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RESUMO 

 

SPÍNOLA, G. B. Aplicação de modelos hiperelásticos e ligações deslizantes na modelagem 

do comportamento mecânico de estruturas musculoesqueléticas. 2024. 145 p. Dissertação 

(Mestrado em Ciências - Engenharia Civil (Engenharia de Estruturas)) – Escola de Engenharia 

de São Carlos, Universidade de São Paulo, São Carlos, 2024. 

 

A geração de movimento e a produção de força realizadas pelo conjunto formado por músculos, 

tendões, ossos e ligamentos em diversas partes do corpo é tema de alto interesse em pesquisas 

acadêmicas, que buscam contribuir para a saúde e o bem-estar dos seres humanos. Com o intuito 

de colaborar para a construção do conhecimento existente, este trabalho tem como objetivo a 

simulação numérica do comportamento mecânico plano de membros do corpo humano por 

meio da atuação de músculos esqueléticos e do movimento de articulações adjuntas. Tal 

simulação é realizada através de um código computacional desenvolvido com base no Método 

dos Elementos Finitos Posicional (MEFP), capaz de realizar análises não-lineares geométricas 

de maneira direta em sua formulação. A modelagem proposta trata o tecido biológico como 

uma matriz tridimensional composta com elementos de barra simples, que representam as fibras 

musculares. São empregadas leis constitutivas visco-hiperelásticas com o intuito de reproduzir 

de maneira mais consistente a relação entre tensões e deformações no material e é considerada 

a possibilidade de contração nas fibras para representar o comportamento muscular ativo. As 

articulações próximas aos músculos estudados são modeladas por meio da formulação de 

ligações deslizantes, permitindo um movimento relativo entre superfícies conectadas. As 

condições cinemáticas impostas ao sistema para promover o deslizamento são introduzidas ao 

problema com o uso de multiplicadores de Lagrange. A aplicação biomecânica foca no membro 

superior do corpo humano, utilizando uma geometria baseada em imagens de tomografia 

computadorizada de uma paciente, obtidas no repositório aberto Harvard Dataverse 

Repository. O modelo proposto apresenta potencial para descrever a resposta mecânica de 

membros do corpo humano de maneira simplificada. 

 

Palavras-chave: modelagem numérica; Método dos Elementos Finitos Posicional; músculo; 

articulações. 

  



 
 

ABSTRACT 

 

SPÍNOLA, G. B. Use of hyperelastic models and sliding connections to model the 

mechanical behavior of musculoskeletal structures. 2024. 145 p. Dissertation (M. Sc. in 

Civil Engineering (Structural Engineering)) – School of Engineering of São Carlos, University 

of São Paulo, São Carlos, 2024. 

 

The generation of movement and force by the ensemble of muscles, tendons, bones, and 

ligaments in various parts of the body is a topic of great interest in academic research, aiming 

to contribute to the health and well-being of humans. With the aim of contributing to the 

construction of existing knowledge, this work aims to numerically simulate the planar 

mechanical behavior of human body members through the action of skeletal muscles and the 

movement of adjacent joints. Such simulation uses a computational code based on the Positional 

Finite Element Method (PFEM), which directly performs nonlinear geometric analyses in its 

formulation. The proposed modeling treats biological tissue as a three-dimensional matrix 

composed of simple bar elements representing muscle fibers. This work employs visco-

hyperelastic constitutive laws to more consistently reproduce the stress-strain relationship in 

the material and considers the possibility of fiber contraction to represent active muscle 

behavior. The joints near the studied muscles are modeled using the formulation of sliding 

connections, allowing relative movement between connected surfaces. The code uses Lagrange 

multipliers to introduce the kinematic conditions imposed on the system in order to promote 

sliding. The biomechanical application focuses on the upper limb of the human body, using 

geometry based on computational tomography scan images of a patient, obtained from the open 

repository Harvard Dataverse Repository. The proposed model shows potential for describing 

the mechanical response of human body limbs. 

 

Keywords: numerical modelling; Positional Finite Element Method; muscle; joints.  
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1 INTRODUÇÃO 

 

Este capítulo é dedico a apresentar o contexto em que este trabalho é realizado, 

apresentando a motivação, os objetivos e as justificativas que conduziram ao seu 

desenvolvimento. Além disso, é a realizada uma revisão bibliográfica em relação aos diversos 

tópicos aqui tratados. 

 

1.1 CONSIDERAÇÕES INICIAIS 

 

O músculo é um tecido biológico composto por um conjunto de células especializadas 

com formato alongado, também chamadas fibras musculares, que são capazes de se contrair. 

Sua função no organismo é promover o movimento de estruturas ligadas a ele, como os ossos, 

e, consequentemente, do corpo. Permite ainda a realização de movimentos relacionados às 

atividades de órgãos internos, a exemplo do batimento do coração e da impulsão do alimento 

ao longo do sistema digestório. 

Dentre os tipos musculares existentes, aquele que se liga ao esqueleto e está sob controle 

voluntário é denominado estriado esquelético, ou simplesmente esquelético. Sua estrutura é 

composta por feixes de fibras cilíndricas muito longas organizadas em um padrão regular, que 

podem ser contraídas de forma rápida e vigorosa em resposta a um estímulo do sistema nervoso 

conscientemente controlado pelo indivíduo (Montanari, 2016). A Figura 1 apresenta um 

exemplo de músculo pertencente a esse grupo: o bíceps, situado na parte superior do braço e 

composto por um trecho de cabeça longa e outro de cabeça curta. 

Figura 1 - Localização do bíceps 

 

Fonte: Adaptado de Database Center for Life Science (2009). 
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As referidas fibras são mantidas unidas por meio de tecidos conjuntivos, que recebem 

esse nome devido à sua função de conectar, sustentar e preencher outros tecidos do corpo, 

conforme ilustrado na Figura 2. Formados por células e por uma matriz extracelular de 

composição bem variada, possuem elasticidade e atuam na transmissão das forças produzidas 

pelo músculo durante a contração. As fibras musculares são envolvidas por uma camada externa 

de tecido conjuntivo, que recobre o músculo inteiro. Dessa camada derivam-se finos septos que 

se dirigem para o interior do músculo, envolvendo os feixes e separando-os uns dos outros. 

Entre as fibras musculares há ainda uma delicada camada formada por fibras reticulares e 

células. Além disso, o tecido conjuntivo do músculo contém vasos sanguíneos responsáveis 

pelo transporte de nutrientes. 

A ligação entre os músculos esquelético e o esqueleto é estabelecida por estruturas 

alongadas e cilíndricas de tecido conjuntivo, denominados tendões, também ilustrados na 

Figura 2. São formados por feixes densos e paralelos de fibras de colágeno, o que os torna 

inextensíveis e lhes confere uma coloração branca. Alguns músculos, inclusive, se afilam nas 

extremidades, observando-se uma transição gradual do material muscular para o tendão. 

Figura 2 - Organização de um músculo estriado esquelético 

 

Fonte: Adaptado de National Cancer Institute (2022). 

O esqueleto, por sua vez, é a estrutura que serve de suporte para os tecidos moles e de 

proteção para os órgãos vitais. Também proporciona apoio aos músculos esqueléticos, 

transformando suas contrações em movimentos úteis ao indivíduo, bem como constitui um 

sistema de alavancas que amplia as forças originadas na contração muscular. Seu principal 

componente é o tecido ósseo, formado por células e por material extracelular calcificado. 
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Os diversos ossos que compõem o esqueleto unem-se uns aos outros por meio de 

ligamentos, que são estruturas formadas por tecido conjuntivo denso de fibras colágenas 

paralelas, capazes de resistir à tração exercida em um determinado sentido. Essa conexão entre 

ossos ocorre em regiões denominadas articulações. Aquelas dotadas de grande mobilidade, 

geralmente responsáveis por unir ossos longos, são classificadas como diartroses, a exemplo do 

cotovelo e do ombro, indicados na Figura 1. Nessas articulações existe uma cápsula que liga as 

extremidades ósseas, delimitando uma cavidade fechada – a cavidade articular –, conforme 

esquematizado na Figura 3. Essa cavidade contém um líquido incolor, transparente e viscoso, 

denominado o líquido sinovial, que possui um efeito lubrificante e, assim, facilita o 

deslizamento das superfícies articulares. Os músculos esqueléticos se encontram dispostos ao 

redor dos ossos, geralmente organizados em grupos opostos em torno das articulações 

(Junqueira; Carneiro, 2017). 

Figura 3 - Esquema de uma diartrose 

 
Fonte: Adaptado de Junqueira e Carneiro (2017). 

A geração de movimento e a produção de força realizadas pelo conjunto formado por 

músculos, tendões, ossos e ligamentos em diversas partes do corpo é tema de alto interesse em 

pesquisas nos últimos anos. O conhecimento cada vez mais detalhado e preciso do 

comportamento biomecânico dessas estruturas é requisitado para atender às demandas de 

cuidado à saúde e ao bem-estar do homem. Dentre elas, pode-se citar a elaboração de 

procedimentos cirúrgicos, o desenvolvimento de próteses e válvulas, bem como o 

aprimoramento de dispositivos de proteção, a exemplo de cintos de segurança e airbags. 

Entretanto, o estudo através de ensaios in vivo em condições reais é difícil de ser 

realizado e, em alguns casos, a baixa taxa de reprodutibilidade de experimentos pode levar a 
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resultados inconclusivos, em face à grande dispersão de resultados. Além disso, as técnicas 

empregadas podem ser muito invasivas para os voluntários (Humphrey, 2003). 

Uma alternativa muito usada na indústria automobilística, por exemplo, é o uso de 

manequins para representar os ocupantes de veículos nos testes de colisão em escala real. A 

partir de normas que definem os procedimentos e os parâmetros desses ensaios, avaliam-se os 

danos que ocorreriam ao sistema do corpo humano em acidentes. Nessa situação, no entanto, 

juntas de ligações complexas representadas por ligações mecânicas simplificadas, tecidos moles 

substituídos por espumas e materiais sintéticos, dentre outras simplificações, acabam 

prejudicando a qualidade dos resultados obtidos (Muggenthaler, 2006). 

Diante desse cenário, a modelagem numérica se apresenta como uma opção bastante 

viável e promissora. Simulações computacionais robustas, que reproduzam o comportamento 

do corpo humano de forma mais confiável, podem trazer resultados mais representativos da 

realidade e, assim, contribuir, por exemplo, com a elaboração de sistemas mais seguros e 

dispositivos biomecânicos de melhor desempenho. 

Ao passo que a caracterização dos ossos se encontra num estágio bem consolidado, os 

principais desafios existentes dizem respeito à implementação de modelos constitutivos 

adequados para os tecidos moles, isto é, músculos, tendões e ligamentos. Essas estruturas 

apresentam propriedades anisotrópicas, viscoelásticas, não-homogêneas e quase 

incompressíveis, além de normalmente estarem submetidas a níveis altos de deformação. Soma-

se a isso a necessidade de descrever, ao mesmo tempo, o movimento das articulações 

desencadeado pela atuação muscular, levando em conta padrões de contato e deslizamento entre 

as superfícies ósseas e a posição variante do eixo de rotação (Humphrey, 2003). 

 

1.2 OBJETIVOS DO ESTUDO 

 

 Este trabalho tem como objetivo geral simular numericamente o comportamento 

mecânico plano de membros do corpo humano, considerando tanto a atuação de músculos 

esqueléticos quanto o movimento de articulações adjuntas. De maneira a alcançar tal propósito, 

são estabelecidos os seguintes objetivos específicos: 

a) Elaborar um código computacional baseado no Método dos Elementos Finitos 

Posicional empregando elementos finitos prismáticos de base triangular e de barra 

simples; 

b) Introduzir o comportamento ativo e lei constitutiva viscoelástica aos elementos de barra 

simples; 
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c) Implementar lei constitutiva visco-hiperelástica para os elementos finitos prismáticos; 

d) Aplicar estratégia de imersão de elementos finitos de barra simples em elementos 

prismáticos; 

e) Implementar formulação de ligações deslizantes para representar o movimento relativo 

entre elementos prismáticos; 

f) Gerar a geometria de estruturas musculoesqueléticas tomando como referência imagens 

de tomografia computadorizada. 

 

1.3 JUSTIFICATIVA 

 

 Seja para desenvolver dispositivos biomecânicos, definir procedimentos de cirurgia e 

reabilitação, ou aperfeiçoar equipamentos de proteção em sistemas de transporte, uma 

modelagem biomecânica que represente bem o comportamento do corpo humano se faz 

extremamente necessária. No entanto, devido à complexidade de se desenvolver modelos que 

descrevam de forma precisa a reposta mecânica em face de diversas solicitações externas, a 

implementação computacional de modelos mecânicos para tecidos biológicos e articulações 

tem sido tema de uma grande quantidade de produções científicas nos últimos anos. Nesse 

contexto, este trabalho se mostra relevante por trazer resultados de simulações numéricas a 

partir do modelo proposto, contribuindo para o conhecimento existente e dando continuidade à 

linha de pesquisa em modelagem de tecidos biológicos do Departamento de Engenharia de 

Estruturas da EESC/USP (SET). 

 Embora a literatura seja vasta na área em estudo, alguns tópicos ainda permanecem 

pouco explorados. Em primeiro lugar, é pequena a quantidade de publicações que levam em 

consideração o comportamento ativo dos músculos esqueléticos. A estratégia normalmente 

utilizada considera apenas o comportamento passivo desses elementos, de maneira que as fibras 

musculares são empregadas somente com a função de enrijecedores da matriz em que se 

inserem (Calvo et al., 2010; Weiss; Maker; Govindjee, 1996; Yousefi et al., 2018). 

 Um segundo ponto é que, enquanto o uso de leis constitutivas hiperelásticas diversas é 

recorrente na modelagem mecânica dos tecidos moles, pouco se encontra a respeito do emprego 

de leis viscoelásticas. Dessa forma, fenômenos característicos do comportamento muscular, 

como histerese, relaxação e fluência, acabam sendo desprezados. 

 No tocante às articulações, vários autores apontam que o movimento nessas regiões 

ocorre de maneira a haver deslizamento entre as superfícies de contato dos ossos envolvidos. 
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Sendo assim, a implementação de um modelo de ligação deslizante que seja capaz de reproduzir 

esse comportamento se mostra pertinente e configura, inclusive, um aprimoramento nos 

modelos desenvolvidos em pesquisas anteriores no SET. 

Além disso, grande parte dos trabalhos se direciona para uma das seguintes abordagens: 

ou investem em modelagens musculares mais robustas em detrimento de descrever com mais 

qualidade o movimento de articulações adjuntas e a atuação de ligamentos estabilizantes, ou o 

contrário. Assim, a literatura carece de modelos que representem de maneira mais fiel o 

comportamento dos membros do corpo humano. 

 Por fim, com relação a utilizar o Método dos Elementos Finitos Posicional, vale ressaltar 

que este trabalho se insere no grupo de pesquisa em métodos numéricos do SET e deixa sua 

contribuição em demonstrar a aplicabilidade do método na resolução de problemas da 

elasticidade não-linear. 

 

1.4 REVISÃO DA BIBLIOGRAFIA 

  

A modelagem numérica voltada para o comportamento mecânico tanto de tecidos 

biológicos quanto das diversas articulações presentes no organismo é um tema bastante 

estudado ao longo das últimas seis décadas e atualmente conta com uma extensa literatura.  

Entretanto, maior ainda é o caminho que resta a ser percorrido até que essa vertente da 

biomecânica atinja o seu verdadeiro potencial na colaboração para a saúde. Dessa maneira, 

diversos autores continuam se empenhando em conduzir simulações numéricas e ensaios 

experimentais para revelar novos detalhes acerca da geometria, composição e atividade de 

estruturas biológicas, fundamentando-se sempre no conhecimento já adquirido. 

Na revisão realizada por Humphrey (2003), é possível encontrar uma breve descrição 

da história da biomecânica, partindo desde a Idade Moderna até o estado da arte atual. São 

apresentadas as contribuições de nomes bem famosos, tais como Leonardo da Vinci (1452-

1519), Robert Hooke (1635-1703) e Leonard Euler (1707-1783), bem como são discutidas as 

principais descobertas mais recentes, ao longo do século XX, e as lacunas que ainda 

permanecem abertas. O autor destaca que os avanços da biomecânica moderna só foram 

possíveis em razão do progresso teórico na Mecânica do Contínuo, da evolução do aporte 

computacional e do desenvolvimento de métodos matemáticos mais sofisticados. 

De acordo com Tang; Zhang e Tsui (2009), existem dois modelos clássicos para 

reproduzir o comportamento mecânico de tecidos musculares esqueléticos: o modelo de Hill 
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(1938) e o de Huxley (1957), ambos unidimensionais. O primeiro é fenomenológico e adota 

uma abordagem macroscópica, tornando-se adequado para descrever o comportamento passivo 

do tecido mole e das fibras musculares, conforme feito por Tang et al. (2007), Hoffman et al. 

(2012), Pham, Xue e Zheng (2018) e Pavan et al. (2019). O segundo é fisiológico, construído a 

partir de experimentos bioquímicos, mecânicos e termodinâmicos para retratar o 

comportamento muscular a nível molecular, sendo apropriado para modelar fibras musculares 

ativas, a exemplo do trabalho de Oomens et al. (2003). 

Com relação à modelagem do comportamento passivo de tecidos biológicos, é comum 

a implementação de leis constitutivas hiperelásticas. Nesses modelos, a energia específica de 

deformação é escrita mediante uma expressão que relaciona um campo tensorial de tensões ou 

de deformações a um campo escalar. Hoss (2009) apresenta um histórico da evolução dessas 

leis, bem como estuda vários modelos constitutivos para elastômeros incompressíveis 

utilizando dados obtidos em ensaios de tração unixial e biaxial e cisalhamento puro para calibrar 

constantes. 

Dentre as principais leis constitutivas hiperelásticas utilizadas na literatura, cita-se o 

modelo de Mooney (1940) generalizado por Rivlin e Saunders (1951), que mais tarde originou 

a família polinomial  (Teran et al., 2003; Yamamura et al., 2014; Zhan; Gao, 2012). Dentre 

esses, destaca-se o modelo de Yeoh (1990) diante da sua simplicidade e do bom desempenho 

para a modelagem de borrachas. 

Cabe mencionar também o modelo de Hart-Smith (1966), formulado com expressões 

logarítmicas e exponenciais, que é utilizado pelo HUMOS (Human Model for Safety) um 

projeto da União Europeia voltado para a criação de modelos numéricos para ocupantes de 

veículos. E tem-se ainda o modelo de Ogden (1972), que define a energia de deformação com 

base nos alongamentos principais (Calvo et al., 2010; Gras at al., 2012). 

Outros estudos também vêm sendo realizados com o intuito de calibrar leis constitutivas 

e, com isso, propor novos modelos que representem de forma mais fiel o comportamento 

passivo verificado na prática. Nesse sentido, Bosboom et al. (2001) realizaram testes de 

compressão na musculatura da tíbia de ratos entre placas paralelas, medindo a força necessária 

para controlar o deslocamento dessas placas. Os resultados obtidos foram então utilizados para 

calibrar um modelo não linear viscoelástico do comportamento muscular passivo em uma 

simulação numérica do mesmo experimento. 

 Calvo et al. (2010) propõem um modelo constitutivo para representar o comportamento 

passivo não só da matriz, mas também das fibras. Com esse intuito, são realizados ensaios 
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uniaxiais nos músculos de ratos, cujos resultados levam à formulação de um modelo 

hiperelástico polinomial para a matriz e exponencial para a fibra. 

Para tratar a distribuição e orientação das fibras, Weiss, Maker e Govindjee (1996) 

propõem uma formulação hiperelástica incompressível transversalmente isotrópica, em que as 

tensões no ponto dependem tanto do gradiente de deformação quanto da orientação das fibras 

do tecido. Mais recentemente, Yousefi et al. (2018) estudaram o comportamento passivo de 

tecidos musculares em modelos tridimensionais considerando orientações diferentes entre as 

fibras musculares e as fibras de colágeno que as revestem, a partir de imagens médicas. 

No que diz respeito à representação do comportamento ativo dos tecidos musculares,  

Martins et al. (1998) introduziram um modelo de comportamento ativo das fibras ao termo 

correspondente à energia específica de deformação das referidas fibras no modelo constitutivo 

hiperelástico. Com isso, tornou-se possível relacionar a resposta do tecido biológico à função 

de ativação. 

 Os trabalhos de Muggenthaler (2006) e Muggenthaler et al. (2008) realizaram 

experimentos em voluntários para avaliar a influência da atividade muscular na cinemática e 

nas propriedades musculares. Em seguida, os mesmos experimentos foram repetidos em 

simulações numéricas, utilizando modelos em elementos finitos, e os modelos constitutivos 

foram aprimorados de forma iterativa até que os resultados coincidissem com os valores reais 

medidos experimentalmente. 

Todros et al. (2020) investigam a influência do comportamento muscular ativo na região 

abdominal saudável por meio de um modelo numérico construído a partir de imagens médicas. 

Os tecidos conjuntivos foram modelados segundo leis constitutivas hiperelásticas com reforço 

de fibras, atribuindo ao meio isotropia transversal e incompressibilidade. Já os tecidos 

musculares foram modelados por meio de elementos de barra segundo o modelo de Hill. 

As propriedades viscoelásticas dos músculos são levadas em conta por poucos autores. 

Vannah e Childress (1996) realizaram ensaios experimentais e simulações numéricas com os 

músculos da perna. Observou-se que, para pequenos carregamentos, os fenômenos 

viscoelásticos ocorreram nos primeiros 5 segundos após a aplicação das forças.  

Lu et al. (2010) elaboraram um modelo visco-hiperelástico e avaliaram seu desempenho 

por meio de estudos experimentais do músculo tibial anterior de um coelho. Os resultados 

revelaram que o modelo era capaz de reproduzir o comportamento do músculo tanto passivo 

quanto ativo sob taxas de deformação elevadas. 
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Pham, Xue e Zheng (2018) desenvolveram um modelo tridimensional para as cordas 

vocais capaz de descrever os alongamentos cíclicos característicos do músculo, considerando 

os efeitos viscosos. 

No âmbito das articulações, diversos trabalhos têm realizado estudos acerca da 

cinemática e da estabilidade dos mais variados complexos articulares presentes no corpo 

humano, a exemplo do ombro, tornozelo, joelho, cotovelo e quadril. Cada um deles desempenha 

funções de grande importância para atividades cotidianas e apresenta particularidades que 

necessitam ser investigadas. 

Abordando o comportamento do ombro, Büchler et al. (2002) apontam que a literatura 

carece de modelo numérico do ombro capaz de determinar as variações na distribuição de 

esforços na escápula em função do formato na cabeça do úmero ou da superfície de contato do 

glenoide. Para contribuir com o preenchimento dessa lacuna, os autores quantificam a 

influência do formato da cabeça do úmero na distribuição de tensões na escápula através de 

uma modelagem computacional. Os músculos são tratados como estruturas passivas e os 

resultados de forças tangenciais e normais na articulação glenoumeral revelam que o contato 

entre os ossos nessa articulação é deslizante para grandes rotações. 

Koehle e Hull (2010) representaram a articulação do joelho em simulações dinâmicas 

por meio dos 3 modelos mais comumente utilizados para descrever o contato entre as 

superfícies articulares, estudando, inclusive, a sensibilidade das forças de contato na ligação em 

relação a qual deles foi adotado. Dois modelos reproduziam o rolamento e o deslizamento da 

tíbia no fêmur, enquanto o terceiro era constituído apenas por uma rótula simples. A conclusão 

obtida foi que, se as forças de reação na ligação e nos músculos forem de interesse, um dos dois 

modelos deslizantes deveria ser empregado. 

Leardini, O’Connor e Giannini (2014) trazem um levantamento das principais questões 

envolvendo o complexo do tornozelo disponíveis na literatura. Por tratar-se de um sistema 

anatômico complicado, os experimentos e as modelagens numéricas ainda não conseguiram 

descrever completamente seu mecanismo, mas já existe um consenso sobre algumas questões. 

A posição instantânea do eixo de rotação varia conforme os movimentos de dorsi-flexão e 

flexão plantar se desenvolvem, sugerindo que o modelo de ligação em dobradiça é uma 

simplificação. Além disso, pesquisas mais recentes mostram que a área de contato muda na 

região anterior da mortise do tornozelo, implicando que ocorre um movimento combinado de 

deslizamento e rolamento. 

De maneira geral, a conexão entre dois corpos, também chamada de par cinemático ou 

simplesmente junta, é considerada ideal, ou seja, os efeitos de atrito, desgastes e folgas são 
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desprezados com o intuito de simplificar o modelo. Para articulações em condição saudável, a 

desconsideração de atrito e desgaste é aceitável, tendo em vista que o coeficiente de atrito nas 

superfícies de contato é extremamente baixo em razão da cartilagem que as revestem (Synek; 

Settles; Stillfried, 2012). Por outro lado, esses parâmetros são levados em conta em alguns 

trabalhos que se empenham em simular casos de artrose, a exemplo de Büchler et al. (2002), 

visando a compreender melhor a causa e as consequências de situações patológicas, bem como 

a aprimorar técnicas de tratamento. 

Uma maneira de tratar as articulações em formulações matemáticas é impor restrições 

cinemáticas às variáveis envolvidas no problema. Uma vez que as variáveis atendam tais 

condições, fica garantida a continuidade entre os corpos conectados, subdomínios do problema.   

As restrições cinemáticas associadas a uma determinada ligação são matematicamente 

representadas mediante equações de compatibilidade, na forma algébrica ou diferencial, 

recebendo uma classificação em duas categorias: holonômicas e não-holonômicas. No primeiro 

tipo, estão aquelas formuladas como funções implícitas das coordenadas generalizadas e, 

ocasionalmente, do tempo. Já o segundo tipo são as restrições escritas como equações 

diferenciais ou envolvendo desigualdades. Em sentido físico, a diferença reside no fato de que 

as condições holonômicas representam um conjunto de configurações possíveis do sistema, ao 

passo que as condições não-holonômicas constituem restrições no comportamento de um 

sistema para ir de uma configuração a outra (Géradin; Cardona, 2001). 

Na literatura existem diferentes técnicas para introduzir as condições de compatibilidade 

mencionadas. Dentre as mais utilizadas, cita-se os multiplicadores de Lagrange, as funções de 

penalização, a compatibilidade cinemática e o método lagrangiano aumentado. 

A técnica dos multiplicadores de Lagrange pode ser encontrada, por exemplo, no 

trabalho de  Jelenić e Crisfield (2001). O procedimento consiste em empregar um multiplicador 

para cada restrição que se deseja introduzir no sistema, adicionando assim termos 

independentes ao problema. Como consequência, as equações de restrição se misturam com as 

equações diferenciais de movimento, de maneira que as incógnitas de ambas são determinadas 

simultaneamente através da resolução do sistema. 

 O trabalho de Avello, De Jalon e Bayo (1991), por sua vez, mostra a aplicação de 

funções de penalização. Nessa abordagem, os parâmetros de penalização não adicionam 

incógnitas ao problema e podem ser interpretados, em certos casos, como a rigidez da ligação. 

Em contrapartida, a precisão dessa técnica depende do valor dos parâmetros empregados e pode 

ocorrer mau condicionamento do sistema. 
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 O método da compatibilidade cinemática é utilizado para tratar juntas rotacionais. Nesse 

sentido, os nós da estrutura compartilham seus respectivos graus de liberdade translacionais e 

liberam os graus de rotação. Ligações modeladas de acordo com essa estratégia podem ser 

encontradas em Park et al. (1991). 

 O método do Lagrangiano aumentado, por sua vez, foi criado a fim de estabilizar as 

equações de movimento, combinando as vantagens da técnica dos multiplicadores de Lagrange 

e da técnica das funções de penalização. Embora os multiplicadores permaneçam incógnitas 

adicionais do sistema, o método traz uma simplificação, pois elimina as equações algébricas e 

reduz o problema a um sistema de equações diferenciais, definindo uma matriz hessiana 

positiva para regiões de equilíbrio estável.  Géradin e Cardona (2001) desenvolvem seu trabalho 

com aplicação dessa técnica. 

Sobre os temas discutidos até aqui, que servem de base para a modelagem numérica de 

estruturas biológicas, são várias as contribuições deixadas também pelas pesquisas 

desenvolvidas no grupo de Mecânica Computacional do SET. 

Pascon (2008) empregou elementos finitos de barra simples e leis constitutivas 

hiperelásticas polinomiais com a imposição de deformações a volume constante para simular 

materiais poliméricos naturais. Comparando seus resultados com dados experimentais, o autor 

constatou que o modelo de Yeoh (1990) reproduz adequadamente o comportamento não só em 

pequenas deformações, mas também em grandes, enquanto os modelos Neo-Hookeano e de 

Mooney-Rivlin, apenas em pequenas deformações. Pascon (2012) estendeu a formulação para 

elementos sólidos e ainda acrescentou plasticidade às leis utilizadas. 

Madeira e Coda (2016) estudaram um modelo de dispositivo massa-mola-amortecedor 

para controlar a vibração em treliças que desenvolvem grandes deslocamentos. A estrutura foi 

discretizada em elementos de barra simples, cujo comportamento foi representado por meio do 

modelo viscoelástico de Kelvin-Voigt. 

Pascon e Coda (2017) propuseram uma formulação para analisar o comportamento 

viscoelástico de materiais em grandes deformações, aplicada a elementos tetraédricos. Os 

autores empregaram o modelo hiperelástico Neo-Hookeano juntamente com o modelo 

viscoelástico de Zener, associando em paralelo uma componente elástica com um conjunto de 

um amortecedor viscoso em série com uma segunda componente elástica. A formulação é capaz 

de reproduzir fluência, relaxação e enrijecimento com dependência da taxa de deformação. 

Empregando conceitos abordados por Madeira e Coda (2016), o trabalho de Carvalho 

(2019) aplicou o modelo viscoelástico de Kelvin-Voigt à elementos prismáticos de base 

triangular. O autor associou tal modelo às leis constitutivas de Saint-Venant-Kirchhoff e de 
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Rivlin-Saunders-Hartmann-Neff, gerando um modelo visco-hiperleástico com essa última, 

adequado ao regime de grandes deformações. A aplicação do modelo foi feita não somente à 

sólidos, mas também a fluidos altamente viscosos, e se mostrou consistente. 

Kishino, V. H. (2022) trabalhou com a modelagem de perfis metálicos conformados a 

frio, visando a representar com mais precisão seu comportamento mecânico quando 

consideradas imperfeições geométricas e tensões residuais. O autor discretizou seu objeto de 

estudo em elementos prismáticos de base triangular e implementou o modelo constitutivo 

hiperelástico de Rivlin-Saunders-Hartmann-Neff, além de um modelo de plasticidade para 

grandes deformações. 

No mesmo ano, Kishino, R. T. (2022) propôs uma formulação alternativa para modelar 

tanto sólidos viscoplásticos quanto fluidos altamente viscosos em regime de grandes 

deformações. Foram empregados elementos prismáticos de base triangular com o modelo 

constitutivo hiperelástico de Rivlin-Saunders-Hartmann-Neff e modelos de plasticidade e 

viscosidade também obtidos a partir da decomposição multiplicativa de Flory. 

Vanalli (2004) estudou o comportamento elástico, viscoelástico e viscoplástico de 

estruturas bidimensionais com características tanto isotrópicas quanto anisotrópicas. Alguns 

anos depois, Vanalli, Paccola e Coda (2008) apresentaram uma estratégia simples para inserção 

de fibras em elementos finitos de chapa sem a necessidade de reordenação da malha e sem 

aumento do número de graus de liberdade. Foram adotados elementos triangulares planos de 

lados retos com aproximação cúbica para a matriz e elementos de barra lineares para as fibras. 

Sampaio, Paccola e Coda (2013) e Sampaio (2014), ampliaram a referida metodologia 

de inclusão de fibras em elementos bidimensionais. Com isso, a formulação passou a considerar 

elementos de barra não só retos, mas também curvos, bem como elementos planos triangulares 

de chapa ou casca, seja com lados retos ou curvos. A conformidade entre a fibra e a matriz é 

garantida contanto que o grau de aproximação adotado para as fibras seja, no mínimo, igual ao 

grau de aproximação da matriz. 

Fazendo uso dessa técnica, Baiocco, Coda e Paccola (2013) iniciaram a aplicação do 

MEFP à problemas biomecânicos. Os autores propuseram uma modelagem em duas dimensões 

do tecido muscular do bíceps e do tríceps associado com ossos. A lei constitutiva hiperelástica 

implementada foi a de Saint-Venant-Kirchhoff e o comportamento ativo foi considerado por 

meio da imposição de uma contração desejada diretamente às fibras. Os autores chegaram à 

conclusão de que a matriz se deforma a fim de acomodar as distensões e contrações das fibras 

e sugeriram melhorias para o comportamento ativo e passivo das referidas fibras. 
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Dando continuidade às aplicações biomecânicas, Friedel (2016) tomou a mesma 

geometria desenvolvida por Baiocco, Coda e Paccola (2013) e, adaptando o modelo muscular 

de Hill, também simulou o comportamento do bíceps e do tríceps. O autor incluiu propriedades 

viscosas ao comportamento das fibras ativas e atestou potencial para elementos de barra simples 

que usam a medida de deformação não linear de engenharia. Além disso, comparou duas leis 

constitutivas hiperelásticas distintas: a de Saint-Venant-Kirchhoff e a Neo-Hookeana. Os 

resultados revelaram que o primeiro modelo permite a auto-intersecção de material, enquanto 

o segundo foi fisicamente mais consistente. 

O trabalho de Pereira (2015) mostrou a aplicação da técnica para introdução de fibras 

para problemas tridimensionais. O domínio sólido foi discretizado em elementos finitos 

tetraédricos de ordem qualquer e a validade da formulação foi constatada para elementos de 

barra com comprimento longo ou curto, cuja inserção foi feita tanto de forma aleatória quanto 

ordenada. 

Também no âmbito da modelagem em três dimensões, Ramirez (2018) trouxe mais uma 

contribuição para as aplicações biomecânicas: elaborou a geometria do músculo tibial anterior 

a partir da renderização de imagens tomográficas e desenvolveu um modelo em elementos 

finitos para simular seu comportamento mecânico. A autora estudou a influência da densidade 

de fibras musculares na geração de força e implementou os modelos constitutivos hiperelásticos 

desacoplados de Rivlin-Saunders e Hartmann-Neff, empregando a energia livre de Helmholtz, 

com o intuito de incluir a condição de quase-incompressibilidade da estrutura do músculo. 

Em relação a ligação deslizantes, Siqueira (2016) desenvolveu uma formulação 

Lagrangiana total do método dos elementos finitos para realizar a análise dinâmica de estruturas 

e mecanismos reticulados planos contendo as referidas ligações sujeitas a grandes 

deslocamentos e rotações. Os tipos de conexões estudados foram as juntas prismáticas e 

cilíndricas e as restrições cinemáticas foram introduzidas ao sistema mecânico através de 

multiplicadores de Lagrange.  

Mais tarde, Siqueira (2019) estendeu a formulação a elementos finitos de pórtico 

espacial e de casca, e avaliou aspectos como rugosidade e dissipação por atrito, não 

considerados anteriormente. Além disso, utilizou não só o método dos multiplicadores de 

Lagrange, mas também o método Lagrangiano aumentado e as funções de penalização como 

forma de impor as restrições cinemáticas, estabelecendo comparações entre essas técnicas. 

Rodriguez (2017), por sua vez, elaborou um modelo numérico para a ligação deslizante 

entre elementos sólidos bidimensionais, visando à simulação de sistemas de isolação de base 

para estruturas. Tomando proveito da formulação apresentada por Siqueira (2016), elementos 
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de pórtico foram usados para representar as superfícies de contato e, para cada nó contido na 

trajetória de deslizamento, foi definida uma junta cilíndrica. O autor concluiu que sua proposta 

se mostrou capaz de representar os fenômenos de isolação e absorção, apresentando 

estabilidade numérica. 

Alguns anos depois, Siqueira, Rodríguez e Coda (2022) aplicaram a estratégia de 

deslizamento entre sólidos bidimensionais considerando perfis de rugosidade nas superfícies 

deslizantes e a existência de forças de atrito. A formulação foi aplicada a problemas dinâmicos 

envolvendo mecanismos e sistemas de controle de vibração e se mostrou eficiente na descrição 

do comportamento dessas estruturas. 

Vale destacar que praticamente todos os trabalhos desenvolvidos no SET citados nesta 

seção empregam o Método dos Elementos Finitos Posicional (MEFP), seguindo a formulação 

introduzida por meio das publicações de Bonet et al. (2000)  e Coda (2003). 

Da mesma maneira que a metodologia convencional do Métodos dos Elementos Finitos 

(MEF), seu uso é destinado a resolver equações diferenciais em problemas que envolvem 

geometrias complexas a partir da discretização do domínio de interesse contínuo em um número 

finito de regiões chamadas elementos finitos. Em cada um desses subdomínios é então realizada 

a aproximação das variáveis de interesse, ao invés de buscar uma solução que satisfaça as 

condições de contorno em todo o domínio (Assan, 2020). 

A particularidade da abordagem posicional se encontra nas incógnitas escolhidas para o 

problema: os autores propõem a adoção das posições nodais no espaço, em detrimento dos 

deslocamentos associados a cada nó, utilizados pelo método clássico. Com isso, uma grande 

vantagem que se apresenta é a possibilidade de considerar a não-linearidade geométrica de 

maneira direta na formulação, tornando mais eficiente a resolução de problemas que envolvem 

grandes deslocamentos e rotações. 

Desde sua proposição, o grupo de Mecânica Computacional do SET tem se dedicado a 

demonstrar a eficiência do método para a análise de diversos tipos de estruturas: pórticos em 

regimes estático e dinâmico (Coda; Paccola, 2014; Siqueira, 2016, 2019) espaciais estáticas 

(Greco et al., 2006), placas, chapas e cascas (Pascon, 2012; Rodriguez, 2017) , elementos de 

barra geral tridimensionais (Coda, 2009; Coda; Paccola, 2010), elementos sólidos 

tridimensionais (Pereira, 2015; Ramirez, 2018), materiais compósitos reforçados com fibras 

(Friedel, 2016; Ramirez, 2018; Sampaio, 2014; Sampaio; Paccola; Coda, 2013; Vanalli, 2004; 

Vanalli; Paccola; Coda, 2008), dentre outros. 
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1.5 ESTRUTURA DO TEXTO 

 

Este capítulo inicial situa o contexto em que este trabalho é desenvolvido. São 

apresentas as questões que motivaram a escolha do tema de pesquisa, os objetivos que se 

desejava alcançar e as justificativas que tornam o trabalho pertinente. Além disso, é a realizada 

uma revisão bibliográfica acerca dos vários tópicos aqui abordados, apontando contribuições 

trazidas por autores tanto do próprio Departamento de Engenharia de Estruturas da EESC/USP 

(SET) quanto de outras instituições. 

O Capítulo 2 descreve a formulação posicional do Método dos Elementos Finitos, que 

constitui a ferramenta numérica empregada para realizar as análises estruturais propostas. 

Considerando inicialmente um corpo qualquer, desenvolvem-se as equações de equilíbrio e a 

solução do sistema não linear correspondente. Em seguida, particularizam-se as expressões para 

os elementos finitos empregados neste trabalho. 

O Capítulo 3, por sua vez, trata da elaboração do modelo constitutivo empregado no 

trabalho. São apresentados os modelos hiperlásticos de Saint-Venant-Kirchhoff e de Rivlin-

Saunders-Hartmann-Neff e o modelo viscoelástico de Kelvin-Voigt, a partir dos quais é obtido 

um modelo visco-hiperelástico completo. 

O Capítulo 4 é dedicado a apresentar a formulação das ligações deslizantes, que permite 

considerar o deslizamento entre superfícies num problema mecânico. Detalha-se como esse 

movimento relativo entre as partes de uma estrutura pode ser tratado na resolução de um 

problema via MEFP a partir da formulação apresentada no Capítulo 2. 

Os Capítulos 2 a 4 constituem o referencial teórico deste trabalho, utilizado para elaborar 

um código computacional capaz de realizar as análises estruturais propostas. Assim, ao final de 

cada uma dessas seções, constam exemplos numéricos que visam a validar as implementações 

realizadas. 

O Capítulo 5 demonstra a aplicação do Método dos Elementos Finitos Posicional, dos 

modelos constitutivos hiperelásticos e visco-hiperelásticos e da formulação de ligações 

deslizantes à modelagem do comportamento mecânico de estruturas biológicas. Um modelo 

biomecânico é proposto e, em seguida, submetido a alguns testes a fim de simular a resposta 

mecânica de estruturas biológicas. 

Por fim, o Capítulo 6 traz um resumo dos resultados obtidos e as conclusões que podem 

ser obtidas a partir deles. São comentadas ainda algumas sugestões para desenvolvimentos 

futuros do tema. 
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2  MÉTODO DOS ELEMENTOS FINITOS POSICIONAL 

 

Este capítulo é dedicado a discutir os principais aspectos que compõem a formulação 

do MEFP. Em primeiro lugar, apresenta-se o conjunto de equações de equilíbrio não-lineares 

de um sistema mecânico obtidas a partir do Princípio da Estacionariedade da Energia Mecânica. 

Em seguida, detalha-se o processo de solução dessas equações para problemas tanto estáticos 

quanto dinâmicos. Por fim, descreve-se a cinemática dos elementos finitos empregados neste 

trabalho e se discutem alguns problemas com o intuito de validar a implementação 

computacional.  

Embora empregados no desenvolvimento da formulação discutida neste capítulo, alguns 

conteúdos são apenas mencionados, mas não detalhados, a exemplo do teorema da conservação 

da massa, do Princípio da Estacionariedade da Energia Mecânica e do conceito de conjugado 

energético. Os trabalhos de Ogden (1997), Holzapfel (2000), Bonet et al. (2000) e, 

principalmente, Coda (2018) podem ser consultados para maiores esclarecimentos acerca 

desses e de outros tópicos referentes à teoria de grandes deslocamentos. 

 

2.1 ENERGIA MECÂNICA E EQUAÇÕES DE EQUILÍBRIO  

 

A energia mecânica total de um sistema, denotada por 𝛱, pode ser escrita da seguinte 

maneira: 

 Π = −ℙ + 𝕌 + 𝕂 + ℚ (2.1) 

em que ℙ é o potencial das forças externas, 𝕌 é a energia de deformação, 𝕂 é a energia cinética 

e ℚ é o potencial dissipativo. 

Visando à abordagem posicional do MEF, tais parcelas de energia são escritas em 

função das posições dos nós do sistema em análise, reunidas num vetor 𝑌⃗ . Para o caso em que 

o referido sistema é um sólido com volume inicial 𝑉0 e área de superfície inicial 𝑆0, procede-se 

o desenvolvimento da Equação 2.1. 

Em primeiro lugar, trata-se o potencial ℙ. Impondo que a nulidade do trabalho das forças 

externas que atuam sobre o corpo ocorre na origem do sistema de referência, essa parcela de 

energia fica expressa como: 

 ℙ = 𝐹 ∙ 𝑌⃗ + ∫ 𝑞 ∙ 𝑦 𝑑𝑆0
𝑆0

+ ∫ 𝑏⃗ ∙ 𝑦 𝑑𝑉0
𝑉0

 (2.2) 
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em que 𝑦  são as posições dos pontos materiais do sistema, 𝐹  são forças concentradas, 𝑞  são 

forças distribuídas sobre a superfície 𝑆0 e 𝑏⃗  são a forças distribuídos no volume 𝑉0.  

A segunda parcela, isto é, a energia de deformação 𝕌, corresponde à integral da energia 

específica de deformação 𝑢 sobre o volume inicial do sistema: 

 𝕌 = ∫ 𝑢 (𝑬(𝑌⃗ )) 𝑑𝑉0
𝑉0

 (2.3) 

  A energia específica de deformação 𝑢 é função do estado de deformação 𝑬, que, por sua 

vez, deve ser escrito a partir das posições nodais 𝑌⃗  em conformidade com a proposta do MEFP. 

No item 2.3 encontram-se detalhes sobre descrição posicional da cinemática dos elementos 

finitos empregados neste trabalho. 

Já a energia cinética 𝕂 é escrita como: 

 𝕂 =
1

2
∫ 𝜌0𝑦 ̇ ∙ 𝑦 ̇ 𝑑𝑉0
𝑉0

 (2.4) 

em que 𝜌0 é a densidade inicial do sólido e 𝑦 ̇ é a velocidade dos seus pontos materiais. 

O último termo que resta desenvolver é o potencial dissipativo ℚ. No entanto, não é 

possível determinar uma expressão explícita para essa energia, pois não se trata de uma 

grandeza conservativa (Lanczos, 1970; Warburton, 1976). Por outro lado, é possível escrever a 

sua variação e, assim, dar sequência com a consideração dessa grandeza na análise, conforme 

comentado mais adiante. 

A energia mecânica total é então escrita como: 

Π = −𝐹 ∙ 𝑌⃗ − ∫ 𝑞 ∙ 𝑦 𝑑𝑆0
𝑆0

− ∫ 𝑏⃗ ∙ 𝑦 𝑑𝑉0
𝑉0

+ ∫ 𝑢 (𝑬(𝑌⃗ )) 𝑑𝑉0
V0

+ ∫ 𝜌0𝑦⃗⃗ ̇ ∙ 𝑦⃗⃗ ̇𝑑𝑉0
𝑉0

+ ℚ (2.5) 

É importante mencionar que a formulação do MEFP é Lagrangiana total, ou seja, o 

sistema de referência adotado para as variáveis estáticas e cinemáticas em todo o 

desenvolvimento é a configuração inicial, conforme é possível notar nos domínios de 

integração. Essa abordagem, também denominada de descrição material, normalmente se 

mostra mais natural e eficaz na análise de sólidos e estruturas do que a descrição Euleriana, em 

que o sistema de referência é a configuração atual. 

Pelo Princípio da Estacionariedade da energia mecânica, o equilíbrio de um sistema 

ocorre quando a variação da sua energia mecânica é nula: 

 δΠ = 0 (2.6) 

Vale salientar que o referido princípio é normalmente empregado em problemas 

conservativos, pois, em caso contrário, a energia decai ao longo do tempo. No entanto, é 
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possível fazer sua aplicação na presença de mecanismos dissipativos considerando um sistema 

de maior energia no qual está contido uma parcela relacionada à dissipação (Madeira; Coda, 

2016). Desse modo, a energia mecânica total, Equação 2.1 está em conformidade com o 

desenvolvimento aqui apresentado. 

Uma vez que as variáveis do problema são as posições dos pontos materiais do sistema, 

contidas em 𝑌⃗ , desenvolve-se a Equação 2.6 como: 

 δΠ = −δℙ + δ𝕌 + δ𝕂 + δℚ =
𝜕ℙ

𝜕𝑌⃗ 
∙ 𝛿𝑌⃗ +

𝜕𝕌

𝜕𝑌⃗ 
∙ 𝛿𝑌⃗ +

𝜕𝕂

𝜕𝑌⃗ 
∙ 𝛿𝑌⃗ + 𝛿ℚ = 0 (2.7) 

Explicitando as parcelas da energia mecânica total, escreve-se: 

 
𝛿Π = −𝐹 ∙ 𝛿𝑌⃗ − ∫ 𝑞 ∙

𝜕𝑦 

𝜕𝑌⃗ 
∙ 𝛿𝑌⃗ 𝑑𝑆0

𝑆0

− ∫ 𝑏⃗ ∙
𝜕𝑦

𝜕𝑌⃗ 
∙ 𝛿𝑌⃗ 𝑑𝑉0

𝑉0

+ ∫
𝜕𝑢

𝜕𝑬
∶
𝜕𝑬

𝜕𝑌⃗ 
∙ 𝛿𝑌⃗ 𝑑𝑉0

V0

+∫ 𝜌0𝑦 ̈ ∙
𝜕𝑦 

𝜕𝑌⃗ 
∙ 𝛿𝑌⃗ 𝑑𝑉0

𝑉0

+ 𝛿ℚ = 0

  (2.8) 

em que foi empregado o teorema da conservação da massa para desenvolver a variação da 

energia cinética 𝕂, Equação 2.4. 

Organizam-se então os termos da Equação 2.8 em quatro vetores de forças da seguinte 

maneira: 

 𝐹 𝑒𝑥𝑡 = 𝐹 + ∫ 𝑞 ∙
𝜕𝑦 

𝜕𝑌⃗ 
𝑑𝑆0

𝑆0

+ ∫ 𝑏⃗ ∙
𝜕𝑦

𝜕𝑌⃗ 
𝑑𝑉0

𝑉0

 
(2.9) 

 𝐹 𝑖𝑛𝑡 = ∫
𝜕𝑢

𝜕𝑬
∶
𝜕𝑬

𝜕𝑌⃗ 
𝑑𝑉0

V0

= ∫ 𝑺 ∶
𝜕𝑬

𝜕𝑌⃗ 
𝑑𝑉0

V0

 
(2.10) 

 𝐹 𝑖𝑛𝑒𝑟 = ∫ 𝜌0𝑦 ̈ ∙
𝜕𝑦 

𝜕𝑌⃗ 
𝑑𝑉0

𝑉0

= 𝑴 ∙ 𝑌⃗ ̈ 
(2.11) 

𝐹 𝑒𝑥𝑡 é o vetor de forças externas, reunindo as forças concentradas e as forças 

distribuídas no formato de cargas nodais equivalentes. 𝐹 𝑖𝑛𝑡 é o vetor de forças internas, em que 

foi aplicada a propriedade do conjugado energético (𝑺 = 𝜕𝑢/𝜕𝑬) para definir o tensor de 

tensões 𝑺. 𝐹 𝑖𝑛𝑒𝑟 é o vetor de forças inerciais, em que aparecem a matriz de massa 𝑴 e o vetor 

de aceleração 𝑌⃗ ̈ dos pontos nodais do sólido. De acordo com o que está exposto mais adiante, 

no item 2.3, sobre a descrição dos elementos finitos, a referida matriz de massa é constante.  

Conforme já mencionado, a expressão explícita para energia ℚ não é conhecida, mas 

sua variação 𝛿ℚ sim. O desenvolvimento dessa parcela é deixado para o Capítulo 3, onde é 

abordada a dissipação de energia por meio de amortecimento viscoso. No entanto, já se adianta 

que a referida variação pode ser escrita como: 



27 

 

 δℚ = 𝐹 𝑑𝑖𝑠 ∙ 𝛿𝑌⃗ = 0 (2.12) 

em que 𝐹 𝑑𝑖𝑠 é vetor de forças de dissipação 

Considera-se então a arbitrariedade da variação das posições, isto é, cada uma de suas 

componentes pode assumir qualquer valor real, não havendo dependência alguma do valor 

assumido por outra componente. Assim, chega-se à expressão condensada das equações de 

equilíbrio não linear geométrico: 

 −𝐹 𝑒𝑥𝑡 + 𝐹 𝑖𝑛𝑡 + 𝐹 𝑖𝑛𝑒𝑟 + 𝐹 𝑑𝑖𝑠 = 0⃗  (2.13) 

O objetivo da aplicação do MEFP é determinar as posições que possibilitem verificar a 

igualdade da Equação 2.13. Os vetores de força, Equações 2.9 a 2.11, são detalhados no item 

2.3, onde as expressões são particularizadas para cada tipo de elemento adotado neste trabalho. 

 

2.2  PROCESSO DE SOLUÇÃO 

 

Neste item, são apresentadas as estratégias empregadas na solução de problemas tanto 

estáticos e quanto dinâmicos, bem como as grandezas envolvidas no processo. 

 

2.2.1 Formulação estática 

 

No problema estático, as parcelas da energia cinética e do potencial dissipativo são 

desprezadas e o equilíbrio é verificado quando a seguinte Equação é satisfeita: 

 −𝐹 𝑒𝑥𝑡 + 𝐹 𝑖𝑛𝑡(𝑌⃗ ) = 0⃗  (2.14) 

Observa-se que as forças internas são funções não-lineares das posições 𝑌⃗ , incógnitas 

do problema. Isso caracteriza a não-linearidade das equações de equilíbrio, cuja solução pode 

ser alcançada mediante a aplicação do método de Newton-Raphson. 

A estratégia de solução se inicia com a definição do vetor 𝑔 , conforme a expressão 

abaixo: 

 𝑔 = −𝐹 𝑒𝑥𝑡 + 𝐹 𝑖𝑛𝑡(𝑌⃗ ) = 0⃗  (2.15) 

A Equação 2.15 só retorna valor nulo quando se obtém a posição de equilíbrio exata. 

Portanto, para uma posição arbitrada 𝑌⃗ 0, 𝑔  se torna o vetor de desbalanceamento mecânico. 

Sua expansão em série de Taylor na vizinhança de uma posição tentativa resulta na seguinte 

expressão: 
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 𝑔 (𝑌⃗ ) = 𝑔 (𝑌⃗ 0) +
𝜕𝑔 

𝜕𝑌⃗ 
|
𝑌⃗ 0

Δ𝑌⃗ + 𝑂2 = 0⃗  (2.16) 

Desprezando os termos de ordem superior 𝑂2, reescreve-se a segunda igualdade da 

Equação 2.16: 

 Δ𝑌⃗ = −(
𝜕𝑔 

𝜕𝑌⃗ 
|
𝑌⃗ 0

)

−1

𝑔 (𝑌⃗ 0) (2.17) 

em que Δ𝑌⃗  é a correção da posição. 

A partir da Equação 2.17, define-se a matriz Hessiana 𝑯, também chamada de matriz 

de rigidez tangente do problema, para a posição tentativa. Considerando que as forças externas 

são conservativas, isto é, independem das posições, escreve-se: 

 𝑯 =
𝜕𝑔 

𝜕𝑌⃗ 
|
𝑌⃗ 0

=
𝜕2𝕌 

𝜕𝑌⃗ ⊗ 𝜕𝑌⃗ 
|
𝑌⃗ 0

 (2.18) 

A solução tentativa é então atualizada fazendo-se: 

 𝑌⃗ 0 = 𝑌⃗ 0 + ΔY⃗⃗  (2.19) 

Com o novo valor de posição tentativa, retorna-se à Equação 2.15 para calcular o novo 

desbalanceamento, e em seguida à Equação 2.17 para calcular a correção da posição. Essa 

sequência de etapas é repetida até que Δ𝑌⃗  seja suficientemente pequeno dentro de uma 

determinada tolerância estabelecida, adotando como critério de convergência a seguinte 

expressão: 

 
|𝛥𝑌⃗ |

|𝑋 |
< tolerância (2.20) 

Na primeira iteração, adota-se como posição tentativa a própria configuração inicial. O 

nível de carga pode ser aumentado de forma incremental para se percorrer o caminho de 

equilíbrio da estrutura analisada e identificar a existência de pontos ou trechos de instabilidade. 

 

2.2.2 Formulação dinâmica 

 

A estratégia de solução apresentada nesse item é voltada para problemas dinâmicos do 

tipo transiente, ou seja, aquele em que a força externa varia ao longo do tempo. A energia 

mecânica é escrita retomando as parcelas de energia cinética e de potencial de dissipativo. A 

expressão do vetor de desbalanceamento mecânico então assume a forma:  

 −𝐹 𝑒𝑥𝑡(𝑡) + 𝐹 𝑖𝑛𝑡(𝑌⃗ ) + 𝐹 𝑖𝑛𝑒𝑟 (𝑌⃗ ̈) + 𝐹 𝑑𝑖𝑠 (𝑌⃗ ̇) = 0⃗  (2.21) 
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Explicitando as forças inerciais, pois será necessário para os próximos 

desenvolvimentos, o vetor de desbalanceamento mecânico é escrito da seguinte maneira: 

 𝑔 = −𝐹 𝑒𝑥𝑡(𝑡) + 𝐹 𝑖𝑛𝑡(𝑌⃗ ) + 𝑴 ⋅ 𝑌⃗ ̈ + 𝐹 𝑑𝑖𝑠 (𝑌⃗ ̇) = 0⃗  (2.22) 

 Observa-se que a Equação 2.22 depende não só das posições, mas também do tempo, 

presente no termo da força externa. Embora essa variável seja contínua e a Equação 2.22 seja 

válida em qualquer instante, a utilização de um método numérico impõe que o tempo deva ser 

tratado de maneira discreta. Assim, o tempo atual é calculado como o instante anterior acrescido 

de um passo ou intervalo de tempo: 

 𝑡𝑠+1 = 𝑡𝑠 + Δ𝑡 (2.23) 

em que 𝑡𝑠+1 é o instante atual, 𝑡𝑠 é o instante anterior e Δ𝑡 é o intervalo de tempo adotado. 

 Mantendo a coerência com a discretização do tempo, as posições e velocidades devem 

ser atualizadas a cada a instante. Isso é feito por meio do algoritmo de integração temporal de 

Newmark, que apresenta simplicidade aliada a um bom desempenho em análises não lineares. 

As aproximações utilizadas nesse método são: 

 𝑌⃗ 𝑠+1 = 𝑌⃗ 𝑠 + 𝑌⃗ ̇𝑠+1𝛥𝑡 + [(
1

2
− 𝛽) 𝑌⃗ ̈𝑠 + 𝛽𝑌⃗ ̈𝑠+1] 𝛥𝑡2 (2.24) 

 𝑌⃗ ̇𝑠+1 = 𝑌⃗ ̇𝑠 + (1 − 𝛾)Δ𝑡𝑌⃗ ̈𝑠 + 𝛾Δt𝑌⃗ ̈𝑠+1 (2.25) 

em que 𝛽 e 𝛾 são parâmetros livres do algoritmo, usualmente adotados com os valores 𝛽 = 1/4 

e  𝛾 = 1/2 para representar aceleração constante em um passo de tempo. 

 A partir das Equações 2.62 e 2.63, escrevem-se a velocidade e a aceleração em função 

das incógnitas do problema, isto é, as posições, e de valores conhecidos do passo anterior: 

 𝑌⃗ ̈𝑠+1 =
𝑌⃗ 𝑠+1

𝛽𝛥𝑡2
− 𝑄⃗ 𝑠 (2.26) 

 𝑌⃗ ̇𝑠+1 =
𝛾

𝛽𝛥𝑡2
𝑌⃗ 𝑠+1 + 𝑅⃗ 𝑠 − 𝛾𝛥𝑡𝑄⃗ 𝑠 (2.27) 

em que 𝑄⃗ 𝑠 e 𝑅⃗ 𝑠 são vetores auxiliares, dados pelas expressões: 

 𝑄⃗ 𝑠 =
𝑌⃗ 𝑠

𝛽𝛥𝑡2
+

𝑌⃗ ̇

𝛽𝛥𝑡2
+ (

1

2
− 𝛽) 𝑌⃗ ̈𝑠 (2.28) 

 𝑅⃗ 𝑠 = 𝑌⃗ ̇𝑠 + 𝛥𝑡(1 − 𝛾)𝑌⃗ ̈𝑠 (2.29) 

 Substituindo as Equações 2.26 e 2.27 na Equação 2.22, o vetor de desbalanceamento 

mecânico assume a forma: 

 𝑔 (𝑌⃗ 𝑠+1) = 𝐹 𝑖𝑛𝑡(𝑌⃗ 𝑠+1) +
𝑴

𝛽𝛥𝑡2
⋅ 𝑌⃗ 𝑠+1 − 𝑴 ⋅ 𝑄⃗ 𝑠 + 𝐹 𝑑𝑖𝑠(𝑌⃗ 𝑠+1) − 𝐹 𝑒𝑥𝑡(𝑡𝑠+1) = 0⃗  (2.30) 
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 Vale salientar que, devido à aproximação temporal, o vetor de forças dissipativas 𝐹 𝑑𝑖𝑠 

passa a ser dependente das posições nodais e não mais das velocidades nodais. No entanto, para 

essa parcela de força, a aproximação é realizada via método das diferenças finitas, conforme 

detalhado mais adiante no Capítulo 3.  

A Equação 2.30 é não-linear em relação à incógnita 𝑌⃗ 𝑠+1 e sua resolução é desenvolvida 

segundo o método de Newton-Raphson. Para tanto, é feita a expansão em série de Taylor do 

vetor de desbalanceamento mecânico 𝑔 , desprezando o termo de ordem superior. Considerando 

que as forças externas são conservativas, a expressão resultante é semelhante à Equação 2.17 

da formulação estática, mas a matriz Hessiana passa a receber contribuição das parcelas 

dependentes da matriz de massa e do mecanismo de dissipação, assumindo a forma: 

 𝑯 =
𝜕𝑔 

𝜕𝑌⃗ 
|
𝑌⃗ 𝑠+1

0

= 𝑯𝒆𝒔𝒕𝒂𝒕 +
𝑴

𝛽𝛥𝑡2
+ 𝑯𝒅𝒊𝒔 (2.31) 

 Na Equação 2.31, 𝑯𝒆𝒔𝒕𝒂𝒕 é a matriz hessiana da análise estática, igual à segunda derivada 

da energia de deformação em relação às posições, conforme a Equação 2.18. Por sua vez, 𝑯𝒅𝒊𝒔 

é a parcela da matriz hessiana do problema dinâmico proveniente dos mecanismos dissipativos, 

matematicamente igual a 𝜕𝐹 𝑑𝑖𝑠/𝜕𝑌⃗ . Da mesma forma que o vetor de forças dissipativas, essa 

última parcela da matriz hessiana é detalhada apenas no Capítulo 3. 

 A posição é corrigida da mesma maneira apresentada na análise estática, de acordo com 

a Equação 2.19. Em seguida, atualizam-se os valores de aceleração e velocidade, 

respectivamente, através das Equações 2.26 e 2.27. O critério de convergência utilizado é o 

mesmo já apresentado na Equação 2.20. 

 Na primeira iteração, também se adota como posição tentativa a própria configuração 

inicial, enquanto à velocidade pode ser atribuído valor nulo. A aceleração, por sua vez, é 

calculada a partir da Equação de equilíbrio dinâmico, Equação 2.22, que assume o seguinte 

formato após rearranjo dos seus termos: 

 𝑌⃗ ̈0 = 𝑴−𝟏[𝐹 0
𝑒𝑥𝑡 − 𝐹 0

𝑖𝑛𝑡 − 𝐹 0
𝑑𝑖𝑠] (2.32) 

 Na implementação computacional, entretanto, a aceleração é determinada através da 

resolução do seguinte sistema de equações lineares, sendo necessário impor as condições de 

contorno do problema à matriz de massa e ao vetor resultante no segundo membro da Equação: 

 𝑴 ⋅ 𝑌⃗ ̈0 = 𝐹 0
𝑒𝑥𝑡 − 𝐹 0

𝑖𝑛𝑡 − 𝐹 0
𝑑𝑖𝑠 (2.33) 
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2.3 DESCRIÇÃO POSICIONAL DOS ELEMENTOS FINITOS 

 

Um sólido deformável em equilíbrio, submetido a ações externas, sofre alterações em 

sua forma, passando de uma configuração inicial 𝐵0 para uma configuração denominada atual 

𝐵, conforme ilustrado na Figura 4. Segundo uma abordagem Lagrangiana total, essa mudança 

pode ser descrita por meio de uma função mudança de configuração 𝑓 , que adota como 

referência a configuração inicial do corpo. Reitera-se que esse tipo de descrição é mais 

interessante do que a descrição Euleriana na análise de sólidos e estruturas. 

Figura 4 - Mudança de configuração de um sólido qualquer 

 

Fonte: Autor. 

O estado de deformação em que o corpo se encontra na configuração atual é um 

parâmetro necessário para determinar a posição de equilíbrio desse corpo por meio do MEFP. 

Isso se deve ao fato de que a formulação do referido método parte do Princípio da 

Estacionariedade da energia mecânica, sendo necessário determinar a parcela de energia de 

deformação armazenada no corpo. 

Neste trabalho, é empregada a medida de deformação de Green, denotada por 𝑬, que é 

uma medida objetiva (Holzapfel, 2000; Ogden, 1997) e se expressa por: 

  𝑬 =
1

2
(𝑪 − 𝑰) =

1

2
(𝑨𝑡 ∙ 𝑨 − 𝑰) (2.34) 

em que 𝑰 é o tensor identidade de segunda ordem, 𝑨 é o gradiente da função mudança de 

configuração 𝑓  e 𝑪 = 𝑨𝑡 ∙ 𝑨 é o tensor de alongamento à direita de Cauchy-Green. 

Nos subitens a seguir, apresenta-se a cinemática dos corpos deformáveis particularizada 

para os elementos finitos utilizados neste trabalho, detalhando tanto a mudança de configuração 
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quanto o estado de deformação segundo a abordagem posicional. Além disso, são também 

particularizadas as grandezas envolvidas no processo de solução via MEFP. 

Dois elementos são empregados: o elemento de barra simples com ativação e o elemento 

prismático de base triangular. Primeiramente é tratada a descrição individual de cada elemento 

e, por último, é apresentada uma estratégia de imersão de elementos de barra num domínio 

prismático, de maneira a representar o comportamento conjunto de desses dois elementos numa 

matriz reforçada com fibras. 

 

2.3.1 Elemento de barra simples com ativação 

 

O elemento de barra simples, ou barra de treliça, possui aproximação linear e dispõe, 

portanto, de um nó em cada uma de suas extremidades, conforme apresentado por (Coda, 2018; 

Madeira; Coda, 2016). As deformações ocorrem somente ao longo do seu eixo longitudinal, 

adotando-se a hipótese de que a área da sua seção transversal se mantém constante para qualquer 

nível de deformação. 

A esse elemento também é atribuída uma ativação, isto é, a capacidade de controlar a 

distância entre suas extremidades por meio da mudança no seu comprimento. A estratégia 

utilizada para promover essa característica foi proposta por Coda, Silva, Paccola (2020) e toma 

proveito da descrição Lagrangiana total: o deslocamento no atuador é controlado por meio de 

uma variação no comprimento inicial do elemento. Com isso, a barra simples ativada se 

comporta como um atuador flexível. 

A Figura 5 ilustra o referido elemento na configuração inicial 𝐵0 e na configuração atual 

𝐵, após a mudança de configuração 𝑓  imposta por aplicação de carga externa, imposição de 

deslocamento ou ativação. 

Figura 5 – Mudança de configuração de uma barra de treliça 

 

Fonte: Coda (2018). 
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O comprimento inicial do elemento de barra simples é denotado por 𝐿0 e o seu 

comprimento atual, após mudança de configuração, por 𝐿. Esses termos são calculados como: 

 𝐿0 = √(𝑋1
2 − 𝑋1

1 )2 + (𝑋2
2 − 𝑋2

1 )2 + (𝑋3
2 − 𝑋3

1 )2 (2.35) 

 𝐿 = √(𝑌1
2 − 𝑌1

1 )2 + (𝑌2
2 − 𝑌2

1 )2 + (𝑌3
2 − 𝑌3

1 )2 (2.36) 

em que os termos 𝑋 denotam as posições nodais iniciais, enquanto os termos 𝑌 representam as 

posições nodais atuais. Os índices numéricos sobrescritos e subscritos indicam, 

respectivamente, o nó e a direção cartesiana correspondentes.  

Para a descrição uniaxial adotada no elemento de barra, a deformação de Green, 

Equação 2.34, assume o seguinte formato: 

 𝐸 =
1

2
(

𝐿2

𝐿0𝑛
2 − 1) (2.37) 

em que 𝐿0𝑛 é o comprimento inicial natural do elemento, correspondendo ao comprimento 

inicial 𝐿0 acrescido de um incremento Δ𝐿, ou seja: 

 𝐿0𝑛 = 𝐿0 + Δ𝐿 (2.38) 

Dois pontos precisam ser destacados em relação ao modo como a deformação Green 

está escrita na Equação 2.37. O primeiro é que, por ser função do comprimento atual, essa 

grandeza já está escrita em função das posições. O segundo diz respeito ao comprimento de 

referência adotado na expressão, que tradicionalmente é o comprimento inicial 𝐿0. A utilização 

do comprimento natural 𝐿0𝑛 em detrimento de 𝐿0 é justamente a estratégia de ativação proposta 

por Coda, Silva e Paccola (2020). Com isso, controla-se o comprimento de referência do 

elemento, efetuando a aplicação do incremento Δ𝐿 em passos de tempo da discretização 

temporal ou em passos de carga do algoritmo de Newton-Raphson. 

Uma vez descrita a cinemática do elemento de barra simples, particularizam-se as 

expressões do vetor de forças internas, da matriz de massa e da matriz hessiana, envolvidas no 

processo de solução via MEFP. As expressões apresentadas a seguir para essas grandezas são 

locais, isto é, têm sua aproximação realizada no domínio do elemento. Após avaliadas, devem 

ser contribuídas em suas respectivas grandezas globais para tratar o problema completo, de 

acordo com a incidência nodal do elemento nos graus de liberdade do corpo discretizado. 

A força interna, Equação 2.10, é expressa para um elemento de barra simples por: 

 𝐹 𝑖𝑛𝑡 = ∫ 𝑺 ∶
𝜕𝑬

𝜕𝑌⃗ 
𝑑𝑉0

𝑉0

= 𝑆
𝜕𝐸

𝜕𝑌⃗ 
𝐴0𝐿0𝑛 (2.39) 



34 

 

Na Equação 2.39, as grandezas tensoriais de tensão 𝑺 e de deformação 𝑬 se tornam 

escalares devido ao caráter unidimensional do elemento de barra simples. Além disso, essas 

grandezas são constantes em todo o domínio do elemento em razão da aproximação linear, 

sendo o volume 𝑉0 tomado como o produto entre a área 𝐴0 e o comprimento 𝐿0𝑛. 

Desenvolvendo a derivada contida na Equação 2.39 chega-se à seguinte expressão, 

escrita em notação indicial: 

 (𝐹𝑖
𝑙)

𝑖𝑛𝑡
= 𝑆𝐴0

(−1)𝑙

𝐿0𝑛

(𝑌𝑖
2 − 𝑌𝑖

1) (2.40) 

em que 𝑖 representa as direções cartesianas e 𝑙 representa os nós do elemento, sendo 𝑖 = 1,2,3 

e 𝑙 = 1,2. 

A matriz hessiana do problema estático, Equação 2.18, é particularizada para o elemento 

de barra simples como: 

 𝐻𝑖𝑙𝑔𝑧 =
𝜕2𝕌

𝜕𝑌𝑖
𝑙𝜕𝑌𝑔

𝑧
= (−1)𝑙(−1)𝑧

𝐴0

𝐿0𝑛
(𝔼

𝑌𝑖
2 − 𝑌𝑖

1

𝐿0𝑛

𝑌𝑔
2 − 𝑌𝑔

1

𝐿0𝑛
+ 𝑆𝛿𝑖𝑔) (2.41) 

 Na Equação 2.41, 𝔼 é módulo de elasticidade do material e 𝛿𝑖𝑔 é o delta de Kronecker. 

Assim como os índices 𝑖 e 𝑙, os índices 𝑔 e 𝑧 representam, respectivamente, as direções 

cartesianas e os nós do elemento, sendo 𝑔 = 1,2,3 e 𝑧 = 1,2. 

 Embora sejam usados 2 índices para expressar o vetor de forças internas e 4 índices para 

a matriz hessiana, essas grandezas são, de fato, tensores de primeira e de segunda ordem 

respectivamente. De maneira a deixar clara a ordem dessas grandezas, o vetor de força interna 

pode ser denotado por (𝐹𝑘)
𝑖𝑛𝑡 e a matriz hessiana por 𝐻𝑘𝑗, sendo 𝑘, 𝑗 = 1,2, … ,6 os graus de 

liberdade do elemento. A relação entre nó-direção e os graus de liberdade é dada por 𝑘 =

3(𝑙 − 1) + 𝑖 e 𝑗 = 3(𝑧 − 1) + 𝑔.   

 A matriz de massa em problemas dinâmicos é considerada de maneira discreta, 

concentrando a massa dos elementos de barra em seus nós. Dessa forma, a matriz de massa é 

expressa como: 

 𝑀𝑘𝑗 =
𝜌𝐴0𝐿0

2
𝛿𝑘𝑗 (2.42) 

em que 𝜌 é a densidade do material constituinte e 𝛿𝑘𝑗 é o delta de Kronecker. Os índices 𝑘, 𝑗 =

1,2, … ,6 são os graus de liberdade do elemento, conforme já comentado. 

Tanto o vetor de força interna quanto a matriz hessiana são afetados pela mudança no 

comprimento inicial com o incremento Δ𝐿, dando origem a uma nova configuração de 

equilíbrio. Essa atualização do comprimento inicial, no entanto, não se aplica à matriz de massa, 

que é calculada uma única vez no início do processo de solução fazendo uso de 𝐿0 em sua 
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expressão, e não de 𝐿0𝑛. Isso se deve à massa total do sistema se conservar durante a análise. 

Cabe ressaltar ainda que, caso não se deseje utilizar a barra simples como atuador, mas apenas 

como um elemento flexível, basta atribuir valor nulo a Δ𝐿. 

Por fim, comenta-se que a parcela das forças externas é composta apenas pelas forças 

nodais, que incidem nas extremidades dos elementos. As forças de superfície e as forças de 

volume são desconsideradas em função das hipóteses cinemáticas adotadas. 

 

2.3.2 Elemento prismático de base triangular 

 

O elemento prismático de base triangular é um elemento tridimensional concebido a 

partir da extrusão de uma base triangular, conforme descrito por Carrazedo e Coda (2017). Da 

maneira como foi proposto, é possível que a aproximação tanto para base quanto para a 

dimensão resultante da extrusão, referida daqui em diante como espessura do elemento, seja de 

qualquer ordem. Neste trabalho, opta-se pela aproximação cúbica na base e linear na espessura, 

gerando um elemento que possui um total de 20 nós.  

A Figura 6 ilustra o elemento em questão submetido a uma função mudança de 

configuração 𝑓 , passando de uma configuração inicial 𝐵0, referenciada ao sistema de eixos 

coordenados (𝑥1, 𝑥2, 𝑥3), para uma configuração atual 𝐵, referenciada ao sistema (𝑦1, 𝑦2, 𝑦3). 

Está ilustrada também a configuração de um elemento prismático, de mesmas ordens de 

aproximação, contido num espaço adimensional. Tal elemento possui nós igualmente 

espaçados no plano e está referenciado a um sistema de eixos ortogonais (𝜉1, 𝜉2, 𝜉3). As 

coordenadas 𝜉1 e 𝜉2 estão definidas no intervalo [0,1] e seus respectivos eixos tomam direção 

paralela a duas das três arestas que delimitam a base triangular. O terceiro eixo, por sua vez, se 

orienta segundo a espessura, e sua coordenada 𝜉3 está definida no intervalo [-1,1]. 

As coordenadas 𝑥𝑖, na configuração inicial, e 𝑦𝑖, na configuração atual, de qualquer 

ponto pertencente ao domínio do elemento prismático podem ser escritas a partir do elemento 

prismático do espaço adimensional, por meio das seguintes expressões: 

 𝑥𝑖(𝜉 ) = 𝜓𝑘(𝜉 )𝑋𝑖
𝑘 (2.43) 

 𝑦𝑖(𝜉 ) = 𝜓𝑘(𝜉 )𝑌𝑖
𝑘 (2.44) 

em que 𝑋𝑖
𝑘 e 𝑌𝑖

𝑘 são as posições do nó 𝑘 segundo a direção 𝑖 nas configurações inicial e atual 

respectivamente, 𝜓𝑘 é a função de forma associada ao nó 𝑘 e 𝜉  são as coordenadas 
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adimensionais do ponto pertencente à configuração inicial ou final. As variações dos índices 

são 𝑖 = 1,2,3, correspondendo à dimensão do problema, e 𝑘 = 1,2, … ,20, o total de nós. 

Figura 6 – Mudança de configuração do elemento 

prismático de base triangular 

 
Fonte: Carrazedo e Coda (2017). 

As Equações 2.43 e 2.44 também são denominadas funções de mapeamento, pois 

relacionam o espaço adimensional às coordenadas reais do elemento. Conforme ilustrado na 

Figura 6, o mapeamento inicial é denotado por 𝑓 0, enquanto o mapeamento atual é representado 

por 𝑓 1. Por sua vez, a função mudança de configuração 𝑓 , que relaciona a configuração inicial 

com a configuração atual do corpo, pode ser escrita como a composição das duas funções de 

mapeamento: 

 𝑓 =  𝑓 1 ∘ (𝑓 0)
−1

 (2.45) 

 A partir disso, avalia-se o gradiente da função mudança de configuração aplicando a 

regra da cadeia no segundo membro da Equação 2.45. O resultado obtido é a Equação 2.46, não 

sendo necessário, portanto, conhecer a inversa do mapeamento inicial para dar continuidade à 

resolução do problema. 

 𝑨 =  𝑨𝟏 ⋅ 𝑨𝟎−𝟏
 (2.46) 

em que 𝑨𝟎 e 𝑨𝟏 são matrizes (3x3) e representam, respectivamente, os gradientes das funções 

de mapeamento inicial e atual, expressas por: 

 𝐴𝑖𝑗
0 =

𝜕𝑓𝑖
0

𝜕𝜉𝑗
=

𝜕𝜓𝑘

𝜕𝜉𝑗
𝑋𝑖

𝑘 (2.47) 

 𝐴𝑖𝑗
1 =

𝜕𝑓𝑖
1

𝜕𝜉𝑗
=

𝜕𝜓𝑘

𝜕𝜉𝑗
𝑌𝑖

𝑘 (2.48) 
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Uma vez que a deformação de Green é obtida a partir do tensor de alongamento à direita 

de Cauchy-Green, Equação2.34, é possível escrevê-la em função das posições com o auxílio da 

Equação 2.46: 

 𝑬 =
1

2
(𝑪 − 𝑰) =

1

2
(𝑨𝑻𝑨 − 𝑰) =

1

2
((𝑨𝟎)−𝑇 ⋅ (𝑨𝟏)𝑇 ⋅ 𝑨𝟏 ⋅ (𝑨𝟎)−1 − 𝑰) (2.49) 

Uma vez descrita a cinemática do elemento prismático, particularizam-se as expressões 

dos vetores de forças internas e externas, da matriz de massa e da matriz hessiana. Da mesma 

maneira que comentado para o elemento de barra simples ativada, as expressões apresentadas 

a seguir para as grandezas envolvidas no processo de solução via MEFP são locais e devem ser 

posteriormente contribuídas em suas respectivas grandezas globais. 

É importante adiantar que todas as integrais existentes na formulação são resolvidas 

numericamente através da quadratura de Hammer (Hammer; Marlowe; Stroud, 1956), da 

quadratura de Gauss–Legendre ou mesmo da combinação de ambas, conforme apresentado nas 

expressões adiante. Nota-se que surge nessas expressões o jacobiano 𝐽0, realiza a mudança do 

domínio de integração do espaço real para o espaço adimensional. Para realizar a integração na 

base triangular, são empregados 12 pontos de Hammer, enquanto a integração na espessura do 

elemento emprega 2 pontos de Gauss, sendo utilizado, portanto, um total de 24 pontos de 

integração no volume do elemento. Os pesos de Hammer e de Gauss em cada ponto são 

representados respectivamente por 𝑤ℎ e 𝑤𝑔. 

A parcela das forças internas, Equação 4.10, é expressa para um elemento prismático de 

base triangular por: 

 (𝐹𝑖
𝑙)

𝑖𝑛𝑡
= ∫ 𝑓𝑖

𝑙𝑑𝑉0
𝑉0

= ∑ ∑ 𝑓𝑖
𝑙𝐽0𝑤ℎ

12

ℎ=1

𝑤𝑔

2

𝑔=1

 (2.50) 

em que: 

 𝑓𝑖
𝑙 = 𝑆𝛼𝛽

𝜕𝐸𝛼𝛽

𝜕𝑌𝑖
𝑙  (2.51) 

Os índices 𝛼, 𝛽 = 1,2,3 correspondem à dimensão dos tensores de tensões 𝑺 e de 

deformações 𝑬, enquanto 𝑖 = 1,2,3 e  𝑙 = 1,2, … ,20 são, respectivamente, as direções do 

problema e os nós do elemento. O termo 𝐽0 presente na Equação 2.50 é denominado jacobiano 

da transformação e é utilizado para promover a mudança do domínio de integração para o 

espaço adimensional, consistindo no determinante do gradiente do mapeamento da 

configuração inicial, isto é: 

 𝐽0 = 𝐷𝑒𝑡(𝑨𝟎) (2.52) 
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A derivada do tensor de deformações de Green em relação às posições nodais, presente 

na Equação 2.51, é escrita como: 

 
𝜕𝐸𝛼𝛽

𝜕𝑌𝑖
𝑙 =

1

2
((𝑨𝟎)−𝑡 ∙ (

𝜕𝑨𝟏

𝜕𝑌𝑖
𝑙 )

𝑡

∙ 𝑨𝟏 ∙ (𝑨𝟎)−1 + (𝑨𝟎)−𝑡 ∙ (𝑨𝟏)𝑡 ∙
𝜕𝑨𝟏

𝜕𝑌𝑖
𝑙 ∙ (𝑨𝟎)−1) (2.53) 

Na Equação 2.53, foi empregada uma notação mista, tanto indicial quanto compacta. A 

derivada do gradiente do mapeamento atual em relação às posições nodais tem o seguinte 

formato: 

 
𝜕𝑨𝟏

𝜕𝑌1
𝑙 = [

𝜓𝑙,1 𝜓𝑙,2 𝜓𝑙,3

0 0 0
0 0 0

] (2.54) 

 
𝜕𝑨𝟏

𝜕𝑌2
𝑙 = [

0 0 0
𝜓𝑙,1 𝜓𝑙,2 𝜓𝑙,3

0 0 0

] (2.55) 

 
𝜕𝑨𝟏

𝜕𝑌3
𝑙 = [

0 0 0
0 0 0

𝜓𝑙,1 𝜓𝑙,2 𝜓𝑙,3

] (2.56) 

Com as expressões das Equações 2.52 a 2.56, pode-se calcular o vetor de forças internas 

dado pelas Equações 2.50 e 2.51. 

As forças externas atuantes sobre o elemento prismático, por sua vez, são constituídas 

das três componentes apresentadas na Equação 2.2 – as forças concentradas, as forças de 

superfície e as forças de volume. De maneira análoga à geometria, os carregamentos 

distribuídos sobre a superfície e sobre o volume também são aproximados por intermédio de 

funções de forma e dos valores nodais das respectivas variáveis: 

 𝑞𝑖(𝜉 ) = 𝜙𝑛(𝜉 )𝑄𝑖
𝑛0 (2.57) 

 𝑏𝑖(𝜉 ) = 𝜓𝑚(𝜉 )𝐵𝑖
𝑚0 (2.58) 

Nas Equações 2.57 e 2.58, 𝜙𝑛 e 𝜓𝑘 são as funções de forma para aproximação, 

respectivamente, do carregamento de superfície e de volume, enquanto 𝑄𝑖
𝑛0 e 𝐵𝑖

𝑚0 são, 

respectivamente, o valor das forças de superfície e das forças de volume sobre os nós na 

configuração inicial. O índice 𝑛 representa os nós do elemento auxiliar de superfície, conforme 

comentado mais adiante, e tem sua variação dependente do tipo de elemento auxiliar. Já o índice 

𝑚 representa os nós do elemento prismático e varia, portanto, de 1 a 20. 

Assim, a expressão das forças externas assume a forma: 

 (𝐹𝑖
𝑙)

𝑒𝑥𝑡
= 𝐹𝑖

𝑙 + ∫ 𝜙𝑛(𝜉 )𝜙𝑙(𝜉 )𝑑𝐴0𝑄𝑖
𝑛0

𝐴0

+ ∫ 𝜓𝑚(𝜉 )𝜓𝑙(𝜉 )𝑑𝑉0𝐵𝑖
𝑚0

𝑉0

 (2.59) 
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 As forças 𝐹𝑖
𝑙 têm valor igual às próprias forças externas aplicadas diretamente nos nós 

do problema. As forças de volume, por sua vez, são determinadas por: 

 (𝐹𝑖
𝑙)

𝑒𝑥𝑡,𝑣𝑜𝑙
  = (∑ ∑ 𝜓𝑚(𝜉 )𝜓𝑙(𝜉 )𝐽0𝑤ℎ

12

ℎ=1

𝑤𝑔

2

𝑔=1

)𝐵𝑖
𝑚0 (2.60) 

Já as forças de superfície são determinadas primeiramente sobre elementos auxiliares e, 

em seguida, incididas sobre nós do problema, sendo necessário haver uma correspondência dos 

nós do elemento auxiliar com os nós do problema. Dois elementos auxiliares distintos podem 

ser adotados, conforme ilustra a Figura 7, e, portanto, a determinação das forças de superfície 

pode ocorrer de duas maneiras. 

Figura 7 – Elementos auxiliares para aplicação de forças de 

superfície nos elementos prismáticos de base triangular 

com aproximação linear na espessura 

 

Fonte: Autor. 

Os elementos auxiliares do tipo triangular são utilizados para considerar carregamentos 

distribuídos no plano da base do elemento. Nesse caso, a integração é resolvida mediante a 

quadratura de Hammer: 

 (𝐹𝑖
𝑙)

𝑒𝑥𝑡,𝑠𝑢𝑝
  = (∑ 𝜙𝑛(𝜉 )𝜙𝑙(𝜉 )𝐽0𝑤ℎ

12

ℎ=1

)𝑄𝑖
𝑛0 (2.61) 

em que 𝑛 = 1,2, … ,10 e 𝜉  é o vetor de coordenadas adimensionais dos pontos de Hammer sobre 

o elemento auxiliar triangular, com apenas duas componentes. 

Por outro lado, os elementos auxiliares do tipo retangular são adotados para considerar 

carregamentos distribuídos em faces perpendiculares ao plano da base do elemento. Nessa 

situação, emprega-se a quadratura de Gauss-Legendre em duas direções: 

 (𝐹𝑖
𝑙)

𝑒𝑥𝑡,𝑠𝑢𝑝
  = ( ∑ ∑ 𝜙𝑛(𝜉 )𝜙𝑙(𝜉 )𝐽0𝑤𝑔1

2

𝑔2=1

𝑤𝑔2

2

𝑔1=1

)𝑄𝑖
𝑛0 (2.62) 
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em que 𝑛 = 1,2, … ,8 e 𝜉  é o vetor de coordenadas adimensionais dos pontos de Gauss sobre o 

elemento auxiliar retangular, com apenas duas componentes. 

Por sua vez, a matriz hessiana do problema estático, Equação 2.18 é particularizada para 

o elemento prismático como: 

 𝐻𝑖𝑙𝑔𝑧 =
𝜕2𝕌

𝜕𝑌𝑖
𝑙𝜕𝑌𝑔

𝑧
= ∫ ℎ𝑖𝑙𝑔𝑧𝑑𝑉0

𝑉0

= ∑ ∑ ℎ𝑖𝑙𝑔𝑧𝐽0𝑤ℎ𝑤𝑔

12

ℎ=1

2

𝑔=1

 (2.63) 

em que: 

 ℎ𝑖𝑙𝑔𝑧 =
𝜕𝐸𝛼𝛽

𝜕𝑌𝑔
𝑧

 ℭ𝛼𝛽𝛾𝜇  
𝜕𝐸𝛾𝜇

𝜕𝑌𝑖
𝑙 + 𝑆𝛼𝛽  

𝜕2𝐸𝛼𝛽

𝜕𝑌𝑖
𝑙𝜕𝑌𝑔

𝑧
 (2.64) 

Nessa última expressão, ℭ𝛼𝛽𝛾𝜇, também denotado por 𝕰 em notação compacta, 

corresponde ao tensor constitutivo elástico de quarta ordem do modelo constitutivo empregado. 

Os índices 𝑖, 𝑔 = 1,2,3 e  𝑙, 𝑧 = 1,2, … ,20 são, respectivamente, as direções do problema e os 

nós do elemento. Já os índices 𝛼, 𝛽, 𝛾, 𝜇 = 1,2,3 correspondem às dimensões dos tensores 𝕰. A 

segunda derivada do tensor de deformações de Green 𝑬 em relação às posições nodais 𝑌⃗  é dada 

por: 

𝜕2𝐸𝛼𝛽

𝜕𝑌𝑖
𝑙𝜕𝑌𝑔

𝑧
=

1

2
((𝑨𝟎)−𝑡 ∙ (

𝜕𝑨𝟏

𝜕𝑌𝑖
𝑙 )

𝑡

∙
𝜕𝑨𝟏

𝜕𝑌𝑔
𝑧
∙ (𝑨𝟎)−1 + (𝑨𝟎)−𝑡 ∙ (

𝜕𝑨𝟏

𝜕𝑌𝑔
𝑧
)

𝑡

∙
𝜕𝑨𝟏

𝜕𝑌𝑖
𝑙 ∙ (𝑨𝟎)−1) (2.65) 

O mesmo comentário feito para o elemento de barra em relação à verdadeira ordem dos 

tensores de força e da matriz hessiana valem também para o elemento tratado neste item. A 

relação entre nó-direção e os graus de liberdade de 𝐹𝑘 e 𝐻𝑘𝑗 é dada por 𝑘 = 3(𝑙 − 1) + 𝑖 e 𝑗 =

3(𝑧 − 1) + 𝑔.   

Por fim, apresenta-se a matriz de massa do elemento prismático. Para obter essa 

grandeza, é necessário desenvolver a expressão das forças inerciais, Equação 2.11. Considera-

se, então, a aproximação das posições atuais 𝑦  para avaliar sua derivada em relação às posições 

nodais 𝑌⃗  e aplica-se sobre a aceleração a mesma aproximação usada para as posições, isto é: 

 𝑦̈𝑖 = 𝜓𝑘(𝜉 )𝑌̈𝑖
𝑘 (2.66) 

Com isso, obtém-se a seguinte expressão para a vetor de forças inerciais: 

 (𝐹𝑖
𝑙)

𝑖𝑛𝑒𝑟
= ∫ 𝜌0𝜓𝑘(𝜉 )𝑌̈𝑖

𝑘𝜓𝑙(𝜉 )𝑑𝑉0
𝑉0

= 𝑀𝑘𝑙𝑌̈𝑖
𝑘 (2.67) 

em que: 

 𝑀𝑘𝑙 = ∫ 𝜌0𝜓𝑘(𝜉 )𝜓𝑙(𝜉 )𝑑𝑉0
𝑉0

 (2.68) 
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2.3.3 Imersão de barras simples em elementos prismáticos de base triangular 

 

A imersão de elementos finitos de barra simples em elementos tridimensionais 

prismáticos tem o objetivo de representar o comportamento de uma matriz reforçada com fibras. 

A estratégia numérica para realizar tal imersão consiste numa simples extensão para o domínio 

em três dimensões do procedimento trabalhado por Vanalli (2004), Sampaio (2014).  Também 

cabe destacar a contribuição do trabalho de Radtke, Simone e Sluys (2010), que abordou o 

problema do acoplamento de maneira semelhante. 

A estratégia consiste em utilizar as funções de forma 𝜓𝑘(𝜉 ) do elemento prismático 

para escrever as posições dos nós das barras em função das posições dos nós do elemento da 

matriz no qual estão inseridos os referidos nós das barras. Esse procedimento permite inserir 

barras em qualquer posição do domínio sem aumentar os graus de liberdade do problema e sem 

ser necessária a coincidência dos nós das barras com os nós da matriz (Vanalli, 2004). 

As expressões apresentadas a seguir tratam da imersão de um único elemento de barra 

no domínio prismático, podendo ser aplicadas quantas vezes for necessário de acordo com o 

número total de elementos de barra existentes no problema. No desenvolvimento algébrico 

deste item, adota-se ( • ̅) para os parâmetros relacionados ao elemento de barra e ( • ̂), ao 

elemento prismático. 

Em primeiro lugar, as posições iniciais 𝑋̅𝑖
𝑘 e finais 𝑌̅𝑖

𝑘 do nó 𝑘 de uma barra são escritas 

respectivamente como: 

 𝑋̅𝑗
𝑘 = 𝜓𝑚(𝜉 𝑘)𝑋̂𝑗

𝑚 (2.69) 

 𝑌̅𝑗
𝑘 = 𝜓𝑚(𝜉 𝑘)𝑌̂𝑗

𝑚 (2.70) 

em que 𝜉 𝑘 são coordenadas adimensionais do nó 𝑘 da barra no domínio do elemento prismático, 

𝑋̂𝑗
𝑚 e 𝑌̂𝑗

𝑚 são as posições do nó 𝑚 do elemento prismático nas configurações inicial e atual 

respectivamente, e 𝜓𝑚 é a função de forma correspondente ao nó 𝑚. Salienta-se que as 

Equações 2.69 e 2.69 garantem a aderência perfeita entre as barras e a matriz. 

A energia de deformação armazenada em um corpo reforçado é dada pela soma das 

energias de deformação acumuladas na matriz e nas barras. Assim, a força interna de um nó 𝑙 

de um elemento da matriz, na direção 𝑖, que contém um nó 𝑘 de elemento de barra é dada por: 

 (𝐹𝑖
𝑙)

𝑖𝑛𝑡
=

𝜕(𝕌̂ + 𝕌̅)

𝜕𝑌̂𝑖
𝑙

=
𝜕𝕌̂

𝜕𝑌̂𝑖
𝑙
+

𝜕𝕌̅

𝜕𝑌̅𝑗
𝑘

𝜕𝑌̅𝑗
𝑘

𝜕𝑌̂𝑖
𝑙
= 𝐹̂𝑖

𝑙 + 𝐹̅𝑖
𝑘𝜓𝑙(𝜉 

𝑘) (2.71) 
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em que 𝐹̂𝑖
𝑙 é o vetor de forças internas da matriz, obtida pela Equação 2.50, e  𝐹̅𝑖

𝑘 é o vetor de 

forças internas da barra, calculada pela Equação 2.40. 

A matriz hessiana, por sua vez, é obtida pela segunda derivada da energia de deformação 

do corpo reforçado em relação às posições nodais o elemento da matriz. Assim, escreve-se: 

 
𝐻𝑖𝑙𝑔𝑧 =

𝜕(𝕌̂ + 𝕌̅)

𝜕𝑌̂𝑖
𝑙𝜕𝑌̂𝑔

𝑧
=

𝜕𝕌̂

𝜕𝑌̂𝑖
𝑙𝜕𝑌̂𝑔

𝑧
+

𝜕𝕌̅

𝜕𝑌̅𝑗
𝑘𝜕𝑌̅𝑚

𝑛

𝜕𝑌̅𝑗
𝑘

𝜕𝑌̂𝑖
𝑙

𝜕𝑌̅𝑚
𝑛

𝜕𝑌̂𝑔
𝑧

=

= 𝐻̂𝑖𝑙𝑔𝑧 + 𝐻̅𝑖𝑘𝑔𝑛𝜓𝑙(𝜉 
𝑘)𝜓𝑧(𝜉 

𝑛)

 (2.72) 

em que 𝐻̂𝑖𝑙𝑔𝑧 é a matriz hessiana do elemento prismático, calculada pela Equação 2.63, e 𝐻̅𝑖𝑘𝑔𝑛 

é a matriz hessiana do elemento de barra, calculada pela Equação 2.41. 

De maneira a simplificar o procedimento numérico, as operações  𝐹̅𝑖
𝑘𝜓𝑙(𝜉 

𝑘) e 

𝐻̅𝑖𝑘𝑔𝑛𝜓𝑙(𝜉 
𝑘)𝜓𝑧(𝜉 

𝑛), presentes nas Equações 2.70 e 2.71 respectivamente, são organizadas em 

formato matricial. O procedimento a ser realizado consiste na expansão do vetor de forças 

internas [6x1] e da matriz hessiana da barra [6x6], respectivamente, para os formatos [6𝑁̂x1] 

e [6𝑁̂x6𝑁̂], sendo 𝑁̂ o número de nós do elemento prismático. Uma vez que o elemento 

prismático adotado dispõe de 20 nós, escreve-se: 

 [𝐹̅𝑒𝑥𝑝]120x1 = [𝝍𝑻]120x6[𝐹̅]6x1 (2.73) 

 [𝑯̅𝒆𝒙𝒑]120x120 = [𝝍𝑻]120x6[𝑯̅]6x6[𝝍]6x120 (2.74) 

As grandezas 𝐹̅6x1 e 𝑯̅6x6 são referentes ao elemento de barra, obtidas pelas Equações 

2.40 e 2.41 respectivamente, conforme já comentado. O sobrescrito 𝑒𝑥𝑝 indica que as grandezas 

estão no formato expandido, podendo ser feita sua contribuição nas respectivas grandezas 

globais do problema, evitando a soma direta ao elemento da matriz, e deve respeitar a incidência 

dos elementos da referida matriz (Sampaio, 2014). 

O termo [𝝍]6x120 é uma matriz que contém as funções de forma do elemento prismático, 

arranjadas da seguinte maneira: 

 [𝝍]6x120 =

[
 
 
 
 
 
 
 
𝜓1

𝑖 0 0 … 𝜓20
𝑖 0 0 0 0 0 … 0 0 0

0 𝜓1
𝑖 0 … 0 𝜓20

𝑖 0 0 0 0 … 0 0 0

0 0 𝜓1
𝑖 … 0 0 𝜓20

𝑖 0 0 0 … 0 0 0

0 0 0 … 0 0 0 𝜓1
𝑗

0 0 … 𝜓20
𝑗

0 0

0 0 0 … 0 0 0 0 𝜓1
𝑗

0 … 0 𝜓20
𝑗

0

0 0 0 … 0 0 0 0 0 𝜓1
𝑗

… 0 0 𝜓20
𝑗

]
 
 
 
 
 
 
 

 (2.75) 
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em que o índice 𝑖 indica que a função de forma 𝜓𝑘 é avaliada nas coordenadas 𝜉  em que se 

situa o nó inicial do elemento de barra e o índice j, de maneira análoga para o nó final do 

elemento de barra. 

Ressalta-se que a formulação de imersão de barras está apresentada de maneira 

generalista, possibilitando a introdução dos nós desse elementos em qualquer ponto do domínio 

prismático. Neste trabalho, no entanto, as fibras são inseridas apenas no plano médio da matriz 

prismática, caracterizado por 𝜉3 = 0, de maneira a garantir a simetria da geometria 

tridimensional. 

É importante mencionar ainda que, nas análises dinâmicas, a mesma operação realizada 

para a matriz hessiana do elemento de barra deve ser efetuada para a matriz de massa. Assim, 

a matriz de massa é calculada para cada barra pela Equação 2.42 e, em seguida, expandida de 

maneira análoga à matriz hessiana, Equação 2.73. Por fim, realiza-se sua contribuição à matriz 

de massa global do problema. 

 

2.4 EXEMPLOS DE VALIDAÇÃO 

 

Neste item são apresentados alguns exemplos com o intuito de validar o correto 

funcionamento do código computacional implementado para os elementos finitos descritos nos 

itens anteriores. Tanto exemplos estáticos quanto dinâmicos são apresentados, sendo que nos 

problemas dinâmicos não se consideram a atuação de mecanismos de dissipação, ou seja, o 

potencial dissipativo da energia mecânica é desprezado. Problemas envolvendo essa parcela de 

energia são apresentados no Capítulo 3. 

Embora nenhum comentário acerca de modelos constitutivos tenha sido feito neste 

capítulo, é empregado o modelo de Saint-Venant-Kirchhoff tanto para os elementos de barra 

quanto para os elementos prismáticos nos exemplos que seguem. Com isso, vale uma relação 

linear entre a tensão de Piola-Kirchhoff de segunda espécie e a deformação de Green. Mais 

detalhes sobre esse e outros modelos constitutivos são encontrados também no Capítulo 3. 

 

2.4.1 Atuador linear flexível 

 

Este exemplo realiza a comparação entre o comportamento dinâmico de um atuador 

uniaxial flexível e um sistema massa-mola equivalente com um único grau de liberdade, 

ilustrados na Figura 8. O atuador é representado por uma barra com comprimento 𝐿0 de 1,0 m, 
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com seção transversal quadrada de 0,10 m de lado e sem massa. Sua extremidade direita está 

fixa, enquanto sua extremidade esquerda está livre para se movimentar na direção 𝑥1. Nessa 

extremidade livre é colocada ainda uma massa concentrada 𝑚 de 0,4947 kg. O módulo de 

elasticidade 𝔼 do material constituinte é de 200 MPa, o que corresponde a uma rigidez 𝑘 =

𝔼𝐴0/𝐿0 de 2.106 N/m para a mola. 

Figura 8 – a) Atuador uniaxial flexível e b) sistema massa-mola equivalente 

 

Fonte: Autor. 

O controle do comprimento inicial natural é feito por meio de um incremento de 

comprimento, em metros, expresso por: 

 Δ𝐿(𝑡) = { sen
(314,1425𝑡) ⋅ 10−3

0

𝑠𝑒 𝑡 ≤ 0,05 𝑠
𝑠𝑒 𝑡 > 0,05 𝑠

 (2.76) 

Isso significa que o comprimento natural é imposto durante os primeiros 0,05 s de 

análise e, após esse período, o elemento passa a vibrar livremente. Já o sistema massa-mola é 

submetido a uma força externa 𝐹(𝑡) = 𝑘Δ𝐿(𝑡), que corresponde à força necessária para gerar 

o deslocamento Δ𝐿(𝑡) na extremidade esquerda. A análise dinâmica é realizada durante 0,10 s, 

sendo utilizado um incremento Δ𝑡 de 0,0001 s para o algoritmo de Newmark e uma tolerância 

de 10-6 para a convergência da solução. 

 Uma vez que pequenos deslocamentos são desenvolvidos neste exemplo, o sistema 

massa-mola pode ser analisado como um problema de vibração forçada (Warburton, 1976), 

descrito pela seguinte Equação diferencial: 

 𝑚𝑢̈ + 𝑘𝑢 = 𝐹(𝑡) (2.77) 

em que 𝑢 e 𝑢̈ são, respectivamente, o deslocamento e a aceleração da massa 𝑚. 

Esse tipo problema pode ser solucionado analiticamente e, assim, servir de comparação 

para a solução numérica via MEFP aplicada ao atuador. A Figura 9 ilustra o deslocamento na 

extremidade livre para três modelos similares: o atuador, o elemento de barra simples sem 

controle de comprimento, mas sujeito à força externa equivalente na extremidade livre; e o 

sistema massa-mola. Como já se esperava, todos os modelos apresentam curvas coincidentes, 

o que evidencia o bom funcionamento do elemento de barra simples com ativação. 

L
0

m

m

x
1

x,u

F(t)=kDL(t)k=EA0/L0

a) b)
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Figura 9 - Deslocamento da extremidade livre 

 
Fonte: Autor. 

 

2.4.2 Viga engastada e livre com carregamento dinâmico 

 

Uma viga engastada e livre é submetida a uma força transversal concentrada variável 

no tempo aplicada na extremidade livre, conforme ilustrado na Figura 10. A estrutura possui 

comprimento de 120 in e seção transversal retangular com base de 1 in e altura de 10,627 in. O 

módulo de elasticidade 𝔼 do material constituinte é de 3.107 psi, o coeficiente de Poisson 𝜈 é 

nulo e a massa específica 𝜌0 é de 0,0094116 lb.s2/in4. As unidades de todos esses parâmetros já 

estão compatíveis. 

Figura 10 - Viga engastada e livre, submetida a força transversal concentrada na 

extremidade livre 

 

Fonte: Autor. 

A força transversal que solicita a viga é variável no tempo conforme o gráfico da Figura 

11 sendo definida por meio da expressão: 

 𝐹(𝑡) = { 
5𝐹𝑚á𝑥𝑡
𝐹𝑚á𝑥

𝑠𝑒 𝑡 ≤ 0,2 𝑠
𝑠𝑒 𝑡 > 0,2 𝑠

 (2.78) 
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Figura 11 – Variação de 𝐹(𝑡) 

 

Fonte: Autor. 

Ao termo 𝐹𝑚á𝑥 é atribuído, primeiramente, o valor de 1.105 lb e, em seguida, de 5.105 

lb, gerando dois casos de análise. Em ambos, a estrutura desenvolve grandes deslocamentos, 

mas ainda se insere no regime de pequenas deformações, conforme já discutido anteriormente 

por (Greco, 2004; Kishino, V. H., 2022; Rodriguez, 2017). 

A viga é modelada com geometria tridimensional, conforme ilustrado na Figura 12, 

dispondo de 32 elementos finitos prismáticos. Os nós da face 𝑥 = 0 m tem seu deslocamento 

restrito tanto na direção 𝑥1 quanto na direção 𝑥2, representando o engaste existente no 

problema. Uma vez que a viga é esbelta, os nós da face 𝑥3 = 0 m são restritos na direção 𝑥3 

para evitar o efeito de instabilidade lateral. 

Figura 12 – Discretização da viga engastada e livre 

 

Fonte: Autor. 

Além disso, as faces dos elementos situadas no plano 𝑥1 = 120 in recebem uma carga 

superficialmente distribuída dada por 0,0941𝐹(𝑡), com unidade em lb/in2 e orientada no 

sentido negativo do eixo 𝑥2, equivalente ao carregamento concentrado 𝐹(𝑡) do problema 

original. A análise dinâmica é realizada durante 1,0 s, sendo utilizado um incremento Δ𝑡 de 

0,01 s para o algoritmo de Newmark e uma tolerância de 10-6 para a convergência da solução. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
(t

)

Tempo (s)

Fmáx

x1

x2

x3



47 

 

Os deslocamentos horizontal e vertical ao longo do tempo da extremidade livre, 

avaliados no nó central da face de aplicação do carregamento, estão apresentados nas Figuras 

13 e 14, respectivamente. A título de comparação, também são exibidos os valores obtidos por 

(Kishino, V. H., 2022) que modelou este mesmo problema também utilizando elementos 

prismáticos e a lei de Saint-Venant-Kirchhoff. Observa-se uma boa concordância entre os 

resultados, o que revela o bom funcionamento da implementação do elemento prismático de 

base triangular. 

Figura 13 – Deslocamentos horizontais na extremidade livre 

 

Fonte: Autor. 

Figura 14 - Deslocamentos verticais na extremidade livre 

 

Fonte: Autor. 

0

5

10

15

20

25

30

35

40

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

u
 (

in
)

Tempo (s)

Fmáx=500000 lb - Autor Fmáx=500000 lb - Kishino (2022)

Fmáx=100000 lb - Autor Fmáx=100000 lb - Kishino (2022)

0

10

20

30

40

50

60

70

80

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

v
 (

in
)

Tempo (s)

Fmáx=500000 lb - Autor Fmáx=500000 lb - Kishino (2022)

Fmáx=100000 lb - Autor Fmáx=100000 lb - Kishino (2022)



48 

 

2.4.3 Viga reforçada com fibras 

 

Uma viga engastada e livre, reforçada com fibras, é solicitada a um carregamento 

uniformemente distribuído, conforme ilustra a Figura 15. O módulo de elasticidade 𝔼𝑣𝑖𝑔𝑎 do 

material da viga é de 2,1.106 N/cm2 e o coeficiente de Poisson 𝜈 é considerado nulo. Já as fibras 

possuem área de seção transversal 𝐴0 de 1,0 cm2 e seu material constituinte apresenta módulo 

de elasticidade 𝔼𝑓𝑖𝑏 de 2,1.107 N/cm2. 

Figura 15 – Viga engastada e livre, reforçada com fibras 

 

Fonte: Autor. 

O problema se insere no regime de pequenas deformações, mas desenvolve grandes 

deslocamentos, e sua função é avaliar se a estratégia de acoplamento de fibras com uma matriz 

está funcionando de maneira adequada. Além disso, para mostrar que as fibras reforçam a 

estrutura e a tornam mais rígida, os deslocamentos também são avaliados para a viga sem fibras 

imersas, de maneira a possibilitar a comparação. 

A viga reforçada é modelada com 300 elementos prismáticos, conforme ilustrado na 

Figura 16. As fibras são inseridas no plano 𝑥3 = 0,5 cm e estão destacadas em vermelho. Os 

nós da face 𝑥 = 0 cm tem seu deslocamento restrito tanto na direção 𝑥1 quanto na direção 𝑥2, 

representando o engaste existente no problema, enquanto os nós da face 𝑥3 = 0 cm são restritos 

na direção 𝑥3 para evitar o efeito de instabilidade lateral. Além disso, a face dos elementos 

prismáticos situadas sobre o plano 𝑥2 = 10 cm recebem uma carga superficialmente distribuída 

sobre a superfície 50 N/cm2, orientada no sentido negativo do eixo 𝑥2, equivalente ao 

carregamento linearmente distribuído do problema original. É realizada uma análise estática em 

5 passos de carga com tolerância de 10-6 para a convergência da solução. 

Os deslocamentos no nó central da extremidade livre são comparados na Tabela 1 com 

os valores de referência obtidos por Coda (2009) e Sampaio (2014). O primeiro autor utiliza 

uma formulação denominada barra geral 3D que emprega a cinemática de Timoshenko-

Reissner e a lei constitutiva de Saint-Venant-Kirchhoff. O segundo, por sua vez, modela a 

estrutura por meio de elementos de chapa, adotando o mesmo modelo constitutivo. Observa-se 
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que os resultados são muito próximos, principalmente com os valores de Sampaio (2014), cuja 

formulação é mais próxima à deste trabalho. Outro ponto a ser destacado é que o deslocamento 

na situação com presença de reforço resulta inferior ao mesmo deslocamento na condição sem 

reforço. Com isso, considera-se validada a implementação da estratégia para imersão de barras 

simples em matriz prismática. 

Figura 16 – Discretização da viga reforçada com fibras 

 

Fonte: Autor. 

Tabela 1 – Deslocamento da extremidade 

Discretização Autor Coda (2009) Diferença Sampaio (2014) Diferença 

Sem fibras 193,109 189,269 2,03% 193,053 0,03% 

Com fibras 106,286 104,351 1,85% 106,393 -0,10% 

Fonte: Autor. 

 

2.4.4 Matriz reforçada com fibras ativas 

 

Esta aplicação é inspirada nos exemplos tratados por Friedel (2016) e Ramirez (2018) 

tem o intuito de apresentar o comportamento de uma matriz reforçada quando ocorre a 

contração das barras imersas. O problema está ilustrado na Figura 17 e compreende uma chapa 

de dimensões unitárias na qual estão inseridas 3 fibras retas igualmente espaçadas, com área de 

seção transversal de 0,1. A face esquerda da chapa está impedida de se movimentar tanto na 

direção 𝑥1  quanto na direção 𝑥2. Tanto o material da matriz quanto o das barras possui módulo 

de elasticidade 𝔼 de 2,1.106, sendo nulo o coeficiente de Poisson 𝜈 da matriz. 

A chapa é modelada como um cubo de lados unitários, conforme ilustra a Figura 18, 

sendo a matriz discretizada em 8 elementos, enquanto as barras são discretizadas de três 

maneiras distintas: a primeira, M1, com um único elemento; a segunda, M2, com 3 elementos; 

e a terceira, M3, com 5 elementos. Em todos os modelos de discretização, as barras são inseridas 
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no plano 𝑥3 = 0,5. Os nós da face 𝑥1 = 0 têm seu deslocamento impedido não só nas direções 

𝑥1 e 𝑥2, como indica o problema plano na Figura 21, mas também na direção 𝑥3, para garantir 

a vinculação necessária no espaço tridimensional. 

Figura 17 – Chapa reforçada com fibras 

 

Fonte: Autor. 

Figura 18 – Discretização da matriz reforçada 

 

Fonte: Autor. 

Em todos os três modelos, é imposta uma variação de comprimento para cada elemento 

de barra igual -30% do seu comprimento inicial. Isso equivale a um encurtamento de 0,3 no 

modelo M1, de 0,1 no M2 e de 0,06 no M3. É realizada uma análise estática em 10 passos de 

carga com tolerância de 10-6 para a convergência da solução. 

Na Figura 22 estão apresentados os resultados de deslocamento na direção 𝑥1 para o 

modelo de contração proposto, nas discrteizações M1, M2 e M3. Em todas as situações, as 
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0,1667

1,0

1,0

0,3333

0,3333
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barras obtiveram deslocamento máximo igual ao deslocamento máximo da matriz, o que valida 

mais uma vez o acoplamento fibra-matriz. Além disso, observa-se que a discretização das barras 

influencia o deslocamento máximo na matriz, ainda que de forma mínima, pois a taxa de 

transferência da força dos elementos de barra para a matriz é menor quanto melhor é a 

discretização. Sampaio (2014) relatou que a influência da discretização das barras, de fato, é 

pequena, entretanto, a utilização de elementos finitos de barra com comprimento igual à 

dimensão do lado do elemento finito de chapa – neste caso, a dimensão do lado da base 

triangular do elemento prismático – garante a conformidade da discretização e melhora o 

comportamento global do sistema. Isso pode ser verificado, inclusive, no trecho circulado em 

preto na Figura 21a, em que os deslocamentos na barra de elemento único apresentam 

discordâncias com os deslocamentos da matriz. Esse fenômeno, no entanto, praticamente não 

ocorre nas outras discretizações. 

Figura 19 – Deslocamentos na direção x para as discretizações a) M1, b) M2 e c) M3 

 

Fonte: Autor. 

Outro ponto a ser destacado é que o deslocamento nos elementos de barra não é igual à 

contração imposta e a explicação para isso reside no fato de que a deformação no elemento de 

barra é dependente da rigidez da matriz. Conforme já apresentado por Friedel (2016) e Ramirez 

(2018), impor uma redução no comprimento dos elementos de barra também provoca a 

contração da matriz, que resiste a esse movimento e gera, portanto, uma força oposta nas barras. 

A posição final é então resultado do equilíbrio de forças entre ambos os materiais. Assim, 

a) b)

c)
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quanto for a rigidez do conjunto de fibras em relação à rigidez da matriz, mais próximo o 

deslocamento final será do valor imposto.  
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3 MODELO CONSTITUTIVO VISCO-HIPERELÁSTICO 

 

Neste capítulo são abordados os pontos pertinentes sobre a elaboração do modelo visco-

hiperleástico empregado no trabalho. Primeiramente, apresentam-se os modelos hiperlásticos 

de Saint-Venant-Kirchhoff e de Rivlin-Saunders-Hartmann-Neff. Ambos são detalhados no 

formato tridimensional, mas, enquanto o segundo é de aplicação exclusiva em três dimensões, 

o primeiro é também particularizado para o caso uniaxial, com a intenção de ser aplicado ao 

elemento de barra simples. 

Em seguida, apresenta-se o modelo viscoelástico de Kelvin-Voigt, utilizado para 

representar o comportamento de materiais que desenvolvem deformações ao longo do tempo.  

Duas versões desse modelo são descritas: uma para o regime de pequenas deformações a partir 

do modelo de Saint-Venant-Kirchhoff, e outra para o regime de grandes deformações, com base 

no modelo de Rivlin-Saunders-Hartmann-Neff, que resulta em um modelo visco-hiperelástico 

completo. Por fim, é detalhada a introdução do comportamento viscoelástico na formulação do 

MEFP, particularizando as expressões para o elemento de barra simples com ativação e para o 

elemento prismático. 

 

3.1 CONSIDERAÇÕES INICIAIS SOBRE MODELOS HIPERELÁSTICOS 

 

Um modelo constitutivo hiperelástico é aquele que dispõe explicitamente de uma 

expressão para a energia específica de deformação 𝛹, também chamada energia livre de 

Helmholtz (Holzapfel, 2000; Ogden, 1997). As principais referências consultadas sobre esse 

tema são Ogden (1997), Holzapfel (2000) e Coda (2018) , além dos trabalhos de Pascon (2008), 

Pascon (2012), Ramirez (2018) e Kishino (2022). Ogden (1997) ressalta, inclusive, que a 

expressão da energia específica de deformação, para gerar leis constitutivas consistentes, deve 

ser convexa, de maneira a possibilitar a resolução do problema de minimização no equilíbrio, 

conforme discutido mais adiante. 

No caso de materiais homogêneos e isotrópicos, a energia específica de deformação 

pode ser escrita nos seguintes formatos lagrangianos: 

 𝛹(𝑨) = 𝛹(𝑪) = 𝛹(𝑬) = 𝛹(𝐼1, 𝐼2, 𝐼3) = 𝛹(𝜆1, 𝜆2, 𝜆3) (3.1) 

Na Equação 3.1, 𝑨 é o gradiente da função mudança de configuração, 𝑪 é o tensor de 

alongamento à direita de Cauchy-Green, 𝑬 é o tensor de deformação de Green, 𝐼1, 𝐼2 e 𝐼3 são 

os invariantes de 𝑪 e 𝜆1, 𝜆2 e 𝜆3 são os alongamentos principais. A isotropia, no entanto, é 
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necessariamente imposta somente por meio das duas últimas formas, uma vez que a escolha 

dos eixos de análise não influencia nem os invariantes nem os alongamentos principais tomados 

como argumentos das expressões. 

Em qualquer análise mecânica a ser feita, existem algumas condições que todo modelo 

constitutivo hiperelástico deve satisfazer. Em primeiro lugar, a relação entre os volumes final 

𝑉𝑓 e inicial 𝑉𝑖 deve ser sempre superior a zero, isto é: 

 
𝑉𝑓

𝑉𝑖
= 𝐽 > 0 (3.2) 

em que 𝐽 é chamado jacobiano da função mudança de configuração. 

O modelo deve ser capaz de impor a restrição da Equação 3.2, principalmente quando 

se trabalha com grandes deformações. Isso é feito para evitar que, fisicamente, o material 

apresente autointerseção. Quando o modelo não atende tal condição, seu uso deve ser limitado 

ao desenvolvimento de deformações moderadas. 

Outras duas condições básicas a serem atendidas são normalização e crescimento, 

descritas respectivamente por: 

 𝛹(𝑪 = 𝑰) = 𝛹(𝑬 = 𝟎) = 0 (3.3) 

 {
𝛹 → +∞ 𝑞𝑢𝑎𝑛𝑑𝑜 𝐽 → 0+

  𝛹 → +∞ 𝑞𝑢𝑎𝑛𝑑𝑜 𝐽 → +∞
 (3.4) 

A condição de normalização representa que é nula a energia específica de deformação 

nos pontos em que um material não desenvolve deformações, mas apenas movimento de corpo 

rígido. Já a condição de crescimento diz que, para extinguir um material (𝐽 = 0) ou expandi-lo 

infinitamente (𝐽 → +∞), é necessária uma quantia infinita de energia de deformação. Para que 

a segunda condição, Equação 3.4, seja respeitada, é preciso que pelo menos um termo escrito 

em função do jacobiano esteja presente na expressão da energia específica de deformação. 

Nos itens a seguir são apresentados dois modelos constitutivos hiperelásticos. Ambos 

são empregados na modelagem proposta nesse trabalho, conforme é detalhado no Capítulo 5. 

 

3.2 MODELO HIPERELÁSTICO DE SAINT-VENANT-KIRCHHOFF 

 

O modelo constitutivo de Saint-Venant-Kirchhoff é um dos modelos mais simples para 

descrever o comportamento hiperleástico de um material, estabelecendo uma relação linear 

entre a deformação de Green 𝑬 e a tensão de Piola-Kirchhoff de segunda espécie 𝑺, seu 

conjugado energético. Consiste em uma extensão direta da Lei de Hooke para o regime não-
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linear geométrico, inclusive apresentando coincidência para pequenas deformações. A energia 

de deformação desse modelo é expressa por: 

 𝛹(𝐸) =
1

2
𝐸𝑖𝑗ℭ𝑖𝑗𝑘𝑙𝐸𝑘𝑙 (3.5) 

em que 𝕮 é o tensor constitutivo elástico desse modelo. 

A tensão de Piola-Kirchhoff de segunda espécie resulta da derivada da Equação 3.5 em 

relação à deformação de Green. A expressão que a define é linear em relação à deformação, 

conforme já mencionado, e é dada por: 

 𝑆𝑖𝑗 =
𝜕𝛹

𝜕𝐸𝑖𝑗
= ℭ𝑖𝑗𝑘𝑙𝐸𝑘𝑙 (3.6) 

Para materiais isotrópicos, a energia de deformação fica escrita da seguinte maneira: 

 𝛹 =
𝐺

1 − 2𝜈 
[
(1 − 𝜈)(𝐸11

2 + 𝐸22
2 + 𝐸33

2 ) + 2𝜈(𝐸11𝐸22 + 𝐸11𝐸33 + 𝐸22 + 𝐸33)

+(1 − 2𝜈)(𝐸12
2 + 𝐸21

2 + 𝐸13
2 + 𝐸31

2 + 𝐸23
2 + 𝐸32

2 )
] (3.7) 

em que 𝜈 é o coeficiente de Poisson e 𝐺 é o módulo de elasticidade transversal, dado por: 

 𝐺 =
𝔼

2(1 + 𝜈)
 (3.8) 

Nessa situação, as componentes da tensão de Piola-Kirchhoff de segunda espécie são 

escritas como: 

 𝑆11 =
𝜕𝛹

𝜕𝐸11
=

2𝐺

1 − 2𝜈 
[(1 − 𝜈)𝐸11 + 𝜈(𝐸22 + 𝐸33)] (3.9) 

 𝑆22 =
𝜕𝛹

𝜕𝐸22
=

2𝐺

1 − 2𝜈 
[(1 − 𝜈)𝐸22 + 𝜈(𝐸11 + 𝐸33)] (3.10) 

 𝑆33 =
𝜕𝛹

𝜕𝐸33
=

2𝐺

1 − 2𝜈 
[(1 − 𝜈)𝐸33 + 𝜈(𝐸11 + 𝐸22)] (3.11) 

 𝑆12 = 𝑆21 =
𝜕𝛹

𝜕𝐸12
=

𝜕𝛹

𝜕𝐸21
= 2𝐺𝐸12 = 2𝐺21 (3.12) 

 𝑆13 = 𝑆21 =
𝜕𝛹

𝜕𝐸13
=

𝜕𝛹

𝜕𝐸31
= 2𝐺𝐸13 = 2𝐺31 (3.13) 

 𝑆23 = 𝑆32 =
𝜕𝛹

𝜕𝐸23
=

𝜕𝛹

𝜕𝐸32
= 2𝐺𝐸23 = 2𝐺32 (3.14) 

As Equações 3.9 a 3.14 podem ser resumidas numa única expressão fazendo uso de 

notação indicial: 

 𝑆𝑖𝑗 = 2𝐺𝐸𝑖𝑗 + 𝜆𝐸𝑘𝑘𝛿𝑖𝑗 (3.15) 

em que 𝜆 é a constante de Lamé, dada por: 
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 𝜆 =
2𝐺𝜈

1 − 2𝜈
 (3.16) 

É importante mencionar que o modelo de Saint-Venant-Kirchhoff não apresenta 

nenhum termo escrito em função do jacobiano, portanto não respeita a condição de crescimento. 

Com esse modelo, é possível obter, por exemplo, valores de tensão que tendem a zero à medida 

que o jacobiano também tende a zero. Assim, não deve ser utilizado em problemas que 

desenvolvam grandes deformações (Ciarlet, 1988). 

Na descrição de elementos finitos unidimensionais, como é o caso da barra simples com 

ativação apresentada o item 2.3.1, os tensores envolvidos nas expressões do modelo de Saint-

Venant-Kirchhoff assumem a dimensão escalar. Assim, para esse elemento, escreve-se: 

 𝑆 = 𝔼𝐸 (3.17) 

em que 𝔼 é o módulo de elasticidade longitudinal do material e 𝐸 é a deformação de Green 

uniaxial, já apresentada na Equação 2.37. 

 

3.3 MODELO HIPERELÁSTICO DE RIVLIN-SAUNDERS-HARTMANN-NEFF 

 

O modelo constitutivo hiperelástico de Rivlin-Saunders-Hartmann-Neff é um modelo 

isotrópico cuja expressão para a energia específica de deformação é escrita como a soma de 

duas parcelas: uma volumétrica, que gera energia apenas pela variação de volume, e outra 

isocórica, que é insensível a mudanças de volume. Devido a essa separação das parcelas, tal 

modelo é classificado como desacoplado, e pode ser utilizado para descrever a condição de 

quase-incompressibilidade de um material. Neste item é apresentada sucintamente a formulação 

desse modelo, podendo ser consultadas maiores informações em Pascon (2008), Coda (2018), 

Ramirez (2018) e Kishino, R. T. (2022) e Kishino, V. H. (2022). 

Para promover a separação entre os termos volumétrico e isocórico, a estratégia 

empregada é a decomposição multiplicativa de Flory (Flory, 1961), que consiste em tomar o 

gradiente da função mudança de configuração como o produto dos termos 𝑨̂ = 𝐽1/3𝑰 e 𝑨̅ =

𝐽−1/3𝑨. Com certo desenvolvimento algébrico, é possível também escrever essa decomposição 

multiplicativa diretamente em termos do tensor de alongamento à direita de Cauchy-Green: 

 𝑪 = 𝑪̂ ⋅ 𝑪̅ (3.18) 

em que 𝑪̂ e 𝑪̅ são, respectivamente, as componentes volumétrica e isocórica do tensor 𝑪, dadas 

por: 

 𝑪̂ = 𝐽2/3𝑰 (3.19) 



57 

 

 𝑪̅ = 𝐽−2/3𝑪 (3.20) 

Com isso, a expressão para a energia de deformação pode ser decomposta da seguinte 

maneira: 

 𝛹 = 𝛹𝑣𝑜𝑙 (𝐷𝑒𝑡(𝑪̂)) + 𝛹𝑖𝑠𝑜(𝑪̅) = 𝛹𝑣𝑜𝑙(𝐽) + 𝛹𝑖𝑠𝑜(𝑪̅) (3.21) 

Como o modelo de Rivlin-Saunders-Hartmann-Neff é isotrópico, rescreve-se a Equação 

(3.20) como: 

 𝛹 = 𝛹𝑣𝑜𝑙(𝐽) + 𝛹𝑖𝑠𝑜(𝐼1̅, 𝐼2̅) (3.22) 

em que 𝐼1̅ e 𝐼2̅ são os invariantes da parcela isocórica do tensor de alongamento à direita 

de Cauchy-Green. 

As expressões que compõem a energia específica de deformação do referido modelo são 

oriundas dos modelos de Rivlin-Saunders e de Hartmann-Neff. O primeiro contribui com a 

parcela isocórica, enquanto o segundo fornece a parcela volumétrica. 

Rivlin e Saunders (1951) propuseram uma formulação polinomial para descrever o 

comportamento mecânico de borrachas vulcanizadas, de comportamento incompressível e 

isotrópico. Tomando como base a expressão deduzida anteriormente por Mooney (1940) os 

autores escreveram a energia específica de deformação em função dos invariantes de 

deformação 𝐼1 e 𝐼2: 

 𝛹(𝐼1, 𝐼2) = 𝐶(𝐼1 − 3) + 𝑓(𝐼2 − 3) (3.23) 

em que 𝐶 é uma constante e 𝑓 é uma função. 

Com o objetivo de que o modelo de Rivlin-Saunders possua compatibilidade com a 

resposta obtida por meio da lei de Saint-Venant-Kirchhoff em pequenas deformações, os 

parâmetros da energia específica de deformação podem ser determinados a partir de uma análise 

comparativa. Como resultado, a Equação (3.22) toma a forma: 

 𝛹𝑖𝑠𝑜(𝐼1̅, 𝐼2̅) = 𝛹𝑖𝑠𝑜1(𝐼1̅) + 𝛹𝑖𝑠𝑜2(𝐼2̅) = 𝑐01(𝐼1̅ − 3) + 𝑐10(𝐼2̅ − 3) (3.24) 

As constantes 𝑐01 e 𝑐01 na Equação 3.24 são determinadas através de aproximações em 

pequenas deformações quando apenas uma das parcelas, 𝛹𝑖𝑠𝑜1 ou 𝛹𝑖𝑠𝑜2, é empregada na 

formulação. Conclui-se que tais constantes devem obedecer a relação 𝑐10 + 𝑐01 = 𝐺/2 e, 

conforme sugerido por Coda (2018), adota-se: 

 𝑐10 = 𝑐01 =
𝐺

4
 (3.25) 
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Na Equação 3.24 por coerência com a decomposição de Flory, os termos passam a ser 

expressos em função dos invariantes da parcela isocórica do tensor de alongamento à direita de 

Cauchy-Green. 

Hartmann e Neff (2003) por sua vez, propuseram expressões para a parcela volumétrica 

da energia específica de deformação para a descrição do comportamento mecânico de materiais 

isótropos quase incompressíveis. Uma das expressões propostas no estudo é: 

 𝛹𝑣𝑜𝑙(𝐽) = 𝑘𝑣𝑜𝑙(𝐽2𝑛 + 𝐽−2𝑛 − 2)𝑙 , com 𝑛 ≥
1

2
; 𝑙 ≥ 1 (3.26) 

em que 𝑘𝑣𝑜𝑙 é uma constante elástica e 𝑛 e 𝑙 são constantes do modelo que servem para regular 

a rigidez volumétrica do problema. 

De maneira análoga ao que foi realizado para a parcela isocórica da energia de 

deformação, determina-se a constante elástica também por meio da comparação com o modelo 

de Saint-Venant-Kirchhoff em pequenas deformações. Adotando-se 𝑙 = 1, obtém-se: 

 𝑘𝑣𝑜𝑙 =
𝐾

8𝑛2
 (3.27) 

em que 𝐾 é o módulo volumétrico, também conhecido como Bulk-Modulus, expresso por: 

 𝐾 =
𝐸

3(1 − 2𝜈)
 (3.28) 

Na Equação 3.27, adota-se 𝑛 = 1, mas essa constante é mantida no desenvolvimento 

das expressões a seguir. 

 Compondo de forma aditiva a parcela volumétrica e as parcelas isocóricas, apresentadas 

nas Equações 3.26 e 3.24, respectivamente, escreve-se a energia específica de deformação do 

modelo de Rivlin-Saunders-Hartmann-Neff da seguinte forma: 

 

𝛹 = 𝛹𝑣𝑜𝑙(𝐽) + 𝛹𝑖𝑠𝑜1(𝐼1̅) + 𝛹𝑖𝑠𝑜2(𝐼2̅) =

=
𝐾

8𝑛2
(𝐽2𝑛 + 𝐽−2𝑛 − 2) +

𝐺

4
(𝐼1̅ − 3) +

𝐺

4
(𝐼2̅ − 3)

 (3.29) 

 Observa-se que existe um termo na Equação 3.29 que é dado em função do jacobiano, 

sendo, portanto, a condição de crescimento satisfeita pelo modelo. Além disso, quando não 

existe deformação em um determinado ponto, ou seja, quando é válida a igualdade 𝑪 = 𝑰, 

obtêm-se os resultados 𝐽 = 1 e 𝐼1̅ = 𝐼2̅ = 3. Assim, verifica-se que a energia específica de 

deformação possui valor nulo nesse ponto, de maneira que a condição de normalização também 

é atendida. 

 Quanto mais expressivo for o valor da parcela volumétrica em relação às parcelas 

isocóricas, maior é o trabalho necessário para produzir deformações volumétricas (Pascon, 

2012; Ramirez, 2018). Assim, o comportamento de materiais quase-incompressíveis pode ser 
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representado por meio do aumento da parcela volumétrica de energia. Tomando proveito das 

constantes elásticas empregadas no modelo, uma estratégia possível para promover esse efeito 

é utilizar o coeficiente de Poisson 𝜈 com valor muito próximo a 0,5, de maneira a se ter 𝐾 ≫ 𝐺 

(Friedel, 2016). 

O tensor de tensões de Piola-Kirchhoff de segunda espécie 𝑺 é obtido por meio da 

derivada da Equação 3.29 em relação à deformação de Green, também gerando as parcelas 

volumétrica e isocóricas: 

 𝑺 =
𝜕𝛹𝑣𝑜𝑙

𝜕𝑬
+

𝜕𝛹𝑖𝑠𝑜1

𝜕𝑬
+

𝜕𝛹𝑖𝑠𝑜2

𝜕𝑬
= 𝐒𝒗𝒐𝒍 + 𝑺𝒊𝒔𝒐𝟏 + 𝑺𝒊𝒔𝒐𝟐 (3.30) 

 Efetuando-se as derivadas, obtém-se: 

 𝑺 = 𝐒𝒗𝒐𝒍 + 𝑺𝒊𝒔𝒐𝟏 + 𝑺𝒊𝒔𝒐𝟐 =
𝐾

4𝑛
𝑻𝒗𝒐𝒍 +

𝐺

2
𝑻𝒊𝒔𝒐𝟏 +

𝐺

2
𝑻𝒊𝒔𝒐𝟐 (3.31) 

Ne Equação 3.31, 𝑻𝒗𝒐𝒍, 𝑻𝒊𝒔𝒐𝟏 e 𝑻𝒊𝒔𝒐𝟐 são grandezas tensoriais expressas por: 

 𝑻𝒗𝒐𝒍 = (𝐽2𝑛−1 − 𝐽−2𝑛−1)𝑪−1 (3.32) 

 𝑻𝒊𝒔𝒐𝟏 = 𝐽−
2
3 (2𝑰 −

1

3
𝐼1𝑪

−1) (3.33) 

 𝑻𝒊𝒔𝒐𝟐 = 𝐽−
4
3 (𝐼1𝑰 − 𝑪 −

2

3
𝐼2𝑪

−1) (3.34) 

em que 𝑰 a matriz identidade e 𝐼1 e 𝐼2 os primeiro e segundo invariantes do tensor de 

alongamento à direita de Cauchy-Green, dados por: 

 𝐼1 = 𝑇𝑟(𝑪) (3.35) 

 𝐼2 = |
𝐶22 𝐶23

𝐶32 𝐶33
| + |

𝐶11 𝐶13

𝐶31 𝐶33
| + |

𝐶11 𝐶12

𝐶21 𝐶22
| (3.36) 

 Derivando uma segunda vez a energia de deformação em relação à deformação de 

Green, obtém-se o tensor constitutivo elástico tangente 𝕮, conforme a Equação 3.37. Por ser 

um tensor de quarta ordem, faz-se uso de notação indicial para apresentar as expressões que o 

compõem, de maneira a deixar claro a combinação de índices nas operações envolvidas. 

 ℭ𝑖𝑗𝑘𝑙 =
𝜕2𝛹𝑣𝑜𝑙

𝜕𝐸𝑖𝑗𝜕𝐸𝑘𝑙
+

𝜕2𝛹𝑖𝑠𝑜1

𝜕𝐸𝑖𝑗𝜕𝐸𝑘𝑙
+

𝜕2𝛹𝑖𝑠𝑜2

𝜕𝐸𝑖𝑗𝜕𝐸𝑘𝑙
= ℭ𝑖𝑗𝑘𝑙

𝑣𝑜𝑙 + ℭ𝑖𝑗𝑘𝑙
𝑖𝑠𝑜1 + ℭ𝑖𝑗𝑘𝑙

𝑖𝑠𝑜2 (3.37) 

em que 𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3. 

Para determinar a parcela volumétrica do tensor constitutivo elástico, escreve-se 𝛹𝑣𝑜𝑙 

como uma função do jacobiano e faz-se uso da regra da cadeia para avaliar a derivada. A 

expressão dessa parcela tem a forma: 
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 ℭ𝑖𝑗𝑘𝑙
𝑣𝑜𝑙 =

𝜕2𝛹𝑣𝑜𝑙

𝜕𝐸𝑖𝑗𝜕𝐸𝑘𝑙
=

𝜕𝐽

𝜕𝐸𝑖𝑗

𝜕2𝛹𝑣𝑜𝑙

𝜕𝐽2

𝜕𝐽

𝜕𝐸𝑘𝑙
+

𝜕𝛹𝑣𝑜𝑙

𝜕𝐽

𝜕2𝐽

𝜕𝐸𝑖𝑗𝜕𝐸𝑘𝑙
 (3.38) 

em que: 

 
𝜕𝐽

𝜕𝐸𝑖𝑗
= 𝐽𝐷𝑖𝑗 (3.39) 

 
𝜕𝛹𝑣𝑜𝑙

𝜕𝐽
=

𝐾

4𝑛
(𝐽2𝑛−1 − 𝐽−2𝑛−1) (3.40) 

 
𝜕2𝛹𝑣𝑜𝑙

𝜕𝐽2
=

𝐾

4𝑛
[(2𝑛 − 1)𝐽2𝑛−2 + (2𝑛 + 1)𝐽−2𝑛−2] (3.41) 

 
𝜕2𝐽

𝜕𝐸𝑖𝑗𝜕𝐸𝑘𝑙
= 𝐽(𝐷𝑖𝑗𝐷𝑘𝑙 − 2𝐷𝑖𝑘𝐷𝑙𝑗) (3.42) 

Nas Equações 3.39 e 3.42, denota-se 𝑫 = 𝑪−𝟏. 

 As parcelas isocóricas do tensor constitutivo elástico são determinadas de maneira 

análoga. Nesse caso, escreve-se 𝛹𝑖𝑠𝑜1 e 𝛹𝑖𝑠𝑜2 como funções, respectivamente, dos invariantes 

𝐼1̅ e 𝐼2̅ da parcela isocórica do tensor de alongamento à direita de Cauchy-Green e avalia-se a 

derivada por meio da regra da cadeia, resultando na expressão: 

 ℭ𝑖𝑗𝑘𝑙
𝑖𝑠𝑜1 =

𝜕2𝛹𝑖𝑠𝑜1

𝜕𝐸𝑖𝑗𝜕𝐸𝑘𝑙
=

𝜕𝐼1̅
𝜕𝐸𝑖𝑗

𝜕2𝛹𝑖𝑠𝑜1

𝜕𝐼1̅
2

𝜕𝐼1̅
𝜕𝐸𝑘𝑙

+
𝜕𝛹𝑖𝑠𝑜1

𝜕𝐼1̅

𝜕2𝐼1̅
𝜕𝐸𝑖𝑗𝜕𝐸𝑘𝑙

 (3.43) 

 ℭ𝑖𝑗𝑘𝑙
𝑖𝑠𝑜2 =

𝜕2𝛹𝑖𝑠𝑜2

𝜕𝐸𝑖𝑗𝜕𝐸𝑘𝑙
=

𝜕𝐼2̅
𝜕𝐸𝑖𝑗

𝜕2𝛹𝑖𝑠𝑜2

𝜕𝐼2̅
2

𝜕𝐼2̅
𝜕𝐸𝑘𝑙

+
𝜕𝛹𝑖𝑠𝑜2

𝜕𝐼2̅

𝜕2𝐼2̅
𝜕𝐸𝑖𝑗𝜕𝐸𝑘𝑙

 (3.44) 

em que: 

 
𝜕2𝛹𝑖𝑠𝑜1

𝜕𝐼1̅
2 =

𝜕2𝛹𝑖𝑠𝑜2

𝜕𝐼2̅
2 = 0 (3.45) 

 
𝜕𝛹𝑖𝑠𝑜1

𝜕𝐼1̅
=

𝜕𝛹𝑖𝑠𝑜2

𝜕𝐼2̅
=

𝐺

4
 (3.46) 

 
𝜕2𝐼1̅

𝜕𝐸𝑖𝑗𝜕𝐸𝑘𝑙
=

4

3
𝐽−2/3 [

1

3
(𝐷𝑖𝑗𝐷𝑘𝑙 + 3𝐷𝑖𝑘𝐷𝑙𝑗)𝐼1 − 𝐷𝑖𝑗𝛿𝑘𝑙 − 𝐷𝑘𝑙𝛿𝑖𝑗] (3.47) 

 
𝜕2𝐼2̅

𝜕𝐸𝑖𝑗𝜕𝐸𝑘𝑙
=

8

3
𝐽−4/3 [

(
2

3
𝐷𝑖𝑗𝐷𝑘𝑙 + 𝐷𝑖𝑘𝐷𝑙𝑗) 𝐼2 − (𝐷𝑖𝑗𝛿𝑘𝑙 + 𝐷𝑘𝑙𝛿𝑖𝑗)𝐼1 +

+𝐷𝑖𝑗𝐶𝑘𝑙 + 𝐷𝑘𝑙𝐶𝑖𝑗 +
3

2
(𝛿𝑖𝑗𝛿𝑘𝑙 − 𝛿𝑗𝑘𝛿𝑖𝑙)

] (3.48) 

 Nas Equações 3.47 e 3.48, 𝜹 é o delta de Kronecker. As expressões correspondentes a 

𝜕𝐼1̅/𝜕𝑬 e 𝜕𝐼2̅/𝜕𝑬 são omitidas pois não é necessário conhecê-las, uma vez que essas parcelas 

estão multiplicadas por termos de valor nulo. 
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3.4 MODELO VISCOELÁSTICO DE KELVIN-VOIGT ADAPTADO 

 

Viscosidade é a propriedade física que caracteriza a resistência de um fluido ao 

escoamento, isto é, deformação por cisalhamento. Entretanto, essa característica não se 

restringe apenas a fluidos, uma vez que muitos materiais sólidos (elásticos) se comportam de 

tal maneira em algum grau. Embora seja possível que, em determinadas condições, a 

viscosidade nem se manifeste de maneira perceptível e a resposta elástica seja preponderante, 

existem várias situações em que o comportamento viscoso se mostra significativo. Esse 

comportamento conjunto não é descrito nem pela teoria da elasticidade, nem pela da 

viscosidade, mas pela combinação de ambas: adentra-se então o âmbito da viscoelasticidade 

(Christensen, 1982). 

A viscosidade confere ao material uma dependência da taxa de deformação em relação 

ao tempo. Em função disso, alguns comportamentos característicos são observados nos sólidos 

viscoelásticos: a fluência, a relaxação e a histerese (Zatsiorsky; Prilutsky, 2012). O primeiro é 

a deformação gradual sob tensão constante. O segundo consiste na redução de tensões quando 

o sólido é mantido num estado de deformação constante. Por fim, a histerese é a dissipação de 

energia que ocorre num ciclo de carga e descarga, evidenciado pela mudança na curva tensão-

deformação. 

Este item é voltado para descrever o modelo viscoelástico de Kelvin-Voigt e tratar sua 

consideração na expressão da energia mecânica para, então, ser introduzido à formulação do 

MEFP. É apresentada, inicialmente, sua versão para o regime de pequenas deformações, de 

onde se extraem conceitos importantes para que, em seguida, seja descrita uma versão do 

mesmo modelo voltada a problemas que desenvolvem grandes deformações. 

Durante a descrição do modelo, o foco é apresentar o tensor de tensões viscosas e o 

tensor constitutivo viscoso nas versões de pequenas e grandes deformações, que são as 

grandezas necessárias para considerar o comportamento viscoelástico na resolução de 

problemas via MEFP. Mais detalhes sobre esse modelo podem ser encontrados em (Carvalho, 

2019; Kishino, R. T., 2022)  

 

3.4.1 Modelo viscoelástico para pequenas deformações 

 

O comportamento viscoelástico no regime de pequenas deformações geralmente é 

descrito por modelos fisicamente lineares, em que a tensão é proporcional ao histórico de 

deformação. Esses modelos são visualmente representados por meio de sistemas mecânicos de 
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mola-amortecedor, nos quais a viscoelasticidade é tratada como a combinação linear de molas 

hookeanas (puramente elástica) e amortecedores newtonianos (puramente viscoso) (Roylance, 

2001), ilustrados na Figura 20. 

A mola hookeana modela a quantidade de energia mecânica armazenada na forma de 

energia de deformação e a deformação instantânea desenvolvida no material, sendo descrito 

pela Lei de Hooke: 

 𝝈 = 𝓒 ∶ 𝜺 (3.49) 

Figura 20 – a) Mola hookeana e b) amortecedor newtoniano 

 

Fonte: Autor. 

em que 𝝈 é o tensor de tensões de Cauchy, 𝓒 é o tensor constitutivo elástico pela Lei de Hooke 

e 𝜺 é o tensor de deformações lineares. 

O amortecedor newtoniano, por sua vez, reproduz o comportamento dependente do 

tempo, no qual a tensão gera uma taxa de deformação. Essa relação segue a Lei de Newton da 

Viscosidade: 

 𝝈 = 𝓝 ∶ 𝜺̇ (3.50) 

em que 𝓝 é o tensor constitutivo viscoso pela Lei de Hooke e 𝜺̇ é a taxa de variação do estado 

de deformações lineares no tempo. 

A associação em paralelo do comportamento elástico com um amortecimento viscoso 

gera o modelo de Kelvin-Voigt. Esse arranjo exibe comportamento elástico em longos períodos, 

com deformações lentas, e apresenta uma resistência extra para desenvolver deformações 

rápidas. É um modelo bastante empregado para retratar com boa qualidade a fluência nos 

materiais, mas pouco preciso para descrever o fenômeno da relaxação (Banks; Hu; Kenz, 2011).  

Empregando a deformação de Green como medida de deformação e o seu conjugado 

energético, isto é, a tensão de Piola-Kirchhoff de segunda espécie, como medida de tensão, 

obtém-se o modelo de Kelvin-Voigt adaptado (Madeira; Coda, 2016),esquematizado na Figura 

21. Essa modificação visa a introdução do modelo viscoelástico na análise mecânica através da 

formulação do MEFP e, em regime de pequenas deformações, apresenta boa concordância com 

o modelo original.  

a) b)
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Uma vez que os comportamentos elástico e viscoso estão associados em paralelo, o 

estado de deformações é o mesmo, ou seja, 𝑬𝒆𝒍𝒂𝒔𝒕 = 𝑬𝒗𝒊𝒔𝒄. Assim, o estado de deformações no 

modelo é denotado simplesmente por 𝑬. Já o estado de tensões total corresponde à soma dos 

estados de tensões elástico e viscoso, conforme a expressão: 

 𝑺 = 𝑺𝒆𝒍𝒂𝒔𝒕 + 𝑺𝒗𝒊𝒔𝒄 = 𝕮 ∶ 𝑬 + 𝕹 ∶ 𝑬̇ (3.51) 

em que 𝕮 e 𝕹  são, respectivamente, os tensores constitutivos de quarta ordem elástico e viscoso 

do material pelo modelo de Sain-Venant-Kirchhoff e 𝑬̇ é a taxa de variação do estado de 

deformações no tempo. 

Figura 21 – Modelo de Kelvin-Voigt adaptado à 

deformação de Green 

 

Fonte: Adaptado de Madeira e Coda (2016). 

Na Equação 3.51, a variação do estado de deformações no tempo 𝑬̇ pode ser calculada 

por meio do método das diferenças finitas (Madeira; Coda, 2016). Para tanto, o tempo é tomado 

como uma variável discreta, de maneira que o tempo atual 𝑡𝑠+1 é calculado como o instante 

anterior 𝑡𝑠 acrescido de um passo ou intervalo de tempo Δ𝑡. Assim, escreve-se a aproximação 

para essa variação como: 

 𝑬̇ =
𝑬𝑠+1 − 𝑬𝑠

Δ𝑡
 (3.52) 

Desse modo, a parcela viscosa do estado de tensões total no material viscoelástico é 

expressa por: 

 𝑺𝒗𝒊𝒔𝒄 = 𝕹 ∶
𝑬𝑠+1 − 𝑬𝑠

Δ𝑡
 (3.53) 

Para um material isotrópico, o tensor constitutivo viscoso pode ser adotado como 

(Carvalho, 2019). 

 𝕹 =
𝜂

𝔼
𝕮 = 𝜂̅𝕮 (3.54) 
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em que 𝜂 é o coeficiente de viscosidade e 𝔼 é o módulo de elasticidade longitudinal do material. 

Inclusive, a razão 𝜂/𝔼 = 𝜂̅ tem unidade de tempo e se mostra uma medida interessante para 

avaliar o tempo de resposta viscoelástica do material (Roylance, 2001). 

 

3.4.2 Modelo visco-hiperelástico para grandes deformações 

 

O modelo de Kelvin-Voigt pode ser ajustado a fim de representar com boa qualidade o 

comportamento de um material viscoelástico no regime de grandes deformações. Uma 

alternativa para realizar esse ajuste é empregar o modelo hiperelástico completo de Rivlin-

Saunders-Hartmann-Neff na descrição do comportamento elástico e um modelo viscoso 

análogo a esse modelo elástico, em que a parcela de energia também é decomposta nas 

componentes volumétrica e isocórica. O resultado desse processo é um modelo visco-

hiperlástico completo e seu desenvolvimento está descrito em detalhe em Carvalho (2019) e 

Kishino, R. T. (2022). Aqui são apresentadas as expressões principais para uma boa 

compreensão do modelo. 

Aplicando a decomposição de Flory, a energia específica de deformação viscoelástica 

no modelo de Kelvin-Voigt é escrita na forma: 

 𝛹 = 𝛹𝑒𝑙𝑎𝑠 + 𝛹𝑣𝑖𝑠𝑐 = (𝛹𝑒𝑙𝑎𝑠
𝑣𝑜𝑙 + 𝛹𝑒𝑙𝑎𝑠

𝑖𝑠𝑜1 + 𝛹𝑒𝑙𝑎𝑠
𝑖𝑠𝑜2) + (𝛹𝑣𝑖𝑠𝑐

𝑣𝑜𝑙 + 𝛹𝑣𝑖𝑠𝑐
𝑖𝑠𝑜1 + 𝛹𝑣𝑖𝑠𝑐

𝑖𝑠𝑜2) (3.55) 

A tensão de Piola-Kirchhoff de segunda espécie fica, então, escrita como: 

 𝑺 =
𝜕𝛹

𝜕𝑬
= (𝑺𝒆𝒍𝒂𝒔

𝒗𝒐𝒍 + 𝑺𝒆𝒍𝒂𝒔
𝒊𝒔𝒐𝟏 + 𝑺𝒆𝒍𝒂𝒔

𝒊𝒔𝒐𝟐) + (𝑺𝒗𝒊𝒔𝒄
𝒗𝒐𝒍 + 𝑺𝒗𝒊𝒔𝒄

𝒊𝒔𝒐𝟏 + 𝑺𝒗𝒊𝒔𝒄
𝒊𝒔𝒐𝟐) (3.56) 

Assim como no modelo para pequenas deformações, percebe-se que a tensão total é 

mantida como a soma das parcelas elástica e viscosa. As componentes da parcela elástica já 

estão apresentadas no item 3.3. Para as componentes da parcela viscosa em (Carvalho, 2019; 

Kishino, R. T., 2022) propõem a seguinte expressão, em semelhança ao modelo hiperelástico 

de Rivlin-Saunders-Hartmann-Neff: 

 𝑺𝒗𝒊𝒔𝒄 = 𝑺𝒗𝒊𝒔𝒄
𝒗𝒐𝒍 + 𝑺𝒗𝒊𝒔𝒄

𝒊𝒔𝒐𝟏 + 𝑺𝒗𝒊𝒔𝒄
𝒊𝒔𝒐𝟐 =

𝐾̅

4𝑛
𝑻̇𝒗𝒐𝒍 +

𝐺̅

2
𝑻̇𝒊𝒔𝒐𝟏 +

𝐺̅

2
𝑻̇𝒊𝒔𝒐𝟐 (3.57) 

Na Equação 3.57, 𝐾̅ = 𝜂̅𝐾  é a viscosidade volumétrica e 𝐺̅ = 𝜂̅𝐺 é a viscosidade 

cisalhante isocórica. Os termos 𝑻̇𝒗𝒐𝒍, 𝑻̇𝒊𝒔𝒐𝟏 e 𝑻̇𝒊𝒔𝒐𝟐 representam a variação no tempo das 

grandezas tensoriais expressas nas Equações 3.32 a 3.34. Seguindo a proposta de (Madeira; 

Coda, 2016) para a taxa de variação da deformação de Green apresentada no item 3.4.1, 

aproximam-se tais parcelas também por meio de diferenças finitas: 
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 𝑻̇𝒗𝒐𝒍 =
[(𝑻𝒗𝒐𝒍)

𝑠+𝟏
− (𝑻𝒗𝒐𝒍)

𝑠
]

Δ𝑡
 (3.58) 

 𝑻̇𝒊𝒔𝒐𝟏 =
[(𝑻𝒊𝒔𝒐𝟏)𝑠+𝟏 − (𝑻𝒊𝒔𝒐𝟏)𝑠]

Δ𝑡
 (3.59) 

 𝑻̇𝒊𝒔𝒐𝟐 =
[(𝑻𝒊𝒔𝒐𝟐)𝑠+𝟏 − (𝑻𝒊𝒔𝒐𝟐)𝑠]

Δ𝑡
 (3.60) 

As grandezas tensoriais 𝑻 iniciam nulas na análise dinâmica ou quase-estática e são 

atualizadas no final de cada passo de tempo para, então, dar sequência com o processo iterativo 

de Newton-Raphson. Vale salientar que aproximar as variações dessas grandezas tensoriais 

dessa maneira, Equações 3.57 a 3.60, impõe que as derivadas em relação ao tempo das parcelas 

volumétrica e isocóricas preservam as direções originais, embora isso não corresponda 

necessariamente ao comportamento real (Kishino, R. T., 2022). Optou-se por tal estratégia em 

virtude do menor custo computacional, sendo que as simplificações envolvidas não devem 

alterar significativamente a resposta final. 

A partir das aproximações por diferenças finitas, é possível escrever o tensor de tensões 

viscosas simplesmente como: 

 𝑺𝒗𝒊𝒔𝒄 =
𝜂̅

Δ𝑡
[(𝑺𝒆𝒍𝒂𝒔)𝑠+1 − (𝑺𝒆𝒍𝒂𝒔)𝑠+1] (3.61) 

Derivando as tensões de Piola-Kirchhoff viscosas, Equação 3.57 em relação à 

deformação de Green, obtém-se o tensor constitutivo viscoso tangente 𝕹, também dividido nas 

componentes volumétrica e isocórica. 

 𝕹 =
𝜕𝑺𝒗𝒊𝒔𝒄

𝜕𝑬
=

𝜕𝑺𝒗𝒊𝒔𝒄
𝒗𝒐𝒍

𝜕𝑬
+

𝜕𝑺𝒗𝒊𝒔𝒄
𝒊𝒔𝒐𝟏

𝜕𝑬
+

𝜕𝑺𝒗𝒊𝒔𝒄
𝒊𝒔𝒐𝟐

𝜕𝑬
= 𝕹𝒗𝒐𝒍 + 𝕹𝒊𝒔𝒐𝟏 + 𝕹𝒊𝒔𝒐𝟐 (3.62) 

em que: 

 𝕹𝒗𝒐𝒍 =
𝐾̅

4𝑛Δ𝑡
[
𝜕(𝑻𝒗𝒐𝒍)

𝑠+𝟏

∂𝑬
−

𝜕(𝑻𝒗𝒐𝒍)
𝑠

𝜕𝑬
] (3.63) 

 𝕹𝒊𝒔𝒐𝟏 =
𝐺̅

2Δ𝑡
[
𝜕(𝑻𝒊𝒔𝒐𝟏)𝑠+𝟏

∂𝑬
−

𝜕(𝑻𝒊𝒔𝒐𝟏)𝑠

𝜕𝑬
] (3.64) 

 𝕹𝒊𝒔𝒐𝟐 =
𝐺̅

2Δ𝑡
[
𝜕(𝑻𝒊𝒔𝒐𝟐)𝑠+𝟏

∂𝑬
−

𝜕(𝑻𝒊𝒔𝒐𝟐)𝑠

𝜕𝑬
] (3.65) 

Para o passo de tempo atual 𝑡𝑠+1, a derivada dos tensores 𝑻 referentes ao passo anterior 

𝑡𝑠 em relação à deformação atual resultam nulas evidentemente. Com isso, a derivada restante 

é a mesma avaliada para o tensor constitutivo elástico, sendo possível escrever: 

 𝕹 =
𝜂̅

Δ𝑡
𝕮 (3.66) 
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Por fim, ressalta-se que esse modelo é dito completo, pois respeita as condições tanto 

de normalização quanto de crescimento. 

 

3.4.3 Resolução do problema viscoelástico via MEFP 

 

 A introdução do modelo de Kelvin-Voigt à formulação do MEFP ocorre por meio do 

problema dinâmico, uma vez que a viscosidade é uma propriedade cujos efeitos se revelam ao 

longo do tempo. Observando a Equação 3.51 das tensões do modelo, o primeiro termo é a 

derivada da energia específica de deformação em relação ao estado de deformações, enquanto 

o segundo termo corresponde à parcela dissipativa da energia (Madeira; Coda, 2016). Dessa 

forma, o amortecimento viscoso consiste num mecanismo de dissipação de energia. Conforme 

já comentado no Capítulo 2, embora não seja conhecida uma expressão para o próprio potencial 

dissipativo ℚ, é possível escrever a sua variação 𝛿ℚ, Equação 2.12, como: 

 𝛿ℚ = 𝐹 𝑑𝑖𝑠 ∙ 𝛿𝑌⃗ = ∫ 𝑺𝒗𝒊𝒔𝒄 ∶
𝜕𝑬

𝜕𝑌⃗ 
∙ 𝛿𝑌⃗ 𝑑𝑉0

𝑉0

 (3.67) 

De onde se conclui que o vetor de forças de dissipação presente na equação de equilíbrio 

não linear é: 

 𝐹 𝑑𝑖𝑠 = ∫ 𝑺𝒗𝒊𝒔𝒄 ∶
𝜕𝑬

𝜕𝑌⃗ 
𝑑𝑉0

𝑉0

 (3.68) 

No processo de resolução do problema dinâmico, ao se tomar a derivada do vetor de 

desbalanceamento mecânico 𝜕𝑔(𝑡𝑠+1)/𝜕𝑌⃗  em 𝑌⃗ 𝑠+1
0 , Equação 2.31, a presença do vetor de 

forças dissipativas na Equação de equilíbrio gera uma parcela da matriz hessiana 𝑯𝒅𝒊𝒔 oriunda 

do potencial dissipativo. Tal parcela corresponde a: 

 𝑯𝒅𝒊𝒔 =
𝜕𝐹 𝑑𝑖𝑠

𝜕𝑌⃗ 
|
𝑌⃗ 𝑠+1

0

= ∫ (
𝜕𝑬

𝜕𝑌⃗ 
∶ 𝕹 ∶

𝜕𝑬

𝜕𝑌⃗ 
+ 𝑺𝒗𝒊𝒔𝒄 ∶

𝜕2𝑬

𝜕𝑌⃗ ⨂𝜕𝑌⃗ 
) 𝑑𝑉0

𝑉0

 (3.69) 

Uma vez definidas as expressões gerais do vetor de forças e da matriz hessiana 

provenientes do potencial dissipativo, particularizam-se essas expressões para os elementos de 

barra simples com ativação e para os elementos prismáticos. As expressões apresentadas a 

seguir para essas grandezas são locais, isto é, têm sua aproximação realizada no domínio do 

elemento. Após avaliadas, devem ser contribuídas em suas respectivas grandezas globais para 

tratar o problema completo, de acordo com a incidência nodal do elemento nos graus de 

liberdade do corpo discretizado. 
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3.4.3.1 Elemento de barra simples com ativação 

 

Numa abordagem voltada para elementos unidimensionais, como é o caso da barra 

simples com ativação, os estados de tensões e deformações assumem valor escalar e passam a 

se referir apenas à direção axial. Assim, o vetor de forças de dissipação, Equação 3.68, assume 

o seguinte formato, análogo ao vetor de forças internas: 

 (𝐹𝑖
𝑙)

𝑑𝑖𝑠
= 𝑆𝑣𝑖𝑠𝑐𝐴0

(−1)𝑙

𝐿0𝑛

(𝑌𝑖
2 − 𝑌𝑖

1)  (3.70) 

Substituindo, na Equação 3.70, a Equação 3.53 da tensão viscosa para o modelo 

viscoelástico de pequenas deformações em seu formato uniaxial, tem-se: 

 (𝐹𝑖
𝑙)

𝑑𝑖𝑠
=

𝜂

Δ𝑡
(𝐸𝑠+1 − 𝐸𝑠)𝐴0

(−1)𝑙

𝐿0𝑛

(𝑌𝑖
2 − 𝑌𝑖

1)𝑠+1  (3.71) 

Madeira e Coda (2016) mostram que, ao considerar passos de tempo suficientemente 

pequenos, é possível admitir que: 

 (𝑌𝑖
2 − 𝑌𝑖

1)𝑠+1 ≈ (𝑌𝑖
2 − 𝑌𝑖

1)𝑠  (3.72) 

Com isso, a expressão final para as referidas forças de dissipação é escrita como: 

 (𝐹𝑖
𝑙)

𝑑𝑖𝑠
=

𝜂̅

Δ𝑡
[(𝐹𝑖

𝑙)
𝑠+1

𝑖𝑛𝑡
− (𝐹𝑖

𝑙)
𝑠

𝑖𝑛𝑡
] (3.73) 

Dessa maneira, as forças de dissipação estão numericamente relacionadas com as forças 

internas. A partir disso, a matriz hessiana proveniente do mecanismo de dissipação viscosa em 

elementos de barra simples é expressa por: 

 (𝐻𝑖𝑙𝑔𝑧)
𝑑𝑖𝑠

=
𝜕(𝐹𝑖

𝑙)
𝑑𝑖𝑠

𝜕(𝑌𝑔
𝑧)

𝑠+1

=
𝜂̅

Δ𝑡
[
𝜕(𝐹𝑖

𝑙)
𝑠+1

𝑖𝑛𝑡

𝜕(𝑌𝑔
𝑧)

𝑠+1

−
𝜕(𝐹𝑖

𝑙)
𝑠

𝑖𝑛𝑡

𝜕(𝑌𝑔
𝑧)

𝑠+1

] (3.74) 

A derivada da força interna do passo anterior 𝑡𝑠 em relação às posições do passo de 

tempo atual 𝑡𝑠+1 resulta nula. A derivada restante, por sua vez, corresponde à própria matriz 

hessiana estática do elemento de barra simples com ativação. Chega-se, portanto, à seguinte 

expressão para a parcela da matriz hessiana proveniente do potencial dissipativo: 

  𝑯𝒅𝒊𝒔 =
𝜂̅

Δ𝑡
𝑯𝒆𝒔𝒕𝒂𝒕 (3.75) 

 

3.4.3.2 Elemento prismático de base triangular 

 

Já numa abordagem voltada para os elementos prismáticos, o vetor de força interna é 

calculado mediante a utilização conjunta da quadratura de Hammer com 12 pontos e da 
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quadratura de Gauss com 2 pontos. A integral analítica da Equação 3.68 é reescrita como uma 

integral numérica: 

 (𝐹𝑖
𝑙)

𝑑𝑖𝑠
= ∫ (𝑓𝑖𝑙)

𝑑𝑖𝑠𝑑𝑉0
𝑉0

= ∑ ∑(𝑓𝑖𝑙)
𝑑𝑖𝑠𝐽0𝑤ℎ𝑤𝑔

12

ℎ=1

2

𝑔=1

 (3.76) 

em que: 

 (𝑓𝑖
𝑙)

𝑑𝑖𝑠
= (𝑆𝛼𝛽)

𝑣𝑖𝑠𝑐
 
𝜕𝐸𝛼𝛽

𝜕𝑌𝑖
𝑙  (3.77) 

Ne Equação 3.76, 𝑤ℎ e 𝑤𝑔 são os pesos de Hammer e de Gauss respectivamente e 𝐽0 é 

o jacobiano da transformação. Os índices 𝑖 = 1,2,3 e  𝑙 = 1,2, … ,20 são, respectivamente, as 

direções do problema e os nós do elemento. Já os índices 𝛼, 𝛽 = 1,2,3 correspondem às 

dimensões do tensor de tensão viscoso 𝑺𝒗𝒊𝒔𝒄. 

A partir disso, a parcela da matriz hessiana proveniente do potencial dissipativo é escrita 

para um elemento prismático, utilizando notação indicial, como: 

 (𝐻𝑖𝑙𝑔𝑧)
𝑑𝑖𝑠

 =
𝜕(𝐹𝑖

𝑙)
𝑑𝑖𝑠

𝜕𝑌𝑔
𝑧

= ∫ (ℎ𝑖𝑙𝑔𝑧)
𝑑𝑖𝑠

𝑑𝑉0
𝑉0

= ∑ ∑(ℎ𝑖𝑙𝑔𝑧)
𝑑𝑖𝑠

𝐽0𝑤ℎ𝑤𝑔

12

ℎ=1

2

𝑔=1

 (3.78) 

em que: 

 (ℎ𝑖𝑙𝑔𝑧)
𝑑𝑖𝑠

=
𝜕𝐸𝛼𝛽

𝜕𝑌𝑔
𝑧

 𝔑𝛼𝛽𝛾𝜇  
𝜕𝐸𝛾𝜇

𝜕𝑌𝑖
𝑙 + (𝑆𝛼𝛽)

𝑣𝑖𝑠𝑐
 
𝜕2𝐸𝛼𝛽

𝜕𝑌𝑖
𝑙𝜕𝑌𝑔

𝑧
 (3.79) 

Os índices 𝑖, 𝑔 = 1,2,3 e  𝑙, 𝑧 = 1,2, … ,20 são, respectivamente, as direções do 

problema e os nós do elemento. Já os índices 𝛼, 𝛽, 𝛾, 𝜇 = 1,2,3 correspondem às dimensões dos 

tensores 𝕹. As derivadas do tensor de deformações de Green em relação às posições nodais são 

as mesmas apresentadas nas Equações 2.53 e 2.65. Para o elemento prismático, podem ser 

empregadas as expressões de 𝕹 e 𝑺𝒗𝒊𝒔𝒄 tanto do modelo viscoelástico para pequenas 

deformações quanto do modelo visco-hiperelástico completo para grandes deformações. 

O mesmo comentário feito nos itens 2.3.1 e 2.3.2 em relação à verdadeira ordem dos 

tensores de força e da matriz hessiana elásticos dos elementos finitos vale também para as 

grandezas tratadas neste item. A relação entre nó-direção e os graus de liberdade na notação 

(𝐹𝑘)
𝑑𝑖𝑠 e (𝐻𝑘𝑗)

𝑑𝑖𝑠
 é dada por 𝑘 = 3(𝑙 − 1) + 𝑖 e 𝑗 = 3(𝑧 − 1) + 𝑔. 

 

3.5 EXEMPLOS DE VALIDAÇÃO 

 

Neste item são apresentados alguns exemplos com o intuito de validar o correto 

funcionamento do código computacional implementado para os modelos constitutivos descritos 
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neste capítulo. Primeiramente, são abordados problemas elásticos, para avaliar o 

comportamento dos modelos hiperelásticos. Em seguida, são tratados problemas viscoelásticos. 

 

3.5.1 Viga engastada e livre 

 

Uma viga engastada e livre, com comprimento de 10 m, é submetida a uma força 

transversal concentrada de 160 kN aplicada na extremidade livre, conforme ilustrado na Figura 

22. Sua seção transversal é retangular, com base de 1,0 m e altura de 0,2 m. O módulo de 

elasticidade 𝔼 do material é de 2,4.106 kN/m2 e seu coeficiente de Poisson 𝜈 é nulo. 

Figura 22 - Viga engastada e livre, submetida a força transversal concentrada na 

extremidade livre 

 

Fonte: Autor. 

A viga é modelada com 32 elementos prismáticos de base triangular, conforme ilustrado 

na Figura 23. Os nós da face 𝑥1 = 0 m tem seu deslocamento restrito tanto na direção 𝑥1 quanto 

na 𝑥2, representando o engaste existente no problema. Esses mesmos nós também são restritos 

na direção 𝑥3 para garantir a vinculação necessária no espaço tridimensional. Além disso, os 

nós da face 𝑥1 = 10 𝑚 recebem uma carga distribuída sobre a superfície no valor de 800 kN/m², 

equivalente ao carregamento concentrado de 160 kN no problema original. Realiza-se uma 

análise estática com tolerância de 10-6 para a convergência da solução. 

Figura 23 – Discretização da viga engastada e livre 

 

Fonte: Autor. 

x1

x2

x3
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O objetivo deste problema é avaliar a resposta mecânica obtida a partir do modelo 

constitutivo de Rivlin-Saunders-Hartmann-Neff. Os valores de referência para comparação 

foram retirados de Mattiasson (1981) que desenvolveu sua análise por meio de integrais 

elípticas e empregou a Lei de Hooke. Os deslocamentos horizontal e vertical do nó em que 

ocorre a aplicação da força estão apresentados na Tabela 2. Também estão exibidos os valores 

obtidos porMattiasson (1981) e as respectivas diferenças percentuais.  

Tabela 2 - Resultados obtidos para o problema 3.5.1 

PL²/EI 
Autor Mattiason (1981) Diferença 

u/L w/L u/L w/L u/L w/L 

0,0 0,00000 0,00000 0,00000 0,00000 - - 

1,0 0,05629 0,30130 0,05643 0,30172 -0,24% -0,14% 

2,0 0,15985 0,49186 0,16064 0,49346 -0,49% -0,32% 

2,5 0,20877 0,55351 0,20996 0,55566 -0,57% -0,39% 

3,0 0,25286 0,60062 0,25442 0,60325 -0,61% -0,44% 

3,5 0,29203 0,63732 0,29394 0,64039 -0,65% -0,48% 

4,0 0,32671 0,66648 0,32894 0,66996 -0,68% -0,52% 

4,5 0,35745 0,69010 0,35999 0,69397 -0,71% -0,56% 

5,0 0,38481 0,70957 0,38763 0,71379 -0,73% -0,59% 

5,5 0,40927 0,72586 0,41236 0,73042 -0,75% -0,62% 

6,0 0,43124 0,73968 0,43459 0,74457 -0,77% -0,66% 

6,5 0,45109 0,75154 0,45468 0,75676 -0,79% -0,69% 

7,0 0,46910 0,76185 0,47293 0,76737 -0,81% -0,72% 

7,5 0,48552 0,77088 0,48957 0,77670 -0,83% -0,75% 

8,0 0,50056 0,77887 0,50483 0,78498 -0,85% -0,78% 

8,5 0,51438 0,78599 0,51886 0,79239 -0,86% -0,81% 

9,0 0,52713 0,79239 0,53182 0,79906 -0,88% -0,84% 

9,5 0,53893 0,79816 0,54383 0,80510 -0,90% -0,86% 

10,0 0,54990 0,80341 0,55500 0,81061 -0,92% -0,89% 

Fonte: Autor. 

Observa-se uma boa concordância entre os resultados, o que evidencia o bom 

funcionamento das implementações e a qualidade da resposta obtida pelo modelo constitutivo. 

Essa concordância está em acordo com o fato de que a estrutura, embora desenvolva grandes 

deslocamentos, ainda se insere no regime de pequenas deformações. Era esperado, portanto, 

que a correta implementação do modelo constitutivo levasse os resultados se aproximarem, uma 

vez que, em pequenas deformações, o modelo Rivlin-Saunders-Hartmann-Neff reproduz o 

modelo de Saint-Venant-Kirchhoff, que, por sua vez, se aproxima da Lei de Hooke nesse 

regime. 
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3.5.2 Cubo submetido a compressão uniaxial 

 

Este exemplo, também encontrado em Kishino, V. H. (2022), consiste em um cubo de 

dimensões unitárias, cuja face contida no plano 𝑥3 = 1 está sujeita a um deslocamento prescrito 

Δ𝑥3 de 0,9 no sentido negativo do eixo, conforme ilustrado na Figura 24. As faces de entrada 

dos eixos 𝑥1, 𝑥2 e 𝑥3 tem seu movimento restrito na direção do eixo perpendicular ao seu plano. 

O módulo de elasticidade 𝔼 do material que constitui o cubo é unitário e o coeficiente de 

Poisson 𝜈 é adotado como 0,4.  

Figura 24 - Cubo sujeito a compressão na direção 𝑥3 

 

Fonte: Autor. 

O objetivo deste teste é verificar o comportamento dos modelos constitutivos de Saint-

Venant-Kirchhoff e de Rivlin-Saunders-Hartmann-Neff no regime de grandes deformações. A 

modelagem tridimensional do problema com 2 elementos prismáticos está ilustrada na Figura 

25.  

Figura 25 - Discretização do cubo 

 
Fonte: Autor. 

x1

x2

x3
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Os nós das faces contidas nos planos 𝑥1 = 0, 𝑥2 = 0 e 𝑥3 = 0 são mantidos fixos nas 

direções 𝑥1, 𝑥2 e 𝑥3, respectivamente, representando as vinculações do problema, enquanto os 

nós da face contida no plano 𝑥3 = 1 são submetidos ao controle de posição Δ𝑥3. É efetuada 

uma análise estática em 30 passos de carga com tolerância de 10-6 para a convergência da 

solução. 

A análise dos resultados foi feita mediante a plotagem da curva tensão x deformação na 

direção de achatamento para os modelos constitutivos em questão, apresentados nas Figuras 26 

e 27. Como o deslocamento imposto gera um estado de tensões e deformações homogêneo no 

corpo, as grandezas analisadas são referentes a um ponto qualquer do domínio. 

Figura 26 - Gráfico |𝜎3| 𝑥 |𝜆3 − 1| do cubo comprido obtido com o modelo de 

Rivlin-Saunders-Hartmann-Neff 

 

Fonte: Autor. 

Figura 27 - Gráfico |𝜎3| 𝑥 |𝜆3 − 1| do cubo comprido obtido com o modelo de 

Saint-Venant-Kirchhoff 

 

Fonte: Autor. 

Observa-se evidentemente que o modelo de Rivlin-Saunders-Hartmann-Neff respeita a 

condição de crescimento, sendo cada vez mais alto o valor da tensão quanto maior é a 

0

5

10

15

20

25

30

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

|σ
3

|

| λ3 - 1 |

0.00

0.04

0.08

0.12

0.16

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

|σ
3

|

| λ3 - 1 |



73 

 

deformação. Isso se deve à presença do jacobiano na expressão da sua energia de deformação. 

Por outro lado, o modelo de Saint-Venant-Kirchhoff apresenta uma tensão inicialmente 

crescente, mas que passa a reduzir seu valor, embora o achatamento continue se desenvolvendo. 

Assim, o primeiro modelo se mostra de fato adequado para representar o regime de grandes 

deformações, devendo o segundo ser limitado a problemas que envolvam deformações leves a 

moderadas. 

Toma-se proveito da geometria do cubo e apresenta-se também o comportamento quase-

incompressível que pode ser conferido ao material por meio do modelo de Rivlin-Saunders-

Hartmann-Neff. Seguindo a estratégia comentada no item 3.3, adota-se um coeficiente de 

Poisson 𝜈 de 0,49999, mantendo as demais propriedades físicas e geométricas já descritas. No 

gráfico da Figura 28, está plotado o volume do corpo em relação à deformação na direção 𝑥3 

para as situações tanto com 𝜈 = 0,4 e 𝜈 = 0,49999. 

Figura 28 – Gráfico do volume x deformação para o modelo de Rivlin-Saunders-

Hartmann-Neff com coeficientes de Poisson distintos 

 

Fonte: Autor. 

Observa-se que considerar um coeficiente de Poisson muito próximo de 0,5 faz 

preservar o volume inicial do corpo, enquanto um valor mais baixo para esse coeficiente 

permite que o corpo sofra redução em seu volume ao se deformar. Conforme já comentado no 

item 3.3, o volume do corpo se mantém praticamente inalterado porque adotar 𝜈 = 0,49999 

faz com que a parcela de energia volumétrica seja bem mais expressiva que a parcela isocórica. 

Com isso, a configuração de equilíbrio busca naturalmente a condição 𝐽 ≅ 1, validando a 

possibilidade de considerar o comportamento quase-incompressível de um material por meio 

do modelo de Rivlin-Saunders-Hartmann-Neff. Por fim, ilustra-se na Figura 29 as 

configurações finais de ambas as situações, na qual se observa maiores deslocamentos nas 

direções ortogonais ao achatamento para a situação com 𝜈 = 0,49999. 
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Figura 29 – Configuração final do cubo comprimento com coeficiente de Poisson a) 𝜈 = 0,4 

e b) 𝜈 = 0,49999 

 
Fonte: Autor. 

 

3.5.3 Barra viscoelástica simples 

 

Uma barra viscoelástica tem seu comportamento comparado a um sistema equivalente 

do tipo massa-mola-amortecedor. A barra tem suas extremidades fixas e é composta por dois 

trechos com comprimento 𝐿0 de 1,0 m e área de seção transversal 𝐴0 de 5 cm2, conforme ilustra 

a Figura 30. O módulo de elasticidade 𝔼 do material constituinte é de 10 GPa, o que corresponde 

a uma rigidez 𝑘 = 2𝔼𝐴0/𝐿0 de 10 MN/m para a mola. No meio do vão e na extremidade da 

mola, existem uma massa concentrada 𝑀 de 10 kg e uma força concentrada 𝐹 de 10 kN. 

Figura 30 – a) Barra viscoelástica e b) sistema massa-mola-amortecedor 

equivalente 

 
Fonte: Autor. 

O objetivo em questão é validar a correta implementação do modelo visco-hiperelástico 

de Kelvin-Voigt adaptado. Para tanto, são realizadas análises estática, quase-estática e 

dinâmica. Também são apresentadas as tensões elástica, viscosa e total desenvolvidas na 

estrutura ao longo do tempo. 

Este problema foi proposto por Madeira e Coda (2016), que modelaram a barra com 

elementos de treliça, e foi estudado posteriormente por Carvalho (2019), que empregou 

elementos de chapa triangulares na modelagem. Neste trabalho, a estrutura é modelada com 4 

elementos prismáticos de base triangular, conforme a Figura 31. Os nós dos planos 𝑥1 = 0 e 
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𝑥1 = 2 m são fixos nas direções 𝑥1 e 𝑥2, de acordo com as condições de contorno do problema. 

Os nós do plano 𝑥3 = 0 m são mantidos fixos na direção 𝑥3 para evitar efeitos de instabilidade. 

É considerada uma altura de 5 cm e uma espessura de 1 cm, representando a área inicial de 5 

cm2. 

A força horizontal de 10 kN é inserida na forma de um carregamento distribuído de 10 

MN/m2 sobre as duas faces situadas no plano 𝑥1 = 1 m, de maneira a dividir a intensidade total 

entre os nós destacados em vermelho. Já a massa é colocada de forma discreta nos nós centrais 

ao longo da altura, circulados na Figura 31, cada um recebendo 2,5 kg. O comportamento 

viscoelástico é descrito pelo modelo de Kelvin-Voigt para grandes deformações. 

Figura 31 – Discretização da barra viscoelástica 

 
Fonte: Autor. 

O problema também foi modelado por meio de barras simples, com o intuito de validar 

o modelo de Kelvin-Voigt para esse tipo de elemento. Essa modelagem é feita com dois 

elementos, conforme pode ser visualizado na própria Figura 30, enquanto o comportamento 

viscoelástico é descrito pela versão de pequenas deformações. Todas as análises descritas a 

seguir foram desenvolvidas tanto para a modelagem com elementos prismáticos quanto com 

elementos de barra. 

Em primeiro lugar, realiza-se uma análise estática do problema via MEFP. A solução 

analítica equivalente consiste em aplicar a lei de Hooke à mola, resultando em um deslocamento 

𝑢 = 𝑘𝐹 de 0,001 m em sua extremidade. 

Em seguida, é efetuada uma análise dinâmica sem amortecimento, isto é, desprezando 

o mecanismo de dissipação de energia oriundo da viscosidade. A solução analítica equivalente 

à essa situação é avaliar o comportamento do sistema massa-mola com oscilação forçada por 

meio da equação de movimento com um grau de liberdade, Equação 2.77, de maneira análoga 

ao que foi feito no item 2.4.1. 

x1

x2

x3
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Por fim, é realizada uma análise quase-estática, isto é, considera-se o amortecimento 

viscoso e despreza-se a massa do problema. Adotam-se dois coeficientes de viscosidade 𝜂 

distintos para o material da barra: primeiramente 40 MPa.s e, em seguida, 80 MPa.s, 

correspondendo a um coeficiente de amortecimento viscoso 𝑐 = 2𝜂𝐴0/𝐿0 de, respectivamente, 

40 kN/m.s e 80 kN/m.s. A análise se desenvolveu durante 0,03 s, utilizando um incremento de 

tempo Δ𝑡 de 2.10-5 s, conforme sugeriram Madeira e Coda (2016) após um estudo de 

convergência. Além disso empregou-se uma tolerância de 10-6 para a solução. 

A solução analítica para deslocamentos do caso quase-estático é obtida por meio da 

equação do movimento considerando amortecimento e desprezando a massa (Warburton, 

1976), expressa por: 

 𝑐𝑢̇ + 𝑘𝑢 = 𝐹(𝑡) (3.80) 

em que 𝑢 e 𝑢̇ são, respectivamente, o deslocamento e a velocidade da extremidade da mola. 

Já as tensões desenvolvidas ao longo do tempo são calculadas analiticamente a partir da 

Equação diferencial que descreve a curva de fluência para o modelo de Kelvin-Voigt 

(Christensen, 1982). 

 𝜎11(𝑡) = 𝔼𝜀11(𝑡)  + 𝜂
d𝜀11(𝑡)

d𝑡
 (3.81) 

Na Equação 3.81, 𝜎11(𝑡) é a tensão total desenvolvida no material e 𝜀11(𝑡) é a 

deformação elástica, que não é imediata, mas apresenta um retardamento. A primeira parcela 

dessa expressão corresponde à tensão elástica e a segunda parcela, à tensão viscosa. 

Os resultados de deslocamento obtidos nas análises estática, quase-estática e dinâmica 

estão apresentados no gráfico da Figura 32 para os modelos tridimensional, de barra simples e 

sistema massa-mola equivalente. Na Figura 33, estão ilustradas a evolução das tensões normais 

elástica, viscosa e total nos três modelos para o caso em que 𝜂 = 40 𝑀𝑃𝑎. 𝑠. Vale salientar que, 

para os modelos numéricos, é calculada a tensão de Piola-Kirchhoff de segunda espécie, 

avaliada no primeiro trecho da estrutura. Já para o modelo analítico, a tensão de Cauchy é a 

medida utilizada. Embora distintas, é possível comparar essas medidas de tensão entre si, uma 

vez que o problema se insere no regime de pequenas deformações. 

Observa-se que as análises apresentaram resultados coerentes para o regime de pequenas 

deformações. Os deslocamentos da análise dinâmica são oscilações em torno do valor estático 

de deslocamento, enquanto os deslocamentos nas análises quase-estáticas evoluem até 

atingirem o valor estático, com taxas de deformação em acordo com o respectivo coeficiente 

de viscosidade. Com relação às tensões, o valor total se mantém o mesmo ao longo de todo o 
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período de análise, havendo o crescimento da parcela elástica e a redução da parcela viscosa à 

medida que as deformações no corpo evoluem. 

Figura 32 – Deslocamento horizontal da massa 

 

Fonte: Autor. 

Figura 33 – Tensões normais 

 

Fonte: Autor. 

Destaca-se também que os resultados foram coincidentes em todas as análises, tanto 

para deslocamentos quanto para as tensões.  Fica evidente, portanto, que o regime de pequenas 

deformações leva à equivalência não só da parcela elástica, mas também das taxas de 
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deformação, obtidas a partir de modelos constitutivos elásticos distintos. Isso confirma o bom 

funcionamento do modelo viscoelástico de Kelvin-Voigt adaptado em suas duas versões de 

pequenas e grandes deformações. 
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4 LIGAÇÕES DESLIZANTES BIDIMENSIONAIS 

 

Este capítulo é dedicado a apresentar as ligações deslizantes bidimensionais empregadas 

no trabalho. O intuito é descrever como o seu comportamento no movimento de uma estrutura 

pode ser considerado na resolução de um problema via MEFP a partir da formulação já 

apresentada no Capítulo 2. 

Em primeiro lugar, são apresentadas as juntas cilíndricas e as restrições cinemáticas que 

essas componentes impõem ao movimento de um sistema. Em seguida, detalha-se como essas 

restrições são introduzidas à energia mecânica de um sistema por meio de multiplicadores de 

Lagrange, a partir de uma formulação desenvolvida por Siqueira (2016, 2019) voltada à 

elementos de pórtico. Por fim, toma-se a estratégia proposta por Rodriguez (2017) para tratar o 

deslizamento entre elementos bidimensionais e faz-se sua extensão ao deslizamento plano entre 

elementos prismáticos.  

 

4.1 JUNTAS CILÍNDRICAS 

 

A conexão entre corpos, também chamada de junta ou par cinemático, impõe restrições 

ao movimento realizado pelas partes envolvidas. Na situação em que a continuidade da conexão 

é mantida de maneira que os deslocamentos relativos tanto de translação quanto de rotação são 

impedidos, existe uma ligação do tipo rígida. 

Por outro lado, existem conexões que permitem alguma forma de movimento relativo 

entre os elementos envolvidos, desvinculando um ou mais graus de liberdade. Quando os 

movimentos relativos liberados são de translação, essas juntas recebem o nome de ligações 

deslizantes e, normalmente, são consideradas ideais, isto é, desprezam-se efeitos de atrito, 

lubrificação, desgaste e folgas. 

Em sistemas planos, existem dois tipos básicos de ligações deslizantes: a junta 

prismática e a junta cilíndrica. A primeira é uma ligação com um único grau de liberdade 

translacional, ao passo que a segunda não só libera um grau de translação, como também 

permite a rotação relativa. O foco deste trabalho é descrever e empregar a junta cilíndrica.  

Visando à sua introdução em uma análise via MEFP, a junta cilíndrica é ilustrada na 

Figura 34 como uma ligação deslizante entre dois elementos de pórtico plano com aproximação 

cúbica. Sua particularidade consiste em restringir a posição de extremidade de um elemento 

deslizante a se deslocar sobre um outro elemento que define uma determinada trajetória, 
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liberando a rotação relativa entre ambos. O nó responsável por conectar o elemento deslizante 

ao elemento de trajetória é denominado nó deslizante. 

Figura 34 - Ligação deslizante do tipo junta cilíndrica 

 

Fonte: Siqueira (2016). 

A cada ponto pertencente ao elemento de trajetória corresponde uma coordenada 

adimensional 𝜉 definida no intervalo [−1,1]. A função 𝑠(𝜉) representa uma função 

comprimento de arco definida pelo parâmetro 𝜉 e pelas coordenadas do elemento de trajetória, 

correlacionando o espaço adimensional com a posição e a orientação da seção transversal dos 

diversos pontos situados sobre a trajetória. Particularmente, a variável 𝑠𝑝 = 𝑠(𝜉𝑝) é referente 

ao ponto 𝑃 em que se encontra a junta cilíndrica e recebe e denominação de posição curvilínea. 

A partir da existência de uma junta cilíndrica no ponto 𝑃, define-se 𝑃̂ como o nó 

deslizante no qual está situada essa junta, enquanto 𝑃̅ corresponde ao ponto pertencente à 

trajetória em que ocorre o contato com o elemento deslizante. Fisicamente, é evidente que 𝑃 ≡

𝑃̂ ≡ 𝑃̅. A notação empregada daqui em diante adota ( • ̅) para os parâmetros relacionados aos 

elementos de trajetória e ( • ̂), aos elementos deslizantes. 

Na junta cilíndrica, as coordenadas do ponto 𝑃̂ devem ser iguais às coordenadas do 

ponto 𝑃̅. Aproximando as coordenadas do ponto 𝑃̅ como 𝑌̅𝑖
𝑃 = 𝜙𝑙(𝜉𝑃)𝑌̅𝑖

𝑙, essa restrição é 

matematicamente expressa por: 

 𝑐𝑖 = 𝑌̂𝑖
𝑃 − 𝜙𝑙(𝜉𝑃)𝑌̅𝑖

𝑙 = 0𝑖 (4.1) 

em que 𝑐𝑖 é a Equação de restrição para a direção 𝑖 da junta localizada no ponto 𝑃, 𝑌̂𝑖
𝑃 são as 

coordenadas atuais do ponto 𝑃̂, 𝑌̅𝑙
𝑙 são as coordenadas atuais dos nós do elemento de trajetória, 

𝜙𝑙(𝜉𝑃) são as funções de forma associadas aos nós do elemento de trajetória e 𝜉𝑃 é a coordenada 

adimensional do ponto de contato entre os elementos deslizante e de trajetória. O índice 𝑖 = 1,2 
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representa as duas direções ortogonais do plano e o índice 𝑙 representa os nós do elemento de 

trajetória, sendo 𝑙 = 1,2,3,4 para a aproximação cúbica ilustrada na Figura 34. 

A posição curvilínea 𝑠𝑝 varia durante o movimento e, juntamente com as posições 

nodais, é tomada como variável independente do problema, em detrimento da coordenada 

adimensional tal como é feito em outros trabalhos. Isso possibilita considerar massas 

concentradas e aplicar forças tangenciais que facilitam a implementação dos modelos de atrito 

(Siqueira, 2016, 2019). 

 

4.2 INTRODUÇÃO DAS RESTRIÇÕES ÀS EQUAÇÕES DE EQUILÍBRIO 

 

Da maneira como foram apresentadas no Capítulo 2, as equações de equilíbrio são 

resultantes de um processo de otimização dita irrestrita da energia mecânica. Trata-se de um 

problema de otimização porque é realizada a minimização da energia mecânica total como meio 

para determinar a configuração de equilíbrio, conforme estabelece o Princípio da 

Estacionariedade. Já a classificação como “irrestrito” está ligada ao fato de que as variáveis 

envolvidas não necessitam atender nenhuma restrição, a não ser as condições de contorno 

essenciais do problema analisado (Nocedal; Wright, 2006). 

 Por outro lado, nos problemas que contêm ligações deslizantes, a solução está 

condicionada a satisfazer uma série de equações de restrição, além das condições de contorno 

essenciais. Nessa situação, o equilíbrio é determinado através de um processo de otimização 

restrita. A formulação já apresentada para o problema irrestrito pode ser estendida para o caso 

restrito por meio de uma estratégia que consiste em incorporar o conjunto de restrições à energia 

mecânica (Siqueira, 2016, 2019; Siqueira; Rodríguez; Coda, 2022) 

As referidas equações de restrição introduzidas ao sistema podem ser agrupadas na 

seguinte expressão: 

 𝑐 (𝑌⃗ , 𝑡) = 0⃗  (4.2) 

em que 𝑌⃗  passa a ser entendido como um vetor que agrupa não só os parâmetros nodais, mas 

também quaisquer variáveis introduzidas pela própria equação de restrição, como a variável 𝑠𝑝 

de cada junta cilíndrica. 

A energia mecânica, Equação 2.1, é então reescrita com a adição do termo ℂ, que 

representa um potencial de restrição: 

 𝛱 = ℙ + 𝕌 + 𝕂 + ℚ + ℂ (4.3) 
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Para introduzir as equações de restrição à energia mecânica, diversas técnicas poderiam 

ser empregadas. Utiliza-se, neste trabalho, o método dos multiplicadores de Langrange. Essa 

técnica acrescenta novas variáveis à formulação – os multiplicadores –, sendo um para cada 

equação. Assim, a expressão do potencial de restrição é dada por: 

 ℂ = 𝜆 ∙ 𝑐  (4.4) 

Na Equação 4.4, 𝜆  agrupa os multiplicadores de Lagrange e tem, evidentemente, a 

mesma dimensão de 𝑐 . Embora o método dos multiplicadores de Lagrange acrescente 

incógnitas ao sistema, existe a vantagem de as restrições serem impostas diretamente e de uma 

forma simples quando considerada a estacionariedade do funcional de energia e a descrição 

Lagrangiana total. Além disso, os multiplicadores podem ser interpretados como a força interna 

necessária para impor as referidas restrições. 

 As equações de equilíbrio para o problema restrito também são obtidas pelo Princípio 

da Estacionaridade. Assim, toma-se a variação da energia mecânica total: 

 𝛿𝛱 = 𝛿ℙ + 𝛿𝕌 + 𝛿𝕂 + 𝛿ℚ + 𝛿ℂ = 0 (4.5) 

Uma vez que os multiplicadores constituem novos graus de liberdade do problema, é 

preciso escrever a variação das parcelas de energia tanto em relação a 𝑌⃗  quanto a 𝜆 . Os 

potenciais ℙ, 𝕌, 𝕂 e ℚ não são dependentes de 𝜆 , portanto suas variações são expressas da 

mesma maneira apresentada no Capítulo 2. Resta, então, escrever a variação para o potencial 

de restrição: 

 𝛿ℂ = 𝛿𝑌⃗ ∙ ∇𝑐 ∙ 𝜆 + 𝛿𝜆 ∙ 𝑐 = {𝛿𝑌⃗ 𝛿𝜆 } ∙ {∇𝑐 ∙ 𝜆 

𝑐 
} = {𝛿𝑌⃗ 𝛿𝜆 } ∙ 𝐹 𝑟𝑒𝑠 (4.6) 

em que ∇𝑐  é o gradiente das equações de restrição em relação a 𝑌⃗ , e 𝐹 𝑟𝑒𝑠 é o vetor de forças de 

restrição, representando as forças que impõem as restrições no sistema.  

 Considerando arbitrárias tanto a variação 𝛿𝑌⃗  quanto a variação 𝛿𝜆 , as equações de 

equilíbrio para sistemas com restrições são escritas como: 

 −{𝐹
 𝑒𝑥𝑡

0⃗ 
} + {𝐹

 𝑖𝑛𝑡

0⃗ 
} + {𝐹

 𝑖𝑛𝑒𝑟

0⃗ 
} + {𝐹

 𝑑𝑖𝑠

0⃗ 
} + {∇𝑐 ∙ 𝜆 

𝑐 
} = 0⃗  (4.7) 

Ou ainda em formato compacto, se conhecida a correspondência dos graus de liberdade 

dos parâmetros nodais e dos multiplicadores de Lagrange: 

 −𝐹 𝑒𝑥𝑡 + 𝐹 𝑖𝑛𝑡 + 𝐹 𝑖𝑛𝑒𝑟 + 𝐹 𝑑𝑖𝑠 + 𝐹 𝑟𝑒𝑠 = 0⃗  (4.8) 

Os vetores de forças externas, forças internas, forças de inércia e forças de dissipação 

são expressos da mesma maneira já apresentada em capítulos anteriores. No entanto, é preciso 
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ainda detalhar o vetor de forças de restrição, mais especificamente o termo ∇𝑐 ∙ 𝜆 . As expressões 

apresentadas a seguir para esse termo são locais e se referem a uma única ligação deslizante, 

isto é, têm sua aproximação realizada no domínio dos elementos conectados. Após avaliadas, 

devem ser contribuídas no vetor de forças de restrição global, de acordo com a incidência nodal 

dos elementos nos graus de liberdade do corpo discretizado, para tratar o problema completo e 

representar o total de ligações deslizantes existentes. 

Dadas as equações de restrição 𝑐𝑖 referente a uma junta cilíndrica, Equação 4.1, as 

componentes não nulas do seu gradiente são aquelas cuja derivada parcial é tomada em relação 

aos parâmetros nodais do elemento de trajetória e do elemento deslizante e da posição 

curvilínea. Dessa forma, o vetor ∇𝑐 ∙ 𝜆  resulta não nulo nas seguintes componentes: 

 
𝜕𝑐𝑖

𝜕𝑌̂𝛼
𝑃
𝜆𝑖 = 𝛿𝛼𝑖𝜆𝑖 = 𝜆𝛼 (4.9) 

 
𝜕𝑐𝑖

𝜕𝑌̅𝛼
𝑙 𝜆𝑖 = −𝜙𝑙(𝜉𝑃)𝛿𝛼𝑖𝜆𝑖 = −𝜙𝑙(𝜉𝑃)𝜆𝛼 (4.10) 

 
𝜕𝑐𝑖

𝜕𝑠𝑝
𝜆𝑖 = −

1

𝐽𝑃
𝜙𝑙,𝜉(𝜉𝑃)𝑌̅𝑖

𝑙𝜆𝑖 (4.11) 

em que os índices 𝑖, 𝛼 = 1,2 representam as direções do plano, o índice 𝑙 representa os nós do 

elemento de trajetória, 𝛿𝛼𝑖 é o delta de Kronecker e 𝐽𝑃 é o jocobiano da transformação, dado 

por: 

 𝐽𝑃 = 𝐽(𝜉𝑃) =
𝑑𝑠𝑃

𝑑𝜉
|
𝜉𝑃

= √[𝜙𝑙,𝜉(𝜉𝑃)𝑌̅1
𝑙]

2
+ [𝜙𝑙,𝜉(𝜉𝑃)𝑌̅2

𝑙]
2
 (4.12) 

 

4.3 PROCESSO DE SOLUÇÃO 

 

A solução da equação de equilíbrio com as restrições das juntas cilíndricas, Equação 

4.1, é obtida por meio da combinação do método de Newmark para realizar a integração 

temporal, e do método de Newton-Raphson para tratar a não linearidade do sistema. Em um 

instante arbitrário 𝑡𝑠+1, o vetor de desbalanceamento mecânico é expresso de maneira análoga 

à Equação 2.30, acrescentando a parcela proveniente do potencial de restrição: 

 
𝑔 (𝑌⃗ 𝑠+1, 𝜆 𝑠+1) = 𝐹 𝑖𝑛𝑡(𝑌⃗ 𝑠+1) +

𝑴

𝛽𝛥𝑡2
⋅ 𝑌⃗ 𝑠+1 − 𝑴 ⋅ 𝑄⃗ 𝑠 − 𝐹 𝑒𝑥𝑡(𝑡𝑠+1)  + 𝐹 𝑑𝑖𝑠

+ 𝐹 𝑟𝑒𝑠(𝑌⃗ 𝑠+1, 𝜆 𝑠+1) = 0⃗  

(4.13) 
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Realizando a expansão em série de Taylor do vetor de desbalanceamento mecânico 𝑔  e 

desprezando o termo de ordem superior, chega-se à expressão para a correção das variáveis do 

problema: 

 {Δ𝑌⃗ 𝑠+1, Δ𝜆 𝑠+1}
𝑇

= −𝑯−1 ⋅ 𝑔 (𝑌⃗ 𝑠+1
0 , 𝜆 𝑠+1

0 ) (4.14) 

em que a matriz hessiana 𝑯 corresponde a ∇𝑔 𝑠+1. 

A resolução do sistema linear, Equação 4.14, leva à determinação das correções Δ𝑌⃗ 𝑠+1 

e Δ𝜆 𝑠+1 para a solução tentativa, que deve ser atualizada iterativamente até que o erro seja 

suficientemente pequeno dentro de uma determinada tolerância estabelecida, de maneira 

análoga ao procedimento apresentado no Capítulo 2. Na primeira iteração, adota-se como 

posição tentativa 𝑌⃗ 𝑠+1
0  a própria configuração inicial e, para 𝜆 𝑠+1

0 , pode ser adotado valores 

nulos. É importante ressaltar ainda que o erro continua sendo calculado como a norma da 

correção da posição atual em relação à posição inicial, sem envolver os multiplicadores de 

Lagrange. 

Na Equação 4.14, a matriz hessiana 𝑯 pode ser escrita em formato compacto, se 

conhecida a correspondência dos graus de liberdade dos parâmetros nodais e dos 

multiplicadores de Lagrange, como: 

 𝑯 = 𝑯𝒆𝒔𝒕 +
𝑴

𝛽𝛥𝑡2
+ 𝑯𝒅𝒊𝒔 + 𝑯𝒓𝒆𝒔 (4.15) 

Na Equação 4.15, 𝑯𝒆𝒔𝒕 a matriz hessiana estática e 𝑴 a matriz de massa do problema, 

já apresentadas no Capítulo 2 tanto para os elementos de barra quanto para os elementos 

prismáticos. 𝑯𝒅𝒊𝒔, por sua vez, é a parcela da matriz hessiana do problema dinâmico 

proveniente dos mecanismos dissipativos, apresentada no Capítulo 3 para tratar o 

amortecimento viscoso. Por fim, 𝑯𝒓𝒆𝒔 é a parcela da matriz hessiana referente ao potencial de 

restrição, matematicamente igual a ∇𝐹 𝑟𝑒𝑠, ou seja: 

 𝑯𝒓𝒆𝒔 =
𝜕𝐹 𝑟𝑒𝑠

𝜕{𝑌⃗ , 𝜆 }
|

𝑌⃗ 𝑠+1
0 ,𝜆⃗⃗ 𝑠+1

0

= [𝜆
 ∙ ∇(∇𝑐 ) ∇𝑐 

∇𝑐 𝑇 𝟎
] (4.16) 

em que ∇(∇𝑐 ) é um tensor de terceira ordem que pode ser interpretado como o agrupamento 

das matrizes hessianas de cada equação de restrição e 𝟎 é uma matriz nula. 

As componentes não nulas da matriz ∇𝑐 , e evidentemente também da sua transposta, já 

estão exibidas nas Equações 4.9 a 4.11, restando apenas detalhar a matriz 𝜆 ∙ ∇(∇𝑐 ). De mesma 

maneira que foi comentado para o vetor de forças de restrição, as expressões apresentadas neste 
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item para a matriz hessiana são locais e dizem respeito a uma única junta cilíndrica, devendo 

ser avaliadas para cada junta do problema e devidamente contribuídas na matriz hessiana global. 

 As componentes não nulas de 𝜆 ∙ ∇(∇𝑐 ) são: 

 𝜆𝑖

𝜕2𝑐𝑖

𝜕𝑌̅𝛼
𝑙𝜕𝑠𝑝

= 𝜆𝑖 [−
1

𝐽𝑃
𝜙𝑙,𝜉(𝜉𝑃)𝛿𝛼𝑖] = −

1

𝐽𝑃
𝜙𝑙,𝜉(𝜉𝑃)𝜆𝛼 (4.17) 

 𝜆𝑖

𝜕2𝑐𝑖

𝜕𝑠𝑝𝜕𝑌̅𝛾
𝑧

= 𝜆𝑖 [−
1

𝐽𝑃
𝜙𝑧,𝜉(𝜉𝑃)𝛿𝛾𝑖] = −

1

𝐽𝑃
𝜙𝑧,𝜉(𝜉𝑃)𝜆𝛾 (4.18) 

 𝜆𝑖

𝜕𝑐𝑖

𝜕𝑠𝑝𝜕𝑠𝑝
= 𝜆𝑖 [𝑌̅𝑖,𝜉

𝑃  𝑌̅𝑘,𝜉
𝑃  𝑌̅𝑘,𝜉𝜉

𝑃 (
1

𝐽𝑝
)

4

− 𝑌̅𝑖,𝜉𝜉
𝑃 (

1

𝐽𝑝
)

2

] (4.19) 

 Os índices 𝑖, 𝑘, 𝛼, 𝛾 = 1,2 representam as direções do plano e os índices 𝑙 e 𝑧 

representam os nós do elemento de trajetória. Na Equação 4.19, efetuam-se ainda as seguintes 

aproximações para as posições nodais do ponto 𝑃̅: 

 𝑌̅𝑖,𝜉
𝑃 = 𝜙𝑙,𝜉(𝜉𝑃)𝑌̅𝑖

𝑙 (4.20) 

 𝑌̅𝑖,𝜉𝜉
𝑃 = 𝜙𝑙,𝜉𝜉(𝜉𝑃)𝑌̅𝑖

𝑙 (4.21) 

Por fim, vale salientar que, embora o processo de solução tenha sido apresentado para a 

equação de equilíbrio dinâmica, a consideração de ligações deslizantes num problema mecânico 

também pode ser feita em análises estáticas. Tanto a matriz hessiana apresentada neste item 

quanto o vetor de forças de restrição, apresentado no item 4.2, são expressos da mesma forma, 

independentemente do tipo de análise. 

 

4.4 IDENTIFICAÇÃO DO PONTO DE CONTATO 

 

Conforme já comentado, a posição curvilínea 𝑠𝑃 é utilizada para empregar corretamente 

perfis de rugosidade nas superfícies de contato dos corpos deslizantes e para facilitar a aplicação 

de forças de atrito (Siqueira, 2016).Dada sua importância, a posição curvilínea é adotada como 

variável independente na formulação de ligações deslizantes, possibilitando que a determinação 

do seu valor seja feita de maneira direta por meio da atualização das variáveis no processo de 

solução. 

No entanto, o vetor de forças de restrição e a parcela da matriz hessiana oriunda do 

potencial de restrição são dependentes da coordenada adimensional 𝜉𝑃, que não é 

explicitamente determinada. Essa variável também serve, inclusive, para identificar a transição 
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entre elementos de trajetória durante o movimento da junta. É necessário, portanto, realizar sua 

determinação. 

As equações de restrição podem ser tomadas como um sistema não linear 

sobredeterminado para calcular a coordenada adimensional, cuja resolução pode ser efetuada 

mediante o método dos mínimos quadrados (Nocedal; Wright, 2006). Dessa forma, é definida 

a seguinte função resíduo: 

 ℛ𝑖(𝜉𝑃) = 𝑌̂𝑖
𝑃 − 𝜙𝑙(𝜉𝑃)𝑌̅𝑖

𝑙 = 0𝑖 (4.22) 

em que 𝑌̂𝑖
𝑃 e 𝑌̅𝑙

𝑙 são conhecidos dentro de uma determinada iteração do problema mecânico e 

ℛ𝑖(𝜉𝑃) é o resíduo para as direções 𝑖 = 1,2 do processo iterativo de determinação de 𝜉𝑃.   

Segundo a técnica dos mínimos quadráticos, o menor valor do resíduo corresponde ao 

ponto de mínimo de uma função objetivo. Tal função é aqui definida como o erro quadrático 

médio 𝑝(𝜉𝑃), isto é: 

 𝑝(𝜉𝑃) =
1

2
[ℛ𝑖(𝜉𝑃)]2 = 0 (4.23) 

Uma vez que a função objetivo é quadrática e positiva, a condição necessária para 

minimização é  ∇𝑝(𝜉𝑃) = 0 na solução. Expande-se, então, a função objetivo em série de Taylor 

de primeira ordem, desprezando os termos de ordem superior: 

 𝑝(𝜉𝑃) ≅ 𝑝(𝜉𝑃
0) + ∇𝑝(𝜉𝑃

0)Δ𝜉𝑃 = 0 (4.24) 

em que 𝜉𝑃
0 é um valor tentativa para a coordenada adimensional, previamente conhecido. 

Tomando-se o gradiente da Equação 4.24, escreve-se: 

 ∇𝑝(𝜉𝑃) ≅ ∇𝑝(𝜉𝑃
0) + ∇2𝑝(𝜉𝑃

0)Δ𝜉𝑃 = 0 (4.25) 

Assim, o problema de minimização passa a ser solucionado pelo método de Newton-

Raphson calculando a correção Δ𝜉𝑃 por: 

 Δ𝜉𝑃 = −
∇𝑝(𝜉𝑃

0)

∇2𝑝(𝜉𝑃
0)

 (4.26) 

em que: 

∇𝑝(𝜉𝑃) = ℛ𝑖

𝜕ℛ𝑖

𝜕𝜉𝑃
= [𝑌̂𝑖

𝑃 − 𝜙𝑙(𝜉𝑃)𝑌̅𝑖
𝑙]𝜙𝑘,𝜉(𝜉𝑃)𝑌̅𝑖

𝑘 (4.27) 

∇2𝑝(𝜉𝑃) =
𝜕ℛ𝑖

𝜕𝜉𝑃

𝜕ℛ𝑖

𝜕𝜉𝑃
+ ℛ𝑖

𝜕2ℛ𝑖

𝜕𝜉𝑃
2 = [𝜙𝑙,𝜉(𝜉𝑃)𝑌̅𝑖

𝑙]
2
+ [𝑌̂𝑖

𝑃 − 𝜙𝑙(𝜉𝑃)𝑌̅𝑖
𝑙]𝜙𝑘,𝜉𝜉(𝜉𝑃)𝑌̅𝑖

𝑘 (4.28) 

Nas Equações 4.27 e 4.28, o índice 𝑖 = 1,2 as direções do plano e os índices 𝑙 e 𝑘, os 

nós do elemento de trajetória. 
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A solução para a coordenada adimensional é atualizada mediante 𝜉𝑃 = 𝜉𝑃
0 + Δ𝜉𝑃 até que 

o Δ𝜉𝑃/𝜉𝑃 atinja uma tolerância estabelecida. Esse processo iterativo é realizado para os vários 

elementos de trajetória sobre os quais existe a possibilidade de estar situada a ligação deslizante. 

Uma vez finalizadas as iterações para um dado elemento de trajetória, obtém-se a coordenada 

𝜉𝑃 sobre o referido elemento. Quando essa variável respeitar os limites do espaço adimensional 

𝜉𝑃 ∈ [−1,1], é encontrado o elemento de trajetória ativo, isto é, aquele sobre o qual a junta 

cilíndrica está localizada de fato.  Com isso, a transição entre elementos de trajetória ocorre de 

forma direta quando a coordenada adimensional excede o limite indicado. 

Vale ressaltar que, tendo em vista não haver superposição de elementos, a busca pelo 

elemento de trajetória ativo pode ser otimizada fazendo com que o processo iterativo para 

determinação da coordenada adimensional 𝜉𝑃 seja realizado num número reduzido de 

elementos de trajetória. Uma alternativa é definir uma região que envolve cada elemento de 

trajetória e avaliar se a junta se encontra dentro dessa região. O processo iterativo é realizado 

para tal elemento somente se a checagem for positiva, impedindo que elementos situados muito 

distantes da posição atual da junta sejam submetidos ao cálculo de 𝜉𝑃. 

 

4.5 CONSIDERAÇÕES PARA A MODELAGEM DO DESLIZAMENTO ENTRE 

ELEMENTOS PRISMÁTICOS 

 

O deslizamento plano entre elementos prismáticos é modelado, neste trabalho, a partir 

da formulação de ligações deslizantes aplicada a elementos de pórtico, apresentada nos itens 

4.1 a 4.4. A estratégia utilizada toma como referência o trabalho de Rodriguez (2017) que 

estudou o deslizamento entre elementos bidimensionais de chapa. 

Com o intuito de tomar proveito da formulação desenvolvida por Siqueira (2016), 

Rodriguez (2017) propõe que seja feito o acoplamento entre elementos de pórtico e elementos 

de chapa nas regiões de deslizamento. Empregando as posições nodais como parâmetros de 

ambos os elementos, o acoplamento se dá por compatibilidade cinemática dessas variáveis, isto 

é, definem-se elementos de pórtico auxiliares com os nós pertencentes ao mesmo lado de um 

elemento de chapa de maneira a relacionar seus graus de liberdade, conforme ilustrado na 

Figura 35. Embora se utilize uma aproximação quadrática para os elementos auxiliares dessa 

figura, a estratégia se aplica a elementos de qualquer grau. 

O acoplamento descrito no parágrafo anterior é realizado nas faces de contorno dos 

corpos que deslizam entre si, de forma que todos os nós de um mesmo elemento deslizante 

ficam restritos a se movimentar sobre o conjunto de elementos da trajetória. Para cada nó 
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deslizante deve ser definida uma junta cilíndrica, e sua posição não precisa coincidir com a 

posição dos nós dos elementos da trajetória, mas deve apenas estar contida nessa trajetória. 

Figura 35 - Acoplamento entre elementos sólidos 

bidimensionais e elementos de pórtico 

 
Fonte: Rodriguez (2017). 

Neste trabalho, a estratégia de acoplamento é aplicada aos elementos prismáticos da 

maneira ilustrada na Figura 36 com objetivo de representar o deslizamento no plano definido 

pelos eixos 𝑥1 e 𝑥2. Tanto as juntas cilíndricas quando os elementos auxiliares são definidos 

igualmente nos planos de entrada e de saída do eixo 𝑥3. O elemento auxiliar de pórtico adotado 

tem aproximação cúbica, de maneira a se acomodar minimamente ao formato do elemento 

prismático sobre o qual estão definidos, cuja base também possui aproximação cúbica. 

Vale salientar que, aos elementos de pórtico auxiliares, pode ser atribuído ou não um 

valor para o módulo de elasticidade. Isso significa que, para valores nulos, a rigidez dos corpos 

depende exclusivamente das propriedades físicas do elemento sólido. Tal observação pode ser 

estendida inclusive para a massa. 

A proposta deste trabalho é utilizar os elementos auxiliares de pórtico sem rigidez e sem 

massa, tomando-se proveito apenas da sua geometria para definir as trajetórias sobre as quais 
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as juntas cilíndricas podem se movimentar. Pode-se notar, inclusive, que toda a formulação 

apresentada neste capítulo depende somente das características geométricas desses elementos. 

Dessa forma, os elementos de pórtico não exercem influência sobre as propriedades físicas do 

problema, não sendo necessário se conhecer sua matriz hessiana elástica, seu vetor de forças 

internas nem mesmo sua matriz de massa. 

Figura 36 - Acoplamento entre elementos prismáticos (separados para fins de clareza) 

 
Fonte: Autor. 

 

4.6 EXEMPLOS DE VALIDAÇÃO 

 

Neste item são apresentados alguns exemplos com o intuito de validar o correto 

funcionamento do código computacional implementado para as ligações deslizantes entre 

elementos prismáticos. 

Adianta-se que o exemplo 4.6.2 faz uso de elementos de pórtico bidimensionais na 

discretização do problema. Esse elemento foi, de fato, implementado e validado, o que 

possibilitou seu emprego no referido problema. No entanto, a utilização de elementos de pórtico 

na modelagem de estruturas está fora do escopo desse trabalho e não faz parte da modelagem 

de estruturas musculoesqueléticas aqui proposta, ficando sua aplicação restrita à verificação 

deste único exemplo. Desse modo, a descrição desse elemento não é feita no Capítulo 2 junto 

aos demais elementos de barra e prismático. Siqueira (2016), Rodriguez (2017), Coda (2018), 

Siqueira (2019) são fontes que podem ser consultadas para mais informações sobre a descrição 

posicional do elemento de pórtico bidimensional. 



90 

 

4.6.1 Arco abatido com manivela 

 

Este exemplo apresenta um arco abatido conectado a uma manivela, de acordo com a 

Figura 37. O arco possui um vão com comprimento 𝐿 de 10,0 m e altura ℎ de 1,0 m. Essa 

geometria corresponde a um arco de círculo, com corda de 10,0 m, pertencente a uma 

circunferência com raio de 13,0 m. Suas duas extremidades estão fixas para translação, mas têm 

liberdade de rotação. O módulo de elasticidade 𝔼𝐴 do material constituinte é 200 GPa e o 

coeficiente de Poisson é nulo. 

Figura 37 – Configuração inicial do arco abatido com manivela 

 
Fonte: Siqueira (2016). 

A manivela tem sua extremidade superior situada a uma altura 𝐻 de 2,4606 m acima do 

ponto central do arco. Essa extremidade tem seus movimentos de translação restritos e é 

submetida a um giro 𝜓 de 1,8 rad em sentido anti-horário, enquanto sua extremidade inferior 

está ligada ao arco por meio de uma junta cilíndrica. O ponto de conexão está situado a uma 

distância horizontal 𝑑1 de 1,6178 m e vertical 𝑑2 de 0,5523 m, medidas a partir da extremidade 

esquerda do arco. O módulo de elasticidade 𝔼𝑀 do seu material é de 2000 GPa, com coeficiente 

de Poisson nulo. Tanto o arco quanto a manivela possuem seção transversal quadrada com lado 

de 10 cm. 

A Figura 38 traz um esquema da modelagem desse problema com elementos 

prismáticos, sendo empregados 52 elementos para o arco e 13 para a manivela. A curva 

vermelha destaca os elementos de pórtico auxiliares que definem a trajetória das ligações 

deslizantes. Nessa figura, é exibida apenas a trajetória contida no plano de saída do eixo 𝑥3, 

mas, conforme comentado no item 4.5, também existem elementos auxiliares definindo uma 

trajetória no plano de entrada do eixo 𝑥3, que não são visualizados por esse ângulo de 

observação da estrutura. 



91 

 

Figura 38 - Discretização do arco abatido com manivela 

 
Fonte: Autor. 

A região onde se situa a ligação entre a manivela e o arco, circundada na Figura 38, é 

exibida mais de perto e com mais detalhes na Figura 39. Um primeiro ponto a se comentar sobre 

essa região é que existe uma superposição entre a geometria do arco e da manivela, como é 

possível observar na Figura 39a. Embora isso não seja fisicamente possível, essa modelagem 

não gera nenhum obstáculo para a resolução numérica e foi definida dessa forma para que o 

deslizamento ocorra sobre o eixo do arco, conforme o problema original. 

Figura 39 – Detalhamento da região de ligação: a) arco, extremidade da manivela e 

trajetória do plano de saída; b) extremidade da manivela, juntas cilíndricas e 

trajetórias; c) arco e trajetória do plano de saída 

 
Fonte: Autor. 

Na Figura 39b, estão ilustradas apenas a extremidade da manivela e as trajetórias, 

deixando clara a existência de elementos auxiliares nos planos de entrada e saída do eixo 𝑥3. 

Nessa mesma figura, sobre os nós destacados em vermelho foram definidas juntas cilíndricas, 

restritas a se movimentarem sobre as trajetórias em destaque. Já na Figura 39c, são mostrados 
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somente o arco com a trajetória visível naquele ângulo de observação, evidenciando o 

posicionamento no plano médio ao longo da altura da seção transversal. 

Os nós de cada extremidade do arco e os nós da extremidade superior da manivela estão 

fixos nas direções 𝑥1 e 𝑥2 para representar as vinculações originais. Além disso, os nós da 

extremidade superior da manivela estão submetidos a deslocamentos prescritos 

correspondentes ao giro 𝜓. Todos os nós contidos no plano 𝑥3 = 0 m têm seu movimento na 

direção 𝑥3 restringido, a fim de evitar fenômenos de instabilidade. O modelo constitutivo 

utilizado foi o de Saint-Venant-Kirchhoff. 

É efetuada uma análise estática em 1000 passos de carga com tolerância de 10-6 para a 

convergência da solução. O cálculo da coordenada adimensional 𝜉𝑃, conforme descrito no item 

4.4, leva em torno de 3 iterações para determinar a solução, utilizando uma tolerância de 10-8 e 

partindo de um 𝜉𝑃
0 com valor de 1/3. 

 A seguir, nas Figuras 40 e 42, estão apresentadas a evolução da posição vertical do ponto 

central do arco, a evolução do esforço normal na manivela e a evolução do momento fletor 

reativo na extremidade superior da manivela à medida que o giro 𝜓 é aplicado. Os resultados 

são comprados com os valores obtidos por Siqueira (2016), que tratou o problema por meio de 

elementos de pórtico e usou o modelo constitutivo de Saint-Venant-Kirchhoff. 

Figura 40 – Posição vertical do ponto central do arco 

 

Fonte: Autor. 

Os valores de esforço normal foram calculados numa seção situada no ponto médio da 

manivela. Primeiramente, avaliaram-se as tensões sobre os pontos situados nessa seção e 

determinou-se, em cada ponto, a componente de tensão segundo a direção do eixo da manivela. 

O esforço normal corresponde à resultante dessas tensões sobre a área da seção. Já o momento 

fletor reativo foi calculado por meio das forças internas atuantes nos nós da extremidade 

superior da manivela, determinando-se a resultante do momento em relação ao eixo da seção. 
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Figura 41 – Momento fletor reativo na extremidade superior da manivela 

 

Fonte: Autor. 

Figura 42 – Esforço normal no ponto médio da manivela 

 

Fonte: Autor. 

 Os resultados obtidos neste trabalho possuem uma concordância muito boa com os 

valores de referência. Além disso, pode-se ressaltar a identificação do snap-back que ocorre 

para o giro 𝜓 = 1,6776 𝑟𝑎𝑑. Esse fenômeno fica evidente nos gráficos apresentados ao se 

observar o salto existente na evolução da posição e os pontos angulosos presentes na evolução 

do esforço normal e do momento fletor reativo. Dessa maneira, os resultados confirmam o bom 

funcionamento das implementações computacionais realizadas e as potencialidades da 

formulação. 

 

4.6.2 Edifício com dispositivos isoladores submetido a sismo 

 

Um edifício de 5 andares, apoiado sobre dispositivos isoladores para controle de vibração, 

é submetido a um movimento de base provocado por atividades sísmicas. Este problema foi 

proposto por Rodriguez (2017) e foi estudado também no trabalho de Siqueira, Rodriguez e 

Coda (2022).  
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Os dispositivos isoladores localizados na base de cada coluna são do tipo Friction 

Pendulum System (FPS) (Saaed et al., 2015), composto por um deslizador articulado entre duas 

superfícies de deslizamento. Uma dessas superfícies faz parte de uma chapa superior, conectada 

à coluna do edifício, enquanto a outra está contida numa chapa inferior, apoiada sobre o solo. 

A geometria empregada neste trabalho para o referido dispositivo toma como referência aquela 

utilizada por Rodriguez (2017). 

Figura 43 – Geometria do dispositivo FPS (medidas em centímetros) 

 

Fonte: Autor. 

Seguindo os passos dos autores anteriores, o edifício é modelado com elementos de 

pórtico de aproximação cúbica, resultando na estrutura reticulada plana ilustrada na Figura 44a. 

As vigas são discretizadas em 6 elementos e cada trecho de pilar, em 3 elementos, totalizando 

60 elementos de pórtico, todos com seção transversal quadrada com 50 cm de lado. O material 

constituinte possui módulo de elasticidade 𝔼 de 20 GPa e sua massa específica 𝜌0 adotada é de 

2400 kg/m3 para os pilares e de 15168.2 kg/m3 para as vigas, com o intuito de caracterizar a 

massa e a rigidez de cada andar. As regiões circuladas na base das colunas do edifício são os 

dispositivos isoladores. 

Para os dispositivos FPS, Rodriguez (2017) adotou uma discretização em elementos 

bidimensionais de chapa, mas aplica-se aqui uma modelagem com elementos prismáticos. São 

empregados 30 elementos com espessura de 0,50 m, sendo 10 para a chapa inferior, 6 para o 

deslizador e 14 para a chapa superior, conforme ilustra a Figura 44b. Para considerar o 

deslizamento entre o deslizador e as chapas, são introduzidos elementos de pórtico auxiliares 

nos contornos de deslizamento superior e inferior para definir a trajetória, destacada em 

vermelho. Além disso, são inseridas juntas deslizantes em todos os nós contidos nos contornos 

deslizantes, destacados em verde. Na Figura 43b, mostra-se os contornos deslizantes e as juntas 

cilíndricas do plano de saída do eixo 𝑥3, mas ressalta-se que também existem esses 

componentes no plano de entrada, que não são visualizadas pelo ângulo retratado. Tanto para 
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os elementos prismáticos quanto para os elementos auxiliares adotam-se módulo de elasticidade 

𝔼 de 200 GPa e massa específica 𝜌0 de 7850 kg/m3. A seção transversal dos elementos 

auxiliares tem base de 50 cm e altura de 1 cm. 

Figura 44 – Discretização do a) edifício e b) dispositivo PFS (separado para fins de clareza) 

 

Fonte: Autor. 

Elementos de pórtico também são colocados no contorno de ancoragem do plano de 

entrada 𝑥3 = 0 m , destacado em azul. Esses elementos têm a função de garantir a transmissão 

de momento entre a coluna do edifício e a chapa superior, não sendo utilizados para promover 

deslizamento entre superfícies. Esses elementos não possuem massa e são tratados como 

elementos rígidos, recebendo um módulo de elasticidade 𝔼 de 200.106 GPa. Sua seção 

transversal é quadrada com lado de 50 cm. 

Os elementos de pórtico que possuem nós situados sobre o contorno de ancoragem – ou 

seja, os próprios elementos de ancoragem e o primeiro elemento da coluna – possuem uma 

particularidade no processo de contribuição de suas grandezas locais para as grandezas globais. 

As componentes dos seus vetores de força, da sua matriz hessiana e da sua matriz de massa 

correspondentes aos graus de liberdade dos nós situados no contorno de ancoragem têm sua 

contribuição dividida: metade é direcionada para os graus de liberdade globais dos nós contidos 

no plano de entrada 𝑥3 = 0 m, linha azul, e a outra metade para os graus de liberdade globais 

dos nós contidos no plano de saída 𝑥3 = 0,50 m, linha laranja. Isso é feito para simular que o 

edifício está localizado sobre o plano médio do dispositivo FPS, isto é, o plano 𝑥3 = 0,25 m, 

garantindo a simetria do problema ao longo da espessura do dispositivo. Para posicionar, de 

fato, o edifício no plano médio da espessura, seria necessário discretizar os dispositivos no 
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dobro de elementos prismáticos, o que acarretaria num maior tempo de processamento 

computacional. 

O movimento de base representa o terremoto conhecido como Superstition Hills, que 

ocorreu em 1987 no oeste de Imperial Valley, na Califórnia. Suas componentes de 

deslocamento horizontal e vertical foram medidas pelo Pacific Earthquake Engineering 

Research Center (PEER)1 e estão plotadas no gráfico da Figura 45. Tais deslocamentos são 

aplicados como um controle de posição nos nós da base dos dispositivos FPS. 

Figura 45 - Componentes de deslocamento do terremoto Superstition Hills 

 

Fonte: Autor. 

O objetivo deste problema é avaliar o funcionamento da implementação computacional 

para o movimento de várias juntas sobre uma mesma trajetória, o que representa o deslizamento 

entre superfícies. Desse modo, o foco está em observar o comportamento dos dispositivos 

isoladores, e não necessariamente da estrutura reticulada em elementos de pórtico. 

Inicialmente, é realizada uma análise estática com uma carga uniformemente distribuída 

de 34 kN/m sobre as vigas. Após o equilíbrio ser atingido, é desenvolvida uma análise dinâmica 

sem amortecimento com a aplicação dos deslocamentos de base, sendo mantido o carregamento 

sobre as vigas. Utiliza-se uma tolerância de 10-6 para a convergência da solução e um 

incremento de tempo Δ𝑡 de 5.10-3 s durante um período de 29,84 s. O cálculo da coordenada 

adimensional 𝜉𝑃 de cada junta cilíndrica, conforme descrito no item 4.4, leva em torno de 3 

iterações para determinar a solução, utilizando uma tolerância de 10-8 e partindo de um 𝜉𝑃
0 com 

valor de 1/3. 

A Figura 46 apresenta os deslocamentos horizontais desenvolvidos pelo nó situado no 

topo da coluna esquerda, enquanto a Figura 47 exibe o deslocamento horizontal relativo medido 

entre o centro do contorno da superfície côncava e o centro do contorno inferior do deslizador 

articulado. A título de comparação, na Figura 46 também está plotada a curva obtida por 

 
1 Disponível em http://ngawest2.berkeley.edu/spectras/1822/searches/1605/edit  
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Rodriguez (2017) e, na Figura 47, exibem-se alguns pontos registrados pelo mesmo autor. 

Observa-se uma boa concordância entre os resultados, o que é indicativo de um comportamento 

adequado dos dispositivos isoladores modelados com elementos prismáticos. 

Figura 46 – Deslocamentos horizontais do topo da coluna esquerda e da base do 

dispositivo FPS 

 

Fonte: Autor. 

Figura 47 - Deslocamento horizontal relativo medido entre o centro do contorno da 

superfície côncava e o centro do contorno inferior do deslizador articulado 

 

Fonte: Autor. 

A Figura 48 apresenta a configuração da estrutura, no plano 𝑥1𝑥2, para o instante inicial 

da análise dinâmica e para os instantes de máximo deslocamento horizontal nos sentidos 

positivo e negativo do eixo 𝑥1. Vale salientar que a configuração no instante inicial corresponde 

à posição de equilíbrio no fim da análise estática, que resulta simétrica, conforme esperado. 

Por fim, o gráfico das Figura 49 e 50 trazem as forças de contato obtidas nas 7 juntas 

cilíndricas que definem a ligação deslizante entre o deslizador articulado e a superfície côncava, 

respectivamente, no isolador esquerdo e no isolador direito. Tais forças correspondem à 
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resultante dos multiplicadores de Lagrange 𝜆1 e 𝜆2 em cada junta. Vale destacar que os valores 

da força de contato vertical 𝜆2 são muito mais expressivos que os valores das forças de contato 

horizontais 𝜆1. Assim, no instante inicial, nota-se que o somatório de forças em cada isolador 

se iguala à metade do carregamento total aplicado sobre as vigas, o que era de esperar num 

problema simétrico. Além disso, pode-se notar a coerência das forças em relação ao 

deslocamento da estrutura: as forças são maiores no isolador direito quando a estrutura está no 

seu deslocamento máximo positivo, e são maiores no isolador esquerdo na situação inversa. 

Figura 48 – Deslocamentos horizontais do edifício e dos dispositivos FPS a) no instante inicial, 

b) no instante de máximo deslocamento no sentido positivo do eixo 𝑥1 e c) no instante de 

máximo deslocamento no sentido negativo do eixo 𝑥1 

 

Fonte: Autor. 

Figura 49 – Forças de contato no dispositivo esquerdo, com juntas numeradas 

da esquerda para a direita 

 

Fonte: Autor. 
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Figura 50 - Forças de contato no dispositivo direito, com juntas 

numeradas da esquerda para a direita 

 

Fonte: Autor. 

Siqueira, Rodríguez e Coda (2022) apresentam a distribuição de forças de contato entre 

o deslizador e a superfície côncava no instante inicial e no instante de máximo deslocamento 

da estrutura, conforme ilustra a Figura 51. Os autores fizeram várias considerações diferentes 

deste trabalho, tais como propriedades físicas dos materiais, geometria dos dispositivos FPS e 

amortecimento da estrutura. Embora não seja possível comprar valores, é possível visualizar a 

semelhança entre o formato da distribuição apresentada por eles e a deste trabalho. 

Figura 51 – Deslocamentos horizontais (m) do edifício (dispositivo isolador direito em cima, e 

direito em baixo para cada instante) e forças de contato (N) entre o deslizador articulado e a 

chapa inferior  

 

Fonte: Siqueira, Rodríguez e Coda (2022). 

Diante dos bons resultados, considera-se que a formulação de ligações deslizantes, 

desenvolvida para elementos de pórtico e já aplicada em elementos bidimensionais, funciona 
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bem para a discretização com elementos prismáticos. A implementação computacional é 

realizada com êxito e pode ser utilizada em problemas ainda mais complexos. 
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5 APLICAÇÃO EM PROBLEMAS BIOMECÂNICOS: MEMBRO SUPERIOR DO 

CORPO HUMANO 

 

Este capítulo é dedicado a demonstrar a aplicação do Método dos Elementos Finitos 

Posicional, dos modelos constitutivos hiperelásticos e visco-hiperelásticos e da formulação de 

ligações deslizantes entre elementos prismáticos tridimensionais à modelagem de estruturas 

biológicas. O sistema escolhido como objeto de estudo é o membro superior do corpo humano, 

esquematizado na Figura 52 junto à indicação de algumas estruturas componentes. 

Figura 52 – Esquema a) da musculatura e b) das estruturas ósseas e articulações do 

membro superior 

 

Fonte: Adaptador de Teach me anatomy (2023). 

Inicialmente, são definidos os modelos mecânicos para tratar o comportamento 

muscular e o movimento da articulação do cotovelo. Em seguida, são apresentadas a geometria 

elaborada para o problema, as propriedades dos materiais constituintes e a discretização em 

elementos finitos empregada. Por último, apresentam-se exemplos finais com o intuito de 

simular a resposta mecânica do membro superior quando submetido a ações externas e 

contrações musculares. 

 

5.1 CONSIDERAÇÕES INICIAIS SOBRE A MODELAGEM DO COMPORTAMENTO 

BIOMECÂNICO 

 

Neste item, propõe-se um modelo biomecânico para reproduzir o comportamento 

muscular e descreve-se a cinemática adotada para o movimento do complexo articular do 

cotovelo, presente no membro do corpo humano estudado. 
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5.1.1 Músculos esqueléticos 

 

Tecidos biológicos respeitam os postulados básicos da mecânica, por exemplo 

conservação da massa, do momento e da energia. Além disso, conceitos como tensão, 

deformação e elasticidade também se aplicam a esses materiais. Portanto, é possível formular 

relações constitutivas para músculos, tendões, ossos e ligamentos e analisar o comportamento 

mecânico desses elementos por meio de problemas de valor de contorno. Embora possam ser 

mais bem classificados como materiais inelásticos, sob condições particulares é suficiente 

modelar seu comportamento mecânico no âmbito da elasticidade ou viscoelasticidade 

(Humphrey, 2003). 

Um dos modelos clássicos para representar o comportamento mecânico de músculos é 

aquele proposto por Hill. Apesar de sua simplicidade e de ter caído em desuso nas últimas 

décadas, o modelo dominou a área por muitos anos após sua publicação e serviu de base para 

teorias mais recentes, introduzindo conceitos importantes para o entendimento do 

comportamento muscular (Fung, 1993). 

Hill divide o comportamento muscular em parcelas passiva e ativa: a primeira responde 

elasticamente às solicitações externas, enquanto a segunda tem a capacidade de se contrair e 

produzir força. O modelo proposto conta com três elementos, ilustrados na Figura 53: um 

elemento contrátil EC, um elemento elástico em paralelo EP e um elemento elástico em série 

ES. O elemento EC representa a componente ativa das fibras musculares, sendo totalmente 

extensível quando inativo – isto é, não desenvolve tensões resistentes às deformações –, mas 

capaz de se contrair quando ativado. Já o elemento elástico em série ES é responsável por 

representar o comportamento passivo das mesmas fibras, isto é, a resposta elástica desse 

material. Por fim, o elemento em paralelo EP está relacionado ao comportamento passivo dos 

tecidos conjuntivos que envolvem as fibras musculares, bem como dos tendões localizados nas 

extremidades do músculo. Os elementos elásticos constituem, portanto, a componente muscular 

passiva e o elemento contrátil, a ativa (Fung, 1993). 

Uma abordagem para a consideração das componentes ativa e passiva de um músculo 

na modelagem do seu comportamento mecânico é adotar a hipótese da equipresença (Fung, 

1993). Essa ideia assume que o tecido muscular é uma mistura em que ambas as componentes 

estão presentes em todo o espaço, isto é, cada ponto do tecido muscular é ocupado 

simultaneamente pelas duas fases. 

Outra maneira é tratar as fibras musculares e os tecidos conectivos ao seu redor de 

maneira discreta, considerando que seu comportamento ocorre de maneira semelhante a 
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materiais compósitos habituais na engenharia (Böl, 2010; Huijing, 1999). Materiais compósitos 

podem ser definidos como materiais estruturais obtidos a partir da composição heterogênea em 

macroescala de ao menos dois constituintes distintos, possuindo novas propriedades diferentes 

daquelas dos seus constituintes isolados. Um dos componentes é denominado “matriz” e nele 

são inseridos os demais componentes, denominados “reforços”, que podem ser no formato de 

fibras ou partículas. Para o primeiro tipo, tem-se os chamados compósitos reforçados com fibras 

(Kaw, 2006). 

Figura 53 - Modelo de três elementos de Hill 

 

Fonte: Adaptado de Muggenthaler (2006). 

Em músculos, as várias camadas de tecido conjuntivo que envolvem as fibras 

musculares formam a matriz, enquanto as referidas fibras constituem o reforço do compósito. 

Além de reforçar, as fibras também possuem comportamento ativo, isto é, capacidade de se 

contrair e produzir força. Assim, o músculo pode ser considerado um material compósito 

consistindo em uma matriz extracelular reforçada com uma componente ativa  

Não só um músculo isolado, mas também um grupo muscular pode ser considerado um 

compósito reforçado com fibras. Uma vez que músculos vizinhos em um compartimento estão 

conectados por tecido conjuntivo, eles podem interagir mecanicamente um com o outro 

(Zatsiorsky; Prilutsky, 2012). 

No caso do braço, os músculos estão divididos em dois compartimentos anatômicos – o 

anterior e o posterior –, separados por septos de tecido conjuntivo, conforme ilustra a Figura 

54. O compartimento anterior é formado por três músculos, o bíceps braquial, o braquial e o 

coracobraquial, que podem ser analisados de maneira conjunta como um único material. Apenas 

os dois primeiros aparecem no corte transversal da Figura 53, que também destaca o tríceps 

braquial, compondo o compartimento posterior. Na mesma figura, também é possível observar 

o úmero, componente ósseo do braço. Outros elementos, como artérias, veias e nervos, também 

EC
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estão ilustrados, mas não recebem destaque porque não são relevantes para a modelagem 

proposta neste trabalho. 

Figura 54 – Seção transversal do braço 

 

Fonte: Adaptado de Braus e Elze (2013). 

Neste trabalho, a matriz e as fibras são tratadas de maneira discreta, similar ao que foi 

apresentado por Friedel (2016). Para cada um desses componentes é adotado um modelo 

constitutivo próprio e o acoplamento entre os materiais, para representar o compósito, é 

realizado via energia de deformação, conforme a formulação apresentada no item 2.3.3. Essa 

estratégia permite a consideração de comportamentos distintos para a fibra e para a matriz, sem 

ser necessário empregar uma única expressão de energia específica de deformação para 

reproduzir o comportamento conjunto. A representação do modelo proposto é ilustrada na 

Figura 55, consistindo em uma adaptação do modelo de Hill. 

Figura 55 – Modelo muscular proposto 

 
Fonte: Autor. 
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O elemento elástico EE1 representa a matriz, tomada como um material de 

comportamento passivo hiperelástico. As fibras, por sua vez, são modeladas como um material 

visco-hiperelástico de comportamento tanto passivo quanto ativo, colocadas num arranjo em 

paralelo com a matriz. As referidas fibras são representadas como o grupo formado pelo 

elemento contrátil EC associado em série com o conjunto em paralelo do elemento elástico EE2 

e o elemento amortecedor EA1. 

O modelo mecânico adotado permite, inclusive, a consideração da anisotropia para os 

músculos sem a necessidade de empregar modelos constitutivos muito complexos. Embora seja 

empregado um modelo constitutivo isotrópico para a matriz muscular, conforme indicado nos 

itens mais adiantes, o acoplamento das fibras garante propriedades distintas para o material 

compósito segundo a orientação desses elementos. 

Na sua extremidade esquerda, o músculo está associado em série com conjunto formado 

por um elemento elástico EE3 e um elemento amortecedor EA2, que estão arranjados em 

paralelo entre si. Na extremidade direita também existe uma associação em série com um 

conjunto semelhante, composto pelos elementos elástico EE4 e amortecedor EA3. Ambos os 

conjuntos representam os tendões localizados nas extremidades musculares e que são 

responsáveis por fazer a ligação dos músculos com os ossos. Dados os elementos que as 

compõe, essas estruturas são modeladas como um material de comportamento passivo visco- 

hiperelástico. 

A inclusão de elementos do tipo amortecedor no modelo proposto (ausentes no modelo 

de Hill), tem o objetivo de considerar a existência de fenômenos viscoelásticos no 

comportamento dos músculos e dos tendões, a exemplo da fluência e da relaxação. De fato, 

diversos autores confirmam, por meio de ensaios em laboratório com pacientes ou com 

amostras de tecido biológico, que o surgimento de tensões nas fibras musculares e nos tendões 

é dependente da taxa de deformação à qual estão submetidos (Fung, 1993; Rehorn; Schroer; 

Blemker, 2014; Sobolewski; Ryan; Thompson, 2013). 

Cabe destacar também que o comportamento passivo das estruturas biológicas, 

representado pelas molas do modelo, possui uma característica particular: praticamente não 

apresenta resistência ao encurtamento, ao passo que sua resistência ao alongamento é bem 

expressiva (Fung, 1993; Lamsfuss; Bargmann, 2021; Oatis, 2009). Assim, quando uma 

determinada solicitação tende a alongar um grupo de músculos e tendões acima do seu 

comprimento de repouso, as tensões desenvolvidas no material correspondem à junção das 

componentes ativa e passiva. Por outro lado, quando uma solicitação gera um encurtamento no 

referido grupo, as tensões desenvolvidas no material são oriundas apenas da componente ativa. 
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Graficamente, a relação entre o comprimento do músculo e as tensões atuantes é normalmente 

ilustrada de acordo com a Figura 56. Esse comportamento não é considerado diretamente por 

meio do modelo constitutivo, mas sim através da manipulação de parâmetros físicos, conforme 

comentado mais adiante na apresentação dos exemplos numéricos. 

Figura 56 – Relação entre o comprimento e as tensões 

em músculos e tendões 

 
Fonte: Adaptado de Oatis (2009). 

 

5.1.2 Articulações 

 

A descrição cinemática de uma articulação normalmente considera que essa é uma 

região de contato entre duas superfícies ósseas de geometrias conhecidas, envolta em uma 

capsula de tecido fibroso nas quais estão contidos os ligamentos, além de ser atravessada por 

músculos e tendões. Tanto o formato das superfícies em contato quanto os demais tecidos 

biológicos que envolvem a articulação exercem influência no movimento desenvolvido quando 

submetidos a forças e momentos externos (Kearney; Hunter, 1990). 

O movimento dos referidos ossos articulados pode ser de rotação em torno de um eixo, 

translação ao longo de um eixo, ou mesmo uma composição de ambos. Quase sem exceção, as 

articulações do corpo humano do tipo diartrose, isto é, aquelas que permitem movimentos 

amplos, têm mais de um eixo de rotação e permitem a ocorrência tanto de rotação quanto de 

translação, como é o caso do joelho (Zatsiorsky, 1998). Os movimentos de translação são 

normalmente muito sutis e bem menores que as rotações, sendo denominados como 

“movimentos acessórios”, mas são essenciais para o funcionamento adequado da articulação 

(Oatis, 2009). 
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Uma maneira de descrever os tipos de movimento presentes numa articulação é 

quantificar os seus graus de liberdade em relação a um sistema de referência. No espaço 

tridimensional, um corpo pode transladar ao longo dos eixos x, y e z, bem como rotacionar em 

torno deles, totalizando 6 graus de liberdade. Já no plano, o movimento de um corpo fica 

completamente descrito pela combinação entre translações nos eixos x e y, e rotação em torno 

do eixo z, totalizando 3 graus de liberdade (Kearney; Hunter, 1990). Qualquer restrição aplicada 

ao corpo rígido reduz o número de movimentos possíveis. Desse modo, os ossos do corpo têm 

suas possibilidades de movimento reduzidas ao se conectarem uns aos outros nas articulações, 

seja devido a características geométricas das superfícies de contato ou a estruturas conectoras 

externas, como os ligamentos. Os movimentos que permanecem admissíveis constituem os 

graus de liberdade da articulação (Zatsiorsky, 1998). 

Tanto o tipo do movimento quanto sua amplitude em uma articulação são 

condicionados, em grande parte, pelo formato das superfícies articulares das extremidades 

ósseas que se encontram na ligação. Articulações em que as superfícies apresentam mais 

congruência entre seus formatos tendem a impor mais restrições ao movimento e proporcionam, 

portanto, mais estabilidade. Em contrapartida, superfícies mais dissimilares entre si 

normalmente possibilitam uma maior mobilidade (Oatis, 2009). 

Os ligamentos, por sua vez, estão dispostos em posições estratégicas que promovem a 

estabilidade da articulação sem trazer muitas limitações à mobilidade. Em geral, essas estruturas 

geram torques mínimos para pequenas amplitudes de movimento, mas passam a exibir 

resistência significante quando o limite de deslocamento se aproxima, sendo capazes de travar 

o movimento articular (Kearney; Hunter, 1990). 

Neste trabalho, o complexo do cotovelo é escolhido para ser modelado em conjunto com 

o comportamento mecânico muscular. O movimento que ocorre nessa região articular é 

predominantemente bidimensional, sendo compatível com o objetivo aqui proposto de 

representar o comportamento plano de membros do corpo humano.  

Embora esteja envolto por uma única capsula, a região do cotovelo conta, na verdade, 

com três articulações, destacadas na Figura 57: a umeroulnar (vermelho), a umeroradial (rosa) 

e a radioulnar superior (azul). As articulações de interesse para este trabalho são a umeroulnar 

e umeroradial, pois, de maneira simplificada, podem ser tratadas como uma única articulação 

que permite os movimentos de flexão e extensão do antebraço (Oatis, 2009). 

Esses movimentos de flexão e extensão constituem uma rotação em torno do eixo z, 

perpendicular ao plano de análise e que passa no centro da articulação, conforme ilustra a Figura 

58. Estudos revelam que esse eixo praticamente não muda de posição, o que é indicativo de um 
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movimento de rotação pura, ou seja, sem translação (Chao; Morrey, 1978; London, 1981). De 

fato, o encaixe da ulna e do rádio com o úmero possui grande congruência, de maneira que a 

translação entre as superfícies é praticamente impossível. 

Figura 57 - Articulações do cotovelo 

 
Fonte: Adaptado de Oatis (2009). 

Figura 58 – Flexão e extensão do cotovelo 

 
Fonte: Adaptado de Oatis (2009). 

A articulação radioulnar, em conjunto com a articulação umeroradial, também 

possibilitam os movimentos de supinação e pronação do antebraço, que consistem em rotações 

em torno do eixo x contido plano de análise, esquematizadas na Figura 59. Esses movimentos 

ocorrem de maneira praticamente independente da flexão e da extensão e não constituem graus 

de liberdade do sistema bidimensional mencionado anteriormente (Oatis, 2009). Sendo assim, 

a supinação e a pronação não são tratadas neste trabalho, sem provocar prejuízos significantes 

à representação dos movimentos de flexão e extensão. 

Rotações em torno do eixo y e translações na direção do eixo z, para fora do plano de 

análise, são extremamente limitadas devido à presença dos ligamentos colaterais. Essas 

estruturas se localizam nas laterais da capsula do cotovelo e se mantêm tensionadas durante 
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todo o movimento de flexão ou extensão, garantindo a estabilidade lateral em qualquer posição 

angular da articulação (Basmajian; De Luca, 1985; Callaway et al., 1997). 

Figura 59 – Supinação e pronação do cotovelo 

 
Fonte: Adaptado de Oatis (2009). 

Diante do exposto, o cotovelo é tratado neste trabalho como uma articulação do tipo 

dobradiça, isto é, uma articulação plana que apresenta um único grau de liberdade: rotação em 

torno de um eixo ortogonal ao plano de análise. Embora estudos mais detalhados e específicos 

sobre esse complexo articular revelem que seu comportamento seja mais complexo, considera-

se suficiente a abordagem adotada para os objetivos propostos. 

 

5.2 MODELAGEM DO MEMBRO SUPERIOR 

 

A geometria elaborada é inspirada nas imagens do membro superior direito de uma 

paciente do sexo feminino, com 26 anos de idade, geradas a partir de um exame de tomografia 

computadorizada. Essas imagens estão disponibilizadas em Harvard Dataverse Repository2, 

um repositório gratuito e aberto da Universidade de Harvard, e fazem parte do trabalho de 

Cabibihan, Abubasha e Thakor (2018), que visavam a projetar, fabricar e validar um braço 

protético. Os arquivos estão no formato digital DICOM (Digital Imaging and Communications 

in Medicine), um padrão para armazenamento e transmissão de imagens médicas e informações 

relacionadas. 

Após serem descarregados do repositório, os arquivos foram importados no InVesalius3, 

um software livre de reconstrução de imagens obtidas a partir de tomografia computadorizada 

ou ressonância magnética. Disponível desde 2001, esse programa é uma iniciativa do Centro 

 
2 Disponível em: https://dataverse.harvard.edu/  

3 Disponível em: https://www1.cti.gov.br/pt-br/invesalius  
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de Tecnologia da Informação Renato Archer (CTI), no Brasil, e, atualmente, se encontra em 

sua terceira versão, desenvolvida em parceria com o Ministério da Saúde. 

O InVesalius possibilita a visualização de arquivos no formato DICOM, além de realizar 

renderização volumétrica e segmentação de imagens. A Figura 60 exibe as imagens de uma 

fatia do membro superior direito da paciente nos planos axial (a), coronal (b) e sagital (c) 

visualizadas no software. Além disso, está apresentado também o volume (d) obtido a partir da 

renderização das várias fatias de cada plano. Esse volume está dividido em três camadas: os 

ossos em azul, os tecidos musculares e tendões em vermelho e demais tecidos moles em verde. 

Figura 60 – Imagens obtidas a partir de tomografia computadorizada do membro superior de 

uma paciente do sexo feminino, com 26 anos de idade, nos planos a) axial, b) coronal e c) 

sagital, e d) renderização volumétrica correspondente. 

 
Fonte: Autor. 

O programa permite ainda a realização de medições nas imagens. Com isso, foram 

tomadas algumas medidas dos ossos e dos compartimentos do braço e do antebraço, conforme 

mostra a Figura 61. Essa ferramenta foi bastante útil para se tomar conhecimento das dimensões 

reais de algumas regiões anatômicas. 

Figura 61 – Medições realizadas no InVesalius 

 
Fonte: Autor. 

a) b) c) d)
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A partir das imagens DICOM e das medições realizadas, propõe-se a geometria de um 

membro superior do corpo humano exibido na Figura 62, que corresponde aos blocos 

anatômicos do braço e do antebraço, articuladas entre si no cotovelo. Além da visualização do 

modelo no plano 𝑥1𝑥2, é apresentado um detalhe com a vista em três dimensões. 

Figura 62 – Geometria do membro superior humano 

 
Fonte: Autor. 

As regiões em vermelho representam os músculos do compartimento anterior do braço, 

que compreende o bíceps braquial, o braquial e o coracobraquial, e do compartimento posterior, 

que conta somente com o tríceps braquial. No interior dessas regiões, estão distribuídas 35 

faixas de fibras musculares, tomando como referência o modelo muscular elaborado por 

Baiocco, Coda e Paccola (2013), que também empregou essa quantidade de fibras. Sendo assim, 

o material em vermelho corresponde, mais precisamente, ao tecido conjuntivo que envolve e 

mantém unidas as fibras musculares, formando o material compósito.  

As zonas de cor cinza, situadas nas extremidades de cada compartimento muscular, 

constituem os tendões, enquanto as áreas em verde representam as estruturas ósseas do úmero, 

da ulna e do rádio. Os trechos em amarelo, por sua vez, são tecidos moles que preenchem os 

pequenos espaços entre músculos, tendões e ossos. Por fim, os trechos em azul representam a 

pele, camadas de gordura e outros tecidos moles, que fazem a fronteira com o meio externo. 

Todos esses materiais são considerados homogêneos e isotrópicos, mas a cada um deles são 

atribuídas propriedades físicas e modelos constitutivos particulares, conforme indicado na 

Tabela 3. 

O módulo de elasticidade e o coeficiente de Poisson do tecido conjuntivo muscular e o 

módulo de elasticidade das fibras são dadas conforme Lamsfuss e Bargmann (2021) . O autor 
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segue, inclusive, a mesma estratégia deste trabalho de representar a condição de quase-

incompressibilidade muscular por meio de um coeficiente de Poisson próximo a 0,5. O módulo 

de elasticidade do tendão e do osso é retirado de Fung (1993), sendo feita a opção por manter 

o coeficiente de Poisson com valor nulo. Os coeficientes de viscosidade foram arbitrados, 

mantendo uma relação  𝜂̅ = 𝜂/𝔼 de 4.10-3 para os tendões e de aproximadamente 5.10-3 para as 

fibras. 

Tabela 3 - Parâmetros físicos dos materiais do modelo 

Material 
Módulo de 

Elasticidade 

𝔼 (N/mm²) 

Coeficiente de 

Poisson 𝜈 

Coeficiente de 

viscosidade 

𝜂 (N/mm2.s) 

Tecido conjuntivo (vermelho) 0,2415 0,4995 0,0 

Tendão (cinza) 103 0,0 4,0 

Osso (verde) 1,75.104 0,0 0,0 

Tecidos moles (amarelo) 10-1 0,0 0,0 

Pele e gordura (azul) 10-1 0,0 0,0 

Fibras 4,65 - 2,5.10-2 

Fonte: Autor. 

Algumas observações sobre o modelo cabem ser destacadas. Em primeiro lugar, as áreas 

vazadas em torno da articulação do cotovelo representam a capsula que reveste a articulação. 

No corpo humano, os ligamentos que delimitam a superfície externa dessa capsula e o líquido 

sinovial contido em seu interior praticamente não oferecem restrição aos movimentos de flexão 

e extensão. Portanto, foi feita a opção por simplesmente não inserir nenhum material nessa 

região do modelo, conferindo mais liberdade ao deslizamento entre as superfícies dos elementos 

ósseos em contato. 

O material amarelo é inserido na modelagem do problema para preencher os espaços 

vazios entre músculos, tendões e ossos. Esse material não deve promover uma resistência 

significante ao desenvolvimento de deslocamentos e deformações nos materiais adjacentes, por 

isso seu módulo de elasticidade recebe um valor bem inferior aos demais materiais e seu 

coeficiente de Poisson é mantido nulo. O mesmo é feito para o material azul, que representa a 

pele e camadas de gordura. 

Outro ponto a salientar é que os músculos do antebraço não são tratados no modelo 

proposto. Suas funções principais são de contribuir para os movimentos de pronação e 

supinação do antebraço, além de produzir movimentos na mão e no pulso, sendo que apenas 

um músculo dessa região – o braquiorradial – participa ativamente do movimento de flexão do 
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cotovelo (Basmajian; De Luca, 1985) . Uma vez que não apresentam atuação significativa para 

a flexão e a extensão do cotovelo em comparação com os músculos do braço, esses músculos 

não têm seu comportamento mecânico modelado de acordo com o item 5.1.1. São considerados, 

na verdade, apenas como tecidos moles que separam a matriz óssea do meio externo, fazendo 

parte da região em verde. 

Observa-se também que é adotada uma simplificação para a ulna e para o rádio no 

antebraço: um único trecho de material ósseo é empregado para representar ambos. Isso se 

justifica pelo fato de que os referidos ossos são conectados por uma membrana interóssea, 

Figura 63, que os mantém firmemente unidos, fazendo com que se movimentem em conjunto 

durante a flexão e a extensão do cotovelo. Além disso, essa membrana também exerce a função 

de uniformizar a distribuição de tensões entre os dois ossos (Fischer et al., 2001; Shaaban et 

al., 2006). 

Figura 63 - Membrana interóssea entre o rádio e a ulna 

 
Fonte: Adaptado de Oatis (2009). 

Vale ressaltar também que a mão do membro superior não é incluída no modelo, de 

maneira que a extremidade direita finaliza na região do pulso, onde as superfícies distais (mais 

afastadas do tronco humano) da ulna e do rádio se articulam com a porção proximal (mais 

próxima ao tronco humano) da mão. 

Já com relação à extremidade esquerda, é feita a opção por não representar a articulação 

do ombro entre a escápula e o úmero. Em seu lugar, é realizado um alargamento da superfície 

óssea, onde se originam os tendões dos compartimentos anterior e posterior do braço. A face 

esquerda dessa superfície é considerada engastada, de maneira a garantir as vinculações 

necessárias do modelo no espaço tridimensional. Isso pode ser interpretado como os músculos 

situados ao redor do ombro atuando de maneira a manter a porção proximal do membro superior 

fixa, sem permitir seu movimento em torno da região articular do ombro. 

A discretização do domínio é feita em 521 elementos finitos prismáticos de base 

triangular (item 2.3.1) com 20 mm de espessura. Alguns motivos podem ser listados para 
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justificar a escolha desse tipo de elemento e suas particularidades. O fato de o elemento ser 

tridimensional, embora o objetivo do trabalho seja estudar apenas o comportamento muscular 

desenvolvido no plano, está relacionado à utilização do modelo constitutivo hiperelástico de 

Rivlin-Saunders-Hartmann-Neff, bem como do modelo visco-hiperelástico completo, cuja 

implementação necessita do uso de uma geometria tridimensional. Já a utilização do formato 

prismático para o elemento diz respeito à possibilidade de adotar graus de aproximação distintos 

para a base e para a espessura: como o comportamento ao longo da espessura não é de interesse, 

não é necessário utilizar a mesma aproximação cúbica da base, mas apenas a aproximação 

linear. Cita-se ainda que a forma triangular é escolhida para a base porque permite o uso de 

polinômios aproximadores completos, sem termos superabundantes, além possibilitar uma boa 

adequação da malha à geometria do problema. 

Já as fibras são discretizadas em elementos de barra simples com ativação (item 2.3.2), 

medindo cerca de 2 mm de comprimento. São empregados 7105 elementos, sendo 3675 no 

compartimento anterior e 3430 no compartimento posterior, o que corresponde a cada faixa de 

fibras ser dividida em, respectivamente, 105 e 98 elementos. Todos esses elementos são 

inseridos no plano 𝑥3 = 10 mm, ou seja, no plano médio ao longo da espessura. A componente 

passiva corresponde ao comportamento elástico dos elementos, enquanto a componente ativa é 

considerada por meio da estratégia de ativação. O acoplamento dos elementos de barra com os 

elementos prismáticos, de maneira a representar o comportamento conjunto do material 

compósito, é realizado por meio do procedimento numérico apresentado no item 2.3.3. 

O movimento relativo entre os materiais ósseos na articulação do modelo biomecânico 

é representado através da formulação de ligações deslizantes desenvolvida no Capítulo 4. O 

deslizamento entre as superfícies em contato ocorre sem a consideração de atrito, o que é 

realístico para articulações do corpo humano, dado o baixo coeficiente de atrito (Synek; Settles; 

Stillfried, 2012). 

Conforme esquematiza a Figura 64, são introduzidos elementos de pórtico auxiliares na 

trajetória da extremidade direita do úmero, destacada em azul. Além disso, são inseridas juntas 

deslizantes em todos os nós contidos no contorno deslizante da extremidade óssea do antebraço 

em contato com o úmero, destacados em vermelho. As trajetórias e as juntas cilíndricas são 

inseridas tanto no plano de entrada do eixo 𝑥3, quanto no de saída. É importante enfatizar que 

não se adota nenhuma propriedade física ou geométrica para os elementos de pórtico auxiliares 

no modelo proposto, de maneira que não existe contribuição desses elementos para a rigidez da 

estrutura. 
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Figura 64 - Elementos de pórtico auxiliares e juntas cilíndricas na 

ligação deslizante entre ossos no cotovelo (separados para fins de 

clareza) 

 
Fonte: Autor. 

 

5.3 COMENTÁRIOS SOBRE O CÓDIGO COMPUTACIONAL 

 

O código computacional desenvolvido para realizar as análises mecânicas propostas 

neste trabalho é fundamentado no Método dos Elementos Finitos Posicional e aplicado a 

problemas discretizados em elementos finitos prismáticos de base triangular. As solicitações 

externas sobre o sólido estudado podem ser forças concentradas em seus nós, forças de 

superfície, forças de volume ou mesmo deslocamentos nodais prescritos. 

O código possibilita a inserção de elementos de barras simples no interior dos elementos 

prismáticos para representar materiais compósitos reforçados com fibras, além de permitir a 

ativação desses elementos. Também é possível incorporar elementos de pórtico auxiliares para 

promover o deslizamento entre dois ou mais corpos discretizados com elementos prismáticos. 

Embora os problemas biomecânicos propostos neste capítulo requeiram a inclusão tanto de 

elementos de barra simples ativados quanto de elementos de pórticos auxiliares, é importante 

destacar que os dados de entrada para ambos podem ser omitidos conforme a exigência da 

análise, em situações nas quais um ou outro não seja necessário na discretização do problema. 

O programa está escrito em linguagem Fortran 90, e o resumo das operações realizadas 

nas análises mecânicas estática e dinâmica está exibido no pseudocódigo das Figuras 65 e 66, 

respectivamente. 
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Figura 65 – Pseudocódigo da análise mecânica estática 

1 Ler dados dos elementos prismáticos 24   Para n = 1 até nº de juntas cilíndricas 

2 Ler dados dos elementos de barra simples 25    Identificar ponto de contato (Item 4.4) 

3 Ler dados dos elementos de pórtico auxiliares 26    Calcular 𝐹 𝑟𝑒𝑠 e 𝑯𝒓𝒆𝒔 (Eqs. 4.6 e 4.16) 

4 Acumular 𝐹 𝑒𝑥𝑡,𝑣𝑜𝑙 em 𝐹 𝑒𝑥𝑡 (Eq.60) 27    Impor condições de contorno em 𝑯𝒓𝒆𝒔 

5 Acumular 𝐹 𝑒𝑥𝑡,𝑠𝑢𝑝 em 𝐹 𝑒𝑥𝑡  (Eq. 2.61 ou 2.62) 28    Acumular 𝐹 𝑟𝑒𝑠 e 𝑯𝒓𝒆𝒔 

6 Calcular 𝜉  dos nós dos elementos de barra 29   Fim do loop n 

7 Adotar posição inicial 𝑌⃗ = 𝑋  30   Calcular 𝑔  (Eq. 2.15) 

8 Para i = 1 até nº de passos de carga 31   Impor condições de contorno em 𝑔  

9  Incrementar força ext. (𝐹 𝑒𝑥𝑡 ← 𝐹 𝑒𝑥𝑡 + 𝑑𝐹 𝑒𝑥𝑡) 32   Calcular Δ𝑌⃗  (Eq. 4.13) 

10  Incrementar posição prescrita (𝑌⃗ ← 𝑌⃗ + 𝑑𝑌⃗ ) 33   Atualizar 𝑌⃗  e 𝜆  (Eq. 2.19) 

11  Impor Δ𝐿 nos elementos de barra (Eq. 2.38) 34   Verificar convergência (Eq 2.20) 

12  Enquanto ‖Δ𝑌⃗ ‖ ‖𝑋 ‖⁄ ≥ tolerância 35   Calcular posições dos elementos de barra 

13   Para j = 1 até nº de elementos prismáticos 36  Fim do loop while 

14    Calcular 𝐹 𝑖𝑛𝑡 e 𝑯𝒆𝒔𝒕𝒂𝒕 (Eqs. 2.50 e 2.63) 37  Exportar dados para pós-processamento 

15    Impor condições de contorno em 𝑯𝒆𝒔𝒕𝒂𝒕 38 Fim do loop i 

16    Acumular 𝐹 𝑖𝑛𝑡 e 𝑯𝒆𝒔𝒕𝒂𝒕   

17   Fim do loop j     

18   Para k = 1 até nº de elementos de barras     

19    Calcular 𝐹 𝑖𝑛𝑡 e 𝑯𝒆𝒔𝒕𝒂𝒕 (Eqs. 2.40 e 2.41)     

20    Expandir 𝐹 𝑖𝑛𝑡 e 𝑯𝒆𝒔𝒕𝒂𝒕 (Eqs. 2.73 e 2.74)    

21    Impor condições de contorno em 𝑯𝒆𝒔𝒕𝒂𝒕    

22    Acumular 𝐹 𝑖𝑛𝑡 e 𝑯𝒆𝒔𝒕𝒂𝒕   

23   Fim do loop k   

Fonte: Autor. 

Dois pontos importantes cabem ser ressaltados sobre o código computacional 

desenvolvido. O primeiro está relacionado à manipulação da matriz hessiana do problema no 

formato de uma matriz esparsa. Para proceder adequadamente sua montagem, são empregadas 

funções e sub-rotinas da biblioteca Sparse Set (Piedade Neto; Paccola, 2020). Já a resolução do 

sistema de equações que permite calcular a correção das posições Δ𝑌⃗  é conduzida através do 

pacote PARDISO (Schenk; Gärtner; Fichtner, 1999). 

O segundo tópico diz respeito à paralelização das seções de código correspondentes aos 

loops j e k, indicados nos pseudocódigos. Essa estratégia foi implementada por meio da 

ferramenta OpenMP (Dagum; Menon, 1998) com o intuito de reduzir o tempo de 

processamento das análises. Vale salientar que o loop n também poderia ter sido paralelizado, 
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porém, devido ao baixo tempo de processamento desse trecho do código, não houve justificativa 

para tal medida. 

Figura 66 - Pseudocódigo da análise mecânica dinâmica 

1 Ler dados dos elementos prismáticos 27   Para k = 1 até nº de elementos de barras 

2 Ler dados dos elementos de barra simples 28    Calcular 𝐹 𝑖𝑛𝑡 e 𝑯𝒆𝒔𝒕𝒂𝒕 (Eqs. 2.60 e 2.80) 

3 Ler dados dos elementos de pórtico auxiliares 29    Calcular 𝐹 𝑑𝑖𝑠 e 𝑯𝑑𝑖𝑠 (Eqs. 3.73 e 3.74) 

4 Acumular 𝐹 𝑒𝑥𝑡,𝑣𝑜𝑙 em 𝐹 𝑒𝑥𝑡 (Eq.60) 30    Adicionar 𝑯𝑑𝑖𝑠 a 𝑯𝑒𝑠𝑡𝑎𝑡 

5 Acumular 𝐹 𝑒𝑥𝑡,𝑠𝑢𝑝 em 𝐹 𝑒𝑥𝑡  (Eq. 2.61 ou 2.62) 31    Adicionar 𝑴/𝛽Δ𝑡2 a 𝑯𝒆𝒔𝒕𝒂𝒕 (Eq 2.31) 

6 Calcular 𝜉  dos nós dos elementos de barra 32    Expandir 𝐹 𝑖𝑛𝑡 e 𝐹 𝑑𝑖𝑠 (Eq. 2.73 e 2.74)  

7 Adotar posição inicial 𝑌⃗ = 𝑋  33    Expandir 𝑯𝒆𝒔𝒕𝒂𝒕 (Eq. 2.74) 

8 Calcular 𝑴𝒑𝒓𝒊𝒔𝒎 (Eq 2.68) 34    Impor condições de contorno em 𝑯𝒆𝒔𝒕𝒂𝒕 

9 Calcular 𝑴𝒃𝒂𝒓𝒓𝒂 (Eq 2.42) 35    Acumular 𝐹 𝑖𝑛𝑡, 𝐹 𝑑𝑖𝑠 e 𝑯𝒆𝒔𝒕𝒂𝒕 

10 Expandir 𝑴𝒃𝒂𝒓𝒓𝒂 (Eq. 2.74) 36   Fim do loop k 

11 Adicionar 𝑴𝒃𝒂𝒓𝒓𝒂
𝒆𝒙𝒑

 a 𝑴𝒑𝒓𝒊𝒔𝒎 37   Para n = 1 até nº de juntas cilíndricas 

12 Calcular 𝑌⃗ ̈0 Equação (Eq. 2.33) 38    Identificar ponto de contato (Item 4.4) 

13 Para i = 1 até nº de passos de tempo 39    Calcular 𝐹 𝑟𝑒𝑠 e 𝑯𝒓𝒆𝒔 (Eqs. 4.6 e 4.16) 

14  Incrementar tempo (𝑡 ← 𝑡 + ∆𝑡) 40    Impor condições de contorno em 𝑯𝒓𝒆𝒔 

15  Calcular 𝐹 𝑒𝑥𝑡(𝑡) 41    Acumular 𝐹 𝑟𝑒𝑠 e 𝑯𝒓𝒆𝒔 

16  Impor Δ𝐿 nos elementos de barra (Eq. 2.38) 42   Fim do loop n 

17  Calcular 𝑄⃗ 𝑠 e 𝑅⃗ 𝑠 (Eqs. 2.28 e 2.29) 43   Calcular 𝑔  (Eq. 2.22) 

18  Enquanto ‖Δ𝑌⃗ ‖ ‖𝑋 ‖⁄ ≥ tolerância 44   Impor condições de contorno em 𝑔  

19   Para j = 1 até nº de elementos prismáticos 45   Calcular Δ𝑌⃗  (Eq. 4.13) 

20    Calcular 𝐹 𝑖𝑛𝑡 e 𝑯𝒆𝒔𝒕𝒂𝒕 (Eqs. 2.50 e 2.63) 46   Atualizar 𝑌⃗  e 𝜆  (Eq. 2.19) 

21    Calcular 𝐹 𝑑𝑖𝑠 e 𝑯𝑑𝑖𝑠 (Eqs. 3.76 e 3.78) 47   Verificar convergência (Eq 2.20) 

22    Adicionar 𝑯𝑑𝑖𝑠 a 𝑯𝑒𝑠𝑡𝑎𝑡 48   Calcular posições dos elementos de barra 

23    Adicionar 𝑴/𝛽Δ𝑡2 a 𝑯𝒆𝒔𝒕𝒂𝒕 (Eq. 2.31) 49  Fim do loop while 

24    Impor condições de contorno em 𝑯𝒆𝒔𝒕𝒂𝒕 50  Atualizar 𝑌⃗ ̈ e  𝑌⃗ ̇ (Eqs. 2.26 e 2.27) 

25    Acumular 𝐹 𝑖𝑛𝑡, 𝐹 𝑑𝑖𝑠 e 𝑯𝒆𝒔𝒕𝒂𝒕 51  Exportação de dados para pós-processamento 

26   Fim do loop j 52 Fim do loop i 

Fonte: Autor. 

 

5.4 EXEMPLOS NUMÉRICOS 

 

Neste item, apresentam-se exemplos finais com o intuito de simular a resposta mecânica 

do membro superior do corpo humano quando submetido a ações externas e contrações 

musculares. Todas as formulações apresentadas nos Capítulos 2 a 4 são empregadas. 
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5.4.1 Comportamento passivo diante de ações externas 

 

Uma força horizontal 𝐹 é aplicada na extremidade livre do antebraço, isto é, na região 

do pulso, de acordo com a Figura 67. Mais precisamente, sua aplicação é feita de maneira 

distribuída sobre os nós dos elementos ósseos ali situados. Neste problema, somente análises 

estáticas são realizadas. As fibras do compartimento posterior têm seu módulo elasticidade 𝔼 

reduzido ao valor de 4,65.10-2 N/mm2, de maneira a representar a baixa rigidez muscular à 

compressão. Os demais parâmetros físicos são mantidos conforme a Tabela 3. 

Inicialmente, é atribuída uma intensidade pequena para a força horizontal (𝐹 = 2 𝑁), 

de maneira a comparar o comportamento de modelos constitutivos distintos no regime de 

deformações pequenas a moderadas. No modelo M1, aos materiais do membro superior é 

atribuído o modelo de Saint-Venant-Kirchhoff, enquanto o modelo de Rivlin-Saunders-

Hartamnn-Neff é atribuído no modelo M2. Em ambas as situações, as fibras são modeladas 

segundo o modelo de Saint-Venant-Kirchhoff. Os resultados são apresentados na Figura 68, em 

que se verifica uma certa aproximação entre os deslocamentos finais, havendo uma diferença 

de 2,3% entre os deslocamentos máximos na direção 𝑥1. 

Figura 67 - Força aplicada na direção positiva do eixo 𝑥1 

 
Fonte: Autor. 

Para observar o desenvolvimento de grandes deslocamentos e deformações, a força 

externa atuante na região do pulso é elevada ao valor de 40 N. Friedel (2016) constata que o 

modelo constitutivo de Saint-Venant-Kirchhoff permite a autointerseção do material, enquanto 

o modelo de Rivlin-Saunders-Hartmann-Neff não permite a ocorrência dessa situação, ainda 

que resulte em deslocamentos maiores para a estrutura, mostrando-se mais consistente. Desse 

modo, prossegue-se com a análise apenas do modelo M2. 
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Figura 68 – Deslocamentos na direção 𝑥1 para 𝐹 = 2𝑁, modelos a) M1 e b) M2 

 
Fonte: Autor. 

A aplicação da força 𝐹 gera a extensão do cotovelo, isto é, uma rotação do antebraço, 

em torno do cotovelo, com sentido horário. Tal movimento provoca deslocamentos do material 

muscular nas três direções cartesianas, conforme ilustra a Figura 69. O compartimento anterior 

sofre um alongamento na direção 𝑥1, pois é puxado pelo antebraço, e encurtamentos são 

verificados nas direções 𝑥2 e 𝑥3 pelo efeito de Poisson. O compartimento posterior, por outro 

lado, sofre um encurtamento na direção 𝑥1, pois é comprimido pelo antebraço, e alongamentos 

surgem nas outras duas direções ortogonais. 

Figura 69 – Extensão do cotovelo com 𝐹 = 40 𝑁. 

Deslocamentos nas direções a) 𝑥1, b) 𝑥2 e c) 𝑥3 

 
Fonte: Autor. 

a)

c)

b)
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É possível também verificar que a hipótese de quase-incompressibilidade é atendida no 

problema. A Figura 70 exibe os valores do jacobiano da transformação 𝐽 no modelo, que estão 

bem próximos do valor unitário no material muscular. Os deslocamentos nas direções 

ortogonais à direção 𝑥1, comentados no parágrafo anterior, estão de acordo com a condição de 

quase-incompressibilidade e ocorrem de maneira a preservar o volume inicial dos materiais. 

Os valores do jacobiano muito distantes da unidade ocorrem nos materiais da pele (azul) 

e de preenchimento (amarelo), que sofrem compressões expressivas em alguns pontos e têm 

seu volume alterado de forma mais significante. Isso já era esperado, tendo em vista o seu baixo 

módulo de elasticidade e o fato de seu coeficiente de Poisson ser bem menor que 0,5. Conforme 

já comentado, a função desse material é preencher os espaços vazios entre músculos, tendões e 

ossos, sem promover tanta resistência ao desenvolvimento de deslocamentos e deformações 

nos materiais adjacentes. 

Figura 70 – Valores do jacobiano nos materiais 

 
Fonte: Autor. 

As tensões normais de Cauchy são apresentadas na Figura 71 para as direções 𝑥1 e 𝑥2. 

Observam-se tensões de compressão e tração, respectivamente, nas regiões inferior e superior 

do úmero bem como nos lados esquerdo e direito do antebraço. Nas fibras do compartimento 

anterior do braço, por sua vez, surgem tensões de tração, enquanto tensões de compressão muito 

baixas aparecem nas fibras do compartimento posterior. Esses resultados são coerentes com os 

deslocamentos calculados e os parâmetros físicos empregados. 

As forças de contato nas juntas cilíndricas estão direcionadas para o eixo de rotação do 

antebraço, posicionado no centro do cotovelo. Isso está em acordo com a modelagem 

geométrica proposta, que trata as trajetórias e os contornos deslizantes como dois arcos de 

círculo concêntricos. A resultante dessas forças tem módulo igual a 36,4 N, com direção 

praticamente paralela ao eixo 𝑥1, e sentido que indica afastamento entre as superfícies 

articulares. Portanto, na configuração final de equilíbrio, a articulação do cotovelo transmite a 

força aplicada na extremidade distal do antebraço ao úmero. 
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Figura 71 – Tensões de Cauchy nas direções a) 𝑥1 e b) 𝑥2 e 

c) tensões normais nas fibras 

 
Fonte: Autor. 

Prosseguindo com a análise do comportamento muscular passivo, avalia-se também o 

caso em que força 𝐹 = 40 𝑁 é aplicada na mesma intensidade, mas em sentido contrário, 

gerando uma rotação no antebraço, em torno do cotovelo, com sentido anti-horário, ou seja, o 

movimento de flexão do cotovelo. De maneira análoga ao que foi feito na primeira análise, as 

fibras do compartimento anterior têm seu módulo elasticidade 𝔼 reduzido a 4,65.10-2 N/mm2, 

enquanto as fibras do compartimento posterior têm suas propriedades mantidas conforme a 

Tabela 3. 

Nesse caso, os alongamentos na direção 𝑥1 ocorrem no compartimento posterior, 

enquanto os encurtamentos ocorrem no compartimento anterior. Os deslocamentos nas direções 

ortogonais a 𝑥1 também são condizentes com o efeito de Poisson e buscam preservar o volume 

dos materiais, em função da hipótese de quase-incompressibilidade. A Figura 72 apresenta o 

campo de deslocamentos do modelo nas três direções cartesianas, bem como dos valores do 

jacobiano ao longo do domínio. 

Nessa situação, o vetor resultante das forças de contato nas juntas cilíndricas tem 

módulo igual a 23,6 N e está inclinado em aproximadamente 135º a partir do sentido positivo 

do eixo 𝑥1. Tal força indica a tendência de compressão de uma superfície articular sobre a outra. 



122 

 

Figura 72 – Deslocamentos nas direções a) 𝑥1, b) 𝑥2 e c) 𝑥3 e d) valores 

do jacobiano 

 
Fonte: Autor. 

 

5.4.2 Contração muscular 

 

O mecanismo de contração muscular é demonstrado em análises estáticas através da 

ativação dos elementos de barra simples que discretizam as fibras do modelo. Considera-se o 

módulo de elasticidade de 4,65 N/mm2 tanto para as fibras do compartimento anterior quanto 

posterior do braço, pois todas estão submetidas a tensões de tração, conforme discutido mais 

adiante. Este problema é estudado, inicialmente, numa situação de ausência de forças externas, 

de maneira que a ativação dos elementos é a única solicitação imposta. Nesse cenário, duas 

análises são propostas, promovendo a contração das fibras em compartimentos distintos. 

Numa primeira análise, aplica-se uma variação de comprimento de -0,5 mm em todos 

os elementos de barra do compartimento anterior, o que equivale a uma redução de 

aproximadamente 25% do comprimento inicial. Enquanto isso, as fibras do compartimento 

posterior são deixadas livres para se alongar ou contrair. 

Num segundo momento, toma-se a configuração inicial do problema e aplica-se uma 

variação de comprimento de -0,8 mm em todos os elementos de barra do compartimento 

posterior, correspondendo a uma redução de aproximadamente 40% do comprimento inicial. 

Dessa vez, as fibras do compartimento anterior são deixadas livres para se alongar ou contrair. 

Os deslocamentos na direção 𝑥1 desenvolvidos no modelo são apresentados na Figura 

73. Como já era esperado, a ativação dos elementos de barra do compartimento anterior provoca 

a) b)

c) d)
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o movimento de flexão do cotovelo. Já a ativação dos elementos do compartimento posterior 

gera a extensão do cotovelo. Ao retirar as variações de comprimento impostas, a estrutura 

retorna à configuração inicial. 

Figura 73 – Deslocamentos na direção 𝑥1 para a ativação das fibras a) no compartimento 

anterior e b) no compartimento posterior 

 
Fonte: Autor. 

Conforme discutido no item 2.3.3, o deslocamento final é resultado do equilíbrio de 

forças entre as fibras e a matriz na qual estão inseridas. Além desse fato, o movimento gerado 

pela contração das fibras de um compartimento é resistido pelo músculo do compartimento 

oposto. Portanto, o deslocamento final definitivamente não é igual à variação de comprimento 

imposta. 

As tensões normais de Cauchy desenvolvidas nos materiais são ilustradas nas Figuras 

74 e 75. Observa-se que tensões positivas são desenvolvidas em todas as fibras, ou seja, a 

contração muscular gera tração tanto nas fibras contraídas de um compartimento quanto nas 

fibras do compartimento oposto, que são solicitadas passivamente e sofrem alongamento. As 

tensões ocorrem em maior intensidade nas fibras contraídas, responsáveis por realizar o 

movimento do membro. Já com relação aos materiais da matriz, são desenvolvidas tensões de 

compressão no tecido conjuntivo do compartimento onde ocorre a contração e tensões de tração 

nos tendões das extremidades. No compartimento oposto, tanto o tecido conjuntivo muscular 

quanto os tendões são submetidos a tensões de tração 

Dando continuidade ao problema da contração muscular, avalia-se uma segunda 

situação: considera-se agora não só a ativação dos elementos de fibra, mas também a presença 

de uma força aplicada na região do pulso. Esse exemplo simula um exercício físico para os 

músculos do compartimento anterior do braço, consistindo na movimentação de uma carga por 

meio da flexão e da extensão do cotovelo controladas pelo indivíduo. 

a) b)
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A execução é dividida em três etapas. Inicialmente, aplica-se o carregamento e 

determina-se a posição de equilíbrio do sistema. Em seguida, todas as fibras do compartimento 

anterior são submetidas a uma variação de comprimento de -0,50 mm, o que corresponde a uma 

contração de cerca de 25% do seu comprimento de repouso. Por fim, a contração é retirada e a 

fibra é deixada livre para se alongar sob atuação da carga externa, retornando à posição de 

equilíbrio da primeira etapa. 

Figura 74 – Tensões de Cauchy na direção 𝑥1 nos materiais da matriz para a) contração nas 

fibras do compartimento anterior e b) contração nas fibras do compartimento posterior  

 
Fonte: Autor. 

Figura 75 – Tensões normais nas fibras para a) contração nas fibras do compartimento anterior 

e b) contração nas fibras do compartimento posterior  

 
Fonte: Autor. 

Conforme esperado, a contração das fibras do compartimento anterior gera a flexão do 

cotovelo, movendo a carga no sentido contrário ao seu sentido de aplicação. No entanto, se for 

tomado como referência a posição inicial do problema, percebe-se que a posição do antebraço 

após a contração corresponde ao movimento de extensão do cotovelo, conforme ilustrado na 

Figura 76. Embora tenha havido a contração muscular, o movimento se deu conforme o sentido 

a)

b)

b)

d)

a) b)
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da carga, o que representa a situação em que a carga atuante é maior do que a capacidade 

muscular mobilizada pelo indivíduo. Vale ressaltar que o deslocamento em extensão, 

evidentemente, é menor do que se não houvesse nenhuma contração, ou seja, a extensão ao 

final da segunda etapa é inferior à extensão da primeira etapa. 

Figura 76 – Deslocamentos nas direções 𝑥1 para variação de 

comprimento de -0,5 mm 

 

Fonte: Autor. 

Após remover a contração e retornar à mesma posição de equilíbrio obtida ao final da 

primeira etapa, impõe-se uma nova variação de comprimento. Dessa vez, o valor é de -0,8 mm, 

correspondendo a aproximadamente 40% do comprimento dos elementos. Com isso, a carga é 

movimentada em sentido contrário ao seu sentido de atuação e o antebraço atinge uma posição 

de flexão de cotovelo em relação à configuração inicial, ilustrada na Figura 77. O nível de 

ativação muscular mobilizado é, portanto, superior à carga atuante. 

Figura 77 – Deslocamentos nas direções 𝑥1 para variação de 

comprimento de -0,8 mm 

 
Fonte: Autor. 
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Friedel (2016) comenta que a capacidade de contração muscular atribuída às fibras por 

meio da estratégia de ativação dos elementos de barra deve depender tanto do poder de 

contração dos referidos elementos (intensidade da variação de comprimento), bem como da 

rigidez das fibras. Embora o primeiro caso seja empregado aqui, aumentar a rigidez das fibras 

também resultaria num efeito semelhante, seja alterando seu módulo de elasticidade ou sua área 

de seção transversal. 

Na análise de um mesmo músculo, de fato é mais verossímil impor variações de 

comprimento mais intensas para aumentar a capacidade de contração, o que pode ser 

interpretado como o músculo recebendo maiores estímulos do sistema nervoso para se contrair. 

No entanto, a alteração da rigidez se apresenta como uma alternativa para considerar diferentes 

músculos do corpo humano, com capacidades de contração distintas entre si. 

 

5.4.3 Comportamento passivo viscoelástico sob ação de força externa 

 

A resposta mecânica muscular desenvolvida ao longo do tempo é demonstrada por meio 

da atribuição de um comportamento viscoelástico para os materiais dos músculos e dos tendões. 

O modelo constitutivo das fibras é o visco-hiperlástico para pequenas deformações, enquanto 

o modelo do tecido conjuntivo e dos tendões é o visco-hiperlástico completo para grandes 

deformações. 

Para as fibras do compartimento anterior, empregam-se os parâmetros físicos da Tabela 

3, inclusive o coeficiente de viscosidade 𝜂. As fibras do compartimento posterior, por sua vez, 

têm seu o módulo de elasticidade reduzido ao valor de 4,65.10-2 N/mm2, para representar sua 

baixa rigidez à compressão. Além disso, a essas fibras é atribuído coeficiente de viscosidade 

nulo. 

Já para o tecido conjuntivo e para os tendões, também se utilizam as propriedades 

elásticas da Tabela 3. O coeficiente de viscosidade 𝜂 dos tendões é adotado com valor de 4,0 

N/mm2.s, enquanto um coeficiente de valor nulo é atribuído à matriz de tecido conjuntivo, pois 

o comportamento mecânico desse material não é modelado levando em conta o amortecimento 

viscoso, conforme apresentado no item 5.1.1. 

Neste item, propõe-se a análise de duas situações. O primeiro problema consiste no 

membro superior do corpo humano submetido à força 𝐹 na região do pulso, no sentido positivo 

do eixo 𝑥1, com intensidade de 20 N. A partir disso, realiza-se uma análise quase-estática 

(desprezando efeitos de inércia) com incremento de tempo Δ𝑡 de 10-5 s em 500 passos. Uma 

tolerância 10-6 é adotada para a convergência da solução. 
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A evolução do deslocamento na direção 𝑥1 é apresentada no gráfico da Figura 78, onde 

também é mostrado o deslocamento final obtido por meio de uma análise estática para o mesmo 

nível de carregamento. Esse deslocamento é referente ao nó 39, situado na extremidade livre 

do antebraço e pertencente a um elemento ósseo, posicionado mais à esquerda na configuração 

inicial. Observa-se que, a partir do instante 𝑡 = 0,0025 s, o membro superior já atingiu a 

configuração de equilíbrio e não há mudança significativa na posição do nó. O deslocamento, 

no entanto, é ligeiramente inferior ao deslocamento obtido numa análise estática. Isso se deve 

ao fato de que a quantidade de elementos de fibra no modelo desenvolvendo deslocamentos ao 

longo do tempo é muito grande, de maneira que é necessário um período de análise bem mais 

extenso para permitir que todos atinjam seu deslocamento final. 

Figura 78 – Deslocamento do nó 39 na direção 𝑥1 

 

Fonte: Autor. 

O segundo problema é inspirado no trabalho de Sobolewski, Ryan e Thompson (2013) 

e corresponde à aplicação de um deslocamento prescrito Δ𝑥1 nos nós 39 e 2492, situados na 

região do pulso. Tal deslocamento é aplicado em três ciclos, cada um deles compostos por 

quatro etapas, conforme apresentado na Tabela 4. Na primeira etapa, procede-se a extensão do 

cotovelo de maneira gradual, ao longo de alguns passos de tempo, por meio de um 

deslocamento Δ𝑥1 positivo. Na segunda etapa, o membro é mantido na posição final alcançada 

na primeira etapa durante uma determinada quantidade de passos de tempo. A terceira etapa, 

por sua vez, promove o retorno do cotovelo a uma posição menos estendida, mas ainda 

mantendo o compartimento anterior do braço sob alongamento. Por fim, na última etapa, o 

membro é mantido na posição alcançada ao final de terceira etapa por mais alguns instantes. 

Vale salientar que a velocidade de aplicação dos deslocamentos com valores não nulos é sempre 

a mesma, com módulo igual a 0,9 mm/passo. A análise realizada é do tipo quase-estática com 

incremento de tempo Δ𝑡 de 10-4 s, adotando-se uma tolerância de 10-6 para a convergência da 

solução. 
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Tabela 4 - Ciclos de aplicação do deslocamento prescrito 

Etapas 
1º Ciclo 2º Ciclo 3º Ciclo 

Δ𝑥1 Passos Δ𝑥1 Passos Δ𝑥1 Passos 

1 +36 mm 40 +18 mm 20 +18 mm 20 

2 0 mm 60 0 mm 60 0 mm 60 

3 -18 mm 20 -18 mm 20 -18 mm 20 

4 0 mm 60 0 mm 60 0 mm 60 

Fonte: Autor. 

Para analisar este segundo problema, o tendão de cada extremidade do compartimento 

anterior do braço é discretizado da seguinte maneira: atribui-se coeficiente de viscosidade 𝜂 

nulo aos elementos que não possuem nó em comum com os elementos de tecido conjuntivo, 

enquanto os demais recebem 𝜂 com valor de 4,0 N/mm2.s. Desse modo, os elementos com 

coeficiente de viscosidade nulo têm seu comportamento mecânico considerado como sendo 

somente hiperelástico, desprezando os efeitos de amortecimento viscoso. Já os demais 

elementos continuam descritos pelo modelo constitutivo visco-hiperelástico. Tal procedimento 

é realizado para que as deformações nesses tendões possam se desenvolver tanto de forma 

imediata quanto ao longo do tempo. Os demais materiais têm seus parâmetros físicos e modelos 

constitutivos adotados conforme apresentado no início deste item. 

A evolução da tensão normal de Cauchy na direção 𝑥1 é apresentada no gráfico da 

Figura 79. Essa componente de tensão é avaliada no nó de contato entre o tendão distal do 

compartimento anterior do braço e o material ósseo do antebraço. É possível identificar os 

trechos correspondentes aos três ciclos de aplicação do deslocamento prescrito, bem como as 

etapas em que cada ciclo é dividido. 

Figura 79 - Tensão de Cauchy na direção 𝑥1, avaliada na extremidade do 

tendão distal do compartimento anterior 

 

Fonte: Autor. 
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Por meio do gráfico, dois fenômenos viscoelásticos podem ser observados. O primeiro 

deles é a relaxação, que corresponde à redução no valor da tensão nos trechos em que a posição 

do membro é mantida constante. O segundo é a fluência, isto é, a evolução gradual de 

deformações. Uma vez que o membro alcançou a mesma posição ao final da primeira etapa de 

cada ciclo, a obtenção de uma tensão com valor cada vez menor nesses instantes indica o 

surgimento de novas deformações nos materiais. 

Sobolewski, Ryan e Thompson (2013) realizaram um ensaio experimental com 

pacientes utilizando um aparelho que promovia a dorsiflexão no tornozelo dos voluntários, ou 

seja, movia os dedos do pé em direção à perna, diminuindo o ângulo entre o dorso do pé e a 

perna. Além disso, o dispositivo registrava o torque necessário para alcançar o ângulo de 

dorsiflexão desejado. O ensaio foi conduzido em quatro ciclos, nos quais um ângulo específico 

de dorsiflexão era aplicado, mantido por 30 s, seguido pelo retorno à posição inicial e um 

período de repouso adicional de 30 s. Vale salientar que o ângulo de dorsiflexão máximo 

alcançado na primeira etapa de cada ciclo era referente a um valor de torque pré-estabelecido.  

Os referidos autores plotaram a variação tanto do ângulo de dorsiflexão quanto do torque 

medido pelo aparelho ao longo do tempo, exibidos na Figura 80. Com isso, foi possível 

constatar os fenômenos de relaxação e fluência, de natureza viscoelástica. O primeiro foi 

verificado através da redução do torque durante a manutenção da dorsiflexão. Já o segundo foi 

observado por meio do aumento no ângulo de dorsiflexão máximo alcançado em cada ciclo, 

sem que houvesse aumento no valor de torque máximo pré-definido. 

Figura 80 - Dados de posição angular do tornozelo e de torque registrados durante 

a realização do ensaio 

 

Fonte: Sobolewski, Ryan e Thompson (2013). 

Diante disso, percebe-se que os fenômenos viscoelásticos do comportamento muscular 

constatados experimentalmente por Sobolewski, Ryan e Thompson (2013) também foram 

verificados por meio do modelo numérico. Embora os parâmetros físicos adotados na análise 



130 

 

computacional realizada neste item não tenham sido calibrados com valores experimentais – 

atividade que, de fato, está fora do escopo deste trabalho – e não seja possível a comparação 

direta dos resultados, considera-se satisfatória a resposta mecânica obtida, tendo aqui caráter 

qualitativo. 
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6 CONSIDERAÇÕES FINAIS 

 

Para finalizar este trabalho, pontuam-se algumas conclusões obtidas ao longo da 

realização da pesquisa e apresentam-se sugestões para dar continuidade ao desenvolvimento 

dos temas aqui tratados. 

 

6.1 CONCLUSÕES 

 

O presente trabalho realizou a simulação numérica do comportamento mecânico plano 

de membros do corpo humano, considerando tanto a atuação de músculos esqueléticos quanto 

o movimento de articulações adjuntas. Essa simulação é realizada através de um código 

computacional desenvolvido com base no Método dos Elementos Finitos Posicional, capaz de 

realizar análises não-lineares geométricas de maneira direta. Além disso, as análises mecânicas 

desenvolvidas demonstram a aplicação das leis constitutivas visco-hiperleásticas e da 

formulação para ligações deslizantes entre elementos prismáticos na modelagem de estruturas 

biológicas. Vários exemplos atestaram a correta implementação computacional e o bom 

funcionamento do código. 

Empregando todo o conteúdo abordado nos Capítulos 2 a 4, foi proposto um modelo 

biomecânico para representar o comportamento mecânico do membro superior do corpo 

humano. A geometria elaborada foi inspirada em imagens de tomografia computadorizada de 

um membro real, referente a uma paciente com 26 anos de idade, cujos dados foram obtidos 

em Harvard Dataverse Repository, um repositório da Universidade de Harvard. Com isso, as 

dimensões empregadas no modelo possuem uma boa aproximação com as dimensões reais de 

estruturas musculoesqueléticas. 

No modelo proposto, o músculo é considerado um material compósito reforçado com 

fibras: a matriz é formada pelas camadas de tecido conjuntivo e o reforço corresponde às fibras 

musculares. À matriz é atribuído o modelo constitutivo hiperelástico de Rivlin-Saunders-

Hartmann-Neff, que se mostrou adequado para representar o regime de grandes deformações 

O comportamento das fibras, por sua vez, é divido nas formas ativa e passiva. A 

componente ativa é implementada através de uma estratégia que trata os elementos de barra 

como atuadores, impondo variações ao seu comprimento inicial. Já a componente passiva é 

descrita pelo modelo constitutivo de Saint-Venant-Kirchhoff em seu formato unidimensional. 
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O acoplamento entre a matriz e as fibras para formar, de fato, o material compósito, é efetuado 

por meio de um procedimento de imersão de elementos de barra em elementos bidimensionais. 

Para reproduzir o comportamento muscular ao longo do tempo, foram atribuídas 

propriedades viscosas às fibras e aos tendões. A resposta mecânica foi descrita segundo o 

modelo viscoelástico de Kelvin-Voigt, adaptado à medida de deformação de Green e associado 

a modelos hiperelásticos, o que possibilitou a definição de um modelo visco-hiperelástico 

completo. 

No que diz respeito às articulações, essas conexões entre ossos são consideradas como 

ligações deslizantes. A formulação para elementos de pórtico plano desenvolvida por Siqueira 

(2016) foi empregada para tratar o deslizamento entre elementos prismáticos, tomando como 

referência a estratégia utilizada por Rodriguez (2017) para reproduzir o deslizamento entre 

elementos de chapa.  

Os exemplos finais apresentados no Capítulo 5 revelam as potencialidades do código 

computacional desenvolvido para analisar o comportamento de estruturas biológicas. Foi 

possível perceber também a grande complexidade que envolve a modelagem desse tipo de 

material. Embora ainda seja necessário progredir bastante, conclui-se que é possível descrever 

a resposta mecânica plana de membros do corpo humano por meio dos conteúdos aqui 

abordados. 

 

6.2 SUGESTÕES PARA TRABALHOS FUTUROS 

 

Para trabalhos futuros na área de métodos numéricos e biomecânica, sugere-se aplicar 

modelos constitutivos hiperelásticos mais adequados à reprodução do comportamento de 

tecidos musculares. Pode-se dar preferência por modelos cujas constantes estejam calibradas a 

partir de resultados experimentais disponíveis na literatura. 

 Além disso, recomenda-se a utilização de elementos finitos tridimensionais mais 

genéricos, a exemplo do elemento tetraédrico, que possibilitem a reprodução do comportamento 

muscular no espaço, sem se restringir a resultados contidos num único plano. Isso 

proporcionaria, inclusive, a geração de geometrias mais fiéis à realidade, obtidas a partir de 

imagens de tomografia computadorizada, porém associadas a um maior custo computacional.  

Melhorar a função de ativação para os elementos de barra e buscar sua distribuição no 

interior da matriz de tecido conjuntivo também se mostram pontos interessantes. Com isso, 

seria possível prever de forma mais precisa as forças desenvolvidas pelos músculos. 
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A formulação de ligações deslizantes pode ser aplicada ainda à avaliação de desgastes 

em articulações. Considerando perfis de rugosidade nas trajetórias, seria possível analisar 

articulações com defeitos ou acometidas por alguma patologia. 
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APÊNDICE A – Funções de forma do elemento prismático de base triangular 

 

O conjunto de funções de forma do elemento prismático de base triangular, reunidas no 

vetor 𝜓𝑘, são expressões polinomiais interpoladoras escritas em função das coordenadas 

adimensionais (𝜉1, 𝜉2, 𝜉2). Esses polinômios são oriundos da multiplicação das funções  

𝜑𝑖(𝜉1, 𝜉2) pelas funções 𝜙𝑗(𝜉3), isto é: 

 𝜓𝑘(𝜉1, 𝜉2, 𝜉3) = 𝜑𝑖(𝜉1, 𝜉2)𝜙𝑗(𝜉3) (A.1) 

em que 𝜑𝑖(𝜉1, 𝜉2) realizam a interpolação sobre o plano da base triangular e 𝜙𝑗(𝜉3) promovem 

a interpolação ao longo da espessura. 

As funções de forma da espessura são polinômios unidimensionais, dependendo apenas 

da coordenada 𝜉3, portanto podem ser obtidas por meio da expressão geral dos Polinômios de 

Lagrange de ordem p: 

 𝜙𝑖(𝜉3) = ∏
𝜉3 − 𝜉3

𝑗

𝜉3
𝑖 − 𝜉3

𝑗

𝑝+1

𝑗=1 (𝑖≠𝑗)

 (A.2) 

 Já as funções de forma da base são polinômios completos de ordem 3, com domínio 

definido no espaço adimensional em duas dimensões. Seus parâmetros podem ser calculados a 

partir de um sistema de equações, tendo em vista que cada função tem valor unitário no nó onde 

foi definida e valor nulo nos demais. Para tanto, considera-se 𝑩 a matriz de coeficientes a 

determinar e 𝑷 a matriz dos valores que multiplicam os referidos coeficientes, calculados com 

as coordenadas do nó correspondente. Assim, escreve-se: 

 𝑩 ⋅ 𝑷 = 𝑰 → 𝑩 = 𝑷−1 (A.3) 

Para o caso particular deste trabalho, adota-se uma aproximação cúbica para base e 

linear para a espessura. Assim, na Equação A.1, vale a relação 𝑘 = 10(𝑗 − 1) + 𝑖 para 

viabilizar a implementação computacional com um único índice. O índice 𝑖 varia de 1 a 10, 

enquanto o índice 𝑗 varia de 1 a 2. Por consequência, o índice 𝑘 varia de 1 a 20, correspondendo 

à quantidade total de nós no elemento. 

Sabendo que a coordenada adimensional 𝜉3 está contida no intervalo [−1,1], as funções 

𝜙𝑖(𝜉3) assumem a seguinte configuração a partir da Equação A.2: 

 𝜙1(𝜉3) =
1 − 𝜉3

2
 (A.4) 

 𝜙2(𝜉3) =
𝜉3 + 1

2
 (A.5) 
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As coordenadas 𝜉1 e 𝜉2, por sua vez, estão contidas no intervalo [0,1]. A resolução do 

sistema linear da Equação A.3 conduz às seguintes expressões: 

 𝜑1(𝜉1, 𝜉2) =
𝜉1

2
(3𝜉1 − 1)(3𝜉1 − 2) (A.6) 

 𝜑2(𝜉1, 𝜉2) =
9𝜉1𝜉2

2
(3𝜉1 − 1) (A.7) 

 𝜑3(𝜉1, 𝜉2) =
9𝜉1𝜉2

2
(3𝜉2 − 1) (A.8) 

 𝜑4(𝜉1, 𝜉2) =
𝜉2

2
(3𝜉2 − 1)(3𝜉2 − 2) (A.9) 

 𝜑5(𝜉1, 𝜉2) =
9𝜉1

2
(1 − 𝜉1 − 𝜉2)(3𝜉2 − 1) (A.10) 

 𝜑6(𝜉1, 𝜉2) = 27𝜉1𝜉2(1 − 𝜉1 − 𝜉2) (A.11) 

 𝜑7(𝜉1, 𝜉2) =
9𝜉2

2
(1 − 𝜉1 − 𝜉2)(3𝜉2 − 1) (A.12) 

 𝜑8(𝜉1, 𝜉2) =
9𝜉1

2
(1 − 𝜉1 − 𝜉2)[3(1 − 𝜉1 − 𝜉2) − 1] (A.13) 

 𝜑9(𝜉1, 𝜉2) =
9𝜉2

2
(1 − 𝜉1 − 𝜉2)[3(1 − 𝜉1 − 𝜉2) − 1] (A.14) 

 𝜑10(𝜉1, 𝜉2) =
1

2
(1 − 𝜉1 − 𝜉2)[3(1 − 𝜉1 − 𝜉2) − 1][3(1 − 𝜉1 − 𝜉2) − 2] (A.15) 
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