das
constantes elasticas empregadas no modelo, uma estratégia possivel para promover esse efeito
é utilizar o coeficiente de Poisson v com valor muito préximo a 0,5, de maneiraa se ter K > G
(Friedel, 2016).

O tensor de tensdes de Piola-Kirchhoff de segunda espécie S é obtido por meio da
derivada da Equacdo 3.29 em relacdo a deformacdo de Green, também gerando as parcelas
volumeétrica e isocaricas:

6'1”170[ a'{’iml allyisoz
S =

— gquol isol iso2 3.30
5t T g S St +s (3.30)
Efetuando-se as derivadas, obtém-se:
§ = gvol 4 gisol | giso2 _ £Tvol + ETiSOI + ETiSOZ (3.31)
4n 2 2

Ne Equacdo 3.31, T¥°!, Tis°1 e Tis92 530 grandezas tensoriais expressas por:

Tvol = (j2n-1 _ j-2n-1)¢-1 (3.32)
isol -2 1 -1
Tisol — |3 (21 —hC ) (3.33)
) 4 2
TlsoZ — ]—§ (Ill —C- §IZC_1> (334)

em que I a matriz identidade e I, e I, 0s primeiro e segundo invariantes do tensor de

alongamento a direita de Cauchy-Green, dados por:

I, = Tr(C) (3.35)

CZZ C23 Cll Cl3 Cll CIZ
I, = 3.36
27 |y ol T1Cor Cosl TGy Cov (3.36)

Derivando uma segunda vez a energia de deformacdo em relacdo a deformacdo de
Green, obtém-se o tensor constitutivo elastico tangente €, conforme a Equacéo 3.37. Por ser
um tensor de quarta ordem, faz-se uso de notac¢do indicial para apresentar as expressdes que 0
compdem, de maneira a deixar claro a combinacdo de indices nas operagdes envolvidas.

anIVOI azlpisol azlpisoz

Cijr = + + = GVl + @il 4 gisoz 3.37
UKL QE;0E, ' OE;j0Ey OE;0E, Uk T Uk T Tk (3:37)

emqueij,k, | =123.
Para determinar a parcela volumétrica do tensor constitutivo eléstico, escreve-se ¥vo!
como uma funcdo do jacobiano e faz-se uso da regra da cadeia para avaliar a derivada. A

expressdo dessa parcela tem a forma:
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aleyvol a] aleyvol a] 0‘{’”01 62]
vol, = = . + (3.38)

em que:
9] =JD (3.39)
aEl] L] '
vol
all;l] — 45(/211—1 _]—211—1) (340)
n
alevOl K
7 = [((2n—1)J*2 + (2n+ 1)]72"7] (3.41)
0?%]
9E, 9E, = J(D;;Dy; — 2Dy, Dyj) (3.42)
ij

Nas Equacdes 3.39 e 3.42, denota-se D = C~1.
As parcelas isocoricas do tensor constitutivo elastico sdo determinadas de maneira
analoga. Nesse caso, escreve-se ¥¥5°1 e $is°Z como fungdes, respectivamente, dos invariantes
I, e I, da parcela isocérica do tensor de alongamento a direita de Cauchy-Green e avalia-se a
derivada por meio da regra da cadeia, resultando na expresséo:
azlpisol 61_1 an;isol 61_1 alpisol 621_1

iso1l
ikl = = +—3 3.43
ijkl aEijaEkl aEU 01_12 aEkl all aEijaEkl ( )
U OE;j0Ey  OEy 9f,° O0Ewm 0l OE;0Ey
em que:
aZ(PiSOI aZlPisoZ
——=———=0 (3.45)
6112 6122
alyisol aq;isoz G
— = ——— = (3.46)
oI, or, 4
2, 4 .1l
OE0E. 3/ i [§ (DijDia + 3Dy Dij)ly — DyjSj = Dy (3.47)
2
621_2 8 —4/3 (§DijDkl+Dilej>IZ_(Dij6k1+Dk15ij)11 + 248

3
+D;jCyy + Dy Gy + 2 (5ij5kl - 61"‘6”)

Nas Equacdes 3.47 e 3.48, 8 € o delta de Kronecker. As expressdes correspondentes a
0l,/0E e dl,/9E séo omitidas pois ndo é necessario conhecé-las, uma vez que essas parcelas

estdo multiplicadas por termos de valor nulo.
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3.4 MODELO VISCOELASTICO DE KELVIN-VOIGT ADAPTADO

Viscosidade é a propriedade fisica que caracteriza a resisténcia de um fluido ao
escoamento, isto é, deformacdo por cisalhamento. Entretanto, essa caracteristica ndo se
restringe apenas a fluidos, uma vez que muitos materiais solidos (elésticos) se comportam de
tal maneira em algum grau. Embora seja possivel que, em determinadas condigdes, a
viscosidade nem se manifeste de maneira perceptivel e a resposta elastica seja preponderante,
existem varias situacbes em que o comportamento viscoso se mostra significativo. Esse
comportamento conjunto ndo é descrito nem pela teoria da elasticidade, nem pela da
viscosidade, mas pela combinagdo de ambas: adentra-se entdo o ambito da viscoelasticidade
(Christensen, 1982).

A viscosidade confere ao material uma dependéncia da taxa de deformacéo em relagédo
ao tempo. Em funcdo disso, alguns comportamentos caracteristicos sdo observados nos sélidos
viscoelasticos: a fluéncia, a relaxacdo e a histerese (Zatsiorsky; Prilutsky, 2012). O primeiro é
a deformacdo gradual sob tenséo constante. O segundo consiste na reducdo de tensdes quando
0 sélido é mantido num estado de deformacdo constante. Por fim, a histerese é a dissipacao de
energia que ocorre num ciclo de carga e descarga, evidenciado pela mudanca na curva tenséo-
deformacéo.

Este item € voltado para descrever o modelo viscoelastico de Kelvin-Voigt e tratar sua
consideracdo na expressdo da energia mecanica para, entdo, ser introduzido a formulacdo do
MEFP. E apresentada, inicialmente, sua versdo para o regime de pequenas deformacdes, de
onde se extraem conceitos importantes para que, em seguida, seja descrita uma versao do
mesmo modelo voltada a problemas que desenvolvem grandes deformacoes.

Durante a descricdo do modelo, o foco é apresentar o tensor de tensdes viscosas € 0
tensor constitutivo viscoso nas versdes de pequenas e grandes deformacdes, que sdo as
grandezas necessarias para considerar o comportamento viscoeldstico na resolucdo de
problemas via MEFP. Mais detalhes sobre esse modelo podem ser encontrados em (Carvalho,
2019; Kishino, R. T., 2022)

3.4.1 Modelo viscoelastico para pequenas deformacoes
O comportamento viscoeléstico no regime de pequenas deformacgdes geralmente é

descrito por modelos fisicamente lineares, em que a tensdo é proporcional ao historico de

deformacéo. Esses modelos sdo visualmente representados por meio de sistemas mecanicos de
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mola-amortecedor, nos quais a viscoelasticidade € tratada como a combinagdo linear de molas
hookeanas (puramente el&stica) e amortecedores newtonianos (puramente viscoso) (Roylance,
2001), ilustrados na Figura 20.

A mola hookeana modela a quantidade de energia mecanica armazenada na forma de
energia de deformacdo e a deformacéo instantanea desenvolvida no material, sendo descrito
pela Lei de Hooke:

c=C:¢ (3.49)

Figura 20 — a) Mola hookeana e b) amortecedor newtoniano

O O

a) b)

Fonte: Autor.
em que o é o tensor de tensdes de Cauchy, € é o tensor constitutivo elastico pela Lei de Hooke
e € € o tensor de deformacdes lineares.

O amortecedor newtoniano, por sua vez, reproduz o comportamento dependente do
tempo, no qual a tensdo gera uma taxa de deformacéo. Essa relacdo segue a Lei de Newton da
Viscosidade:

c=N:¢& (3.50)
em que IV é o tensor constitutivo viscoso pela Lei de Hooke e & é a taxa de variacdo do estado
de deformagdes lineares no tempo.

A associagdo em paralelo do comportamento el&stico com um amortecimento viscoso
gera 0 modelo de Kelvin-Voigt. Esse arranjo exibe comportamento elastico em longos periodos,
com deformacdes lentas, e apresenta uma resisténcia extra para desenvolver deformacdes
rapidas. E um modelo bastante empregado para retratar com boa qualidade a fluéncia nos
materiais, mas pouco preciso para descrever o fendmeno da relaxacéo (Banks; Hu; Kenz, 2011).

Empregando a deformacdo de Green como medida de deformacdo e o seu conjugado
energético, isto €, a tensdo de Piola-Kirchhoff de segunda espécie, como medida de tensdo,
obtém-se 0 modelo de Kelvin-Voigt adaptado (Madeira; Coda, 2016),esquematizado na Figura
21. Essa modificagdo visa a introdugdo do modelo viscoelastico na analise mecanica através da
formulacdo do MEFP e, em regime de pequenas deformagdes, apresenta boa concordancia com

0 modelo original.
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Uma vez que os comportamentos eléstico e viscoso estdo associados em paralelo, o
estado de deformacdes é o mesmo, ou seja, E€'2t = EVis¢. Assim, o estado de deformagdes no
modelo é denotado simplesmente por E. Ja 0 estado de tensdes total corresponde a soma dos

estados de tensdes elastico e viscoso, conforme a expressao:

§=selast 4 SV =@ E+N: E (3.51)
em que € e 9 sdo, respectivamente, o0s tensores constitutivos de quarta ordem el&stico e viscoso
do material pelo modelo de Sain-Venant-Kirchhoff e E é a taxa de variacdo do estado de

deformacdes no tempo.

Figura 21 — Modelo de Kelvin-Voigt adaptado a
deformacéo de Green

EE

l
i

Fonte: Adaptado de Madeira e Coda (2016).

Na Equacdo 3.51, a variacdo do estado de deformacdes no tempo E pode ser calculada
por meio do método das diferencas finitas (Madeira; Coda, 2016). Para tanto, o tempo é tomado
como uma variavel discreta, de maneira que o tempo atual t,,, é calculado como o instante
anterior tg acrescido de um passo ou intervalo de tempo At. Assim, escreve-se a aproximacao

para essa variagdo como:

Es+1 - Es
At

Desse modo, a parcela viscosa do estado de tens@es total no material viscoelastico é

E= (3.52)

expressa por:
gisc _ gy ; Esr1 — Es (3.53)

At
Para um material isotropico, o0 tensor constitutivo viscoso pode ser adotado como

(Carvalho, 2019).

N = %G - 7€ (3.54)
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em que n é o coeficiente de viscosidade e [E é o modulo de elasticidade longitudinal do material.
Inclusive, a razéo n/E = 7 tem unidade de tempo e se mostra uma medida interessante para

avaliar o tempo de resposta viscoelastica do material (Roylance, 2001).
3.4.2 Modelo visco-hiperelastico para grandes deformacdes

O modelo de Kelvin-Voigt pode ser ajustado a fim de representar com boa qualidade o
comportamento de um material viscoelastico no regime de grandes deformagfes. Uma
alternativa para realizar esse ajuste é empregar o modelo hiperelstico completo de Rivlin-
Saunders-Hartmann-Neff na descricdo do comportamento elastico e um modelo viscoso
anadlogo a esse modelo elastico, em que a parcela de energia também é decomposta nas
componentes volumétrica e isocorica. O resultado desse processo € um modelo visco-
hiperlastico completo e seu desenvolvimento esta descrito em detalhe em Carvalho (2019) e
Kishino, R. T. (2022). Aqui sdo apresentadas as expressdes principais para uma boa
compreensdo do modelo.

Aplicando a decomposic¢do de Flory, a energia especifica de deformacéo viscoelastica
no modelo de Kelvin-Voigt é escrita na forma:

¥ = Weias + Woise = (Pels + Yelas + Yelas) + (Poise + Poise + Poise)  (3.59)
A tensdo de Piola-Kirchhoff de segunda espécie fica, entdo, escrita como:

$ = 2% (el + Siseh + SEER) + (SE2L, + Sisgh + g2 (350

Assim como no modelo para pequenas deformacdes, percebe-se que a tensdo total é
mantida como a soma das parcelas elastica e viscosa. As componentes da parcela elastica ja
estdo apresentadas no item 3.3. Para as componentes da parcela viscosa em (Carvalho, 2019;
Kishino, R. T., 2022) propdem a seguinte expressdo, em semelhanga ao modelo hiperelastico

de Rivlin-Saunders-Hartmann-Neff:

Spisc = svol | gisol | giso2 _ K —Fvol ETisol + ETisoZ (3_57)

visc visc visc 4n 2 2

Na Equacdo 3.57, K = 7K ¢é a viscosidade volumétrica e G = G é a viscosidade
cisalhante isocorica. Os termos T?°!, Tis°1 ¢ Ti°2 representam a variagdo no tempo das
grandezas tensoriais expressas nas Equacdes 3.32 a 3.34. Seguindo a proposta de (Madeira;
Coda, 2016) para a taxa de variacdo da deformacdo de Green apresentada no item 3.4.1,

aproximam-se tais parcelas também por meio de diferencas finitas:



65

S (G Rl GoN (3.58)
At

Tisol — [(TlS01)5+1At_ (Tlsol)s] (359)

o = [T*oss - (Ti502), ] (3.60)

As grandezas tensoriais T iniciam nulas na analise dindmica ou quase-estatica e sao
atualizadas no final de cada passo de tempo para, entdo, dar sequéncia com o processo iterativo
de Newton-Raphson. Vale salientar que aproximar as variagdes dessas grandezas tensoriais
dessa maneira, Equac6es 3.57 a 3.60, impde que as derivadas em relacdo ao tempo das parcelas
volumétrica e isocdricas preservam as direcGes originais, embora isso nao corresponda
necessariamente ao comportamento real (Kishino, R. T., 2022). Optou-se por tal estratégia em
virtude do menor custo computacional, sendo que as simplificagdes envolvidas ndo devem
alterar significativamente a resposta final.

A partir das aproximacdes por diferencas finitas, é possivel escrever o tensor de tensdes

viscosas simplesmente como:

n
Svisc = A_t [(Selas)s+1 - (Selas)s+1] (361)

Derivando as tensdes de Piola-Kirchhoff viscosas, Equacdo 3.57 em relagdo a
deformacéo de Green, obtém-se o tensor constitutivo viscoso tangente 9%, também dividido nas
componentes volumétrica e isocorica.

aSvisc B asvol asis_ol N aSisoZ

visc visc

N = T A T ain'sc = gpvol 4 gqpisol | gqpiso2 (3.62)
em que:
74 l l
vol _ _K o), 9™, (3.63)
4nAt OE oE '
) G_ a(Tisol) a(Tisol)
isol _ s+1 _ S 3 64
n 2At [ 0E OE (3.64)
) G_ a(TiSOZ) a(TiSOZ)
iso2 _ s+1 _ S 3.65
n 2At [ 0E OE (3.65)

Para o passo de tempo atual ¢, 4, a derivada dos tensores T referentes ao passo anterior
ts em relacdo a deformacéo atual resultam nulas evidentemente. Com isso, a derivada restante

é a mesma avaliada para o tensor constitutivo elastico, sendo possivel escrever:

n
= 3.66
= (3.66)
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Por fim, ressalta-se que esse modelo é dito completo, pois respeita as condi¢des tanto

de normalizacdo quanto de crescimento.
3.4.3 Resolucdo do problema viscoelastico via MEFP

A introducdo do modelo de Kelvin-Voigt a formulacdo do MEFP ocorre por meio do
problema dinamico, uma vez que a viscosidade ¢ uma propriedade cujos efeitos se revelam ao
longo do tempo. Observando a Equacdo 3.51 das tenses do modelo, o primeiro termo é a
derivada da energia especifica de deformacgdo em relacdo ao estado de deformacdes, enquanto
0 segundo termo corresponde a parcela dissipativa da energia (Madeira; Coda, 2016). Dessa
forma, o amortecimento viscoso consiste num mecanismo de dissipacéo de energia. Conforme
ja comentado no Capitulo 2, embora nédo seja conhecida uma expressdo para o proprio potencial
dissipativo Q, é possivel escrever a sua variagdo 5Q, Equacédo 2.12, como:

5Q = Fdis . §Y = j svise ; a—'f - 8YdV, (3.67)
Vo oY

De onde se conclui que o vetor de forcas de dissipacao presente na equacéo de equilibrio
ndo linear é:

Bdis _ j svise . 2E (3.68)
Vo oY

No processo de resolucdo do problema dinamico, ao se tomar a derivada do vetor de
desbalanceamento mecanico ag(t5+1)/a? em 175‘1,1, Equacdo 2.31, a presenca do vetor de
forcas dissipativas na Equac&o de equilibrio gera uma parcela da matriz hessiana H%' oriunda
do potencial dissipativo. Tal parcela corresponde a:

gEdis oE oE . 92%E
= f Py D Y + gvisc . TP dVy (3.69)
. v

Hdis —
oY Yo

Uma vez definidas as expressdes gerais do vetor de forcas e da matriz hessiana
provenientes do potencial dissipativo, particularizam-se essas expressoes para os elementos de
barra simples com ativacdo e para 0s elementos prisméaticos. As expressdes apresentadas a
seguir para essas grandezas sdo locais, isto é, ttém sua aproximacéo realizada no dominio do
elemento. Apoés avaliadas, devem ser contribuidas em suas respectivas grandezas globais para
tratar o problema completo, de acordo com a incidéncia nodal do elemento nos graus de

liberdade do corpo discretizado.
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3.4.3.1 Elemento de barra simples com ativagdo

Numa abordagem voltada para elementos unidimensionais, como é o caso da barra
simples com ativacdo, os estados de tensdes e deformacdes assumem valor escalar e passam a
se referir apenas a direcdo axial. Assim, o vetor de forcas de dissipacao, Equacédo 3.68, assume

0 seguinte formato, analogo ao vetor de forgas internas:

i ) —1 l
(Fil)dls = SVA, (L—) Y?-vhH (3.70)

on

Substituindo, na Equacdo 3.70, a Equacdo 3.53 da tensdo viscosa para o modelo

viscoelastico de pequenas deformacgdes em seu formato uniaxial, tem-se:

dis 1 (-1)"
(F)" =7; Bsrs — EAo

(Y7 = Ysr1 (3.71)

on

Madeira e Coda (2016) mostram que, ao considerar passos de tempo suficientemente

pequenos, é possivel admitir que:
(V7 =Yg = (V2 = 1) (3.72)

Com isso, a expressdo final para as referidas forcas de dissipagdo é escrita como:

(Fil)dis _ Ait[(Fil)int B (Fil)int] (373)

s+1
Dessa maneira, as forcas de dissipacdo estdo numericamente relacionadas com as forcas
internas. A partir disso, a matriz hessiana proveniente do mecanismo de dissipa¢ao viscosa em

elementos de barra simples é expressa por:

(Huge)™ = 2 (FY™ g lo(F)L, o).
il = = —
o a(Ygz)s+1 At a(Ygz)s+1 a(YgZ)S+1

A derivada da forca interna do passo anterior t, em relagdo as posi¢des do passo de

(3.74)

tempo atual t,,, resulta nula. A derivada restante, por sua vez, corresponde a propria matriz
hessiana estatica do elemento de barra simples com ativacdo. Chega-se, portanto, a seguinte
expressdo para a parcela da matriz hessiana proveniente do potencial dissipativo:
is 1N
HdlS — _Hestat 3.75
AL (3.75)

3.4.3.2 Elemento prismatico de base triangular

J& numa abordagem voltada para os elementos prismaticos, o vetor de forca interna é

calculado mediante a utilizagdo conjunta da quadratura de Hammer com 12 pontos e da
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quadratura de Gauss com 2 pontos. A integral analitica da Equacao 3.68 é reescrita como uma

integral numérica:

2 12
di . )
(FH™ = f (f)¥dVy = z Z(fil)dw]oWth (3.76)
Yo g=1h=1
em que:
di isc OF
(FD™ = (Sap)"™° a;lﬁ (3.77)

Ne Equagdo 3.76, wy, e w, sdo os pesos de Hammer e de Gauss respectivamente e J, €
0 jacobiano da transformacdo. Os indices i = 1,2,3 e [ = 1,2, ...,20 sdo, respectivamente, as
direcBes do problema e os nds do elemento. J& os indices «, 8 = 1,2,3 correspondem as
dimensdes do tensor de tensdo viscoso SVi¢,

A partir disso, a parcela da matriz hessiana proveniente do potencial dissipativo € escrita

para um elemento prismatico, utilizando notacéo indicial, como:

\dis 2 12
(Hilgz)dis = a(aFl—Y)Z = j- (hilgz)diSdVO = Z Z(hilgz)dis]OWth (3-78)
g Yo g=1h=1
em que:
E)Eaﬁ aEy” visc azEa[;

dis
(higz) ™ = By Jabre gyl T (Sap) aviovz (3.79)

Os indices i,g =123 e L z=1,2,..,20 sdo, respectivamente, as direcGes do
problema e 0s n6s do elemento. Ja os indices , B, y, 1 = 1,2,3 correspondem as dimensdes dos
tensores M. As derivadas do tensor de deformac6es de Green em relacdo as posi¢des nodais sdo
as mesmas apresentadas nas Equacdes 2.53 e 2.65. Para o elemento prismatico, podem ser
empregadas as expressbes de 9t e SVS¢ tanto do modelo viscoelastico para pequenas
deformacdes quanto do modelo visco-hiperelastico completo para grandes deformacGes.

O mesmo comentario feito nos itens 2.3.1 e 2.3.2 em relacdo a verdadeira ordem dos
tensores de forga e da matriz hessiana elasticos dos elementos finitos vale também para as

grandezas tratadas neste item. A relacdo entre no-direcdo e os graus de liberdade na notacéo

(F)dis e (Hy, )™ é dadapor k =301 —1) +iej=3(z—1) +g.
3.5 EXEMPLOS DE VALIDACAO

Neste item sdo apresentados alguns exemplos com o intuito de validar o correto

funcionamento do codigo computacional implementado para os modelos constitutivos descritos
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neste capitulo. Primeiramente, sdo abordados problemas elésticos, para avaliar o
comportamento dos modelos hiperelasticos. Em seguida, séo tratados problemas viscoelsticos.

3.5.1 Vigaengastada e livre

Uma viga engastada e livre, com comprimento de 10 m, é submetida a uma forca
transversal concentrada de 160 kN aplicada na extremidade livre, conforme ilustrado na Figura
22. Sua secao transversal é retangular, com base de 1,0 m e altura de 0,2 m. O modulo de
elasticidade E do material é de 2,4.10° kN/m? e seu coeficiente de Poisson v é nulo.

Figura 22 - Viga engastada e livre, submetida a forca transversal concentrada na
extremidade livre

160 kN Se¢do
% \L transversal
% I" ] 02m
e 10m u. 1,0 m

Fonte: Autor.

A viga é modelada com 32 elementos prismaticos de base triangular, conforme ilustrado
na Figura 23. Os nos da face x; = 0 m tem seu deslocamento restrito tanto na direcao x; quanto
na x,, representando o engaste existente no problema. Esses mesmos nds também sdo restritos
na direcdo x5 para garantir a vinculagdo necesséria no espaco tridimensional. Além disso, 0s
nos da face x; = 10 m recebem uma carga distribuida sobre a superficie no valor de 800 kN/m2,
equivalente ao carregamento concentrado de 160 kN no problema original. Realiza-se uma
anlise estatica com tolerancia de 10 para a convergéncia da soluc&o.

Figura 23 — Discretizacdo da viga engastada e livre

Fonte: Autor.
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O objetivo deste problema é avaliar a resposta mecénica obtida a partir do modelo
constitutivo de Rivlin-Saunders-Hartmann-Neff. Os valores de referéncia para comparagao
foram retirados de Mattiasson (1981) que desenvolveu sua analise por meio de integrais
elipticas e empregou a Lei de Hooke. Os deslocamentos horizontal e vertical do n6 em que
ocorre a aplicacdo da forca estdo apresentados na Tabela 2. Também estdo exibidos os valores
obtidos porMattiasson (1981) e as respectivas diferencas percentuais.

Tabela 2 - Resultados obtidos para o problema 3.5.1

Autor Mattiason (1981) Diferenca
u/L wi/L u/L w/L u/L w/L
0,0 0,00000 0,00000 0,00000 0,00000 - -
1,0 0,05629 0,30130 0,05643 0,30172 -0,24% -0,14%
2,0 0,15985 0,49186 0,16064 0,49346 -0,49% -0,32%
2,5 0,20877 0,55351 0,20996 0,55566 -0,57% -0,39%
3,0 0,25286 0,60062 0,25442 0,60325 -0,61% -0,44%
3,5 0,29203 0,63732 0,29394 0,64039 -0,65% -0,48%
4,0 0,32671 0,66648 0,32894 0,66996 -0,68% -0,52%
4,5 0,35745 0,69010 0,35999 0,69397 -0,71% -0,56%
5,0 0,38481 0,70957 0,38763 0,71379 -0,73% -0,59%
55 0,40927 0,72586 0,41236 0,73042 -0,75% -0,62%
6,0 0,43124 0,73968 0,43459 0,74457 -0,77% -0,66%
6,5 0,45109 0,75154 0,45468 0,75676 -0,79% -0,69%
7,0 0,46910 0,76185 0,47293 0,76737 -0,81% -0,72%
7,5 0,48552 0,77088 0,48957 0,77670 -0,83% -0,75%
8,0 0,50056 0,77887 0,50483 0,78498 -0,85% -0,78%
8,5 0,51438 0,78599 0,51886 0,79239 -0,86% -0,81%
9,0 0,52713 0,79239 0,53182 0,79906 -0,88% -0,84%
9,5 0,53893 0,79816 0,54383 0,80510 -0,90% -0,86%
10,0 0,54990 0,80341 0,55500 0,81061 -0,92% -0,89%

PL?/EI

Fonte: Autor.

Observa-se uma boa concordancia entre os resultados, 0 que evidencia o bom
funcionamento das implementacdes e a qualidade da resposta obtida pelo modelo constitutivo.
Essa concordancia estd em acordo com o fato de que a estrutura, embora desenvolva grandes
deslocamentos, ainda se insere no regime de pequenas deformacdes. Era esperado, portanto,
que a correta implementacéo do modelo constitutivo levasse os resultados se aproximarem, uma
vez que, em pequenas deformagdes, o modelo Rivlin-Saunders-Hartmann-Neff reproduz o
modelo de Saint-Venant-Kirchhoff, que, por sua vez, se aproxima da Lei de Hooke nesse

regime.
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3.5.2 Cubo submetido a compresséo uniaxial

Este exemplo, também encontrado em Kishino, V. H. (2022), consiste em um cubo de
dimensGes unitarias, cuja face contida no plano x; = 1 esta sujeita a um deslocamento prescrito
Ax5 de 0,9 no sentido negativo do eixo, conforme ilustrado na Figura 24. As faces de entrada
dos eixos x4, x, € x5 tem seu movimento restrito na direcdo do eixo perpendicular ao seu plano.
O modulo de elasticidade E do material que constitui o cubo é unitario e o coeficiente de
Poisson v é adotado como 0,4.

Figura 24 - Cubo sujeito a compressao na dire¢ao x;
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Fonte: Autor.

O objetivo deste teste é verificar o comportamento dos modelos constitutivos de Saint-
Venant-Kirchhoff e de Rivlin-Saunders-Hartmann-Neff no regime de grandes deformacées. A
modelagem tridimensional do problema com 2 elementos prismaticos esta ilustrada na Figura
25.

Figura 25 - Discretizagdo do cubo

Fonte: Autor.
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Os nos das faces contidas nos planos x; = 0, x, = 0 e x3 = 0 sdo mantidos fixos nas
direcOes x;, x, € x3, respectivamente, representando as vincula¢fes do problema, enquanto 0s
no6s da face contida no plano x; = 1 sdo submetidos ao controle de posicdo Ax,. E efetuada
uma analise estatica em 30 passos de carga com tolerancia de 10 para a convergéncia da
solucéo.

A andlise dos resultados foi feita mediante a plotagem da curva tensdo x deformacao na
direcdo de achatamento para os modelos constitutivos em questao, apresentados nas Figuras 26
e 27. Como o deslocamento imposto gera um estado de tensdes e deformacdes homogéneo no
corpo, as grandezas analisadas sao referentes a um ponto qualquer do dominio.

Figura 26 - Gréfico |o3| x |23 — 1| do cubo comprido obtido com o modelo de
Rivlin-Saunders-Hartmann-Neff
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Fonte: Autor.

Figura 27 - Gréfico |o3| x |43 — 1| do cubo comprido obtido com o modelo de
Saint-Venant-Kirchhoff
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Fonte: Autor.
Observa-se evidentemente que o modelo de Rivlin-Saunders-Hartmann-Neff respeita a

condicdo de crescimento, sendo cada vez mais alto o valor da tensdo quanto maior é a
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deformacéo. Isso se deve a presenca do jacobiano na expressdo da sua energia de deformacéo.
Por outro lado, o0 modelo de Saint-Venant-Kirchhoff apresenta uma tensdo inicialmente
crescente, mas que passa a reduzir seu valor, embora o achatamento continue se desenvolvendo.
Assim, o primeiro modelo se mostra de fato adequado para representar o regime de grandes
deformagdes, devendo o segundo ser limitado a problemas que envolvam deformacdes leves a
moderadas.

Toma-se proveito da geometria do cubo e apresenta-se também o comportamento quase-
incompressivel que pode ser conferido ao material por meio do modelo de Rivlin-Saunders-
Hartmann-Neff. Seguindo a estratégia comentada no item 3.3, adota-se um coeficiente de
Poisson v de 0,49999, mantendo as demais propriedades fisicas e geométricas ja descritas. No
gréafico da Figura 28, esté plotado o volume do corpo em relacdo a deformacdo na direcdo x5
para as situacOes tanto com v = 0,4 e v = 0,49999.

Figura 28 — Grafico do volume x deformacdo para o0 modelo de Rivlin-Saunders-
Hartmann-Neff com coeficientes de Poisson distintos
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Fonte: Autor.

Observa-se que considerar um coeficiente de Poisson muito proximo de 0,5 faz
preservar o volume inicial do corpo, enquanto um valor mais baixo para esse coeficiente
permite que o corpo sofra reducdo em seu volume ao se deformar. Conforme ja comentado no
item 3.3, 0 volume do corpo se mantém praticamente inalterado porque adotar v = 0,49999
faz com que a parcela de energia volumétrica seja bem mais expressiva que a parcela isocorica.
Com isso, a configuragdo de equilibrio busca naturalmente a condicdo / = 1, validando a
possibilidade de considerar o comportamento quase-incompressivel de um material por meio
do modelo de Rivlin-Saunders-Hartmann-Neff. Por fim, ilustra-se na Figura 29 as
configuracdes finais de ambas as situagfes, na qual se observa maiores deslocamentos nas

direcOes ortogonais ao achatamento para a situagédo com v = 0,49999.
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Figura 29 — Configuragéo final do cubo comprimento com coeficiente de Poisson a) v = 0,4
eb) v = 0,49999
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3.5.3 Barra viscoelastica simples

Uma barra viscoelastica tem seu comportamento comparado a um sistema equivalente
do tipo massa-mola-amortecedor. A barra tem suas extremidades fixas e € composta por dois
trechos com comprimento L, de 1,0 m e area de sec&o transversal 4, de 5 cm?, conforme ilustra
a Figura 30. O mddulo de elasticidade [E do material constituinte € de 10 GPa, o que corresponde
a uma rigidez k = 2[EA,/L, de 10 MN/m para a mola. No meio do vdo e na extremidade da
mola, existem uma massa concentrada M de 10 kg e uma forca concentrada F de 10 kN.

Figura 30 —a) Barra viscoelastica e b) sistema massa-mola-amortecedor

equivalente
C=2MA/L,
10 kN k=2EA,/L,
" . 1 m gl\l
R Y

Fonte: Autor.

O objetivo em quest&o é validar a correta implementacdo do modelo visco-hiperelastico
de Kelvin-Voigt adaptado. Para tanto, sdo realizadas analises estatica, quase-estatica e
dindmica. Também sdo apresentadas as tensbes elastica, viscosa e total desenvolvidas na
estrutura ao longo do tempo.

Este problema foi proposto por Madeira e Coda (2016), que modelaram a barra com
elementos de trelica, e foi estudado posteriormente por Carvalho (2019), que empregou
elementos de chapa triangulares na modelagem. Neste trabalho, a estrutura é modelada com 4

elementos prismaticos de base triangular, conforme a Figura 31. Os nds dos planos x; =0 e
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x; = 2 m sdo fixos nas direc¢des x; e x,, de acordo com as condi¢des de contorno do problema.
Os nos do plano x; = 0 m sdo mantidos fixos na direcao x5 para evitar efeitos de instabilidade.
E considerada uma altura de 5 cm e uma espessura de 1 cm, representando a area inicial de 5
cm?.

A forca horizontal de 10 kN é inserida na forma de um carregamento distribuido de 10
MN/m? sobre as duas faces situadas no plano x; = 1 m, de maneira a dividir a intensidade total
entre os nos destacados em vermelho. J&4 a massa é colocada de forma discreta nos nos centrais
ao longo da altura, circulados na Figura 31, cada um recebendo 2,5 kg. O comportamento
viscoelastico é descrito pelo modelo de Kelvin-Voigt para grandes deformacGes.

Figura 31 — Discretizagdo da barra viscoeléstica

Fonte: Autor.

O problema também foi modelado por meio de barras simples, com o intuito de validar
o0 modelo de Kelvin-Voigt para esse tipo de elemento. Essa modelagem é feita com dois
elementos, conforme pode ser visualizado na prépria Figura 30, enquanto 0 comportamento
viscoelastico é descrito pela versdo de pequenas deformacgdes. Todas as analises descritas a
sequir foram desenvolvidas tanto para a modelagem com elementos prismaticos quanto com
elementos de barra.

Em primeiro lugar, realiza-se uma anélise estética do problema via MEFP. A solugéo
analitica equivalente consiste em aplicar a lei de Hooke a mola, resultando em um deslocamento
u = kF de 0,001 m em sua extremidade.

Em seguida, é efetuada uma andlise dindmica sem amortecimento, isto €, desprezando
0 mecanismo de dissipacao de energia oriundo da viscosidade. A solucéo analitica equivalente
a essa situacgdo é avaliar o comportamento do sistema massa-mola com oscilagéo forgada por
meio da equacdo de movimento com um grau de liberdade, Equacdo 2.77, de maneira analoga

ao que foi feito no item 2.4.1.
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Por fim, é realizada uma anélise quase-estatica, isto &, considera-se 0 amortecimento
Viscoso e despreza-se a massa do problema. Adotam-se dois coeficientes de viscosidade n
distintos para o material da barra: primeiramente 40 MPa.s e, em seguida, 80 MPa.s,
correspondendo a um coeficiente de amortecimento viscoso ¢ = 2n4,/L, de, respectivamente,
40 KN/m.s e 80 kN/m.s. A analise se desenvolveu durante 0,03 s, utilizando um incremento de
tempo At de 2.10° s, conforme sugeriram Madeira e Coda (2016) apds um estudo de
convergéncia. Além disso empregou-se uma tolerancia de 10 para a solucéo.

A solucdo analitica para deslocamentos do caso quase-estatico é obtida por meio da
equacdo do movimento considerando amortecimento e desprezando a massa (Warburton,

1976), expressa por:
cu+ ku=F(t) (3.80)

em que u e u Sao, respectivamente, o deslocamento e a velocidade da extremidade da mola.

Ja as tensdes desenvolvidas ao longo do tempo sdo calculadas analiticamente a partir da
Equacdo diferencial que descreve a curva de fluéncia para o modelo de Kelvin-Voigt
(Christensen, 1982).

deq, (1)
dt

Na Equacdo 3.81, o;4(t) é a tensdo total desenvolvida no material e &,(t) é a

011(t) = Eeq1 (1) +7 (3.81)

deformacdo elastica, que ndo é imediata, mas apresenta um retardamento. A primeira parcela
dessa expressao corresponde a tensdo elastica e a segunda parcela, a tenséo viscosa.

Os resultados de deslocamento obtidos nas analises estatica, quase-estatica e dinamica
estdo apresentados no grafico da Figura 32 para os modelos tridimensional, de barra simples e
sistema massa-mola equivalente. Na Figura 33, estdo ilustradas a evolucao das tensdes normais
elastica, viscosa e total nos trés modelos para o caso em que n = 40 MPa. s. Vale salientar que,
para os modelos numéricos, é calculada a tensdo de Piola-Kirchhoff de segunda espécie,
avaliada no primeiro trecho da estrutura. J& para o0 modelo analitico, a tensdo de Cauchy € a
medida utilizada. Embora distintas, é possivel comparar essas medidas de tenséo entre si, uma
vez que o problema se insere no regime de pequenas deformacoes.

Observa-se que as analises apresentaram resultados coerentes para o regime de pequenas
deformag0es. Os deslocamentos da analise dindmica séo oscilagdes em torno do valor estatico
de deslocamento, enquanto os deslocamentos nas andlises quase-estaticas evoluem até
atingirem o valor estatico, com taxas de deformacdo em acordo com o respectivo coeficiente

de viscosidade. Com relacdo as tensdes, o valor total se mantém o mesmo ao longo de todo o
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periodo de anélise, havendo o crescimento da parcela elastica e a reducao da parcela viscosa a

medida que as deformacdes no corpo evoluem.

Figura 32 — Deslocamento horizontal da massa
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Figura 33 — Tens@es normais
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Destaca-se também que os resultados foram coincidentes em todas as analises, tanto

para deslocamentos quanto para as tensdes. Fica evidente, portanto, que o regime de pequenas

deformacbes leva a equivaléncia ndo sé da parcela eléstica, mas também das taxas de
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deformac&o, obtidas a partir de modelos constitutivos elasticos distintos. Isso confirma o bom
funcionamento do modelo viscoelastico de Kelvin-Voigt adaptado em suas duas versdes de

pequenas e grandes deformacoes.
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4 LIGACOES DESLIZANTES BIDIMENSIONAIS

Este capitulo € dedicado a apresentar as ligagdes deslizantes bidimensionais empregadas
no trabalho. O intuito € descrever como o0 seu comportamento no movimento de uma estrutura
pode ser considerado na resolucdo de um problema via MEFP a partir da formulacéo ja
apresentada no Capitulo 2.

Em primeiro lugar, séo apresentadas as juntas cilindricas e as restricbes cinematicas que
essas componentes impdem ao movimento de um sistema. Em seguida, detalha-se como essas
restricdes sao introduzidas a energia mecéanica de um sistema por meio de multiplicadores de
Lagrange, a partir de uma formulagdo desenvolvida por Siqueira (2016, 2019) voltada a
elementos de poértico. Por fim, toma-se a estratégia proposta por Rodriguez (2017) para tratar o
deslizamento entre elementos bidimensionais e faz-se sua extensdo ao deslizamento plano entre

elementos prismaticos.

4.1 JUNTAS CILINDRICAS

A conexdo entre corpos, também chamada de junta ou par cinematico, impGe restricdes
ao movimento realizado pelas partes envolvidas. Na situacdo em que a continuidade da conex&o
é mantida de maneira que os deslocamentos relativos tanto de translacdo quanto de rotagéo sao
impedidos, existe uma ligacdo do tipo rigida.

Por outro lado, existem conexdes que permitem alguma forma de movimento relativo
entre os elementos envolvidos, desvinculando um ou mais graus de liberdade. Quando os
movimentos relativos liberados séo de translagdo, essas juntas recebem o nome de ligacOes
deslizantes e, normalmente, sdo consideradas ideais, isto é, desprezam-se efeitos de atrito,
lubrificacdo, desgaste e folgas.

Em sistemas planos, existem dois tipos basicos de ligacdes deslizantes: a junta
prismética e a junta cilindrica. A primeira é uma ligagdo com um Unico grau de liberdade
translacional, ao passo que a segunda ndo so libera um grau de translacdo, como também
permite a rotacdo relativa. O foco deste trabalho é descrever e empregar a junta cilindrica.

Visando a sua introdugdo em uma analise via MEFP, a junta cilindrica é ilustrada na
Figura 34 como uma ligacéo deslizante entre dois elementos de portico plano com aproximacao
cUbica. Sua particularidade consiste em restringir a posicdo de extremidade de um elemento

deslizante a se deslocar sobre um outro elemento que define uma determinada trajetdria,
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liberando a rotacdo relativa entre ambos. O no responsavel por conectar o elemento deslizante
ao elemento de trajetoria é denominado no deslizante.

Figura 34 - Ligacdo deslizante do tipo junta cilindrica
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Fonte: Siqueira (2016).
A cada ponto pertencente ao elemento de trajetdria corresponde uma coordenada

adimensional ¢ definida no intervalo [—1,1]. A funcdo s(&) representa uma funcdo
comprimento de arco definida pelo parametro ¢ e pelas coordenadas do elemento de trajetoria,
correlacionando o espaco adimensional com a posi¢éo e a orienta¢do da segéo transversal dos
diversos pontos situados sobre a trajetdria. Particularmente, a variavel s, = s(fp) é referente
ao ponto P em gue se encontra a junta cilindrica e recebe e denominacéo de posicdo curvilinea.

A partir da existéncia de uma junta cilindrica no ponto P, define-se P como o né
deslizante no qual estd situada essa junta, enquanto P corresponde ao ponto pertencente a
trajetGria em que ocorre o contato com o elemento deslizante. Fisicamente, é evidente que P =
P = P. A notagio empregada daqui em diante adota (+) para os parametros relacionados aos
elementos de trajetéria e (=), aos elementos deslizantes.

Na junta cilindrica, as coordenadas do ponto P devem ser iguais as coordenadas do
ponto P. Aproximando as coordenadas do ponto P como Y = ¢, ()Y}, essa restricdo é

matematicamente expressa por:

¢ =Y — (&)Y =0, (4.1)
em que c; é a Equaco de restrigdo para a dire¢do i da junta localizada no ponto P, ¥} sdo as
coordenadas atuais do ponto P, ;! sdo as coordenadas atuais dos nds do elemento de trajetoria,

¢, (&p) sdo as fungdes de forma associadas aos nés do elemento de trajetdria e &, é a coordenada

adimensional do ponto de contato entre os elementos deslizante e de trajetdria. O indice i = 1,2



81

representa as duas direcfes ortogonais do plano e o indice [ representa os nés do elemento de
trajetoria, sendo [ = 1,2,3,4 para a aproximacgao cubica ilustrada na Figura 34.

A posicdo curvilinea s, varia durante 0 movimento e, juntamente com as posicoes
nodais, ¢ tomada como variavel independente do problema, em detrimento da coordenada
adimensional tal como é feito em outros trabalhos. Isso possibilita considerar massas
concentradas e aplicar forcas tangenciais que facilitam a implementacdo dos modelos de atrito
(Siqueira, 2016, 2019).

4.2 INTRODUCAO DAS RESTRICOES AS EQUACOES DE EQUILIBRIO

Da maneira como foram apresentadas no Capitulo 2, as equacGes de equilibrio sdo
resultantes de um processo de otimizacdo dita irrestrita da energia mecanica. Trata-se de um
problema de otimizacdo porque é realizada a minimizacao da energia mecéanica total como meio
para determinar a configuracdo de equilibrio, conforme estabelece o Principio da
Estacionariedade. Ja a classificagdo como “irrestrito” esta ligada ao fato de que as variaveis
envolvidas ndo necessitam atender nenhuma restricdo, a ndo ser as condi¢cdes de contorno
essenciais do problema analisado (Nocedal; Wright, 2006).

Por outro lado, nos problemas que contém ligacGes deslizantes, a solugdo esta
condicionada a satisfazer uma série de equacdes de restricdo, além das condicfes de contorno
essenciais. Nessa situacdo, o equilibrio € determinado através de um processo de otimizacao
restrita. A formulacdo ja apresentada para o problema irrestrito pode ser estendida para o caso
restrito por meio de uma estratégia que consiste em incorporar o conjunto de restricdes a energia
mecanica (Siqueira, 2016, 2019; Siqueira; Rodriguez; Coda, 2022)

As referidas equacBes de restricdo introduzidas ao sistema podem ser agrupadas na

seguinte expressao:
é(v,t)=0 (4.2)
em que Y passa a ser entendido como um vetor que agrupa nao s6 os parametros nodais, mas

também quaisquer variaveis introduzidas pela propria equacao de restrigdo, como a variavel s,

de cada junta cilindrica.
A energia mecénica, Equacdo 2.1, é entdo reescrita com a adi¢do do termo C, que

representa um potencial de restri¢ao:

N=P+U+K+Q+C (4.3)
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Para introduzir as equacdes de restricdo a energia mecanica, diversas técnicas poderiam
ser empregadas. Utiliza-se, neste trabalho, o0 método dos multiplicadores de Langrange. Essa
técnica acrescenta novas variaveis a formulacdo — os multiplicadores —, sendo um para cada

equacdo. Assim, a expressao do potencial de restricdo € dada por:
C=1-¢ (4.4)

Na Equacdo 4.4, i agrupa os multiplicadores de Lagrange e tem, evidentemente, a
mesma dimensdo de ¢. Embora o método dos multiplicadores de Lagrange acrescente
incdgnitas ao sistema, existe a vantagem de as restricdes serem impostas diretamente e de uma
forma simples quando considerada a estacionariedade do funcional de energia e a descricdo
Lagrangiana total. Além disso, os multiplicadores podem ser interpretados como a for¢a interna
necessaria para impor as referidas restricoes.

As equacdes de equilibrio para o problema restrito também sdo obtidas pelo Principio

da Estacionaridade. Assim, toma-se a variacdo da energia mecanica total:
6l =P+ 86U+ 0K+ 6Q+6C=0 (4.5)
Uma vez que os multiplicadores constituem novos graus de liberdade do problema, é
preciso escrever a variacdo das parcelas de energia tanto em relacdo a Y quanto a 1. Os

potenciais P, U, K e Q ndo sdo dependentes de A, portanto suas varia¢fes sdo expressas da
mesma maneira apresentada no Capitulo 2. Resta, entdo, escrever a variagdo para o potencial

de restricéo:
5C=6Y Ve -1+61-¢={s7 si} {VE; /1} = {57 &1} Fre (4.6)
c

em que V¢ é o gradiente das equacOes de restricdo em relacdo a Y, e F™¢* é o vetor de forcas de

restricdo, representando as forcas que impdem as restricGes no sistema.

Considerando arbitrarias tanto a variacao sY quanto a variacao 57, as equacOes de

equilibrio para sistemas com restrigdes sdo escritas como:

e (R () (o) g an
0 0 0 0 c

Ou ainda em formato compacto, se conhecida a correspondéncia dos graus de liberdade

dos parametros nodais e dos multiplicadores de Lagrange:
_If"ext + ﬁint + ﬁiner + ﬁdis + ﬁres — 6 (4.8)
Os vetores de forgas externas, forgas internas, forcas de inércia e forcas de dissipacéo

s80 expressos da mesma maneira ja apresentada em capitulos anteriores. No entanto, é preciso



83

ainda detalhar o vetor de forcas de restricdo, mais especificamente o termo V¢ - 1. As expressoes
apresentadas a seguir para esse termo sao locais e se referem a uma Unica ligacdo deslizante,
isto €, ttm sua aproximacéo realizada no dominio dos elementos conectados. Apos avaliadas,
devem ser contribuidas no vetor de forgas de restri¢do global, de acordo com a incidéncia nodal
dos elementos nos graus de liberdade do corpo discretizado, para tratar o problema completo e
representar o total de ligagdes deslizantes existentes.

Dadas as equacdes de restricdo c; referente a uma junta cilindrica, Equacédo 4.1, as
componentes ndo nulas do seu gradiente sdo aquelas cuja derivada parcial é tomada em relagdo

aos parametros nodais do elemento de trajetéria e do elemento deslizante e da posicao

curvilinea. Dessa forma, o vetor V¢ - A resulta ndo nulo nas seguintes componentes:

aCi
@Ai = 0gidi = Aq (4.9)
aCl'
—Ai = —01(&p)aidi = —1(Ep) A (4.10)
ot
o, 1 (£p)7!2 411
aspi— ]P¢z,§fp i A (4.11)

em que os indices i, @ = 1,2 representam as direcGes do plano, o indice [ representa 0s n6s do
elemento de trajetoria, &,; € 0 delta de Kronecker e Jp, é 0 jocobiano da transformacdo, dado

por:

_ _dsp
Ip =](p) = rra

gl = \/[le,f(fp)yf]z + [d)l,E(EP)Yzl]Z (4.12)
ép

4.3 PROCESSO DE SOLUCAO

A solucdo da equacdo de equilibrio com as restricBes das juntas cilindricas, Equacdo
4.1, é obtida por meio da combinacdo do método de Newmark para realizar a integracdo
temporal, e do método de Newton-Raphson para tratar a ndo linearidade do sistema. Em um
instante arbitrario t,, ;, 0 vetor de desbalanceamento mecanico é expresso de maneira analoga

a Equacdo 2.30, acrescentando a parcela proveniente do potencial de restricao:

M v n rext rdis
ﬁAtZ.YS'I'I_M.QS_F (ts+1)+F
(4.13)

+ ﬁres(?sﬂszﬂ) =0

g(?s+llzs+1) = ﬁi”t(?sﬂ) +
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Realizando a expansédo em série de Taylor do vetor de desbalanceamento mecanico g e
desprezando o termo de ordem superior, chega-se a expressao para a corre¢do das variaveis do
problema:

- - T S -
{AYs+1» A)Ls+1} =—-H"- g(ysql-lf /1(s)+1) (4.14)
em que a matriz hessiana H corresponde a Vg, ;.
A resolucdo do sistema linear, Equacédo 4.14, leva a determinacdo das corregdes A?sﬂ

e AAg,q para a solucdo tentativa, que deve ser atualizada iterativamente até que o erro seja
suficientemente pequeno dentro de uma determinada tolerancia estabelecida, de maneira

anadloga ao procedimento apresentado no Capitulo 2. Na primeira itera¢do, adota-se como

posicao tentativa 1750+1 a prépria configuracdo inicial e, para /TSH, pode ser adotado valores
nulos. E importante ressaltar ainda que o erro continua sendo calculado como a norma da
correcdo da posicdo atual em relacdo a posicao inicial, sem envolver os multiplicadores de
Lagrange.

Na Equacdo 4.14, a matriz hessiana H pode ser escrita em formato compacto, se
conhecida a correspondéncia dos graus de liberdade dos parametros nodais e dos

multiplicadores de Lagrange, como:

H = H*"+

A + H4is + gres (4.15)

Na Equacéo 4.15, H®S' a matriz hessiana estatica e M a matriz de massa do problema,
ja apresentadas no Capitulo 2 tanto para os elementos de barra quanto para os elementos
prismaticos. H*S, por sua vez, é a parcela da matriz hessiana do problema dindmico
proveniente dos mecanismos dissipativos, apresentada no Capitulo 3 para tratar o
amortecimento viscoso. Por fim, H™®S é a parcela da matriz hessiana referente ao potencial de

restricdo, matematicamente igual a VF"¢%, ou seja:

-
FT'ES
res

a{Y, )

_[1-v(vd) VE]

4.16
ver 0 (4.16)

?53-1;1)2“
em que V(V¢) é um tensor de terceira ordem que pode ser interpretado como 0 agrupamento
das matrizes hessianas de cada equacdo de restri¢cdo e 0 € uma matriz nula.

As componentes ndo nulas da matriz V¢, e evidentemente também da sua transposta, ja

estdo exibidas nas Equacdes 4.9 a 4.11, restando apenas detalhar a matriz A V(V<E). De mesma

maneira que foi comentado para o vetor de forcas de restricdo, as expressoes apresentadas neste



85

item para a matriz hessiana s&o locais e dizem respeito a uma Unica junta cilindrica, devendo

ser avaliadas para cada junta do problema e devidamente contribuidas na matriz hessiana global.

As componentes ndo nulas de 1 V(V<C) sdo:

hi—oTe — s ui] = —— A 4.17
‘371as, [ 7 — e (Ep)Oqi| = ——P¢>z,e(§p) a (4.17)
d%c; 1
aspayz - [ Ip — ¢, S(EP) ] = _]_P ¢Z,E(EP)/1)/ (4.18)
4 2
L B Y Ve Ve (}) Yl§§<1> (4.19)
0s,0s) ALY Y I

Os indices i,k,a,y = 1,2 representam as direcbes do plano e os indices [ e z
representam os nds do elemento de trajetéria. Na Equacdo 4.19, efetuam-se ainda as seguintes

aproximacdes para as posi¢des nodais do ponto P:
Ve = ¢ (&)Y} (4.20)

Ve = dree 6V (4.21)

Por fim, vale salientar que, embora o processo de solucéo tenha sido apresentado para a
equacao de equilibrio dinamica, a consideracéo de ligacdes deslizantes num problema mecanico
também pode ser feita em andlises estéticas. Tanto a matriz hessiana apresentada neste item
quanto o vetor de forcas de restricdo, apresentado no item 4.2, sdo expressos da mesma forma,

independentemente do tipo de analise.

4.4 IDENTIFICACAO DO PONTO DE CONTATO

Conforme ja comentado, a posicédo curvilinea s € utilizada para empregar corretamente
perfis de rugosidade nas superficies de contato dos corpos deslizantes e para facilitar a aplicagcdo
de forcas de atrito (Siqueira, 2016).Dada sua importancia, a posi¢éo curvilinea é adotada como
variavel independente na formulagéo de ligacOes deslizantes, possibilitando que a determinagéo
do seu valor seja feita de maneira direta por meio da atualizagdo das variaveis no processo de
solucéo.

No entanto, o vetor de forcas de restricdo e a parcela da matriz hessiana oriunda do
potencial de restricdo sdo dependentes da coordenada adimensional ¢p, que nao é

explicitamente determinada. Essa variavel também serve, inclusive, para identificar a transicao
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entre elementos de trajetoria durante o movimento da junta. E necessario, portanto, realizar sua
determinag&o.

As equacOes de restricdo podem ser tomadas como um sistema ndo linear
sobredeterminado para calcular a coordenada adimensional, cuja resolucdo pode ser efetuada
mediante 0 método dos minimos quadrados (Nocedal; Wright, 2006). Dessa forma, é definida

a seguinte funcéo residuo:
Ri(&p) = ¥F — ¢1(&p)V = 0; (4.22)
em que Y7 e ¥ sdo conhecidos dentro de uma determinada iteragdo do problema mecénico e
Ri(&ép) € 0 residuo para as direcdes i = 1,2 do processo iterativo de determinacéo de &p.
Segundo a técnica dos minimos quadraticos, o menor valor do residuo corresponde ao
ponto de minimo de uma fungéo objetivo. Tal fungdo é aqui definida como o erro quadratico

médio p(ép), isto é:

p(n) = 5 (R = 0 423)
Uma vez que a funcdo objetivo € quadratica e positiva, a condicdo necessaria para
minimizacdo é Vp(ép) = 0 nasolugdo. Expande-se, entdo, a funcdo objetivo em série de Taylor
de primeira ordem, desprezando os termos de ordem superior:
p(§p) = p(&P) + Vp(§p)Asp = 0 (4.24)
em que &P é um valor tentativa para a coordenada adimensional, previamente conhecido.

Tomando-se o gradiente da Equacéo 4.24, escreve-se:

Vp(§p) = Vp(§p) + V2p(§p)AL, = 0 (4.25)
Assim, o problema de minimizacdo passa a ser solucionado pelo método de Newton-

Raphson calculando a correcdo Aép por:

V 0
AE, = — VZI;((SZ(PS)) (4.26)
em que:

0R; O P il 7k

V() = Rige = (7P = 1)V | pr s (60)Y, (4.27)
OR; OR; 0%R; _ N _ _
V@) =5 g¢, T Rigr 2 = 616GV + (7 = uEp) T |dree Gr)TE (428)
P

Nas Equacdes 4.27 e 4.28, o indice i = 1,2 as dire¢des do plano e os indices [ e k, 0S

nos do elemento de trajetoria.
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A solucio para a coordenada adimensional é atualizada mediante &, = &3 + Aép até que
0 Aép /&p atinja uma tolerancia estabelecida. Esse processo iterativo € realizado para 0s varios
elementos de trajetdria sobre os quais existe a possibilidade de estar situada a ligac&o deslizante.
Uma vez finalizadas as iteraces para um dado elemento de trajetoria, obtém-se a coordenada
&p sobre o referido elemento. Quando essa variavel respeitar os limites do espago adimensional
ép € [—1,1], é encontrado o elemento de trajetdria ativo, isto é, aquele sobre o qual a junta
cilindrica esta localizada de fato. Com isso, a transicdo entre elementos de trajetdria ocorre de
forma direta quando a coordenada adimensional excede o limite indicado.

Vale ressaltar que, tendo em vista ndo haver superposicdo de elementos, a busca pelo
elemento de trajetdria ativo pode ser otimizada fazendo com que o processo iterativo para
determinacdo da coordenada adimensional &, seja realizado num ndmero reduzido de
elementos de trajetoria. Uma alternativa é definir uma regido que envolve cada elemento de
trajetdria e avaliar se a junta se encontra dentro dessa regido. O processo iterativo € realizado
para tal elemento somente se a checagem for positiva, impedindo que elementos situados muito

distantes da posicéao atual da junta sejam submetidos ao célculo de &p.

4.5 CONSIDERACOES PARA A MODELAGEM DO DESLIZAMENTO ENTRE
ELEMENTOS PRISMATICOS

O deslizamento plano entre elementos prismaticos é modelado, neste trabalho, a partir
da formulag&o de ligacdes deslizantes aplicada a elementos de portico, apresentada nos itens
4.1 a 4.4. A estratégia utilizada toma como referéncia o trabalho de Rodriguez (2017) que
estudou o deslizamento entre elementos bidimensionais de chapa.

Com o intuito de tomar proveito da formulacdo desenvolvida por Siqueira (2016),
Rodriguez (2017) propde que seja feito o acoplamento entre elementos de pértico e elementos
de chapa nas regies de deslizamento. Empregando as posi¢cdes nodais como parametros de
ambos o0s elementos, o acoplamento se da por compatibilidade cinematica dessas variaveis, isto
é, definem-se elementos de portico auxiliares com os nds pertencentes ao mesmo lado de um
elemento de chapa de maneira a relacionar seus graus de liberdade, conforme ilustrado na
Figura 35. Embora se utilize uma aproximacao quadratica para os elementos auxiliares dessa
figura, a estratégia se aplica a elementos de qualquer grau.

O acoplamento descrito no paragrafo anterior € realizado nas faces de contorno dos
corpos que deslizam entre si, de forma que todos os n6s de um mesmo elemento deslizante

ficam restritos a se movimentar sobre o conjunto de elementos da trajetoria. Para cada no
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deslizante deve ser definida uma junta cilindrica, e sua posi¢do ndo precisa coincidir com a
posicdo dos nds dos elementos da trajetdria, mas deve apenas estar contida nessa trajetoria.

Figura 35 - Acoplamento entre elementos solidos
bidimensionais e elementos de portico

CORPO A
el N
,’/l'. ™ A o elemento tipo chapa de
oA \\\ r,. . ! /”; A aproximacao clbica
| | ~ ‘:'. yd \
|I . \\.'I I",I P 1

E1, E2 E3 E4;
Elementos da frajetona

elemento

/—1\ deslizante

—— elemento tipo chapa de
£ aproxdmacao clbica
L

Fonte: Rodriguez (2017).

Neste trabalho, a estratégia de acoplamento é aplicada aos elementos prismaticos da
maneira ilustrada na Figura 36 com objetivo de representar o deslizamento no plano definido
pelos eixos x; € x,. Tanto as juntas cilindricas quando os elementos auxiliares sdo definidos
igualmente nos planos de entrada e de saida do eixo x5. O elemento auxiliar de portico adotado
tem aproximacéo cubica, de maneira a se acomodar minimamente ao formato do elemento
prismatico sobre o qual estdo definidos, cuja base também possui aproximagéo cubica.

Vale salientar que, aos elementos de pdrtico auxiliares, pode ser atribuido ou ndo um
valor para 0 modulo de elasticidade. Isso significa que, para valores nulos, a rigidez dos corpos
depende exclusivamente das propriedades fisicas do elemento solido. Tal observacéo pode ser
estendida inclusive para a massa.

A proposta deste trabalho é utilizar os elementos auxiliares de portico sem rigidez e sem

massa, tomando-se proveito apenas da sua geometria para definir as trajetorias sobre as quais
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as juntas cilindricas podem se movimentar. Pode-se notar, inclusive, que toda a formulagéo
apresentada neste capitulo depende somente das caracteristicas geométricas desses elementos.
Dessa forma, os elementos de pdrtico ndo exercem influéncia sobre as propriedades fisicas do
problema, ndo sendo necessario se conhecer sua matriz hessiana elastica, seu vetor de forcas
internas nem mesmo sua matriz de massa.

Figura 36 - Acoplamento entre elementos prismaticos (separados para fins de clareza)

X3 . | Juntas cilindricas
. o

“? (plano de entrada)

Juntas cilindricas M

(plano de saida) ° ;
: : Trajetoria
N I (plano de entrada)

Trajetoria g : - ~ \ . N
(plano de saida) - : ==

o — o S e - — ——

Fonte: Autor.

4.6 EXEMPLOS DE VALIDACAO

Neste item sdo apresentados alguns exemplos com o intuito de validar o correto
funcionamento do c6digo computacional implementado para as ligacfes deslizantes entre
elementos prismaticos.

Adianta-se que o exemplo 4.6.2 faz uso de elementos de portico bidimensionais na
discretizagcdo do problema. Esse elemento foi, de fato, implementado e validado, o que
possibilitou seu emprego no referido problema. No entanto, a utilizacdo de elementos de portico
na modelagem de estruturas esta fora do escopo desse trabalho e nao faz parte da modelagem
de estruturas musculoesqueléticas aqui proposta, ficando sua aplicagdo restrita a verificacao
deste Unico exemplo. Desse modo, a descrigdo desse elemento ndo é feita no Capitulo 2 junto
aos demais elementos de barra e prismatico. Siqueira (2016), Rodriguez (2017), Coda (2018),
Siqueira (2019) séo fontes que podem ser consultadas para mais informacdes sobre a descri¢ao

posicional do elemento de pértico bidimensional.
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4.6.1 Arco abatido com manivela

Este exemplo apresenta um arco abatido conectado a uma manivela, de acordo com a
Figura 37. O arco possui um vdo com comprimento L de 10,0 m e altura h de 1,0 m. Essa
geometria corresponde a um arco de circulo, com corda de 10,0 m, pertencente a uma
circunferéncia com raio de 13,0 m. Suas duas extremidades estdo fixas para translacdo, mas tém
liberdade de rotagdo. O mddulo de elasticidade E, do material constituinte é 200 GPa e o
coeficiente de Poisson é nulo.

Figura 37 — Configuracéo inicial do arco abatido com manivela

Fonte: Siqueira (2016).

A manivela tem sua extremidade superior situada a uma altura H de 2,4606 m acima do
ponto central do arco. Essa extremidade tem seus movimentos de translacdo restritos e é
submetida a um giro ¥ de 1,8 rad em sentido anti-horario, enquanto sua extremidade inferior
esta ligada ao arco por meio de uma junta cilindrica. O ponto de conexdo esta situado a uma
distancia horizontal d, de 1,6178 m e vertical d, de 0,5523 m, medidas a partir da extremidade
esquerda do arco. O médulo de elasticidade E,, do seu material é de 2000 GPa, com coeficiente
de Poisson nulo. Tanto o arco quanto a manivela possuem se¢éo transversal quadrada com lado
de 10 cm.

A Figura 38 traz um esquema da modelagem desse problema com elementos
prismaticos, sendo empregados 52 elementos para o arco e 13 para a manivela. A curva
vermelha destaca os elementos de portico auxiliares que definem a trajetdria das ligacGes
deslizantes. Nessa figura, € exibida apenas a trajetdria contida no plano de saida do eixo xs,
mas, conforme comentado no item 4.5, também existem elementos auxiliares definindo uma
trajetdria no plano de entrada do eixo x5, que ndo sdo visualizados por esse angulo de

observacao da estrutura.
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Figura 38 - Discretizagédo do arco abatido com manivela

Fonte: Autor.

A regido onde se situa a ligacéo entre a manivela e o arco, circundada na Figura 38, é
exibida mais de perto e com mais detalhes na Figura 39. Um primeiro ponto a se comentar sobre
essa regido € que existe uma superposicdo entre a geometria do arco e da manivela, como é
possivel observar na Figura 39a. Embora isso ndo seja fisicamente possivel, essa modelagem
ndo gera nenhum obstaculo para a resolucdo numérica e foi definida dessa forma para que o
deslizamento ocorra sobre 0 eixo do arco, conforme o problema original.

Figura 39 — Detalhamento da regido de ligacdo: a) arco, extremidade da manivela e
trajetoria do plano de saida; b) extremidade da manivela, juntas cilindricas e
trajetdrias; ¢) arco e trajetoria do plano de saida

a) b) ©)

Fonte: Autor.

Na Figura 39b, estdo ilustradas apenas a extremidade da manivela e as trajetdrias,
deixando clara a existéncia de elementos auxiliares nos planos de entrada e saida do eixo xs.
Nessa mesma figura, sobre 0s nés destacados em vermelho foram definidas juntas cilindricas,

restritas a se movimentarem sobre as trajetérias em destaque. Ja na Figura 39c, sdo mostrados
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somente 0 arco com a trajetdria visivel naquele angulo de observacdo, evidenciando o
posicionamento no plano médio ao longo da altura da secéo transversal.

Os nos de cada extremidade do arco e os nés da extremidade superior da manivela estéo
fixos nas direcbes x; e x, para representar as vinculagdes originais. Além disso, 0s nds da
extremidade superior da manivela estdo submetidos a deslocamentos prescritos
correspondentes ao giro . Todos os nos contidos no plano x; = 0 m tém seu movimento na
direcdo x5 restringido, a fim de evitar fendmenos de instabilidade. O modelo constitutivo
utilizado foi o de Saint-Venant-Kirchhoff.

E efetuada uma analise estatica em 1000 passos de carga com tolerancia de 10 para a
convergéncia da solucdo. O calculo da coordenada adimensional &, conforme descrito no item
4.4, leva em torno de 3 iteracdes para determinar a solucéo, utilizando uma tolerancia de 108 e
partindo de um &3 com valor de 1/3.

A sequir, nas Figuras 40 e 42, estdo apresentadas a evolucdo da posi¢éo vertical do ponto
central do arco, a evolugédo do esfor¢co normal na manivela e a evolu¢do do momento fletor
reativo na extremidade superior da manivela a medida que o giro i é aplicado. Os resultados
sdo comprados com os valores obtidos por Siqueira (2016), que tratou o problema por meio de
elementos de portico e usou 0 modelo constitutivo de Saint-Venant-Kirchhoff.

Figura 40 — Posicdo vertical do ponto central do arco
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Fonte: Autor.

Os valores de esforgo normal foram calculados numa se¢éo situada no ponto médio da
manivela. Primeiramente, avaliaram-se as tensdes sobre os pontos situados nessa se¢do e
determinou-se, em cada ponto, a componente de tensdo segundo a direcdo do eixo da manivela.
O esforgo normal corresponde a resultante dessas tensdes sobre a area da sec¢éo. J4 0 momento
fletor reativo foi calculado por meio das forcas internas atuantes nos nés da extremidade

superior da manivela, determinando-se a resultante do momento em relagéo ao eixo da secéo.
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Figura 41 — Momento fletor reativo na extremidade superior da manivela
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Fonte: Autor.

Figura 42 — Esforco normal no ponto medio da manivela
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Fonte: Autor.

Os resultados obtidos neste trabalho possuem uma concordancia muito boa com os
valores de referéncia. Além disso, pode-se ressaltar a identificacdo do snap-back que ocorre
para o giro Y = 1,6776 rad. Esse fenbmeno fica evidente nos graficos apresentados ao se
observar o salto existente na evolucao da posicao e os pontos angulosos presentes na evolucao
do esforco normal e do momento fletor reativo. Dessa maneira, os resultados confirmam o bom

funcionamento das implementacdes computacionais realizadas e as potencialidades da
formulacéo.

4.6.2 Edificio com dispositivos isoladores submetido a sismo

Um edificio de 5 andares, apoiado sobre dispositivos isoladores para controle de vibracéo,
é submetido a um movimento de base provocado por atividades sismicas. Este problema foi

proposto por Rodriguez (2017) e foi estudado também no trabalho de Siqueira, Rodriguez e
Coda (2022).
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Os dispositivos isoladores localizados na base de cada coluna sdo do tipo Friction
Pendulum System (FPS) (Saaed et al., 2015), composto por um deslizador articulado entre duas
superficies de deslizamento. Uma dessas superficies faz parte de uma chapa superior, conectada
a coluna do edificio, enquanto a outra esta contida numa chapa inferior, apoiada sobre o solo.
A geometria empregada neste trabalho para o referido dispositivo toma como referéncia aquela
utilizada por Rodriguez (2017).

Figura 43 — Geometria do dispositivo FPS (medidas em centimetros)

17,53

15,24

48,26

Fonte: Autor.

Seguindo os passos dos autores anteriores, o edificio € modelado com elementos de
portico de aproximacdo cubica, resultando na estrutura reticulada plana ilustrada na Figura 44a.
As vigas sdo discretizadas em 6 elementos e cada trecho de pilar, em 3 elementos, totalizando
60 elementos de portico, todos com secdo transversal quadrada com 50 cm de lado. O material
constituinte possui médulo de elasticidade E de 20 GPa e sua massa especifica p, adotada € de
2400 kg/m?® para os pilares e de 15168.2 kg/m? para as vigas, com o intuito de caracterizar a
massa e a rigidez de cada andar. As regides circuladas na base das colunas do edificio sdo os
dispositivos isoladores.

Para os dispositivos FPS, Rodriguez (2017) adotou uma discretizacdo em elementos
bidimensionais de chapa, mas aplica-se aqui uma modelagem com elementos prismaticos. Sao
empregados 30 elementos com espessura de 0,50 m, sendo 10 para a chapa inferior, 6 para o
deslizador e 14 para a chapa superior, conforme ilustra a Figura 44b. Para considerar o
deslizamento entre o deslizador e as chapas, sdo introduzidos elementos de pértico auxiliares
nos contornos de deslizamento superior e inferior para definir a trajetoria, destacada em
vermelho. Além disso, séo inseridas juntas deslizantes em todos 0s n6s contidos nos contornos
deslizantes, destacados em verde. Na Figura 43b, mostra-se 0s contornos deslizantes e as juntas
cilindricas do plano de saida do eixo x3, mas ressalta-se que também existem esses

componentes no plano de entrada, que nao sdo visualizadas pelo angulo retratado. Tanto para
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os elementos prismaticos quanto para os elementos auxiliares adotam-se médulo de elasticidade
E de 200 GPa e massa especifica p, de 7850 kg/m3. A secdo transversal dos elementos
auxiliares tem base de 50 cm e altura de 1 cm.

Figura 44 — Discretizacdo do a) edificio e b) dispositivo PFS (separado para fins de clareza)
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Fonte: Autor.

entrada x; = 0 m , destacado em azul. Esses elementos tém a funcdo de garantir a transmissédo
de momento entre a coluna do edificio e a chapa superior, ndo sendo utilizados para promover
deslizamento entre superficies. Esses elementos ndo possuem massa e sdo tratados como
elementos rigidos, recebendo um moédulo de elasticidade E de 200.10° GPa. Sua segéo
transversal é quadrada com lado de 50 cm.

Os elementos de portico que possuem nos situados sobre o contorno de ancoragem — ou
seja, 0s proprios elementos de ancoragem e o primeiro elemento da coluna — possuem uma
particularidade no processo de contribuicdo de suas grandezas locais para as grandezas globais.
As componentes dos seus vetores de forga, da sua matriz hessiana e da sua matriz de massa
correspondentes aos graus de liberdade dos nés situados no contorno de ancoragem tém sua
contribuicéo dividida: metade é direcionada para os graus de liberdade globais dos nds contidos
no plano de entrada x; = 0 m, linha azul, e a outra metade para os graus de liberdade globais
dos nés contidos no plano de saida x; = 0,50 m, linha laranja. Isso € feito para simular que o
edificio esta localizado sobre o plano médio do dispositivo FPS, isto é, o plano x; = 0,25 m,
garantindo a simetria do problema ao longo da espessura do dispositivo. Para posicionar, de

fato, o edificio no plano médio da espessura, seria necessario discretizar os dispositivos no
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dobro de elementos prisméaticos, 0 que acarretaria hum maior tempo de processamento
computacional.

O movimento de base representa o terremoto conhecido como Superstition Hills, que
ocorreu em 1987 no oeste de Imperial Valley, na Califérnia. Suas componentes de
deslocamento horizontal e vertical foram medidas pelo Pacific Earthquake Engineering
Research Center (PEER)! e estdo plotadas no grafico da Figura 45. Tais deslocamentos sdo
aplicados como um controle de posicdo nos nos da base dos dispositivos FPS.

Figura 45 - Componentes de deslocamento do terremoto Superstition Hills
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Fonte: Autor.

O objetivo deste problema é avaliar o funcionamento da implementacdo computacional
para 0 movimento de varias juntas sobre uma mesma trajetoria, o que representa o deslizamento
entre superficies. Desse modo, o foco estd em observar o comportamento dos dispositivos
isoladores, e ndo necessariamente da estrutura reticulada em elementos de portico.

Inicialmente, é realizada uma andlise estatica com uma carga uniformemente distribuida
de 34 kN/m sobre as vigas. Apds o equilibrio ser atingido, € desenvolvida uma analise dindmica
sem amortecimento com a aplica¢do dos deslocamentos de base, sendo mantido o carregamento
sobre as vigas. Utiliza-se uma tolerancia de 10° para a convergéncia da solucio e um
incremento de tempo At de 5.10° s durante um periodo de 29,84 s. O célculo da coordenada
adimensional &, de cada junta cilindrica, conforme descrito no item 4.4, leva em torno de 3
iteracBes para determinar a solucdo, utilizando uma tolerancia de 10® e partindo de um &3 com
valor de 1/3.

A Figura 46 apresenta os deslocamentos horizontais desenvolvidos pelo né situado no
topo da coluna esquerda, enquanto a Figura 47 exibe o deslocamento horizontal relativo medido
entre o centro do contorno da superficie concava e o centro do contorno inferior do deslizador

articulado. A titulo de comparacdo, na Figura 46 também estd plotada a curva obtida por

! Disponivel em http://ngawest2.berkeley.edu/spectras/1822/searches/1605/edit



http://ngawest2.berkeley.edu/spectras/1822/searches/1605/edit
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Rodriguez (2017) e, na Figura 47, exibem-se alguns pontos registrados pelo mesmo autor.
Observa-se uma boa concordancia entre os resultados, o que € indicativo de um comportamento
adequado dos dispositivos isoladores modelados com elementos prismaticos.

Figura 46 — Deslocamentos horizontais do topo da coluna esquerda e da base do
dispositivo FPS
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Fonte: Autor.

Figura 47 - Deslocamento horizontal relativo medido entre o centro do contorno da
superficie cbncava e o centro do contorno inferior do deslizador articulado
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Fonte: Autor.

A Figura 48 apresenta a configuracdo da estrutura, no plano x; x,, para o instante inicial
da analise dindmica e para os instantes de maximo deslocamento horizontal nos sentidos
positivo e negativo do eixo x,. Vale salientar que a configuracdo no instante inicial corresponde
a posicao de equilibrio no fim da analise estatica, que resulta simétrica, conforme esperado.

Por fim, o gréafico das Figura 49 e 50 trazem as forcas de contato obtidas nas 7 juntas
cilindricas que definem a ligacéo deslizante entre o deslizador articulado e a superficie cbncava,

respectivamente, no isolador esquerdo e no isolador direito. Tais forcas correspondem a
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resultante dos multiplicadores de Lagrange 1, e A, em cada junta. Vale destacar que os valores
da forca de contato vertical A, sdo muito mais expressivos que os valores das forcas de contato
horizontais 4,. Assim, no instante inicial, nota-se que o somatério de forcas em cada isolador
se iguala a metade do carregamento total aplicado sobre as vigas, 0 que era de esperar num
problema simétrico. Além disso, pode-se notar a coeréncia das forcas em relacdo ao
deslocamento da estrutura: as forgas sdo maiores no isolador direito quando a estrutura esta no
seu deslocamento maximo positivo, e sdo maiores no isolador esquerdo na situacéo inversa.

Figura 48 — Deslocamentos horizontais do edificio e dos dispositivos FPS a) no instante inicial,
b) no instante de méximo deslocamento no sentido positivo do eixo x; € ¢) no instante de
méaximo deslocamento no sentido negativo do eixo x;

a) t=0,000s Edificio Dispositivo esquerdo b) t=1559s Edificio Dispositivo esquerdo
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9.385E-04 1.382E-01 [
5.631E-04 1.210E-01
1.877E-04 1.039E-01
-1.877E-04 Dispositivo direito 8.671E-02 Dispositivo direito
-5.631E-04 6.956E-02
-9.385E-04 5.240E-02
. -1.314E-03 l 3.525€-02
-1.689E-03 1.8108-02 | B
c) t=16965s Edificio Dispositivo esquerdo
-4.278€E-03
-2.159E-02
-3.891E-02
-5.622€-02
-7.354E-02
-9.085E-02 Dispositivo direito

-1.255€-01
l -1.428E-01
-1.601E-01

Fonte: Autor.

Figura 49 — Forgas de contato no dispositivo esquerdo, com juntas numeradas
da esquerda para a direita
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Fonte: Autor.
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Figura 50 - Forcas de contato no dispositivo direito, com juntas
numeradas da esquerda para a direita

200
Z
X
< 150
s
S 100
(5]
o
s, 50
o
oo | | | | | |
1 2 3 4 5 6 7
Juntas cilindricas
—0—1=0.00s —@—1=15.590s t=16.965s

Fonte: Autor.
Siqueira, Rodriguez e Coda (2022) apresentam a distribuicdo de forgas de contato entre
o0 deslizador e a superficie cdncava no instante inicial e no instante de maximo deslocamento
da estrutura, conforme ilustra a Figura 51. Os autores fizeram varias considerac6es diferentes
deste trabalho, tais como propriedades fisicas dos materiais, geometria dos dispositivos FPS e
amortecimento da estrutura. Embora néo seja possivel comprar valores, é possivel visualizar a
semelhanca entre o formato da distribuicdo apresentada por eles e a deste trabalho.

Figura 51 — Deslocamentos horizontais (m) do edificio (dispositivo isolador direito em cima, e

direito em baixo para cada instante) e forcas de contato (N) entre o deslizador articulado e a
chapa inferior

t=00s t=236s

Displacement X Contact Force Magnitude Displacement X Contact Force Magnitude
<0.002 0 0.002 0.e+00 de+d 8.e+04 002 0O 0.02 0.05 0.e+00 4044 8.0+404
| - ] E - -

Fonte: Siqueira, Rodriguez e Coda (2022).
Diante dos bons resultados, considera-se que a formulacdo de ligagbes deslizantes,

desenvolvida para elementos de portico e ja aplicada em elementos bidimensionais, funciona
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bem para a discretizacdo com elementos prismaticos. A implementacdo computacional é

realizada com éxito e pode ser utilizada em problemas ainda mais complexos.
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5 APLICACAO EM PROBLEMAS BIOMECANICOS: MEMBRO SUPERIOR DO
CORPO HUMANO

Este capitulo é dedicado a demonstrar a aplicacdo do Método dos Elementos Finitos
Posicional, dos modelos constitutivos hiperelasticos e visco-hiperelasticos e da formulagédo de
ligacOes deslizantes entre elementos prisméticos tridimensionais a modelagem de estruturas
bioldgicas. O sistema escolhido como objeto de estudo € 0 membro superior do corpo humano,
esquematizado na Figura 52 junto a indicacao de algumas estruturas componentes.

Figura 52 — Esquema a) da musculatura e b) das estruturas dsseas e articulac@es do
membro superior
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Fonte: Adaptador de Teach me anatomy (2023).

Inicialmente, sdo definidos os modelos mecanicos para tratar o comportamento
muscular e 0 movimento da articulagdo do cotovelo. Em seguida, sdo apresentadas a geometria
elaborada para o problema, as propriedades dos materiais constituintes e a discretizacdo em
elementos finitos empregada. Por ultimo, apresentam-se exemplos finais com o intuito de

simular a resposta mecanica do membro superior quando submetido a acbes externas e
contragdes musculares.

5.1 CONSIDERACOES INICIAIS SOBRE A MODELAGEM DO COMPORTAMENTO
BIOMECANICO

Neste item, propGe-se um modelo biomecanico para reproduzir o comportamento
muscular e descreve-se a cinematica adotada para 0 movimento do complexo articular do

cotovelo, presente no membro do corpo humano estudado.
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5.1.1 Musculos esqueléticos

Tecidos bioldgicos respeitam o0s postulados béasicos da mecénica, por exemplo
conservacdo da massa, do momento e da energia. Além disso, conceitos como tensao,
deformacéo e elasticidade também se aplicam a esses materiais. Portanto, é possivel formular
relacbes constitutivas para musculos, tenddes, 0ssos e ligamentos e analisar 0 comportamento
mecanico desses elementos por meio de problemas de valor de contorno. Embora possam ser
mais bem classificados como materiais inelasticos, sob condi¢des particulares é suficiente
modelar seu comportamento mecanico no ambito da elasticidade ou viscoelasticidade
(Humphrey, 2003).

Um dos modelos classicos para representar o comportamento mecéanico de muasculos é
aquele proposto por Hill. Apesar de sua simplicidade e de ter caido em desuso nas Ultimas
décadas, 0 modelo dominou a area por muitos anos apés sua publicacdo e serviu de base para
teorias mais recentes, introduzindo conceitos importantes para o entendimento do
comportamento muscular (Fung, 1993).

Hill divide o comportamento muscular em parcelas passiva e ativa: a primeira responde
elasticamente as solicitacGes externas, enquanto a segunda tem a capacidade de se contrair e
produzir forca. O modelo proposto conta com trés elementos, ilustrados na Figura 53: um
elemento contratil EC, um elemento elastico em paralelo EP e um elemento eléstico em série
ES. O elemento EC representa a componente ativa das fibras musculares, sendo totalmente
extensivel quando inativo — isto €, ndo desenvolve tensdes resistentes as deformacfes —, mas
capaz de se contrair quando ativado. J& o elemento elastico em série ES é responsavel por
representar o comportamento passivo das mesmas fibras, isto é, a resposta elastica desse
material. Por fim, o elemento em paralelo EP esta relacionado ao comportamento passivo dos
tecidos conjuntivos que envolvem as fibras musculares, bem como dos tenddes localizados nas
extremidades do musculo. Os elementos elésticos constituem, portanto, a componente muscular
passiva e o elemento contrétil, a ativa (Fung, 1993).

Uma abordagem para a considera¢do das componentes ativa e passiva de um musculo
na modelagem do seu comportamento mecénico é adotar a hipotese da equipresenca (Fung,
1993). Essa ideia assume que o tecido muscular € uma mistura em que ambas as componentes
estdo presentes em todo o espago, isto é, cada ponto do tecido muscular é ocupado
simultaneamente pelas duas fases.

Outra maneira é tratar as fibras musculares e os tecidos conectivos ao seu redor de

maneira discreta, considerando que seu comportamento ocorre de maneira semelhante a
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materiais compdsitos habituais na engenharia (B6l, 2010; Huijing, 1999). Materiais compdsitos
podem ser definidos como materiais estruturais obtidos a partir da composicéo heterogénea em
macroescala de ao menos dois constituintes distintos, possuindo novas propriedades diferentes
daquelas dos seus constituintes isolados. Um dos componentes ¢ denominado “matriz” e nele
sdo inseridos os demais componentes, denominados “refor¢os”, que podem ser no formato de
fibras ou particulas. Para o primeiro tipo, tem-se os chamados compésitos refor¢cados com fibras
(Kaw, 2006).
Figura 53 - Modelo de trés elementos de Hill
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Fonte: Adaptado de Muggenthaler (2006).

Em mdsculos, as varias camadas de tecido conjuntivo que envolvem as fibras
musculares formam a matriz, enquanto as referidas fibras constituem o reforgo do compdsito.
Além de reforgar, as fibras também possuem comportamento ativo, isto é, capacidade de se
contrair e produzir forca. Assim, o musculo pode ser considerado um material composito
consistindo em uma matriz extracelular reforcada com uma componente ativa

N&o s6 um musculo isolado, mas também um grupo muscular pode ser considerado um
composito reforcado com fibras. Uma vez que musculos vizinhos em um compartimento estéo
conectados por tecido conjuntivo, eles podem interagir mecanicamente um com 0 outro
(Zatsiorsky; Prilutsky, 2012).

No caso do brago, os musculos estao divididos em dois compartimentos anatdmicos — o
anterior e o posterior —, separados por septos de tecido conjuntivo, conforme ilustra a Figura
54. O compartimento anterior é formado por trés musculos, o biceps braquial, o braquial e o
coracobraquial, que podem ser analisados de maneira conjunta como um tnico material. Apenas
os dois primeiros aparecem no corte transversal da Figura 53, que também destaca o triceps
braquial, compondo o compartimento posterior. Na mesma figura, também é possivel observar

0 Umero, componente 6sseo do brago. Outros elementos, como artérias, veias e nervos, também
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estdo ilustrados, mas ndo recebem destaque porque ndo s@o relevantes para a modelagem

proposta neste trabalho.

Figura 54 — Secéo transversal do braco
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Fonte: Adaptado de Braus e Elze (2013).

Neste trabalho, a matriz e as fibras sdo tratadas de maneira discreta, similar ao que foi

apresentado por Friedel (2016). Para cada um desses componentes é adotado um modelo

constitutivo prdprio e o acoplamento entre os materiais, para representar o composito, é

realizado via energia de deformacdo, conforme a formulagéo apresentada no item 2.3.3. Essa

estratégia permite a consideracdo de comportamentos distintos para a fibra e para a matriz, sem

ser necessario empregar uma unica expressdo de energia especifica de deformacdo para

reproduzir o comportamento conjunto. A representacdo do modelo proposto é ilustrada na

Figura 55, consistindo em uma adaptacédo do modelo de Hill.

Figura 55 — Modelo muscular proposto

Fibra

EE3
S
o EA2

Matriz

] ] J 1 1 ]
T T I T I T

Tendao Mausculo Tendao

Fonte: Autor.
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O elemento elastico EE1 representa a matriz, tomada como um material de
comportamento passivo hiperelastico. As fibras, por sua vez, séo modeladas como um material
visco-hiperelastico de comportamento tanto passivo quanto ativo, colocadas num arranjo em
paralelo com a matriz. As referidas fibras sdo representadas como o grupo formado pelo
elemento contréatil EC associado em série com o conjunto em paralelo do elemento eléstico EE2
e 0 elemento amortecedor EA1.

O modelo mecéanico adotado permite, inclusive, a consideracdo da anisotropia para 0s
musculos sem a necessidade de empregar modelos constitutivos muito complexos. Embora seja
empregado um modelo constitutivo isotropico para a matriz muscular, conforme indicado nos
itens mais adiantes, o acoplamento das fibras garante propriedades distintas para o material
composito segundo a orientacdo desses elementos.

Na sua extremidade esquerda, 0 musculo esta associado em série com conjunto formado
por um elemento elastico EE3 e um elemento amortecedor EA2, que estdo arranjados em
paralelo entre si. Na extremidade direita também existe uma associacdo em série com um
conjunto semelhante, composto pelos elementos elastico EE4 e amortecedor EA3. Ambos o0s
conjuntos representam 0s tenddes localizados nas extremidades musculares e que sao
responsaveis por fazer a ligagdo dos musculos com o0s 0ssos. Dados os elementos que as
compde, essas estruturas sdo modeladas como um material de comportamento passivo visco-
hiperelastico.

A inclusdo de elementos do tipo amortecedor no modelo proposto (ausentes no modelo
de Hill), tem o objetivo de considerar a existéncia de fendmenos viscoelasticos no
comportamento dos musculos e dos tenddes, a exemplo da fluéncia e da relaxacdo. De fato,
diversos autores confirmam, por meio de ensaios em laboratorio com pacientes ou com
amostras de tecido bioldgico, que o surgimento de tens@es nas fibras musculares e nos tenddes
é dependente da taxa de deformacdo a qual estdo submetidos (Fung, 1993; Rehorn; Schroer;
Blemker, 2014; Sobolewski; Ryan; Thompson, 2013).

Cabe destacar também que o comportamento passivo das estruturas biologicas,
representado pelas molas do modelo, possui uma caracteristica particular: praticamente ndo
apresenta resisténcia ao encurtamento, ao passo que sua resisténcia ao alongamento é bem
expressiva (Fung, 1993; Lamsfuss; Bargmann, 2021; Oatis, 2009). Assim, quando uma
determinada solicitacdo tende a alongar um grupo de musculos e tenddes acima do seu
comprimento de repouso, as tensdes desenvolvidas no material correspondem a juncdo das
componentes ativa e passiva. Por outro lado, quando uma solicitacdo gera um encurtamento no

referido grupo, as tensdes desenvolvidas no material sdo oriundas apenas da componente ativa.
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Graficamente, a relacdo entre o comprimento do musculo e as tensdes atuantes € normalmente
ilustrada de acordo com a Figura 56. Esse comportamento ndo é considerado diretamente por
meio do modelo constitutivo, mas sim atraves da manipulacéo de parametros fisicos, conforme
comentado mais adiante na apresentacdo dos exemplos numéricos.

Figura 56 — Relag&o entre o comprimento e as tensdes
em musculos e tendbes
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de repouso
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Fonte: Adaptado de Oatis (2009).

5.1.2 Articulacdes

A descricdo cinematica de uma articulacdo normalmente considera que essa é uma
regido de contato entre duas superficies 6sseas de geometrias conhecidas, envolta em uma
capsula de tecido fibroso nas quais estdo contidos os ligamentos, além de ser atravessada por
musculos e tenddes. Tanto o formato das superficies em contato quanto os demais tecidos
bioldgicos que envolvem a articulacdo exercem influéncia no movimento desenvolvido quando
submetidos a forgas e momentos externos (Kearney; Hunter, 1990).

O movimento dos referidos 0ssos articulados pode ser de rotagcdo em torno de um eixo,
translacdo ao longo de um eixo, ou mesmo uma composic¢ao de ambos. Quase sem excecéo, as
articulagGes do corpo humano do tipo diartrose, isto €, aquelas que permitem movimentos
amplos, tém mais de um eixo de rotacdo e permitem a ocorréncia tanto de rotacdo quanto de
translacdo, como é o caso do joelho (Zatsiorsky, 1998). Os movimentos de translagdo sé@o
normalmente muito sutis e bem menores que as rotagbes, sendo denominados como
“movimentos acessorios”, mas sdo essenciais para o funcionamento adequado da articulagdo
(Oatis, 2009).
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Uma maneira de descrever os tipos de movimento presentes numa articulagdo é
quantificar os seus graus de liberdade em relacdo a um sistema de referéncia. No espaco
tridimensional, um corpo pode transladar ao longo dos eixos X, y e z, bem como rotacionar em
torno deles, totalizando 6 graus de liberdade. Ja no plano, o0 movimento de um corpo fica
completamente descrito pela combinacgéo entre translacdes nos eixos x e y, e rotacdo em torno
do eixo z, totalizando 3 graus de liberdade (Kearney; Hunter, 1990). Qualquer restricdo aplicada
ao corpo rigido reduz o numero de movimentos possiveis. Desse modo, 0s 0ssos do corpo tém
suas possibilidades de movimento reduzidas ao se conectarem uns aos outros nas articulacdes,
seja devido a caracteristicas geométricas das superficies de contato ou a estruturas conectoras
externas, como o0s ligamentos. Os movimentos que permanecem admissiveis constituem os
graus de liberdade da articulacdo (Zatsiorsky, 1998).

Tanto o tipo do movimento quanto sua amplitude em uma articulagdo sao
condicionados, em grande parte, pelo formato das superficies articulares das extremidades
Osseas que se encontram na ligacdo. Articulagdes em que as superficies apresentam mais
congruéncia entre seus formatos tendem a impor mais restricdes ao movimento e proporcionam,
portanto, mais estabilidade. Em contrapartida, superficies mais dissimilares entre si
normalmente possibilitam uma maior mobilidade (Oatis, 2009).

Os ligamentos, por sua vez, estdo dispostos em posicdes estratégicas que promovem a
estabilidade da articulagdo sem trazer muitas limitacfes a mobilidade. Em geral, essas estruturas
geram torques minimos para pequenas amplitudes de movimento, mas passam a exibir
resisténcia significante quando o limite de deslocamento se aproxima, sendo capazes de travar
0 movimento articular (Kearney; Hunter, 1990).

Neste trabalho, o complexo do cotovelo é escolhido para ser modelado em conjunto com
0 comportamento mecanico muscular. O movimento que ocorre nessa regido articular é
predominantemente bidimensional, sendo compativel com o objetivo aqui proposto de
representar o comportamento plano de membros do corpo humano.

Embora esteja envolto por uma Unica capsula, a regido do cotovelo conta, na verdade,
com trés articulagOes, destacadas na Figura 57: a umeroulnar (vermelho), a umeroradial (rosa)
e a radioulnar superior (azul). As articulagdes de interesse para este trabalho sdo a umeroulnar
e umeroradial, pois, de maneira simplificada, podem ser tratadas como uma unica articulagao
que permite os movimentos de flexdo e extensdo do antebraco (Oatis, 2009).

Esses movimentos de flexdo e extensdo constituem uma rotacdo em torno do eixo z,
perpendicular ao plano de analise e que passa no centro da articulacdo, conforme ilustra a Figura

58. Estudos revelam que esse eixo praticamente ndo muda de posi¢éo, o que € indicativo de um
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movimento de rotacdo pura, ou seja, sem translacdo (Chao; Morrey, 1978; London, 1981). De
fato, o encaixe da ulna e do radio com o Umero possui grande congruéncia, de maneira que a
translacdo entre as superficies é praticamente impossivel.

Figura 57 - Articulacdes do cotovelo
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Fonte: Adaptado de Oatis (2009).
Figura 58 — Flex&o e extenséo do cotovelo
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Capsula

! Extensdo
articular

Fonte: Adaptado de Oatis (2009).
A articulacdo radioulnar, em conjunto com a articulagdo umeroradial, também

possibilitam os movimentos de supinacao e pronacao do antebrago, que consistem em rotacGes
em torno do eixo x contido plano de analise, esquematizadas na Figura 59. Esses movimentos
ocorrem de maneira praticamente independente da flexdo e da extensao e ndo constituem graus
de liberdade do sistema bidimensional mencionado anteriormente (Oatis, 2009). Sendo assim,
a supinacéo e a pronacdo ndo sdo tratadas neste trabalho, sem provocar prejuizos significantes
a representacdo dos movimentos de flexdo e extenséo.

Rotagdes em torno do eixo y e translagdes na direcdo do eixo z, para fora do plano de
analise, sdo extremamente limitadas devido a presenca dos ligamentos colaterais. Essas

estruturas se localizam nas laterais da capsula do cotovelo e se mantém tensionadas durante
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todo o movimento de flex&o ou extens&o, garantindo a estabilidade lateral em qualquer posigao
angular da articulacdo (Basmajian; De Luca, 1985; Callaway et al., 1997).

Figura 59 — Supinacéo e pronacao do cotovelo

Supinagio

Pronagdo

Fonte: Adaptado de Oatis (2009).
Diante do exposto, o cotovelo € tratado neste trabalho como uma articulacdo do tipo

dobradica, isto é, uma articulacdo plana que apresenta um unico grau de liberdade: rotacdo em
torno de um eixo ortogonal ao plano de analise. Embora estudos mais detalhados e especificos
sobre esse complexo articular revelem que seu comportamento seja mais complexo, considera-

se suficiente a abordagem adotada para os objetivos propostos.

5.2 MODELAGEM DO MEMBRO SUPERIOR

A geometria elaborada € inspirada nas imagens do membro superior direito de uma
paciente do sexo feminino, com 26 anos de idade, geradas a partir de um exame de tomografia
computadorizada. Essas imagens estdo disponibilizadas em Harvard Dataverse Repository?,
um repositorio gratuito e aberto da Universidade de Harvard, e fazem parte do trabalho de
Cabibihan, Abubasha e Thakor (2018), que visavam a projetar, fabricar e validar um braco
protético. Os arquivos estdo no formato digital DICOM (Digital Imaging and Communications
in Medicine), um padréo para armazenamento e transmissao de imagens médicas e informagdes
relacionadas.

Apos serem descarregados do repositorio, os arquivos foram importados no InVesalius?,
um software livre de reconstrucdo de imagens obtidas a partir de tomografia computadorizada

ou ressonancia magnética. Disponivel desde 2001, esse programa é uma iniciativa do Centro

2 Disponivel em: https://dataverse.harvard.edu/
3 Disponivel em: https://www1.cti.gov.br/pt-br/invesalius
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de Tecnologia da Informacdo Renato Archer (CTI), no Brasil, e, atualmente, se encontra em
sua terceira versao, desenvolvida em parceria com o Ministério da Saude.

O InVesalius possibilita a visualizacdo de arquivos no formato DICOM, além de realizar
renderizacdo volumétrica e segmentacdo de imagens. A Figura 60 exibe as imagens de uma
fatia do membro superior direito da paciente nos planos axial (a), coronal (b) e sagital (c)
visualizadas no software. Além disso, estd apresentado também o volume (d) obtido a partir da
renderizacdo das varias fatias de cada plano. Esse volume esta dividido em trés camadas: 0s
0sso0s em azul, os tecidos musculares e tenddes em vermelho e demais tecidos moles em verde.
Figura 60 — Imagens obtidas a partir de tomografia computadorizada do membro superior de

uma paciente do sexo feminino, com 26 anos de idade, nos planos a) axial, b) coronal e c)
sagital, e d) renderizacdo volumétrica correspondente.

Fonte: Autor.

O programa permite ainda a realizacdo de medic¢des nas imagens. Com isso, foram
tomadas algumas medidas dos 0ssos e dos compartimentos do brago e do antebraco, conforme
mostra a Figura 61. Essa ferramenta foi bastante Gtil para se tomar conhecimento das dimens6es

reais de algumas regides anatbmicas.

Figura 61 — Medigdes realizadas no InVesalius

Fonte: Autor.
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A partir das imagens DICOM e das medicOes realizadas, propde-se a geometria de um
membro superior do corpo humano exibido na Figura 62, que corresponde aos blocos
anatdmicos do braco e do antebraco, articuladas entre si no cotovelo. Além da visualizacdo do

modelo no plano x;x,, é apresentado um detalhe com a vista em trés dimensdes.

Figura 62 — Geometria do membro superior humano

LEGENDA

Fibras musculares

Tecido conjuntivo
Tendao
Osso

Tecido mole de preenchimento

LR PR R ———

Pele e camadas de gordura

Capsula articular

L& O8O Em

Fonte: Autor.

As regides em vermelho representam os musculos do compartimento anterior do braco,
gue compreende o biceps braquial, o braquial e o coracobraquial, e do compartimento posterior,
gue conta somente com o triceps braquial. No interior dessas regifes, estdo distribuidas 35
faixas de fibras musculares, tomando como referéncia 0 modelo muscular elaborado por
Baiocco, Coda e Paccola (2013), que também empregou essa quantidade de fibras. Sendo assim,
o material em vermelho corresponde, mais precisamente, ao tecido conjuntivo que envolve e
mantém unidas as fibras musculares, formando o material compdsito.

As zonas de cor cinza, situadas nas extremidades de cada compartimento muscular,
constituem os tenddes, enquanto as areas em verde representam as estruturas 6sseas do imero,
da ulna e do radio. Os trechos em amarelo, por sua vez, sdo tecidos moles que preenchem o0s
pequenos espagos entre musculos, tendBes e 0ssos. Por fim, os trechos em azul representam a
pele, camadas de gordura e outros tecidos moles, que fazem a fronteira com o meio externo.
Todos esses materiais sdo considerados homogéneos e isotropicos, mas a cada um deles sdo
atribuidas propriedades fisicas e modelos constitutivos particulares, conforme indicado na
Tabela 3.

O mddulo de elasticidade e o coeficiente de Poisson do tecido conjuntivo muscular e o

modulo de elasticidade das fibras sdo dadas conforme Lamsfuss e Bargmann (2021) . O autor
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segue, inclusive, a mesma estratégia deste trabalho de representar a condi¢do de quase-
incompressibilidade muscular por meio de um coeficiente de Poisson proximo a 0,5. O mddulo
de elasticidade do tendédo e do 0sso € retirado de Fung (1993), sendo feita a opcdo por manter
0 coeficiente de Poisson com valor nulo. Os coeficientes de viscosidade foram arbitrados,
mantendo uma relagdo 77 = /E de 4.10° para os tenddes e de aproximadamente 5.10° para as
fibras.

Tabela 3 - Parametros fisicos dos materiais do modelo

_ M()d_ul_o de Coeficiente de Co_eficie_znte de

Material Elasticidade POiSSON v viscosidade

E (N/mm?) n (N/mm?.s)
Tecido conjuntivo (vermelho) 0,2415 0,4995 0,0
Tenddo (cinza) 108 0,0 4,0
Osso (verde) 1,75.10* 0,0 0,0
Tecidos moles (amarelo) 10 0,0 0,0
Pele e gordura (azul) 10 0,0 0,0

Fibras 4,65 - 2,5.102

Fonte: Autor.

Algumas observagdes sobre 0 modelo cabem ser destacadas. Em primeiro lugar, as areas
vazadas em torno da articulacdo do cotovelo representam a capsula que reveste a articulagéo.
No corpo humano, os ligamentos que delimitam a superficie externa dessa capsula e o liquido
sinovial contido em seu interior praticamente ndo oferecem restricdo aos movimentos de flexdo
e extensdo. Portanto, foi feita a opgdo por simplesmente ndo inserir nenhum material nessa
regido do modelo, conferindo mais liberdade ao deslizamento entre as superficies dos elementos
0sseos em contato.

O material amarelo é inserido na modelagem do problema para preencher o0s espacos
vazios entre musculos, tenddes e 0ssos. Esse material ndo deve promover uma resisténcia
significante ao desenvolvimento de deslocamentos e deformag6es nos materiais adjacentes, por
isso seu médulo de elasticidade recebe um valor bem inferior aos demais materiais e seu
coeficiente de Poisson é mantido nulo. O mesmo é feito para o material azul, que representa a
pele e camadas de gordura.

Outro ponto a salientar € que os musculos do antebraco ndo sdo tratados no modelo
proposto. Suas funcdes principais sdo de contribuir para 0s movimentos de pronagdo e
supinacdo do antebraco, além de produzir movimentos na mao e no pulso, sendo que apenas

um musculo dessa regido — o braquiorradial — participa ativamente do movimento de flexdo do
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cotovelo (Basmajian; De Luca, 1985) . Uma vez que néo apresentam atuacgéo significativa para
a flexdo e a extensdo do cotovelo em comparagdo com os muasculos do brago, esses masculos
ndo tém seu comportamento mecanico modelado de acordo com o item 5.1.1. S0 considerados,
na verdade, apenas como tecidos moles que separam a matriz 6ssea do meio externo, fazendo
parte da regido em verde.

Observa-se também que € adotada uma simplificacdo para a ulna e para o radio no
antebraco: um unico trecho de material 6sseo é empregado para representar ambos. 1sso se
justifica pelo fato de que os referidos 0ssos sdo conectados por uma membrana interossea,
Figura 63, que os mantém firmemente unidos, fazendo com que se movimentem em conjunto
durante a flexdo e a extensdo do cotovelo. Além disso, essa membrana também exerce a funcao
de uniformizar a distribuicdo de tensdes entre os dois 0ssos (Fischer et al., 2001; Shaaban et
al., 2006).

Figura 63 - Membrana intergssea entre o radio e a ulna

Membrana Ulna
interdssea

Fonte: Adaptado de Oatis (2009).

Vale ressaltar também que a mao do membro superior ndo é incluida no modelo, de
maneira que a extremidade direita finaliza na regido do pulso, onde as superficies distais (mais
afastadas do tronco humano) da ulna e do radio se articulam com a por¢do proximal (mais
préxima ao tronco humano) da méo.

Ja com relacdo a extremidade esquerda, é feita a op¢do por nao representar a articulacdo
do ombro entre a escapula e o tmero. Em seu lugar, é realizado um alargamento da superficie
0ssea, onde se originam os tendBes dos compartimentos anterior e posterior do brago. A face
esquerda dessa superficie € considerada engastada, de maneira a garantir as vinculacdes
necessarias do modelo no espaco tridimensional. Isso pode ser interpretado como os musculos
situados ao redor do ombro atuando de maneira a manter a por¢do proximal do membro superior
fixa, sem permitir seu movimento em torno da regido articular do ombro.

A discretizacdo do dominio € feita em 521 elementos finitos prisméaticos de base

triangular (item 2.3.1) com 20 mm de espessura. Alguns motivos podem ser listados para
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justificar a escolha desse tipo de elemento e suas particularidades. O fato de o elemento ser
tridimensional, embora o objetivo do trabalho seja estudar apenas o comportamento muscular
desenvolvido no plano, esta relacionado a utilizacdo do modelo constitutivo hiperelastico de
Rivlin-Saunders-Hartmann-Neff, bem como do modelo visco-hiperelastico completo, cuja
implementacdo necessita do uso de uma geometria tridimensional. J& a utilizacdo do formato
prismético para o elemento diz respeito a possibilidade de adotar graus de aproximacao distintos
para a base e para a espessura: como 0 comportamento ao longo da espessura ndo € de interesse,
ndo € necessario utilizar a mesma aproximacéo cubica da base, mas apenas a aproximacao
linear. Cita-se ainda que a forma triangular é escolhida para a base porque permite o uso de
polinémios aproximadores completos, sem termos superabundantes, além possibilitar uma boa
adequacdo da malha a geometria do problema.

Ja as fibras sdo discretizadas em elementos de barra simples com ativacdo (item 2.3.2),
medindo cerca de 2 mm de comprimento. S&o empregados 7105 elementos, sendo 3675 no
compartimento anterior e 3430 no compartimento posterior, o que corresponde a cada faixa de
fibras ser dividida em, respectivamente, 105 e 98 elementos. Todos esses elementos sdo
inseridos no plano x; = 10 mm, ou seja, no plano médio ao longo da espessura. A componente
passiva corresponde ao comportamento elastico dos elementos, enquanto a componente ativa é
considerada por meio da estratégia de ativacdo. O acoplamento dos elementos de barra com os
elementos prismaticos, de maneira a representar o comportamento conjunto do material
compdsito, é realizado por meio do procedimento numérico apresentado no item 2.3.3.

O movimento relativo entre os materiais 6sseos na articulacdo do modelo biomecanico
é representado através da formulacdo de ligacdes deslizantes desenvolvida no Capitulo 4. O
deslizamento entre as superficies em contato ocorre sem a consideracdo de atrito, 0 que é
realistico para articulages do corpo humano, dado o baixo coeficiente de atrito (Synek; Settles;
Stillfried, 2012).

Conforme esquematiza a Figura 64, sdo introduzidos elementos de portico auxiliares na
trajetoria da extremidade direita do umero, destacada em azul. Além disso, séo inseridas juntas
deslizantes em todos os nds contidos no contorno deslizante da extremidade 6ssea do antebraco
em contato com o umero, destacados em vermelho. As trajetdrias e as juntas cilindricas sdo
inseridas tanto no plano de entrada do eixo x5, quanto no de saida. E importante enfatizar que
ndo se adota nenhuma propriedade fisica ou geomeétrica para os elementos de pértico auxiliares
no modelo proposto, de maneira que ndo existe contribuicdo desses elementos para a rigidez da

estrutura.
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Figura 64 - Elementos de portico auxiliares e juntas cilindricas na
ligacdo deslizante entre 0ssos no cotovelo (separados para fins de
clareza)

Contorno deslizante
e juntas cilindricas

(plano de entrada)
Trajetoria

(plano de entradaq

Contorno deslizante
e juntas cilindricas

(plano de saida)

X2
Lo
X3

Trajetoria

(plano de saida)

Fonte: Autor.

5.3 COMENTARIOS SOBRE O CODIGO COMPUTACIONAL

O cddigo computacional desenvolvido para realizar as analises mecanicas propostas
neste trabalho é fundamentado no Método dos Elementos Finitos Posicional e aplicado a
problemas discretizados em elementos finitos prismaticos de base triangular. As solicitacdes
externas sobre o sélido estudado podem ser forcas concentradas em seus nos, forcas de
superficie, forcas de volume ou mesmo deslocamentos nodais prescritos.

O cbdigo possibilita a insercdo de elementos de barras simples no interior dos elementos
prismaticos para representar materiais compositos reforcados com fibras, além de permitir a
ativacdo desses elementos. Também é possivel incorporar elementos de pértico auxiliares para
promover o deslizamento entre dois ou mais corpos discretizados com elementos prismaticos.
Embora os problemas biomecanicos propostos neste capitulo requeiram a inclusdo tanto de
elementos de barra simples ativados quanto de elementos de pdérticos auxiliares, € importante
destacar que os dados de entrada para ambos podem ser omitidos conforme a exigéncia da
analise, em situacdes nas quais um ou outro ndo seja necessario na discretiza¢do do problema.

O programa esté escrito em linguagem Fortran 90, e o resumo das operacdes realizadas
nas analises mecanicas estatica e dinamica esta exibido no pseudocodigo das Figuras 65 e 66,

respectivamente.
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Figura 65 — Pseudocddigo da analise mecénica estatica
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23

Ler dados dos elementos prismaticos

Ler dados dos elementos de barra simples

Ler dados dos elementos de pdrtico auxiliares

Acumular Fextvol em Fext (Eq.60)

Acumular Fextsup em Fext (Eq. 2.61 ou 2.62)
Calcular 5 dos nés dos elementos de barra

Adotar posicdo inicial ¥ = X

Para i = 1 até n° de passos de carga

Incrementar forca ext. (Fe<t « Fext 4 gfext)

Incrementar posicao prescrita (¥ « ¥ + d¥)

Impor AL nos elementos de barra (Eq. 2.38)

Enquanto ||AY||/||X|| = tolerancia

Para j = 1 até n° de elementos prismaticos
| Calcular F"t e Hestat (Egs. 2.50 e 2.63)
| Impor condi¢des de contorno em Hestat
| Acumular Fint g festat

Fim do loop |

Para k = 1 até n° de elementos de barras

Calcular Fint e Hestat (Eqs. 2.40 e 2.41)

Expandir Fint e Hestat (Egs. 2.73 e 2.74)
Impor condi¢des de contorno em Hestat

Acumular Fint g festat

Fim do loop k

24 Para n = 1 até n° de juntas cilindricas

25 Identificar ponto de contato (Item 4.4)
26 Calcular F¢s e H™S (Eqs. 4.6 e 4.16)
27 Impor condicdes de contorno em H™®*
28 Acumular F7es ¢ H™e

29 Fim do loop n

30 Calcular g (Eq. 2.15)

31 Impor condicdes de contorno em g

32 | |cCalcular AY (Eq. 4.13)

33 Atualizar ¥ e 1 (Eq. 2.19)

34 Verificar convergéncia (Eq 2.20)

35 Calcular posi¢des dos elementos de barra
36 | Fim do loop while

37 | Exportar dados para pds-processamento
38 Fimdoloopi

Fonte: Autor.

Dois pontos importantes cabem ser ressaltados sobre o cédigo computacional

desenvolvido. O primeiro esta relacionado a manipulacdo da matriz hessiana do problema no

formato de uma matriz esparsa. Para proceder adequadamente sua montagem, sdo empregadas

funces e sub-rotinas da biblioteca Sparse Set (Piedade Neto; Paccola, 2020). Ja a resolucéo do

sistema de equacBes que permite calcular a correcdo das posi¢fes AY é conduzida através do

pacote PARDISO (Schenk; Gértner; Fichtner, 1999).

O segundo topico diz respeito a paralelizagédo das se¢des de cddigo correspondentes aos

loops j e k, indicados nos pseudocodigos. Essa estratégia foi implementada por meio da

ferramenta OpenMP (Dagum; Menon, 1998) com o intuito de reduzir o tempo de

processamento das analises. Vale salientar que o loop n também poderia ter sido paralelizado,
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porém, devido ao baixo tempo de processamento desse trecho do codigo, ndo houve justificativa

para tal medida.

Figura 66 - Pseudocodigo da analise mecanica dinamica
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Ler dados dos elementos prismaticos

Ler dados dos elementos de barra simples

Ler dados dos elementos de portico auxiliares
Acumular Fextvol em Fext (Eq.60)

Acumular Fextsup em Fext (Eq. 2.61 ou 2.62)
Calcular 5 dos nods dos elementos de barra
Adotar posicio inicial ¥ = X

Calcular My, (Eq 2.68)

Calcular My, (Eq 2.42)

Expandir My4+q (EQ. 2.74)

Adicionar M

barra
Calcular ¥, Equacdo (Eq. 2.33)
Para i = 1 até n° de passos de tempo

aM prism

Incrementar tempo (t « t + At)

Calcular Fe¥t(t)

Impor AL nos elementos de barra (Eq. 2.38)
Calcular g, e R, (Egs. 2.28 € 2.29)
Enquanto ||AY||/||X]| = tolerancia

Para j = 1 até n° de elementos prismaticos
Calcular Fint g Hestat (Egs. 2.50 e 2.63)
Calcular F4is ¢ HYs (Egs. 3.76 € 3.78)
Adicionar H%s a Hestat

Adicionar M/BAt? a He**t (Eq. 2.31)
Impor condi¢des de contorno em Hestat

Acumular Fint | fdis g pestat

Fim do loop j

27 Para k = 1 até n° de elementos de barras
28 Calcular F™t ¢ Hestat (Eqs. 2.60 e 2.80)
29 Calcular F4s e HYs (Eqs. 3.73 e 3.74)
30 Adicionar H%s a Hestat

31 Adicionar M/BAt? a Hest* (Eq 2.31)
32 Expandir Fint e F4is (Eq. 2.73 e 2.74)
33 Expandir Hestt (Eq. 2.74)

34 Impor condicGes de contorno em Hestet
35 Acumular Fint| fdis g pestat

36 Fim do loop k

37 Para n =1 até n° de juntas cilindricas

38 Identificar ponto de contato (Item 4.4)
39 Calcular F¢S e H"®S (Eqgs. 4.6 e 4.16)
40 Impor condic6es de contorno em H™¢*
41 Acumular F7es ¢ H"es

42 Fim do loop n

43 Calcular g (Eq. 2.22)

44 Impor condi¢Bes de contorno em §

45 Calcular AY (Eq. 4.13)

46 Atualizar ¥ e 1 (Eq. 2.19)

47 Verificar convergéncia (Eq 2.20)

48 Calcular posices dos elementos de barra
49 | Fim do loop while

50 | Atualizar ¥ e ¥ (Eqs. 2.26 € 2.27)

51 |Exportacdo de dados para pds-processamento
52 Fimdoloopi

Fonte: Autor.

5.4 EXEMPLOS NUMERICOS

Neste item, apresentam-se exemplos finais com o intuito de simular a resposta mecanica

do membro superior do corpo humano quando submetido a agdes externas e contragdes

musculares. Todas as formulagdes apresentadas nos Capitulos 2 a 4 sdo empregadas.
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5.4.1 Comportamento passivo diante de agdes externas

Uma forca horizontal F é aplicada na extremidade livre do antebraco, isto €, na regido
do pulso, de acordo com a Figura 67. Mais precisamente, sua aplicacdo é feita de maneira
distribuida sobre os nds dos elementos dsseos ali situados. Neste problema, somente analises
estaticas sdo realizadas. As fibras do compartimento posterior ttm seu modulo elasticidade E
reduzido ao valor de 4,65.102 N/mm?, de maneira a representar a baixa rigidez muscular a
compressdo. Os demais parametros fisicos sdo mantidos conforme a Tabela 3.

Inicialmente, é atribuida uma intensidade pequena para a for¢a horizontal (F = 2 N),
de maneira a comparar o comportamento de modelos constitutivos distintos no regime de
deformacgdes pequenas a moderadas. No modelo M1, aos materiais do membro superior é
atribuido o modelo de Saint-Venant-Kirchhoff, enquanto o modelo de Rivlin-Saunders-
Hartamnn-Neff € atribuido no modelo M2. Em ambas as situagdes, as fibras sdo modeladas
segundo o modelo de Saint-Venant-Kirchhoff. Os resultados sdo apresentados na Figura 68, em
que se verifica uma certa aproximacéo entre os deslocamentos finais, havendo uma diferenca
de 2,3% entre os deslocamentos maximos na direcao x;.

Figura 67 - Forca aplicada na direcdo positiva do eixo x;

Detalhe da aplicagdo da forca

Fonte: Autor.

Para observar o desenvolvimento de grandes deslocamentos e deformagdes, a forca
externa atuante na regido do pulso é elevada ao valor de 40 N. Friedel (2016) constata que o
modelo constitutivo de Saint-Venant-Kirchhoff permite a autointerse¢do do material, enquanto
0 modelo de Rivlin-Saunders-Hartmann-Neff ndo permite a ocorréncia dessa situacao, ainda
que resulte em deslocamentos maiores para a estrutura, mostrando-se mais consistente. Desse

modo, prossegue-se com a analise apenas do modelo M2.
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Figura 68 — Deslocamentos na direcdo x; para F = 2N, modelos a) M1 e b) M2

6.124E+00

6.265E+00
5.356E+00 5.481E+00
4.589E+00 4.696E+00
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2.285E+00 2.342E+00
1.518E+00 1.557E+00

7.499€-01 7.724E-01
l -1.790€-02 -1.235E-02
-7.857€-01 -7.970E-01

Fonte: Autor.

A aplicacdo da forca F gera a extensdo do cotovelo, isto €, uma rotacdo do antebraco,
em torno do cotovelo, com sentido horério. Tal movimento provoca deslocamentos do material
muscular nas trés direcOes cartesianas, conforme ilustra a Figura 69. O compartimento anterior
sofre um alongamento na dire¢do x;, pois € puxado pelo antebraco, e encurtamentos sdo
verificados nas direcdes x, e x5 pelo efeito de Poisson. O compartimento posterior, por outro
lado, sofre um encurtamento na direcdo x;, pois é comprimido pelo antebraco, e alongamentos
surgem nas outras duas direcdes ortogonais.

Figura 69 — Extensdo do cotovelo com F =40N.
Deslocamentos nas dire¢des a) x;, b) x, € ¢) x5
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E possivel também verificar que a hipdtese de quase-incompressibilidade é atendida no
problema. A Figura 70 exibe os valores do jacobiano da transformacdo / no modelo, que estdo
bem préximos do valor unitadrio no material muscular. Os deslocamentos nas direcdes
ortogonais a direcdo x,, comentados no paragrafo anterior, estdo de acordo com a condicdo de
quase-incompressibilidade e ocorrem de maneira a preservar o volume inicial dos materiais.

Os valores do jacobiano muito distantes da unidade ocorrem nos materiais da pele (azul)
e de preenchimento (amarelo), que sofrem compressfes expressivas em alguns pontos e tém
seu volume alterado de forma mais significante. Isso ja era esperado, tendo em vista o seu baixo
maodulo de elasticidade e o fato de seu coeficiente de Poisson ser bem menor que 0,5. Conforme
ja comentado, a funcdo desse material é preencher os espacos vazios entre musculos, tenddes e
0SS0S, sem promover tanta resisténcia ao desenvolvimento de deslocamentos e deformacées

nos materiais adjacentes.
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Figura 70 — Valores do jacobiano nos materiais
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Fonte: Autor.

As tensdes normais de Cauchy sdo apresentadas na Figura 71 para as dire¢fes x; € x,.
Observam-se tensdes de compressao e tracdo, respectivamente, nas regides inferior e superior
do Umero bem como nos lados esquerdo e direito do antebrago. Nas fibras do compartimento
anterior do braco, por sua vez, surgem tensées de tracdo, enquanto tensdes de compressdo muito
baixas aparecem nas fibras do compartimento posterior. Esses resultados sdo coerentes com 0s
deslocamentos calculados e os parametros fisicos empregados.

As forgas de contato nas juntas cilindricas estdo direcionadas para o eixo de rotagéo do
antebraco, posicionado no centro do cotovelo. Isso esta em acordo com a modelagem
geométrica proposta, que trata as trajetorias e os contornos deslizantes como dois arcos de
circulo concéntricos. A resultante dessas forcas tem modulo igual a 36,4 N, com direcéo
praticamente paralela ao eixo x;, e sentido que indica afastamento entre as superficies
articulares. Portanto, na configuracdo final de equilibrio, a articulagdo do cotovelo transmite a

forca aplicada na extremidade distal do antebrago ao imero.



121

Figura 71 — TensOes de Cauchy nas direcbes a) x; e b) x, e
c) tensBes normais nas fibras
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Prosseguindo com a analise do comportamento muscular passivo, avalia-se também o
caso em que forca F = 40 N é aplicada na mesma intensidade, mas em sentido contrario,
gerando uma rotagdo no antebrago, em torno do cotovelo, com sentido anti-horéario, ou seja, 0
movimento de flexdo do cotovelo. De maneira andloga ao que foi feito na primeira anéalise, as
fibras do compartimento anterior tém seu mddulo elasticidade E reduzido a 4,65.102 N/mm?,
enquanto as fibras do compartimento posterior tém suas propriedades mantidas conforme a
Tabela 3.

Nesse caso, 0s alongamentos na diregdo x; ocorrem no compartimento posterior,
enguanto os encurtamentos ocorrem no compartimento anterior. Os deslocamentos nas direces
ortogonais a x; também s&o condizentes com o efeito de Poisson e buscam preservar o volume
dos materiais, em fungdo da hipdtese de quase-incompressibilidade. A Figura 72 apresenta o
campo de deslocamentos do modelo nas trés direcBes cartesianas, bem como dos valores do
jacobiano ao longo do dominio.

Nessa situacdo, o vetor resultante das forcas de contato nas juntas cilindricas tem
modulo igual a 23,6 N e esta inclinado em aproximadamente 135° a partir do sentido positivo

do eixo x,. Tal forca indica a tendéncia de compressao de uma superficie articular sobre a outra.
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Figura 72 — Deslocamentos nas diregdes a) x4, b) x, e ¢) x5 e d) valores
do jacobiano
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5.4.2 Contragdo muscular

O mecanismo de contracdo muscular é demonstrado em analises estaticas através da
ativacdo dos elementos de barra simples que discretizam as fibras do modelo. Considera-se 0
modulo de elasticidade de 4,65 N/mm? tanto para as fibras do compartimento anterior quanto
posterior do braco, pois todas estdo submetidas a tensbes de tracdo, conforme discutido mais
adiante. Este problema é estudado, inicialmente, numa situacdo de auséncia de forcas externas,
de maneira que a ativagdo dos elementos é a Unica solicitagdo imposta. Nesse cenario, duas
analises sdo propostas, promovendo a contracdo das fibras em compartimentos distintos.

Numa primeira analise, aplica-se uma varia¢do de comprimento de -0,5 mm em todos
os elementos de barra do compartimento anterior, o que equivale a uma reducdo de
aproximadamente 25% do comprimento inicial. Enquanto isso, as fibras do compartimento
posterior sdo deixadas livres para se alongar ou contrair.

Num segundo momento, toma-se a configuracdo inicial do problema e aplica-se uma
variacdo de comprimento de -0,8 mm em todos os elementos de barra do compartimento
posterior, correspondendo a uma reducdo de aproximadamente 40% do comprimento inicial.
Dessa vez, as fibras do compartimento anterior sdo deixadas livres para se alongar ou contrair.

Os deslocamentos na dire¢do x; desenvolvidos no modelo sdo apresentados na Figura

73. Como ja era esperado, a ativagdo dos elementos de barra do compartimento anterior provoca
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0 movimento de flexdo do cotovelo. Ja a ativacdo dos elementos do compartimento posterior
gera a extensdo do cotovelo. Ao retirar as variagdes de comprimento impostas, a estrutura
retorna a configuracéo inicial.

Figura 73 — Deslocamentos na direcdo x; para a ativacdo das fibras a) no compartimento
anterior e b) no compartimento posterior
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Fonte: Autor.

Conforme discutido no item 2.3.3, o deslocamento final é resultado do equilibrio de
forcas entre as fibras e a matriz na qual estdo inseridas. Além desse fato, 0 movimento gerado
pela contracdo das fibras de um compartimento € resistido pelo musculo do compartimento
oposto. Portanto, o deslocamento final definitivamente ndo é igual a variacdo de comprimento
imposta.

As tensfes normais de Cauchy desenvolvidas nos materiais séo ilustradas nas Figuras
74 e 75. Observa-se que tensbes positivas sdo desenvolvidas em todas as fibras, ou seja, a
contracdo muscular gera tracdo tanto nas fibras contraidas de um compartimento quanto nas
fibras do compartimento oposto, que sdo solicitadas passivamente e sofrem alongamento. As
tensGes ocorrem em maior intensidade nas fibras contraidas, responsaveis por realizar o
movimento do membro. Ja com relacdo aos materiais da matriz, sdo desenvolvidas tensdes de
compressdo no tecido conjuntivo do compartimento onde ocorre a contracdo e tensdes de tracdo
nos tenddes das extremidades. No compartimento oposto, tanto o tecido conjuntivo muscular
quanto os tenddes séo submetidos a tensdes de tracéo

Dando continuidade ao problema da contragdo muscular, avalia-se uma segunda
situacdo: considera-se agora ndo so a ativacdo dos elementos de fibra, mas também a presenca
de uma forga aplicada na regido do pulso. Esse exemplo simula um exercicio fisico para 0s
musculos do compartimento anterior do brago, consistindo na movimentacdo de uma carga por

meio da flex&o e da extenséo do cotovelo controladas pelo individuo.
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A execucdo € dividida em trés etapas. Inicialmente, aplica-se o carregamento e
determina-se a posicao de equilibrio do sistema. Em seguida, todas as fibras do compartimento
anterior sdo submetidas a uma variacdo de comprimento de -0,50 mm, o que corresponde a uma
contracdo de cerca de 25% do seu comprimento de repouso. Por fim, a contracdo é retirada e a
fibra é deixada livre para se alongar sob atuacdo da carga externa, retornando a posicao de
equilibrio da primeira etapa.

Figura 74 — Tensdes de Cauchy na direcdo x; nos materiais da matriz para a) contragdo nas
fibras do compartimento anterior e b) contragédo nas fibras do compartimento posterior
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Fonte: Autor.

Figura 75 — Tens6es normais nas fibras para a) contracao nas fibras do compartimento anterior
e b) contracdo nas fibras do compartimento posterior
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Fonte: Autor.

Conforme esperado, a contracdo das fibras do compartimento anterior gera a flexdo do
cotovelo, movendo a carga no sentido contrario ao seu sentido de aplicagdo. No entanto, se for
tomado como referéncia a posicéo inicial do problema, percebe-se que a posicdo do antebraco
apos a contracdo corresponde ao movimento de extensdao do cotovelo, conforme ilustrado na
Figura 76. Embora tenha havido a contragcdo muscular, 0 movimento se deu conforme o sentido
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da carga, 0 que representa a situacdo em que a carga atuante é maior do que a capacidade
muscular mobilizada pelo individuo. Vale ressaltar que o deslocamento em extensdo,
evidentemente, € menor do que se ndo houvesse nenhuma contracéo, ou seja, a extensdo ao
final da segunda etapa é inferior a extensdo da primeira etapa.

Figura 76 — Deslocamentos nas diregdes x; para variacdo de
comprimento de -0,5 mm
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Fonte: Autor.

Apds remover a contracdo e retornar a mesma posicao de equilibrio obtida ao final da
primeira etapa, impde-se uma nova variacdo de comprimento. Dessa vez, o valor é de -0,8 mm,
correspondendo a aproximadamente 40% do comprimento dos elementos. Com isso, a carga é
movimentada em sentido contrario ao seu sentido de atuacdo e o antebraco atinge uma posicao
de flexdo de cotovelo em relacdo a configuracdo inicial, ilustrada na Figura 77. O nivel de
ativacdo muscular mobilizado é, portanto, superior a carga atuante.

Figura 77 — Deslocamentos nas diregdes x; para variacdo de
comprimento de -0,8 mm
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Friedel (2016) comenta que a capacidade de contracdo muscular atribuida as fibras por
meio da estratégia de ativacdo dos elementos de barra deve depender tanto do poder de
contracdo dos referidos elementos (intensidade da variagdo de comprimento), bem como da
rigidez das fibras. Embora o primeiro caso seja empregado aqui, aumentar a rigidez das fibras
também resultaria num efeito semelhante, seja alterando seu médulo de elasticidade ou sua area
de secdo transversal.

Na analise de um mesmo mausculo, de fato é mais verossimil impor variacbes de
comprimento mais intensas para aumentar a capacidade de contracdo, 0 que pode ser
interpretado como o masculo recebendo maiores estimulos do sistema nervoso para se contrair.
No entanto, a alteragéo da rigidez se apresenta como uma alternativa para considerar diferentes

musculos do corpo humano, com capacidades de contracdo distintas entre si.

5.4.3 Comportamento passivo viscoelastico sob acdo de forca externa

A resposta mecanica muscular desenvolvida ao longo do tempo é demonstrada por meio
da atribuicdo de um comportamento viscoelastico para os materiais dos masculos e dos tenddes.
O modelo constitutivo das fibras é o visco-hiperlastico para pequenas deformacdes, enquanto
0 modelo do tecido conjuntivo e dos tendBes é o visco-hiperlastico completo para grandes
deformagoes.

Para as fibras do compartimento anterior, empregam-se os parametros fisicos da Tabela
3, inclusive o coeficiente de viscosidade n. As fibras do compartimento posterior, por sua vez,
tém seu o modulo de elasticidade reduzido ao valor de 4,65.10 N/mm?, para representar sua
baixa rigidez & compressdo. Além disso, a essas fibras é atribuido coeficiente de viscosidade
nulo.

J& para o tecido conjuntivo e para os tenddes, também se utilizam as propriedades
elasticas da Tabela 3. O coeficiente de viscosidade n dos tenddes é adotado com valor de 4,0
N/mm?.s, enquanto um coeficiente de valor nulo ¢ atribuido & matriz de tecido conjuntivo, pois
0 comportamento mecanico desse material ndo é modelado levando em conta 0 amortecimento
viscoso, conforme apresentado no item 5.1.1.

Neste item, propGe-se a analise de duas situacdes. O primeiro problema consiste no
membro superior do corpo humano submetido a forca F na regido do pulso, no sentido positivo
do eixo x;, com intensidade de 20 N. A partir disso, realiza-se uma analise quase-estatica
(desprezando efeitos de inércia) com incremento de tempo At de 10 s em 500 passos. Uma

tolerancia 10 é adotada para a convergéncia da solug&o.
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A evolucgdo do deslocamento na direcdo x; € apresentada no gréfico da Figura 78, onde
também é mostrado o deslocamento final obtido por meio de uma analise estatica para 0 mesmo
nivel de carregamento. Esse deslocamento é referente ao n6 39, situado na extremidade livre
do antebraco e pertencente a um elemento 6sseo, posicionado mais a esquerda na configuragédo
inicial. Observa-se que, a partir do instante t = 0,0025 s, 0 membro superior ja atingiu a
configuracdo de equilibrio e ndo ha mudanca significativa na posi¢do do n6. O deslocamento,
no entanto, é ligeiramente inferior ao deslocamento obtido numa andlise estatica. 1sso se deve
ao fato de que a quantidade de elementos de fibra no modelo desenvolvendo deslocamentos ao
longo do tempo é muito grande, de maneira que é necessario um periodo de analise bem mais
extenso para permitir que todos atinjam seu deslocamento final.

Figura 78 — Deslocamento do n6 39 na dire¢éo x;
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Fonte: Autor.

O segundo problema é inspirado no trabalho de Sobolewski, Ryan e Thompson (2013)
e corresponde a aplicacdo de um deslocamento prescrito Ax; nos nés 39 e 2492, situados na
regido do pulso. Tal deslocamento é aplicado em trés ciclos, cada um deles compostos por
quatro etapas, conforme apresentado na Tabela 4. Na primeira etapa, procede-se a extenséo do
cotovelo de maneira gradual, ao longo de alguns passos de tempo, por meio de um
deslocamento Ax, positivo. Na segunda etapa, 0 membro é mantido na posicao final alcancada
na primeira etapa durante uma determinada quantidade de passos de tempo. A terceira etapa,
por sua vez, promove o retorno do cotovelo a uma posicdo menos estendida, mas ainda
mantendo o compartimento anterior do braco sob alongamento. Por fim, na dltima etapa, o
membro € mantido na posicéo alcancada ao final de terceira etapa por mais alguns instantes.
Vale salientar que a velocidade de aplicacéo dos deslocamentos com valores ndo nulos € sempre
a mesma, com maddulo igual a 0,9 mm/passo. A analise realizada € do tipo quase-estatica com
incremento de tempo At de 10 s, adotando-se uma tolerancia de 10 para a convergéncia da

solucéo.
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Tabela 4 - Ciclos de aplicacdo do deslocamento prescrito

1° Ciclo 2° Ciclo 3° Ciclo
Etapas
Ax, Passos Axy Passos Axy Passos
1 +36 mm 40 +18 mm 20 +18 mm 20
2 0 mm 60 0 mm 60 0 mm 60
3 -18 mm 20 -18 mm 20 -18 mm 20
4 0 mm 60 0 mm 60 0 mm 60

Fonte: Autor.

Para analisar este segundo problema, o tenddo de cada extremidade do compartimento
anterior do braco € discretizado da seguinte maneira: atribui-se coeficiente de viscosidade n
nulo aos elementos que ndo possuem né em comum com os elementos de tecido conjuntivo,
enquanto os demais recebem n com valor de 4,0 N/mm?.s. Desse modo, os elementos com
coeficiente de viscosidade nulo tém seu comportamento mecéanico considerado como sendo
somente hiperelastico, desprezando os efeitos de amortecimento viscoso. J& os demais
elementos continuam descritos pelo modelo constitutivo visco-hiperelastico. Tal procedimento
é realizado para que as deformacGes nesses tenddes possam se desenvolver tanto de forma
imediata quanto ao longo do tempo. Os demais materiais tém seus parametros fisicos e modelos
constitutivos adotados conforme apresentado no inicio deste item.

A evolucdo da tensdo normal de Cauchy na direcdo x; é apresentada no grafico da
Figura 79. Essa componente de tensdo € avaliada no né de contato entre o tenddo distal do
compartimento anterior do braco e o material 6sseo do antebraco. E possivel identificar os
trechos correspondentes aos trés ciclos de aplicacdo do deslocamento prescrito, bem como as
etapas em que cada ciclo é dividido.

Figura 79 - Tensdo de Cauchy na direcdo x;, avaliada na extremidade do
tend&o distal do compartimento anterior
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Fonte: Autor.
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Por meio do gréfico, dois fendmenos viscoelasticos podem ser observados. O primeiro
deles é a relaxacdo, que corresponde a reducdo no valor da tenséo nos trechos em que a posi¢ao
do membro é mantida constante. O segundo é a fluéncia, isto é, a evolugdo gradual de
deformacdes. Uma vez que 0 membro alcancou a mesma posicao ao final da primeira etapa de
cada ciclo, a obtencdo de uma tensdo com valor cada vez menor nesses instantes indica o
surgimento de novas deformagdes nos materiais.

Sobolewski, Ryan e Thompson (2013) realizaram um ensaio experimental com
pacientes utilizando um aparelho que promovia a dorsiflexdo no tornozelo dos voluntéarios, ou
seja, movia os dedos do pé em direcdo a perna, diminuindo o angulo entre o dorso do pé e a
perna. Além disso, o dispositivo registrava o torque necessario para alcancar o angulo de
dorsiflexao desejado. O ensaio foi conduzido em quatro ciclos, nos quais um angulo especifico
de dorsiflexdo era aplicado, mantido por 30 s, seguido pelo retorno a posicéo inicial e um
periodo de repouso adicional de 30 s. Vale salientar que o angulo de dorsiflexdo méaximo
alcancado na primeira etapa de cada ciclo era referente a um valor de torque pré-estabelecido.

Os referidos autores plotaram a variacao tanto do angulo de dorsiflexdo quanto do torque
medido pelo aparelho ao longo do tempo, exibidos na Figura 80. Com isso, foi possivel
constatar os fendmenos de relaxacdo e fluéncia, de natureza viscoelastica. O primeiro foi
verificado através da reducdo do torque durante a manutencdo da dorsiflexdo. Ja o segundo foi
observado por meio do aumento no angulo de dorsiflexdo méximo alcancado em cada ciclo,
sem que houvesse aumento no valor de torque maximo pré-definido.

Figura 80 - Dados de posicdo angular do tornozelo e de torque registrados durante
a realizacdo do ensaio
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Fonte: Sobolewski, Ryan e Thompson (2013).

Diante disso, percebe-se que os fendmenos viscoelasticos do comportamento muscular
constatados experimentalmente por Sobolewski, Ryan e Thompson (2013) também foram

verificados por meio do modelo numérico. Embora os parametros fisicos adotados na anélise
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computacional realizada neste item ndo tenham sido calibrados com valores experimentais —
atividade que, de fato, esta fora do escopo deste trabalho — e ndo seja possivel a comparagao
direta dos resultados, considera-se satisfatoria a resposta mecanica obtida, tendo aqui carater

qualitativo.
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6 CONSIDERACOES FINAIS

Para finalizar este trabalho, pontuam-se algumas conclusGes obtidas ao longo da
realizacdo da pesquisa e apresentam-se sugestdes para dar continuidade ao desenvolvimento

dos temas aqui tratados.

6.1 CONCLUSOES

O presente trabalho realizou a simulacdo numérica do comportamento mecanico plano
de membros do corpo humano, considerando tanto a atuacdo de musculos esqueléticos quanto
0 movimento de articulagbes adjuntas. Essa simulacdo € realizada através de um cddigo
computacional desenvolvido com base no Método dos Elementos Finitos Posicional, capaz de
realizar analises ndo-lineares geométricas de maneira direta. Além disso, as analises mecanicas
desenvolvidas demonstram a aplicacdo das leis constitutivas visco-hiperleasticas e da
formulagdo para ligacfes deslizantes entre elementos prisméaticos na modelagem de estruturas
bioldgicas. Varios exemplos atestaram a correta implementacdo computacional e o bom
funcionamento do cédigo.

Empregando todo o contetdo abordado nos Capitulos 2 a 4, foi proposto um modelo
biomecanico para representar 0 comportamento mecanico do membro superior do corpo
humano. A geometria elaborada foi inspirada em imagens de tomografia computadorizada de
um membro real, referente a uma paciente com 26 anos de idade, cujos dados foram obtidos
em Harvard Dataverse Repository, um repositério da Universidade de Harvard. Com isso, as
dimensGes empregadas no modelo possuem uma boa aproximacgdo com as dimensdes reais de
estruturas musculoesqueléticas.

No modelo proposto, 0 musculo é considerado um material composito reforcado com
fibras: a matriz € formada pelas camadas de tecido conjuntivo e o reforgo corresponde as fibras
musculares. A matriz é atribuido o modelo constitutivo hiperelastico de Rivlin-Saunders-
Hartmann-Neff, que se mostrou adequado para representar o regime de grandes deformagdes

O comportamento das fibras, por sua vez, é divido nas formas ativa e passiva. A
componente ativa é implementada atraves de uma estratégia que trata os elementos de barra
como atuadores, impondo variagdes ao seu comprimento inicial. J& a componente passiva €

descrita pelo modelo constitutivo de Saint-Venant-Kirchhoff em seu formato unidimensional.
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O acoplamento entre a matriz e as fibras para formar, de fato, o material compdésito, é efetuado
por meio de um procedimento de imersdo de elementos de barra em elementos bidimensionais.

Para reproduzir o comportamento muscular ao longo do tempo, foram atribuidas
propriedades viscosas as fibras e aos tenddes. A resposta mecanica foi descrita segundo o
modelo viscoelastico de Kelvin-Voigt, adaptado a medida de deformagéo de Green e associado
a modelos hiperelasticos, o que possibilitou a definicdo de um modelo visco-hiperelastico
completo.

No que diz respeito as articulacdes, essas conexdes entre 0ssos sao consideradas como
ligacOes deslizantes. A formulagdo para elementos de pértico plano desenvolvida por Siqueira
(2016) foi empregada para tratar o deslizamento entre elementos prismaticos, tomando como
referéncia a estratégia utilizada por Rodriguez (2017) para reproduzir o deslizamento entre
elementos de chapa.

Os exemplos finais apresentados no Capitulo 5 revelam as potencialidades do codigo
computacional desenvolvido para analisar o comportamento de estruturas bioldgicas. Foi
possivel perceber também a grande complexidade que envolve a modelagem desse tipo de
material. Embora ainda seja necessario progredir bastante, conclui-se que é possivel descrever
a resposta mecanica plana de membros do corpo humano por meio dos contetdos aqui

abordados.

6.2 SUGESTOES PARA TRABALHOS FUTUROS

Para trabalhos futuros na area de métodos numeéricos e biomecanica, sugere-se aplicar
modelos constitutivos hiperelasticos mais adequados a reproducdo do comportamento de
tecidos musculares. Pode-se dar preferéncia por modelos cujas constantes estejam calibradas a
partir de resultados experimentais disponiveis na literatura.

Além disso, recomenda-se a utilizacdo de elementos finitos tridimensionais mais
genéricos, aexemplo do elemento tetraédrico, que possibilitem a reproducao do comportamento
muscular no espaco, sem se restringir a resultados contidos num Unico plano. Isso
proporcionaria, inclusive, a geracdo de geometrias mais fiéis a realidade, obtidas a partir de
imagens de tomografia computadorizada, porém associadas a um maior custo computacional.

Melhorar a fungéo de ativagdo para os elementos de barra e buscar sua distribui¢do no
interior da matriz de tecido conjuntivo também se mostram pontos interessantes. Com isso,

seria possivel prever de forma mais precisa as forcas desenvolvidas pelos musculos.
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A formulacédo de ligacdes deslizantes pode ser aplicada ainda a avaliacdo de desgastes
em articulacdes. Considerando perfis de rugosidade nas trajetorias, seria possivel analisar

articulac6es com defeitos ou acometidas por alguma patologia.
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APENDICE A — Funcdes de forma do elemento prismatico de base triangular

O conjunto de fun¢des de forma do elemento prismatico de base triangular, reunidas no
vetor 1, sdo expressdes polinomiais interpoladoras escritas em funcdo das coordenadas

adimensionais (&;,&,,¢,). Esses polindmios sdo oriundos da multiplicacdo das funcGes
Pi(£1,§,) pelas fungdes ¢;(é5), isto é:
Yr(€1,62,83) = (Pi(fbfz)(bj(fs) (A1)

em que ¢;(&;,$>) realizam a interpolacdo sobre o plano da base triangular e ¢;(¢3) promovem

a interpolacéo ao longo da espessura.
As funcgdes de forma da espessura sdo polinémios unidimensionais, dependendo apenas
da coordenada &5, portanto podem ser obtidas por meio da expressao geral dos Polinbmios de

Lagrange de ordem p:
p+1 :

_z]
b:i(&3) = ff % (A2)
j=1 %) 83 7 83

Ja as fungdes de forma da base sdo polindbmios completos de ordem 3, com dominio
definido no espaco adimensional em duas dimensdes. Seus parametros podem ser calculados a
partir de um sistema de equacdes, tendo em vista que cada fungdo tem valor unitario no né onde
foi definida e valor nulo nos demais. Para tanto, considera-se B a matriz de coeficientes a
determinar e P a matriz dos valores que multiplicam os referidos coeficientes, calculados com
as coordenadas do n6 correspondente. Assim, escreve-se:

B-P=I-B=P! (A.3)

Para o caso particular deste trabalho, adota-se uma aproximacdo cubica para base e
linear para a espessura. Assim, na Equacdo A.l, vale a relacdo k = 10(j — 1) + i para
viabilizar a implementacdo computacional com um unico indice. O indice i varia de 1 a 10,
enquanto o indice j variade 1 a 2. Por consequéncia, o indice k varia de 1 a 20, correspondendo
a quantidade total de nds no elemento.

Sabendo que a coordenada adimensional & esta contida no intervalo [—1,1], as funcGes

¢, (&3) assumem a seguinte configuracdo a partir da Equacéo A.2:

a6 = (A4)

P,(&5) = i ; ! (A5)
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As coordenadas &; e &,, por sua vez, estdo contidas no intervalo [0,1]. A resolucdo do

sistema linear da Equacdo A.3 conduz as seguintes expressdes:

o161 8) = (36~ (36~ 2)
06 8) = 222 (3¢, 1)
paet) = 222 (35, - 1)

Pas ) = 2 (36~ D36~ 2)

9
P56 E) = S (1~ &~ £) (36~ 1)

©06(§1,62) =27815,(1— & — &)

9
0781, &) = %(1 -§-8)B&L -1
9
@g(§1, &) = %(1 =& —&)BA-& —&) —1]
9>

©9(§1,82) = 7(1 —& —8)BA-& —-&) —1]

1
91061, 82) = 5(1 =& =8B -& —&)—1][3(1-& — &) — 2]

(A.6)

(A7)

(A.8)

(A.9)

(A.10)
(A.11)

(A.12)

(A.13)

(A.14)

(A.15)
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