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RESUMO 

HAYASHI, E. Y. Uma formulação baseada na decomposição de Flory para análise 

termomecânica de sólidos termo-visco-elasto-plásticos. 2024. 259p. Dissertação 

(Mestrado) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 

2024. 

 

Em diversas áreas da engenharia, a análise termomecânica é indispensável para a análise de 

materiais e estruturas, devido à importância de se considerar os prejuízos às propriedades 

mecânicas e ao comportamento mecânico sob cargas térmicas acentuadas. Pode-se mencionar 

como exemplos os problemas de incêndio, balística e conformação de metais. Nessas situações 

que envolvem elevadas temperaturas, verifica-se com frequência o desenvolvimento de grandes 

deslocamentos e de grandes deformações nos corpos, apresentando intrinsecamente um 

comportamento não-linear geométrico e físico. Dada a importância do modelo constitutivo para 

a adequada simulação do comportamento do material, foi desenvolvido um modelo constitutivo 

termo-visco-elasto-plástico alternativo e implementado em programa computacional próprio, 

resultando na capacidade de modelar adequadamente problemas termomecânicos, com ênfase 

em materiais metálicos submetidos às ações térmicas acentuadas. O programa foi desenvolvido 

utilizando o Método dos Elementos Finitos Posicional como estratégia de resolução numérica, 

o qual considera, de forma intrínseca, a não-linearidade geométrica exata em suas formulações, 

sendo utilizados elementos finitos de sólido prismático de base triangular para a discretização 

do domínio dos corpos analisados em subdomínios aproximados. O modelo constitutivo 

hiperelástico implementado é resultante da combinação dos modelos de Rivlin-Saunders e de 

Hartmann-Neff, sendo adequado para análises de problemas em regime de grandes 

deformações. Os modelos de plasticidade e viscosidade foram implementados utilizando 

formulações baseadas na decomposição multiplicativa do tensor de alongamento à direita de 

Cauchy-Green em parcelas volumétricas e isocóricas. O código de análise térmica foi 

desenvolvido a partir da equação diferencial da condução de calor transiente, tanto para o caso 

linear quanto para o caso não-linear. O modelo termomecânico foi construído a partir do 

acoplamento unidirecional explícito, também denominado de modelo termomecânico 

desacoplado. A combinação de todas as implementações efetuadas anteriormente resultou no 

modelo termo-visco-elasto-plástico alternativo adequado para grandes deformações. O 

programa desenvolvido foi validado com sucesso por meio de comparações com exemplos da 

literatura científica e foi verificado que o mesmo é capaz de simular satisfatoriamente o 

comportamento termo-elasto-plástico de estruturas metálicas submetidas a elevadas 

temperaturas, bem como o comportamento termo-visco-elasto-plástico de sólidos em mudança 

de fase.  

 

 

Palavras-chave: termomecânica; termo-visco-elasto-plástico; Método dos Elementos Finitos 

Posicional; transferência de calor; grandes deslocamentos e deformações.  

  



 

 



 

 

ABSTRACT 

HAYASHI, E. Y. A formulation based on Flory’s decomposition for thermomechanical 

analysis of thermo-visco-elasto-plastic solids. 2024. 259p. Thesis (Master’s degree) – São 

Carlos School of Engineering, University of São Paulo, São Carlos, 2024. 

 

In several engineering fields, thermomechanical analysis is crucial for the analysis of materials 

and structures, due to the importance of considering the degradation of mechanical properties 

and behavior under significant thermal loads. Examples include fire problems, ballistics, and 

metal forming. In these high-temperature situations, large displacements and strains of bodies 

are frequently observed, exhibiting an intrinsic geometric and physical nonlinear behavior. 

Given the importance of the constitutive model for the proper simulation of material behavior, 

an alternative thermo-visco-elasto-plastic constitutive model was developed and implemented 

in a proprietary computational program. This program enables the appropriate modeling of 

thermomechanical problems, with emphasis on metallic materials subjected to high thermal 

loads. The program was developed using the Positional Finite Element Method as the numerical 

solution strategy, which intrinsically considers the exact geometric nonlinearity in its 

formulations, and triangular-based prismatic solid finite elements were used to discretize the 

domain of analyzed bodies into approximate subdomains. The implemented hyperelastic 

constitutive model is a combination of the Rivlin-Saunders and Hartmann-Neff models, which 

is suitable for large strain analysis. The plasticity and viscosity models were implemented using 

formulations based on the multiplicative decomposition of the right Cauchy-Green stretch 

tensor into volumetric and isochoric parts. The thermal analysis code was developed from the 

transient heat conduction differential equation, considering both linear and nonlinear cases. The 

thermomechanical model was built using one-way explicit coupling, also referred to as the 

uncoupled thermomechanical model. The combination of all the previous implementations 

resulted in the alternative thermo-visco-elasto-plastic model, which is appropriated for large 

strain problems. The developed program was successfully validated by comparing it with 

examples from the scientific literature. It was found that the program can satisfactorily simulate 

the thermo-elasto-plastic behavior of metallic structures subjected to high temperatures, as well 

as the thermo-visco-elasto-plastic behavior of phase-changing solids. 

 

 

Keywords: thermomechanics; thermo-visco-elasto-plastic; Positional Finite Element Method; 

heat transfer; large displacements and strains.  
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1 INTRODUÇÃO 

 

As análises termomecânicas encontram-se presentes em diversos problemas de 

engenharia, devido à necessidade de considerar influências do campo térmico sobre o campo 

mecânico para a realização de uma análise eficaz e precisa. Entre as suas aplicações, pode-se 

mencionar a análise de pilares de perfil I biengastados sob situação de incêndio 

(Pournaghshband; Afshan; Foster, 2019), a conformação de metais a quente para a indústria 

(Odenberger; Schill; Oldenburg, 2013) e a simulação termomecânica numérica de painéis 

fotovoltaicos (Springer; Bosco, 2022). 

A importância de se considerar a influência da temperatura nas propriedades mecânicas 

dos materiais é evidenciada, por exemplo, na elaboração de projetos de estruturas metálicas, os 

quais requerem a segurança contra incêndio. Apesar do material metálico possuir excelente 

resistência e rigidez à temperatura ambiente, uma grande desvantagem na sua aplicação é a sua 

baixa resistência ao fogo devido à elevada condutividade térmica e ao baixo calor específico, 

acarretando a redução acelerada de suas propriedades mecânicas em situações de elevadas 

temperaturas (Kodur; Dwaikat; Fike, 2010).  

Mesmo na ausência prejuízos físicos ou geométricos visíveis no material após eventos 

envolvendo ações térmicas acentuadas, é importante verificar a sua resistência reduzida pela 

alteração das suas propriedades (Tang et al., 2019). Nesses casos, torna-se importante a revisão 

de parâmetros mecânicos e térmicos dependentes da temperatura para a adequada modelagem 

da resposta dos materiais metálicos submetidos aos elevados carregamentos térmicos (Kodur; 

Dwaikat; Fike, 2010). 

Também é relevante mencionar que, apesar do reconhecimento de análises lineares de 

estruturas como uma alternativa de cálculo, as mesmas são limitadas aos casos com 

desenvolvimento de pequenos deslocamentos e pequenas deformações. Quanto às análises que 

não se enquadram nas condições supracitadas, torna-se necessária a consideração de efeitos 

não-lineares, geométricos e físicos por exemplo. A primeira não-linearidade é presente em 

problemas de estruturas desenvolvendo grandes deslocamentos, enquanto a segunda, em casos 

onde níveis de tensões elevados estão presentes no material. 

Apesar da adoção de análises termomecânicas em variadas áreas de conhecimento da 

engenharia, uma parcela significativa das pesquisas em engenharia consultadas não apresenta 

preocupações com o desenvolvimento das formulações teóricas dos modelos constitutivos, 

limitando-se a focar na simulação de problemas termomecânicos utilizando-se softwares 
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comerciais como se todos os aspectos teóricos estivessem fechados. Além disso, é notável a 

quantidade reduzida de estudos existentes de termomecânica aplicada ao segmento de 

engenharia civil, indicando a necessidade de desenvolver formulações e programas para a 

modelagem de problemas termomecânicos destinados à área em questão, bem como a formação 

de profissionais qualificados. 

 

1.1 Justificativa 

 

É conhecido que, quando submetidos às ações térmicas elevadas, comumente os 

materiais que compõem os elementos estruturais ou geometrias brutas a serem moldadas 

apresentam reduções significativas nas suas propriedades mecânicas, revelando a importância 

da análise termomecânica em problemas de engenharia. Apesar da relevância das análises 

termomecânicas em diversos segmentos da engenharia, uma parcela significativa das pesquisas 

existentes não apresenta preocupações com o desenvolvimento das formulações teóricas dos 

modelos constitutivos, limitando-se à utilização de softwares comerciais ou mesmo de soluções 

apresentadas por grupos internacionais bem estabelecidos como se todos os aspectos teóricos 

estivessem resolvidos de forma definitiva. 

Tratando-se de análises de problemas estruturais, existem abordagens experimentais, 

analíticas e numéricas, entretanto, a primeira alternativa, apesar da sua necessidade, demanda 

um elevado custo de materiais e também de mão-de-obra. Quanto às soluções analíticas, em 

casos de possibilidade do seu emprego para resolução de problemas, estas são limitadas a casos 

específicos e, em geral, são lineares. Portanto, a adoção de estratégias numéricas configura-se 

como uma alternativa de maior praticidade e generalidade, as quais ainda são favorecidas pelo 

crescente desenvolvimento dos recursos computacionais que possibilitam resoluções de 

problemas de elevado grau de complexidade de forma rápida e precisa. 

Como exemplos de análises termomecânicas, pode-se mencionar estruturas em 

situações de incêndio, balística e conformação a quente. Nos problemas mencionados, além da 

não-linearidade física comentada anteriormente, verifica-se o desenvolvimento de grandes 

deslocamentos, induzidos pela rigidez reduzida em função do aumento da temperatura, 

apresentando, dessa forma, comportamento não-linear geométrico. 

Diante da natureza dos problemas termomecânicos, torna-se relevante a aplicação do 

Método dos Elementos Finitos Posicional como estratégia numérica para a sua resolução, o 

qual considera a não-linearidade geométrica exata de forma intrínseca nas suas formulações. 

Além disso, pelo levantamento bibliográfico realizado até o momento, acredita-se que a 
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interação volumétrica (temperatura/volume) Lagrangiana em grandes deformações proposta 

neste trabalho ainda não foi abordada, dando um grau de originalidade teórica importante à 

pesquisa. Portanto, o desenvolvimento deste trabalho apresenta contribuições para a ampliação 

do campo de aplicações do presente método numérico, bem como contribuição original ao 

estado da arte, e pode consistir como base para o desenvolvimento de futuras pesquisas visando 

o seu aperfeiçoamento. 

 

1.2 Objetivos 

 

O objetivo do presente trabalho consiste em apresentar uma contribuição com 

originalidade na consideração da relação temperatura/volume em problemas de interação 

termomecânica Lagrangeana em grandes deformações e desenvolver uma ferramenta 

computacional para a análise dinâmica transiente de problemas termomecânicos não-lineares 

de sólidos sujeitos a grandes deslocamentos e grandes deformações. Como objetivos 

específicos, pode-se mencionar os seguintes itens: 

a. Desenvolvimento de código computacional para análise estática e dinâmica de sólidos; 

b. Estudo e implementação do modelo constitutivo hiperelástico adequado para regime de 

grandes deformações; 

c. Estudo e implementação do modelo alternativo de plasticidade adequado para regime 

de grandes deformações; 

d. Estudo e implementação do modelo alternativo de viscosidade adequado para regime 

de grandes deformações; 

e. Estudo e implementação do modelo de transferência de calor em sólidos; 

f. Proposição, estudo e implementação de acoplamento termomecânico alternativo para 

grandes deformações volumétricas; 

g. Proposição, estudo e implementação do modelo termo-visco-elasto-plástico alternativo 

para grandes deformações; 

h. Validação dos resultados numéricos obtidos com os exemplos existentes em literatura.  

 

1.3 Breve estado da arte 

 

A fim de situar o leitor acerca dos tópicos a serem desenvolvidos nessa pesquisa, 

apresenta-se um breve estado da arte inerente à mecânica dos sólidos computacional, incluindo 
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modelos constitutivos da elasticidade e da plasticidade em grandes deformações, viscosidade, 

transferência de calor em sólidos e termomecânica, com ênfase em análises numéricas. 

 

1.3.1 Mecânica dos sólidos computacional – um breve histórico 

 

Acompanhado do crescente desenvolvimento tecnológico e computacional, verifica-se 

o aumento do emprego de estratégias numéricas para resolução de problemas de variados 

âmbitos científicos, sendo que o Método dos Elementos Finitos (MEF) consiste em uma 

ferramenta numérica amplamente difundida e utilizada em análises de diversas áreas do 

conhecimento, incluindo os campos da mecânica dos sólidos e das estruturas. 

Intimamente relacionado com o advento dos recursos computacionais, há registros de 

emprego de análises numéricas através da discretização do domínio em subdomínios 

aproximados já na década de 1940, como é possível verificar em Courant (1943) e Prager e 

Synge (1947). Entretanto, o trabalho inovador no desenvolvimento do MEF foi apresentado 

posteriormente por Turner et al. (1956). Nesse trabalho, foi proposto o primeiro uso de 

elementos triangulares para análise estrutural continuado em Turner et al. (1960). De acordo 

com Jing (2003), apesar da existência de registros de utilização do método supracitado desde a 

referida época, a estratégia numérica foi nomeada como “Método dos Elementos Finitos” 

somente no trabalho de Clough (1960). 

A partir desse período, o Método dos Elementos Finitos foi largamente aceito e 

difundido, passando a ser empregado em escada universal com geração satisfatória de 

resultados na resolução de problemas em variados campos científicos, como pode ser observado 

no livro de Bathe (1982). Tratando-se especificamente das contribuições nas áreas de mecânica 

das estruturas e dos sólidos, não devem deixar de ser mencionados os trabalhos envolvendo 

tanto a linearidade como a não-linearidade física e geométrica dos seguintes autores: Argyris et 

al. (1979), Bonet e Wood (1997), Crisfield (1997) e Ogden (1997). 

  

1.3.2 Análise não-linear pelo Método dos Elementos Finitos 

 

Uma análise de mecânica dos sólidos ou de estruturas empregando o Método dos 

Elementos Finitos pode ser definida como não-linear caso os deslocamentos não consistam em 

uma função linear das forças aplicadas. As não-linearidades são segmentadas nas três categorias 

comentadas abaixo (Piedade Neto, 2013): 
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I) Não-linearidade geométrica, inerente à determinação do equilíbrio da estrutura na sua 

configuração deslocada, sendo preferencialmente geometricamente exata; 

II) Não-linearidade física, correspondente à relação não-linear entre tensão e deformação, 

com possibilidade de possuir dependência em relação aos parâmetros como histórico de 

deformação ou temperatura; 

III) Não-linearidade de contato (não abordado neste trabalho), que ocorre quando, durante 

uma análise mecânica, dois corpos buscam ocupar a mesma região do espaço ao mesmo 

tempo. 

 

As análises estruturais utilizando o Método dos Elementos Finitos podem ser efetuadas 

a partir de dois tipos de abordagem distintos, definidos a partir do sistema de referência adotado: 

I) Lagrangeana: parâmetros cinemáticos e estáticos referenciados a uma configuração 

conhecida, apresentando duas subdivisões: 

1. Lagrangeana total: todos os parâmetros mencionados acima são referenciados 

em relação à configuração inicial (indeslocada e indeformada) em todas as 

etapas de análise; 

2. Lagrangeana atualizada: as variáveis em questão são referenciadas à última 

configuração determinada; 

II) Euleriana: parâmetros cinemáticos e estáticos referenciados à configuração atual 

(incógnita), deformada e deslocada. 

 

A descrição Euleriana (alternativamente denominada de descrição espacial) é 

empregada com mais frequência para o estudo de fluxos de fluidos e transferência de calor por 

convecção, enquanto a descrição Lagrangeana (também conhecida como descrição material) é 

comumente utilizada para aplicações envolvendo a condução de calor e a análise de tensões e 

deformações em corpos sólidos (Reddy; Gartling, 2010). 

Desde o surgimento do MEF, vários autores desenvolveram formulações alternativas do 

método tradicional, sendo que em Coda (2003) é descrita uma formulação alternativa do MEF 

chamada Posicional pela utilização das posições atuais como parâmetros nodais em substituição 

aos deslocamentos, conforme proposto originalmente. É válido mencionar que Bonet et al. 

(2000) apresenta uma formulação semelhante, utilizada na análise de estruturas pneumáticas de 

membrana. 

De acordo com Coda (2018), uma descrição Lagrangeana total é empregada no MEF 

Posicional, em outras palavras, o método adota a posição inicial, não-deformada e não-
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deslocada, como referência ao longo de todas as fases de análise. Ressalta-se que a presente 

estratégia considera, de forma intrínseca, a não-linearidade geométrica, com simplicidade 

didática e resultados precisos. Por essas razões, o método em questão vem sendo utilizado (no 

departamento de Engenharia de Estruturas da EESC-USP) na resolução de problemas 

envolvendo grandes deslocamentos. 

Com o intuito de ilustrar o bom desempenho do MEF posicional, pode-se citar uma série 

de trabalhos. Coda e Greco (2004) apresenta a aplicação do método na análise estática de 

pórticos bidimensionais desenvolvendo grandes deslocamentos, enquanto em Greco et al. 

(2006) está descrita a análise de estrutura composta por elementos de treliças espaciais com um 

modelo constitutivo elasto-plástico. A análise dinâmica empregando o presente método é 

introduzida por Greco e Coda (2006), com a sua formulação aplicada em pórticos planos, 

utilizando-se o algoritmo de Newmark para a integração temporal. 

Além disso, as formulações podem ser aplicadas para a análise de elementos de casca, 

como descrito em Coda e Paccola (2007), Pascon (2008) e Coda e Paccola (2009), problemas 

de interação fluido-estrutura, conforme apresentado em Sanches e Coda (2013) e Fernandes, 

Coda e Sanches (2019) e também em problemas envolvendo não-linearidades físicas, 

abordados nos trabalhos dos seguintes autores: Rigobello (2011), Pascon (2012), Pascon e Coda 

(2013a), Pascon e Coda (2013b), Pascon e Coda (2015), Siqueira e Coda (2017), Kishino et al. 

(2022) e Carvalho, Coda e Sanches (2023). Tratando-se de aplicações do MEF Posicional 

envolvendo as não-linearidades de contato, geométrica e física, é possível mencionar os 

trabalhos de Carvalho, Coda e Sanches (2020) e de V. H. Kishino, R. T. Kishino e Coda (2022). 

 

1.3.3 Modelos constitutivos hiperelásticos 

 

Em estudos científicos, a análise experimental tem grande importância, pois é a base 

dos desenvolvimentos teóricos fundamentais. Porém, a simulação numérica é o método mais 

conveniente, pelo seu baixo custo e grande praticidade, para a avaliação do comportamento de 

componentes de engenharia sob diferentes condições de carregamento. Além disso, a análise 

numérica tornou-se ao longo dos anos ferramenta de projeto em diversos ramos da engenharia. 

No entanto, a precisão da análise numérica está diretamente relacionada à escolha do modelo 

constitutivo a ser aplicado, que deve corresponder da melhor forma possível ao real 

comportamento do material empregado. Dessa forma, a pesquisa sobre a modelagem 

matemática do comportamento do material é essencial para a obtenção de resultados com maior 

precisão e confiabilidade (Melly et al., 2022). 
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Com uma parcela significativa das pesquisas dedicadas ao estudo de modelos 

constitutivos hiperelásticos tem como objetivo simular materiais elastoméricos e tecidos 

biológicos vivos. Nesse sentido observa-se que a quantidade de trabalhos relacionados ao 

desenvolvimento desse tipo de modelo vem sendo ampliada desde o século XX (Beatty, 1987). 

Nessas pesquisas fica evidente que o tensor de deformação apresenta duas componentes (Gent, 

2012): 

I) Volumétrica (ou dilatacional): referente à mudança do volume do corpo, com a ausência 

de variação na sua forma e; 

II) Isocórica (ou desviadora): a qual envolve a mudança na forma do corpo, sem alteração 

do seu volume. 

 

Como um dos primeiros e principais modelos hiperelásticos, pode-se mencionar aquele 

proposto por Mooney (1940) para borrachas submetidas a grandes deformações elásticas. Neste 

trabalho, foi sugerida uma expressão geral para a energia específica de deformação definida em 

função dos alongamentos principais para a representação do comportamento mecânico de 

materiais superelásticos homogêneos e isentos de histerese. Um material superelástico é 

referente àquele que é isótropo, desenvolve deformações isométricas (ausência de variação 

volumétrica) e, quando submetido ao cisalhamento simples, a tensão de cisalhamento 

desenvolvida em qualquer plano isótropo é proporcional à distorção correspondente. Já a 

histerese é caracterizada pelo atraso na resposta do material quando sujeito a uma solicitação 

externa ou quando esta é retirada. 

A partir da formulação proposta por Mooney (1940), Rivlin (1948a, 1948b) apresentou 

uma generalização da expressão da energia específica de deformação através de uma série 

polinomial. Essa generalização deu origem ao modelo constitutivo denominado Mooney-Rivlin. 

Posteriormente, Rivlin e Saunders (1951) apresentaram um trabalho baseado na 

expressão sugerida por Mooney (1940), destinado à descrição comportamental das borrachas 

vulcanizadas. No trabalho em questão, a expressão da energia específica de deformação foi 

definida em função dos invariantes da parcela isocórica do tensor de deformação. 

Já no trabalho de Hartmann e Neff (2003), foram apresentadas diversas expressões 

hiperelásticas escritas a partir dos invariantes de deformações para materiais isótropos quase 

incompressíveis, tanto para as parcelas isocóricas quanto para as parcelas volumétricas. Os 

estudos desses autores foram efetuados a partir de uma abordagem de decomposição 

multiplicativa do gradiente da função mudança de configuração em parcelas isocóricas e 

volumétrica, proposta por Flory (1961). 
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Além dos modelos constitutivos supracitados, pode-se mencionar outras relações 

hiperelásticas relevantes sugeridas por seguintes pesquisadores: Ogden (1972); Yeoh (1990) e; 

Arruda e Boyce (1993). 

Tratando-se de estudos recentes de modelos constitutivos hiperelásticos, é possível 

mencionar alguns trabalhos como exemplos. Moerman, Fereidoonnezhad e McGarry (2020) 

propuseram formulações de energia específica de deformação volumétrica adequadas para 

problemas envolvendo grandes deformações volumétricas, enquanto Shahverdi Moghaddam et 

al. (2021) efetuaram um estudo experimental e numérico de cisalhamento atuante no núcleo do 

compósito com alvéolos hexagonais (estrutura em colméia) desenvolvendo grandes 

deformações, com proposição de um novo modelo constitutivo hiperelástico ortotrópico 

destinado à descrição adequada do problema. Já em Melly et al. (2022) é proposto um modelo 

constitutivo fenomenológico hiperelástico para a previsão de comportamento mecânico de 

materiais elastoméricos trabalhando em regime de moderadas e grandes deformações. Cabe 

mencionar que a definição de materiais superelásticos deve ser considerada como uma 

aproximação e não como uma regra geral, sendo os modelos hiperelásticos capazes de simular 

materiais com comportamento quase isocórico. 

 

1.3.4 Plasticidade 

 

A plasticidade corresponde à deformação irreversível desenvolvida por um material 

sujeito a níveis de tensão que excederam um determinado limite. Como um ramo da mecânica 

dos sólidos, o principal objetivo da teoria da plasticidade consiste no estudo das condições sob 

as quais ocorre a deformação plástica e na distribuição de tensões e deformações ao longo do 

desenvolvimento da deformação plástica (Yu; Xue, 2022). 

De acordo com Gao et al. (2011), o início do estudo científico da plasticidade foi 

marcado por Tresca (1864) com a publicação dos seus resultados experimentais de extrusão e 

da formulação do seu famoso critério de escoamento. Este critério de escoamento foi utilizado 

posteriormente por Saint-Venant (1870) e Lévy (1870) para o desenvolvimento de uma teoria 

de sólido perfeitamente rígido-plástico. Um outro critério de escoamento bem conhecido foi 

proposto por von Mises (1913) baseado em considerações puramente matemáticas mais tarde 

interpretado por Hencky (1924) como o escoamento decorrente de valores elevados de energia 

de distorção (cisalhamento). Dentre as demais contribuições relevantes no desenvolvimento 

inicial da teoria da plasticidade encontram-se os trabalhos de Prandtl (1925) e Reuss (1930). 
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Por volta do ano de 1945, foi verificado o início do desenvolvimento de uma teoria 

unificada devido às contribuições fundamentais proporcionadas na área de plasticidade 

contínua por Prager (1945) e Drucker (1949), que apresentaram uma definição de flexibilidade 

(ou rigidez) associada ao trabalho plástico positivo. Desde então, muitos pesquisadores 

produziram uma volumosa literatura que vem crescendo rapidamente. Na década de 1950, 

surgiram publicações de trabalhos fundamentais sobre plasticidade como, por exemplo, de Hill 

(1948), Hill (1950), Bishop e Hill (1951) e Kröner (1958). Posteriormente, Green e Naghdi 

(1965) formularam a teoria clássica da plasticidade no contexto da mecânica do contínuo 

moderna, segundo a qual a Segunda Lei da Termodinâmica é empregada para a determinação 

das restrições na forma das equações constitutivas. A base cinemática do trabalho de Green e 

Naghdi consiste na suposição da possibilidade da decomposição aditiva da deformação total 

em tensores de deformação elástica e plástica, frequentemente denominada de decomposição 

de Green-Naghdi na literatura (Horstemeyer; Bammann, 2010). 

Segundo Zhang e Montáns (2019), na atualidade as principais abordagens sobre a 

plasticidade podem ser classificadas em dois tipos: multiescala e contínua, sendo os trabalhos 

precursores acima mencionados parte da abordagem contínua. A primeira abordagem é 

relevante para a compreensão do comportamento do material em nível microscópico, no entanto 

a sua aplicação é inviável em termos de custo computacional para a resolução de problemas 

práticos de engenharia (Abraham et al., 2002; Buehler et al., 2004; Coda; Sanches; Paccola, 

2022). A segunda abordagem refere-se aos modelos contínuos de elasto-plasticidade, capazes 

de simular o comportamento dos materiais e das estruturas com um custo computacional 

moderado. 

De acordo com Brepols, Vladimirov e Reese (2014), os modelos de plasticidade 

contínua em grandes deformações podem ser subdivididos segundo dois grupos principais. O 

primeiro, com abordagem baseada em modelos hipoelásticos, faz uso da decomposição aditiva 

das taxas de deformação (já comentado anteriormente) em parcelas elásticas e plásticas, de 

forma a criar uma lei constitutiva coerente para calcular as taxas de tensão objetivas, como é o 

caso da decomposição de Green-Naghdi. Ainda, de acordo com Brepols, Vladimirov e Reese 

(2014), observa-se a adoção dessa estratégia em vários trabalhos, desde nos precursores como 

Argyris e Kleiber (1977) até naqueles que buscam solucionar os problemas provenientes da 

decomposição aditiva quando aplicadas em grandes deformações, como pode ser verificado em 

Atluri (1984), Hughes e Winget (1980), Kojić e Bathe (1987) e Bruhns, Xiao e Meyers (1999). 

Entretanto, de acordo com Eterovic e Bathe (1991), a utilização da decomposição aditiva é 

limitada ao regime de pequenas deformações.  
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O segundo grupo de modelos elasto-plásticos contínuos de grandes deformações 

apresentam abordagens baseadas em modelos hiperelásticos, os quais adotam a decomposição 

de Kröner-Lee (Kröner, 1959; Lee, 1969), que consiste na decomposição multiplicativa do 

gradiente de mudança de configuração em parcelas elásticas e plásticas, com a identificação de 

um espaço intermediário que contém as deformações plásticas residuais após a descarga 

(Mandel, 1971). De acordo com Zhang e Montáns (2019), esta abordagem tornou-se 

amplamente utilizada após o progresso alcançado por Simo e Ortiz (1985) na implementação 

computacional e o fluxo plástico coerente com preservação de volume durante a fase plástica 

estabelecido inicialmente por Weber e Anand (1990) e Eterovic e Bathe (1990), seguido de uma 

descrição consistente dada por Simo (1992).  

Outros trabalhos como os Johnson e Mellor (1983), Crisfield (1997) e Hill (1998) 

podem ser citados em relação ao tratamento elastoplástico em pequenas deformações, enquanto 

em grandes deformações, podem-se citar os trabalhos de autores como Simo (1992), Pascon 

(2022) e Areias et al. (2022), dentre outros. 

No que diz respeito ao grupo de pesquisa onde se insere o presente trabalho (SET-EESC-

USP), a aplicação de modelos constitutivos elasto-plásticos clássicos com o emprego da 

decomposição aditiva de Green-Naghdi e do Método dos Elementos Finitos Posicional pode 

ser verificada em Coda e Paccola (2014) e Coda, Sampaio e Paccola (2015). Já a abordagem 

com a decomposição multiplicativa de Kröner-Lee pode ser constatada nos trabalhos de Pascon 

e Coda (2015), Pascon e Coda (2017), Carvalho (2019), Carvalho, Coda e Sanches (2020) e 

Pascon (2022). Além dos modelos elasto-plásticos clássicos, no grupo de pesquisa do SET-

EESC-USP vem sendo desenvolvido um modelo elasto-plástico alternativo proposto por Coda 

(2021, 2022). Nesse modelo é utilizada a decomposição multiplicativa de Flory ao invés das 

decomposições de Köner-Lee ou de Green-Naghdi. 

Observando-se o efeito da temperatura na mudança do tamanho da superfície de 

plastificação, bem como a dissipação térmica promovida pelo escoamento plástico, é possível 

extender o conceito de plasticidade e efetuar análises termoplásticas. Como exemplo, pode-se 

mencionar o trabalho de Hübel (1996) que apresenta brevemente os variados aspectos do 

processo de deformação termoplástica progressiva, submetida a carregamentos cíclicos. No 

decorrer do seu trabalho, são explicitados alguns fatores que influenciam no processo de 

deformação progressiva, podendo-se citar como exemplos os estados de tensão, históricos e 

tipologia de carregamentos termomecânicos. Além disso, as propriedades do material, tanto 

elásticas quanto plásticas, são destacadas devido à sua variação em função da temperatura. 

Dentre outros trabalhos envolvendo a termoplasticidade, é possível mencionar dos seguintes 
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autores: Rodriguez et al. (2016), Vaghefi e Mahmoudi (2022) e Liu et al. (2023). Tratando-se 

de trabalhos envolvendo termoplasticidade na área de métodos numéricos do SET-EESC-USP, 

podem-se citar os trabalhos de Rigobello (2011), Rigobello, Coda e Munaiar Neto (2014) e 

Salomão (2021). 

 

1.3.5 Viscosidade 

 

De acordo com Barnes, Hutton e Walters (1989), o termo “reologia”, refere-se ao estudo 

da deformação e do fluxo da matéria e foi introduzido pelo professor Eugene C. Bingham do 

Lafayette College, localizado em Easton, Pensilvânia (EUA). Esse termo foi oficialmente aceito 

em 1929, no ano da fundação da Sociedade Americana de Reologia em que foram discutidos, 

na primeira reunião, sobre as propriedades e o comportamento reológico de materiais como 

asfalto, lubrificantes, tintas, plásticos e borracha. Posteriormente, o escopo de estudo da 

reologia foi ampliado e foram verificados avanços significativos em bioreologia, reologia de 

polímeros e reologia de suspensão. A viscosidade consiste em uma das principais propriedades 

reológicas. 

O estudo da reologia precedeu a sua denominação e, para tomar conhecimento das 

origens das teorias clássicas relacionadas à reologia, pode ser consultado o livro de Dugas 

(1988). 

O início do estudo de materiais viscoelásticos foi marcado pelo trabalho de Wilhelm 

Weber sobre fios de seda, publicado no ano de 1835, época na qual havia um interesse geral em 

melhorar a construção dos galvanômetros e comumente era observado o uso de fibras de seda 

em suspensões de instrumentos e equipamentos. Em seus estudos, Weber notou que o 

comportamento elástico das fibras de seda tracionadas não era perfeito. Primeiramente, foi 

aplicado um carregamento de tração a uma fibra de seda e observou-se um alongamento elástico 

imediato, seguido de uma deformação lenta e contínua ao longo do tempo e, por fim, ao remover 

o carregamento imposto, o material apresentou uma contração imediata acompanhada de uma 

restituição lenta e gradual do seu comprimento até recuperar o seu estado original indeformado. 

Dessa forma, foi verificado experimentalmente que o material, além de uma resposta elástica, 

apresentou também um comportamento viscoso, estabelendo, dessa forma, o ponto de partida 

para os estudos da viscoelasticidade (Barnes; Hutton; Walters, 1989; Tanner, 2000). 

A fim de proporcionar uma compreensão qualitativa do funcionamento dos modelos 

viscoelásticos, frequentemente as suas representações são esquematizadas por meio de análogos 

mecânicos construídos a partir da associação de elementos de mola e amortecedor. Para 
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respostas lineares, são utilizadas molas elásticas lineares e amortecedores viscosos lineares, 

cujos comportamentos são descritos pelas leis ideais de Hooke e de Newton, respectivamente 

(Reddy, 2013).  

Dentre os modelos viscoelásticos existentes, os modelos viscoelásticos lineares de 

Kelvin-Voigt e de Maxwell são os mais simples, os quais podem ser construídos, 

respectivamente, por meio da associação em paralelo e em série de uma mola hookeana com 

um amortecedor newtoniano (Ng, 2019). 

Baseado nos dois modelos supracitados, foram originados os modelos de três 

parâmetros, os quais podem ser encontrados em Findley, Lai e Onaran (1989) e Huber e 

Tsakmakis (2000). Dentre esses, verifica-se com mais frequência na literatura os modelos de 

Zener e Boltzmann, sendo aquele representado pela associação em paralelo de uma mola com 

o modelo de Maxwell e este, pela associação em série de uma mola com o modelo de Kelvin-

Voigt. 

Para uma revisão bibliográfica dos modelos viscoelásticos, é sugerida a leitura dos 

trabalhos de Banks, Hu e Kenz (2011) e Chen, Yang e Lai (2012). Em relação aos detalhes 

relativos às formulações dos modelos mencionados, é sugerida a leitura dos livros de Simo e 

Hughes (1998), Reddy (2013) e Anand e Govindjee (2020). 

Tratando-se de modelos viscoplásticos, o primeiro modelo foi proposto por Perzyna 

(1966), conhecido como modelo de Perzyna, sendo que a sua formulação fornece uma base para 

várias implementações viscoplásticas computacionais. O modelo em questão permite o 

descumprimento do critério de plastificação utilizando integrais convolutivas (ou hierárquicas) 

para considerar a evolução temporal do modelo, fazendo o uso da decomposição da taxa de 

deformação total em taxas de deformação elástica (instantânea) e deformação visco-plástica. 

Em termos de trabalhos empregando o modelo de Perzyna envolvendo grandes deformações, 

pode-se mencionar os trabalhos de Ponthot (2002) e García Garino et al. (2013), Careglio et al. 

(2016) e Kowalczyk-Gajewska et al. (2019). Como um outro modelo clássico da 

viscoplasticidade, é válido citar aquele proposto por Duvant e Lions (1976). Vale comentar que 

esse modelo não é estável para materiais pouco viscosos e não apresenta convergência para 

meios invíscidos. 

Atualmente, existem diversos estudos referentes à viscoelasticidade e à 

viscoplasticidade, buscando soluções que seguem a decomposição de Kröner-Lee ou que 

utilizam a estratégia de Perzyna. Podem ser verificados inclusive modelos desenvolvidos 

especificamente para um determinado tipo de material, como pode ser visto nos trabalhos de 

Kim e Muliana (2009) e Kim e Muliana (2010), no contexto de materiais poliméricos em regime 
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de pequenas deformações. Em relação aos estudos aplicados às grandes deformações, é possível 

citar os trabalhos de Abu Al-Rub, Tehrani e Darabi (2014), Areias et al. (2022) e Carvalho, 

Coda e Sanches (2023). O comportamento visco-elasto-plástico pode ser avaliado também em 

materiais metálicos sujeito às altas temperaturas (Benaarbia; Rouse; Sun, 2018; Kazemi et al., 

2023), materiais asfálticos (Shojaeifard; Baghani; Shahsavari, 2020; Tong et al., 2022) e 

materiais geotécnicos (Ai et al., 2022; Deng et al., 2020). 

 

1.3.6 Análise térmica 

 

Nesta subseção, primeiramente foram apresentados brevemente alguns conceitos 

preliminares da termodinâmica e, na sequência, sobre transferência de calor em sólidos. 

 

1.3.6.1 Conceitos preliminares da termodinâmica 

 

Primeiramente, são apresentados a seguir alguns conceitos relativos à termodinâmica, 

para situar o trabalho nos conceitos fundamentais envolvidos. 

Segundo Rajput (2009), a termodinâmica consiste em uma área da ciência axiomática 

que aborda as relações entre calor, trabalho e propriedades de sistemas que se encontram em 

equilíbrio, descrevendo o estado e as mudanças no estado dos sistemas físicos. Em sua 

abordagem macroscópica, também conhecida como termodinâmica clássica, o estudo é 

efetuado desprezando-se os eventos que ocorrem em nível molecular, de forma a se preocupar 

com o comportamento geral do sistema analisado. 

Regida por princípios, a termodinâmica é composta por quatro leis e definidas conforme 

apresentadas a seguir (ÇENGEL; BOLES; KANOĞLU, 2019): 

I) Lei zero da termodinâmica: formulada e rotulada primeiramente por R. H. Fowler em 

1931, estabelece que, se dois corpos estão em equilíbrio térmico com um terceiro corpo, 

eles também se encontram em equilíbrio térmico entre si. Apesar de parecer um fato 

óbvio para a composição de uma das leis fundamentais da termodinâmica, o princípio 

zero é inconclusivo a partir das outras leis da termodinâmica; 

II) Primeira lei da termodinâmica: também conhecida como lei da conservação da energia, 

constitui uma base sólida para o estudo das relações entre as variadas formas de energia 

e as interações energéticas. Baseado em constatações experimentais, o primeiro 

princípio afirma a impossibilidade de criação ou destruição da energia durante um 
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processo, sendo possível apenas a sua mudança de forma. Portanto, cada parcela de 

energia deve ser contabilizada durante um processo; 

III) Segunda lei da termodinâmica: referente ao fluxo de calor entre dois corpos com 

diferentes temperaturas, diz que o processo de transferência de calor ocorre em um 

determinado sentido, mas não no sentido oposto, sendo impossível para qualquer 

sistema que opere em um ciclo termodinâmico a conversão integral do calor recebido 

em trabalho (enunciado de Kelvin-Planck) e a transferência de calor espontânea de um 

corpo de menor temperatura para um outro corpo de maior temperatura (enunciado de 

Clausius); 

IV) Terceira lei da termodinâmica: afirma que a entropia (grandeza termodinâmica que afere 

o grau de liberdade molecular de um sistema) de uma substância cristalina pura na 

temperatura de zero absoluto é nula. 

 

Pela primeira lei da termodinâmica, é possível definir a taxa de energia térmica interna 

(𝑑𝑈/𝑑𝑡) em função do calor e do trabalho, duas formas distintas de energia. Para um processo 

termodinâmico considerando um sistema fechado, a lei em questão pode ser expressa por: 

 𝑑𝑈

𝑑𝑡
= 𝑄 −𝑊 (1) 

sendo 𝑄 a taxa de transferência de calor e 𝑊 a taxa de transferência de trabalho. 

Apesar da Equação (1) estabelecer uma relação entre a energia interna, calor e trabalho, 

a primeira lei da termodinâmica não define o sentido do fluxo de calor no interior do sistema 

analisado. As leis de transporte de calor são definidas através de uma outra disciplina 

denominada transferência de calor, enquanto a termodinâmica é responsável somente pelas leis 

de conversão energética: calor e outras formas de energia. 

 

1.3.6.2 Transferência de calor por condução 

 

A transferência de calor ou transferência de energia térmica ocorre entre pontos 

justapostos em um meio ou de um meio a outro devido à existência de uma determinada 

diferença de temperatura. A transferência de calor pode ser classificada em três formas básicas, 

com possibilidade de ocorrência simultânea destas: condução, convecção e radiação (Reddy; 

Gartling, 2010). De acordo com Çengel e Ghajar (2015), os três modos de transferência de calor 

podem ser descritos como: 
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I) Condução: transferência de energia das partículas mais energéticas de uma substância 

do corpo para as adjacentes menos energéticas, como resultado de interações entre as 

partículas. A condução pode ocorrer em sólidos, líquidos ou gases; 

II) Convecção: modo de transferência de energia entre uma superfície sólida e o líquido ou 

gás adjacente em movimento, envolvendo os efeitos combinados da condução e do 

movimento do fluido. A transferência de calor por convecção é diretamente 

proporcional à velocidade de movimento do fluido. Na ausência de qualquer movimento 

de massas fluidas, a transferência de calor entre uma superfície sólida e o fluido 

adjacente é puramente decorrente da condução; 

III) Radiação: é referente à energia emitida pela matéria na forma de ondas eletromagnéticas 

como resultado das mudanças nas configurações eletrônicas dos átomos ou moléculas. 

Diferentemente da condução e da convecção, a transferência de energia por radiação 

não requer a presença de um meio físico. 

  

De acordo com Cheng e Fujii (1998), no ano de 1701 houve o primeiro registro de 

equação de taxa teórica para transferência de calor em um trabalho publicado anonimamente 

em latim intitulado Scala Graduum Caloris, aplicada a um problema envolvendo um objeto 

aquecido e um fluido em movimento em diferentes temperaturas, sendo conhecida 

universalmente como lei de resfriamento de Newton nos dias atuais. 

Posteriormente, Biot (1804) estudou o processo de transferência de calor em sólidos, 

apresentando o problema de uma barra aquecida em uma das extremidades. O seu trabalho teve 

como ponto de partida a lei de resfriamento de Newton, segundo a qual a taxa da perda de calor 

de um corpo para o ambiente é proporcional à diferença de temperatura entre a barra e o meio 

envolvente.  

No entanto, de acordo com Grattan-Guinness e Ravetz (1972), foi admitida por Biot a 

idealização de ação à distância (conceito referente à possibilidade de movimento ou alteração 

de um objeto mesmo na ausência de um contato físico com um segundo objeto) envolvendo 

somente a diferença de temperatura entre os pontos, sem a consideração da distância entre os 

pontos como um parâmetro influente no estudo. Consequentemente, a abordagem de Biot não 

apresentou um gradiente de temperatura, essencial para a formulação da equação diferencial de 

condução de calor. 

O processo transiente de condução de calor em sólidos, descrito a partir de uma equação 

diferencial parcial, foi formulado pela primeira vez e apresentado à instituição acadêmica 

Institut de France como um manuscrito em 1807 pelo matemático e físico francês Jean Baptiste 
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Joseph Fourier. Na referida época, as ciências termodinâmicas, da teoria do potencial e da teoria 

das equações diferenciais se encontravam em estágios iniciais de desenvolvimento. Através da 

sua excepcionalidade em matemática pura e percepções em física observacional, Fourier foi 

responsável pela introdução de novas áreas de pesquisa em física matemática com a sua obra-

prima de 1807, intitulada Théorie de la Propagation de la Chaleur dans les Solides 

(Narasimhan, 1999). 

Entretanto, a publicação da sua pesquisa e o seu acesso pela comunidade científica 

ocorreram apenas em 1822, sendo a obra intitulada de Théorie Analytique de la Chaleur 

(Fourier, 1822). Os resultados da pesquisa de Fourier foram ampla e rapidamente aceitos no 

mundo inteiro, com a consagração de uma lei empírica que afirma o seguinte: o fluxo de calor 

resultante do processo de condução térmica através de um material é proporcional ao gradiente 

negativo da temperatura. Tal princípio é mundialmente conhecido como lei de Fourier 

(Lienhard IV; Lienhard V, 2020; Narasimhan, 1999). 

Desde a proposição da lei de Fourier, foi verificada uma grande quantidade de pesquisas 

envolvendo condução de calor em variados campos da engenharia, sendo a sua equação 

diferencial a principal expressão de condução térmica até os dias atuais e presentes na literatura 

de cunho teórico e prático. 

 

1.3.7 Termomecânica 

 

A termomecânica corresponde ao segmento da ciência mecânica que possui como foco 

de estudo a relação entre carregamentos térmicos e carregamentos mecânicos aplicados em um 

corpo ou superfície e a intensidade das forças internas que atuam dentro desse corpo. A 

disciplina também é responsável pelo estudo da alteração das dimensões do corpo analisado em 

função da temperatura, bem como de suas deformações (Peksen, 2018). 

O estudo de um problema termomecânico pode ser realizado a partir de duas opções de 

modelos matemáticos, com abordagem desacoplada ou acoplada. A principal diferença entre as 

duas abordagens corresponde à forma como se consideram a interação entre o campo mecânico 

e o campo térmico. Na abordagem acoplada a interação é realizada diretamente nas equações 

governantes da termomecânica (Elfar; Sedaghati; Abdelsalam, 2022). Já na abordagem 

desacoplada, o campo mecânico é resolvido separadamente do campo térmico e informações 

como distribuição de temperatura para a solução do problema mecânico, ou geração de calor 

por deformação plástica para a solução do campo térmico, como pode ser visto no livro de Liu 

(2018), são comunicadas entre os instantes (ou mesmo iterações) do processo de solução. 
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De acordo com Sherief, Hamza e Saleh (2004), o início do estudo da termomecânica 

deu-se através de Duhamel (1837), o qual foi responsável pela introdução da teoria denominada 

como teoria da termoelasticidade desacoplada, na qual há a influência do campo térmico na 

determinação do comportamento mecânico do corpo analisado. Na teoria em questão, 

considera-se a existência de um estado inicial de referência em que o corpo é isento de tensões 

e deformações a uma determinada temperatura. 

Para a resolução dos problemas termomecânicos desacoplados, é possível considerar 

análise em regime estacionário ou transiente, sendo que este pode ser subdividido em análise 

dinâmica e quase-estática. Enquanto no modelo dinâmico é verificada a consideração da inércia 

no campo mecânico, tal efeito é desprezado no modelo quase-estático. Entretanto, a inclusão 

do efeito de inércia é necessária, por exemplo, em casos de estruturas bruscamente carregadas 

em um curto intervalo de tempo (carregamentos dependentes do tempo) (Elfar; Sedaghati; 

Abdelsalam, 2022). 

Tratando-se das aplicações da teoria desacoplada dos problemas termomecânicos, é de 

interesse mencionar os trabalhos dos seguintes autores, com os seus respectivos conteúdos 

apresentados resumidamente: 

I) Şentürk, Işýk e Evci (2016): utilizou o modelo desacoplado para a investigação analítica 

da resposta termomecânica de um cano de metralhadora. A distribuição de temperatura 

ao longo da espessura do cano foi determinada a partir da análise térmica de condução 

em regime estacionário, seguido de cálculo das tensões em função do campo térmico 

obtido; 

II) Neves, Camargo e Azevedo (2021): desenvolvimento do modelo numérico através do 

Método dos Elementos Finitos, com a finalidade de simular o comportamento de 

estruturas de concreto armado e mistas de aço e concreto submetidas à situação de 

incêndio. Para a análise, foram admitidas as não-linearidades física e geométrica, 

propriedades dos materiais dependentes da temperatura e gradientes térmicos não-

lineares; 

III) Song et al. (2023): foi efetuado um estudo teórico e numérico sobre as tensões térmicas 

residuais causadas pelo processo de brasagem (processo térmico de união de duas ou 

mais superfícies metálicas por meio um metal de adição em fusão) em estruturas 

anelares e bicamadas, motivado pela sua ameaça à estabilidade e à confiabilidade das 

estruturas soldadas. 
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Apesar de não consistir no foco do presente trabalho, menciona-se brevemente a teoria 

da termomecânica acoplada. Após a descrição resumida da teoria da termomecânica 

desacoplada, houve constatação experimental referente a um desacordo entre a teoria e as 

observações físicas, as quais referem-se às influências da mudança de configuração do corpo 

(inerente ao campo mecânico) no campo de temperatura. Dessa forma, no trabalho de Biot 

(1956) foi introduzida a teoria clássica da termoelasticidade acoplada, a qual indica o 

acoplamento dos campos térmico e mecânico, no que diz respeito à deformação e ao fluxo de 

entropia. 

Desde então, surgiram diversas contribuições científicas relacionadas à termomecânica 

acoplada, incluindo as que são inerentes aos procedimentos numéricos. Um exemplo a ser 

mencionado, realizado na área de métodos numéricos do departamento de engenharia de 

estruturas da EESC-USP (SET) é a tese de doutorado de Carrazedo (2009). Tratando-se de 

análise termomecânica desacoplada, é possível mencionar ainda as teses de Rigobello (2011) e 

Salomão (2021). 

 

1.4 Metodologia 

 

O desenvolvimento do presente trabalho foi organizado em sete etapas principais, 

conforme organizados e apresentados a seguir. 

A primeira etapa corresponde à elaboração de um código computacional destinada à 

análise estática e dinâmica de sólidos em regime de grandes deslocamentos através do Método 

dos Elementos Finitos Posicional, desenvolvida matematicamente a partir de uma abordagem 

energética por estacionariedade da energia mecânica total visando a obtenção das equações de 

equilíbrio para o modelo constitutivo de Saint-Venant-Kirchhoff. Para a resolução do sistema 

de equações não-lineares e integração temporal, empregam-se o método de Newton-Raphson e 

o algoritmo de Newmark-β, respectivamente. O elemento finito de sólido utilizado corresponde 

àquele proposto por Carrazedo e Coda (2017), prismático de base triangular, implementado 

com aproximação cúbica na base e opções de aproximação linear ou cúbica na espessura. 

Na segunda etapa, foi efetuada a implementação do modelo constitutivo hiperelástico 

de Rivlin-Saunders-Hartmann-Neff, adequado para problemas em regime de grandes 

deformações. A sua formulação é desenvolvida a partir da estratégia de decomposição 

multiplicativa de Flory (Flory, 1961), segmentando o gradiente da função mudança de 

configuração em parcelas isocóricas e volumétrica. 
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A terceira e a quarta etapas consistem nas implementações dos modelos alternativos de 

plasticidade e de viscosidade baseados, respectivamente, em Coda (2021, 2022) e R. T. Kishino 

(2022), ambos adequados para a resolução de problemas em regime de grandes deformações. 

A quinta etapa corresponde à implementação do código de análise térmica por 

transferência de calor linear e não-linear, partindo-se da lei de Fourier para obter as equações 

de equilíbrio térmico. Para a resolução de sistema, tanto linear quanto não-linear, é utilizado o 

método de Newton-Raphson, enquanto a aproximação numérica dos termos transientes é 

efetuada por meio do Método das Diferenças Finitas, com a discretização desses termos em 

passos de tempo. 

A sexta etapa é referente ao acoplamento termomecânico, implementado a partir da 

teoria clássica da termomecânica desacoplada, com o objetivo de determinar a resposta de um 

corpo sujeito aos esforços mecânicos e térmicos. O modelo termo-elasto-plástico alternativo 

implementado neste trabalho é adequado para grandes deformações e consiste em um 

aprimoramento daquele apresentado por Rigobello, Coda e Munaiar Neto (2014), o qual é 

válido somente para problemas de deformações pequenas e moderadas. Aqui comenta-se a 

relação não-linear temperatura/volume proposta originalmente neste trabalho. 

Por fim, na última etapa foi proposto o modelo termo-visco-elasto-plástico alternativo 

apropriado para grandes deformações por meio da combinação do modelo termo-elasto-plástico 

e do modelo de viscosidade implementados. 

Para a elaboração dos códigos computacionais mencionados, foi utilizada a linguagem 

de programação Fortran 90, combinado com o compilador Intel® Fortran, através do sistema 

operacional Windows. Quanto à resolução de problemas de álgebra linear de grau de 

complexidade superior, foi utilizada a biblioteca LAPACK (Anderson et al., 1999). Visando a 

economia de memória e uma redução no tempo de processamento, foi empregado o PARDISO 

(Schenk; Gärtner; Fichtner, 2000), um solver para sistemas de equações contendo matrizes 

esparsas, as quais foram preparadas e montadas com o auxílio das bibliotecas sparseSET 

(Piedade Neto; Paccola, 2020). O acesso à biblioteca LAPACK e ao solver PARDISO foi 

efetuado através do Math Kernel Library da Intel®. Além disso, a fim de reduzir o tempo de 

processamento, alguns trechos do código desenvolvido foram paralelizados utilizando a 

ferramenta OpenMP (Dagum; Menon, 1998), uma interface de programação de aplicativos para 

programação e processamento paralelo. 

A discretização em malha dos sólidos a serem analisados foi efetuada através do 

software Gmsh (Geuzaine; Remacle, 2009) para a geração das malhas bidimensionais das bases 

triangulares dos elementos finitos prismáticos e, por meio da sua extrusão na direção da 
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espessura do sólido (realizada com o auxílio do código desenvolvido pelo próprio autor), foram 

transformadas em malhas tridimensionais. A representação e a visualização dos resultados de 

pós-processamento foram efetuadas por meio do software AcadView (Paccola; Coda, 2005). 
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2 CONCEITOS FUNDAMENTAIS DA MECÂNICA DOS SÓLIDOS 

 

Neste capítulo apresentam-se os conceitos fundamentais da Mecânica dos Sólidos para 

embasar os desenvolvimentos posteriores do presente trabalho. 

 

2.1 Breves comentários sobre álgebra tensorial 

 

Ao longo do desenvolvimento das formulações apresentado neste trabalho, foram 

utilizadas operações da álgebra tensorial, comumente verificadas em estudos da mecânica do 

contínuo. Tendo isso em vista, nesta seção, comenta-se brevemente sobre tensores e operações 

tensoriais e, para maiores detalhes, é sugerida a leitura dos livros de Hashiguchi (2020) e Anand 

e Govindjee (2020). Na álgebra tensorial, escalares, vetores e matrizes correspondem a casos 

particulares de tensores, respectivamente, de ordem 0, 1 e 2. Em geral, ao longo do texto, tenta-

se enquadrar às seguintes notações: 

a. Escalar (tensor de ordem 0): letras em itálico ou de traço duplo (por exemplo, 𝑎, 𝐴 

ou 𝔸); 

b. Vetor (tensor de ordem 1): letras em itálico com seta na parte superior – notação 

vetorial (por exemplo, 𝑎⃗ ou 𝐴); 

c. Matriz (tensor de ordem 2): letras maiúsculas em itálico e negrito (por exemplo, 𝑨), 

com exceção do tensor de deformação de Green (𝔼); 

d. Tensores de ordem 4: letras em formato fraktur (por exemplo, 𝔄). 

 

Na sequência, são apresentadas resumidamente contrações e produtos tensoriais, duas 

operações entre tensores utilizadas ao longo dos desenvolvimentos subsequentes. Para cada 

operação, é representada à esquerda em notação compacta (ou dyadica) e à direita em notação 

indicial. Índices repetidos indicam soma e são denominados índices mudos, sendo eliminados 

da representação indicial do tensor resultante. Caso na notação indicial esteja presente somente 

um índice mudo, a operação corresponde a contração simples (representada por “⋅”). Caso 

sejam empregados dois índices mudos, a operação é denominada de contração dupla 

(representada por “∶”) e assim por diante. Pode-se mencionar como exemplos de contrações: 

 𝑎 = 𝑏⃗⃗ ⋅ 𝑐    ⟷    𝑎 = 𝑏𝑖𝑐𝑖 (2) 

 𝑨 = 𝑩 ⋅ 𝑪   ⟷    𝐴𝑖𝑗 = 𝐵𝑖𝑘𝐶𝑘𝑗 (3) 

 𝔄 = 𝔅 ⋅ 𝑪   ⟷   𝔄𝑖𝑗𝑘𝑙 = 𝔅𝑖𝑚𝑘𝑙𝐶𝑚𝑗 (4) 
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 𝔄 = 𝑩 ⋅ ℭ   ⟷   𝔄𝑖𝑗𝑘𝑙 = 𝐵𝑖𝑚ℭ𝑚𝑗𝑘𝑙 (5) 

 𝔄 = 𝑩 ⋅ ℭ ⋅ 𝑫   ⟷   𝔄𝑖𝑗𝑘𝑙 = 𝐵𝑖𝑚ℭ𝑚𝑛𝑘𝑙𝐷𝑛𝑗 (6) 

 𝑎 = 𝑩 ∶ 𝑪   ⟷    𝑎 = 𝐵𝑖𝑗𝐶𝑖𝑗 (7) 

 𝑨 = 𝔅 ∶ 𝑪   ⟷   𝐴𝑖𝑗 = 𝔅𝑖𝑗𝑘𝑙𝐶𝑘𝑙 (8) 

 𝔄 = 𝔅 ∶ ℭ   ⟷   𝔄𝑖𝑗𝑘𝑙 = 𝔅𝑖𝑗𝑚𝑛ℭ𝑚𝑛𝑘𝑙 (9) 

Já o produto tensorial é denotado pela operação “⊗” e não envolve índices mudos. 

Como exemplos, pode-se mencionar: 

 𝑨 = 𝑏⃗⃗ ⊗ 𝑐    ⟷    𝐴𝑖𝑗 = 𝑏𝑖𝑐𝑗 (10) 

 𝔄 = 𝑩⊗ 𝑪   ⟷   𝔄𝑖𝑗𝑘𝑙 = 𝐵𝑖𝑗𝐶𝑘𝑙 (11) 

Em alguns desenvolvimentos das formulações deste trabalho, pode ser constatada a 

presença do tensor identidade de segunda ordem, denotado por 𝑰 e dado por: 

 𝐼𝑖𝑗 = 𝛿𝑖𝑗 (12) 

na qual 𝛿𝑖𝑗 é referente ao delta de Kronecker: 

 
𝛿𝑖𝑗 = {

1, se 𝑖 = 𝑗
0, se 𝑖 ≠ 𝑗

  

 

(13) 

2.2 Definição da Cinemática 

 

A Cinemática corresponde à subárea da Mecânica que estuda os movimentos dos corpos 

sem se preocupar com a sua causa. O estudo da cinemática dos corpos deformáveis, um dos 

subcampos da Mecânica de Meios Contínuos, é imprescindível para a análise de problemas que 

não se enquadram em regime linear geométrico, caracterizado por desenvolver apenas pequenos 

deslocamentos, rotações e deformações. Nesta seção são apresentados alguns conceitos 

relativos à Cinemática com base nos livros de Coda (2018), Hashiguchi (2020) e Anand e 

Govindjee (2020). 

 

2.2.1 Função mudança de configuração e gradiente da função mudança de configuração 

 

Dado um corpo, contínuo no seu domínio, o seu movimento da configuração inicial 

(indeslocada e indeformada) para a configuração atual pode ser expresso matematicamente por 

meio da função mudança de configuração 𝑓 (conforme exibido na Figura 2.1), a qual realiza o 

mapeamento das posições atuais (denotadas por 𝑦⃗) a partir das posições iniciais (denotadas por 

𝑥⃗) para um determinado valor fixo de tempo 𝑡: 
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 𝑦⃗ = 𝑓(𝑥⃗, 𝑡) (14) 

 

Figura 2.1 – Mudança de configuração de um sólido deformável 

 
Fonte: autor. 

 

A partir da função mudança de configuração, denota-se o seu gradiente por 𝑨: 

 
𝑨 = ∇𝑓 =

𝜕𝑓

𝜕𝑥⃗
=
𝜕𝑦⃗

𝜕𝑥⃗
 (15) 

O gradiente da função mudança de configuração apresenta a propriedade de estabelecer 

uma relação entre vetores infinitesimais medidos nas configurações inicial e atual:  

 𝑑𝑦⃗ = 𝑨 ⋅ d𝑥⃗ (16) 

 

2.2.2 Medida de deformação 

 

A medida de deformação pode ser definida como uma grandeza capaz de aferir a 

alteração de forma do corpo verificada entre as configurações inicial e atual. É importante que 

a medida de deformação seja objetiva, em outras palavras, deve ser insensível aos movimentos 

de corpo rígido, tanto de translação quanto de rotação. Para se definir medidas de deformação 

objetivas na descrição Lagrangeana utiliza-se o tensor de alongamento à direita de Cauchy-

Green (𝑪), definido como: 

 𝑪 = 𝑨𝑡 ⋅ 𝑨 (17) 

Devido à propriedade matemática referente ao produto de uma matriz pela sua 

transposta resultar em uma matriz simétrica, o tensor 𝑪 é simétrico. 

Já o tensor de deformação de Green-Lagrange (𝔼), comumente referido apenas como 

deformação de Green, é dado conforme a expressão abaixo: 

 
𝔼 =

1

2
(𝑨𝑡 ∙ 𝑨 − 𝑰) =

1

2
(𝑪 − 𝑰) (18) 



46 

 

sendo que 𝑰 corresponde à matriz identidade. 

 

2.2.3 Demonstração da objetividade da deformação de Green 

 

O presente trabalho envolve a resolução de problemas que desenvolvem grandes 

deslocamentos e rotações, caracterizando a não-linearidade geométrica, o que requer o emprego 

de uma medida de deformação objetiva. A objetividade da deformação de Green é demonstrada 

a partir da sua insensibilidade aos movimentos de translação e rotação de corpo rígido. A função 

mudança de configuração que representa translação de corpo rígido é escrita como: 

 𝑓(𝑥⃗) = 𝑦⃗ = 𝑥⃗ + 𝑑 (19) 

Sendo 𝑑 um vetor deslocamento constante. 

Dentro desse contexto, o gradiente da função mudança de configuração é dado por: 

 
𝑨 = ∇𝑓 =

𝜕𝑓

𝜕𝑥⃗
=
𝜕(𝑥⃗ + 𝑑)

𝜕𝑥⃗
= 𝑰 (20) 

Consequentemente, o tensor de alongamento à direita de Cauchy-Green é dado por: 

 𝑪 = 𝑨𝑡 ⋅ 𝑨 = 𝑰𝑡 ⋅ 𝑰 = 𝑰 (21) 

Por fim, substituindo-se a Equação (21) na Equação (18), tem-se que: 

 
𝔼 =

1

2
(𝑪 − 𝑰) =

1

2
(𝑰 − 𝑰) = 0 (22) 

Dessa forma, demonstrou-se primeiramente que a deformação de Green assume valor 

nulo quando o corpo é submetido ao movimento de translação de corpo rígido. Na sequência, 

demonstra-se a insensibilidade do corpo sujeito à rotação de corpo rígido, considerando que o 

gradiente da função mudança de configuração seja dada por: 

 𝑨 = 𝑹 (23) 

em que 𝑹 corresponde ao tensor de rotação, sendo este ortogonal (𝑹𝑡 ⋅ 𝑹 = 𝑰). 

A partir da ortogonalidade do tensor de rotação, seguem as seguintes relações para o 

tensor de alongamento à direita de Cauchy-Green e a deformação de Green: 

 𝑪 = 𝑨𝑡 ⋅ 𝑨 = 𝑹𝑡 ⋅ 𝑹 = 𝑰 (24) 

 
𝔼 =

1

2
(𝑪 − 𝑰) =

1

2
(𝑰 − 𝑰) = 0 (25) 

Mostrando, dessa forma, a insensibilidade da deformação de Green ao movimento de 

rotação de corpo rígido e concluindo que a deformação de Green é uma medida de deformação 

objetiva. 
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2.2.4 Mudança de volume 

 

A mudança de volume pode ser estudada a partir de um cubo infinitesimal ilustrado na 

Figura 2.2, com as suas dimensões iniciais definidas através dos vetores 𝑑𝑥⃗1 , 𝑑𝑥⃗2  e 𝑑𝑥⃗3 

ortogonais entre si, enquanto a sua configuração final é dada pelos vetores 𝑑𝑦⃗1, 𝑑𝑦⃗2 e 𝑑𝑦⃗3, os 

quais definem as suas arestas. Portanto, o volume inicial do cubo corresponde a: 

 𝑑𝑉0 = 𝑑𝑥⃗1 ⋅ (𝑑𝑥⃗2 ∧ 𝑑𝑥⃗3) = 𝑑𝑒𝑡(𝑑𝑥⃗1, 𝑑𝑥⃗2, 𝑑𝑥⃗3) (26) 

 

Figura 2.2 – Mudança de volume de um cubo infinitesimal 

 
Fonte: autor. 

 

Os vetores infinitesimais da configuração atual podem ser determinados conforme a 

Equação (16), em função dos vetores 𝑑𝑥⃗1, 𝑑𝑥⃗2 e 𝑑𝑥⃗3: 

 

{

𝑑𝑦⃗1 = 𝑨 ⋅ d𝑥⃗1
𝑑𝑦⃗2 = 𝑨 ⋅ d𝑥⃗2
𝑑𝑦⃗3 = 𝑨 ⋅ d𝑥⃗3

 (27) 

De forma análoga ao volume inicial, o volume infinitesimal na configuração atual (𝑑𝑉) 

do cubo pode ser definido como: 

 𝑑𝑉 = 𝑑𝑒𝑡(𝑑𝑦⃗1, 𝑑𝑦⃗2, 𝑑𝑦⃗3) = 𝑑𝑒𝑡(𝑨) 𝑑𝑒𝑡(𝑑𝑥⃗1, 𝑑𝑥⃗2, 𝑑𝑥⃗3) = 𝐽 𝑑𝑉0 (28) 

na qual 𝐽 é o jacobiano da transformação de coordenadas, também conhecido simplesmente 

como jacobiano, equivalente à razão entre o volume atual e o inicial do corpo: 

 
𝐽 =

𝑑𝑉

𝑑𝑉0
= 𝑑𝑒𝑡(𝑨) (29) 

É importante mencionar que o jacobiano deve assumir apenas valores positivos, pela 

impossibilidade do material sofrer inversão ou degeneração (condição que deve ser satisfeita 

pelos modelos constitutivos): 



48 

 

 𝐽 > 0 (30) 

Dessa forma, a deformação volumétrica (𝜀𝑉) pode ser definida conforme a expressão 

abaixo: 

 
𝜀𝑉 =

𝑑𝑉 − 𝑑𝑉0
𝑑𝑉0

=
𝑑𝑉

𝑑𝑉0
− 1 = 𝐽 − 1 (31) 

De forma simplificada, imaginando-se que as deformações ocorrem em suas direções 

principais ( 𝜀𝑖𝑗
𝑝

), efetua-se o desenvolvimento da formulação considerando um cubo 

infinitesimal de aresta 𝑎 sujeita à dilatação, exibido na Figura 2.3. 

 

Figura 2.3 – Cubo infinitesimal submetido à dilatação 

 
Fonte: autor. 

 

O volume inicial (𝑑𝑉0) e o volume final (𝑑𝑉) do cubo são calculados conforme as 

seguintes expressões: 

 𝑑𝑉0 = 𝑎
3 (32) 

 𝑑𝑉 = [(1 + 𝜀11
𝑝 )𝑎][(1 + 𝜀22

𝑝 )𝑎][(1 + 𝜀33
𝑝 )𝑎]

= (1 + 𝜀11
𝑝 )(1 + 𝜀22

𝑝 )(1 + 𝜀33
𝑝 )𝑎3 

(33) 

A partir dos volumes, pode-se determinar a equação da deformação volumétrica em 

função das componentes principais do tensor de deformação: 

 
𝜀𝑉 =

𝑑𝑉 − 𝑑𝑉0
𝑑𝑉0

=
(1 + 𝜀11

𝑝 )(1 + 𝜀22
𝑝 )(1 + 𝜀33

𝑝 )𝑎3 − 𝑎3

𝑎3

= (1 + 𝜀11
𝑝 )(1 + 𝜀22

𝑝 )(1 + 𝜀33
𝑝 ) − 1

= 𝜀11
𝑝 + 𝜀22

𝑝 + 𝜀33
𝑝 + 𝜀11

𝑝 𝜀22
𝑝 + 𝜀11

𝑝 𝜀33
𝑝 + 𝜀22

𝑝 𝜀33
𝑝 + 𝜀11

𝑝 𝜀22
𝑝 𝜀33

𝑝  

(34) 
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A expressão acima pode ser simplificada caso o corpo trabalhe em regime de pequenas 

deformações: 

 𝜀𝑉 ≅ 𝜀11
𝑝 + 𝜀22

𝑝 + 𝜀33
𝑝 = 𝜀11 + 𝜀22 + 𝜀33 = 𝜀𝑖𝑖 (35) 

Dessa forma, a deformação volumétrica em pequenas deformações é definida pelo traço 

do tensor de deformação, correspondente ao 1º invariante do tensor de deformação. 

Tratando-se da Lei de Hooke em problemas de regime de pequenas deformações, as 

deformações normais podem ser determinadas em função das componentes normais do tensor 

de tensões de Cauchy (𝜎𝑖𝑗) e do módulo de elasticidade longitudinal (𝐸): 

 

{
 
 

 
 𝜀11 =

1

𝐸
(𝜎11 − 𝜈𝜎22 − 𝜈𝜎33)

𝜀22 =
1

𝐸
(𝜎22 − 𝜈𝜎11 − 𝜈𝜎33)

𝜀33 =
1

𝐸
(𝜎33 − 𝜈𝜎11 − 𝜈𝜎22)

 (36) 

Portanto, a Equação (35) pode ser escrita como: 

  
𝜀𝑉 =

1

𝐸
(𝜎11 − 𝜈𝜎22 − 𝜈𝜎33) +

1

𝐸
(𝜎22 − 𝜈𝜎11 − 𝜈𝜎33)

+
1

𝐸
(𝜎33 − 𝜈𝜎11 − 𝜈𝜎22)

=
1

𝐸
[𝜎11 + 𝜎22 + 𝜎33 − 2𝜈(𝜎11 + 𝜎22 + 𝜎33)]

=
1

𝐸
(𝜎11 + 𝜎22 + 𝜎33)(1 − 2𝜈) =

3

𝐸

(𝜎11 + 𝜎22 + 𝜎33)

3
(1 − 2𝜈) 

(37) 

sendo que a tensão média (𝜎𝑚) é definida como: 

 
𝜎𝑚 =

(𝜎11 + 𝜎22 + 𝜎33)

3
 (38) 

A Equação (37) pode ser reescrita conforme a expressão seguinte: 

 
𝜀𝑉 =

3(1 − 2𝜈)

𝐸
𝜎𝑚 (39) 

isolando o termo 𝜎𝑚 da equação acima, tem-se: 

 
𝜎𝑚 =

𝐸

3(1 − 2𝜈)
𝜀𝑉 = 𝐾𝜀𝑉 (40) 

em que 𝐾 corresponde ao bulk modulus (ou módulo volumétrico), uma constante elástica do 

material que indica a sua capacidade de se opor às mudanças de volume quando carregado 

hidrostaticamente, ou seja, submetido a um carregamento uniforme em todas as direções. A 

compressibilidade do material e o bulk modulus são inversamente proporcionais. 
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Salienta-se que, apesar da ausência da necessidade de descrição de ações geradoras de 

mudança de configuração envolvendo deformação volumétrica para a cinemática dos corpos 

deformáveis, foram apresentados os desenvolvimentos para a definição de bulk modulus devido 

à sua importância para o modelo constitutivo destinado aos materiais em regime de grandes 

deformações, o qual é abordado nos capítulos posteriores. 

 

2.2.5 Mudança de área 

 

Para a obtenção da relação entre a tensão real na configuração Euleriana (tensão de 

Cauchy) e a tensão matemática na configuração Lagrangeana (pode-se mencionar as tensões de 

Piola-Kirchhoff de 1ª e 2ª espécie como exemplos), torna-se necessário estabelecer uma relação 

entre áreas na configuração inicial e na configuração atual. 

Para tanto, toma-se como base um elemento prismático infinitesimal, com as suas 

configurações inicial e final ilustradas na Figura 2.4.  

 

Figura 2.4 – Mudança de área do elemento infinitesimal na mudança de configuração 

 
Fonte: autor. 

 

Sejam 𝑑𝐴0 e 𝑑𝐴 as áreas da base, nas configurações inicial e atual respectivamente, 

enquanto 𝑛⃗⃗  e 𝑁⃗⃗⃗  correspondem aos versores normais às bases do elemento prismático nas 

mesmas respectivas configurações. A partir dos parâmetros mencionados, pode-se definir o 

vetor área inicial (𝑑𝐴0) e o vetor área atual (𝑑𝐴) segundo as expressões abaixo: 

 𝑑𝐴0 = 𝑛⃗⃗ 𝑑𝐴0 (41) 

 𝑑𝐴 = 𝑁⃗⃗⃗ 𝑑𝐴 (42) 
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Para a configuração inicial e configuração atual, o elemento prismático é gerado a partir 

da extrusão da sua base na direção do vetor infinitesimal 𝑑𝑥⃗ e 𝑑𝑦⃗ respectivamente, com os seus 

volumes 𝑑𝑉0 e 𝑑𝑉 definidos como: 

 𝑑𝑉0 = 𝑑𝑥⃗
𝑡 ∙ 𝑑𝐴0 = 𝑑𝑥⃗

𝑡 ∙ (𝑛⃗⃗ 𝑑𝐴0) (43) 

 𝑑𝑉 = 𝑑𝑦⃗𝑡 ∙ 𝑑𝐴 = 𝑑𝑦⃗𝑡 ∙ (𝑁⃗⃗⃗ 𝑑𝐴) (44) 

Desenvolvendo a Equação (44) a partir das relações 𝑑𝑉 = 𝐽 𝑑𝑉0 (Equação (28)) e 𝑑𝑦⃗ =

𝑨 ⋅ d𝑥⃗ (Equação (16)), tem-se: 

 

 𝑑𝑉0 = 𝐽
−1𝑑𝑥⃗𝑡 ⋅ 𝑨𝑡 ⋅ 𝑁⃗⃗⃗ 𝑑𝐴 (45) 

Igualando as Equações (43) e (45) e reorganizando os termos presentes, obtém-se a 

equação conhecida como Fórmula de Nanson, a qual estabelece uma relação entre a área na 

configuração inicial e a área na configuração atual: 

 𝑁⃗⃗⃗ 𝑑𝐴 = 𝐽 (𝑨𝑡)−1 ∙ 𝑛⃗⃗ 𝑑𝐴0 (46) 

 

2.2.6 Princípio da conservação de massa  

 

Para o presente trabalho, faz-se necessária a conversão da descrição Euleriana para 

Lagrangeana envolvendo a conservação da massa no desenvolvimento das formulações de 

equilíbrio do corpo, as quais são apresentadas em capítulos posteriores. Tal propriedade do 

corpo garante que a massa (𝑀), escrita conforme a expressão (47), seja constante ao longo da 

análise, sem adição ou retirada do sistema (sistema fechado): 

 
𝑀 = ∫ 𝜌0 𝑑𝑉0

𝑉0

= ∫ 𝜌(𝑡) 𝑑𝑉
𝑉(𝑡)

 (47) 

sendo que 𝜌0 é a massa específica inicial e 𝜌 refere-se à massa específica atual. 

Através da substituição da Equação (28) no último termo da igualdade da Equação (47), 

obtém-se: 

 
𝑀 = ∫ 𝜌(𝑡)𝐽(𝑡) 𝑑𝑉0

𝑉0

 (48) 

Estabelecendo a igualdade entre as Equações (47) e (48), verifica-se que: 

 
𝜌0 = 𝜌(𝑡)𝐽(𝑡) = 𝜌(𝑡)

𝑑𝑉(𝑡)

𝑑𝑉0
 (49) 

As Equações (47) a (49) são correspondentes ao princípio da conservação de massa nos 

pontos do contínuo. 
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Partindo-se desse princípio, pode-se inferir um corolário relevante para a conversão da 

descrição Euleriana para a Lagrangeana. Primeiramente, admite-se uma função diferenciável 

em qualquer instante do tempo 𝑓(𝑡) como um dos termos do integrando: 

 
∫ 𝜌(𝑡)𝑓(𝑡) 𝑑𝑉
𝑉(𝑡)

= ∫ 𝜌0𝑓(𝑡) 𝑑𝑉0
𝑉0

 (50) 

Derivando a expressão anterior em relação ao tempo (𝜌0 é uma constante): 

 𝑑

𝑑𝑡
∫ 𝜌(𝑡)𝑓(𝑡) 𝑑𝑉
𝑉(𝑡)

=
𝑑

𝑑𝑡
∫ 𝜌0𝑓(𝑡) 𝑑𝑉0
𝑉0

= ∫ 𝜌0
𝑑𝑓(𝑡)

𝑑𝑡
 𝑑𝑉0

𝑉0

= ∫ 𝜌(𝑡)
𝑑𝑓(𝑡)

𝑑𝑡
 𝑑𝑉

𝑉(𝑡)

 

(51) 

Consequentemente, tem-se que: 

 𝑑

𝑑𝑡
∫ 𝜌(𝑡)𝑓(𝑡) 𝑑𝑉
𝑉

= ∫ 𝜌(𝑡)𝑓̇(𝑡) 𝑑𝑉
𝑉

 (52) 

 

2.3 Tensão de Cauchy 

 

Nesta seção, apresenta-se alguns conceitos referentes à tensão de Cauchy com base nos 

livros de Irgens (2008) e Coda (2018). 

A tensão pode ser definida como uma grandeza que quantifica, continuamente, a 

interação entre partículas constituintes de um sólido submetido às ações externas, sendo 

composta por componentes de tensão normal e de tensão de cisalhamento. A primeira afere a 

resistência ao afastamento ou à aproximação de planos ou superfícies paralelos, enquanto a 

segunda quantifica a resistência ao deslizamento relativo entre planos paralelos. 

Considerando-se um corpo submetido às ações externas em sua configuração atual de 

equilíbrio, conforme a Figura 2.5, pela 3ª lei de Newton (Princípio da Ação e Reação), ao 

seccioná-lo, devem existir esforços distribuídos por unidade de superfície interna (fictícia) do 

corte capazes de manter o equilíbrio. Tais esforços internos são denominados tensões ou vetor 

de tensões (𝑡). 
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Figura 2.5 – Configuração de equilíbrio do corpo obtido através do corte imaginário 

 
Fonte: autor. 

 

Ao imaginar que o corpo em questão é seccionado seis vezes, sendo cada um dos planos 

de corte ortogonais e distanciados infinitesimalmente entre si, obtém-se um cubo infinitesimal, 

conforme ilustrado na Figura 2.6. Cada uma das faces do cubo encontra-se submetida a um 

vetor de tensão resultante, o qual pode ser decomposto em três componentes, denotadas por 𝜎𝑖𝑗, 

em que o índice 𝑖 é referente ao plano de atuação da tensão, enquanto o índice 𝑗, à direção da 

sua componente. 

 

Figura 2.6 – Estado de tensões de um cubo infinitesimal 

 

 
Fonte: autor. 

 

Representadas na figura acima, as componentes de tensão normais às superfícies (i) 

correspondem às tensões normais (𝑖 = 𝑗) e as componentes tangenciais consistem nas tensões 
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cisalhantes (𝑖 ≠ 𝑗). O estado de tensão atual é comumente representado em sua forma tensorial, 

sendo denominado, nesse caso, de tensor de tensões de Cauchy (𝝈): 

 
𝝈 = [

𝜎11 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
𝜎31 𝜎32 𝜎33

] (53) 

Por meio do equilíbrio de momentos do cubo em relação a um ponto qualquer, verifica-

se que o tensor de tensões de Cauchy é simétrico (teorema de Cauchy): 

 𝝈 = 𝝈𝑡 (54) 

Pelo fato da tensão de Cauchy possuir significado físico imediato e estar escrita na 

configuração atual do corpo, a mesma é comumente denominada de tensão real. Salienta-se tal 

fato porque são mencionadas ao longo do presente trabalho medidas de tensão matemáticas que 

não possuem significado físico evidente, mas que possuem relação direta com a tensão de 

Cauchy. 

 

2.4 Equilíbrio 

 

Para o desenvolvimento do presente trabalho, emprega-se uma formulação com 

descrição Lagrangeana total. No entanto, verifica-se que o estado de equilíbrio do corpo está 

relacionado à sua configuração atual. Portanto, baseado em Coda (2018), primeiramente foram 

introduzidas as formulações Eulerianas de equilíbrio e, utilizando-se as equações de mudança 

de área e de volume, foram deduzidas as suas formulações Lagrangeanas. 

 

2.4.1 Equilíbrio Euleriano 

  

Na definição das componentes de tensão de Cauchy, foi utilizado o exemplo do cubo 

infinitesimal (Figura 2.6), o qual representava um ponto do corpo. Já para os desenvolvimentos 

subsequentes, o elemento infinitesimal é tratado como uma porção do contínuo que apresenta 

variação do ente tensão de Cauchy no interior do seu domínio. Assim, uma componente de 

tensão 𝜎𝑗𝑖  solicitante em uma das faces apresenta um valor 𝜎𝑗𝑖 + 𝜎𝑗𝑖,𝑗𝑑𝑥(𝑗)  na face oposta 

correspondente, conforme esquematizado na Figura 2.7 (exemplo para o caso das tensões na 

direção 𝑥1), também considerando a existência das forças de volume 𝑏𝑖. 
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Figura 2.7 – Cubo elementar com variação de tensões  

 
Fonte: autor. 

 

As equações de equilíbrio em forças infinitesimais podem ser determinadas por meio da 

aplicação da 2ª Lei de Newton segundo cada um dos três eixos do espaço cartesiano: 

 (𝜎𝑗𝑖 + 𝜎𝑗𝑖,𝑗𝑑𝑥(𝑗))𝑑𝐴(𝑗) − 𝜎𝑗𝑖𝑑𝐴𝑗 + 𝑏𝑖𝑑𝑉 = 𝜌𝑦̈𝑖𝑑𝑉 (55) 

sendo que 𝑑𝐴𝑗  corresponde à área infinitesimal ortogonal ao eixo cartesiano 𝑗, 𝑑𝑉 ao volume 

do cubo analisado, 𝑏𝑖 às forças de volume na direção do eixo cartesiano 𝑖, 𝜌 à massa específica 

atual e 𝑦̈𝑖 à aceleração do corpo inerente à direção do eixo cartesiano 𝑖. 

Efetuando as devidas simplificações na Equação (55), obtém-se a expressão 

correspondente ao equilíbrio Euleriano local: 

 𝜎𝑗𝑖,𝑗 + 𝑏𝑖 = 𝜌𝑦̈𝑖 (56) 

Realizando a integral da expressão acima no volume atual do corpo, é obtido: 

 
∫ 𝜎𝑗𝑖,𝑗  𝑑𝑉
𝑉

+∫ 𝑏𝑖 𝑑𝑉
𝑉

= ∫ 𝜌𝑦̈𝑖 𝑑𝑉
𝑉

 (57) 

Aplicando o teorema da divergência de Gauss no primeiro termo da adição, obtém-se: 

 
∫ 𝜎𝑗𝑖𝑁𝑗  𝑑𝐴
𝐴

+∫ 𝑏𝑖 𝑑𝑉
𝑉

= ∫ 𝜌𝑦̈𝑖 𝑑𝑉
𝑉

 (58) 
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em que 𝑁𝑗 refere-se ao vetor normal à superfície e 𝐴 indica a área da superfície do contorno do 

corpo analisado. 

O termo 𝜎𝑗𝑖𝑁𝑗  pode ser denotado como 𝑝𝑖 , correspondente à força de superfície. 

Portanto o equilíbrio Euleriano global é expresso por: 

 
∫ 𝑝𝑖 𝑑𝐴
𝐴

+∫ 𝑏𝑖 𝑑𝑉
𝑉

= ∫ 𝜌𝑦̈𝑖  𝑑𝑉
𝑉

 (59) 

 

2.4.2 Equilíbrio Lagrangeano 

 

Para a obtenção da expressão de equilíbrio Lagrangeano global, utiliza-se a equação de 

equilíbrio Euleriano global como base, através da substituição das expressões de mudança de 

volume e de mudança de área, dadas pelas Equações (28) e (46) respectivamente, na Equação 

(58), resultando em: 

 
∫ 𝐽𝜎𝑗𝑖𝐵𝑗𝑘𝑛𝑘 𝑑𝐴0
𝐴0

+∫ 𝐽𝑏𝑖 𝑑𝑉0
𝑉0

= ∫ 𝐽𝜌𝑦̈𝑖 𝑑𝑉0
𝑉0

 (60) 

sendo 𝑩 = (𝑨𝑡)−1. 

Através do corolário do princípio da conservação de massa, dado pela Equação (52), é 

possível substituir a parcela 𝐽𝜌 do lado direito da equação por 𝜌0. Ainda, assumindo como 

premissa que as forças de volume sejam conservativas e que uma justificativa análoga ao 

princípio da conservação de massa seja válida, pode-se substituir o termo 𝐽𝑏𝑖 por 𝑏𝑖
0, o qual 

refere-se à força de volume Lagrangeana. Efetuando as substituições mencionadas, obtém-se: 

 
∫ 𝐽𝜎𝑗𝑖𝐵𝑗𝑘𝑛𝑘 𝑑𝐴0
𝐴0

+∫ 𝑏𝑖
0 𝑑𝑉0

𝑉0

= ∫ 𝜌0𝑦̈𝑖 𝑑𝑉0
𝑉0

 (61) 

Definindo o tensor de Piola-Kirchhoff de primeira espécie (𝑃𝑘𝑖) como: 

 𝑃𝑘𝑖 = 𝐽𝜎𝑗𝑖𝐵𝑗𝑘  ou  𝑃𝑗𝑖 = 𝐽𝜎𝑘𝑖𝐵𝑘𝑗 (62) 

e substituindo a Equação (62) na Equação (61) e realizando a troca do índice 𝑘 por 𝑗, obtém-se 

a expressão de equilíbrio Lagrangeano global: 

 
∫ 𝑃𝑗𝑖𝑛𝑗  𝑑𝐴0
𝐴0

+∫ 𝑏𝑖
0 𝑑𝑉0

𝑉0

= ∫ 𝜌0𝑦̈𝑖 𝑑𝑉0
𝑉0

 (63) 

Aplicando o teorema da divergência de Gauss e a arbitrariedade do volume 𝑉0  na 

Equação (63), chega-se na expressão de equilíbrio Lagrangeano local: 

 𝑃𝑗𝑖,𝑗 + 𝑏𝑖
0 = 𝜌0𝑦̈𝑖 (64) 
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2.4.3 Forma fraca do equilíbrio Lagrangeano pela estacionariedade da energia mecânica 

 

Alternativamente, o estudo mecânico de uma estrutura pode ser efetuado por meio da 

análise da forma fraca do equilíbrio, que é equivalente à estacionariedade da energia mecânica 

total. 

A energia mecânica total do sistema (𝛱) é composta por três parcelas: energia potencial 

das forças externas (ℙ), energia de deformação (𝕌) e energia cinética (𝕂). 

 𝛱 = ℙ + 𝕌 +𝕂 (65) 

O equilíbrio do sistema é definido pelo princípio da estacionariedade da energia 

mecânica, quando a primeira variação do funcional de energia mecânica é nula: 

 𝛿𝛱 = 𝛿ℙ + 𝛿𝕌 + 𝛿𝕂 = 0 (66) 

A expressão da variação da energia mecânica pode ser encontrada tomando-se como 

base a equação de equilíbrio Lagrangeano local, dada pela Equação (64). A equação 

reorganizada é dada por: 

 𝑃𝑗𝑖,𝑗 + 𝑏𝑖
0 − 𝜌0𝑦̈𝑖 = 0𝑖 = 𝑔𝑖 (67) 

sendo que 𝑔𝑖 refere-se ao vetor nulo de força por unidade de volume. 

Uma variação de trabalho por unidade de volume 𝛿𝜋 realizado pela força 𝑔𝑖 inerente a 

uma variação arbitrária de posição 𝛿𝑦𝑖, é expressa por: 

 𝛿𝜋 = 𝑔𝑖𝛿𝑦𝑖 = 0 (68) 

Integrando-se a Equação (68) no volume inicial do corpo, determina-se a expressão da 

variação da energia mecânica: 

 
𝛿𝛱 = ∫ 𝛿𝜋 𝑑𝑉0

𝑉0

= ∫ (𝑃𝑗𝑖,𝑗 + 𝑏𝑖
0 − 𝜌0𝑦̈𝑖)𝛿𝑦𝑖 𝑑𝑉0

𝑉0

= 0 (69) 

Separando cada um dos termos do integrando da expressão acima, a variação da energia 

mecânica é escrita conforme abaixo: 

 
∫ 𝑃𝑗𝑖,𝑗𝛿𝑦𝑖𝑑𝑉0
𝑉0

+∫ 𝑏𝑖
0𝛿𝑦𝑖𝑑𝑉0

𝑉0

−∫ 𝜌0𝑦̈𝑖𝛿𝑦𝑖𝑑𝑉0
𝑉0

= 0 (70) 

Após algumas manipulações algébricas, a expressão anterior resulta em (Coda, 2018): 

 
𝛿𝛱 = ∫ 𝜌0𝑦̈𝑖𝛿𝑦𝑖𝑑𝑉0

𝑉0

−∫ 𝑏𝑖
0𝛿𝑦𝑖𝑑𝑉0

𝑉0

−∫ 𝑝𝑖
0𝛿𝑦𝑖𝑑𝐴0

𝐴0

+∫ 𝑃𝑗𝑖𝛿𝐴𝑖𝑗𝑑𝑉0
𝑉0

= 0 (71) 

a qual consiste na expressão do princípio da estacionariedade da energia mecânica com 

referência Lagrangeana, sendo que 𝑝𝑖
0  representa a força de superfície Lagrangeana, 

considerada também como conservativa. 
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Observando-se o último termo da equação anterior, pode-se dizer que 𝑃𝑗𝑖 é conjugado 

energético de 𝐴𝑖𝑗. Apesar de 𝐴𝑖𝑗 ser uma medida objetiva do alongamento, esta não é simétrica 

e seu conjugado energético (tensor de tensões de Piola-Kirchhoff de primeira espécie) também 

não é simétrico. Dentro desse contexto, define-se o tensor de tensões de Piola-Kirchhoff de 

segunda espécie (𝑺) como: 

 𝑷 = 𝑺𝑡 ⋅ 𝑨𝑡 (72) 

Através da substituição da Equação (72) na Equação (62), obtém-se: 

 𝑺𝑡 ⋅ 𝑨𝑡 = 𝐽 𝑨−1 ⋅ 𝝈 ⟶ 𝑺𝑡 = 𝐽 𝑨−1 ⋅ 𝝈 ⋅ (𝑨𝑡)−1 (73) 

Devido à simetria do tensor 𝝈, é possível concluir que o tensor 𝑺 também é simétrico: 

 𝑺 = 𝐽 [𝑨−1 ⋅ 𝝈 ⋅ (𝑨𝑡)−1]𝑡 = 𝐽 𝑨−1 ⋅ 𝝈𝑡 ⋅ (𝑨𝑡)−1 = 𝐽 𝑨−1 ⋅ 𝝈 ⋅ (𝑨𝑡)−1 = 𝑺𝑡 (74) 

Substituindo a Equação (72) na última parcela da Equação (71), tem-se que: 

 
∫ 𝑷𝑡 ∶ 𝛿𝑨 𝑑𝑉0
𝑉0

= ∫ 𝑨 ⋅ 𝑺 ∶ 𝛿𝑨 𝑑𝑉0
𝑉0

= ∫ 𝑨𝑡 ⋅ 𝛿𝑨 ∶ 𝑺 𝑑𝑉0
𝑉0

 (75) 

Pela simetria do tensor 𝑺, é possível reescrever o integrando da Equação (75) como: 

 
𝑨𝑡 ⋅ 𝛿𝑨 ∶ 𝑺 =

1

2
(𝑨𝑡 ⋅ 𝛿𝑨 ∶ 𝑺 + 𝛿𝑨𝑡 ⋅ 𝑨 ∶ 𝑺) =

1

2
(𝑨𝑡 ⋅ 𝛿𝑨 + 𝛿𝑨𝑡 ⋅ 𝑨) ∶ 𝑺 (76) 

Recordando que a deformação de Green é dada pela Equação (18), então a variação da 

deformação de Green (𝛿𝔼) é expressa por: 

 
𝛿𝔼 =

1

2
(𝑨𝑡 ⋅ 𝛿𝑨 + 𝛿𝑨𝑡 ⋅ 𝑨) (77) 

Efetuando a substituição da Equação (77) na Equação (76), tem-se que: 

 𝑨𝑡 ⋅ 𝛿𝑨 ∶ 𝑺 = 𝛿𝔼 ∶ 𝑺 = 𝑺 ∶ 𝛿𝔼 (78) 

Dessa forma, chega-se à conclusão de que a tensão de Piola-Kirchhoff de segunda 

espécie é conjugada energética da deformação de Green. 

É importante mencionar que, ao se isolar o tensor 𝝈  na Equação (73), obtém-se a 

expressão que permite determinar a tensão de Cauchy a partir da tensão de Piola-Kirchhoff de 

segunda espécie: 

 
𝝈 =

1

𝐽
𝑨 ⋅ 𝑺 ⋅ 𝑨𝑡 (79) 

Finalmente, a equação do princípio da estacionariedade da energia mecânica pode ser 

obtida reescrevendo-se a Equação (71) considerando o par conjugado energético (𝔼, 𝑺): 

 
𝛿𝛱 = ∫ 𝜌0𝑦̈𝑖𝛿𝑦𝑖𝑑𝑉0

𝑉0

−∫ 𝑏𝑖
0𝛿𝑦𝑖𝑑𝑉0

𝑉0

−∫ 𝑝𝑖
0𝛿𝑦𝑖𝑑𝐴0

𝐴0

+∫ 𝑆𝑖𝑗𝛿𝔼𝑖𝑗𝑑𝑉0
𝑉0

= 0 (80) 
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3 MÉTODO DOS ELEMENTOS FINITOS POSICIONAL – 

ELASTODINÂMICO 

 

O presente capítulo é destinado à apresentação das formulações do Método dos 

Elementos Finitos Posicional para sólidos, baseado em Coda (2018). 

 

3.1 Aproximação multidimensional 

 

A estratégia básica do Método dos Elementos Finitos consiste na subdivisão do domínio 

(meio contínuo) em número finito de subdomínios, denominados elementos finitos. Os 

elementos em questão são compostos por uma determinada quantidade de nós, aos quais são 

correlacionadas as respectivas funções de forma e variáveis de interesse do problema. Para cada 

elemento envolvido, as variáveis de interesse são aproximadas através da combinação linear 

das funções de forma, cujos coeficientes correspondem aos respectivos parâmetros nodais. No 

presente trabalho, as aproximações são efetuadas através dos polinômios de Lagrange 

(usualmente referido como funções de forma nos textos de elementos finitos), os quais 

apresentam a propriedade de partição da unidade, ou seja, a soma de todos os polinômios de 

uma mesma ordem resulta em uma unidade. 

Os polinômios de Lagrange são escritos em função das coordenadas adimensionais (𝜉𝑖) 

definidas em um determinado intervalo. Para o caso unidimensional, a equação geral dos 

polinômios de Lagrange (𝜓𝑖) de ordem 𝑛 é dada por: 

 

𝜓𝑖 = ∏
(𝜉 − 𝜉𝑗)

(𝜉𝑖 − 𝜉𝑗)

𝑛+1

𝑗=1(𝑗≠𝑖)

 (81) 

No caso de elementos finitos retangulares, as suas funções de forma (𝜑𝑘) podem ser 

determinadas através do produto das funções de forma unidimensional. Semelhantemente ao 

caso de aproximação unidimensional, as coordenadas adimensionais 𝜉𝑖  são definidas no 

intervalo [-1,1]. Dessa forma, a equação geral das funções de forma (𝜑𝑘) para elementos de 

base retangular é escrita como: 

 𝜑𝑘(𝜉1, 𝜉2) = 𝜓𝑖(𝜉1)𝜓𝑗(𝜉2) (82) 

sendo que 𝑘 = 𝑗(𝑖 − 1) + 𝑗. 

Tratando-se de elementos finitos triangulares, o intervalo das coordenadas 

adimensionais 𝜉𝑖 corresponde a [0,1] neste trabalho, sendo que, para o caso de aproximação 

cúbica, as suas funções de forma (𝜑𝑘) respeitando a regra de Pascal são expressas por: 
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 𝜑𝑘(𝜉1, 𝜉2) = 𝑎𝑘1 + 𝑎𝑘2𝜉1 + 𝑎𝑘3𝜉2 + 𝑎𝑘4𝜉1𝜉2 + 𝑎𝑘5𝜉1
2 + 𝑎𝑘6𝜉2

2 + 𝑎𝑘7𝜉1
3

+ 𝑎𝑘8𝜉2
3 + 𝑎𝑘9𝜉1

2𝜉2 + 𝑎𝑘10𝜉1𝜉2
2 

(83) 

Os coeficientes das funções de forma (𝑎𝑘𝑖 , 𝑖 = 1, 2, … , 10) presentes na expressão 

acima são as incógnitas e podem ser determinados a partir de um sistema de equações, tendo 

em vista que as funções de forma assumem valor unitário em seus respectivos nós 

correspondentes e valor nulo nos demais: 

 𝑨 ⋅ 𝑷 = 𝑰 (84) 

Na Equação (84), 𝑨 corresponde à matriz dos coeficientes das funções de forma, e 𝑷, à 

matriz dos valores que multiplicam os coeficientes, os quais obtidos por meio da substituição 

dos valores das coordenadas adimensionais dos respectivos nós na Equação (83). 

Para o desenvolvimento do presente trabalho, foi implementado o elemento finito de 

sólido prismático de base triangular com base no trabalho de Carrazedo e Coda (2017), com 

aproximação cúbica na base e opções de aproximação linear ou cúbica na espessura. A decisão 

do uso desse tipo de elemento finito foi pautada na necessidade de admitir um elemento 

tridimensional para o desenvolvimento das formulações dos modelos constitutivos hiperelástico, 

de plasticidade e de viscosidade apropriados para grandes deformações, abordados mais adiante 

no texto, e no fato de se proporcionar muitas aplicações que, apesar de tridimensionais, são 

facilmente geradas a partir da extrusão de discretizações bidimensionais. 

Pelo fato de ser um elemento tridimensional, admite-se um sistema de coordenadas 

ortogonal que origina o espaço adimensional (𝜉1,𝜉2,𝜉3) também tridimensional, sendo que o 

seu domínio em 𝜉1 e 𝜉2 é definido no intervalo [0, 1] e em 𝜉3 no intervalo [-1, 1]. 

Uma alternativa simples para a geração do elemento prismático é através da extrusão a 

partir da base de elemento triangular na direção da sua espessura. A vantagem desse método de 

criação de elemento está na possibilidade de apresentar graus distintos de aproximação da 

direção extrudada em relação à da base triangular. As funções de forma do elemento prismático 

com grau de aproximação qualquer ao longo da espessura (𝜙𝑘) são definidas a partir do produto 

entre as funções de forma da base (𝜑𝑖) e as funções de forma da espessura (𝜓𝑗): 

 𝜙𝑘(𝜉1, 𝜉2, 𝜉3) = 𝜑𝑖(𝜉1, 𝜉2)𝜓𝑗(𝜉3) (85) 

sendo que 𝑘 = 𝑛(𝑖 − 1) + 𝑗, em que 𝑛 refere-se ao número de nós por elemento de base (no 

caso do elemento triangular de aproximação cúbica, 10 nós). 
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Figura 3.1 – Esquema de composição das funções de forma do elemento finito prismático de base 

triangular com aproximação cúbica na base e linear na espessura 

 
Fonte: autor. 

 

Com as funções de forma determinadas, é possível proceder às aproximações das 

variáveis de interesse para o elemento em função dos valores nodais das suas respectivas 

variáveis. Os mapeamentos das configurações inicial e final do elemento são expressos 

conforme mostrados a seguir: 

 𝑥𝑖(𝜉) = 𝜙𝑙(𝜉)𝑋𝑖
𝑙 (86) 

 𝑦𝑖(𝜉) = 𝜙𝑙(𝜉)𝑌𝑖
𝑙 (87) 

sendo 𝑋𝑖
𝑙 as posições nodais iniciais e 𝑌𝑖

𝑙 as posições nodais atuais (o índice 𝑙 refere-se ao nó 

do elemento, enquanto o índice 𝑖, à direção). 

O mapeamento da configuração inicial é definido como uma função que associa o 

espaço adimensional às coordenadas iniciais do elemento. Analogamente, o mapeamento da 

configuração atual corresponde à função que associa o espaço adimensional às coordenadas 

atuais do elemento. Na Figura 3.2, apresenta-se esquematicamente os mapeamentos da 

configuração inicial (denotado por 𝑓0) e da configuração atual (denotado por 𝑓1) do elemento 

prismático de base triangular. 
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Figura 3.2 – Mapeamento do elemento prismático de base triangular 

 
Fonte: Carrazedo e Coda (2017). 

 

Observando a Figura 3.2, verifica-se que a função mudança de configuração 𝑓 pode ser 

escrita como composição das funções dos mapeamentos inicial e final: 

 𝑓 = 𝑓1 ∘ (𝑓0)
−1

 (88) 

A partir dos mapeamentos, determina-se os gradientes dos mapeamentos das 

configurações inicial (𝐴𝑖𝑗
0 ) e final (𝐴𝑖𝑗

1 ), respectivamente, conforme as expressões abaixo: 

 
𝐴𝑖𝑗
0 =

𝜕𝑓𝑖
0

𝜕𝜉𝑗
=
𝜕𝜙𝑙
𝜕𝜉𝑗

𝑋𝑖
𝑙 (89) 

 
𝐴𝑖𝑗
1 =

𝜕𝑓𝑖
1

𝜕𝜉𝑗
=
𝜕𝜙𝑙
𝜕𝜉𝑗

𝑌𝑖
𝑙 (90) 

Considerando que a função mudança de configuração é determinada a partir da 

composição de funções dos mapeamentos inicial e final, conforme a Equação (88), o gradiente 

da função mudança de configuração pode ser definido como: 

 𝑨 = 𝑨1 ⋅ (𝑨0)−1 (91) 

Tratando-se do gradiente do mapeamento da configuração inicial, é importante 

comentar sobre o seu determinante (𝐽0), o qual é necessário para realizar a integração numérica 

utilizando a descrição Lagrangeana, assunto abordado mais adiante no presente trabalho: 

 𝐽0 = 𝑑𝑒𝑡(𝑨0) (92) 
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3.2 Formulação estática elástica 

 

Na análise estática, a energia mecânica total do sistema é dada apenas pela soma das 

parcelas do potencial das forças externas (ℙ) e da energia de deformação (𝕌), sendo nula a 

parcela referente à energia cinética: 

 𝛱 = ℙ + 𝕌 (93) 

Pelo princípio da estacionariedade da energia mecânica, o equilíbrio da estrutura é 

obtido quando a variação da energia mecânica do sistema torna-se nula. Desenvolvendo as 

expressões matemáticas em relação às posições nodais atuais (𝑌), as quais são as incógnitas do 

problema, obtém-se: 

 
𝛿𝛱 =

𝜕𝛱

𝜕𝑌𝑖
𝛿𝑌𝑖 = 𝛿𝕌 + 𝛿ℙ = 0 (94) 

A forma expandida da Equação (94) é dada na versão Lagrangeana pela seguinte 

equação: 

 
𝛿𝛱 = −𝐹𝑖

𝑙δ𝑌𝑖
𝑙 −∫ 𝑏𝑖

0δ𝑦𝑖𝑑𝑉0
𝑉0

−∫ 𝑝𝑖
0𝛿𝑦𝑖𝑑𝐴0

𝐴0

+∫ 𝑆𝑘𝑗𝛿𝔼𝑘𝑗𝑑𝑉0
𝑉0

= 0 (95) 

sendo que o termo 𝐹𝑖
𝑙δ𝑌𝑖

𝑙 refere-se ao potencial das forças externas concentradas (𝐹𝑖
𝑙). Ressalta-

se que a Equação (80) representa também representa a forma expandida, entretanto inclui 

também a parcela da variação da energia cinética, ausente na formulação estática. 

Escrevendo a Equação (95) por meio das aproximações pelas funções de forma e 

considerando a arbitrariedade das variações das posições nodais atuais (δ𝑌𝑖
𝑙), a expressão que 

representa o conjunto de equações não-lineares resulta em: 

 
−𝐹𝑖

𝑙 −∫ 𝜙𝑚(𝜉)𝜙𝑙(𝜉) 𝑑𝑉0
𝑒𝑙𝐵𝑖

𝑚

𝑉0
𝑒𝑙

−∫ 𝜑𝑚(𝜉)𝜑𝑙(𝜉) 𝑑𝐴0
𝑒𝑙𝑄𝑖

𝑚

𝐴0
𝑒𝑙

+∫ 𝑆𝑘𝑗
𝜕𝔼𝑘𝑗

𝜕𝑌𝑖
𝑙 𝑑𝑉0

𝑒𝑙

𝑉0
𝑒𝑙

= 0𝑖
𝑙  

(96) 

na qual 𝐵𝑖
𝑚 e 𝑄𝑖

𝑚 são referentes, respectivamente, às forças nodais de volume e às forças nodais 

de superfície, aplicadas na configuração inicial. 

Sabendo-se que a Equação (96) foi obtida a partir da primeira derivada da expressão da 

energia mecânica em relação às posições atuais, para recuperar a expressão da energia mecânica 

total do sistema basta determinar a sua versão integral, a qual é escrita como: 
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𝛱 = ℙ + 𝕌 = −𝐹𝑗

𝜂
𝑌𝑗
𝜂
− 𝐵𝑗

𝛼0∫ 𝜙𝛼𝜙𝜂 𝑑𝑉0
𝑒𝑙𝑌𝑗

𝜂

𝑉0
𝑒𝑙

− 𝑄𝑗
𝛼0∫ 𝜑𝛼𝜑𝜂 𝑑𝐴0

𝑒𝑙𝑌𝑗
𝜂

𝐴0
𝑒𝑙

+∫ 𝛹(𝑌𝑘
𝑚) 𝑑𝑉0

𝑒𝑙

𝑉0
𝑒𝑙

 

(97) 

sendo 𝛹 a energia específica de deformação. 

Observando a Equação (96), nota-se que é possível agrupar os termos correspondentes 

à força interna (𝐹𝑖
𝑙)
𝑖𝑛𝑡

 e à força externa (𝐹𝑖
𝑙)
𝑒𝑥𝑡

 para um elemento finito: 

 𝜕𝕌

𝜕𝑌𝑖
𝑙 = (𝐹𝑖

𝑙)
𝑖𝑛𝑡
= ∫

𝜕𝛹(𝑌𝑘
𝑚)

𝜕𝑌𝑖
𝑙 𝑑𝑉0

𝑒𝑙

𝑉0
𝑒𝑙

= ∫
𝜕𝛹(𝑌𝑘

𝑚)

𝜕𝔼𝑘𝑚

𝜕𝔼𝑘𝑚

𝜕𝑌𝑖
𝑙 𝑑𝑉0

𝑒𝑙

𝑉0
𝑒𝑙

= ∫ 𝑆𝑘𝑚
𝜕𝔼𝑘𝑚

𝜕𝑌𝑖
𝑙 𝑑𝑉0

𝑒𝑙

𝑉0
𝑒𝑙

 

(98) 

 𝜕ℙ

𝜕𝑌𝑖
𝑙 = −(𝐹𝑖

𝑙)
𝑒𝑥𝑡

= −𝐹𝑖
𝑙 −∫ 𝜙𝑙(𝜉)𝜙𝛼(𝜉)𝑑𝑉0

𝑒𝑙𝐵𝑖
𝛼0

𝑉0
𝑒𝑙

−∫ 𝜑𝑙(𝜉)𝜑𝛼(𝜉)𝑑𝐴0
𝑒𝑙𝑄𝑖

𝛼0

𝐴0
𝑒𝑙

 

(99) 

sendo que foi utilizado o conceito de conjugado energético na última passagem da Equação 

(98). 

Observa-se que a Equação (99) é composta por três parcelas, relativas às forças 

concentradas, forças de volume e forças de superfície, respectivamente. 

Portanto, a Equação (96), na sua forma resumida, é escrita como: 

 (𝐹𝑖
𝑙)
𝑖𝑛𝑡
− (𝐹𝑖

𝑙)
𝑒𝑥𝑡
= 0𝑖

𝑙  (100) 

A fim de facilitar a implementação computacional, optou-se pela integração numérica 

para a resolução de todas as integrais envolvidas através da quadratura de Hammer (Hammer; 

Marlowe; Stroud, 1956), de Gauss–Legendre ou por meio de uma combinação de ambas. 

Quanto à integração na base triangular, foram implementadas duas opções de quantidade uso 

de pontos de Hammer no programa, de 7 e de 12. A opção de 7 pontos de Hammer fornece 

menor precisão numérica (porém ainda satisfatória) e menor quantidade de dados a serem 

processados (ou seja, menor tempo de processamento), enquanto a opção de 12 pontos, 

proporciona maior precisão numérica e maior quantidade de dados a serem processados (maior 

tempo de processamento). Tratando-se da integração na espessura do elemento prismático, 

foram admitidas opções de 2 ou 4 pontos de Gauss, respectivamente, para o caso de 

aproximação linear ou cúbica. 
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Considerando que o domínio inicial do corpo é mapeado a partir do espaço adimensional, 

uma integral genérica de uma função qualquer 𝔉 sobre o seu volume inicial é dada por: 

 
∫ 𝔉(𝑥⃗)𝑑𝑉0
𝑉0

= ∫ ∫ ∫ 𝔉(𝑥⃗(𝜉1, 𝜉2, 𝜉3)) 𝐽0(𝜉1, 𝜉2, 𝜉3)𝑑𝜉1𝑑𝜉2𝑑𝜉3
𝜉1𝜉2𝜉3

 (101) 

A integral presente na expressão acima, caso seja resolvida numericamente, é escrita 

para elementos finitos prismáticos como: 

 

∫ 𝔉(𝑥⃗)𝑑𝑉0
𝑉0

= ∑ ∑ 𝔉(𝑥⃗ (𝜉𝑖(𝑖ℎ, 𝑖𝑔))) 𝐽0 (𝜉(𝑖)(𝑖ℎ, 𝑖𝑔))𝑤ℎ(𝑖ℎ)𝑤𝑔(𝑖𝑔)

𝑛ℎ

𝑖ℎ=1

𝑛𝑔

𝑖𝑔=1

 (102) 

sendo que 𝑤ℎ  e 𝑤𝑔  referem-se, respectivamente, ao peso de integração da quadratura de 

Hammer e ao peso de integração da quadratura de Gauss, 𝑖ℎ corresponde ao índice do ponto de 

Hammer, 𝑖𝑔, ao índice do ponto de Gauss, 𝑛ℎ, ao número de pontos de Hammer e 𝑛𝑔, ao 

número de pontos de Gauss. 

Dessa forma, é possível proceder ao cálculo da parcela referente às forças internas para 

um elemento finito, definida conforme a Equação (98), através da integração numérica: 

 

(𝐹𝑖
𝑙)
𝑒𝑙

𝑖𝑛𝑡
= ∫ 𝑓𝑖

𝑙𝑑𝑉0
𝑒𝑙

𝑉0
𝑒𝑙

= ∑ ∑ 𝑓𝑖
𝑙(𝜉(𝑖ℎ, 𝑖𝑔)) 𝐽0 (𝜉(𝑖)(𝑖ℎ, 𝑖𝑔))𝑤ℎ(𝑖ℎ)𝑤𝑔(𝑖𝑔)

𝑛ℎ

𝑖ℎ=1

𝑛𝑔

𝑖𝑔=1

 (103) 

sendo 𝑓𝑖
𝑙  a contribuição de um ponto de integração para as forças internas, expressa como: 

 
𝑓𝑖
𝑙 =

𝜕𝛹

𝜕𝑌𝑖
𝑙 = 𝑆𝑘𝑚

𝜕𝔼𝑘𝑚

𝜕𝑌𝑖
𝑙  (104) 

Quanto à Equação (99), referente à parcela das forças externas, aplica-se a integração 

numérica na segunda parcela, inerente às forças de volume, para obter as forças nodais 

equivalentes das forças de volume: 

 
(𝐹𝑖

𝑙)
𝑣𝑜𝑙
= ∫ 𝜙𝑙𝜙𝑎𝑑𝑉0𝐵𝑖

𝑎0

𝑉0
𝑒𝑙

= (∑ ∑ 𝜙𝑙(𝜉(𝑖ℎ, 𝑖𝑔))𝜙𝑎 (𝜉(𝑖)(𝑖ℎ, 𝑖𝑔)) 𝐽0𝑤ℎ(𝑖ℎ)𝑤𝑔(𝑖𝑔)

𝑛ℎ

𝑖ℎ=1

𝑛𝑔

𝑖𝑔=1

)𝐵𝑖
𝑎0 

(105) 

A fim de proceder à integração numérica das forças distribuídas de superfície, há três 

alternativas para adoção de mapeamentos auxiliares para o elemento prismático de base 

triangular adotado no trabalho (apresentadas na Figura 3.3): 

I) mapeamentos triangulares com aproximação cúbica; 

II) mapeamentos retangulares com aproximação cúbica; 
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III) mapeamentos retangulares com aproximação linear na espessura e cúbica na direção 

paralela às arestas do elemento prismático que compõem os lados da base triangular. 

 

Figura 3.3 – Mapeamentos para integração no domínio bidimensional 

 
Fonte: autor. 

 

Tratando-se do caso I, integra-se numericamente através da quadratura de Hammer por 

corresponder à aplicação sobre mapeamentos triangulares: 

 

(𝐹𝑖
𝑙)
á𝑟𝑒𝑎

= ∫ 𝜑𝑙𝜑𝑎𝑑𝐴0𝑄𝑖
𝑎0

𝐴0
𝑒𝑙

= (∑ 𝜑𝑙(𝑖ℎ)𝜑𝑎(𝑖ℎ)𝐽0𝑤ℎ(𝑖ℎ)

𝑛ℎ

𝑖ℎ=1

)𝑄𝑖
𝑎0 (106) 

Quanto aos casos II e III, referentes aos mapeamentos retangulares, a integração 

numérica é realizada através da quadratura de Gauss: 

 
(𝐹𝑖

𝑙)
á𝑟𝑒𝑎

= ∫ 𝜑𝑙𝜑𝑎𝑑𝐴0𝑄𝑖
𝑎0

𝐴0
𝑒𝑙

= ( ∑ ∑ 𝜑𝑙(𝑖𝑔1, 𝑖𝑔2)𝜑𝑎(𝑖𝑔1, 𝑖𝑔2)𝐽0𝑤𝑖𝑔(𝑖𝑔1)𝑤𝑖𝑔(𝑖𝑔2)

𝑛𝑔2

𝑖𝑔2=1

𝑛𝑔1

𝑖𝑔1=1

)𝑄𝑖
𝑎0 

(107) 

Para a resolução do sistema de equações não-lineares, mostrado na Equação (96), foi 

admitido o método incremental-iterativo de Newton-Raphson. O método exige que 

primeiramente seja definido o vetor resíduo mecânico (𝑔𝑗), dado pela expressão abaixo: 

 𝑔𝑗 = 𝐹𝑗
𝑖𝑛𝑡 − 𝐹𝑗

𝑒𝑥𝑡 = 0𝑗 (108) 

O vetor resíduo mecânico apresenta valor nulo caso as posições nodais atuais sejam 

coincidentes com as suas posições de equilíbrio e valor não nulo caso contrário, possuindo, 

portanto, um papel importante para validar a convergência dos resultados obtidos. Apesar das 

posições nodais atuais serem incógnitas do problema, são conhecidas na forma de tentativa ao 
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longo de todo o processo de análise, sendo equivalentes às posições nodais iniciais no primeiro 

passo, possibilitando o cálculo do vetor resíduo mecânico. 

Por meio da expansão em série de Taylor do vetor resíduo mecânico na vizinhança da 

posição tentativa e truncando a expressão em 1ª ordem, determina-se a expressão para o cálculo 

da correção do vetor posição atual (𝛥𝑌𝑘): 

 𝛥𝑌𝑘 = −(𝐻𝑘𝑗)
−1
𝑔𝑗(𝑌⃗⃗

0) (109) 

Calculada a correção da posição atual, é dado o prosseguimento à atualização da posição 

atual tentativa: 

 𝑌𝑘
0 ⟵ 𝑌𝑘

0 + 𝛥𝑌𝑘 (110) 

O procedimento apresentado é iterativo, repetido até a convergência dos resultados de 

análise, obtida pelo cumprimento do seguinte critério de parada adotado:  

 ‖Δ𝑌⃗⃗‖

‖𝑋⃗‖
≤ 𝑡𝑜𝑙 (111) 

ou seja, a convergência da posição atual à posição de equilíbrio é atingida no instante em que o 

valor da sua correção seja suficientemente pequeno, inferior a uma determinada tolerância 

adotada, denotada por 𝑡𝑜𝑙 na Equação (111). 

Após a finalização de um passo de análise, inicia-se o próximo pelo incremento no nível 

de carga e/ou posição prescrita, com pretensão de se obter a trajetória de equilíbrio da estrutura. 

Observa-se, através da Equação (109), que é preciso determinar a matriz hessiana (𝐻𝑘𝑗) 

para o cálculo da correção da posição. Para forças conservativas, a matriz hessiana é obtida a 

partir da segunda derivada da energia de deformação: 

 
𝐻𝑘𝑗 =

𝜕2𝕌

𝜕𝑌𝑘𝜕𝑌𝑗
 (112) 

sendo que 𝐻𝑘𝑗 é simétrica devido ao teorema de Schwarz (comutatividade das derivadas). 

Para um elemento finito, a matriz hessiana (local) pode ser determinada numericamente 

conforme a expressão abaixo: 

 
𝐻𝛼𝛽𝛾𝑧
𝑒𝑙 = ∫ ℎ𝛼𝛽𝛾𝑧 𝑑𝑉0

𝑉0
𝑒𝑙

= ∑ ∑ ℎ𝛼𝛽𝛾𝑧(𝜉(𝑖ℎ, 𝑖𝑔))𝐽0(𝜉(𝑖ℎ, 𝑖𝑔))𝑤ℎ(𝑖ℎ)𝑤𝑔(𝑖𝑔)

𝑛ℎ

𝑖ℎ=1

𝑛𝑔

𝑖𝑔=1

 

(113) 

sendo que foi utilizada a notação local nó-direção de índices (os índices 𝛽 e 𝑧 são referentes 

aos nós, enquanto os índices 𝛼  e 𝛾  correspondem às direções do espaço), a qual pode ser 

relacionada à notação global da Equação (112) (índices globais 𝑘  e 𝑗 ) pelas relações 𝑘 =
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3(𝛽 − 1) + 𝛼 e 𝑘 = 3(𝑧 − 1) + 𝛾, considerando espaço tridimensional. ℎ𝛼𝛽𝛾𝑧 corresponde à 

contribuição da matriz hessiana, dada por: 

 
ℎ𝛼𝛽𝛾𝑧 =

𝜕𝔼

𝜕𝑌𝛾𝑧
: ℭ:

𝜕𝔼

𝜕𝑌𝛼
𝛽
+ 𝑺:

𝜕2𝔼

𝜕𝑌𝛾𝑧𝜕𝑌𝛼
𝛽

 (114) 

A fim de possibilitar a resolução do sistema de equações lineares (ou a inversão da 

matriz hessiana), expresso pela Equação (109), é necessário aplicar as condições de contorno 

em posições/deslocamentos. Visto que um corpo tridimensional apresenta 6 movimentos de 

corpo rígido, é necessária a imposição de ao menos 6 restrições independentes em 

posições/deslocamentos para a eliminação da singularidade da matriz hessiana. Em termos de 

implementação computacional, tal procedimento é efetuado através da técnica de zeros e um, a 

qual consiste em zerar a linha e a coluna da matriz hessiana referentes ao grau de liberdade 

restrito e impor valor unitário na diagonal principal, além de zerar a componente do vetor 

resíduo mecânico inerente ao mesmo grau de liberdade restrito. 

Com a devida aplicação das condições contorno, as componentes do vetor correção da 

posição, dado pela Equação (109), correspondentes aos graus de liberdade restritos ou com 

posições prescritas resultam em valores nulos. Por fim, é apresentado o pseudocódigo referente 

ao resumo das operações realizadas na análise mecânica estática implementado no programa, 

conforme a Figura 3.4.  
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Figura 3.4 – Pseudocódigo da análise mecânica estática 

1 Leitura dos dados de entrada 

2 Primeira tentativa de posição como posição inicial (𝑌⃗⃗ = 𝑋⃗) 

3 Cálculo da matriz pseudo-inversa → Equações (134) e (135) 

4 Para i = 1 até nº de passos (etapa incremental) 

5  Incremento de carregamento externo (𝐹⃗ ← 𝐹⃗ + 𝑑𝐹⃗) 

6  Incremento de posição prescrita (𝑌⃗⃗ ← 𝑌⃗⃗ + 𝑑𝑌⃗⃗) 

7  Enquanto ‖Δ𝑌⃗⃗‖ ‖𝑋⃗‖⁄ ≥ 𝑡𝑜𝑙 (etapa iterativa) 

8   Cálculo das forças internas (𝐹⃗𝑖𝑛𝑡) → Equação (98) 

9   Cálculo da matriz Hessiana (𝑯) → Equações (113) e (114) 

10   Cálculo do vetor resíduo mecânico (𝑔⃗) → Equação (108) 

11   Imposição das condições de contorno em 𝑯 e 𝑔⃗ 

12   Cálculo da correção da posição (Δ𝑌⃗⃗) → Equação (109) 

13   Atualização da posição (𝑌⃗⃗ ← 𝑌⃗⃗ + ∆𝑌⃗⃗) → Equação (110) 

14   Cálculo da norma ‖Δ𝑌⃗⃗‖ para a verificação de convergência 

15  Fim do loop 

16  Cálculo das tensões de Cauchy → Equação (132) 

17  Exportação de dados – pós-processamento 

18 Fim do loop 

Fonte: autor. 

 

3.3 Formulação dinâmica elástica 

 

No caso de análise dinâmica, considera-se, além do potencial das forças externas e da 

energia de deformação, a parcela referente à energia cinética (𝕂), sendo a expressão da energia 

mecânica total do sistema dada por: 

 𝛱 = ℙ + 𝕌+𝕂 (115) 

Comenta-se que a dissipação de energia só pode ser escrita de forma diferencial e será 

acrescida diretamente na equação de equilíbrio. 

Analogamente às formulações estáticas elásticas, desenvolve-se as formulações 

dinâmicas elásticas em relação às posições nodais atuais pela aplicação do princípio da 

estacionariedade da energia mecânica, obtendo-se: 

 𝜕𝛱

𝜕𝑌𝑖
𝛼 =

𝜕ℙ

𝜕𝑌𝑖
𝛼 +

𝜕𝕌

𝜕𝑌𝑖
𝛼 +

𝜕𝕂

𝜕𝑌𝑖
𝛼 = 0𝑖

𝛼  (116) 

A análise dinâmica se diferencia em relação à análise estática somente pelo acréscimo 

do termo da derivada da energia cinética em relação às posições atuais, o qual corresponde ao 

vetor de forças inerciais, calculado a partir da seguinte expressão: 
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𝐹⃗𝑖𝑛𝑒𝑟 =

𝜕𝕂

𝜕𝑌⃗⃗
= 𝑴 ⋅ 𝑌⃗⃗̈ (117) 

sendo 𝑌⃗⃗̈ o vetor de aceleração e 𝑴 a matriz de massa (constante), com o seu cálculo efetuado 

para cada elemento finito conforme a expressão abaixo: 

 
𝑴𝑒𝑙 =

𝜕𝕂

𝜕𝑌⃗⃗
= ∫ 𝜌0𝜙⃗⃗ ⊗ 𝜙⃗⃗ 𝑑𝑉0

𝑉0
𝑒𝑙

 (118) 

Ressalta-se que os procedimentos de cálculo da matriz de massa e das forças nodais 

equivalentes das forças de volume são semelhantes. 

Portanto, as equações não-lineares de movimento do problema dinâmico são escritas 

como: 

 𝐹⃗𝑖𝑛𝑡(𝑌⃗⃗) − 𝐹⃗𝑒𝑥𝑡(𝑡) + 𝐹⃗𝑖𝑛𝑒𝑟 = 0⃗⃗ (119) 

A resolução numérica das equações não-lineares de movimento é efetuada através da 

combinação do método de Newmark-β (Newmark, 1959), o qual consiste em um integrador 

temporal, com o método iterativo de Newton-Raphson. Na análise dinâmica, o vetor resíduo 

mecânico é definido em função da equação de movimento e de um termo adicionado que 

corresponde ao amortecimento: 

 𝑔⃗ = 𝐹⃗𝑖𝑛𝑡(𝑌⃗⃗) + 𝑴 ⋅ 𝑌⃗⃗̈ + 𝑪 ⋅ 𝑌⃗⃗̇ − 𝐹⃗𝑒𝑥𝑡(𝑡) = 0⃗⃗ (120) 

em que 𝑪 é a matriz de amortecimento e 𝑌⃗⃗̇ o vetor de velocidade. 

O cálculo da matriz de amortecimento pode ser realizado a partir de uma combinação 

linear da matriz de massa 𝑴  e da matriz hessiana da estrutura na configuração inicial 

indeslocada 𝑲 (conhecida em análises lineares como matriz de rigidez) (Chopra, 2014): 

 𝑪 = 𝜆𝑚𝑴+ 𝜆𝑘𝑲 (121) 

na qual 𝜆𝑚 e 𝜆𝑘 são constantes. 

Por se tratar de um método numérico, surge a necessidade de discretizar o tempo, o qual 

é uma variável contínua. Portanto, o tempo do passo atual 𝑡𝑠+1 é determinado por meio da soma 

do tempo do passo anterior 𝑡𝑠 com o passo de tempo Δ𝑡: 

 𝑡𝑠+1 = 𝑡𝑠 + Δ𝑡 (122) 

Para a resolução do problema dinâmico, nota-se que é preciso conhecer numericamente 

os vetores de velocidade (𝑌⃗⃗̇) e aceleração (𝑌⃗⃗̈), como pode ser verificado na Equação (120). 

Nesse contexto, adota-se o algoritmo de Newmark-β, partindo das suas aproximações escritas 

como: 
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𝑌⃗⃗𝑆+1 = 𝑌⃗⃗𝑆 + 𝑌⃗⃗̇𝑆Δ𝑡 + [(

1

2
− 𝛽) 𝑌⃗⃗̈𝑆 + 𝛽𝑌⃗⃗̈𝑆+1] Δ𝑡

2 (123) 

 𝑌⃗⃗̇𝑆+1 = 𝑌⃗⃗̇𝑆 + (1 − 𝛾)Δ𝑡𝑌⃗⃗̈𝑆 + 𝛾Δ𝑡𝑌⃗⃗̈𝑆+1 (124) 

sendo 𝛽 e 𝛾 referentes aos parâmetros livres de Newmark. Os índices 𝑠 + 1 e 𝑠 denotam as 

variáveis referentes ao passo de tempo anterior e atual, respectivamente.  

O algoritmo de Newmark-β consiste em um integrador temporal de passo único 

empregado frequentemente na análise dinâmica de estruturas devido à sua simplicidade, 

eficiência e estabilidade numérica. A utilização do algoritmo é possível apenas mediante a 

adoção de valores para os parâmetros livres 𝛽 e 𝛾, sendo comumente adotados 𝛽 = 1/4 e 𝛾 =

1/2 em problemas dinâmicos comuns que não envolvem impacto (Greco, 2004). Para maiores 

detalhes da escolha dos valores para os parâmetros 𝛽 e 𝛾 e a sua influência na estabilidade do 

algoritmo de Newmark-β, é indicada a leitura da tese de Greco (2004). 

Reorganizando as Equações (123) e (124), pode-se escrever a aceleração e a velocidade 

atuais, respectivamente, como: 

 
𝑌⃗⃗̈𝑆+1 =

𝑌⃗⃗𝑆+1
𝛽Δt2

− 𝑄⃗⃗𝑆 (125) 

 𝑌⃗⃗̇𝑆+1 =
𝛾

𝛽Δt
𝑌⃗⃗𝑆+1 + 𝑅⃗⃗𝑆 − 𝛾Δt𝑄⃗⃗𝑆 (126) 

sendo os vetores auxiliares 𝑄⃗⃗𝑆 e 𝑅⃗⃗𝑆 dependentes somente das variáveis do passo anterior: 

 

𝑄⃗⃗𝑆 =
𝑌⃗⃗𝑆
𝛽Δ𝑡2

+
𝑌⃗⃗̇𝑆
𝛽Δ𝑡

+ (
1

2𝛽
− 1) 𝑌⃗⃗̈𝑆 (127) 

 𝑅⃗⃗𝑆 = 𝑌⃗⃗̇𝑆 + Δt(1 − 𝛾)𝑌⃗⃗̈𝑆 (128) 

Substituindo-se as Equações (125) e (126) na Equação (120), o vetor resíduo mecânico 

é reescrito como: 

 
𝑔⃗(𝑌⃗⃗𝑆+1) =

𝜕𝕌

𝜕𝑌⃗⃗
|
𝑆+1

+
𝑴

𝛽Δ𝑡2
⋅ 𝑌⃗⃗𝑆+1 −𝑴 ⋅ 𝑄⃗⃗𝑆 +

𝛾𝑪

𝛽Δ𝑡
⋅ 𝑌⃗⃗𝑆+1 + 𝑪 ⋅ 𝑅⃗⃗𝑆 − 𝛾Δ𝑡𝑪 ⋅ 𝑄⃗⃗𝑆

− 𝐹⃗𝑆+1
𝑒𝑥𝑡(𝑡) = 0⃗⃗ 

(129) 

Analogamente à formulação de análise estática, realizando uma expansão em série de 

Taylor do vetor resíduo mecânico na vizinhança da posição tentativa e truncando a expressão 

no termo de primeira ordem, obtém-se a expressão para o cálculo da correção da posição, a qual 

é a mesma expressão apresentada para a formulação estática, dada pela Equação (109). 

Entretanto, a matriz hessiana do problema dinâmico é composta pelas parcelas da matriz 
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hessiana estática, do termo dependente da matriz de massa e do termo dependente da matriz de 

amortecimento: 

 
𝑯 = 𝑯𝑒𝑠𝑡𝑎𝑡 +

𝑴

𝛽Δt2
+
𝛾𝑪

𝛽Δt
 (130) 

Especificamente para o primeiro passo de tempo, o cálculo da aceleração é efetuado a 

partir da expressão abaixo: 

 
𝑌⃗⃗̈0 = 𝑴

−1 ⋅ (𝐹⃗0
𝑒𝑥𝑡 −

𝜕𝕌

𝜕𝑌⃗⃗
|
0

− 𝑪 ⋅ 𝑌⃗⃗̇0) (131) 

É importante salientar que há a necessidade da imposição das condições de contorno na 

matriz hessiana completa, dada pela Equação (130), e no vetor de força resultante (referente 

aos termos entre parênteses da expressão anterior) através da técnica de zeros e um, de forma 

semelhante ao procedimento apresentado para a resolução do sistema de equações lineares na 

análise estática para o cálculo da correção da posição. 

Ao final de cada iteração do passo de tempo, os valores da aceleração e da velocidade 

são atualizados, respectivamente, através das Equações (125) e (126). Com exceção dos 

procedimentos específicos do problema dinâmico apresentados neste item, os demais 

procedimentos do processo iterativo são realizados do mesmo modo da análise estática. 

Finalmente, apresenta-se, na Figura 3.5, o pseudocódigo referente ao resumo das operações 

realizadas na análise mecânica dinâmica implementado no programa.  
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Figura 3.5 – Pseudocódigo da análise mecânica dinâmica 

1 Leitura dos dados de entrada 

2 Primeira tentativa de posição como posição inicial (𝑌⃗⃗ = 𝑋⃗) 

3 Cálculo da matriz pseudo-inversa → Equações (134) e (135) 

4 Cálculo da matriz de massa (𝑴) → Equação (118) (para cada elemento) 

5 Cálculo da matriz de amortecimento (𝑪) → Equação (121) 

6 Imposição das condições de contorno em 𝑴 e [𝐹⃗0
𝑒𝑥𝑡 −

𝜕𝕌

𝜕𝑌⃗⃗
|
0
− 𝑪𝑌̇⃗⃗0] → Equação (131) 

7 Cálculo da aceleração no primeiro passo de tempo (𝑌̈⃗⃗0) → Equação (131) 

8 Para i = 1 até nº de passos (etapa incremental) 

9  Soma do passo de tempo (𝑡 ← 𝑡 + ∆𝑡) 

10  Cálculo da força externa transiente (𝐹⃗𝑒𝑥𝑡(𝑡)) 

11  Cálculo do vetor auxiliar 𝑄⃗⃗𝑠 → Equação (127) 

12  Cálculo do vetor auxiliar 𝑅⃗⃗𝑠 → Equação (128) 

13  Enquanto ‖Δ𝑌⃗⃗‖ ‖𝑋⃗‖⁄ ≥ 𝑡𝑜𝑙 (etapa iterativa) 

14   Cálculo das forças internas (𝐹⃗𝑖𝑛𝑡) → Equação (98) 

15   
Cálculo da matriz Hessiana estática (𝑯𝑒𝑠𝑡á𝑡𝑖𝑐𝑎) → Equações (113) e 
(114) 

16   Adição da parcela dinâmica à 𝑯𝑒𝑠𝑡á𝑡𝑖𝑐𝑎 → Equação (130) 

17   Cálculo do vetor resíduo mecânico (𝑔⃗) → Equação (129) 

18   Imposição das condições de contorno em 𝑯 e 𝑔⃗ 

19   Cálculo da correção da posição (Δ𝑌⃗⃗) → Equação (109) 

20   Atualização da posição (𝑌⃗⃗ ← 𝑌⃗⃗ + ∆𝑌⃗⃗) → Equação (110) 

21   Cálculo da norma ‖Δ𝑌⃗⃗‖ para a verificação de convergência 

22   Atualização da velocidade (𝑌̇⃗⃗) → Equação (126) 

23   Atualização da aceleração (𝑌̈⃗⃗) → Equação (125) 

24  Fim do loop 

25  Cálculo das tensões de Cauchy → Equação (132) 

26  Exportação de dados – pós-processamento 

27 Fim do loop 

Fonte: autor. 

 

3.4 Tensões de Cauchy 

 

Devido à importância das tensões de Cauchy quanto ao seu significado físico (referidas 

como tensões reais pelo fato de proporcionar efetivamente o equilíbrio do corpo na 

configuração atual), optou-se pela implementação da sua rotina de cálculo no código 

desenvolvido. Conforme já explicitado na seção 2.4.3, o cálculo das tensões de Cauchy é 
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efetuado em função das tensões de Piola-Kirchhoff de segunda espécie, conforme a Equação 

(79), retomada e apresentada novamente a seguir: 

 
𝝈 =

1

𝐽
𝑨 ⋅ 𝑺 ⋅ 𝑨𝑡 (132) 

É relevante mencionar que as tensões de Cauchy são calculadas nos pontos de integração 

do elemento. No entanto, é comum que seja requisitada pelos pós-processadores a declaração 

dos valores das variáveis nos nós, surgindo a necessidade de calcular os valores nodais das 

tensões. Essa necessidade da determinação dos valores nodais é válida para quaisquer variáveis 

cujos valores são calculados nos pontos de integração. 

Os valores nodais das variáveis de interesse calculadas nos pontos de integração podem 

ser obtidos por meio da resolução de um sistema linear de equações. O vetor de valores nodais 

das variáveis (𝐴) pode ser determinado conforme a seguinte expressão:  

 𝐴 = 𝑳−1 ⋅ 𝑎⃗ (133) 

sendo 𝑳  a matriz das funções de forma e 𝑎⃗  o vetor dos valores das variáveis em questão 

calculadas nos pontos de integração. A matriz 𝑳 é dada por: 

 𝐿𝑖𝑙 = 𝜙𝑙(𝜉𝑖) (134) 

Tratando-se da quantidade de pontos de integração em relação ao número de nós do 

elemento finito, há três possibilidades: 

I) número de pontos de integração equivalente ao número de nós do elemento finito; 

II) número de pontos de integração maior que o número de nós do elemento finito; 

III) número de pontos de integração menor que o número de nós do elemento finito. 

 

Para o caso I, a matriz 𝑳 obtida é quadrada e, dessa forma, torna-se possível o cálculo 

direto da sua inversa. Já nos casos II e III, em que a matriz 𝑳 não é quadrada, emprega-se a 

técnica de mínimos quadrados (cuidados adicionais devem ser tomados em casos de presença 

de descontinuidades no material). Tratando especificamente do caso II, no qual o número de 

valores conhecidos nos pontos de integração é maior que o número de pontos nodais disponíveis, 

os valores nodais são determinados pela seguinte expressão: 

 𝐴 = (𝑳𝑡 ⋅ 𝑳)−1 ⋅ 𝑳𝑡 ⋅ 𝑎⃗ (135) 

sendo que o termo (𝑳𝑡 ⋅ 𝑳)−1 ⋅ 𝑳𝑡 é denominado matriz pseudo-inversa. 

Finalmente, no caso III, em que a quantidade de valores conhecidos nos pontos de 

integração é menor que a quantidade de nós, é preciso reduzir o grau de aproximação do 

elemento de forma a criar uma nova situação na qual o número de pontos de integração seja 
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equivalente ou superior ao número de nós do elemento. Deste modo, determina-se 

primeiramente os valores nodais por meio da técnica de mínimos quadrados para o elemento de 

aproximação inferior, seguido do cálculo dos valores nodais do elemento original através das 

funções de forma de grau inferior. 

Finalmente, com a pretensão de impor a continuidade das tensões no pós-processamento, 

determinam-se as tensões nodais médias para os nós que recebem contribuições de dois ou mais 

elementos. 
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4 MODELOS CONSTITUTIVOS HIPERELÁSTICOS 

 

Neste capítulo são apresentados brevemente os dois modelos constitutivos 

hiperelásticos empregados no presente trabalho:  

I) Saint-Venant-Kirchhoff; 

II) Rivlin-Saunders-Hartmann-Neff. 

 

A hiperelasticidade de um material é caracterizada pela existência de uma expressão 

explícita para a sua energia específica de deformação (trabalho realizado pela tensão por 

unidade de volume ao gerar deformação no contínuo), para o qual a tensão pode ser obtida 

através da primeira derivada da energia específica de deformação. É importante mencionar que, 

para garantir a criação de leis constitutivas consistentes, os potenciais geradores devem ser 

convexos, além de ser positiva para todas as deformações não nulas (Anand; Govindjee, 2020; 

Ogden, 1997). 

 

4.1 Conceituações preliminares 

 

A seguir, são apresentados alguns conceitos preliminares para embasar os 

desenvolvimentos posteriores acerca dos modelos constitutivos hiperelásticos. 

 

4.1.1 Invariantes dos tensores de tensão e de deformação 

 

Considera-se um tensor de ordem 2 genérico, denotado por 𝓐, referente ao estado de 

tensões ou de deformações de um determinado ponto do corpo, e sabe-se que há múltiplas 

representações desse estado, já que é variável em função dos eixos coordenados adotados como 

referência. Dentro do contexto mencionado, define-se os entes denominados invariantes (𝐼1, 𝐼2 

e 𝐼3), os quais são independentes dos eixos adotados e insensíveis às rotações: 

 

{

𝐼1 = 𝑇𝑟(𝓐)

𝐼2 =
1

2
[𝑇𝑟(𝓐)2 − 𝑇𝑟(𝓐2)]

𝐼3 = det(𝓐)

 (136) 
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4.1.2 Tensões hidrostáticas e desviadoras 

 

Denotando por 𝛔 o tensor de tensões de Cauchy e 𝐼1 como o seu primeiro invariante, 

representado pela primeira expressão da Equação (136), o tensor 𝛔  pode ser decomposto 

segundo as parcelas das tensões hidrostáticas e das tensões desviadoras, dadas respectivamente, 

conforme Hashiguchi (2020), por: 

 
𝛔ℎ =

𝐼1
3
𝑰 (137) 

 
𝝈𝑑𝑒𝑠𝑣 = 𝝈 − 𝛔ℎ = 𝝈 −

𝐼1
3
𝑰 (138) 

Observar que essas expressões são válidas na configuração atual (Euleriana) para 

tensões e que, no caso das deformações, apenas em regime de pequenas deformações. 

A parcela hidrostática do tensor de tensões possui uma relação direta com a mudança 

de volume, enquanto a parcela desviadora é inerente à distorção pura. Tendo em vista essas 

relações, a decomposição do tensor de tensões é conveniente para trabalhar com contextos onde 

é preciso operar, separadamente, com as parcelas volumétricas e isocóricas. 

 

4.1.3 Energia específica de deformação 

 

A expressão da energia de deformação (𝕌) é dada por: 

 
𝕌 = ∫ 𝛹 𝑑𝑉0

𝑉0

 (139) 

sendo 𝛹 a energia específica de deformação, a qual consiste na lei que estabelece uma relação 

entre tensão e deformação. 

Para que a Equação (139) seja equivalente à última parcela da Equação (80), as seguintes 

igualdades devem ser válidas: 

 
𝛿𝕌 = ∫ 𝛿𝛹 𝑑𝑉0

𝑉0

= ∫ 𝑺 ∶ 𝛿𝔼 𝑑𝑉0
𝑉0

=
1

2
∫ 𝑺 ∶ 𝛿𝑪 𝑑𝑉0
𝑉0

 (140) 

Devido à arbitrariedade do volume inicial: 

 
𝛿𝛹 = 𝑺 ∶ 𝛿𝔼 =

1

2
𝑺 ∶ 𝛿𝑪 (141) 

Dessa forma, tem-se que: 

 
𝑺 =

𝜕𝛹

𝜕𝔼
= 2

𝜕𝛹

𝜕𝑪
 (142) 
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Ao escrever a energia específica de deformação em função da deformação, que por sua 

vez, no Método dos Elementos Finitos, é definida apenas em função das posições, é possível 

determinar a parcela da energia de deformação da energia mecânica total integralmente em 

função da posição atual 𝑌. 

Tratando-se de leis constitutivas isotrópicas, é necessário que 𝛹  seja definido 

independentemente aos eixos coordenados. Visando garantir essa condição, é conveniente 

expressar as leis hiperelásticas em função dos invariantes da deformação de Green (𝔼) ou do 

tensor de alongamento à direita de Cauchy-Green (𝑪): 

 𝛹(𝑪) = 𝛹(𝔼) = 𝛹(𝐼1, 𝐼2, 𝐼3) (143) 

Para ser considerado como um modelo constitutivo completo, a lei constitutiva deve 

respeitar as condições de normalização e de crescimento, expressas respectivamente por: 

 𝛹(𝑪 = 𝑰) = 𝛹(𝔼 = 0) = 0 (144) 

 lim
𝐽⟶0+

𝛹 = lim
𝐽⟶+∞

𝛹 = +∞ (145) 

No caso de problemas com desenvolvimento de grandes deformações, a Equação (145), 

condição de crescimento, indica que é necessária a imposição da restrição 𝐽 > 0 , como 

apresentada anteriormente na Equação (30), por exemplo. Em casos de impossibilidade de 

cumprimento dessa condição, é preciso limitar os valores das deformações a nível moderado, 

por meio da implementação de critério de parada ou de avisos no código computacional, por 

exemplo. 

A condição de crescimento pode ser atendida pela existência de um termo da energia 

específica de deformação dependente do jacobiano. Nesse caso, a parcela da energia em questão 

é relacionada à tensão hidrostática do tensor de tensões, enquanto os demais termos da 

expressão da energia específica dadas em função dos invariantes são inerentes à parcela da 

tensão desviadora. 

 

4.2 Modelo constitutivo de Saint-Venant-Kirchhoff 

 

Considerado como o modelo constitutivo mais simples da hiperelasticidade definido em 

função da deformação de Green, a lei de Saint-Venant-Kirchhoff apresenta um equacionamento 

idêntico à da lei de Hooke generalizada, apenas com a substituição da deformação de 

engenharia pela deformação de Green. Tensorialmente, a sua equação é dada por: 

 
𝛹(𝔼) =

1

2
𝔼𝑘𝑙ℭ𝑘𝑙𝑖𝑗𝔼𝑖𝑗  (146) 
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sendo que ℭ refere-se ao tensor constitutivo elástico tangente. A expressão acima na sua forma 

expandida é escrita como: 

 
𝛹 =

𝐺

(1 − 2𝜈)
[(1 − 𝜈)(𝔼11

2 + 𝔼22
2 + 𝔼33

2 ) + 2𝜈(𝔼11𝔼22 + 𝔼11𝔼33 + 𝔼22𝔼33)

+ (1 − 2𝜈)(𝔼12
2 + 𝔼13

2 + 𝔼23
2 + 𝔼21

2 + 𝔼31
2 + 𝔼32

2 )] 

(147) 

sendo 𝐺 o módulo de elasticidade transversal e 𝜈 o coeficiente de Poisson. 

A tensão de Piola-Kirchhoff de segunda espécie corresponde ao conjugado energético 

da deformação de Green, expresso pela Equação (148). A partir desta expressão, determina-se 

cada uma das suas componentes, explicitadas na Equação (149): 

 
𝑆𝑖𝑗 =

𝜕𝛹(𝔼)

𝜕𝔼𝑖𝑗
 (148) 

 

{
 
 
 
 
 
 

 
 
 
 
 
 𝑆11 =

𝜕𝛹

𝜕𝔼11
=

2𝐺

(1 − 2𝜈)
[(1 − 𝜈)𝔼11 + 𝜈(𝔼22 + 𝔼33)]

𝑆22 =
𝜕𝛹

𝜕𝔼22
=

2𝐺

(1 − 2𝜈)
[(1 − 𝜈)𝔼22 + 𝜈(𝔼11 + 𝔼33)]

𝑆33 =
𝜕𝛹

𝜕𝔼33
=

2𝐺

(1 − 2𝜈)
[(1 − 𝜈)𝔼33 + 𝜈(𝔼11 + 𝔼22)]

𝑆12 = 𝑆21 =
𝜕𝛹

𝜕𝔼12
=
𝜕𝛹

𝜕𝔼21
= 2𝐺𝔼12 = 2𝐺𝔼21

𝑆13 = 𝑆31 =
𝜕𝛹

𝜕𝔼13
=
𝜕𝛹

𝜕𝔼31
= 2𝐺𝔼13 = 2𝐺𝔼31

𝑆23 = 𝑆32 =
𝜕𝛹

𝜕𝔼23
=
𝜕𝛹

𝜕𝔼32
= 2𝐺𝔼23 = 2𝐺𝔼32

 (149) 

Dessa forma, a  expressão da relação entre tensão e deformação no modelo de Saint-

Venant-Kirchhoff é dada conforme a Equação (150), onde se observa uma relação linear, obtida 

pela substituição da Equação (146) em (148): 

 𝑆𝑖𝑗 = ℭ𝑖𝑗𝑘𝑙𝔼𝑘𝑙 (150) 

É importante mencionar que a aplicação do modelo constitutivo de Saint-Venant-

Kirchhoff é restrita aos problemas de deformações pequenas e moderadas, pois não respeita a 

condição de crescimento, dada pela Equação (145). 

 

4.3 Modelo constitutivo de Rivlin-Saunders-Hartmann-Neff 

 

O modelo constitutivo hiperelástico de Rivlin-Saunders-Hartmann-Neff, adequado para 

a análise de problemas no regime de grandes deformações, foi implementado no código 

desenvolvido como uma alternativa ao modelo constitutivo de Saint-Venant-Kirchhoff, 



81 

 

superando suas limitações. O modelo em questão é obtido por meio da decomposição de Flory 

(Flory, 1961), apresentada na subseção seguinte, com as parcelas isocórica e volumétrica da 

energia específica de deformação dadas, respectivamente, pelos modelos constitutivos de 

Rivlin-Saunders e de Hartmann-Neff. 

 

4.3.1 Decomposição de Flory 

 

Proposta por Flory (1961), a decomposição de Flory consiste na divisão da energia 

específica de deformação em duas parcelas, uma associada e a outra dissociada à variação 

volumétrica, a partir da decomposição multiplicativa do gradiente da função mudança de 

configuração nas partes volumétrica (𝑨̂) e isocórica (𝑨̅): 

 𝑨 = 𝑨̂ ⋅ 𝑨̅ (151) 

sendo que 𝑨̂ e 𝑨̅ são dados por: 

 𝑨̂ = 𝐽1/3 𝑰 (152) 

 𝑨̅ = 𝐽−1/3 𝑨 (153) 

Desenvolvendo a expressão do tensor de alongamento à direita de Cauchy-Green a partir 

das Equações (151), (152) e (153), obtém-se: 

 𝑪 = 𝑨𝑡 ⋅ 𝑨 = 𝑨̅𝑡 ⋅ 𝑨̂𝑡 ⋅ 𝑨̂ ⋅ 𝑨̅ = 𝐽2/3 𝑨̅𝑡 ⋅ 𝑨̅ = 𝐽2/3 𝑪̅ (154) 

e, portanto: 

 𝑪̅ = 𝐽−2/3 𝑪 (155) 

A partir da definição de 𝑪̂ como: 

 𝑪̂ = 𝐽2/3 𝑰 (156) 

torna-se possível escrever a expressão da decomposição multiplicativa do tensor de 

alongamento à direita de Cauchy-Green: 

 𝑪 = 𝑪̂ ⋅ 𝑪̅ = 𝑪̅ ⋅ 𝑪̂ (157) 

Analisando as Equações (156) e (153), é possível verificar, respectivamente, que: 

 𝑑𝑒𝑡(𝑪̂) = 𝐽2 (158) 

 𝑑𝑒𝑡(𝑪̅) = 𝑑𝑒𝑡(𝑨̅𝑡 ⋅ 𝑨̅) = 𝑑𝑒𝑡(𝑨̅𝑡)𝑑𝑒𝑡(𝑨̅) = 𝑑𝑒𝑡(𝑨̅)2 = 1 (159) 

Portanto, verifica-se que: 

 𝑑𝑒𝑡(𝑪) = 𝑑𝑒𝑡(𝑪̂ ⋅ 𝑪̅) = 𝑑𝑒𝑡(𝑪̂)𝑑𝑒𝑡(𝑪̅) = 𝐽2 (160) 

Recordando o significado físico do jacobiano, conforme a Equação (29), é possível 

concluir, com base nas Equações (158) e (159), que 𝑪̂ e 𝑪̅ são referentes à parcela volumétrica 

e à parcela isocórica do tensor de alongamento à direita de Cauchy-Green. 
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Dessa forma, torna-se possível efetuar a decomposição aditiva da energia específica de 

deformação em parcelas volumétrica (𝛹𝑣𝑜𝑙) e isocórica (𝛹𝑖𝑠𝑜𝑐): 

 𝛹 = 𝛹𝑣𝑜𝑙(det(𝑪̂)) + 𝛹𝑖𝑠𝑜𝑐(𝑪̅) = 𝛹𝑣𝑜𝑙(𝐽) + 𝛹𝑖𝑠𝑜𝑐(𝑪̅) (161) 

Caso o material apresente isotropia, a parcela dependente de 𝑪̅ na expressão acima pode 

ser escrita em função de seus invariantes 𝐼1̅ e 𝐼2̅ separadamente, conforme apresentado a seguir: 

 𝛹 = 𝛹𝑣𝑜𝑙(𝐽) + 𝛹𝑖𝑠𝑜𝑐1(𝐼1̅) + 𝛹
𝑖𝑠𝑜𝑐2(𝐼2̅) (162) 

sendo 𝐼1̅ e 𝐼2̅ dados por: 

 𝐼1̅ = 𝑇𝑟(𝑪̅) (163) 

 𝐼2̅ = 𝑇𝑟(𝑪̅
−1) (164) 

Ressalta-se que a parcela do 3º invariante isocórico é ocultada da Equação (162) por 

assumir um valor constante, pelo fato de 𝐼3̅ = 𝑑𝑒𝑡(𝑪̅) = 1. 

Utilizando-se dos conceitos de conjugado energético e da decomposição aditiva do 

potencial de energia de deformação, determina-se a expressão da tensão elástica de Piola-

Kirchhoff de segunda espécie (𝑺𝑒𝑙𝑎𝑠𝑡): 

 
𝑺𝑒𝑙𝑎𝑠𝑡 = 𝑺𝑣𝑜𝑙 + 𝑺𝑖𝑠𝑜𝑐1 + 𝑺𝑖𝑠𝑜𝑐2 =

𝜕𝛹𝑣𝑜𝑙

𝜕𝔼
+
𝜕𝛹𝑖𝑠𝑜𝑐1

𝜕𝔼
+
𝜕𝛹𝑖𝑠𝑜𝑐2

𝜕𝔼
 (165) 

As parcelas volumétrica (𝑺𝑣𝑜𝑙) e isocóricas (𝑺𝑖𝑠𝑜𝑐1 e 𝑺𝑖𝑠𝑜𝑐2) das três parcelas dadas por: 

 
𝑺𝑣𝑜𝑙 =

𝜕𝛹𝑣𝑜𝑙

𝜕𝔼
=
𝜕𝛹𝑣𝑜𝑙

𝜕𝐽

𝜕𝐽

𝜕𝔼
 (166) 

 
𝑺𝑖𝑠𝑜𝑐1 =

𝜕𝛹𝑖𝑠𝑜𝑐1

𝜕𝔼
=
𝜕𝛹𝑖𝑠𝑜𝑐1

𝜕𝐼1̅

𝜕𝐼1̅
𝜕𝔼

 (167) 

 
𝑺𝑖𝑠𝑜𝑐2 =

𝜕𝛹𝑖𝑠𝑜𝑐2

𝜕𝔼
=
𝜕𝛹𝑖𝑠𝑜𝑐2

𝜕𝐼2̅

𝜕𝐼2̅
𝜕𝔼

 (168) 

Quanto ao tensor constitutivo elástico tangente (ℭ𝑖𝑗𝑘𝑙
𝑒𝑙𝑎𝑠𝑡), o cálculo de cada uma das suas 

parcelas volumétrica (ℭ𝑖𝑗𝑘𝑙
𝑣𝑜𝑙 ) e isocóricas (ℭ𝑖𝑗𝑘𝑙

𝑖𝑠𝑜𝑐1  e ℭ𝑖𝑗𝑘𝑙
𝑖𝑠𝑜𝑐2 ) é efetuado através da segunda 

derivada da energia específica de deformação em relação à deformação de Green: 

 
ℭ𝑖𝑗𝑘𝑙
𝑒𝑙𝑎𝑠𝑡 = ℭ𝑖𝑗𝑘𝑙

𝑣𝑜𝑙 + ℭ𝑖𝑗𝑘𝑙
𝑖𝑠𝑜𝑐1 + ℭ𝑖𝑗𝑘𝑙

𝑖𝑠𝑜𝑐2 =
𝜕2𝛹𝑣𝑜𝑙

𝜕𝔼𝑖𝑗𝜕𝔼𝑘𝑙
+
𝜕2𝛹𝑖𝑠𝑜𝑐1

𝜕𝔼𝑖𝑗𝜕𝔼𝑘𝑙
+
𝜕2𝛹𝑖𝑠𝑜𝑐2

𝜕𝔼𝑖𝑗𝜕𝔼𝑘𝑙
 (169) 

com a expressão de cada uma das três parcelas escritas como: 

 
ℭ𝑖𝑗𝑘𝑙
𝑣𝑜𝑙 =

𝜕2𝛹𝑣𝑜𝑙

𝜕𝔼𝑖𝑗𝜕𝔼𝑘𝑙
=

𝜕𝐽

𝜕𝔼𝑖𝑗

𝜕2𝛹𝑣𝑜𝑙

𝜕𝐽2
𝜕𝐽

𝜕𝔼𝑘𝑙
+
𝜕𝛹𝑣𝑜𝑙

𝜕𝐽

𝜕2𝐽

𝜕𝔼𝑖𝑗𝜕𝔼𝑘𝑙
 (170) 

 
ℭ𝑖𝑗𝑘𝑙
𝑖𝑠𝑜𝑐1 =

𝜕2𝛹𝑖𝑠𝑜𝑐1

𝜕𝔼𝑖𝑗𝜕𝔼𝑘𝑙
=
𝜕𝐼1̅
𝜕𝔼𝑖𝑗

𝜕2𝛹𝑖𝑠𝑜𝑐1

𝜕𝐼1̅
2

𝜕𝐼1̅
𝜕𝔼𝑘𝑙

+
𝜕𝛹𝑖𝑠𝑜𝑐1

𝜕𝐼1̅

𝜕2𝐼1̅
𝜕𝔼𝑖𝑗𝜕𝔼𝑘𝑙

 (171) 
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ℭ𝑖𝑗𝑘𝑙
𝑖𝑠𝑜𝑐2 =

𝜕2𝛹𝑖𝑠𝑜𝑐2

𝜕𝔼𝑖𝑗𝜕𝔼𝑘𝑙
=
𝜕𝐼2̅
𝜕𝔼𝑖𝑗

𝜕2𝛹𝑖𝑠𝑜𝑐2

𝜕𝐼2̅
2

𝜕𝐼2̅
𝜕𝔼𝑘𝑙

+
𝜕𝛹𝑖𝑠𝑜𝑐2

𝜕𝐼2̅

𝜕2𝐼2̅
𝜕𝔼𝑖𝑗𝜕𝔼𝑘𝑙

 (172) 

 

4.3.2 Modelo constitutivo de Rivlin-Saunders 

 

A partir do estudo de borrachas vulcanizadas, Rivlin e Saunders (1951) sugeriram um 

modelo constitutivo com o intuito de descrever o seu comportamento mecânico através de uma 

única expressão de energia específica de deformação. O desenvolvimento desta formulação, 

escrita em função dos invariantes de deformação, foi efetuado com base na equação proposta 

previamente por Mooney (1940), originalmente definida em função dos alongamentos 

principais. Baseado em deduções teóricas e análises laboratoriais, os autores propuseram a 

seguinte expressão: 

 Ψ(𝐼1, 𝐼2) = 𝐶(𝐼1 − 3) + 𝑓(𝐼2 − 3) (173) 

sendo que 𝐶 e 𝑓 correspondem, respectivamente, a uma constante e a uma função definida a 

partir de parâmetros experimentais. 

Sabendo-se que em regime de pequenas deformações as leis constitutivas não-lineares 

e a lei de Saint-Venant-Kirchhoff respondem de forma semelhante, é possível obter os valores 

de 𝐶 e 𝑓 através de uma análise comparativa. Por meio dessa análise e da expressão da energia 

específica de deformação dada em função dos invariantes da parcela isocórica do tensor de 

alongamento à direita de Cauchy-Green, a Equação (173) reescrita é expressa por: 

 
𝛹𝑖𝑠𝑜𝑐1(𝐼1̅) + 𝛹

𝑖𝑠𝑜𝑐2(𝐼2̅) =
𝐺

4
(𝐼1̅ − 3) +

𝐺

4
(𝐼2̅ − 3) (174) 

sendo 𝐺 o módulo de elasticidade transversal. 

 

4.3.3 Modelo constitutivo de Hartmann-Neff 

 

Já no estudo realizado por Hartmann e Neff (2003) acerca dos modelos para a descrição 

do comportamento mecânico dos materiais isótropos quase incompressíveis, foram propostas 

expressões relacionadas à sua energia específica de deformação com base nos invariantes 

principais, sendo uma delas, referente ao potencial volumétrico, dada por: 

 𝛹𝑣𝑜𝑙 = 𝑘𝑣𝑜𝑙(𝐽
2𝑛 + 𝐽−2𝑛 − 2)𝑙 (175) 

sendo que 𝑘𝑣𝑜𝑙  corresponde a uma constante elástica do material, 𝑛  (≥ 0,5)  e 𝑙 (≥ 1)  são 

constantes. 
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Sabendo-se que o modelo constitutivo de Hartmann-Neff deve reproduzir o 

comportamento do modelo constitutivo de Saint-Venant-Kirchhoff em regime de pequenas 

deformações, determina-se o valor de 𝑘𝑣𝑜𝑙 assumindo valor unitário para 𝑙. Tendo isso em vista, 

define-se a primeira e a segunda derivada da Equação (175) em relação ao jacobiano: 

 𝜕𝛹𝑣𝑜𝑙

𝜕𝐽
= 2𝑛𝑘𝑣𝑜𝑙[𝐽

2𝑛−1 − 𝐽−(2𝑛+1)] (176) 

 𝜕2𝛹𝑣𝑜𝑙

𝜕𝐽2
= 2𝑛𝑘𝑣𝑜𝑙[(2𝑛 − 1)𝐽

2𝑛−2 + (2𝑛 + 1)𝐽−2(𝑛+1)] (177) 

No caso de desenvolvimento de pequenas deformações (𝐽 ≅ 1), a Equação (176) resulta 

em valor nulo e a Equação (177) torna-se passível de simplificação, conforme mostrado abaixo: 

 𝜕2𝛹𝑣𝑜𝑙

𝜕𝐽2
= 8𝑛2𝑘𝑣𝑜𝑙 (178) 

Além disso, define-se a direção hidrostática Lagrangeana da deformação como: 

 
𝕰𝑣𝑜𝑙 =

𝜕𝐽

𝜕𝔼
= 𝐽𝑪−1 (179) 

Tomando-se como base a Equação (170), referente à parcela volumétrica do tensor 

constitutivo elástico, e com o auxílio das Equações (176), (178) e (179), é determinada a parcela 

volumétrica do tensor constitutivo elástico inerente ao regime de pequenas deformações: 

 ℭ𝑖𝑗𝑘𝑙
𝑣𝑜𝑙 = (𝐽𝐶𝑖𝑗

−1)8𝑛2𝑘𝑣𝑜𝑙(𝐽𝐶𝑘𝑙
−1) (180) 

sendo válido ressaltar que o segundo termo da soma da Equação (170) é nulo em problemas de 

pequenas deformações por conta do valor nulo assumido pelo termo da Equação (176), 

conforme supracitado. Por essa razão, a formulação referente ao termo 
𝜕2𝐽

𝜕𝔼𝑖𝑗𝜕𝔼𝑘𝑙
, também 

existente na Equação (170), foi suprimida na presente etapa das deduções. 

Nesta fase de desenvolvimento das formulações, é importante salientar que 𝐽 ≅ 1 e 

𝐶𝑖𝑗
−1 = 𝛿𝑖𝑗  em regime de pequenas deformações. A Equação (180) em sua forma reescrita 

corresponde à parcela volumétrica do tensor constitutivo elástico não-linear para problemas de 

pequenas deformações, expressa por: 

 ℭ𝑖𝑗𝑘𝑙
𝑣𝑜𝑙 = 8𝑛2𝑘𝑣𝑜𝑙𝛿𝑖𝑗𝛿𝑘𝑙 (181) 

Em seguida, procede-se à determinação da mesma parcela do tensor constitutivo elástico, 

porém daquela referente à lei constitutiva linear de Saint-Venant-Kirchhoff. Primeiramente, 

considera-se a parte volumétrica do tensor de tensões de Piola-Kirchhoff de segunda espécie: 

 𝑆𝑖𝑗
𝑣𝑜𝑙 = 𝐾𝐸𝑣𝛿𝑖𝑗 (182) 

na qual 𝐾 corresponde ao bulk modulus. 
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Diferenciando-se em relação à deformação de Green, obtém-se: 

 
ℭ𝑖𝑗𝑘𝑙
𝑣𝑜𝑙 =

𝜕𝑆𝑖𝑗
𝑣𝑜𝑙

𝜕𝔼𝑘𝑙
= 𝐾𝛿𝑖𝑗𝛿𝑘𝑙 (183) 

Para a verificação da consistência do modelo constitutivo hiperelástico não-linear de 

Hartmann-Neff, é preciso que o mesmo reproduza o comportamento linear do material em 

regime de pequenas deformações, implicando na necessidade de equivalência entre as Equações 

(181) e (183). Portanto, visando o atendimento da condição mencionada, conclui-se que a 

constante elástica 𝑘𝑣𝑜𝑙 deve assumir o seguinte valor:  

 
𝑘𝑣𝑜𝑙 =

𝐾

8𝑛2
 (184) 

Na expressão acima, 𝑛 (≥ 0,5) refere-se a uma constante que contribui para a regulação 

da rigidez volumétrica (com o valor assumido de 𝑛 = 1 para o presente trabalho).  

Dessa forma, a Equação (175) é reescrita a partir do valor determinado para o 𝑘𝑣𝑜𝑙 

como: 

 
𝛹𝑣𝑜𝑙(𝐽) =

𝐾

8𝑛2
(𝐽2𝑛 + 𝐽−2𝑛 − 2) (185) 

 

4.3.4 Formulações do modelo constitutivo de Rivlin-Saunders-Hartmann-Neff 

 

Portanto, a partir da soma das parcelas da energia específica de deformação que produz 

energia com a variação volumétrica (modelo de Hartmann-Neff), dada pela Equação (185), e 

que não gera energia com variação volumétrica (modelo de Rivlin-Saunders), apresentada pela 

Equação (174), obtém-se a expressão da energia específica de deformação do modelo de Rivlin-

Saunders-Hartmann-Neff: 

 𝛹 = 𝛹𝑣𝑜𝑙 +𝛹𝑖𝑠𝑜𝑐1 +𝛹𝑖𝑠𝑜𝑐2

=
𝐾

8𝑛2
(𝐽2𝑛 + 𝐽−2𝑛 − 2) +

𝐺

4
(𝐼1̅ − 3) +

𝐺

4
(𝐼2̅ − 3) 

(186) 

Utilizando-se dos conceitos de conjugado energético e da decomposição aditiva, 

determina-se a expressão da tensão elástica de Piola-Kirchhoff de segunda espécie (𝑺𝑒𝑙𝑎𝑠𝑡): 

 
𝑺𝑒𝑙𝑎𝑠𝑡 = 𝑺𝑣𝑜𝑙 + 𝑺𝑖𝑠𝑜𝑐1 + 𝑺𝑖𝑠𝑜𝑐2 =

𝜕𝛹𝑣𝑜𝑙

𝜕𝔼
+
𝜕𝛹𝑖𝑠𝑜𝑐1

𝜕𝔼
+
𝜕𝛹𝑖𝑠𝑜𝑐2

𝜕𝔼
 (187) 

sendo cada uma das parcelas de 𝑺𝑒𝑙𝑎𝑠𝑡 expressas como: 

 
𝑺𝑣𝑜𝑙 =

𝜕𝛹𝑣𝑜𝑙

𝜕𝐽

𝜕𝐽

𝜕𝔼
=
𝐾

4𝑛
[𝐽2𝑛−1 − 𝐽−(2𝑛+1)]𝕰𝑣𝑜𝑙 (188) 
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𝑺𝑖𝑠𝑜𝑐1 =

𝜕𝛹𝑖𝑠𝑜𝑐1

𝜕𝐼1̅

𝜕𝐼1̅
𝜕𝔼

=
𝐺

4
𝕰𝑖𝑠𝑜𝑐1 (189) 

 
𝑺𝑖𝑠𝑜𝑐2 =

𝜕𝛹𝑖𝑠𝑜𝑐2

𝜕𝐼2̅

𝜕𝐼2̅
𝜕𝔼

=
𝐺

4
𝕰𝑖𝑠𝑜𝑐2 (190) 

nas quais 𝕰𝑣𝑜𝑙 corresponde à direção hidrostática Lagrangeana, já introduzida no item 4.3.3 e 

apresentada novamente a seguir, enquanto 𝕰𝑖𝑠𝑜𝑐1  e 𝕰𝑖𝑠𝑜𝑐2  são referentes às direções 

desviadoras Lagrangeanas, definidas como: 

 
𝕰𝑣𝑜𝑙 =

𝜕𝐽

𝜕𝔼
= 𝐽𝑪−1 (191) 

 
𝕰𝑖𝑠𝑜𝑐1 =

𝜕𝐼1̅
𝜕𝔼

= −
2

3
𝐽−2/3𝐼1̅𝑪

−1 + 2𝐽−2/3 𝑰 (192) 

 
𝕰𝑖𝑠𝑜𝑐2 =

𝜕𝐼2̅
𝜕𝔼

= 2𝐽−4/3 [−
2

3
𝑪−1𝐼2̅ + 𝐼1̅𝑰 − 𝑪

𝑡] (193) 

além disso: 

 𝜕𝛹𝑣𝑜𝑙

𝜕𝐽
=
𝐾

4𝑛
[𝐽2𝑛−1 − 𝐽−(2𝑛+1)] (194) 

 𝜕𝛹𝑖𝑠𝑜𝑐1

𝜕𝐼1̅
=
𝜕𝛹𝑖𝑠𝑜𝑐2

𝜕𝐼2̅
=
𝐺

4
 (195) 

Presentes nas expressões das direções das tensões, o primeiro e o segundo invariantes 

do tensor de alongamento à direita de Cauchy-Green, denotados por 𝐼1̅ e 𝐼2̅ respectivamente, 

são definidos como: 

 𝐼1̅ = 𝑇𝑟(𝑪̅) (196) 

 
𝐼2̅ =

1

2
[𝑇𝑟(𝑪̅)2 − 𝑇𝑟(𝑪̅2)] (197) 

Na Figura 4.1, é apresentado o pseudocódigo que resume as operações realizadas para 

o cálculo da componente elástica da tensão de Piola-Kirchhoff de segunda espécie utilizando o 

modelo constitutivo de Rivlin-Saunders-Hartmann-Neff. 
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Figura 4.1 – Pseudocódigo do algoritmo para cálculo da tensão elástica de Piola-Kirchhoff de segunda 

espécie utilizando o modelo constitutivo de Rivlin-Saunders-Hartmann-Neff 

1 Cálculo de 𝐼1̅ → Equação (196) 

2 Cálculo de 𝐼2̅ → Equação (197) 

3 Cálculo de 𝜕𝛹𝑣𝑜𝑙/𝜕𝐽 → Equação (194) 

4 Cálculo de 𝕰𝑣𝑜𝑙 → Equação (191) 

5 Cálculo de 𝑺𝑣𝑜𝑙 → Equação (188) 

6 Cálculo de 𝜕𝛹𝑖𝑠𝑜𝑐1/𝜕𝐼1̅ → Equação (195) 

7 Cálculo de 𝕰𝑖𝑠𝑜𝑐1 → Equação (192) 

8 Cálculo de 𝑺𝑖𝑠𝑜𝑐1 → Equação (189) 

9 Cálculo de 𝜕𝛹𝑖𝑠𝑜𝑐2/𝜕𝐼2̅ → Equação (195) 

10 Cálculo de 𝕰𝑖𝑠𝑜𝑐2 → Equação (193) 

11 Cálculo de 𝑺𝑖𝑠𝑜𝑐2 → Equação (190) 

12 Cálculo de 𝑺𝑒𝑙𝑎𝑠𝑡 → Equação (187) 
Fonte: autor. 

 

Finalmente, na Figura 4.2, é apresentado o pseudocódigo que resume as operações 

realizadas para o cálculo do tensor constitutivo elástico tangente empregando o modelo 

constitutivo de Rivlin-Saunders-Hartmann-Neff. Além disso, mostram-se a seguir as 

expressões restantes das derivadas parciais que compõem as Equações (170), (171) e (172), as 

quais também necessárias para o cálculo do tensor constitutivo elástico tangente.  

 𝜕2𝛹𝑣𝑜𝑙

𝜕𝐽2
=
𝐾

4𝑛
[(2𝑛 − 1)𝐽2𝑛−2 + (2𝑛 + 1)𝐽−(2𝑛+2)] (198) 

 𝜕2𝐽

𝜕𝔼𝑖𝑗𝜕𝔼𝑘𝑙
=
𝜕𝕰𝑖𝑗

𝑣𝑜𝑙

𝜕𝔼𝑘𝑙
= 𝐽(𝐷𝑖𝑗𝐷𝑘𝑙 − 2𝐷𝑖𝑘𝐷𝑙𝑗) (199) 

 𝜕2𝛹𝑖𝑠𝑜𝑐1

𝜕𝐼1̅
2 =

𝜕2𝛹𝑖𝑠𝑜𝑐2

𝜕𝐼2̅
2 = 0 (200) 

 𝜕2𝐼1̅
𝜕𝔼𝑖𝑗𝜕𝔼𝑘𝑙

=
𝜕𝕰𝑖𝑗

𝑖𝑠𝑜𝑐1

𝜕𝔼𝑘𝑙
=
4

3
𝐽−2/3 [

1

3
(𝐷𝑖𝑗𝐷𝑘𝑙 + 3𝐷𝑖𝑘𝐷𝑙𝑗)𝐼1 − 𝐷𝑖𝑗𝛿𝑘𝑙 − 𝐷𝑘𝑙𝛿𝑖𝑗] (201) 

 𝜕2𝐼2̅
𝜕𝔼𝑖𝑗𝜕𝔼𝑘𝑙

=
𝜕𝕰𝑖𝑗

𝑖𝑠𝑜𝑐2

𝜕𝔼𝑘𝑙

=
8

3
𝐽−4/3 [(

2

3
𝐷𝑖𝑗𝐷𝑘𝑙 + 𝐷𝑖𝑘𝐷𝑙𝑗) 𝐼2 − 𝐶𝑧𝑧(𝐷𝑖𝑗𝛿𝑘𝑙 + 𝐷𝑘𝑙𝛿𝑖𝑗)

+ 𝐷𝑖𝑗𝐶𝑙𝑘 + 𝐷𝑘𝑙𝐶𝑗𝑖 +
3

2
(𝛿𝑖𝑗𝛿𝑘𝑙 − 𝛿𝑖𝑘𝛿𝑗𝑙)] 

(202) 

nas quais 𝑫 = 𝑪−1. 
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Figura 4.2 – Pseudocódigo do algoritmo para cálculo do tensor constitutivo elástico tangente 

utilizando o modelo constitutivo de Rivlin-Saunders-Hartmann-Neff 

1 Para i = 1 até 3 (tridimensional) 

2  Para i = 1 até 3 (tridimensional) 

3   Para i = 1 até 3 (tridimensional) 

4    Para i = 1 até 3 (tridimensional) 

5     Cálculo de 𝜕2𝐽/𝜕𝔼𝑖𝑗𝜕𝔼𝑘𝑙 → Equação (199) 

6     Cálculo de (𝜕𝐽/𝜕𝔼𝑖𝑗)(𝜕𝐽/𝜕𝔼𝑘𝑙) 

7     Cálculo de 𝜕2𝐼1̅/𝜕𝔼𝑖𝑗𝜕𝔼𝑘𝑙 → Equação (201) 

8     Cálculo de (𝜕𝐼1̅/𝜕𝔼𝑖𝑗)(𝜕𝐼1̅/𝜕𝔼𝑘𝑙) 

9     Cálculo de 𝜕2𝐼2̅/𝜕𝔼𝑖𝑗𝜕𝔼𝑘𝑙 → Equação (202) 

10     Cálculo de (𝜕𝐼2̅/𝜕𝔼𝑖𝑗)(𝜕𝐼2̅/𝜕𝔼𝑘𝑙)  

11    Fim do loop 

12   Fim do loop 

13  Fim do loop 

14 Fim do loop 

15 Cálculo de 𝜕𝛹𝑣𝑜𝑙/𝜕𝐽 → Equação (194) 

16 Cálculo de 𝜕2𝛹𝑣𝑜𝑙/𝜕𝐽2 → Equação (198) 

17 Cálculo de ℭ𝑖𝑗𝑘𝑙
𝑣𝑜𝑙  → Equação (170) 

18 Cálculo de 𝜕𝛹𝑖𝑠𝑜𝑐1/𝜕𝐼1̅ → Equação (195) 

19 Cálculo de 𝜕2𝛹𝑖𝑠𝑜𝑐1/𝜕𝐼1̅
2
 → Equação (200) 

20 Cálculo de ℭ𝑖𝑗𝑘𝑙
𝑖𝑠𝑜𝑐1 → Equação (171) 

21 Cálculo de 𝜕𝛹𝑖𝑠𝑜𝑐2/𝜕𝐼2̅ → Equação (195) 

22 Cálculo de 𝜕2𝛹𝑖𝑠𝑜𝑐2/𝜕𝐼2̅
2
 → Equação (200) 

23 Cálculo de ℭ𝑖𝑗𝑘𝑙
𝑖𝑠𝑜𝑐2 → Equação (172) 

24 Cálculo de ℭ𝑖𝑗𝑘𝑙
𝑒𝑙𝑎𝑠𝑡 → Equação (169) 

Fonte: autor. 

 

4.3.5 Correspondência da tensão volumétrica de Piola-Kirchhoff de segunda espécie à tensão 

hidrostática de Cauchy 

 

Com base no trabalho de R. T. Kishino (2022) e V. H. Kishino (2022), esta subseção é 

destinada à demonstração da relação existente entre a tensão volumétrica de Piola-Kirchhoff de 

segunda espécie (𝑺𝑣𝑜𝑙) e a tensão hidrostática de Cauchy (𝝈ℎ). Escrevendo a tensão de Cauchy 

em função da componente volumétrica da tensão de Piola-Kirchhoff de segunda espécie a partir 

da Equação (132), tem-se: 

 
𝝈𝑣𝑜𝑙 =

1

𝐽
𝑨 ⋅ 𝑺𝑣𝑜𝑙 ⋅ 𝑨𝑡  (203) 
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Enquanto a tensão volumétrica de Piola-Kirchhoff de segunda espécie é definida através 

da Equação (166) como: 

 
𝑺𝑣𝑜𝑙 =

𝜕𝛹𝑣𝑜𝑙

𝜕𝐽

𝜕𝐽

𝜕𝔼
= 𝑠𝑣𝑜𝑙𝕰𝑣𝑜𝑙 = 𝑠𝑣𝑜𝑙𝐽𝑪−1 (204) 

na qual 𝑠𝑣𝑜𝑙 é um escalar. 

Substituindo a Equação (204) na Equação (203), obtém-se: 

 
𝝈𝑣𝑜𝑙 =

1

𝐽
𝑨 ⋅ 𝑠𝑣𝑜𝑙𝐽𝑪−1 ⋅ 𝑨𝑡 = 𝑠𝑣𝑜𝑙𝑨 ⋅ (𝑨𝑡 ⋅ 𝑨)−1 ⋅ 𝑨𝑡 = 𝑠𝑣𝑜𝑙𝑰 = 𝑠ℎ𝑰 = 𝝈ℎ (205) 

verificando, portanto, a correspondência de 𝑺𝑣𝑜𝑙 à componente hidrostática do tensor de tensões 

de Cauchy e 𝕮𝑣𝑜𝑙 à direção hidrostática Lagrangeana da deformação. Ainda é possível verificar 

a equivalência de 𝑠𝑣𝑜𝑙 ao valor da tensão hidrostática de Cauchy (𝑠ℎ), sendo este expresso por: 

 
𝑠ℎ = 𝑠𝑣𝑜𝑙 =

𝜕𝛹𝑣𝑜𝑙

𝜕𝐽
 (206) 

As constatações supracitadas são essenciais para uma melhor compreensão dos 

desenvolvimentos da formulação de problemas termomecânicos em regime de grandes 

deformações, apresentados mais adiante neste trabalho no capítulo 8. 

 

4.3.6 Correspondência da tensão isocórica de Piola-Kirchhoff de segunda espécie à tensão 

desviadora de Cauchy 

 

Semelhantemente ao item 4.3.5, é apresentada nesta subseção a correspondência das 

componentes isocóricas da tensão de Piola-Kirchhoff de segunda espécie (𝑺𝑖𝑠𝑜𝑐1 e 𝑺𝑖𝑠𝑜𝑐2) às 

componentes desviadoras da tensão de Cauchy. Escrevendo a tensão de Cauchy em função da 

componente isocórica da tensão de Piola-Kirchhoff de segunda espécie a partir da Equação 

(132), tem-se: 

 
𝝈𝑖𝑠𝑜𝑐 =

1

𝐽
𝑨 ⋅ 𝑺𝑖𝑠𝑜𝑐 ⋅ 𝑨𝑡 (207) 

Na sequência, a expressão da primeira componente da tensão de Piola-Kirchhoff de 

segunda espécie é definida através da Equação (167): 

 
𝑺𝑖𝑠𝑜𝑐1 =

𝜕𝛹𝑖𝑠𝑜𝑐1

𝜕𝐼1̅

𝜕𝐼1̅
𝜕𝔼

= 𝑔𝑖𝑠𝑜𝑐1𝕰𝑖𝑠𝑜𝑐1 = 𝑔𝑖𝑠𝑜𝑐1 [−
2

3
𝐽−2/3 𝑡𝑟(𝑪)𝑪−1 + 2𝐽−2/3 𝑰] (208) 

na qual 𝑔𝑖𝑠𝑜𝑐1 é um escalar. 

Substituindo a Equação (208) na Equação (207), obtém-se: 
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𝝈𝑖𝑠𝑜𝑐1 = 𝑔𝑖𝑠𝑜𝑐1 {2𝐽−5/3 [𝑨 ⋅ 𝑨𝑡 −

𝑡𝑟(𝑨𝑡 ⋅ 𝑨)

3
𝑰]} (209) 

Tendo em vista que 𝑡𝑟(𝑨𝑡 ⋅ 𝑨) = 𝑨 ∶ 𝑨𝑡, é válida a seguinte comutatividade: 

 𝑡𝑟(𝑨𝑡 ⋅ 𝑨) = 𝑨 ∶ 𝑨𝑡 = 𝑨𝑡 ∶ 𝑨 = 𝑡𝑟(𝑨 ⋅ 𝑨𝑡) (210) 

Portanto: 

 
𝝈𝑖𝑠𝑜𝑐1 = 𝑔𝑖𝑠𝑜𝑐1 {2𝐽−5/3 [𝑨 ⋅ 𝑨𝑡 −

𝑡𝑟(𝑨 ⋅ 𝑨𝑡)

3
𝑰]} = 𝝈𝑑𝑒𝑠𝑣 (211) 

Já a expressão da segunda componente da tensão de Piola-Kirchhoff de segunda espécie 

pode ser desenvolvida a partir da Equação (168) como: 

 
𝑺𝑖𝑠𝑜𝑐2 =

𝜕𝛹𝑖𝑠𝑜𝑐2

𝜕𝐼2̅

𝜕𝐼2̅
𝜕𝔼

= 𝑔𝑖𝑠𝑜𝑐2𝕰𝑖𝑠𝑜𝑐2

= 𝑔𝑖𝑠𝑜𝑐2 [2𝐽−4/3 (−
2

3
𝑪−1𝐼2 + 𝐼1𝑰 − 𝑪

𝑡)] 

(212) 

na qual 𝑔𝑖𝑠𝑜𝑐2 é um escalar. 

Substituindo a Equação (212) na Equação (207), obtém-se: 

 
𝝈𝑖𝑠𝑜𝑐2 = 2𝐽−7/3𝑔𝑖𝑠𝑜𝑐2 {[𝑡𝑟(𝑪)(𝑨 ⋅ 𝑨𝑡) − (𝑨 ⋅ 𝑨𝑡) ⋅ (𝑨 ⋅ 𝑨𝑡)] −

2

3
𝐼2𝑰} (213) 

sendo que: 

 𝑡𝑟(𝑨 ⋅ 𝑨𝑡)𝑡𝑟(𝑨 ⋅ 𝑨𝑡) − 𝑡𝑟[(𝑨 ⋅ 𝑨𝑡)(𝑨 ⋅ 𝑨𝑡)] = 2𝐼2 (214) 

Finalmente, calcula-se o traço de 𝝈𝑖𝑠𝑜𝑐2 como: 

 𝑡𝑟(𝝈𝑖𝑠𝑜𝑐2) = 2𝑔𝑖𝑠𝑜𝑐2𝐽−7/3(2𝐼2 − 2𝐼2) = 0 (215) 

e, portanto: 

 𝝈𝑖𝑠𝑜𝑐2 = 𝝈𝑑𝑒𝑠𝑣 (216) 

Dessa forma, foi demonstrado que as componentes isocóricas da tensão de Piola-

Kirchhoff de segunda espécie (𝑺𝑖𝑠𝑜𝑐1 e 𝑺𝑖𝑠𝑜𝑐2) correspondem às componentes desviadoras da 

tensão de Cauchy. As relações apresentadas nesta subseção são essenciais para facilitar a 

compreensão do modelo elasto-plástico alternativo adotado no presente trabalho (adequado 

para resolução de problemas em regime de grandes deformações), apresentado mais adiante no 

item 5.2. 
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4.4 Exemplos numéricos 

 

Nesta seção são apresentados quatro exemplos numéricos de validação do modelo 

mecânico Lagrangeano total implementado utilizando os modelos constitutivos hiperelásticos 

de Saint-Venant-Kirchhoff e de Rivlin-Saunders-Hartmann-Neff. 

 

4.4.1 Viga engastada e livre submetida a um carregamento transversal concentrado 

 

O primeiro exemplo tem como objetivo apresentar a correta implementação do código 

de análise estática elástica para problemas de estruturas desenvolvendo grandes deslocamentos. 

Analisado por Mattiasson (1981), o problema é referente a uma viga engastada e livre sujeita a 

uma força transversal concentrada na sua extremidade livre, conforme exibido na Figura 4.3. 

Ressalta-se que, apesar da estrutura desenvolver grandes deslocamentos, o problema se 

enquadra em regime de pequenas deformações. Os dados adotados no teste de validação são 

apresentados na Figura 4.4, enquanto a discretização adotada para a análise consta na Figura 

4.5. 

 

Figura 4.3 – Viga engastada e livre sujeita a uma força concentrada transversal aplicada na 

extremidade livre 

 
Fonte: autor. 
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Figura 4.4 – Dados adotados no exemplo 4.4.1 

Parâmetros mecânicos 

𝐸: 2,4.106 kN/m² 

𝜈: 0 

Carga 𝑃: 160 kN 

Dados geométricos 

Comprimento: 10 m 

Largura: 1 m 

Altura: 0,2 m 

Dados da malha 

Nº nós: 273 

Nº elementos finitos: 32 

Nº pontos de Hammer 12 

Grau de aproximação na espessura: Linear 

Outros dados 

Tolerância: 10-6 

Fonte: autor. 

 

Figura 4.5 – Discretização adotada para o exemplo 4.4.1 

 
Fonte: autor. 

 

Como parâmetros de avaliação dos resultados obtidos, foram admitidos os 

deslocamentos horizontal e vertical (adimensionalizados) da extremidade livre no eixo da viga, 

os quais foram comparados com os valores apresentados por Mattiasson (1981). A análise foi 

efetuada empregando os modelos constitutivos de Saint-Venant-Kirchhoff e Rivlin-Saunders-

Hartmann-Neff, com os resultados organizados na Tabela 4.1 e na Tabela 4.2, respectivamente. 
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Tabela 4.1 – Resultados obtidos no teste de validação 4.4.1 com o modelo constitutivo de Saint-

Venant-Kirchhoff 

PL²/EI 
Autor Mattiasson (1981) Diferença percentual  

u/L w/L u/L w/L u/L w/L 

0,0 0,00000 0,00000 0,00000 0,00000 - - 

1,0 0,05632 0,30130 0,05643 0,30172 -0,19% -0,14% 

2,0 0,15992 0,49184 0,16064 0,49346 -0,45% -0,33% 

2,5 0,20887 0,55348 0,20996 0,55566 -0,52% -0,39% 

3,0 0,25297 0,60057 0,25442 0,60325 -0,57% -0,44% 

3,5 0,29215 0,63726 0,29394 0,64039 -0,61% -0,49% 

4,0 0,32684 0,66641 0,32894 0,66996 -0,64% -0,53% 

4,5 0,35759 0,69002 0,35999 0,69397 -0,67% -0,57% 

5,0 0,38496 0,70948 0,38763 0,71379 -0,69% -0,60% 

5,5 0,40943 0,72576 0,41236 0,73042 -0,71% -0,64% 

6,0 0,43141 0,73957 0,43459 0,74457 -0,73% -0,67% 

6,5 0,45126 0,75143 0,45468 0,75676 -0,75% -0,70% 

7,0 0,46928 0,76173 0,47293 0,76737 -0,77% -0,74% 

7,5 0,48570 0,77076 0,48957 0,77670 -0,79% -0,77% 

8,0 0,50074 0,77874 0,50483 0,78498 -0,81% -0,79% 

8,5 0,51456 0,78586 0,51886 0,79239 -0,83% -0,82% 

9,0 0,52732 0,79224 0,53182 0,79906 -0,85% -0,85% 

9,5 0,53912 0,79801 0,54383 0,80510 -0,87% -0,88% 

10,0 0,55009 0,80325 0,55500 0,81061 -0,88% -0,91% 

Fonte: autor. 

 

Tabela 4.2 – Resultados obtidos no teste de validação 4.4.1 com o modelo constitutivo de Rivlin-

Saunders-Hartmann-Neff 

PL²/EI 
Autor Mattiasson (1981) Diferença percentual  

u/L w/L u/L w/L u/L w/L 

0,0 0,00000 0,00000 0,00000 0,00000 - - 

1,0 0,05629 0,30130 0,05643 0,30172 -0,24% -0,14% 

2,0 0,15985 0,49186 0,16064 0,49346 -0,49% -0,32% 

2,5 0,20877 0,55352 0,20996 0,55566 -0,57% -0,39% 

3,0 0,25286 0,60062 0,25442 0,60325 -0,61% -0,44% 

3,5 0,29203 0,63732 0,29394 0,64039 -0,65% -0,48% 

4,0 0,32671 0,66648 0,32894 0,66996 -0,68% -0,52% 

4,5 0,35745 0,69011 0,35999 0,69397 -0,71% -0,56% 

5,0 0,38481 0,70957 0,38763 0,71379 -0,73% -0,59% 

5,5 0,40927 0,72586 0,41236 0,73042 -0,75% -0,62% 

6,0 0,43125 0,73968 0,43459 0,74457 -0,77% -0,66% 

6,5 0,45109 0,75155 0,45468 0,75676 -0,79% -0,69% 

7,0 0,46910 0,76185 0,47293 0,76737 -0,81% -0,72% 

7,5 0,48552 0,77088 0,48957 0,77670 -0,83% -0,75% 

8,0 0,50056 0,77887 0,50483 0,78498 -0,85% -0,78% 

8,5 0,51438 0,78600 0,51886 0,79239 -0,86% -0,81% 

9,0 0,52713 0,79239 0,53182 0,79906 -0,88% -0,83% 

9,5 0,53893 0,79816 0,54383 0,80510 -0,90% -0,86% 

10,0 0,54990 0,80341 0,55500 0,81061 -0,92% -0,89% 

Fonte: autor. 
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Verifica-se que os valores obtidos de deslocamentos na análise para cada um dos 

modelos constitutivos adotados foram praticamente equivalentes, por se tratar de uma estrutura 

que trabalha em regime de pequenas deformações. Por fim, comenta-se que foi evidenciada a 

correta implementação do código de análise estática elástica, devido à proximidade de valores 

obtidos para os modelos de Saint-Venant-Kirchhoff e Rivlin-Saunders-Hartmann-Neff em 

relação aos resultados de Mattiasson (1981). 

 

4.4.2 Viga engastada e livre submetida a um carregamento transversal concentrado transiente 

 

A validação do código de análise dinâmica elástica para grandes deslocamentos 

implementado foi efetuada através deste segundo exemplo numérico. Analisado anteriormente 

por Greco (2004), Rodríguez (2017), V. H. Kishino (2022) e R. T. Kishino (2022), o problema 

consiste em uma viga engastada e livre sujeita a um carregamento transversal concentrado 

transiente na extremidade livre, conforme esquematizado na Figura 4.6. Devido à esbeltez da 

viga, foram impostas as restrições nos nós das faces laterais na direção da largura da viga com 

o objetivo de eliminar a possibilidade de ocorrência de instabilidade lateral. 

 

Figura 4.6 – Viga engastada e livre sujeita a um carregamento transversal concentrado transiente 

aplicado na extremidade livre 

 
Fonte: autor. 
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O valor do carregamento aplicado é variável em função do tempo, de acordo com o 

gráfico exibido na Figura 4.7. Para a análise deste problema, foram considerados dois valores 

máximos de carregamento, sendo o primeiro 𝐹𝑚á𝑥 = 1. 10
5 𝑙𝑏, enquanto o segundo, 𝐹𝑚á𝑥 =

5. 105 𝑙𝑏 . Já os dados e a discretização adotados no presente exemplo numérico constam, 

respectivamente, na Figura 4.8 e Figura 4.9. Apesar do sistema métrico ser mais convencional 

na literatura, foram utilizadas unidades imperiais por conta das bibliografias de referência deste 

exemplo que também adotaram esse sistema de medidas.     

   

Figura 4.7 – Variação da força em relação ao tempo no exemplo numérico 4.4.2 

 
Fonte: autor. 
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Figura 4.8 – Dados adotados no exemplo 4.4.2 

Parâmetros mecânicos 

𝐸: 3,0.107 psi 

𝜈: 0 

𝜌: 0,0094116 lb.s²/in4 

Carga 𝐹: Variável conforme a Figura 4.7 

Dados geométricos 

Comprimento: 120 in 

Largura: 1 in 

Altura: 10,627 in 

Dados da malha 

Nº nós: 273 

Nº elementos finitos: 32 

Nº pontos de Hammer 12 

Grau de aproximação na espessura: Linear 

Outros dados 

Δ𝑡: 0,01 s 

Tempo total de análise: 1 s 

Tolerância: 10-6 

Fonte: autor. 

 

Figura 4.9 – Discretização adotada para o exemplo 4.4.2 

 
Fonte: autor. 

 

A validação do código implementado foi efetuada a partir dos valores de deslocamento 

horizontal 𝑢(𝑡)  e do deslocamento vertical 𝑣(𝑡)  inerente ao ponto de aplicação do 

carregamento, considerando os modelos constitutivos de Saint-Venant-Kirchhoff e de Rivlin-

Saunders-Hartmann-Neff. Os resultados obtidos foram comparados com aqueles apresentados 

por V. H. Kishino (2022) e representados em forma de gráficos, conforme a Figura 4.10 e a 

Figura 4.11 para os deslocamentos horizontal e vertical, respectivamente. 
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Figura 4.10 – Gráfico do deslocamento 𝑢(𝑡) x tempo do exemplo numérico 4.4.2 

 
Fonte: autor. 

 

Figura 4.11 – Gráfico do deslocamento 𝑣(𝑡) x tempo do exemplo numérico 4.4.2 

 
Fonte: autor. 
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Observando os resultados mostrados graficamente, nota-se a proximidade dos 

resultados obtidos pelo código desenvolvido em relação àqueles apresentados por V. H. Kishino 

(2022) para ambos modelos constitutivos. Portanto, foi verificada a correta implementação do 

código de análise dinâmica elástica, sendo que a proximidade dos valores obtidos de 

deslocamento entre os dois modelos constitutivos é justificada pelo fato da viga trabalhar em 

regime de pequenas deformações. 

 

4.4.3 Distribuição de tensões em viga engastada e livre sujeita a um carregamento 

uniformemente distribuído 

 

Retirado de Carrazedo e Coda (2017), este exemplo numérico possui como finalidade a 

validação do código implementado para o cálculo das tensões de Cauchy, considerando os 

modelos constitutivos de Saint-Venant-Kirchhoff e Rivlin-Saunders-Hartmann-Neff. O 

problema em questão, referente a uma viga engastada e livre submetida a um carregamento 

uniformemente distribuído (Figura 4.12), é destinado à análise da distribuição das tensões de 

Cauchy em vários pontos ao longo da altura de determinadas seções transversais. Salienta-se 

que a distribuição de tensões empregando os elementos finitos prismáticos de base triangular 

também foi validada pelos autores por meio deste exemplo. 

 

Figura 4.12 – Viga engastada e livre submetida a um carregamento uniformemente distribuído 

 
Fonte: autor. 

 

Ao longo da altura das vigas, foram avaliadas as componentes 𝜎11 (de tensão normal) e 

𝜎13  (de tensão de cisalhamento) das tensões de Cauchy nas linhas das seguintes seções 

transversais: 
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• 𝑥1 = 10/3; 𝑥2 = 0; −5 ≤ 𝑥3 ≤ 5; 

• 𝑥1 = 5; 𝑥2 = 0; −5 ≤ 𝑥3 ≤ 5; 

• 𝑥1 = 20; 𝑥2 = 0; −5 ≤ 𝑥3 ≤ 5; 

• 𝑥1 = 50; 𝑥2 = 0; −5 ≤ 𝑥3 ≤ 5. 

 

Para o presente exemplo numérico, foram adotados os dados exibidos na Figura 4.13 e 

a discretização conforme a Figura 4.14. 

 

Figura 4.13 – Dados adotados no exemplo 4.4.3 

Parâmetros mecânicos 

𝐸: 1 

𝜈: 0 

Carga 𝑞: 1,0.10-6  

Dados geométricos 

Comprimento: 100 

Largura: 50 

Altura: 10 

Dados da malha 

Nº nós: 1830 

Nº elementos finitos: 240 

Nº pontos de Hammer 12 

Grau de aproximação na espessura: Linear 

Outros dados 

Tolerância: 10-6 

Fonte: autor. 

 

Figura 4.14 – Discretização adotada para o exemplo 4.4.3 

 
Fonte: autor. 
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Pelo fato da estrutura trabalhar em regime de pequenos deslocamentos, são válidas as 

comparações dos resultados obtidos numericamente para as distribuições de tensões 𝜎11 e 𝜎13 

com as soluções analíticas da Resistência dos Materiais, as quais são expressas respectivamente 

por: 

 
𝜎11 = (−

𝑞𝑙2

2
+ 𝑞𝑙𝑥1 −

𝑞𝑥1
2

2
)
𝑥3
𝐼𝑧

 (217) 

 
𝜎13 =

3

2𝐴
(−𝑞𝑥1 + 𝑞𝑙) (1 −

4𝑥3
2

ℎ2
) (218) 

nas quais o carregamento uniformemente distribuído 𝑞 é dado por unidade de comprimento. 

Portanto, é preciso multiplicar o valor do carregamento 𝑞 apresentado na Figura 4.13 (dado por 

unidade de área) pela largura da viga para a sua utilização nas formulações acima. 

A seguir, são apresentadas em forma de gráficos as distribuições de tensões 𝜎11 e 𝜎13 

resultantes da análise numérica comparadas com as suas soluções analíticas na Figura 4.15 e na 

Figura 4.16, respectivamente. 
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Figura 4.15 – Distribuições das tensões 𝜎11 nas seções transversais da viga do exemplo 4.4.3 

 
Fonte: autor. 

 

Saint-Venant-Kirchhoff

Rivlin-Saunders-Hartmann-Neff
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Figura 4.16 – Distribuições das tensões 𝜎13 nas seções transversais da viga do exemplo 4.4.3 

 
Fonte: autor. 

 

Saint-Venant-Kirchhoff

Rivlin-Saunders-Hartmann-Neff
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Observando os gráficos, nota-se que os valores das tensões normais 𝜎11 determinados 

numericamente e analiticamente são praticamente iguais. É válido afirmar o mesmo para as 

tensões de cisalhamento 𝜎13, com exceção dos resultados referentes à seção transversal 𝑥1 =

10/3, mais próxima do engaste. Essa diferença pode ser explicada pela hipótese cinemática 

simplificada considerada pela solução analítica (principalmente para as regiões próximas ao 

engaste). Portanto, foi verificada a correta implementação do código de cálculo das tensões de 

Cauchy a partir dos resultados apresentados. 

 

4.4.4 Cubo comprimido sujeito a grandes deformações 

 

O objetivo deste exemplo numérico, proposto por V. H. Kishino (2022), consiste em 

verificar a melhor adequação do modelo constitutivo de Rivlin-Saunders-Hartmann-Neff em 

relação ao modelo constitutivo de Saint-Venant-Kirchhoff em problemas de grandes 

deformações. 

O problema analisado corresponde a um cubo de dimensões unitárias com o controle de 

posição Δ𝑧 = −0,9 nos nós da face superior (𝑧 = 1,0), conforme exibido na Figura 4.17. As 

restrições de deslocamento foram aplicadas nos nós das faces 𝑥 = 0 , 𝑦 = 0  e 𝑧 = 0  nas 

direções 𝑥, 𝑦 e 𝑧, respectivamente. 

 

Figura 4.17 – Cubo comprimido sujeito a grandes deformações 

 
Fonte: autor. 

 

Os dados e a discretização adotados para o presente exemplo de validação são 

apresentados, respectivamente, através da Figura 4.18 e da Figura 4.19.  
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Figura 4.18 – Dados adotados no teste de validação 4.4.4 

Parâmetros mecânicos 

𝐸: 1 

𝜈: 0,4 

Dados geométricos 

Comprimento: 1 

Largura: 1 

Altura: 1 

Dados da malha 

Nº nós: 32 

Nº elementos finitos: 2 

Nº pontos de Hammer 12 

Grau de aproximação na espessura: Linear 

Outros dados 

Tolerância: 10-6 

Fonte: autor. 

 

Figura 4.19 – Discretização adotada para o exemplo 4.4.4 

 
Fonte: autor. 

 

A análise dos resultados obtidos foi efetuada com base nos gráficos plotados de tensão 

de Cauchy por deformação longitudinal linear (|𝜎33| x |𝜆3 − 1|) para cada um dos dois modelos 

constitutivos adotados, conforme exibidos na Figura 4.20. Na Figura 4.21 são apresentadas as 

configurações atuais do cubo no último passo de análise (Δ𝑧 = −0,9) com os seus respectivos 

valores de tensão 𝜎33. 
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Figura 4.20 – Gráficos |𝜎33| x |𝜆3 − 1| do exemplo numérico 4.4.4 referentes ao modelo constitutivo 

de: Saint-Venant-Kirchhoff e Rivlin-Saunders-Hartmann-Neff 

 

 
Fonte: autor. 
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Figura 4.21 – Configurações atuais do cubo no último passo de análise (Δ𝑧 = −0,9) com os seus 

respectivos valores de tensão 𝜎33 do exemplo numérico 4.4.4 referentes ao modelo constitutivo de: 

Saint-Venant-Kirchhoff e Rivlin-Saunders-Hartmann-Neff 

Fonte: autor. 
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É possível notar a partir dos gráficos que o modelo de Rivlin-Saunders-Hartmann-Neff 

respeita a condição de crescimento, a qual é dada pela Equação (145), fato que não foi 

verificado para o caso do modelo de Saint-Venant-Kirchhoff. Portanto, comprovou-se que o 

modelo constitutivo hiperelástico de Rivlin-Saunders-Hartmann-Neff é, de fato, mais adequado 

para a resolução de problemas que envolvem grandes deformações. 
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5 PLASTICIDADE 

 

Este capítulo é dedicado à apresentação dos conceitos teóricos da plasticidade, 

subdividido em duas seções. A primeira seção é referente a uma breve introdução à teoria da 

plasticidade clássica, contemplando as formulações da plasticidade em regime de pequenas 

deformações. Já a segunda seção é destinada à apresentação do modelo elasto-plástico 

alternativo para grandes deformações adotado no presente trabalho, o qual foi proposto por 

Coda (2021, 2022). 

 

5.1 Uma breve fundamentação da plasticidade clássica 

 

Apesar da formulação do modelo de plasticidade adotado no presente trabalho seja 

destinado ao regime de grandes deformações, apresenta-se nesta seção alguns conceitos 

fundamentais da teoria clássica da plasticidade em regime de pequenas deformações para 

embasar a apresentação subsequente do modelo elasto-plástico alternativo.  

 

5.1.1 Conceituação preliminar  

 

A teoria da plasticidade, como um ramo da mecânica do contínuo, estuda a deformação 

inelástica dos sólidos, descrevendo o estado de tensões e deformações ou taxas de deformação 

nos corpos solicitados mecanicamente. Na prática, muitos materiais trabalham elasticamente 

até um determinado nível de tensão (tensão de escoamento), porém, a partir dessa tensão limite, 

passam a apresentar comportamento plástico. Dessa forma, a teoria da plasticidade é 

complementar à teoria da elasticidade para o estudo do comportamento dos sólidos e a 

combinação dessas duas propriedades do material é denominada elasto-plasticidade (Bruhns, 

2020). 

É possível observar o desenvolvimento de deformações plásticas em vários materiais, 

como é o caso dos metais, dos solos e dos polímeros (Lubliner, 2008). Tratando-se 

especificamente de metais, investigações em nível microestrutural indicam que a causa do 

fenômeno de plastificação é a movimentação irreversível das imperfeições nas sequências das 

ligações atômicas sem ocorrência de rupturas internas ou perda de coesão (Proença, 2018). 

Segundo Lin (1971), a teoria da plasticidade pode ser classificada em dois grupos: o 

primeiro é conhecido como teoria matemática da plasticidade, enquanto a outra, como teoria 
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física da plasticidade. As teorias matemáticas apresentam maior simplicidade em relação às 

teorias físicas, visando a facilidade de aplicação às análises mecânicas e, conforme apontado 

por Drucker (1962), consistem em uma formalização dos resultados experimentais conhecidos, 

desprovida de uma investigação detalhada associada aos fundamentos físicos e químicos. 

Ainda de acordo com Lin (1971), as teorias físicas, por outro lado, buscam explicar os 

fenômenos a partir dos fundamentos físicos e químicos sem se limitar à simplicidade das 

abordagens matemáticas, estudando, por exemplo, a relação tensão-deformação plástica dos 

sólidos em nível microestrutural. Ressalta-se que, neste trabalho, a teoria da plasticidade é 

apresentada a partir de uma abordagem matemática, sem se preocupar com os fundamentos 

físicos e químicos do material em nível microestrutural. 

 

5.1.2 Relação constitutiva entre tensão e deformação – plasticidade unidimensional 

 

Por meio de um ensaio de tração uniaxial de um material metálico conduzido até a sua 

ruptura, é possível plotar um gráfico que expressa a relação entre tensão nominal (𝜎 ) e 

deformação linear (𝜀 ), semelhante àquele apresentado na Figura 5.1. Já na Figura 5.2, é 

esquematizado graficamente o comportamento típico de material metálico submetido à tração 

até atingir o trecho plástico de encruamento e descarregado na sequência. 

 

Figura 5.1 – Gráfico tensão nominal x deformação linear característico de material metálico 

 
Fonte: autor. 
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Figura 5.2 – Gráfico tensão nominal x deformação linear característico de material metálico submetido 

à tração até o trecho plástico de encruamento e descarregado na sequência 

 
Fonte: adaptado de Dieter (1988). 

 

Analisando os gráficos mostrados acima, observa-se que o trecho inicial elástico 

obedece a lei de Hooke, ou seja, apresenta relação de proporcionalidade entre 𝜎 e 𝜀 até atingir 

o limite de proporcionalidade (ponto A da Figura 5.2). Na sequência, verifica-se um trecho com 

uma inclinação levemente diferente da anterior, sem identificação clara do ponto limite de 

escoamento que define a transição do trecho elástico para o trecho plástico. Dessa forma, o 

ponto de escoamento é definido pelas normas internacionais como o ponto da curva 

interseccionada pela reta com inclinação elástica cujo ponto inicial (descarregado) é marcado 

pela deformação de 0,2% (ponto B da Figura 5.2) (Dieter, 1988; Yuan et al., 2021).  

Como pode ser observado na Figura 5.1, o trecho plástico pode ser subdividido em duas 

fases: de encruamento e de estricção. A fase plástica de encruamento tem início e fim definidos, 

respectivamente, pelo ponto de escoamento e pelo ponto de resistência última do material, onde 

é verificado o ganho de resistência e corresponde a um trecho estável (Proença, 2018). 

 Já a fase plástica de estricção é caracterizada pelo amolecimento do material, na qual 

observa-se a perda de resistência, ou seja, ocorre a redução da tensão acompanhada do aumento 

da deformação e o tensor constitutivo tangente deixa de ser positivo definido. Essa perda da 

capacidade resistente é associada aos danos distribuídos progressivos (como microfissuras 

dispersas), à formação de vazios ou à perda de contato entre as partículas do material. O 



112 

 

amolecimento ocorre não apenas na tração, mas também na compressão e no cisalhamento 

(Bazant; Belytschko; Chang, 1984; Proença, 2018). 

Em materiais com comportamento elasto-plástico, observa-se a ocorrência de 

descarregamento elástico ao retirar o carregamento, mesmo que a tensão no material tenha 

superado a tensão de escoamento. Como pode ser visto na Figura 5.2, a inclinação da reta de 

descarregamento corresponde à inclinação do trecho inicial elástico, equivalente ao módulo de 

elasticidade longitudinal (𝐸 = 𝜎/𝜀 – lei de Hooke). Apesar do valor da tensão no material ser 

nula após o descarregamento completo, verifica-se a existência de deformação plástica residual 

(𝜀𝑝𝑙𝑎𝑠𝑡) que, juntamente com a deformação elástica (𝜀𝑒𝑙𝑎𝑠𝑡), compõem a deformação total no 

ponto C. Dessa forma, em regime de pequenas deformações, a deformação total pode ser dada 

pela soma dessas duas parcelas: 

 𝜀𝑡𝑜𝑡𝑎𝑙 = 𝜀𝑒𝑙𝑎𝑠𝑡 + 𝜀𝑝𝑙𝑎𝑠𝑡 (219) 

Na literatura, frequentemente as curvas 𝜎 x 𝜀 são aproximadas por meio de diversos 

modelos elasto-plásticos, de acordo com a relevância da deformação elástica e do ganho de 

resistência por encruamento do material. Pode-se mencionar, dentre os modelos que são 

empregados com uma maior frequência, (a) o modelo elasto-plástico perfeito, (b) o modelo 

elasto-plástico com encruamento linear, (c) o modelo rígido-plástico perfeito e (d) o modelo 

rígido-plástico com encruamento linear, representados graficamente na Figura 5.3. 
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Figura 5.3 – Representação gráfica dos modelos: (a) elasto-plástico perfeito; (b) elasto-plástico com 

encruamento linear; (c) rígido-plástico perfeito; (d) rígido-plástico com encruamento linear 

 

 
Fonte: adaptado de Kelly (2013). 

 

Os modelos perfeitamente plásticos são particularmente apropriados para o estudo de 

materiais metálicos sujeitos a elevada temperatura, como é o caso de problemas de laminação 

a quente, onde o ganho de resistência por encruamento é pequeno. Tratando-se de problemas 

de engenharia em que os materiais desenvolvem grandes deformações (conformação de metais, 

por exemplo), as deformações elásticas podem ser totalmente desprezadas (por serem 

irrelevantes em relação às deformações plásticas) e a relação constitutiva do material pode ser 

representada por meio dos modelos (c) ou (d). O modelo rígido-plástico perfeito é o mais 

rudimentar dentre os modelos mencionados, o qual é aplicável, por exemplo, na análise de 

estabilidade de solos e rochas (Kelly, 2013). 
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5.1.3 Incompressibilidade 

 

Bridgman (1952), em seus estudos, estabeleceu dois princípios básicos da plasticidade 

metálica, sendo o primeiro referente à incompressibilidade dos materiais metálicos na fase 

plástica e o segundo, à independência da tensão hidrostática no escoamento. Posteriormente, 

surgiram vários estudos acerca da plasticidade metálica clássica baseada nos dois princípios 

supracitados, como pode ser visto em Mendelson (1968) e Hill (1998). Mesmo após décadas, 

foram preservadas as abordagens clássicas para a plasticidade dos metais, assumindo que o 

escoamento é desvinculado da tensão hidrostática e que o material é incompressível na fase 

plástica, como pode-se observar em Stouffer e Dame (1996) e Lubliner (2008) (Wilson, 2002). 

Para maiores detalhes das formulações relativas à incompressibilidade, recomenda-se a leitura 

dos trabalhos de R. T. Kishino (2022) e V. H. Kishino (2022). 

 

5.1.4 Critério de plastificação de von Mises 

 

Na subseção 5.1.2, foi comentado sobre a existência de domínio elástico delimitado pela 

tensão de escoamento do material (𝜎𝑦 ) para o caso unidimensional. Para se realizar a 

representação matemática de modelos multidimensionais, primeiramente, introduz-se uma 

expressão dada em função da tensão uniaxial (𝜎) e 𝜎𝑦: 

 𝐹(𝜎) = |𝜎| − 𝜎𝑦 ≤ 0 (220) 

 A relação acima possui um papel fundamental no modelo matemático da plasticidade, 

por estabelecer um critério, denominado critério de plastificação, que é essencial para 

identificar a natureza (elástica ou plástica) da resposta constitutiva do material sujeito à tensão 

𝜎. Caso 𝐹(𝜎) < 0, a tensão pertence ao domínio elástico e, caso 𝐹(𝜎) = 0 a tensão está em 

regime plástico, já a condição 𝐹(𝜎) > 0 é considerada inadmissível e indica a necessidade de 

corrigir (na plasticidade perfeita) o nível de tensão para o cumprimento do critério.  

Tratando-se de casos tridimensionais, a plastificação do material é dada em função de 

todas as componentes de tensão. Admitindo que um determinado estado de tensão consiste em 

um ponto pertencente ao espaço das tensões, todos os estados de tensão que provocam o 

escoamento do material geram uma superfície contínua, denominada superfície de plastificação, 

a qual segmenta o espaço das tensões em dois domínios: admissível e inadmissível, sendo o 

espaço admissível também denominado elástico. Qualquer evolução plástica ocorre sobre a 

superfície de plastificação, cujas dimensões e posição no espaço das tensões pode mudar a 
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depender do encruamento do material. Genericamente, a função do critério de plastificação para 

o caso tridimensional pode ser expressa como: 

 𝐹(𝜎𝑖𝑗) = 𝜎(𝜎𝑖𝑗) − 𝜎𝑦 ≤ 0 (221) 

em que 𝜎 corresponde à tensão escalar equivalente, calculado a partir de um determinado estado 

de tensão dado na forma tensorial 𝜎𝑖𝑗. Ressalta-se que o estado de tensão se encontra sobre a 

superfície de plastificação quando 𝐹(𝜎𝑖𝑗) = 0, sendo que esta pode permanecer inalterável 

(plasticidade perfeita) no espaço das tensões ou evoluir (devido ao encruamento do material). 

No presente trabalho, foi admitido o critério de plastificação de von Mises (Mises, 1913), 

comumente aplicado a materiais dúcteis e um dos mais difundidos dentre os critérios existentes 

na literatura. Conforme indicado por Bridgman (1952), para materiais metálicos, por exemplo, 

a plastificação é independente da componente hidrostática da tensão. Dessa forma, o 

escoamento é dado somente em função da componente desviadora da tensão (𝜎𝑖𝑗
𝑑𝑒𝑠𝑣) e o critério 

de von Mises estabelece que o início da plastificação do material é marcado pela seguinte 

condição: 

  (𝜎11 − 𝜎22)
2 + (𝜎22 − 𝜎33)

2 + (𝜎33 − 𝜎11)
2 + 6(𝜎12

2 + 𝜎13
2 + 𝜎23

2 )  = 2𝜎𝑦
2

= 6𝐽2 = 3𝜎𝑖𝑗
𝑑𝑒𝑠𝑣𝜎𝑖𝑗

𝑑𝑒𝑠𝑣 = 9𝜏𝑜𝑐𝑡
2  

(222) 

na qual 𝐽2  corresponde ao segundo invariante da componente desviadora da tensão e 𝜏𝑜𝑐𝑡 

refere-se à tensão de cisalhamento octaédrica. Para mais detalhes referentes à dedução do 

critério de plastificação de von Mises, é indicada a leitura dos trabalhos de R. T. Kishino (2022) 

e V. H. Kishino (2022). 

Caso seja admitido o sistema de coordenadas principais, os termos fora da diagonal do 

tensor 𝜎𝑖𝑗 são nulos (𝜎12 = 𝜎21 = 𝜎13 = 𝜎31 = 𝜎23 = 𝜎32 = 0), existindo somente as tensões 

principais (𝜎1
𝑝

, 𝜎2
𝑝

 e 𝜎3
𝑝

), e a Equação (222) é simplificada na seguinte forma: 

 (𝜎1
𝑝 − 𝜎2

𝑝)
2
+ (𝜎2

𝑝 − 𝜎3
𝑝)
2
+ (𝜎3

𝑝 − 𝜎1
𝑝)
2
= 2𝜎𝑦

2 = 6𝐽2 = 3𝜎𝑖𝑗
𝑑𝑒𝑠𝑣𝜎𝑖𝑗

𝑑𝑒𝑠𝑣

= 9𝜏𝑜𝑐𝑡
2  

(223) 

A Equação (223) é representada graficamente por um cilindro de extremidades abertas 

no espaço das tensões principais, cujo eixo (hidrostático) é normal ao plano octaédrico, 

conforme esquematizado na Figura 5.4.  
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Figura 5.4 – Representação da superfície de von Mises no espaço das tensões principais 

 
Fonte: adaptado de Wierzbicki (2013). 

 

A tensão equivalente de von Mises (𝜎𝑉𝑀) consiste em uma medida de tensão escalar 

empregada na previsão do escoamento do material submetido às condições complexas de 

carregamento multiaxial, e o seu valor é equivalente à tensão de escoamento caso o estado de 

tensões esteja localizado sobre a superfície de plastificação. Por meio da Equação (223), obtém-

se a expressão da tensão de von Mises para o sistema de coordenadas principais: 

 

𝜎𝑉𝑀 = √
1

2
[(𝜎1

𝑝 − 𝜎2
𝑝)
2
+ (𝜎2

𝑝 − 𝜎3
𝑝)
2
+ (𝜎3

𝑝 − 𝜎1
𝑝)
2
] (224) 

ou, ainda, utilizando outras formas dadas na Equação (223): 

 

𝜎𝑉𝑀 = √3𝐽2 = √
3

2
𝜎𝑖𝑗
𝑑𝑒𝑠𝑣𝜎𝑖𝑗

𝑑𝑒𝑠𝑣 = √
9

2
𝜏𝑜𝑐𝑡 (225) 

Assim, por meio da substituição da segunda forma da Equação (225) na tensão 

equivalente (𝜎) da Equação (220), obtém-se a expressão da função do critério de plastificação 

de von Mises considerando a plasticidade perfeita: 



117 

 

 

𝐹(𝜎𝑖𝑗) = √
3

2
𝜎𝑖𝑗
𝑑𝑒𝑠𝑣𝜎𝑖𝑗

𝑑𝑒𝑠𝑣 − 𝜎𝑦 ≤ 0 (226) 

 

5.1.4.1 Critério de plastificação de von Mises considerando encruamento 

 

Na Equação (226), foi apresentada a expressão do critério de plastificação de von Mises 

admitindo o modelo elasto-plástico perfeito, em que a superfície de plastificação permanece 

inalterada no espaço das tensões. Na sequência, são mostrados os desenvolvimentos relativos à 

função do critério de plastificação considerando encruamento isótropo e cinemático. 

O encruamento é caracterizado pelo ganho de resistência do material ao serem 

submetidos à deformação plástica. Caso um determinado nível de tensão seja capaz de gerar 

deformação plástica, será preciso um nível de tensão superior (ao nível de tensão prévio) para 

dar sequência ao fluxo de deformação (DeGarmo; Black; Kohser, 2007). Segundo Lemaitre 

(2001), o encruamento pode possuir duas causas físicas: acúmulo de discordâncias 

(encruamento isótropo) ou presença de tensões residuais internas na rede cristalina 

(encruamento cinemático). 

Introduzido por Odqvist (1933), ao admitir a ocorrência de encruamento isótropo, a 

superfície de plastificação se expande uniformemente em torno do eixo hidrostático (conforme 

esquematizado na Figura 5.5) (Cazacu; Revil-Baudard, 2021; Fjær et al., 2021) e a sua evolução 

é definida em função da deformação plástica. A expressão do critério de plastificação 

considerando encruamento isótropo pode ser escrita genericamente como: 

 

𝐹(𝜎𝑖𝑗 , 𝜅) = 𝜎𝑉𝑀(𝜎𝑖𝑗) − (𝜎𝑦 + 𝜅) = √
3

2
𝜎𝑖𝑗
𝑑𝑒𝑠𝑣𝜎𝑖𝑗

𝑑𝑒𝑠𝑣 − (𝜎𝑦 + 𝜅) ≤ 0 (227) 

em que 𝜅  corresponde ao parâmetro de encruamento isótropo que descreve a evolução da 

superfície de plastificação. 
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Figura 5.5 – Representação esquemática da evolução da superfície de plastificação do critério de von 

Mises atrelada ao encruamento isótropo 

 
Fonte: autor. 

 

Já no caso do encruamento cinemático, introduzido por Prager (1956), considera-se que 

a superfície de plastificação sofre uma translação no espaço das tensões sem apresentar 

mudanças no tamanho e na forma (translação de corpo rígido), a qual é controlada pelo back 

stress 𝜒 (tensão de retorno), conforme esquematizado na Figura 5.6. A expressão do critério de 

plastificação considerando encruamento cinemático pode ser reformulada como: 

 

𝐹(𝜎𝑖𝑗 , 𝜒𝑖𝑗) = 𝜎𝑉𝑀(𝜎𝑖𝑗 , 𝜒𝑖𝑗) − 𝜎𝑦 = √
3

2
(𝜎𝑖𝑗

𝑑𝑒𝑠𝑣 − 𝜒𝑖𝑗
𝑑𝑒𝑠𝑣)(𝜎𝑖𝑗

𝑑𝑒𝑠𝑣 − 𝜒𝑖𝑗
𝑑𝑒𝑠𝑣) − 𝜎𝑦

≤ 0 

(228) 

na qual 𝜒𝑖𝑗
𝑑𝑒𝑠𝑣 refere-se à componente desviadora do back stress 𝜒𝑖𝑗. 
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Figura 5.6 – Representação esquemática da translação da superfície de plastificação do critério de von 

Mises atrelada ao encruamento cinemático 

 
Fonte: autor. 

 

Ainda, existe a possibilidade de combinar os modelos de encruamento isótropo e 

cinemático e, nesse caso, a expressão do critério de plastificação passa a ser dada por: 

 𝐹(𝜎𝑖𝑗 , 𝜅, 𝜒𝑖𝑗) = 𝜎𝑉𝑀(𝜎𝑖𝑗 , 𝜒𝑖𝑗) − (𝜎𝑦 + 𝜅)

= √
3

2
(𝜎𝑖𝑗

𝑑𝑒𝑠𝑣 − 𝜒𝑖𝑗
𝑑𝑒𝑠𝑣)(𝜎𝑖𝑗

𝑑𝑒𝑠𝑣 − 𝜒𝑖𝑗
𝑑𝑒𝑠𝑣) − (𝜎𝑦 + 𝜅) ≤ 0 

(229) 

 

5.1.5 Lei de evolução plástica 

 

O comportamento plástico dos materiais pode ser descrito por meio de uma relação 

tensão-deformação plástica, denominada lei de evolução plástica (Kelly, 2013). As leis de 

evolução podem ser escritas como: 

 
𝜀𝑖̇𝑗
𝑝𝑙𝑎𝑠𝑡 = 𝜆̇

𝜕𝑔(𝜎𝑖𝑗)

𝜕𝜎𝑖𝑗
 (230) 

sendo 𝜀𝑖̇𝑗
𝑝𝑙𝑎𝑠𝑡

 o tensor de fluxo da deformação plástica, 𝜆̇ o módulo da taxa de deformação 

plástica que pode assumir valor nulo (quando não ocorre evolução plástica) ou positivo (quando 

ocorre evolução plástica) e 𝑔 o potencial plástico, independente da tensão hidrostática. 

A lei de evolução plástica pode ser classificada em dois grupos (Lubliner, 2008): 

I) Lei de evolução plástica associativa, caso a função do potencial plástico esteja associada 

à função do critério de plastificação, ou seja, 𝑔(𝜎𝑖𝑗) = 𝐹(𝜎𝑖𝑗); 
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II) Lei de evolução plástica não associativa, caso contrário, ou seja, 𝑔(𝜎𝑖𝑗) ≠ 𝐹(𝜎𝑖𝑗). 

Portanto, a expressão da lei de evolução plástica associativa pode ser reescrita a partir 

da Equação (230) como: 

 
𝜀𝑖̇𝑗
𝑝𝑙𝑎𝑠𝑡 = 𝜆̇

𝜕𝐹(𝜎𝑖𝑗)

𝜕𝜎𝑖𝑗
 (231) 

Analisando a Equação (231), observa-se que 𝜀𝑖̇𝑗
𝑝𝑙𝑎𝑠𝑡

 é proporcional ao gradiente 

𝜕𝐹(𝜎𝑖𝑗)/𝜕𝜎𝑖𝑗. Portanto, verifica-se que a direção do fluxo da deformação plástica é normal à 

superfície de plastificação no processo de evolução. 

 

5.2 Modelo elasto-plástico alternativo para grandes deformações 

 

O modelo elasto-plástico alternativo adotado no presente trabalho corresponde àquele 

proposto por Coda (2021, 2022), cujas formulações são desenvolvidas a partir da decomposição 

do tensor de alongamento à direita de Cauchy-Green em partes volumétrica e isocóricas, de 

forma a possibilitar a divisão da energia específica de deformação em uma parcela volumétrica 

e duas parcelas isocóricas, conforme apresentado no item 4.3.1. A presente formulação admite 

três hipóteses: 

I) As variações volumétricas são exclusivamente elásticas; 

II) As deformações plásticas são desviadoras em qualquer instante; 

III) As evoluções independentes das tensões hidrostáticas são asseguradas pela 

decomposição multiplicativa do gradiente da função mudança de configuração em 

parcelas volumétrica e isocóricas. 

 

A seguir, são apresentadas as formulações do modelo elasto-plástico alternativo com 

base em Coda (2021, 2022), R. T. Kishino (2022) e V. H. Kishino (2022). 

 

5.2.1 Limite de plastificação 

 

O modelo elasto-plástico alternativo implementado neste trabalho admite o critério de 

plastificação de von Mises. A função do critério sem considerar a evolução por encruamento, 

introduzida na Equação (226), é dada em notação dyadica por: 
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√
3

2
𝝈𝑑𝑒𝑠𝑣 ∶ 𝝈𝑑𝑒𝑠𝑣 − 𝜎𝑦 ≤ 0 (232) 

Para os desenvolvimentos subsequentes, admite-se a tensão cisalhante de escoamento 

(𝜏̅) ao invés da tensão normal de escoamento (𝜎𝑦), as quais são relacionadas da seguinte forma: 

 𝜏̅ =
𝜎𝑦

2
 (233) 

Portanto, a expressão do critério de plastificação de von Mises pode ser reescrita como: 

 

√
3

2
𝝈𝑑𝑒𝑠𝑣 ∶ 𝝈𝑑𝑒𝑠𝑣 − 2𝜏̅ ≤ 0 (234) 

Considerando a correspondência das parcelas isocóricas da tensão de Piola-Kirchhoff 

de segunda espécie (𝑺𝑖𝑠𝑜𝑐1  e 𝑺𝑖𝑠𝑜𝑐2 ) às componentes desviadoras da tensão de Cauchy, 

demonstrada no item 4.3.6, segmenta-se o critério de von Mises para cada uma das duas 

direções isocóricas existentes: 

 

{
 
 

 
 
√
3

2
𝑺𝑖𝑠𝑜𝑐1 ∶ 𝑺𝑖𝑠𝑜𝑐1 − 𝜏1̅ ≤ 0

√
3

2
𝑺𝑖𝑠𝑜𝑐2 ∶ 𝑺𝑖𝑠𝑜𝑐2 − 𝜏2̅ ≤ 0

 (235) 

a qual pode ser reescrita como: 

 

{

3

2
𝑺𝑖𝑠𝑜𝑐1 ∶ 𝑺𝑖𝑠𝑜𝑐1 − (𝜏1̅)

2 ≤ 0

3

2
𝑺𝑖𝑠𝑜𝑐2 ∶ 𝑺𝑖𝑠𝑜𝑐2 − (𝜏̅2)

2 ≤ 0

 (236) 

Substituindo-se as Equações (189) e (190) na Equação (236), as relações passam a ser 

expressas em função das direções isocóricas: 

 

{
 

 
3𝐺2

32
𝕰𝑖𝑠𝑜𝑐1 ∶ 𝕰𝑖𝑠𝑜𝑐1 − (𝜏1̅)

2 ≤ 0

3𝐺2

32
𝕰𝑖𝑠𝑜𝑐2 ∶ 𝕰𝑖𝑠𝑜𝑐2 − (𝜏2̅)

2 ≤ 0

 (237) 

A partir deste ponto do desenvolvimento, as notações foram unificadas a fim de evitar 

redundâncias nos próximos desenvolvimentos. Primeiramente, a partir de Coda (2022), nas 

Equações (236) e (237) foi assumido que 𝜏1̅ = 𝜏2̅ = 𝜏̅. Além disso, as notações 𝕰𝑖𝑠𝑜𝑐1 e 𝕰𝑖𝑠𝑜𝑐2 

foram unificadas como 𝕰. Dessa forma, reescreve-se a expressão anterior de forma unificada 

como: 
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 3𝐺2

32
𝕰 ∶ 𝕰 − 𝜏̅2 ≤ 0 (238) 

Por fim, ressalta-se que, diferentemente das formulações clássicas da plasticidade que 

apresentam somente uma única superfície de plastificação, existem duas superfícies de 

plastificação nesta formulação alternativa. Cada uma das duas superfícies iniciais de 

plastificação pode ser obtida por meio da imposição da igualdade na Equação (238). 

 

5.2.2 Evolução plástica 

 

O critério dado pela Equação (238) ainda não contempla a evolução plástica e o fluxo 

plástico prévio, necessitando, ainda, de uma adaptação. Comenta-se que a evolução das 

variáveis pode ser associada ao que foi definido por fluxo ou taxa na seção 5.1 (plasticidade 

clássica). Primeiramente, definem-se a evolução da deformação plástica (Δ𝕰𝑝𝑙𝑎𝑠𝑡) e a variação 

da tensão plástica (Δ𝑺𝑝𝑙𝑎𝑠𝑡) como:  

 
Δ𝕰𝑝𝑙𝑎𝑠𝑡 = Δ𝜆

𝕰

√𝕰 ∶ 𝕰
 (239) 

 
Δ𝑺𝑝𝑙𝑎𝑠𝑡 =

𝐺

4
Δ𝜆

𝕰

√𝕰 ∶ 𝕰
 (240) 

nas quais Δ𝜆 refere-se à variação (evolução) do multiplicador plástico e o termo 𝕰/√𝕰 ∶ 𝕰, às 

direções isocóricas unitárias da evolução da deformação plástica. 

É importante comentar que não é possível proceder a uma acumulação do tipo 𝑺𝑝𝑙𝑎𝑠𝑡 =

𝑺𝑝𝑙𝑎𝑠𝑡 + Δ𝑺𝑝𝑙𝑎𝑠𝑡, pela possibilidade de, em regime de grandes deformações, um valor prévio 

de Δ𝑺𝑝𝑙𝑎𝑠𝑡 deixar de ser isocórico. Tendo isso em vista, a expressão da tensão plástica (𝑺𝑝𝑙𝑎𝑠𝑡) 

é escrita como:  

 
𝑺𝑝𝑙𝑎𝑠𝑡 =

𝐺

4
𝜆𝜁

𝕰

√𝕰 ∶ 𝕰
 (241) 

sendo 𝜆𝜁 a deformação plástica escalar, na qual é atribuída a evolução plástica: 

 𝜆𝜁 = (𝜆𝜁)
𝑎𝑐
+ 𝜁Δ𝜆 (242) 

em que o termo sobrescrito 𝑎𝑐 indica que a variável detém valor acumulado e 𝜁 refere-se ao 

sinal da evolução plástica, definida posteriormente na Equação (248). 

Observa-se que, pela existência da proporcionalidade entre 𝑺𝑝𝑙𝑎𝑠𝑡 e 𝕰, a segunda e a 

terceira hipótese da formulação (comentadas no início da seção 5.2) são verificadas. Além disso, 

nota-se que, diferentemente das formulações clássicas da plasticidade, a direção do fluxo 

plástico nesta formulação é independente de um potencial plástico. Por fim, o potencial 
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hiperelástico volumétrico (modelo constitutivo de Hartmann-Neff) garante que a condição 𝐽 >

0 seja sempre atendida, evitando, dessa forma, a autointersecção do material. 

 

5.2.3 Encruamento isótropo 

 

O módulo de encruamento isótropo (𝐻𝑖) é admitido constante ao longo das iterações de 

um mesmo passo de análise do processo de solução numérica e dependente do multiplicador 

plástico 𝜆. Primeiramente, é definida a variável 𝜂 como: 

 
𝜂(𝜆) =

𝐻𝑖(𝜆)

𝐺/4 
 (243) 

O valor do multiplicador plástico é acumulado conforme a expressão abaixo: 

 𝜆 = 𝜆𝑎𝑐 + Δ𝜆 (244) 

Por fim, determina-se a evolução da variável interna inerente ao encruamento isótropo 

(𝜅) a partir da seguinte expressão:  

 𝜅 = 𝜅𝑎𝑐 + 𝜂(𝜆)Δ𝜆 (245) 

 

5.2.4 Encruamento cinemático 

 

Semelhantemente ao módulo de encruamento isótropo, o módulo de encruamento 

cinemático (𝐻𝑐) também é considerado constante ao longo das iterações de um mesmo passo 

de análise, entretanto, o seu valor é definido em função da deformação plástica escalar 𝜆𝜁 . 

Assim, define-se a variável 𝛽 como: 

 
𝛽(𝜆𝜁) =

𝐻𝑐(𝜆𝜁)

𝐺/4 
 (246) 

Na sequência, pode-se calcular o valor da variável interna do encruamento cinemático 

(𝑞) através da seguinte expressão: 

 𝑞 = 𝑞𝑎𝑐 + 𝛽(𝜆𝜁)𝜁Δ𝜆 (247) 

sendo o sinal da evolução da deformação plástica escalar dado por:  

 𝜁 = 𝑠𝑖𝑔𝑛(√𝕰 ∶ 𝕰 − 𝜆𝜁 − 𝑞) (248) 

Por fim, o back stress pode ser determinado a partir da expressão abaixo: 

 
𝝌 =

𝐺

4
𝑞

𝕰

√𝕰 ∶ 𝕰
 (249) 
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5.2.5 Função do critério de plastificação 

 

Para as operações descritas a seguir, adota-se uma notação unificada 𝑺𝑖𝑠𝑜𝑐  para as 

componentes isocóricas da tensão de Piola-Kirchhoff de segunda espécie 𝑺𝑖𝑠𝑜𝑐1 e 𝑺𝑖𝑠𝑜𝑐2. A 

tensão a ser admitida para o cálculo do valor da função do critério de plastificação é dada por:  

Desenvolvendo a Equação (250), obtém-se: 

 
𝑺 =

𝐺

4
𝕰 −

𝐺

4
𝜆𝜁

𝕰

√𝕰 ∶ 𝕰
−
𝐺

4
𝑞

𝕰

√𝕰 ∶ 𝕰
=
𝐺

4
(1 −

𝜆𝜁

√𝕰 ∶ 𝕰
−

𝑞

√𝕰 ∶ 𝕰
)𝕰 (251) 

A partir da expressão anterior, tem-se que:  

 
𝑺 ∶ 𝑺 =

𝐺2

16
(1 −

𝜆𝜁

√𝕰 ∶ 𝕰
−

𝑞

√𝕰 ∶ 𝕰
)

2

𝕰 ∶ 𝕰 (252) 

Ressalta-se que a expressão da tensão completa (𝑺𝑐𝑜𝑚𝑝) é dada por: 

 𝑺𝑐𝑜𝑚𝑝 = (𝑺𝑣𝑜𝑙)𝑒𝑙𝑎𝑠𝑡 + (𝑺𝑖𝑠𝑜𝑐1)
𝑒𝑝
+ (𝑺𝑖𝑠𝑜𝑐2)

𝑒𝑝
 (253) 

sendo (𝑺𝑣𝑜𝑙)𝑒𝑙𝑎𝑠𝑡 a tensão elástica volumétrica definida pela Equação (188). Assumindo-se a 

notação unificada 𝑺𝑒𝑝  para representar as duas parcelas isocóricas da tensão elasto-plástica 

(𝑺𝑖𝑠𝑜𝑐1)
𝑒𝑝

 e (𝑺𝑖𝑠𝑜𝑐2)
𝑒𝑝

, a expressão unificada para a tensão elasto-plástica isocórica pode ser 

definida como: 

 
𝑺𝑒𝑝 = 𝑺𝑖𝑠𝑜𝑐 − 𝑺𝑝𝑙𝑎𝑠𝑡 =

𝐺

4
(1 −

𝜆𝜁

√𝕰 ∶ 𝕰
)𝕰 (254) 

Por fim, a função do critério de plastificação (𝑓), introduzida na Equação (238), pode 

ser reescrita considerando a evolução do tamanho (encruamento isótropo) e a translação 

(encruamento cinemático) das superfícies de plastificação como:  

 

𝑓 =
3𝐺2

32
(1 −

𝜆𝜁

√𝕰 ∶ 𝕰
−

𝑞

√𝕰 ∶ 𝕰
)

2

𝕰 ∶ 𝕰 − (√
3

2

𝐺

4
𝜅 + 𝜏̅ )

2

≤ 0 (255) 

 

5.2.6 Cálculo do multiplicador plástico 

 

A ocorrência da evolução plástica pode ser averiguada por meio do valor assumido pela 

função do critério de plastificação, dada pela Equação (255). Caso 𝑓 > 0 , é verificada a 

violação do critério: 

 𝑺 = 𝑺𝑖𝑠𝑜𝑐 − 𝑺𝑝𝑙𝑎𝑠𝑡 − 𝝌 (250) 
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𝑓𝑡𝑟 =
3𝐺2

32
[1 −

(𝜆𝜁)
𝑎𝑐

√𝕰𝑡𝑟 ∶ 𝕰𝑡𝑟
−

𝑞𝑎𝑐

√𝕰𝑡𝑟 ∶ 𝕰𝑡𝑟
]

2

𝕰𝑡𝑟 ∶ 𝕰𝑡𝑟 − (√
3

2

𝐺

4
𝜅𝑎𝑐 + 𝜏̅ )

2

> 0 

(256) 

na qual o termo sobrescrito 𝑡𝑟 é inerente à tentativa elástica sem evolução plástica (previsão 

elástica).  

Em casos de violação do critério, o nível de tensão desenvolvido deve permanecer sobre 

a superfície de plastificação. Tal condição é satisfeita por meio da imposição da igualdade na 

Equação (256) e da introdução da evolução das variáveis internas definidas em função de Δ𝜆, 

resultando em: 

 3𝐺2

32
{1 −

[(𝜆𝜁)
𝑎𝑐
+ 𝑞𝑎𝑐]

√𝕰𝑡𝑟 ∶ 𝕰𝑡𝑟
− 𝜁(1 + 𝛽)

Δ𝜆

√𝕰𝑡𝑟 ∶ 𝕰𝑡𝑟
}

2

𝕰𝑡𝑟 ∶ 𝕰𝑡𝑟

= [√
3

2

𝐺

4
(𝜅𝑎𝑐 + 𝜂Δ𝜆) + 𝜏̅]

2

 

(257) 

Pelo fato dos módulos de encruamento isótropo e cinemático serem admitidos 

constantes ao longo das iterações, o valor de Δ𝜆 pode ser determinado por meio da fórmula de 

Bhaskara, equivalente ao menor valor positivo dentre 𝛥𝜆1 e 𝛥𝜆2: 

 

{
  
 

  
 

𝛥𝜆1 =

√𝕰𝑡𝑟 ∶ 𝕰𝑡𝑟 − [(𝜆𝜁)
𝑎𝑐
+ 𝑞𝑎𝑐] − 𝜅𝑎𝑐 −

𝜏̅

√
3

2

𝐺

4

𝜁(1 + 𝛽) + 𝜂

𝛥𝜆2 =

√𝕰𝑡𝑟 ∶ 𝕰𝑡𝑟 − [(𝜆𝜁)
𝑎𝑐
+ 𝑞𝑎𝑐] + 𝜅𝑎𝑐 +

𝜏̅

√
3

2

𝐺

4

𝜁(1 + 𝛽) − 𝜂

 (258) 

Na Figura 5.7, apresenta-se o pseudocódigo que resume as operações realizadas no 

modelo alternativo de plasticidade apropriado para grandes deformações implementado no 

programa. Os procedimentos em questão são executados após o cálculo da tensão elástica de 

Piola-Kirchhoff de segunda espécie (utilizando o modelo hiperelástico de Rivlin-Saunders-

Hartmann-Neff). 
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Figura 5.7 – Pseudocódigo do algoritmo do modelo alternativo de plasticidade em grandes 

deformações 

Para cada uma das duas direções isocóricas: 

1 Previsão elástica – Cálculo de 𝑓𝑡𝑟 → Equação (256) 

2 Se 𝑓𝑡𝑟 > 0 (violação do critério de plastificação) 

3  Cálculo de 𝜂 → Equação (243) 

4  Cálculo de 𝛽 → Equação (246) 

5  Determinação de 𝜁 → Equação (248) 

6  Cálculo de Δ𝜆1 e Δ𝜆2 → Equação (258) 

7  Atribuição do menor valor positivo dentre Δ𝜆1 e Δ𝜆2 a Δ𝜆 

8  Incremento de 𝜆 → Equação (244) 

9  Incremento de 𝜅 → Equação (245) 

10  Incremento de 𝜆𝜁 → Equação (242) 

11  Incremento de 𝑞 → Equação (247) 

12  Cálculo de 𝑺𝑝𝑙𝑎𝑠𝑡 → Equação (241) 

13  Cálculo de 𝝌 → Equação (249) 

14 Senão 

15  Variação do multiplicador plástico nula (Δ𝜆 ← 0) 

16 Fim do loop 

Fonte: autor. 

 

Após a determinação das tensões plásticas 𝑺𝑝𝑙𝑎𝑠𝑡1 e 𝑺𝑝𝑙𝑎𝑠𝑡2, calcula-se a tensão total de 

Piola-Kirchhoff de segunda espécie (𝑺𝑡𝑜𝑡𝑎𝑙) através da subtração da parcela plástica em relação 

à parcela elástica: 

 𝑺𝑡𝑜𝑡𝑎𝑙 = 𝑺𝑒𝑙𝑎𝑠𝑡 − 𝑺𝑝𝑙𝑎𝑠𝑡 = 𝑺𝑣𝑜𝑙 + 𝑺𝑖𝑠𝑜𝑐1 + 𝑺𝑖𝑠𝑜𝑐2 − 𝑺𝑝𝑙𝑎𝑠𝑡1 − 𝑺𝑝𝑙𝑎𝑠𝑡2 (259) 

Em casos específicos de exemplos envolvendo carregamentos cíclicos (plasticidade 

cíclica), há a possibilidade de ocorrer mau condicionamento da Equação (241) e gerar 

resultados indesejáveis. Devido à ausência de aplicações envolvendo plasticidade cíclica neste 

trabalho, as estratégias de resolução desse tipo de problema não foram abordadas, sendo 

indicada a leitura dos trabalhos de R. T. Kishino (2022) e de V. H. Kishino (2022) para esse 

caso em específico. 

 

5.2.7 Cálculo do tensor constitutivo elasto-plástico tangente 

 

Devido à validade da Equação (240) em um determinado instante, é possível reescrever 

a Equação (254) da seguinte forma: 

 𝑺𝑒𝑝 = 𝑺𝑖𝑠𝑜𝑐 − (𝑺𝑝𝑙𝑎𝑠𝑡)𝑎𝑐 − Δ𝑺𝑝𝑙𝑎𝑠𝑡 (260) 
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Considerando que (𝑺𝑝𝑙𝑎𝑠𝑡)𝑎𝑐 não apresenta variação e Δ𝑺𝑝𝑙𝑎𝑠𝑡 corresponde a um valor 

finito, escreve-se a variação da tensão elasto-plástica como: 

 
𝛿𝑺𝑒𝑝 =

𝜕𝑺𝑖𝑠𝑜𝑐

𝜕𝔼
∶ 𝛿𝔼 −

𝜕Δ𝑺𝑝𝑙𝑎𝑠𝑡

𝜕𝔼
∶ 𝛿𝔼 =

𝐺

4

𝜕𝕰

𝜕𝔼
∶ 𝛿𝔼 −

𝐺

4
Δ𝜆
𝜕𝕰

𝜕𝔼
∶ 𝛿𝔼

=
𝐺

4
(1 − Δ𝜆)

𝜕2𝐼 ̅

𝜕𝔼⊗ 𝜕𝔼
∶ 𝛿𝔼 

(261) 

Dessa forma, determina-se a expressão do tensor constitutivo elasto-plástico tangente 

isocórico (ℭ𝑒𝑝,𝑖𝑠𝑜𝑐): 

 
ℭ𝑒𝑝,𝑖𝑠𝑜𝑐 =

𝐺

4
(1 − Δ𝜆)

𝜕2𝐼 ̅

𝜕𝔼⊗ 𝜕𝔼
=
𝐺

4

𝜕2𝐼 ̅

𝜕𝔼⊗ 𝜕𝔼
−
𝐺

4
Δ𝜆

𝜕2𝐼 ̅

𝜕𝔼⊗ 𝜕𝔼

= ℭ𝑖𝑠𝑜𝑐 − ℭ𝑝𝑙𝑎𝑠𝑡 

(262) 

sendo o termo 𝜕2𝐼/̅𝜕𝔼⊗ 𝜕𝔼 contemplado nas Equações (201) e (202),  ℭ𝑖𝑠𝑜𝑐  definido nas 

Equações (171) e (172) e ℭ𝑝𝑙𝑎𝑠𝑡  o tensor constitutivo plástico tangente. Salienta-se que a 

parcela volumétrica do tensor constitutivo elasto-plástico tangente é puramente elástica. 

 Através da expressão anterior, observa-se que a equação do tensor constitutivo plástico 

tangente é definida como: 

 
ℭ𝑝𝑙𝑎𝑠𝑡 =

𝐺

4
Δ𝜆

𝜕2𝐼 ̅

𝜕𝔼⊗ 𝜕𝔼
 (263) 

 Portanto, para um ponto de integração em regime plástico, o tensor constitutivo tangente 

total (ℭ𝑡𝑜𝑡𝑎𝑙) é determinado subtraindo-se a parcela plástica da parcela elástica, sendo esta 

calculada através da Equação (169): 

 ℭ𝑡𝑜𝑡𝑎𝑙 = ℭ𝑒𝑙𝑎𝑠𝑡 − ℭ𝑝𝑙𝑎𝑠𝑡 (264) 

O procedimento descrito nesta subseção é executado subsequentemente ao cálculo do 

tensor constitutivo elástico tangente (Figura 4.2), caso o ponto de integração esteja plastificando. 

 

5.3 Exemplos numéricos 

 

Nesta seção são apresentados dois exemplos numéricos de validação do modelo elasto-

plástico alternativo para grandes deformações implementado no programa. O primeiro exemplo 

é destinado à validação do modelo elasto-plástico considerando encruamento isótropo, 

enquanto o segundo exemplo, à validação do mesmo modelo adotando encruamento cinemático. 
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5.3.1 Casca hemisférica elasto-plástica com encruamento isótropo 

 

Este primeiro exemplo numérico se trata de uma estrutura de casca hemisférica 

submetida a quatro carregamentos concentrados (nas direções 𝑥 e 𝑦), conforme ilustrado na 

Figura 5.8. O presente problema é frequentemente adotado como exemplo de benchmarking 

por diversos autores para a validação do modelo elasto-plástico de casca considerando 

encruamento isótropo em regime de grandes deslocamentos.  

Devido à simetria do problema, somente um quarto da estrutura foi modelada com 

imposição das condições de contorno de superfícies deslizantes nos dois planos de simetria 

(restrição dos deslocamentos nas direções 𝑦 e 𝑥 nos nós pertencentes, respectivamente, aos 

planos de simetria 𝑥𝑧 e 𝑦𝑧) e o valor dos carregamentos solicitantes foi reduzido pela metade 

(por estarem aplicados nos nós pertencentes aos planos de simetria). Além disso, o 

deslocamento vertical 𝑧 no nó do topo da estrutura foi restrito a fim de eliminar movimento de 

corpo rígido. 

 

Figura 5.8 – Esquema estrutural da casca hemisférica 

 
Fonte: autor. 

 

Os parâmetros mecânicos e os dados geométricos adotados neste exemplo foram 

retirados de Eberlein e Wriggers (1999) e Li et al. (2017) e apresentados na Figura 5.9, 

juntamente com os demais dados de interesse. A discretização adotada para a estrutura analisada 

é exibida na Figura 5.10. 

Diferentemente desses autores que utilizaram elementos de casca, no presente trabalho 

foram empregados elementos prismáticos para a modelagem e discretização dos corpos 

analisados. Dessa forma, foi assumido que o valor do raio que consta nas bibliografias de 
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referência corresponde ao valor do raio médio e, na sequência, foram determinados os valores 

do raio interno e do raio externo, respectivamente, pela subtração e pela adição da metade da 

espessura ao raio médio. Destaca-se que os carregamentos concentrados foram aplicados nos 

nós da superfície externa.  

Figura 5.9 – Dados adotados no exemplo de validação 6.3.1 

Parâmetros mecânicos 

𝐾: 5,5556 kN/cm² 

𝐺: 4,1667 kN/cm² 

𝜎𝑦: 0,2 kN/cm² 

𝐻𝑖: 9,0 kN/cm² 

Carga 𝑃: 30,0 N 

Dados geométricos 

Raio interno: 9,75 cm  

Raio externo: 10,25 cm 

Dados da malha 

Nº nós: 5512 

Nº elementos finitos: 294 

Nº pontos de Hammer 12 

Grau de aproximação na espessura: Cúbica 

Outros dados 

Tolerância: 10-6 

Fonte: autor. 

 

Figura 5.10 – Discretização adotada para o exemplo 6.3.1 

 
Fonte: autor. 
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Os resultados obtidos pelo código desenvolvido foram organizados e representados na 

Figura 5.11 em forma de gráfico de deslocamentos nas direções 𝑦 e 𝑥 aferidos, respectivamente, 

nos pontos A e B por forças aplicadas correspondentes. Os resultados extraídos de Eberlein e 

Wriggers (1999) são aqueles obtidos utilizando elementos finitos de casca de 6 parâmetros. A 

configuração final da estrutura foi ilustrada na Figura 5.12 com as escalas de cores 

representando o campo de deslocamentos nas direções 𝑥 e 𝑦. 

 

Figura 5.11 – Gráfico força x deslocamento horizontal do exemplo numérico 6.3.1  

 
Fonte: autor. 
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Figura 5.12 – Configuração final da casca hemisférica do exemplo numérico 6.3.1  

Fonte: autor. 

 

 



132 

 

É possível verificar, a partir do gráfico exibido acima, que os resultados obtidos com o 

código desenvolvido foram bastante próximos em relação àqueles apresentados por Eberlein e 

Wriggers (1999) e Li et al. (2017). Dessa forma, o modelo elasto-plástico alternativo 

implementado foi validado com sucesso para o caso do encruamento isótropo em estrutura 

desenvolvendo grandes deslocamentos. 

 

5.3.2 Viga elasto-plástica com encruamento cinemático 

 

O segundo exemplo numérico é referente a uma viga elasto-plástica engastada e livre 

submetida a um carregamento transversal na sua extremidade livre, a qual desenvolve grandes 

deslocamentos e grandes deformações e encontra-se esquematizada na Figura 5.13. Este 

problema foi simulado numericamente por Kondoh e Atluri (1987) e Park e Lee (1996) 

empregando elementos finitos de pórtico. A fim de evitar a plastificação localizada na 

extremidade livre da viga por ação do carregamento concentrado, optou-se por aplicá-lo de 

forma uniformemente distribuída na face frontal da estrutura. 

Considerando a simetria do problema, modelou-se apenas metade da estrutura com 

restrição de deslocamento na direção da largura da viga nos nós pertencentes ao plano de 

simetria (condição de contorno de superfície deslizante). Dessa forma, foi evitada a ocorrência 

de instabilidades laterais na estrutura ao longo da análise. Além disso, os deslocamentos 

relativos aos nós do engaste foram restritos nas três direções do espaço. 

 

Figura 5.13 – Configuração geométrica da viga elasto-plástica 

 
Fonte: autor. 

 

Kondoh e Atluri (1987) efetuaram a análise empregando um modelo constitutivo elasto-

plástico bilinear. Dessa forma, visando reproduzir a relação constitutiva do material (sujeito às 

grandes deformações) assumida pelos autores em questão, houve a necessidade de calibrar os 

valores do módulo de encruamento cinemático por meio do teste de tração uniaxial. No teste, 
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foi considerado um cubo elasto-plástico apoiado sobre três superfícies deslizantes (restrições 

de deslocamento aplicadas nos nós das faces 𝑥 = 0 , 𝑦 = 0  e 𝑧 = 0  nas direções 𝑥 , 𝑦  e 𝑧 , 

respectivamente), o qual foi alongado na direção 𝑧 por controle de posição dos nós da face 

superior (𝑧 = 1 in), conforme esquematizado na Figura 5.14. 

 

Figura 5.14 – Esquematização do teste de tração uniaxial para calibração do módulo de encruamento 

cinemático para o exemplo 5.3.2 

 
Fonte: autor. 

 

Através do teste de tração uniaxial, foram calibrados os seguintes valores para o módulo 

de encruamento cinemático para cada um dos intervalos correspondentes de deformação 

plástica (𝜆𝜁), sendo a relação entre tensão de Cauchy (𝜎33) e deformação longitudinal linear 

(𝜆3 − 1) do material representada em forma de gráfico na Figura 5.15: 

a. 𝐻𝑐 = 8,5 ⋅ 104 psi caso  0,0 ≤ 𝜆𝜁 < 0,1; 

b. 𝐻𝑐 = 8,7 ⋅ 104 psi caso  0,1 ≤ 𝜆𝜁 < 0,2; 

c. 𝐻𝑐 = 9,1 ⋅ 104 psi caso  0,2 ≤ 𝜆𝜁 < 0,4; 

d. 𝐻𝑐 = 9,5 ⋅ 104 psi caso  0,4 ≤ 𝜆𝜁 < 0,6; 

e. 𝐻𝑐 = 10,0 ⋅ 104 psi caso  0,6 ≤ 𝜆𝜁 < 1,0; 

f. 𝐻𝑐 = 10,6 ⋅ 104 psi caso  1,0 ≤ 𝜆𝜁 < 1,5; 

g. 𝐻𝑐 = 10,9 ⋅ 104 psi caso  1,5 ≤ 𝜆𝜁 < 2,0; 

h. 𝐻𝑐 = 11,2 ⋅ 104 psi caso  2,0 ≤ 𝜆𝜁 < 5,0. 
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Figura 5.15 – Gráfico 𝜎 x 𝜀 do ensaio de tração uniaxial material do exemplo numérico 5.3.2  

 
Fonte: autor. 

 

Os dados mecânicos e geométricos assumidos neste problema foram retirados de 

Kondoh e Atluri (1987) e apresentados na Figura 5.16, juntamente com os demais dados 

pertinentes. Já a discretização adotada para a viga elasto-plástica é mostrada na Figura 5.17.    
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Figura 5.16 – Dados adotados no exemplo de validação 5.3.2 

Parâmetros mecânicos 

𝐸: 3,0.107 psi 

𝜈: 0,0 

𝜎𝑦: 3,0.104 psi 

𝐻𝑐: 

𝐻𝑐 = 8,5 ⋅ 104 psi caso  0,0 ≤ 𝜆𝜁 < 0,1; 

𝐻𝑐 = 8,7 ⋅ 104 psi caso  0,1 ≤ 𝜆𝜁 < 0,2; 

𝐻𝑐 = 9,1 ⋅ 104 psi caso  0,2 ≤ 𝜆𝜁 < 0,4; 

𝐻𝑐 = 9,5 ⋅ 104 psi caso  0,4 ≤ 𝜆𝜁 < 0,6; 

𝐻𝑐 = 10,0 ⋅ 104 psi caso  0,6 ≤ 𝜆𝜁 < 1,0; 

𝐻𝑐 = 10,6 ⋅ 104 psi caso  1,0 ≤ 𝜆𝜁 < 1,5; 

𝐻𝑐 = 10,9 ⋅ 104 psi caso  1,5 ≤ 𝜆𝜁 < 2,0; 

𝐻𝑐 = 11,2 ⋅ 104 psi caso  2,0 ≤ 𝜆𝜁 < 5,0 

Carga 𝑃: 750 lb (metade do valor original devido à simetria adotada) 

Dados geométricos 

Comprimento: 5,0 in 

Altura: 0,5 in  

Largura: 0,1 in 

Dados da malha 

Nº nós: 1196 

Nº elementos finitos: 120 

Nº pontos de Hammer 12 

Grau de aproximação na espessura: Linear 

Outros dados 

Tolerância: 10-4 

Fonte: autor. 

 

Figura 5.17 – Discretização adotada para o exemplo 5.3.2 

 
Fonte: autor. 

 

Através dos resultados obtidos com o código desenvolvido, plotou-se o gráfico de força 

aplicada por posição horizontal e deslocamento vertical (aferidos no baricentro da face da 

extremidade livre da viga), apresentado na Figura 5.18. Além disso, as configurações finais das 
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fases de carregamento e descarregamento foram ilustradas na Figura 5.19 (deslocamentos 𝑥 e 

𝑦 referentes às direções horizontal e vertical, respectivamente). 

 

Figura 5.18 – Gráfico força x posição horizontal / deslocamento vertical do exemplo numérico 5.3.2   

 
Fonte: autor. 
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Figura 5.19 – Configurações finais das fases de carregamento e descarregamento do exemplo 

numérico 5.3.2  

 
Fonte: autor. 

 

A partir do gráfico apresentado acima, observa-se uma proximidade satisfatória entre os 

resultados obtidos por meio do código desenvolvido e aqueles apresentados por Kondoh e 

Atluri (1987) e Park e Lee (1996), tanto para a fase de carregamento quanto para a fase de 

descarregamento. Portanto, foi possível validar com sucesso o modelo elasto-plástico 

alternativo implementado considerando encruamento cinemático. 
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6 VISCOSIDADE 

 

Diferentemente das deformações plásticas que, comumente são independentes da taxa 

(as tensões induzidas no material são independentes da taxa de deformação), nos fluidos 

viscosos, por exemplo, os níveis de tensão são governados pela taxa de deformação por meio 

da viscosidade do fluido (Kelly, 2013). Apesar da viscosidade estar forte e diretamente 

associada aos fluidos, essa propriedade reológica também é aplicável aos sólidos. 

Os materiais que apresentam tanto comportamento elástico quanto viscoso são 

denominados viscoelásticos e, devido à viscosidade, a sua resposta é dependente da taxa de 

deformação/carregamento. De forma semelhante, caso os efeitos relativos ao processo de 

plastificação sejam dependentes da taxa de deformação/carregamento, o material é denominado 

viscoplástico. Como exemplos de materiais que exibem dependência em relação à taxa, pode-

se mencionar polímeros, asfalto, concreto e metais submetidos a elevados níveis de temperatura 

(Kelly, 2013; Lubliner, 2008; Reddy, 2013). 

As teorias da Mecânica do Contínuo apresentadas anteriormente neste trabalho foram 

descritas com enfoque na Mecânica dos Sólidos. Tendo isso em vista, é importante comentar 

que as equações de equilíbrio em tensões, apresentadas no item 2.4, também são válidas para 

fluidos. A diferença básica para a descrição do comportamento de sólidos e fluidos reside na 

lei constitutiva, considerando sistemas adiabáticos. Para fluidos, o seu comportamento 

cisalhante deve ser descrito a partir de um modelo de viscosidade, o qual pode descrever 

comportamento de fluidos newtonianos (relação linear entre tensão e taxa de deformação) ou 

não-newtonianos (relação não-linear entre tensão e taxa de deformação), enquanto o seu 

comportamento volumétrico pode ser descrito utilizando-se um modelo elástico Lagrangeano 

desde que a cinemática das deformações esteja definida adequadamente (Kishino, R. T., 2022). 

Neste capítulo, é apresentado, baseado no trabalho de R. T. Kishino (2022), um modelo 

alternativo de viscosidade para grandes deformações com uma descrição Lagrangeana total, 

cuja formulação é unificada, com capacidade de descrever o comportamento tanto de sólidos 

quanto de fluidos (viscosos e compressíveis). 

 

6.1 Modelos de viscosidade para pequenas deformações 

 

Apesar da formulação do modelo de viscosidade considerado neste trabalho seja 

destinado à resolução de problemas em regime de grandes deformações, a sua formulação é 
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baseada nos conceitos fundamentais da teoria clássica da viscosidade em regime de pequenas 

deformações. Tendo esse aspecto em vista, apresenta-se brevemente nesta seção os modelos 

clássicos da viscoelasticidade e viscoplasticidade comumente empregados na literatura.  

 

6.1.1 Modelos viscoelásticos 

 

Em regime de pequenas deformações, o comportamento viscoelástico do material pode 

ser modelado por meio de modelos viscoelásticos lineares, os quais apresentam uma relação de 

proporcionalidade direta entre tensão e história de deformação (Banks; Hu; Kenz, 2011). 

Uma compreensão qualitativa do comportamento viscoelástico dos materiais pode ser 

proporcionada por meio de representações esquemáticas utilizando análogos mecânicos, 

construídos por meio da associação de mola e amortecedor. Para uma resposta linear, são 

utilizadas combinações de molas elásticas lineares e amortecedores viscosos lineares (Reddy, 

2013). 

De acordo com a teoria clássica da elasticidade (regime de pequenas deformações), a 

relação constitutiva dos sólidos perfeitamente elásticos é descrita pela lei de Hooke, em que a 

tensão no material é diretamente proporcional à deformação e independente da taxa de 

deformação, com resposta elástica instantânea (Ferry, 1980). A relação constitutiva uniaxial da 

mola hookeana (cujo análogo mecânico é esquematizado na Figura 6.1) é descrita pela seguinte 

expressão: 

 𝜎 = 𝐸𝜀 (265) 

Já o comportamento dos fluidos perfeitamente viscosos é descrito pela lei de Newton na 

teoria clássica da hidrodinâmica, a qual afirma que a tensão desenvolvida é diretamente 

proporcional à taxa de deformação e independente da deformação (Ferry, 1980). A parcela 

viscosa do modelo viscoelástico é representado pelo amortecedor newtoniano (o qual é análogo 

a um pistão imerso no fluido viscoso contido em um recipiente, conforme ilustrado na Figura 

6.1). A sua relação reológica unidimensional governada pela lei de Newton é expressa como: 

 𝜎 = 𝜂𝜀̇ (266) 

na qual 𝜂 corresponde à viscosidade do material. 

 



141 

 

Figura 6.1 – Representação da mola hookeana e do amortecedor newtoniano 

 

 
Fonte: autor. 

 

De acordo com Reddy (2013), os dois modelos mais simples que podem ser construídos 

a partir da associação de mola hookeana e amortecedor newtoniano são os modelos de Kelvin-

Voigt e de Maxwell, esquematizados na Figura 6.2. 

 

Figura 6.2 – Representação esquemática dos modelos viscoelásticos de Kelvin-Voigt e Maxwell 

 

 
Fonte: autor. 

 

Para o entendimento dos modelos viscoelásticos introduzidos, parte-se da compreensão 

do funcionamento de cada um dos análogos mecânicos básicos ao serem associados. No caso 

do modelo de Kelvin-Voigt, primeiramente, supõe-se que uma tensão 𝜎 de tração é aplicada 

subitamente em cada uma das duas extremidades do modelo por um tempo ilimitado. Nota-se, 

observando o arranjo, que ambos elementos serão deformados a uma mesma taxa em resposta 

ao carregamento aplicado, ou seja, a mola é impedida de apresentar uma resposta elástica 

instantânea devido à ação do amortecedor, no qual o pistão é lentamente deslocado para fora 

do recipiente por causa da viscosidade do fluido envolvente. Esse processo ocorre 

continuamente até que a configuração final de equilíbrio correspondente à tensão aplicada seja 

atingida pela mola e, nesse estado, o amortecedor é automaticamente desativado e a tensão 

passa a ser integralmente equilibrada pela mola (Malkin; Isayev, 2022). 

No modelo de Kelvin-Voigt, a mola e o amortecedor desenvolvem o mesmo nível de 

deformação ao serem solicitados, porém cada um dos análogos mecânicos é sujeito a níveis 

diferentes de tensão. Observando o arranjo da Figura 6.2, nota-se que a tensão total (𝜎) pode 

ser determinada por meio da soma das tensões solicitantes em cada um dos elementos: 
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 𝜎 = 𝜎𝑒𝑙𝑎𝑠𝑡 + 𝜎𝑣𝑖𝑠𝑐 = 𝐸𝜀 + 𝜂𝜀̇ (267) 

O material descrito pelo modelo de Kelvin-Voigt é capaz de descrever com uma boa 

precisão o fenômeno de fluência em diversos materiais viscoelásticos. Em contrapartida, o 

mesmo é incapaz de modelar adequadamente o fenômeno de relaxação de tensão, por suportar 

a tensão (constante) aplicada por um tempo ilimitado, por conta da mola hookeana que mantém 

o nível de tensão para deformação mantida constante (Banks; Hu; Kenz, 2011; Malkin; Isayev, 

2022). 

Apesar do comportamento descrito pelo modelo de Kelvin-Voigt seja característico de 

um sólido (a aplicação de uma força/tensão constante gera um deslocamento/deformação 

limitado(a)), também é possível reproduzir, por meio deste mesmo modelo, um comportamento 

análogo a um fluido newtoniano impondo-se um valor nulo ao módulo de elasticidade da mola 

hookeana. Nessa situação, o modelo viscoelástico é reduzido a um único elemento de 

amortecedor viscoso, possibilitando, dessa forma, o desenvolvimento ilimitado de deformação. 

Quanto ao modelo de Maxwell, é admitido que, repentinamente, é imposto um 

deslocamento em cada uma das extremidades do análogo mecânico (de forma a alongá-lo) e 

são aplicadas as restrições de deslocamento a esses nós por um tempo ilimitado. Analisando o 

seu modelo esquematizado na Figura 6.2, observa-se que, devido ao deslocamento imposto, a 

mola hookeana é imediatamente alongada e, na sequência, o amortecedor newtoniano é ativado, 

sendo o seu pistão lentamente puxado para fora do recipiente por ação da mola tracionada que 

busca restaurar o seu estado original indeformado e descarregado. Esse processo (relaxação) 

ocorre continuamente até que o comprimento original da mola seja restituído (Malkin; Isayev, 

2022).  

Ao serem conectados em série, a mola e o amortecedor são sujeitos à mesma tensão, 

enquanto as taxas de deformação são distintas entre si. No modelo de Maxwell, a taxa de 

deformação total (𝜀̇) pode ser determinada por meio da soma das taxas de deformação da mola 

(𝜀̇𝑒𝑙𝑎𝑠𝑡) e do amortecedor (𝜀̇𝑣𝑖𝑠𝑐): 

 
𝜀̇ = 𝜀̇𝑒𝑙𝑎𝑠𝑡 + 𝜀̇𝑣𝑖𝑠𝑐 =

𝜎̇

𝐸
+
𝜎

𝜂
 (268) 

Percebe-se que o material descrito pelo modelo de Maxwell é análogo a um fluido, pelo 

fato da aplicação de uma força/tensão constante gerar um deslocamento ilimitado no pistão do 

amortecedor newtoniano, ou seja, corresponde a um modelo de escoamento. Contrariamente ao 

modelo de Kelvin-Voigt, o modelo de Maxwell é capaz de reproduzir o efeito de relaxação, 

entretanto, a sua resposta elástica relativa à tensão aplicada é imediata e, portanto, incapaz de 

reproduzir adequadamente o efeito da fluência (Malkin; Isayev, 2022; Ng, 2019). 
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Ainda, é interessante comentar que, ao supor que a viscosidade representada pelo 

amortecedor newtoniano seja infinita, o tempo de relaxação tende ao infinito. Nesse caso, o 

modelo de Maxwell se torna equivalente a um único elemento de mola hookeana devido à 

ausência de relaxação, e o material descrito pelo modelo viscoelástico em questão passa a se 

comportar como um sólido elástico. 

Baseado nos dois modelos supracitados, foram originados os modelos de três 

parâmetros, os quais podem ser encontrados em Findley, Lai e Onaran (1989) e Huber e 

Tsakmakis (2000). Dentre esses, verifica-se com mais frequência na literatura os modelos 

viscoelásticos de Zener e Boltzmann (Figura 6.3), sendo aquele representado pela associação 

em paralelo de uma mola com o modelo de Maxwell e este, pela associação em série de uma 

mola com o modelo de Kelvin-Voigt. 

 

Figura 6.3 – Representação esquemática dos modelos viscoelásticos de Zener e Boltzmann 

 

 
Fonte: autor. 

 

Analogamente a esses modelos, é possível modelar outros materiais viscoelásticos que 

apresentam comportamentos mais complexos utilizando-se maior quantidade de elementos e/ou 

aprimorando-se os arranjos. 

 

6.1.2 Modelos viscoplásticos e elasto-viscoplásticos 

 

A viscoplascidade corresponde à teoria da Mecânica do Contínuo que descreve as 

respostas mecânicas inelásticas dos sólidos dependentes do tempo (Lemaitre, 2001). 

O comportamento de um material viscoplástico ideal pode ser reproduzido utilizando-

se o modelo de Bingham, o qual é o modelo mais simples da viscoplasticidade construído por 

meio da associação em paralelo do amortecedor newtoniano com o elemento deslizante com 

atrito de Coulomb, conforme esquematizado na Figura 6.4. Um material de Bingham se 

comporta como um sólido rígido até que a tensão de escoamento (𝜎𝑦) seja excedida pela tensão 

desenvolvida no material e, ao ultrapassar essa tensão limite, passa a se comportar como um 
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fluido newtoniano, exibindo uma relação linear entre tensão e taxa de deformação (Butz; von 

Stryk, 2002; Lubliner, 2008; White; Majdalani, 2022). 

 

Figura 6.4 – Representação esquemática do modelo viscoplástico de Bingham 

 

 
Fonte: autor. 

 

O elemento deslizante com atrito de Coulomb, esquematizado na Figura 6.4, atua como 

um limitador de tensão, impedindo o surgimento de níveis de tensão superiores à tensão de 

escoamento e de deformações até o instante em que essa tensão limite seja atingida pela tensão 

desenvolvida no material (Schwer, 1994). 

Por meio da associação do elemento de mola hookeana ao modelo viscoplástico de 

Bingham, torna-se possível a construção de modelos elasto-viscoplásticos. De acordo com 

Irgens (2008), os dois modelos elasto-viscoplásticos mais simples são de Bingham-Maxwell e 

de Bingham-Kelvin, esquematizados na Figura 6.5, os quais podem ser construídos, 

respectivamente, por meio da combinação dos modelos de Bingham e de Maxwell e dos 

modelos de Bingham e de Kelvin-Voigt (substituição do amortecedor newtoniano presente nos 

modelos de Maxwell e Kelvin-Voigt pelo arranjo viscoplástico de Bingham). 

 

Figura 6.5 – Representação esquemática dos modelos elasto-viscoplásticos de Bingham-Maxwell e 

Bingham-Voigt 

 

 
Fonte: autor. 
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Dessa forma, é possível construir diversos modelos viscoplásticos e elasto-

viscoplásticos a partir de associações da mola hookeana, do amortecedor newtoniano e do 

elemento deslizante com atrito de Coulomb. Nesse contexto, é interessante mencionar o modelo 

de Perzyna (1966), reconhecido como primeiro modelo viscoplástico clássico da literatura, cuja 

formulação fornece uma base para várias implementações viscoplásticas computacionais. 

Ainda, como um outro modelo clássico da viscoplasticidade, pode-se citar aquele proposto por 

Duvant e Lions (1976). 

 

6.1.3 Modelos visco-elasto-plásticos 

 

Baseado no modelo viscoelástico de Kelvin-Voigt (Figura 6.2), pode-se construir o 

modelo visco-elasto-plástico (ou viscoelástico-viscoplástico, como é comumente denominado 

na literatura) do tipo Kelvin-Voigt através da substituição da mola hookeana pelo arranjo elasto-

plástico com encruamento, cujo análogo mecânico é esquematizado na Figura 6.6. 

 

Figura 6.6 – Representação esquemática do modelo visco-elasto-plástico do tipo Kelvin-Voigt 

 

 
Fonte: autor. 

 

Através da representação esquemática mostrada acima, observa-se que, devido à 

associação em paralelo do amortecedor newtoniano com o arranjo elasto-plástico com 

encruamento, o modelo em questão apresenta comportamento viscoso tanto para a fase elástica 

quanto para a fase plástica. Destaca-se que, para reproduzir o comportamento de fluidos 
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viscosos, mantém-se no modelo da Figura 6.6 a elasticidade volumétrica e a viscosidade 

cisalhante. 

 

6.2 Modelo de viscosidade adaptado para grandes deformações 

 

Nesta seção é apresentado o modelo implementado de viscosidade adaptado para 

grandes deformações a partir do modelo viscoelástico de Kelvin-Voigt (esquematizado na 

Figura 6.2), com base no trabalho de R. T. Kishino (2022). A adaptação é baseada na 

decomposição de Flory, também utilizada para a descrição de materiais hiperelásticos (item 

4.3.1) e elasto-plásticos que desenvolvem grandes deformações (item 5.2). A combinação do 

modelo elasto-plástico alternativo e do modelo de viscosidade em questão resulta na base da 

formulação do modelo visco-elasto-plástico unificado empregado no presente trabalho, o qual 

possui capacidade de descrever o comportamento tanto de sólidos quanto de fluidos quase-

newtonianos e não-newtonianos. 

A formulação é desenvolvida a partir da substituição do conceito de energia específica 

de deformação pelo de energia livre de Helmholtz, o qual pode ser representado segundo duas 

parcelas, elástica (𝛹𝑒𝑙𝑎𝑠𝑡 ) e viscosa (𝛹𝑣𝑖𝑠𝑐 ), decompostas aditivamente. Na sequência, 

decompõe-se cada uma das duas parcelas em uma componente volumétrica e duas componentes 

isocóricas por meio da decomposição de Flory, como pode ser visto na Equação (162). Assim, 

a expressão da energia livre de Helmholtz pode ser escrita da seguinte forma: 

 𝛹 = 𝛹𝑒𝑙𝑎𝑠𝑡 +𝛹𝑣𝑖𝑠𝑐

= (𝛹𝑒𝑙𝑎𝑠𝑡
𝑣𝑜𝑙 +𝛹𝑒𝑙𝑎𝑠𝑡

𝑖𝑠𝑜𝑐1 +𝛹𝑒𝑙𝑎𝑠𝑡
𝑖𝑠𝑜𝑐2) + (𝛹𝑣𝑖𝑠𝑐

𝑣𝑜𝑙 +𝛹𝑣𝑖𝑠𝑐
𝑖𝑠𝑜𝑐1 +𝛹𝑣𝑖𝑠𝑐

𝑖𝑠𝑜𝑐2) 
(269) 

A partir da derivada da energia livre de Helmholtz em relação à deformação de Green, 

obtém-se a tensão de Piola-Kirchhoff de segunda espécie: 

 
𝑺 =

𝜕𝛹

𝜕𝔼
= (

𝜕𝛹𝑒𝑙𝑎𝑠𝑡
𝑣𝑜𝑙

𝜕𝔼
+
𝜕𝛹𝑒𝑙𝑎𝑠𝑡

𝑖𝑠𝑜𝑐1

𝜕𝔼
+
𝜕𝛹𝑒𝑙𝑎𝑠𝑡

𝑖𝑠𝑜𝑐2

𝜕𝔼
) + (

𝜕𝛹𝑣𝑖𝑠𝑐
𝑣𝑜𝑙

𝜕𝔼
+
𝜕𝛹𝑣𝑖𝑠𝑐

𝑖𝑠𝑜𝑐1

𝜕𝔼
+
𝜕𝛹𝑣𝑖𝑠𝑐

𝑖𝑠𝑜𝑐2

𝜕𝔼
) (270) 

A fim de incorporar a tensão viscosa dada pelo segundo termo em parênteses da Equação 

(270) no processo de solução, assume-se, como uma ideia inicial, que a sua expressão segue o 

modelo viscoelástico de Kelvin-Voigt (Figura 6.2): 

 
𝑺𝑣𝑖𝑠𝑐 =

𝐾̅

4
𝕰̇𝑣𝑜𝑙 +

𝐺̅

4
𝕰̇𝑖𝑠𝑜𝑐1 +

𝐺̅

4
𝕰̇𝑖𝑠𝑜𝑐2 (271) 

sendo 𝑺𝑣𝑖𝑠𝑐  a tensão viscosa de Piola-Kirchhoff de segunda espécie, 𝐾̅  a viscosidade 

volumétrica e 𝐺̅ a viscosidade cisalhante isocórica. 
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Porém, como as derivadas numéricas em relação ao tempo das direções volumétrica e 

isocóricas Lagrangeanas não preservam necessariamente as direções originais, a expressão 

anterior é tomada apenas como uma inspiração para os desenvolvimentos subsequentes. 

Portanto, baseado na Equação (271), define-se a variação do trabalho virtual viscoso como: 

 
𝛿𝛹 =

𝐾̅

4

𝑑𝐽𝛼

𝑑𝑡
𝛿𝐽 +

𝐺̅(𝑖)

4

𝑑𝐼𝑖̅
𝛾

𝑑𝑡
𝛿𝐼𝑖̅

= (
𝐾̅

4
𝛼𝐽𝛼−1𝐽̇

𝜕𝐽

𝜕𝔼
+
𝐺̅1
4
𝛾1𝐼1̅

𝛾1−1𝐼 ̅̇1
𝜕𝐼1̅
𝜕𝔼

+
𝐺̅2
4
𝛾2𝐼2̅

𝛾2−1𝐼 ̅̇2
𝜕𝐼2̅
𝜕𝔼
) ∶ 𝛿𝔼 

(272) 

na qual 𝛼 e 𝛾 são parâmetros de viscosidade adimensionais. Assumindo-se 𝛼 = 1 e 𝛾 = 0,5, é 

possível reproduzir o comportamento de fluidos quase-newtonianos pelo aqui denominado 

modelo visco-hiperelástico de Kelvin-Voigt e outros comportamentos atribuindo-se diferentes 

valores para os parâmetros 𝛼 e 𝛾. 

Tendo em vista a relação de conjugação energética entre a tensão de Piola-Kirchhoff de 

segunda espécie e a deformação de Green, escreve-se a expressão da tensão viscosa a partir da 

Equação (272) como: 

 
𝑺𝑣𝑖𝑠𝑐 =

𝐾̅

4
𝛼𝐽𝛼−1𝐽𝕰̇𝑣𝑜𝑙 +

𝐺̅1
4
𝛾1𝐼1̅

𝛾1−1𝐼 ̅̇1𝕰
𝑖𝑠𝑜𝑐1 +

𝐺̅2
4
𝛾2𝐼2̅

𝛾2−1𝐼 ̅̇2𝕰
𝑖𝑠𝑜𝑐2 (273) 

Visando a capacidade de resolução tanto de problemas de sólidos quanto de fluidos, 

aproximam-se as taxas dos invariantes da deformação por meio de diferenças finitas de primeira 

ordem, resultando na seguinte expressão: 

 
𝑺𝑣𝑖𝑠𝑐 =

𝐾̅

4
𝛼𝐽𝑠+1
𝛼−1 (

𝐽𝑠+1 − 𝐽𝑠
Δ𝑡

)𝕰𝑣𝑜𝑙 +
𝐺̅1
4
𝛾1𝐼 ̅1(𝑠+1)

𝛾1−1 (
(𝐼1̅)𝑠+1 − (𝐼1̅)𝑠

Δ𝑡
)𝕰𝑖𝑠𝑜𝑐1

+
𝐺̅2
4
𝛾2𝐼 ̅2(𝑠+1)

𝛾2−1 (
(𝐼2̅)𝑠+1 − (𝐼2̅)𝑠

Δ𝑡
)𝕰𝑖𝑠𝑜𝑐2 

(274) 

em que os índices subscritos 𝑠 + 1 e 𝑠 indicam, respectivamente, os termos inerentes ao passo 

atual e anterior. 

Em termos operacionais, a tensão viscosa deve ser adicionada à tensão elástica e, caso 

exista, à tensão plástica no procedimento de resolução, mais especificamente na Equação (96), 

no caso de análise visco-elasto-plástica. Essa adaptação é efetuada diretamente na tensão total 

da Equação (96), a qual encontra-se simplesmente dada por 𝑺𝑡𝑜𝑡𝑎𝑙 = 𝜕𝛹/𝜕𝔼, passando a ser 

expressa como:  
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 𝑺𝑡𝑜𝑡𝑎𝑙 = 𝑺𝑒𝑙𝑎𝑠𝑡
𝑣𝑜𝑙 + 𝑺𝑒𝑝 + 𝑺𝑣𝑖𝑠𝑐 = 𝑺𝑒𝑙𝑎𝑠𝑡 − 𝑺𝑝𝑙𝑎𝑠𝑡 + 𝑺𝑣𝑖𝑠𝑐

= (𝑺𝑣𝑜𝑙 + 𝑺𝑖𝑠𝑜𝑐1 + 𝑺𝑖𝑠𝑜𝑐2)
𝑒𝑙𝑎𝑠𝑡

− (𝑺𝑖𝑠𝑜𝑐1 + 𝑺𝑖𝑠𝑜𝑐2)
𝑝𝑙𝑎𝑠𝑡

+ (𝑺𝑣𝑜𝑙 + 𝑺𝑖𝑠𝑜𝑐1 + 𝑺𝑖𝑠𝑜𝑐2)
𝑣𝑖𝑠𝑐

 

(275) 

sendo 𝑺𝑒𝑙𝑎𝑠𝑡
𝑣𝑜𝑙  a tensão elástica volumétrica dada pela Equação (188), 𝑺𝑒𝑝 a tensão elasto-plástica 

(isocórica) obtida pela Equação (254), 𝑺𝑒𝑙𝑎𝑠𝑡 a tensão elástica calculada através da Equação 

(187) e 𝑺𝑝𝑙𝑎𝑠𝑡 a tensão plástica (isocórica) definida na Equação (241). 

A expressão do tensor constitutivo viscoso tangente atual (ℭ𝑣𝑖𝑠𝑐 ), pode ser obtida 

diferenciando-se a Equação (274) em relação à deformação de Green atual: 

 
ℭ𝑣𝑖𝑠𝑐 =

𝜕𝑺𝑣𝑖𝑠𝑐

𝜕𝔼
=
𝐾̅

4Δ𝑡
(𝛼2𝐽𝛼−1𝕰𝑣𝑜𝑙⊗𝕰𝑣𝑜𝑙 + 𝛼𝐽𝛼

𝜕2𝐽

𝜕𝔼⊗ 𝜕𝔼
 )

+
𝐺̅1
4Δ𝑡

(𝛾1
2𝐼1̅
𝛾1−1𝕰𝑖𝑠𝑜𝑐1⊗𝕰𝑖𝑠𝑜𝑐1 + 𝛾1𝐼1̅

𝛾1
𝜕2𝐼1̅

𝜕𝔼⊗ 𝜕𝔼
 )

+
𝐺̅2
4Δ𝑡

(𝛾2
2𝐼2̅
𝛾2−1𝕰𝑖𝑠𝑜𝑐2⊗𝕰𝑖𝑠𝑜𝑐2 + 𝛾2𝐼2̅

𝛾2
𝜕2𝐼2̅

𝜕𝔼⊗ 𝜕𝔼
 ) 

(276) 

Substituindo-se as expressões das direções volumétrica e isocóricas, dadas pelas 

Equações (191), (192) e (193) respectivamente, na Equação (276), obtém-se a expressão final 

do tensor constitutivo viscoso tangente atual: 

 
ℭ𝑖𝑗𝑘𝑙
𝑣𝑖𝑠𝑐 =

1

4Δ𝑡
[𝐾̅ (𝛼2𝐽𝛼−1

𝜕𝐽

𝜕𝔼𝑖𝑗

𝜕𝐽

𝜕𝔼𝑘𝑙
+ 𝛼𝐽𝛼

𝜕2𝐽

𝜕𝔼𝑖𝑗𝜕𝔼𝑘𝑙
 )

+ 𝐺̅1 (𝛾1
2𝐼1̅
𝛾1−1

𝜕𝐼1̅
𝜕𝔼𝑖𝑗

𝜕𝐼1̅
𝜕𝔼𝑘𝑙

+ 𝛾1𝐼1̅
𝛾1

𝜕2𝐼1̅
𝜕𝔼𝑖𝑗𝜕𝔼𝑘𝑙

 )

+ 𝐺̅2 (𝛾2
2𝐼2̅
𝛾2−1

𝜕𝐼2̅
𝜕𝔼𝑖𝑗

𝜕𝐼2̅
𝜕𝔼𝑘𝑙

+ 𝛾2𝐼2̅
𝛾2

𝜕2𝐼2̅
𝜕𝔼𝑖𝑗𝜕𝔼𝑘𝑙

 )] 

(277) 

Analogamente à adaptação da tensão total para contemplar as tensões viscosas, o tensor 

constitutivo tangente completo (ℭ𝑡𝑜𝑡𝑎𝑙) pode ser determinado por meio da soma da parcela 

viscosa às parcelas elástica e plástica (caso exista), sendo as duas últimas parcelas definidas, 

respectivamente, nas Equações (169) e (263). Portanto, ℭ𝑡𝑜𝑡𝑎𝑙 passa a ser definido como:  

 ℭ𝑡𝑜𝑡𝑎𝑙 = ℭ𝑒𝑙𝑎𝑠𝑡 − ℭ𝑝𝑙𝑎𝑠𝑡 + ℭ𝑣𝑖𝑠𝑐 (278) 

o qual é incorporado no processo de solução a partir da sua substituição na Equação (114) para 

o cálculo da matriz hessiana. 

Finalmente, ressalta-se que a formulação apresentada do modelo visco-elasto-plástico é 

unificada para a resolução tanto de problemas de sólidos quanto de fluidos, sendo que a Equação 

(275) é a base para a compreensão da capacidade resolutiva oferecida pela formulação. O bulk 
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modulus nunca assumirá valor nulo, pelo fato de nenhuma aplicação (sólido ou fluido) 

apresentar uma grande variação de volume, justificando a presença da elasticidade volumétrica 

nos problemas. Apresenta-se abaixo resumidamente os tipos básicos de problemas que podem 

ser resolvidos pela formulação: 

a. Sólidos elásticos: constantes viscosas nulas e tensão de escoamento acima dos níveis 

desenvolvidos de tensão elasto-plástica (𝑺𝑒𝑝); 

b. Sólidos elasto-plásticos: constantes viscosas nulas e tensão de escoamento abaixo 

níveis desenvolvidos de tensão elasto-plástica (𝑺𝑒𝑝); 

c. Sólidos viscoelásticos: constantes viscosas não nulas e tensão de escoamento acima 

dos níveis desenvolvidos de tensão elasto-plástica (𝑺𝑒𝑝); 

d. Sólidos visco-elasto-plásticos: constantes viscosas não nulas e tensão de escoamento 

abaixo dos níveis desenvolvidos de tensão elasto-plástica (𝑺𝑒𝑝); 

e. Fluidos viscosos: constantes viscosas não nulas e módulo de elasticidade transversal 

nulo.  

 

6.3 Exemplos numéricos 

 

Nesta seção são apresentados dois exemplos numéricos de validação do modelo 

alternativo de viscosidade para grandes deformações implementado no programa. 

 

6.3.1 Bloco viscoelástico 

 

Este primeiro exemplo numérico tem como objetivo validar o modelo de viscosidade 

implementado para sólidos e a sua capacidade de simular o efeito da fluência, o qual foi 

simulado anteriormente por R. T. Kishino (2022) empregando o mesmo modelo de viscosidade. 

O efeito da fluência foi estudado a partir de um bloco composto por material viscoelástico, 

apoiado sobre três superfícies deslizantes (restrição dos nós pertencentes às faces 𝑥 = 0, 𝑦 = 0 

e 𝑧 = 0, respectivamente, nas direções 𝑥, 𝑦 e 𝑧) e submetido ao carregamento constante de 

tração distribuído na face da coordenada 𝑧 = 1 m, cuja geometria é representada na Figura 6.7. 
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Figura 6.7 – Configuração geométrica do bloco viscoelástico 

 
Fonte: autor. 

 

Visando a reprodução do problema, foram considerados os mesmos valores assumidos 

por R. T. Kishino (2022) para as propriedades mecânicas e reológicas e também para a malha 

de elementos finitos, conforme apresentado na Figura 6.8. A discretização adotada para o 

presente exemplo numérico é ilustrada na Figura 6.9.   
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Figura 6.8 – Dados adotados no exemplo de validação 6.3.1 

Parâmetros mecânicos 

𝐾: 1,5 MPa 

𝐺: 9,0 kPa 

𝜌: 0,0 

Carga de superfície 𝑞: 40,0 kPa 

Parâmetros reológicos 

𝐾̅: 0,0 

𝐺̅: 2,0 kPa.s / 20,0 kPa.s / 200 kPa.s 

𝛾1: 0,5 

𝛾2: 0,5 

Dados geométricos 

Comprimento: 1,0 m 

Altura: 0,5 m  

Largura: 0,5 m 

Dados da malha 

Nº nós: 48 

Nº elementos finitos: 4 

Nº pontos de Hammer 12 

Grau de aproximação na espessura: Linear 

Outros dados 

Tolerância: 10-7 

Δ𝑡: 0,2 s / 4,0 s / 20,0 s 

Fonte: autor. 

 

Figura 6.9 – Discretização adotada para o exemplo 6.3.1 

 
Fonte: autor. 
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O comportamento do bloco viscoelástico foi estudado para três valores distintos de 

viscosidade cisalhante e passo de tempo: 

a. 𝐺̅ = 2,0 kPa.s / Δ𝑡 = 0,2 s; 

b. 𝐺̅ = 20,0 kPa.s / Δ𝑡 = 4,0 s; 

c. 𝐺̅ = 200,0 kPa.s / Δ𝑡 = 20,0 s. 

 

Para cada um dos três casos descritos, foram determinadas utilizando o código 

desenvolvido, a tensão de Cauchy na direção do eixo 𝑧 (𝜎33), decomposta em componentes 

elástica (𝜎33
𝑒𝑙𝑎𝑠𝑡) e viscosa (𝜎33

𝑣𝑖𝑠𝑐), e a deformação de engenharia na mesma direção (𝜆3 − 1), as 

quais foram representadas em forma de gráficos em função do tempo, respectivamente, na 

Figura 6.10, na Figura 6.11 e na Figura 6.12. 

Ressalta-se que, devido à impossibilidade das tensões viscosas apresentarem valores 

nulos no instante inicial da análise, as suas curvas são representadas a partir do primeiro passo 

de tempo no gráfico da Figura 6.11. 

 

Figura 6.10 – Gráfico tensão elástica x tempo do exemplo numérico 6.3.1  

 
Fonte: autor. 
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Figura 6.11 – Gráfico tensão viscosa x tempo do exemplo numérico 6.3.1  

 
Fonte: autor. 

 

Figura 6.12 – Gráfico deformação de engenharia x tempo do exemplo numérico 6.3.1  

 
Fonte: autor. 
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Observa-se, por meio dos três gráficos apresentados acima, que os resultados obtidos 

foram coincidentes com aqueles apresentados por R. T. Kishino (2022). Portanto, foi validado, 

com êxito, o modelo de viscosidade implementado para a análise de sólidos viscoelásticos, 

incluindo a sua capacidade de modelar o efeito da fluência. 

 

6.3.2 Rompimento de barragem 

 

Com o objetivo de validar o modelo de viscosidade implementado para problemas de 

fluidos com superfície livre, simulou-se numericamente um exemplo de rompimento de 

barragem, frequentemente considerado como referência para a validação de código de análise 

de fluidos compressíveis com escoamento de superfície livre. O exemplo é baseado no trabalho 

de Martin e Moyce (1952) que realizaram uma análise experimental, o qual foi reproduzido 

numericamente por Nithiarasu (2005) utilizando formulação Lagrangeana-Euleriana Arbitrária 

(ALE) e também por R. T. Kishino (2022) empregando o mesmo modelo de viscosidade 

considerado neste trabalho. 

O problema em questão consiste em um reservatório de água que se encontra 

inicialmente em repouso, com o domínio do fluido delimitado por duas paredes verticais e uma 

superfície horizontal de base, conforme esquematizado na Figura 6.13. Tais barreiras são 

tratadas como superfícies deslizantes (deslocamento permitido na direção horizontal 𝑥  e 

vertical 𝑦 para o líquido que esteja em contato, respectivamente, com a superfície da base e 

com as paredes verticais). Na sequência, a parede da barragem localizada à direita é subitamente 

removida, ocasionando o início do escoamento do fluido. 
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Figura 6.13 – Configuração geométrica da barragem no estado inicial e esquematização do 

escoamento do fluido após ruptura da parede vertical 

 
Fonte: autor. 

 

Os dados utilizados para o presente exemplo foram retirados de Nithiarasu (2005) e 

organizados na Figura 6.14. O artigo de referência indica que a análise foi efetuada 

considerando fluido incompressível, assumindo-se, dessa forma, um valor elevado para o bulk 

modulus.  

A discretização adotada para a análise é exibida na Figura 6.15 e, por se tratar de um 

problema bidimensional, foram restritos os deslocamentos nos nós pertencentes às faces 

triangulares na direção da altura dos elementos finitos prismáticos, adotando-se aproximação 

linear nessa direção. 
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Figura 6.14 – Dados adotados no exemplo de validação 6.3.2 

Parâmetros mecânicos 

𝐾: 2,15. 109 

𝐺: 1,0 (1ª fase) / 0,0 (2ª fase) 

𝜌: 1,0 

𝑔: 1,0 

Parâmetros reológicos 

𝐾̅: 0,0 

𝐺̅: 0,001 

𝛾1: 0,5 

𝛾2: 0,5 

Dados geométricos 

Comprimento: 0,35 

Altura: 0,70  

Largura: 1,00 

Dados da malha 

Nº nós: 3782 

Nº elementos finitos: 400 

Nº pontos de Hammer 12 

Grau de aproximação na espessura: Linear 

Outros dados 

Tolerância: 10-7 

Δ𝑡: 2,5.10-4 

Tempo total de análise: 1,675 

Fonte: autor. 

 

Figura 6.15 – Discretização adotada para o exemplo 6.3.2 

 
Fonte: autor. 
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O desenvolvimento deste exemplo foi efetuado em duas etapas:  

a. Análise estática: considerando a parede da barragem ainda intacta, foi assumido um 

valor suficientemente pequeno de módulo de elasticidade transversal (𝐺 = 1,0) a 

fim de obter a distribuição inicial de tensão hidrostática, anteriormente ao colapso 

do anteparo vertical; 

b. Análise dinâmica: foi atribuído valor nulo ao módulo de elasticidade transversal e 

removida a parede vertical localizada à direita para dar início à análise dinâmica do 

escoamento do fluido. 

 

A partir dos resultados obtidos com o código desenvolvido, plotou-se um gráfico do 

alargamento relativo da base do fluido (𝐿/𝑊) em relação ao tempo adimensional (𝑡∗), sendo 

este calculado por meio da Equação (279) onde 𝑡  é o tempo real de análise. O gráfico é 

apresentado na Figura 6.16, no qual foram plotados também os resultados experimentais de 

Martin e Moyce (1952) e das simulações numéricas de Nithiarasu (2005) e R. T. Kishino (2022). 

 

𝑡∗ = 𝑡√
2𝑔

𝑊
 (279) 

 

Figura 6.16 – Gráfico alargamento relativo da base x tempo adimensional do exemplo numérico 6.3.2  

 
Fonte: autor. 
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Na Figura 6.17, são apresentados os snapshots do escoamento do fluido, juntamente 

com a escala de cores indicando campo de deslocamento na direção horizontal 𝑥. 

 

Figura 6.17 – Snapshots do escoamento do fluido do exemplo numérico 6.3.2   

 
Fonte: autor. 

 

A partir do gráfico, observou-se um ótimo ajuste da curva obtida pelo código 

computacional desenvolvido com os dados extraídos dos trabalhos de Nithiarasu (2005) e R. T. 

Kishino (2022), além de uma proximidade satisfatória com os resultados experimentais 

disponibilizados por Martin e Moyce (1952). Considerando os resultados satisfatórios obtidos, 

validou-se, com sucesso, o modelo de viscosidade para análise de problemas de escoamento de 

fluidos com superfície livre.  
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7 ANÁLISE TÉRMICA 

 

O presente capítulo é destinado à apresentação dos conceitos envolvidos e das 

estratégias de resolução do problema térmico. Para efetuar a análise térmica em meios contínuos, 

foi adotado o Método dos Elementos Finitos como estratégia numérica, apresentado no item 

7.3.3. A fim de fundamentar os desenvolvimentos conceituais do método supracitado, 

primeiramente são apresentados os desenvolvimentos preliminares para a obtenção da equação 

diferencial de condução de calor transiente em sólidos, seguido de uma breve explanação das 

condições de contorno desse tipo de problema térmico. 

 

7.1 Equação diferencial de condução de calor transiente em sólidos 

 

A condução térmica, como o processo de transferência de calor mais significativo em 

meios sólidos, tem sido estudada há mais de duzentos anos. Proposta pelo matemático e físico 

francês Joseph Fourier em 1822 (Lurie; Belov, 2020), a lei de Fourier de condução de calor 

afirma que o fluxo de calor através de um material é proporcional ao gradiente negativo de 

temperatura. Para materiais isotrópicos e lineares, a lei de Fourier é escrita como: 

 𝑞𝑖 = −𝕜𝜃,𝑖 (280) 

sendo 𝑞𝑖 o vetor fluxo de calor, 𝕜 o coeficiente de condutividade térmica e 𝜃 a temperatura. 

Para os desenvolvimentos das equações diferenciais da condução de calor transiente, 

considera-se um volume de controle 𝑉 (referente ao corpo inteiro, parte do corpo ou mesmo 

uma porção pequena de material em um ponto no espaço) delimitado pela superfície de 

contorno 𝐴 , além dos diferenciais de volume 𝑑𝑉  e de área de superfície 𝑑𝐴 . O sistema é 

assumido como fechado, ou seja, não há troca de massa através da sua fronteira. 

Nesse contexto, é possível escrever, para um determinado volume de controle, a 

expressão da energia interna de um sistema termodinâmico (𝑈 ), gerada internamente ou 

proveniente de um meio externo ao volume, definida em função da energia calorífica por 

unidade de volume (𝑢): 

 
𝑈 = ∫ 𝑢 𝑑𝑉

𝑉

 (281) 

Dentre as causas da variação da energia interna do sistema, pode-se mencionar o fluxo 

de calor, através da troca de energia do volume de controle com o meio circundante, e a geração 

ou perda de calor interno, cujas quantidades são dadas em taxas. Portanto, a quantia trocada de 
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energia interna (em termos de taxa, denotada por 𝑈̇{1}) com o meio através da superfície é 

expressa por: 

 
𝑈̇{1} = −∫ 𝑞𝑖𝑛𝑖  𝑑𝐴

𝐴

= −∫ 𝑞𝑖,𝑖 𝑑𝑉
𝑉

= ∫ (𝕜𝜃,𝑖),𝑖 𝑑𝑉
𝑉

 (282) 

sendo 𝑛𝑖 o versor normal a 𝑑𝐴. Na primeira passagem, utilizou-se o teorema de divergência de 

Gauss para a conversão da integral de superfície em integral de volume, enquanto para a última 

passagem, foi empregada a lei de Fourier, dada pela Equação (280). 

Já para a expressão referente à geração ou perda interna de energia, considera-se uma 

taxa de calor interno gerado por unidade de volume para um determinado volume de controle, 

denotado por 𝓆, proveniente de reações nucleares ou químicas (desde que não haja mudança de 

massa) ou dissipação de trabalho plástico, por exemplo. Dessa forma, a expressão da taxa de 

energia interna em função de 𝓆, denotada por 𝑈̇{2}, é dada por: 

 
𝑈̇{2} = ∫ 𝓆 𝑑𝑉

𝑉

 (283) 

Portanto, através da combinação das Equações (282) e (283) obtém-se a expressão para 

a taxa de mudança de energia interna no volume de controle: 

 
𝑈̇ = −∫ 𝑞𝑖,𝑖 𝑑𝑉

𝑉

+∫ 𝓆 𝑑𝑉
𝑉

 (284) 

Quanto à variação de energia interna (Δ𝑈), é possível calculá-la, em termos de taxa, 

como: 

 𝑈̇ = 𝑚𝑐𝜃̇ = 𝐶𝜃̇  (285) 

sendo 𝑚 a massa, 𝑐 a capacidade térmica específica e 𝐶 a capacidade térmica (𝐶 = 𝑚𝑐). 

 Considerando a hipótese da incompressibilidade dos sólidos e, dessa forma, a constância 

do volume ao longo de todo o processo, é possível obter a seguinte relação termodinâmica: 

 
𝑐 =

𝐶

𝑚
=
𝐶

𝜌𝑉
=
1

𝜌𝑉

𝑑𝑈

𝑑𝜃
 ⟶ 𝑑𝑈 = 𝜌𝑐 𝑑𝜃 𝑉 (286) 

sendo 𝜌 a massa específica.  

A Equação (286) escrita em termos de taxa é dada por: 

 𝑈̇ = 𝜌𝑐𝜃̇ 𝑉 (287) 

Caso o cálculo da taxa de energia interna calorífica seja efetuado para um diferencial de 

volume (𝑑𝑉), é possível integrá-la, obtendo-se uma outra expressão para a taxa de mudança de 

energia interna calorífica no volume de controle: 
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𝑈̇ = ∫ 𝜌𝑐𝜃̇ 𝑑𝑉

𝑉

 (288) 

Finalmente, estabelecendo a igualdade entre as Equações (284) e (288), chega-se à 

expressão correspondente ao equilíbrio de energia térmica para um determinado volume de 

controle: 

 
∫ 𝜌𝑐𝜃̇ 𝑑𝑉
𝑉

= −∫ 𝑞𝑖,𝑖 𝑑𝑉
𝑉

+∫ 𝓆 𝑑𝑉
𝑉

 (289) 

Agrupando os termos da Equação (289), obtém-se:  

 
∫ [𝜌𝑐𝜃̇ + 𝑞𝑖,𝑖 − 𝓆] 𝑑𝑉
𝑉

= 0 (290) 

Devido à arbitrariedade do volume, ou seja, a Equação (290) deve ser válida para todo 

e qualquer volume, conclui-se que o termo entre colchetes deve equivaler a zero (considerando 

a hipótese do sistema conservativo) resultando na forma forte do equilíbrio térmico: 

 𝜌𝑐𝜃̇ + 𝑞𝑖,𝑖 − 𝓆 = 0 (291) 

Através da substituição da Equação (280), correspondente à lei de Fourier, no segundo 

termo da Equação (291), obtém-se a equação diferencial de condução de calor em sólidos: 

 𝜌𝑐𝜃̇ − (𝕜𝜃,𝑖),𝑖 − 𝓆 = 0 (292) 

 

7.2 Condições de contorno 

 

A solução da condução de calor é possível apenas mediante às especificações das 

condições de contorno inerentes à superfície do corpo analisado. 

Para o estudo das condições de contorno, considera-se a superfície segmentada em 3 

áreas distintas (𝐴 = 𝐴𝐼 + 𝐴𝐼𝐼 + 𝐴𝐼𝐼𝐼), sendo cada uma dessas correspondentes a uma espécie de 

condição de contorno: 

I) Condição de contorno essenciais (de Dirichlet ou de primeira espécie): a temperatura 

em 𝐴𝐼 é prescrita e, portanto, a sua variação é nula (𝛿𝜃 = 0); 

II) Condição de contorno naturais (de Neumann ou de segunda espécie): o fluxo de calor é 

prescrito em 𝐴𝐼𝐼, sendo considerado positivo quando sai do domínio. Um caso particular 

dessa condição de contorno corresponde à superfície adiabática (fluxo de calor nulo); 

III) Condição de contorno inerente ao fluxo de calor por convecção (ou de terceira espécie): 

considerado como uma das condições de Neumann, o fluxo de calor neste caso é 

definido em função da temperatura do meio (fluido) circundante (𝜃∞), da temperatura 
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da superfície analisada (𝜃) e do coeficiente de transferência de calor por convecção (ℎ𝑐), 

conforme apresentado na Equação (293). Analogamente à condição de contorno de 

Neumann (item II), o fluxo é positivo quando sai do domínio. 

 𝑞𝑐 = ℎ𝑐(𝜃 − 𝜃∞) (293) 

Ainda, concomitantemente ao fluxo de calor por convecção, pode estar presente também 

o fluxo de calor por radiação (𝑞𝑟) em uma mesma superfície de contorno do corpo. Nesse caso, 

o fluxo de calor total por convecção e radiação (𝑞𝑐𝑟) pode ser obtido por meio da soma dessas 

duas parcelas: 

  𝑞𝑐𝑟 = 𝑞𝑐 + 𝑞𝑟 (294) 

sendo que o fluxo de calor por radiação pode ser calculado pela seguinte expressão (Franssen; 

Vila Real, 2010): 

 𝑞𝑟 = 𝜎𝑟𝜀𝑔𝜀𝑠(𝜃4 − 𝜃∞
4 ) (295) 

na qual 𝜎𝑟 refere-se à constante de Stephan-Boltzmann (𝜎𝑟 = 5,67 ⋅ 10−8 𝑊/𝑚2°𝐶4), 𝜀𝑔 ao 

coeficiente de emissividade do gás (fluido) envolvente, comumente adotado 𝜀𝑔 = 1,0, e 𝜀𝑠 ao 

coeficiente de emissividade do material. 

Seguindo a estratégia apresentada por Rigobello (2011), em analogia à Equação (293), 

referente à transferência de calor por convecção, assume-se que o coeficiente de transferência 

de calor por radiação (ℎ𝑟) é dado por, considerando-se 𝜀𝑔 = 1,0: 

 ℎ𝑟 = 𝜎𝑟𝜀𝑠(𝜃2 + 𝜃∞
2 )(𝜃 + 𝜃∞) (296) 

Dessa forma, analogamente à expressão do fluxo de calor por convecção, a Equação 

(295) pode ser reescrita de forma linearizada: 

 𝑞𝑟 = ℎ𝑟(𝜃 − 𝜃∞) (297) 

Portanto, verifica-se que, caso deseje incluir também a contribuição do fluxo de calor 

por radiação, basta modificar o valor de ℎ𝑐 , somando-se ao mesmo o valor de ℎ𝑟 , para, na 

sequência, proceder ao cálculo do fluxo de calor resultante: 

 𝑞𝑐𝑟 = (ℎ𝑐 + ℎ𝑟)(𝜃 − 𝜃∞) = ℎ
𝑐𝑟(𝜃 − 𝜃∞) (298) 

na qual ℎ𝑐𝑟 corresponde ao coeficiente de transferência de calor total por convecção e radiação. 

  

7.3 O Método dos Elementos Finitos aplicado à resolução do problema térmico 

 

Nesta seção, apresenta-se a estratégia de resolução do problema térmico através do 

Método dos Elementos Finitos, baseado em Rigobello (2011). O modelo de transferência de 
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calor foi desenvolvido empregando descrição Lagrangeana total, devido à maior praticidade 

proporcionada para a implementação computacional. 

Primeiramente, é necessário escrever a equação diferencial de condução de calor em sua 

forma variacional fraca. Para se estabelecer a forma fraca, multiplica-se a Equação (292) por 

uma variação da temperatura 𝛿𝜃 e procede-se à integração no volume inicial, ou seja: 

 
∫ [𝜌𝑐𝜃̇ − (𝕜𝜃,𝑖),𝑖 − 𝓆] 𝛿𝜃 𝑑𝑉0
𝑉0

= 0 (299) 

 Visando a operação do segundo termo dentro de colchetes da Equação (299), emprega-

se o divergente sobre o produto entre o termo 𝕜𝜃,𝑖 e a variação da temperatura 𝛿𝜃: 

 (𝕜𝜃,𝑖 𝛿𝜃),𝑖 = (𝕜𝜃,𝑖),𝑖𝛿𝜃 + (𝕜𝜃,𝑖)𝛿𝜃,𝑖 (300) 

isolando o termo (𝕜𝜃,𝑖),𝑖𝛿𝜃, tem-se que:   

 (𝕜𝜃,𝑖),𝑖𝛿𝜃 = (𝕜𝜃,𝑖 𝛿𝜃),𝑖 − (𝕜𝜃,𝑖)𝛿𝜃,𝑖 (301) 

 Na sequência, substitui-se a Equação (301) no segundo termo do integrando da Equação 

(299), obtendo-se: 

 
∫ 𝜌𝑐𝜃̇ 𝛿𝜃 𝑑𝑉0
𝑉0

−∫ (𝕜𝜃,𝑖 𝛿𝜃),𝑖 𝑑𝑉0
𝑉0

+∫ (𝕜𝜃,𝑖)𝛿𝜃,𝑖 𝑑𝑉0
𝑉0

−∫ 𝓆𝛿𝜃 𝑑𝑉0
𝑉0

= 0 (302) 

a qual pode ser reescrita através da aplicação do teorema de divergência de Gauss sobre o 

segundo termo da expressão: 

 
∫ 𝜌𝑐𝜃̇ 𝛿𝜃 𝑑𝑉0
𝑉0

−∫ (𝕜𝜃,𝑖)𝑛𝑖𝛿𝜃 𝑑𝐴0
𝐴0

+∫ (𝕜𝜃,𝑖)𝛿𝜃,𝑖 𝑑𝑉0
𝑉0

−∫ 𝓆𝛿𝜃 𝑑𝑉0
𝑉0

= 0 (303) 

reescrevendo o termo (𝕜𝜃,𝑖)𝑛𝑖 do segundo integrando como (−𝑞𝑛), por meio da lei de Fourier 

expressa pela Equação (280), e reordenando os termos da expressão anterior, obtém-se a forma 

fraca da equação de condução de calor: 

 
∫ (𝕜𝜃,𝑖)𝛿𝜃,𝑖 𝑑𝑉0
𝑉0

+∫ 𝜌𝑐𝜃̇ 𝛿𝜃 𝑑𝑉0
𝑉0

−∫ (−𝑞𝑛)𝛿𝜃 𝑑𝐴0
𝐴0

−∫ 𝓆𝛿𝜃 𝑑𝑉0
𝑉0

= 0 (304) 

sendo 𝑞𝑛 o fluxo de calor normal à superfície. 

Caso o material apresente propriedades térmicas distintas em cada uma das direções, 

efetua-se a substituição da parcela 𝕜𝜃,𝑖 por 𝕜𝑖𝑗𝜃,𝑗, sendo 𝕜𝑖𝑗 o tensor diagonal de condutividade 

térmica. Dessa forma, a Equação (304) é reescrita como: 

 
∫ 𝜃,𝑗𝕜𝑖𝑗𝛿𝜃,𝑖 𝑑𝑉0
𝑉0

+∫ 𝜌𝑐𝜃̇ 𝛿𝜃 𝑑𝑉0
𝑉0

−∫ (−𝑞𝑛)𝛿𝜃 𝑑𝐴0
𝐴0

−∫ 𝓆𝛿𝜃 𝑑𝑉0
𝑉0

= 0 (305) 
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Como o termo 𝑞𝑛 é conhecido no contorno, é possível expandir a integral de superfície 

em duas parcelas, uma referente ao fluxo de calor imposto (𝑞̅𝑛) e a outra, ao fluxo de calor por 

convecção e radiação, ambos normais a superfície: 

 
∫ (−𝑞𝑛)𝛿𝜃 𝑑𝐴0
𝐴0

= ∫ (−𝑞̅𝑛)𝛿𝜃 𝑑𝐴0
𝐴0

+∫ [−ℎ𝑐𝑟(𝜃 − 𝜃∞)]𝛿𝜃 𝑑𝐴0
𝐴0

 (306) 

A partir da discretização do domínio em elementos finitos, são definidas as seguintes 

aproximações para as variáveis de interesse: 

 

{
 
 
 
 
 

 
 
 
 
 

𝜃 = 𝜙𝑙𝜃
𝑙

𝜃̇ = 𝜙𝑙𝜃̇
𝑙

𝜕𝜃

𝜕𝑥𝑖
= 𝜃,𝑖 = 𝜙𝑙,𝑖𝜃

𝑙

𝛿𝜃 = 𝜙𝑙𝛿𝜃
𝑙

𝛿𝜃,𝑖 = 𝜙𝑙,𝑖𝛿𝜃
𝑙

𝓆 = 𝜙𝑙𝓆
𝑙

𝑞̅𝑛 = 𝜑𝑙(𝑞̅
𝑛)𝑙

𝜃∞ = 𝜑𝑙(𝜃∞)
𝑙

 (307) 

sendo 𝜙𝑙 a função de forma do elemento finito prismático referente ao nó 𝑙 e 𝜑𝑙 a função de 

forma do elemento finito auxiliar de superfície triangular ou retangular. Além disso,  

 
𝜙𝑙,𝑖 =

𝜕𝜙𝑙
𝜕𝑥𝑖

=
𝜕𝜙𝑙
𝜕𝜉𝑘

𝜕𝜉𝑘
𝜕𝑥𝑖

= 𝜙𝑙,𝑘𝐷𝑘𝑖 (308) 

sendo 𝜉𝑘  a coordenada adimensional e, portanto, 𝐷𝑘𝑖 = (𝐴0
−1)𝑘𝑖 sendo 𝐴0 correspondente ao 

gradiente do mapeamento da configuração inicial. Essa representação foi adaptada do MEF 

posicional, permitindo uma fácil implementação de elementos finitos “curvos” ou distorcidos.  

A partir das aproximações apresentadas na Equação (307) e das Equações (305) e (306), 

escreve-se a equação de condução de calor em função das aproximações do Método dos 

Elementos Finitos: 

 
[∫ 𝜙𝑙,𝑗𝕜𝑖𝑗𝜙𝑚,𝑖 𝑑𝑉0
𝑉0

𝜃𝑙 +∫ 𝜌𝑐𝜙𝑙𝜙𝑚 𝑑𝑉0
𝑉0

𝜃̇𝑙 −∫ 𝜙𝑙𝜙𝑚 𝑑𝑉0
𝑉0

𝓆𝑙

+∫ 𝜑𝑙𝜑𝑚 𝑑𝐴0
𝐴0

(𝑞̅𝑛)𝑙 +∫ ℎ𝑐𝑟𝜑𝑙𝜑𝑚 𝑑𝐴0
𝐴0

𝜃𝑙

−∫ ℎ𝑐𝑟𝜑𝑙𝜑𝑚 𝑑𝐴0
𝐴0

(𝜃∞)
𝑙] 𝛿𝜃𝑚 = 0 

(309) 

Devido à arbitrariedade de 𝛿𝜃𝑚 , o termo entre colchetes da expressão acima deve 

resultar em valor nulo, obtendo-se a seguinte expressão: 
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∫ 𝜙𝑙,𝑗𝕜𝑖𝑗𝜙𝑚,𝑖 𝑑𝑉0
𝑉0

𝜃𝑙 +∫ 𝜌𝑐𝜙𝑙𝜙𝑚 𝑑𝑉0
𝑉0

𝜃̇𝑙 −∫ 𝜙𝑙𝜙𝑚 𝑑𝑉0
𝑉0

𝓆𝑙

+∫ 𝜑𝑙𝜑𝑚 𝑑𝐴0
𝐴0

(𝑞̅𝑛)𝑙 +∫ ℎ𝑐𝑟𝜑𝑙𝜑𝑚 𝑑𝐴0
𝐴0

𝜃𝑙

−∫ ℎ𝑐𝑟𝜑𝑙𝜑𝑚 𝑑𝐴0
𝐴0

(𝜃∞)
𝑙 = 0𝑚 

(310) 

Denota-se os termos da Equação (310) por: 

 

{
 
 
 
 
 
 

 
 
 
 
 
 𝐾𝑚𝑙 = ∫ 𝜙𝑙,𝑗𝕜𝑖𝑗𝜙𝑚,𝑖 𝑑𝑉0

𝑉0

= ∫ 𝜙𝑚,𝑗𝕜𝑖𝑗𝜙𝑙,𝑖 𝑑𝑉0
𝑉0

𝑀𝑚𝑙 = ∫ 𝜌𝑐𝜙𝑙𝜙𝑚 𝑑𝑉0
𝑉0

= ∫ 𝜌𝑐𝜙𝑚𝜙𝑙  𝑑𝑉0
𝑉0

𝑁𝑚𝑙 = ∫ 𝜙𝑙𝜙𝑚 𝑑𝑉0
𝑉0

= ∫ 𝜙𝑚𝜙𝑙  𝑑𝑉0
𝑉0

𝐹𝑚𝑙 = ∫ 𝜑𝑙𝜑𝑚 𝑑𝐴0
𝐴0

= ∫ 𝜑𝑚𝜑𝑙  𝑑𝐴0
𝐴0

𝑂𝑚𝑙 = ∫ ℎ𝑐𝑟𝜑𝑙𝜑𝑚 𝑑𝐴0
𝐴0

= ∫ ℎ𝑐𝑟𝜑𝑚𝜑𝑙 𝑑𝐴0
𝐴0

 (311) 

sendo que, pelo fato de 𝕜𝑖𝑗 consistir em uma matriz diagonal, 𝑘𝑖𝑗 é dado por: 

 𝑘𝑖𝑗 = 𝜙𝑚,𝑗𝕜𝑖𝑗𝜙𝑙,𝑖 = 𝜙𝑚,𝑗𝕜𝑗𝑖𝜙𝑙,𝑖 = 𝜙𝑚,1𝕜11𝜙𝑙,1 + 𝜙𝑚,2𝕜22𝜙𝑙,2 + 𝜙𝑚,3𝕜33𝜙𝑙,3 (312) 

Após os devidos cálculos das integrais e montagem dos vetores e matrizes segundo os 

graus de liberdade, obtém-se: 

 𝐾𝑚𝑙𝜃
𝑙 +𝑀𝑚𝑙𝜃̇

𝑙 − 𝑁𝑚𝑙𝓆
𝑙 + 𝐹𝑚𝑙(𝑞̅

𝑛)𝑙 + 𝑂𝑚𝑙𝜃
𝑙 − 𝑂𝑚𝑙(𝜃∞)

𝑙 = 0𝑚 (313) 

 Ainda, denota-se os vetores independentes das temperaturas nodais por: 

 

{

𝑓𝑚
{𝑇1} = 𝑁𝑚𝑙𝓆

𝑙

𝑓𝑚
{𝑇2} = 𝐹𝑚𝑙(𝑞̅

𝑛)𝑙

𝑓𝑚
{𝑇3} = 𝑂𝑚𝑙(𝜃∞)

𝑙

 (314) 

 Dessa forma, a Equação (313) é reescrita de acordo com as definições da Equação (314) 

como: 

 𝐾𝑚𝑙𝜃
𝑙 + 𝑂𝑚𝑙𝜃

𝑙 +𝑀𝑚𝑙𝜃̇
𝑙 − 𝑓𝑚

{𝑇1} + 𝑓𝑚
{𝑇2} − 𝑓𝑚

{𝑇3} = 0𝑚 (315) 

sendo estes denominados de: 

• 𝐾𝑚𝑙: matriz de condutividade do domínio; 

• 𝑂𝑚𝑙: matriz de condutividade no contorno; 

• 𝑀𝑚𝑙: matriz de capacitância; 

• 𝑓𝑚
{𝑇1}

: vetor de fluxo de calor do domínio; 
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• 𝑓𝑚
{𝑇2}

: vetor de fluxo de calor imposto; 

• 𝑓𝑚
{𝑇3}

: vetor de fluxo de calor por convecção e radiação. 

 

A partir da reorganização da Equação (315), obtém-se o seguinte sistema linear de 

equações diferenciais ordinárias: 

 𝐾𝑚𝑙
{𝑇}𝜃𝑙 +𝑀𝑚𝑙𝜃̇

𝑙 = 𝑓𝑚
{𝑇}

 (316) 

sendo: 

 
{

𝐾𝑚𝑙
{𝑇} = 𝐾𝑚𝑙 + 𝑂𝑚𝑙  ⟶ matriz de rigidez térmica

𝑓𝑚
{𝑇} = 𝑓𝑚

{𝑇1} − 𝑓𝑚
{𝑇2} + 𝑓𝑚

{𝑇3} ⟶ vetor de fluxo de calor total
 (317) 

 

Com o interesse de facilitar a introdução de conceitos futuros (Equação (342)) de 

assimetria de matriz Hessiana para cálculos de problemas térmicos não-lineares, faz-se uma 

associação dos desenvolvimentos efetuados para o caso de condução de calor linear com 

modelos mecânicos elásticos lineares. Escreve-se o gradiente da temperatura 𝜃,𝑗 como sendo 

uma grandeza vetorial fictícia 𝜀𝑖 . Seja 𝛿Ξ  a variação da energia interna correspondente à 

primeira parcela da Equação (305): 

 
𝛿Ξ = ∫ 𝜃,𝑗𝕜𝑖𝑗𝛿𝜃,𝑖 𝑑𝑉0

𝑉0

= −∫
𝜕ℚ

𝜕𝜃,𝑖
𝛿𝜃,𝑖 𝑑𝑉0

𝑉0

= −∫
𝜕ℚ

𝜕𝜀𝑖
𝛿𝜀𝑖 𝑑𝑉0

𝑉0

 (318) 

onde definiu-se de forma empírica um potencial de energia térmica ℚ dependente do vetor 

fictício 𝜀𝑖. 

Para problemas lineares, define-se o potencial fictício (ℚ) considerando condutividade 

térmica 𝕜𝑖𝑗 independente da temperatura como: 

 
ℚ = −

1

2
𝜀𝑚𝕜𝑚𝑗𝜀𝑗 (319) 

Dessa forma, a derivada presente no último termo da igualdade da Equação (318) 

corresponde a: 

 𝜕ℚ

𝜕𝜀𝑖
= −

1

2
(
𝜕𝜀𝑚
𝜕𝜀𝑖

𝕜𝑚𝑗𝜀𝑗 + 𝜀𝑚𝕜𝑚𝑗
𝜕𝜀𝑗

𝜕𝜀𝑖
) = −

1

2
(𝕜𝑖𝑗𝜀𝑗 + 𝜀𝑗𝕜𝑗𝑖) (320) 

Pelo fato de 𝕜𝑖𝑗 consistir em uma matriz diagonal, tem-se que: 

 
𝑞𝑖 =

𝜕ℚ

𝜕𝜀𝑖
= −𝕜𝑖𝑗𝜀𝑗 = −𝕜𝑖𝑗𝜃,𝑗 (321) 

obtendo, dessa forma, a lei de Fourier para 𝕜𝑖𝑗 constante a partir de ℚ, concluindo-se que o 

vetor fluxo de calor definido pela lei de Fourier com 𝕜𝑖𝑗 constante é conservativo.  
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7.3.1 Formulações para problema de condução térmica não-linear 

 

Caso o problema de condução térmica analisado apresente não-linearidade, ou seja, a 

propriedade térmica de condutividade possua dependência em relação à temperatura, torna-se 

necessário reavaliar a matriz de condutividade térmica 𝐾𝑚𝑙 presente na Equação (315) em cada 

etapa de análise na qual a variação de temperatura seja verificada. Além disso, são apresentados 

posteriormente no item 7.3.3 os desenvolvimentos que mostram a existência de uma parcela 

assimétrica da matriz hessiana térmica para o caso de condução não-linear. Dessa forma, 

apresenta-se nesta subseção os desenvolvimentos relativos ao modelo de condução não-linear, 

considerando a condutividade térmica dependente da temperatura. 

Primeiramente, é assumido que a lei de Fourier é válida para condutividade térmica 

dependente da temperatura escrevendo-se: 

 𝑞𝑖 = −𝕜𝑖𝑗[𝜃]𝜀𝑗 (322) 

onde 𝜀𝑗 foi definido na Equação (318). Observa-se que na Equação (322) não é possível se 

escrever explicitamente um potencial de energia do qual o vetor de fluxo de calor seria obtido, 

tal como apresentado na Equação (319), assim o problema torna-se não conservativo.  

A partir da sua substituição no último termo da Equação (318), define-se a expressão da 

parcela da variação da energia interna como: 

 
𝛿Ξ = −∫ 𝑞𝑖𝛿𝜀𝑖 𝑑𝑉0

𝑉0

= ∫ 𝕜𝑖𝑗[𝜃]𝜀𝑗𝛿𝜀𝑖 𝑑𝑉0
𝑉0

 (323) 

Reescrevendo a Equação (323), obtém-se: 

 
𝛿Ξ =

𝜕Ξ

𝜕𝜃𝑚
𝛿𝜃𝑚 = ∫ 𝕜𝑖𝑗[𝜃]𝜀𝑗𝛿𝜀𝑖 𝑑𝑉0

𝑉0

= ∫ 𝕜𝑖𝑗[𝜃]𝜀𝑗
𝜕𝜀𝑖
𝜕𝜃𝑚

 𝑑𝑉0
𝑉0

𝛿𝜃𝑚 (324) 

sendo que a variação 𝛿𝜀𝑖 da expressão acima foi denotada por: 

 
𝛿𝜀𝑖 =

𝜕𝜀𝑖
𝜕𝜃𝑚

𝛿𝜃𝑚 (325) 

Relembrando as definições dadas pela Equação (307) e que 𝜀𝑖 = 𝜃,𝑗 , escreve-se as 

aproximações 𝜀𝑖 = 𝜃,𝑖 = 𝜙𝑙,𝑖𝜃
𝑙 e 𝜀𝑗 = 𝜃,𝑗 = 𝜙𝑙,𝑗𝜃

𝑙, de forma a obter, a partir da Equação (324):  

 
𝛿Ξ = ∫ 𝕜𝑖𝑗[𝜃]𝜙𝑙,𝑗𝜃

𝑙
𝜕𝜙𝑙,𝑖𝜃

𝑙

𝜕𝜃𝑚
 𝑑𝑉0

𝑉0

𝛿𝜃𝑚 = ∫ 𝜙𝑙,𝑗𝕜𝑖𝑗[𝜃]𝜙𝑚,𝑖 𝑑𝑉0
𝑉0

𝜃𝑙𝛿𝜃𝑚 (326) 

Portanto, escrevendo a expressão completa da variação da energia interna para o caso 

não-linear a partir da Equação (309) (admitindo a substituição da parcela linear 𝐾𝑚𝑙𝜃
𝑙), tem-

se: 
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[∫ 𝜙𝑙,𝑗𝕜𝑖𝑗[𝜃]𝜙𝑚,𝑖 𝑑𝑉0
𝑉0

𝜃𝑙 +∫ 𝜌𝑐𝜙𝑙𝜙𝑚 𝑑𝑉0
𝑉0

𝜃̇𝑙 −∫ 𝜙𝑙𝜙𝑚 𝑑𝑉0
𝑉0

𝓆𝑙

+∫ 𝜑𝑙𝜑𝑚 𝑑𝐴0
𝐴0

(𝑞̅𝑛)𝑙 +∫ ℎ𝑐𝑟𝜑𝑙𝜑𝑚 𝑑𝐴0
𝐴0

𝜃𝑙

−∫ ℎ𝑐𝑟𝜑𝑙𝜑𝑚 𝑑𝐴0
𝐴0

(𝜃∞)
𝑙] 𝛿𝜃𝑚 = 0 

(327) 

a qual, devido à arbitrariedade de 𝛿𝑇𝑚, resulta em: 

 
∫ 𝜙𝑙,𝑗𝕜𝑖𝑗[𝜃]𝜙𝑚,𝑖 𝑑𝑉0
𝑉0

𝜃𝑙 +∫ 𝜌𝑐𝜙𝑙𝜙𝑚 𝑑𝑉0
𝑉0

𝜃̇𝑙 −∫ 𝜙𝑙𝜙𝑚 𝑑𝑉0
𝑉0

𝓆𝑙

+∫ 𝜑𝑙𝜑𝑚 𝑑𝐴0
𝐴0

(𝑞̅𝑛)𝑙 +∫ ℎ𝑐𝑟𝜑𝑙𝜑𝑚 𝑑𝐴0
𝐴0

𝜃𝑙

−∫ ℎ𝑐𝑟𝜑𝑙𝜑𝑚 𝑑𝐴0
𝐴0

(𝜃∞)
𝑙 = 0 

(328) 

Nota-se que a matriz de condutividade do domínio para problemas térmicos não-lineares 

é semelhante à matriz do caso linear, tornando a condutividade térmica dependente da 

temperatura: 

 
𝐾𝑚𝑙 = ∫ 𝜙𝑙,𝑗𝕜𝑖𝑗[𝜃]𝜙𝑚,𝑖 𝑑𝑉0

𝑉0

 (329) 

Reorganizando a Equação (328) a partir das definições das Equações (311) e (314), 

obtém-se a seguinte equação não-linear, com a matriz de condutividade do domínio definida 

em função da temperatura: 

 𝐾𝑚𝑙[𝜃]𝜃
𝑙 +𝑂𝑚𝑙𝜃

𝑙 +𝑀𝑚𝑙𝜃̇
𝑙 − 𝑓𝑚

{𝑇1} + 𝑓𝑚
{𝑇2} − 𝑓𝑚

{𝑇3} = 0𝑚 (330) 

Reescrevendo-se a expressão anterior com o uso das definições do vetor de fluxo de 

calor total e da matriz de rigidez térmica conforme explicitado na Equação (317), determina-se, 

para cada nível de temperatura, o seguinte sistema não-linear de equações diferenciais 

ordinárias: 

 𝐾𝑚𝑙
{𝑇}[𝜃]𝜃𝑙 +𝑀𝑚𝑙𝜃̇

𝑙 = 𝑓𝑚
{𝑇}

 (331) 

 

7.3.2 Solução de problemas em regime transiente 

 

Para a solução da equação de condução de calor linear ou não-linear, correspondentes 

às Equações (313) e (330) respectivamente, faz-se necessária a discretização do operador 
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diferencial inerente ao termo transiente. Dessa forma, foi admitido o Método das Diferenças 

Finitas para a aproximação numérica dos termos dependentes do tempo. 

O gráfico da Figura 7.1 corresponde à variação da temperatura no domínio entre os 

instantes 𝑠 e 𝑠 + 1. Através da expansão dos termos transientes em série de Taylor, é possível 

descrever a variação da temperatura no instante 𝑠 + 𝛼, conforme mostrado a seguir: 

 
𝜃𝑠+𝛼 = 𝜃𝑠 + 𝛼Δ𝑡

𝜕𝜃𝑠+𝛼
𝜕𝑡

+ 𝛼
Δ𝑡2

2

𝜕2𝜃𝑠+𝛼
𝜕𝑡2

+⋯ (332) 

Para um determinado passo de tempo Δ𝑡 , escreve-se a aproximação temporal de 

interesse como: 

 𝜕𝜃𝑠+𝛼
𝜕𝑡

≈
𝜃𝑠+1 − 𝜃𝑠

Δ𝑡
 (333) 

sendo os índices 𝑠 + 1 e 𝑠 referentes, respectivamente, aos passos de tempo atual e anterior. 

 

Figura 7.1 – Representação gráfica da aproximação temporal pelo Método das Diferenças Finitas 

 
Fonte: adaptado de Rigobello, Coda e Munaiar Neto (2014). 

 

Substituindo a Equação (333) na Equação (332) (série de Taylor) truncada em 1ª ordem, 

determina-se a relação da temperatura no instante do tempo 𝑠 + 𝛼  em função de suas 

temperaturas correspondentes nos instantes 𝑠 + 1 e 𝑠: 

 𝜃𝑠+𝛼 = 𝛼𝜃𝑠+1 + (1 − 𝛼)𝜃𝑠 (334) 

sendo 𝛼 um parâmetro que pode assumir valores definidos no intervalo [0,1]. 

Dessa forma, obtém-se a expressão para a condução de calor linear com o termo 

transiente discretizado a partir das substituições das Equações (333) e (334) na Equação (316): 
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[
𝑀𝑚𝑙
Δ𝑡

+ 𝛼𝐾𝑚𝑙
{𝑇}] 𝜃𝑠+1

𝑙 − [
𝑀𝑚𝑙
Δ𝑡

+ (𝛼 − 1)𝐾𝑚𝑙
{𝑇}] 𝜃𝑠

𝑙 − 𝑓𝑚
{𝑇} = 0𝑚 (335) 

De forma análoga à equação linear, considerando-se a matriz de condutividade térmica 

constante no intervalo de tempo, é possível determinar a expressão para a condução de calor 

não-linear com aproximação temporal substituindo-se as Equações (333) e (334) na Equação 

(331): 

 
[
𝑀𝑚𝑙
Δ𝑡

+ 𝛼𝐾𝑚𝑙
{𝑇}[𝜃]] 𝜃𝑠+1

𝑙 − [
𝑀𝑚𝑙
Δ𝑡

+ (𝛼 − 1)𝐾𝑚𝑙
{𝑇}[𝜃]] 𝜃𝑠

𝑙 − 𝑓𝑚
{𝑇} = 0𝑚 (336) 

Presente nas Equações (335) e (336), o parâmetro 𝛼 é responsável por regular o tipo de 

integrador temporal a ser empregado. Caso 𝛼 = 0, o integrador reproduzido é denominado 

explícito, enquanto para 𝛼 = 1, o integrador correspondente é implícito. Tratando-se de valores 

intermediários, o integrador é denominado semi-implícito. Ainda, de acordo com Rigobello 

(2011), é indicado 𝛼 = 2/3 para análises térmicas e termomecânicas em situação de incêndio. 

A equação (335) é resolvida diretamente, ou seja, conhecendo-se o carregamento 

térmico e as temperaturas do passo anterior, resolve-se um sistema linear onde se determinam 

as temperaturas atuais. Já na equação (336), a dependência da matriz de condutividade em 

relação à temperatura, implica em tratamento não-linear descrito na próxima subseção. 

 

7.3.3 Estratégia de resolução de problema térmico não-linear 

 

Em casos de análises térmicas não-lineares para variações importantes nas propriedades 

térmicas como condutividade térmica e capacidade térmica específica, torna-se necessário 

recorrer às técnicas iterativas de solução. Semelhantemente à técnica de solução de problemas 

mecânicos estáticos e dinâmicos, emprega-se o método de Newton-Raphson (combinado com 

o Método das Diferenças Finitas para a aproximação temporal) com os procedimentos descritos 

brevemente a seguir. 

Primeiramente, é requisitado pelo método a definição do vetor resíduo térmico (𝑔𝑚), 

dado pela expressão abaixo: 

 
𝑔𝑚 = [

𝑀𝑚𝑙
Δ𝑡

+ 𝛼𝐾𝑚𝑙
{𝑇}[𝜃]] 𝜃𝑠+1

𝑙 − [
𝑀𝑚𝑙
Δ𝑡

+ (𝛼 − 1)𝐾𝑚𝑙
{𝑇}[𝜃]] 𝜃𝑠

𝑙 − 𝑓𝑚
{𝑇} = 0𝑚 (337) 

Em situações de equilíbrio térmico, o vetor resíduo térmico apresenta valor nulo e, caso 

contrário, retorna um valor não nulo, servindo como critério para avaliar a convergência dos 

resultados obtidos. As temperaturas nodais no passo de tempo atual correspondem às incógnitas 

a serem determinadas do problema, as quais são conhecidas na forma de tentativa ao longo de 
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todo o processo de análise. Para o primeiro passo de tempo, toma-se o vetor de temperaturas 

nodais no passo atual equivalente ao vetor de temperaturas nodais iniciais. 

Através da expansão em série de Taylor do vetor resíduo térmico, dado pela Equação 

(337), na vizinhança da temperatura tentativa e truncando a expressão em 1ª ordem, determina-

se a expressão para o cálculo da correção do vetor temperatura (Δ𝜃𝑘): 

 
𝑔𝑚 = 𝑔𝑚

0 +
𝜕

𝜕𝜃𝑠+1
𝑘 {[

𝑀𝑚𝑙
Δ𝑡

+ 𝛼𝐾𝑚𝑙
{𝑇}[𝜃]] 𝜃𝑠+1

𝑙 − [
𝑀𝑚𝑙
Δ𝑡

+ (𝛼 − 1)𝐾𝑚𝑙
{𝑇}[𝜃]] 𝜃𝑠

𝑙

− 𝑓𝑚
{𝑇}}𝛥𝜃𝑘 = 0 

(338) 

considerando a decomposição aditiva de 𝐾𝑚𝑙
{𝑇}[𝜃] em 𝐾𝑚𝑙[𝜃] e 𝑂𝑚𝑙, conforme a Equação (317), 

tem-se que:  

 
𝛥𝜃𝑘 = −[

𝑀𝑚𝑘
Δ𝑡

+ 𝛼 (𝑂𝑚𝑘 +
𝜕𝐾𝑚𝑙[𝜃]𝜃𝑠+1

𝑙

𝜕𝜃𝑠+1
𝑘 )]

−1

𝑔𝑚
0 (𝜃⃗0) (339) 

sendo que a hessiana do problema térmico (𝐻𝑚𝑙
{𝑇}

) não-linear corresponde a (denotando 

𝐾𝑚𝑙[𝜃]𝜃𝑠+1
𝑘  por 𝑌𝑚 e omitindo 𝑠 + 1 por simplicidade): 

 
𝐻𝑚𝑙
{𝑇} =

𝑀𝑚𝑘
Δ𝑡

+ 𝛼 (𝑂𝑚𝑘 +
𝜕𝑌𝑚
𝜕𝜃𝑘

) (340) 

A seguir, mostram-se os desenvolvimentos relativos à contribuição adicional da matriz 

de condutividade térmica à matriz hessiana térmica em problemas de condução não-lineares. A 

parcela 𝜕𝑌𝑚/𝜕𝜃
𝑘 da expressão anterior pode ser determinada de forma direta, considerando-se 

a lei de Fourier com condutividade térmica dependente da temperatura: 

 𝜕𝑌𝑚
𝜕𝜃𝑘

=
𝜕𝐾𝑚𝑙[𝜃]𝜃

𝑙

𝜕𝜃𝑘
= ∫

𝜕(𝕜𝑖𝑗[𝜙𝛽𝜃
𝛽]𝜙𝑙,𝑗𝜃

𝑙)

𝜕𝜃𝑘
𝜙𝑚,𝑖 𝑑𝑉0

𝑉0

= ∫ (
𝜕𝕜𝑖𝑗[𝜃]

𝜕𝜃

𝜕[𝜙𝛽𝜃
𝛽]

𝜕𝜃𝑘
𝜙𝑙,𝑗𝜃

𝑙 + 𝕜𝑖𝑗[𝜙𝛽𝜃
𝛽]𝜙𝑘,𝑗)𝜙𝑚,𝑖 𝑑𝑉0

𝑉0

= ∫ (
𝜕𝕜𝑖𝑗[𝜃]

𝜕𝜃
𝜙𝑘𝜙𝑙,𝑗𝜃

𝑙 + 𝕜𝑖𝑗[𝜃]𝜙𝑘,𝑗)𝜙𝑚,𝑖 𝑑𝑉0
𝑉0

 

(341) 

A expressão acima resulta em: 

 𝜕𝑌𝑚
𝜕𝜃𝑘

= ∫ 𝜙𝑚,𝑖 (
𝜕𝕜𝑖𝑗[𝜃]

𝜕𝜃
𝜙𝑙,𝑗𝜃

𝑙)𝜙𝑘  𝑑𝑉0
𝑉0⏟                    

assimétrica

+∫ 𝜙𝑚,𝑖𝕜𝑖𝑗[𝜃]𝜙𝑘,𝑗 𝑑𝑉0
𝑉0

 
(342) 

Dessa forma, a matriz hessiana térmica para 𝕜𝑖𝑗 dependente da temperatura contém uma 

parcela assimétrica. Tal fato é geralmente decorrente da presença de campos vetoriais não 

conservativos no sistema, sendo neste caso correspondente ao fluxo de calor definido pela lei 
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de Fourier dependente da temperatura (𝑞𝑖 = −𝕜𝑖𝑗[𝜃]𝜃,𝑗). Novamente, fazendo um paralelo com 

a elasticidade não-linear, entende-se que não se pode escrever explicitamente um potencial 

térmico ℚ (introduzida no item 7.3.1) do qual, por derivada, resultaria o fluxo de calor. 

A fim de acelerar o processo de convergência, pode-se utilizar a sua parcela simétrica 

obtida através da decomposição matricial aditiva (como soma das partes simétrica e 

antissimétrica): 

 𝜕𝑌𝑚
𝜕𝜃𝑘

=
1

2
∫ 𝜙𝑚,𝑖 (

𝜕𝕜𝑖𝑗[𝜃]

𝜕𝜃
𝜙𝑙,𝑗𝜃

𝑙)𝜙𝑘 + 𝜙𝑘,𝑖 (
𝜕𝕜𝑖𝑗[𝜃]

𝜕𝜃
𝜙𝑙,𝑗𝜃

𝑙)𝜙𝑚 𝑑𝑉0
𝑉0⏟                                        

𝑝𝑎𝑟𝑡𝑒 𝑠𝑖𝑚é𝑡𝑟𝑖𝑐𝑎

+∫ 𝜙𝑚,𝑖𝕜𝑖𝑗[𝜃]𝜙𝑘,𝑗 𝑑𝑉0
𝑉0

 

(343) 

Observando-se a Equação (343), é possível verificar que, caso a condutividade térmica 

seja independente da temperatura, a parte simétrica em questão torna-se nula. Assim, para 

problemas térmicos lineares, a parcela 𝜕𝑌𝑚/𝜕𝜃
𝑘 é equivalente à matriz de condutividade do 

domínio (𝐾𝑚𝑘), dada por: 

 𝜕𝑌𝑚
𝜕𝜃𝑘

= 𝐾𝑚𝑘 = ∫ 𝜙𝑚,𝑖𝕜𝑖𝑗𝜙𝑘,𝑗  𝑑𝑉0
𝑉0

 (344) 

Ainda existe a possibilidade da capacidade térmica específica 𝑐 (e, consequentemente, 

a matriz de capacitância térmica 𝑀𝑚𝑘) apresentar dependência em relação à temperatura e gerar 

contribuição adicional à matriz hessiana térmica. Antes de proceder à expansão em série de 

Taylor do vetor resíduo térmico (Equação (338)) considerando 𝑀𝑚𝑘[𝜃], foi efetuado um teste 

de convergência do problema térmico considerando 𝑐[𝜃] , porém desprezando a parcela 

adicional da matriz hessiana térmica proveniente de 𝑀𝑚𝑘[𝜃] . Como a convergência do 

problema térmico foi obtida com poucas iterações, não foi considerada a contribuição adicional 

de 𝑀𝑚𝑘[𝜃] à matriz hessiana térmica neste trabalho. 

Portanto, após o cálculo da matriz hessiana pela Equação (340), procede-se à imposição 

das condições de contorno essenciais (ou de Dirichlet) através da técnica de zeros e um 

(conforme já mencionado no item 3.2), a fim de eliminar a singularidade da matriz hessiana e 

possibilitar a resolução do sistema de equações lineares (ou a inversão da hessiana), expresso 

pela Equação (339). 

 Após determinar a correção da temperatura no passo atual a partir da Equação (339), 

atualiza-se a temperatura tentativa: 

 𝜃𝑗
0 ⟵ 𝜃𝑗

0 + 𝛥𝜃𝑗 (345) 
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Por se tratar de procedimento iterativo, repete-se os processos de cálculo até atingir a 

convergência dos resultados de análise, verificada através do seguinte critério de parada 

adotado:  

 ‖Δ𝜃⃗‖

‖𝜃⃗𝑠+1‖
≤ 𝑡𝑜𝑙 (346) 

sendo 𝑡𝑜𝑙 a tolerância adotada para a verificação da convergência.  

Por fim, apresenta-se na Figura 7.2 o pseudocódigo que resume as operações realizadas 

na análise térmica não-linear. 

 

Figura 7.2 – Pseudocódigo da análise térmica 

1 Leitura dos dados de entrada 

2 Primeira tentativa de temperatura como temperatura no tempo inicial (𝜃⃗⃗ = 𝜃⃗⃗
{𝑡=0}

) 

3 Para i = 1 até nº de passos (etapa incremental) 

4  Soma do passo de tempo (𝑡 ← 𝑡 + ∆𝑡) 

5  Enquanto ‖Δ𝑇⃗⃗‖ ‖𝑇⃗⃗‖⁄ ≥ 𝑡𝑜𝑙 (etapa iterativa) 

6   Cálculo da matriz de condutividade do domínio (𝑲) → Equação (329) 

7   Cálculo da matriz de condutividade no contorno (𝑶) → Equação (311) 

8   Cálculo da matriz de capacitância (𝑴) → Equação (311) 

9   Cálculo do vetor de fluxo de calor do domínio (𝑓{𝑇1}) →  
Equações (311) e (314) 

10   
Cálculo do vetor de fluxo de calor imposto (𝑓{𝑇2}) →  
Equações (311) e (314) 

11   
Cálculo do vetor de fluxo de calor por convecção e radiação (𝑓{𝑇3}) →  
Equações (311) e (314) 

12   Cálculo da matriz hessiana térmica (𝑯{𝑇}) → Equação (340) 

13   Cálculo do vetor resíduo térmico (𝑔⃗) → Equação (337) 

14   Imposição das condições de contorno em 𝑯{𝑇} e 𝑔⃗ 

15   Cálculo da correção da temperatura (Δ𝜃⃗⃗) → Equação (339) 

16   Atualização da temperatura (𝜃⃗⃗ ← 𝜃⃗⃗+ ∆𝜃⃗⃗) → Equação (345) 

17   Cálculo da norma ‖Δ𝜃⃗⃗‖ para a verificação de convergência 

18  Fim do loop 

19  Exportação de dados – pós-processamento 

20 Fim do loop 

Fonte: autor. 
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7.4 Exemplo numérico 

 

Apresenta-se, a seguir, um exemplo numérico para a validação do modelo de 

transferência de calor implementado no programa para problemas estacionários (𝑀𝑚𝑙 = 0). 

Ressalta-se que a validação desse mesmo modelo para problemas térmicos não-lineares 

transientes será mostrada no exemplo numérico termoelástico do item 8.4.3.  

 

7.4.1 Análise térmica estacionária linear e não linear de chapa 

 

O presente exemplo numérico, retirado de Salomão (2021), consiste em uma análise 

térmica linear e não-linear em regime estacionário de uma chapa de dimensões unitárias (sendo 

o valor da espessura também unitária), com o esquema do problema a ser analisado 

representado na Figura 7.3. A chapa apresenta condições de Dirichlet nos nós de duas faces das 

quatro faces, ou seja, as temperaturas nodais são prescritas, e condições de Neumann nas duas 

faces restantes, com o fluxo de calor imposto. Destaca-se que as outras duas superfícies 

(correspondentes à base e ao topo da chapa-espessura) foram assumidas adiabáticas. 

 

Figura 7.3 – Chapa analisada com as condições de Dirichlet e Neumann 

 
Fonte: autor. 

 

Os dados considerados para este exemplo de validação são apresentados na Figura 7.4. 

Ressalta-se que, para o caso de análise linear, foi empregado um valor constante para a 

condutividade térmica (𝕜) do material constituinte da chapa, enquanto para o exemplo de 

condução de calor não-linear, a condutividade térmica é dependente da temperatura (𝜃). 
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Figura 7.4 – Dados adotados no teste de validação 7.4.1 

Parâmetros térmicos 

𝕜 (linear): 2,75 W/m°C 

𝕜 (não-linear): 2,75 – 0,2𝜃 W/m°C 

Dados geométricos 

Comprimento: 1 m 

Largura: 1 m 

Espessura: 1 m 

Dados da malha 

Nº nós: 1922 

Nº elementos finitos: 200 

Nº pontos de Hammer 12 

Grau de aproximação na espessura: Linear 

Outros dados 

Tolerância: 10-6 

Fonte: autor. 

 

A fim de reproduzir o comportamento de uma chapa, foi considerado um grau de 

aproximação linear na direção da espessura com uma única camada de elementos finitos 

prismáticos na discretização, conforme mostrado na Figura 7.5, com as superfícies 

correspondentes à base e ao topo dos elementos finitos prismáticos assumidas adiabáticas.  

 

Figura 7.5 – Discretização adotada para o exemplo 7.4.1 

 
Fonte: autor. 
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Os valores obtidos de temperaturas nos nós pertencentes à diagonal 𝐴𝐵̅̅ ̅̅  foram 

organizados em forma de gráfico na Figura 7.6, em que é possível observar a diferença de 

resultados entre um modelo linear e não-linear de análise térmica de condução de calor, sendo 

esses valores coincidentes com aqueles apresentados por Salomão (2021). Os campos de 

temperatura obtidos são apresentados na Figura 7.7, tanto para a análise linear quanto para a 

análise não-linear. 

Ressalta-se que, para o caso de análise térmica não-linear, foi utilizada a matriz hessiana 

considerando a parte simétrica da sua parcela assimétrica, conforme apresentada na Equação 

(343) (solução implícita).  

 

Figura 7.6 – Gráfico Temperatura x posição na diagonal 𝐴𝐵̅̅ ̅̅  para modelos linear e não-linear de 

condução de calor do exemplo numérico 7.4.1 

 
Fonte: autor. 
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Figura 7.7 – Campos de temperatura obtidos para os modelos linear e não-linear de condução de calor 

do exemplo numérico 7.4.1 

 
Fonte: autor. 
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A partir dos dados mostrados anteriormente, foi possível verificar a correta 

implementação do código de análise térmica por condução de calor linear e não-linear em 

regime estacionário por meio da elevada proximidade de resultados obtidos em relação àqueles 

apresentados por Salomão (2021). Portanto, para que a análise térmica seja efetuada 

adequadamente, ficou evidenciado que é necessário avaliar os parâmetros dependentes da 

temperatura, principalmente em casos destes serem sensíveis à sua variação, conforme pôde ser 

visto neste exemplo em que os resultados obtidos para o problema linear e não-linear 

apresentaram uma diferença que não é desprezível. 
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8 TERMOMECÂNICA 

 

Termomecânica é um ramo da física (multifísica) originada a partir do acoplamento 

entre o campo térmico e o campo mecânico. No âmbito da modelagem computacional, a 

simulação multifísica pode ser definida como simulação simultânea de diferentes aspectos de 

sistemas físicos e as interações entre os mesmos. Nesse contexto, “física” em “multifísica” 

significa um campo físico, o qual é uma variável de estado físico que varia em relação ao espaço 

e/ou tempo de acordo com as leis físicas para a sua evolução ou equilíbrio. Assim, um campo 

é uma distribuição espacial dependente do tempo de uma variável de estado em um problema 

transiente ou uma distribuição espacial de uma variável de estado em um problema de equilíbrio 

(Liu, 2018). 

A relação entre diferentes campos físicos pode ser estabelecida através de acoplamentos, 

os quais podem ser classificados como unidirecionais ou bidirecionais de acordo com a forma 

como os dois campos interagem entre si. Um acoplamento é dito unidirecional quando, para um 

determinado tipo de interação, um campo é influente sobre o outro, porém o contrário não é 

válido, enquanto é classificado como bidirecional quando os dois campos exercem uma 

influência mútua por meio dos mecanismos físicos relevantes (Liu, 2018). 

Do ponto de vista operacional (técnicas de solução), o acoplamento em problemas 

multifísicos pode ser classificado em dois tipos, implícito (direto) ou explícito (sequencial). Em 

um sistema acoplado implicitamente (diretamente), é montado um sistema de equações 

matriciais algébricas baseado em todos os mecanismos físicos relevantes e então resolvido, no 

entanto, pode ser desvantajoso em termos de custo computacional elevado. Alternativamente, 

em um sistema acoplado explicitamente (sequencialmente), cada um dos campos físicos é 

solucionado de forma isolada e sequencial, ou seja, a solução do primeiro conjunto de equações 

governantes é passada para o segundo conjunto de equações governantes e assim 

sucessivamente, até a obtenção de uma solução final (Liu, 2018). 

Para o desenvolvimento do presente trabalho considera-se modelo termomecânico 

unidirecional explícito, muitas vezes chamado de modelo desacoplado. Neste modelo o campo 

de temperatura influencia no campo mecânico, porém despreza-se a geração de calor por 

plastificação ou atrito no equilíbrio térmico.  

Dessa forma, ao empregar a teoria em questão, considera-se que não há a interferência 

do campo mecânico sobre o campo térmico ao longo da análise, procedendo à resolução 

separada de cada um dos campos físicos. 
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8.1 Termoelasticidade 

 

Para um determinado passo de tempo 𝑡 , resolve-se primeiramente o campo de 

temperatura atuante sobre o corpo analisado. Em seguida, o campo mecânico é solucionado 

considerando a influência do campo térmico, acompanhado de deformações térmicas e tensões 

decorrentes destas. Caso as propriedades mecânicas do corpo sejam definidas em função da 

temperatura, torna-se necessária a reavaliação de seus valores a cada passo/iteração de análise 

em que a mudança de temperatura seja verificada, previamente à resolução do problema 

mecânico. 

 No caso da análise termoelástica, efetua-se a substituição do último termo da soma da 

Equação (80), referente à variação da energia de deformação elástica, pela seguinte expressão 

correspondente à variação da energia de deformação termoelástica: 

 
𝛿𝕌 = ∫ 𝑆𝑖𝑗

𝑇𝐸𝛿𝔼𝑖𝑗𝑑𝑉0
𝑉0

 (347) 

sendo 𝑆𝑖𝑗
𝑇𝐸 a tensão de Piola-Kirchhoff de segunda espécie inerente ao campo termoelástico.  

Os resultados do campo térmico influenciam somente na parcela volumétrica do tensor 

de tensões e ao proceder à resolução do problema mecânico, uma tensão proveniente do campo 

térmico é aplicada. A seguir são descritas as formulações correspondentes ao campo 

termoelástico para os modelos constitutivos hiperelásticos de Saint-Venant-Kirchhoff e Rivlin-

Saunders-Hartmann-Neff. 

 

8.1.1 Termoelasticidade com modelo constitutivo de Saint-Venant-Kirchhoff 

 

Salienta-se que as formulações apresentadas neste item para o modelo constitutivo de 

Saint-Venant-Kirchhoff são destinadas à análise termoelástica em regime de deformações 

pequenas e moderadas, sendo inapropriada para a análise de problemas envolvendo grandes 

deformações. A deformação (aplicada na forma de resíduo em tensão) resultante do problema 

térmico (𝔼𝑡ℎ𝑒𝑟𝑚) é descrita pela seguinte expressão: 

 𝔼𝑡ℎ𝑒𝑟𝑚 = 𝛼𝑙(𝜃 − 𝜃
{0}) 𝑰 (348) 

em que 𝛼𝑙 e 𝜃{0} correspondem, respectivamente, ao coeficiente de expansão térmica linear e à 

temperatura inicial de referência do corpo. 
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Solucionado o campo térmico, é necessário proceder à resolução do problema mecânico 

elástico levando-se em consideração a parcela de tensão/deformação de origem elástica 

acrescida de uma tensão proveniente do campo térmico. Tal condição pode ser atendida a partir 

da subtração da tensão de origem térmica (composta apenas pela parcela volumétrica) em 

relação à tensão elástica: 

 𝑺𝑇𝐸 = 𝑺𝑒𝑙𝑎𝑠𝑡 − 𝑺𝑡ℎ𝑒𝑟𝑚 (349) 

na qual 𝑺𝑡ℎ𝑒𝑟𝑚 é calculada como: 

 𝑺𝑡ℎ𝑒𝑟𝑚 = 𝐾𝜀𝑣
𝑡ℎ𝑒𝑟𝑚𝑰 (350) 

 𝜀𝑣
𝑡ℎ𝑒𝑟𝑚 = 𝑇𝑟(𝔼𝑡ℎ𝑒𝑟𝑚) (351) 

sendo 𝐾 o bulk modulus e 𝜀𝑣
𝑡ℎ𝑒𝑟𝑚 a deformação volumétrica oriunda do campo térmico. 

Destaca-se que, como 𝑺𝑡ℎ𝑒𝑟𝑚 é independente da componente mecânica da deformação 

de Green neste caso, o tensor constitutivo termoelástico tangente é equivalente ao tensor 

constitutivo elástico tangente, sem nenhuma contribuição proveniente do campo térmico. 

 

8.1.2 Termoelasticidade com modelo constitutivo de Rivlin-Saunders-Hartmann-Neff 

 

Já neste item são apresentadas as formulações inerentes ao modelo constitutivo de 

Rivlin-Saunders-Hartmann-Neff, as quais são adequadas para a resolução de problemas 

termoelásticos em regime de grandes deformações. Primeiramente, escreve-se a expressão da 

variação da energia termoelástica volumétrica (𝛿𝛹𝑣𝑜𝑙)𝑇𝐸 da seguinte maneira: 

 (𝛿𝛹𝑣𝑜𝑙)𝑇𝐸 = (𝑺𝑣𝑜𝑙)𝑇𝐸 ∶ 𝛿𝔼 (352) 

sendo (𝑺𝑣𝑜𝑙)𝑇𝐸 a tensão termoelástica volumétrica de Piola-Kirchhoff de segunda espécie e 𝛿𝔼 

a variação da deformação de Green. 

Lembrando-se da correspondência existente entre a tensão hidrostática de Cauchy e a 

componente volumétrica da tensão de Piola-Kirchhoff de segunda espécie, conforme 

apresentada no item 4.3.5, a tensão termoelástica é calculada como segue: 

  
(𝛿𝛹𝑣𝑜𝑙)𝑇𝐸 = [(𝑠ℎ)𝑒𝑙𝑎𝑠𝑡 − 𝑠𝑡ℎ𝑒𝑟𝑚]𝛿𝐽 = [(𝑠ℎ)𝑒𝑙𝑎𝑠𝑡 − 𝑠𝑡ℎ𝑒𝑟𝑚]

𝜕𝐽

𝜕𝔼
∶ 𝛿𝔼

= [(𝑠ℎ)𝑒𝑙𝑎𝑠𝑡 − 𝑠𝑡ℎ𝑒𝑟𝑚]𝕰𝑣𝑜𝑙 ∶ 𝛿𝔼 

(353) 

sendo (𝑠ℎ)𝑒𝑙𝑎𝑠𝑡 o valor escalar da tensão hidrostática elástica, 𝑠𝑡ℎ𝑒𝑟𝑚 o valor escalar da tensão 

hidrostática proveniente do campo térmico e 𝕰𝑣𝑜𝑙  a direção hidrostática Lagrangeana da 

deformação, dada pela Equação (191). Finalmente, (𝑠ℎ)𝑒𝑙𝑎𝑠𝑡 e 𝑠𝑡ℎ𝑒𝑟𝑚 são dados por: 

 (𝑠ℎ)𝑒𝑙𝑎𝑠𝑡 = 𝐾𝜀𝑣
𝑒𝑙𝑎𝑠𝑡 (354) 
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 𝑠𝑡ℎ𝑒𝑟𝑚 = 𝐾𝜀𝑣
𝑡ℎ𝑒𝑟𝑚 (355) 

sendo 𝐾  o bulk modulus. 𝜀𝑣
𝑒𝑙𝑎𝑠𝑡  e 𝜀𝑣

𝑡ℎ𝑒𝑟𝑚  correspondem, respectivamente, à deformação 

elástica volumétrica e à deformação térmica volumétrica, dadas por: 

 
𝜀𝑣
𝑒𝑙𝑎𝑠𝑡 =

[𝐽2𝑛−1 − 𝐽−(2𝑛+1)]

4𝑛
 (356) 

 𝜀𝑣
𝑡ℎ𝑒𝑟𝑚 = 𝛼𝑣(𝜃 − 𝜃

{0}) = 𝛼𝑣Δ𝜃 (357) 

sendo 𝛼𝑣 o coeficiente de expansão térmica volumétrica (usualmente admitido como 𝛼𝑣 = 3𝛼𝑙, 

em que 𝛼𝑙 é referente ao coeficiente de expansão térmica linear), 𝜃{0} a temperatura inicial de 

referência do corpo e Δ𝜃  a variação da temperatura. Salienta-se que 𝜀𝑣
𝑒𝑙𝑎𝑠𝑡  corresponde à 

deformação volumétrica assumida para o modelo constitutivo de Hartmann-Neff. 

Dessa forma, através da analogia ao problema elástico linear, é possível reescrever a 

Equação (353) como: 

 (𝑺𝑣𝑜𝑙)𝑇𝐸 = 𝐾(𝜀𝑣
𝑒𝑙𝑎𝑠𝑡 − 𝜀𝑣

𝑡ℎ𝑒𝑟𝑚)𝕰𝑣𝑜𝑙 = 𝐾𝜀𝑣
𝑒𝑙𝑎𝑠𝑡𝕰𝑣𝑜𝑙 − 𝐾𝜀𝑣

𝑡ℎ𝑒𝑟𝑚𝕰𝑣𝑜𝑙 (358) 

Ainda, agrupando os termos referentes às componentes de tensão elástica e de tensão 

térmica da expressão anterior, tem-se: 

 (𝑺𝑣𝑜𝑙)𝑇𝐸 = (𝑺𝑣𝑜𝑙)𝑒𝑙𝑎𝑠𝑡 − (𝑺𝑣𝑜𝑙)𝑡ℎ𝑒𝑟𝑚 (359) 

sendo que: 

 (𝑺𝑣𝑜𝑙)𝑒𝑙𝑎𝑠𝑡 = 𝐾𝜀𝑣
𝑒𝑙𝑎𝑠𝑡𝕰𝑣𝑜𝑙 (360) 

 (𝑺𝑣𝑜𝑙)𝑡ℎ𝑒𝑟𝑚 = 𝑺𝑡ℎ𝑒𝑟𝑚 = 𝐾𝜀𝑣
𝑡ℎ𝑒𝑟𝑚𝕰𝑣𝑜𝑙 (361) 

Ressalta-se que, para o cálculo da parcela volumétrica do tensor constitutivo tangente, 

mostrado na Equação (170), deve-se, primeiramente, escrever a Equação (358) de forma 

completa, ou seja, incluindo-se a Equação (356):  

 
(𝑺𝑣𝑜𝑙)𝑇𝐸 =

𝐾

4𝑛
[𝐽2𝑛−1 − 𝐽−(2𝑛+1)]𝕰𝑣𝑜𝑙

⏟                

(𝑺𝑣𝑜𝑙)
𝑒𝑙𝑎𝑠𝑡

− 𝐾𝜀𝑣
𝑡ℎ𝑒𝑟𝑚𝕰𝑣𝑜𝑙 

(362) 

Na sequência, escreve-se a variação da tensão termoelástica como: 

 
(𝛿𝑺𝑣𝑜𝑙)𝑇𝐸 =

𝜕[(𝑺𝑣𝑜𝑙)𝑒𝑙𝑎𝑠𝑡 − (𝑺𝑣𝑜𝑙)𝑡ℎ𝑒𝑟𝑚]

𝜕𝔼
: 𝛿𝔼 

=
𝜕(𝑺𝑣𝑜𝑙)𝑒𝑙𝑎𝑠𝑡

𝜕𝔼
: 𝛿𝔼 − 𝐾𝜀𝑣

𝑡ℎ𝑒𝑟𝑚
𝜕𝕰𝑣𝑜𝑙

𝜕𝔼
: 𝛿𝔼 

=
𝜕(𝑺𝑣𝑜𝑙)𝑒𝑙𝑎𝑠𝑡

𝜕𝔼
∶ 𝛿𝔼 − 𝐾𝜀𝑣

𝑡ℎ𝑒𝑟𝑚
𝜕2𝐽

𝜕𝔼⊗ 𝜕𝔼
∶ 𝛿𝔼 

(363) 

Portanto, a expressão do tensor constitutivo termoelástico tangente volumétrico 

(ℭ𝑣𝑜𝑙)𝑇𝐸 fica dada por: 
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(ℭ𝑣𝑜𝑙)𝑇𝐸 =

𝜕(𝑺𝑣𝑜𝑙)𝑒𝑙𝑎𝑠𝑡

𝜕𝔼
− 𝐾𝜀𝑣

𝑡ℎ𝑒𝑟𝑚
𝜕2𝐽

𝜕𝔼⊗ 𝜕𝔼
= (ℭ𝑣𝑜𝑙)𝑒𝑙𝑎𝑠𝑡 − (ℭ𝑣𝑜𝑙)𝑡ℎ𝑒𝑟𝑚 (364) 

na qual (ℭ𝑣𝑜𝑙)𝑒𝑙𝑎𝑠𝑡  e (ℭ𝑣𝑜𝑙)𝑡ℎ𝑒𝑟𝑚  correspondem, respectivamente, às parcelas elástica e 

térmica do tensor constitutivo tangente volumétrico, sendo aquela definida na Equação (170) e 

esta, em específico, dada por: 

 
(ℭ𝑣𝑜𝑙)𝑡ℎ𝑒𝑟𝑚 = 𝐾𝜀𝑣

𝑡ℎ𝑒𝑟𝑚
𝜕2𝐽

𝜕𝔼⊗ 𝜕𝔼
 (365) 

sendo que o termo 𝜕2𝐽/𝜕𝔼⊗ 𝜕𝔼 foi definido previamente na Equação (199). 

Portanto, nos problemas termoelásticos, o tensor constitutivo tangente total (ℭ𝑡𝑜𝑡𝑎𝑙) é 

obtido por meio da subtração da parcela térmica (volumétrica) em relação à parcela elástica 

total: 

 ℭ𝑡𝑜𝑡𝑎𝑙 = ℭ𝑒𝑙𝑎𝑠𝑡 − (ℭ𝑣𝑜𝑙)𝑡ℎ𝑒𝑟𝑚 = (ℭ𝑣𝑜𝑙 + ℭ𝑖𝑠𝑜𝑐1 + ℭ𝑖𝑠𝑜𝑐2)
𝑒𝑙𝑎𝑠𝑡

− (ℭ𝑣𝑜𝑙)𝑡ℎ𝑒𝑟𝑚 (366) 

Destaca-se que não foi encontrado na revisão bibliográfica encaminhamento semelhante 

ao proposto neste trabalho para a consideração do efeito de temperatura em problemas 

termomecânicos. Dessa forma, entende-se que as Equações (362) e (365) são originais deste 

trabalho. 

 

8.2 Termo-elasto-plasticidade 

 

O modelo termo-elasto-plástico alternativo empregado neste trabalho é uma extensão 

do modelo termoelástico descrito no item 8.1.2 e passa a considerar o modelo elasto-plástico 

adequado para grandes deformações, o qual foi introduzido no item 5.2, atribuindo-o a 

dependência em relação aos níveis de temperatura. Dessa forma, o presente modelo termo-

elasto-plástico alternativo consiste no aprimoramento daquele apresentado por Rigobello, Coda 

e Munaiar Neto (2014), que era válido somente para problemas em regime de deformações 

pequenas e moderadas. 

Semelhantemente à resolução de problemas termoelásticos, a estratégia desacoplada 

adotada para a resolução de problemas termo-elasto-plásticos pode ser segmentada em três 

etapas: 

a. Resolução do problema térmico, conforme os procedimentos indicados no 

pseudocódigo da Figura 7.2; 

b. Atualização dos parâmetros mecânicos (e também do coeficiente de expansão 

térmica) dependentes da temperatura em função do campo térmico determinado 
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anteriormente: módulos de elasticidade volumétrico (bulk modulus) e transversal, 

tensão de escoamento e módulos de encruamento isótropo e cinemático; 

c. Resolução do problema mecânico transiente (dinâmico ou quase-estático), conforme 

o pseudocódigo da Figura 3.5.   

 

O modelo termo-elasto-plástico implementado neste trabalho apresenta relação tensão-

deformação do tipo bilinear para o material em todos os níveis de temperatura, conforme 

esquematizado na Figura 8.1 (tração uniaxial). Caso o nível de temperatura seja pertencente a 

um determinado intervalo compreendido entre as temperaturas 𝜃1  e 𝜃2 , os valores das 

propriedades térmicas e mecânicas dependentes da temperatura são calculadas através da 

interpolação linear utilizando os seus valores conhecidos nos níveis de temperatura 𝜃1 e 𝜃2. 

 

Figura 8.1 – Relação tensão–deformação termo-elasto-plástico bilinear 

 
Fonte: autor. 

 

Apesar das opiniões controversas na literatura acerca da necessidade ou não de corrigir 

o nível de deformação plástica em função da variação de temperatura (a cada passo de análise 

após a resolução do problema térmico), no presente trabalho foi assumido que não é preciso 

efetuar essa correção, conforme descrito no trabalho de Franssen (1990), o qual afirma que a 

deformação plástica não é afetada pela variação de temperatura. Essa hipótese também foi 



185 

 

admitida por outros autores como Lien et al. (2010) e Rigobello, Coda e Munaiar Neto (2014), 

cujos trabalhos também envolvem análises termoplásticas.  

Dessa forma, o equilíbrio resultante do presente acoplamento termomecânico 

(considerando a evolução temporal de um determinado instante 𝑠 para o próximo instante 𝑠 +

1) é esquematizado graficamente na Figura 8.2 (tração uniaxial).   

 

Figura 8.2 – Equilíbrio resultante do acoplamento termomecânico 

 
Fonte: adaptado de Lien et al. (2010). 

 

Em termos de implementação, é preciso adaptar a tensão de Piola-Kirchhoff de segunda 

espécie total (𝑺𝑡𝑜𝑡𝑎𝑙) e o tensor constitutivo tangente total (ℭ𝑡𝑜𝑡𝑎𝑙). A tensão completa no caso 

do modelo termo-elasto-plástico passa a ser dada pela Equação (367): 

 𝑺𝑡𝑜𝑡𝑎𝑙 = 𝑺𝑒𝑙𝑎𝑠𝑡 − 𝑺𝑡ℎ𝑒𝑟𝑚 − 𝑺𝑝𝑙𝑎𝑠𝑡

= (𝑺𝑣𝑜𝑙 + 𝑺𝑖𝑠𝑜𝑐1 + 𝑺𝑖𝑠𝑜𝑐2)
𝑒𝑙𝑎𝑠𝑡

− (𝑺𝑣𝑜𝑙)𝑡ℎ𝑒𝑟𝑚

− (𝑺𝑖𝑠𝑜𝑐1 + 𝑺𝑖𝑠𝑜𝑐2)
𝑝𝑙𝑎𝑠𝑡

 

(367) 

Analogamente à adaptação da tensão de Piola-Kirchhoff de segunda espécie completa 

para contemplar as componentes térmica e plástica, o tensor constitutivo termo-elasto-plástico 

tangente também pode ser determinado através da soma da parcela elástica e, caso existam, das 



186 

 

parcelas térmica e plástica, as quais podem ser calculadas, respectivamente, a partir das 

Equações (169), (365) e (263). Portanto, ℭ𝑡𝑜𝑡𝑎𝑙 passa a ser definido como: 

 ℭ𝑡𝑜𝑡𝑎𝑙 = ℭ𝑒𝑙𝑎𝑠𝑡 − ℭ𝑡ℎ𝑒𝑟𝑚 − ℭ𝑝𝑙𝑎𝑠𝑡

= (ℭ𝑣𝑜𝑙 + ℭ𝑖𝑠𝑜𝑐1 + ℭ𝑖𝑠𝑜𝑐2)
𝑒𝑙𝑎𝑠𝑡

− (ℭ𝑣𝑜𝑙)𝑡ℎ𝑒𝑟𝑚

− (ℭ𝑖𝑠𝑜𝑐1 + ℭ𝑖𝑠𝑜𝑐2)
𝑝𝑙𝑎𝑠𝑡

 

(368) 

  

8.3 Termo-visco-elasto-plasticidade 

 

Finalmente, ao combinar os modelos alternativos de viscosidade e de termo-elasto-

plasticidade apresentados, respectivamente, nos itens 6.2 e 8.2, pode-se construir o modelo 

termo-visco-elasto-plástico alternativo para grandes deformações. De forma semelhante aos 

modelos termoelástico e termo-elasto-plástico supracitados, primeiramente calcula-se a tensão 

de Piola-Kirchhoff de segunda espécie completa (𝑺𝑡𝑜𝑡𝑎𝑙) por meio da soma da componente 

elástica e, caso existam, das componentes térmica, plástica e viscosa: 

 𝑺𝑡𝑜𝑡𝑎𝑙 = 𝑺𝑒𝑙𝑎𝑠𝑡 − 𝑺𝑡ℎ𝑒𝑟𝑚 − 𝑺𝑝𝑙𝑎𝑠𝑡 + 𝑺𝑣𝑖𝑠𝑐

= (𝑺𝑣𝑜𝑙 + 𝑺𝑖𝑠𝑜𝑐1 + 𝑺𝑖𝑠𝑜𝑐2)
𝑒𝑙𝑎𝑠𝑡

− (𝑺𝑣𝑜𝑙)𝑡ℎ𝑒𝑟𝑚

− (𝑺𝑖𝑠𝑜𝑐1 + 𝑺𝑖𝑠𝑜𝑐2)
𝑝𝑙𝑎𝑠𝑡

+ (𝑺𝑣𝑜𝑙 + 𝑺𝑖𝑠𝑜𝑐1 + 𝑺𝑖𝑠𝑜𝑐2)
𝑣𝑖𝑠𝑐

 

(369) 

Analogamente à adaptação da tensão de Piola-Kirchhoff de segunda espécie mostrada 

acima, o cálculo do tensor constitutivo tangente completo (ℭ𝑡𝑜𝑡𝑎𝑙) pode ser efetuado a partir da 

soma de cada uma de suas parcelas envolvidas no problema termo-visco-elasto-plástico: 

 ℭ𝑡𝑜𝑡𝑎𝑙 = ℭ𝑒𝑙𝑎𝑠𝑡 − ℭ𝑡ℎ𝑒𝑟𝑚 − ℭ𝑝𝑙𝑎𝑠𝑡 + ℭ𝑣𝑖𝑠𝑐

= (ℭ𝑣𝑜𝑙 + ℭ𝑖𝑠𝑜𝑐1 + ℭ𝑖𝑠𝑜𝑐2)
𝑒𝑙𝑎𝑠𝑡

− (ℭ𝑣𝑜𝑙)𝑡ℎ𝑒𝑟𝑚

− (ℭ𝑖𝑠𝑜𝑐1 + ℭ𝑖𝑠𝑜𝑐2)
𝑝𝑙𝑎𝑠𝑡

+ (ℭ𝑣𝑜𝑙 + ℭ𝑖𝑠𝑜𝑐1 + ℭ𝑖𝑠𝑜𝑐2)
𝑣𝑖𝑠𝑐

 

(370) 

sendo que as parcelas elástica (ℭ𝑒𝑙𝑎𝑠𝑡), térmica (ℭ𝑡ℎ𝑒𝑟𝑚), plástica (ℭ𝑝𝑙𝑎𝑠𝑡) e viscosa (ℭ𝑣𝑖𝑠𝑐) do 

tensor constitutivo tangente podem ser calculadas por meio das Equações (169), (365), (263) e 

(277), respectivamente. 

Os procedimentos para a resolução do problema termo-visco-elasto-plástico são 

semelhantes àqueles apresentados para o modelo termo-elasto-plástico no item 8.2. Em cada 

passo de tempo da análise transiente, resolve-se primeiramente o problema térmico e, a partir 

do campo de temperatura determinado, atualiza-se os valores das propriedades mecânicas e do 

coeficiente de expansão térmica dependentes da temperatura para, finalmente, proceder à 
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resolução do problema mecânico. Na Figura 8.3 é apresentado o pseudocódigo que resume as 

operações realizadas na análise termo-visco-elasto-plástica. 

 

Figura 8.3 – Pseudocódigo da análise termo-visco-elasto-plástica 

1 Leitura dos dados de entrada 

2 Primeira tentativa de temperatura como temperatura no tempo inicial (𝜃⃗⃗ = 𝜃⃗⃗
{𝑡=0}

) 

3 Primeira tentativa de posição como posição inicial (𝑌⃗⃗ = 𝑋⃗) 

4 Cálculo da matriz pseudo-inversa → Equações (134) e (135) 

5 Cálculo da matriz de massa (𝑴) → Equação (118) (para cada elemento) 

6 Cálculo da matriz de amortecimento (𝑪) → Equação (121) 

7 Imposição das condições de contorno em 𝑴 e [𝐹⃗0
𝑒𝑥𝑡 −

𝜕𝕌

𝜕𝑌⃗⃗
|
0
− 𝑪𝑌̇⃗⃗0] → Equação (131) 

8 Cálculo da aceleração no primeiro passo de tempo (𝑌̈⃗⃗0) → Equação (131) 

9 Para i = 1 até nº de passos (etapa incremental) 

10  Soma do passo de tempo (𝑡 ← 𝑡 + ∆𝑡) 

- - - - - - - - - - - - - - - - - - - - - - - - - - Início do campo térmico - - - - - - - - - - - - - - - - - - - - - - - - - 

11  Enquanto ‖Δ𝑇⃗⃗‖ ‖𝑇⃗⃗‖⁄ ≥ 𝑡𝑜𝑙 (etapa iterativa) 

12   Cálculo da matriz de condutividade do domínio (𝑲) → Equação (311) 

13   Cálculo da matriz de condutividade no contorno (𝑶) → Equação (311) 

14   Cálculo da matriz de capacitância (𝑴) → Equação (311) 

15   Cálculo do vetor de fluxo de calor do domínio (𝑓{𝑇1}) →  
Equações (311) e (314) 

16   
Cálculo do vetor de fluxo de calor imposto (𝑓{𝑇2}) →  
Equações (311) e (314) 

17   
Cálculo do vetor de fluxo de calor por convecção e radiação (𝑓{𝑇3}) →  
Equações (311) e (314) 

18   Cálculo da matriz hessiana térmica (𝑯{𝑇}) → Equação (340) 

19   Cálculo do vetor resíduo térmico (𝑔⃗) → Equação (337) 

20   Imposição das condições de contorno em 𝑯{𝑇} e 𝑔⃗ 

21   Cálculo da correção da temperatura (Δ𝜃⃗⃗) → Equação (339) 

22   Atualização da temperatura (𝜃⃗⃗ ← 𝜃⃗⃗+ ∆𝜃⃗⃗) → Equação (345) 

23   Cálculo da norma ‖Δ𝜃⃗⃗‖ para a verificação de convergência 

24  Fim do loop 

- - - - - - - - - - - - - - - - - - - - - - - - - - - Fim do campo térmico - - - - - - - - - - - - - - - - - - - - - - - - - 

25  
Atualização dos valores das propriedades mecânicas e do coeficiente de 
expansão térmica dependentes da temperatura 

- - - - - - - - - - - - - - - - - - - - - - - - - - Início do campo mecânico - - - - - - - - - - - - - - - - - - - - - - - 
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- - - - - - - - - - - - - - - - - - - - - - - - - - Início do campo mecânico - - - - - - - - - - - - - - - - - - - - - - - 

26  Cálculo da força externa transiente (𝐹⃗𝑒𝑥𝑡(𝑡)) 

27  Cálculo do vetor auxiliar 𝑄⃗⃗𝑠 → Equação (127) 

28  Cálculo do vetor auxiliar 𝑅⃗⃗𝑠 → Equação (128) 

29  Enquanto ‖Δ𝑌⃗⃗‖ ‖𝑋⃗‖⁄ ≥ 𝑡𝑜𝑙 (etapa iterativa) 

30   Cálculo da tensão total (𝑺𝑡𝑜𝑡𝑎𝑙) → Equação (369) 

31   Cálculo do tensor constitutivo tangente total (ℭ𝑡𝑜𝑡𝑎𝑙) → Equação (370) 

32   Cálculo das forças internas (𝐹⃗𝑖𝑛𝑡) → Equação (98) 

33   Cálculo da matriz Hessiana estática (𝑯𝑒𝑠𝑡á𝑡𝑖𝑐𝑎) → Equações (113) e (114) 

34   Adição da parcela dinâmica à 𝑯𝑒𝑠𝑡á𝑡𝑖𝑐𝑎 → Equação (130) 

35   Cálculo do vetor resíduo mecânico (𝑔⃗) → Equação (129) 

36   Imposição das condições de contorno em 𝑯 e 𝑔⃗ 

37   Cálculo da correção da posição (Δ𝑌⃗⃗) → Equação (109) 

38   Atualização da posição (𝑌⃗⃗ ← 𝑌⃗⃗ + ∆𝑌⃗⃗) → Equação (110) 

39   Cálculo da norma ‖Δ𝑌⃗⃗‖ para a verificação de convergência 

40   Atualização da velocidade (𝑌̇⃗⃗) → Equação (126) 

41   Atualização da aceleração (𝑌̈⃗⃗) → Equação (125) 

42  Fim do loop 

43  Cálculo das tensões de Cauchy → Equação (132) 

- - - - - - - - - - - - - - - - - - - - - - - - - - - Fim do campo mecânico - - - - - - - - - - - - - - - - - - - - - - - - 

44  Exportação de dados – pós-processamento 

45 Fim do loop 

Fonte: autor. 

 

Por fim, ressalta-se que, apesar dos procedimentos indicados no pseudocódigo da Figura 

8.3 sejam especificamente referentes à análise de sólidos termo-visco-elasto-plásticos em 

regime transiente dinâmico, é possível também realizar análises considerando modelos mais 

simples a partir desse. Caso deseje efetuar uma análise transiente quase-estática de sólido 

termo-elasto-plástico, por exemplo, basta desprezar as contribuições inerciais e de 

amortecimento da análise dinâmica e as variáveis reológicas inerentes ao modelo de viscosidade. 

Comenta-se que as propriedades viscosas também podem ser dependentes da 

temperatura e a sua atualização é efetuada independentemente do campo mecânico, ou seja, 

sem ocasionar alteração no tensor constitutivo tangente. 

 

8.4 Exemplos numéricos 

 

Nesta seção são apresentados, ao todo, sete exemplos numéricos termomecânicos, 

organizados e descritos resumidamente como segue: 
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1. Exemplo com objetivo de validar o modelo termoelástico (térmico linear) 

implementado utilizando o modelo constitutivo hiperelástico de Saint-Venant-

Kirchhoff; 

2. Exemplo com objetivo de verificar o comportamento do modelo termoelástico 

proposto para grandes deformações utilizando o modelo constitutivo hiperelástico 

de Rivlin-Saunders-Hartmann-Neff; 

3. Exemplo com objetivo de validar o modelo termoelástico não-linear implementado 

considerando tanto as propriedades mecânicas e quanto as propriedades térmicas 

dependentes dos níveis de temperatura; 

4. Exemplo com objetivo de validar o modelo termo-elasto-plástico implementado 

para análise de problemas de aquecimento uniforme; 

5. Exemplo com objetivo de validar o modelo termo-elasto-plástico implementado 

para análise de problemas de aquecimento e resfriamento uniforme; 

6. Exemplo com objetivo de validar o modelo termo-elasto-plástico implementado 

para análise de problemas envolvendo transferência de calor não-linear por 

condução, convecção e radiação; 

7. Exemplo de aplicação de caráter ilustrativo, com o objetivo de demonstrar a 

capacidade resolutiva do código computacional desenvolvido para a análise 

dinâmica do sólido termo-visco-elasto-plástico em mudança de fase empregando a 

formulação alternativa proposta no presente trabalho. 

 

8.4.1 Chapa termo-elástica em expansão térmica transiente 

 

Proposto por Copetti (2002), o presente exemplo numérico consiste na análise transiente 

quase-estática (com os efeitos inerciais e de amortecimento desprezados) de uma barra 

submetida à expansão termoelástica em regime transiente de condução de calor linear, com o 

objetivo de validar a adequada resolução do problema mecânico de um elemento estrutural sob 

influência do campo térmico transiente.  

Este problema também foi analisado numericamente por Salomão (2021), tratando a 

barra como uma chapa termoelástica. Dessa forma, a fim de reproduzir o seu exemplo, a barra 

em questão foi considerada como uma chapa termoelástica com o modelo constitutivo de Saint-

Venant-Kirchhoff, sendo desprezados os efeitos térmicos na terceira dimensão do sólido. O 

esquema termomecânico do problema é mostrado na Figura 8.4, enquanto os dados deste 

exemplo, retirados do trabalho de Salomão (2021), são apresentados na Figura 8.5 e a 
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discretização adotada na Figura 8.6, com as superfícies correspondentes à base e ao topo dos 

elementos finitos prismáticos consideradas adiabáticas (visando reproduzir o comportamento 

de chapa termoelástica).   

 

Figura 8.4 – Barra analisada termomecanicamente em processo de condução de calor transiente com o 

campo térmico no instante 𝑡 = 0 

 

 
Fonte: autor. 

 

  

𝜃{t=0} = 10 cos(2𝜋 x)
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Figura 8.5 – Dados adotados no exemplo de validação 8.4.1 

Parâmetros mecânicos 

𝐸: 1,0 

𝜈: 0,0 

𝜌: 1,0 

Parâmetros térmicos 

𝕜: 1,0 

𝑐: 1,0 

𝛼𝑙: 0,017 

𝜃{0} (temperatura de referência): 0,0 

Dados geométricos 

Comprimento: 1,0 

Largura: 1,0 

Altura: 0,4 

Dados da malha 

Nº nós: 806 

Nº elementos finitos: 80 

Nº pontos de Hammer 12 

Grau de aproximação na espessura: Linear 

Outros dados 

Tolerância: 10-6 

𝛼 (Método das Diferenças Finitas): 2/3 

Δ𝑡: 0,001 s 

Fonte: autor. 

 

Figura 8.6 – Discretização adotada para o exemplo 8.4.1 

 
Fonte: autor. 

 

A Figura 8.7 e a Figura 8.8 são referentes, respectivamente, aos gráficos com resultados 

obtidos de temperatura e de deslocamento ao longo do comprimento da barra para três instantes 

distintos de tempo. É possível notar que os valores determinados numericamente são bastante 

próximos em relação àqueles apresentados por Copetti (2002) e Salomão (2021).  
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Figura 8.7 – Gráficos temperatura x posição ao longo do comprimento do exemplo numérico 8.4.1 

 

 
Fonte: autor. 
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Figura 8.8 – Gráficos Deslocamento x posição ao longo do comprimento do exemplo numérico 8.4.1 

 

 
Fonte: autor. 
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Já a Figura 8.9 e a Figura 8.10 mostram a configuração deformada (escala real) da 

estrutura analisada no instante 𝑡 = 0 e 𝑡 = 0,2 respectivamente. 

 

Figura 8.9 – Configuração da estrutura do exemplo numérico 8.4.1 no instante 𝑡 = 0 

 
Fonte: autor. 

 

Figura 8.10 – Configuração da estrutura do exemplo numérico 8.4.1 no instante 𝑡 = 0,2 

 
Fonte: autor. 
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As configurações deformadas determinadas com o código desenvolvido são 

semelhantes àquelas apresentadas por Salomão (2021). Portanto, com base na proximidade dos 

resultados obtidos em relação aos valores das bibliografias de referência, foi possível validar 

com êxito o código implementado para a análise termoelástica utilizando o modelo constitutivo 

de Saint-Venant-Kirchhoff. 

 

8.4.2 Cubo termoelástico sujeito a grandes deformações 

 

Este exemplo numérico é destinado à verificação do código de análise termoelástica 

implementada para a resolução de problemas em regime de grandes deformações utilizando o 

modelo constitutivo de Rivlin-Saunders-Hartmann-Neff. Os desenvolvimentos deste item, 

subdivididos em três etapas, foram efetuados a partir de um cubo termoelástico de dimensões 

unitárias ( 𝑙0 = 1 𝑚  para cada um dos lados) apoiado sobre três superfícies deslizantes 

(restrições foram aplicadas nos nós das faces 𝑥 = 0 , 𝑦 = 0  e 𝑧 = 0  nas direções 𝑥 , 𝑦  e 𝑧 

respectivamente).  

Primeiramente procura-se averiguar a consistência do modelo constitutivo em questão 

em regime de pequenas deformações através de uma análise comparativa com o modelo de 

Saint-Venant-Kirchhoff (validado anteriormente para aplicações em problemas termoelásticos 

no exemplo numérico 8.4.1), sendo que os resultados devem ser coincidentes nessa condição. 

Para essa primeira verificação, foi considerado para o coeficiente de dilatação térmica 

linear um valor de 𝛼𝑙 = 10
−6 °𝐶−1, com aplicação de uma variação de temperatura equivalente 

a Δ𝜃 = 10 °𝐶 a partir de uma determinada temperatura inicial de referência em que o cubo se 

encontra na sua configuração indeslocada e indeformada. Nessas condições, é esperado que, ao 

aplicar a variação de temperatura, o valor da variação de comprimento (Δ𝑙) em cada uma das 

três direções seja equivalente a Δ𝑙 = 𝛼𝑙Δ𝜃𝑙0 = 10
−5 𝑚. O problema é esquematizado na Figura 

8.11. 
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Figura 8.11 – Cubo termoelástico sujeito a pequenas deformações 

 
Fonte: autor. 

 

Os resultados de deslocamentos obtidos pelo código computacional desenvolvido 

constam na Figura 8.12 e, como pode ser observado, os seus valores nas faces livres foram 

equivalentes à variação de comprimento prevista (Δ𝑙 = 10−5 𝑚 ) para cada uma das três 

direções. Devido à igualdade dos resultados obtidos para os modelos de Saint-Venant-

Kirchhoff e Rivlin-Saunders-Hartmann-Neff (fato que já era esperado em regime de pequenas 

deformações, conforme comentado no início deste item), é apresentado um único esquema 

válido para ambos modelos. 

 

Figura 8.12 – Deslocamentos obtidos para o cubo termoelástico sujeito a pequenas deformações 

 
Fonte: autor. 

 

Verificada a consistência do modelo de Rivlin-Saunders-Hartmann-Neff no problema 

termoelástico em regime de pequenas deformações, procede-se à comparação dos dois modelos 

constitutivos em regime de deformações moderadas (referente a um intervalo aproximado de 

0,75 < 𝐽 < 1,25). A análise foi efetuada por meio da imposição de variação da temperatura 

(Δ𝜃) uniforme no cubo termoelástico a cada passo, considerando intervalo de [−8, 8] °𝐶 para 
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Δ𝜃  com incremento de 𝛿Δ𝜃 = 0,2 °𝐶 , totalizando 81 passos. Os dados e a discretização 

adotados para a segunda etapa deste exemplo são apresentados, respectivamente, na Figura 8.13 

e na Figura 8.14. 

 

Figura 8.13 – Dados adotados no teste de validação 8.4.2 

Parâmetros mecânicos 

𝐸: 1 Pa 

𝜈: 0,0 

Parâmetros térmicos 

𝛼𝑙: 0,01 °C-1 

Dados geométricos 

Comprimento: 1 m 

Largura: 1 m 

Altura: 1 m 

Dados da malha 

Nº nós: 32 

Nº elementos finitos: 2 

Nº pontos de Hammer 12 

Grau de aproximação na espessura: Linear 

Outros dados 

Tolerância: 10-6 

Fonte: autor. 

 

Figura 8.14 – Discretização adotada para o exemplo 8.4.2 

 
Fonte: autor. 
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A análise dos resultados obtidos foi efetuada por meio dos gráficos plotados de 

jacobiano por variação da temperatura (𝐽 x Δ𝜃), conforme exibidos na Figura 8.15. 

 

Figura 8.15 – Gráfico 𝐽 x Δ𝜃 do exemplo numérico 8.4.2 contemplando regime de deformações 

moderadas considerando os modelos constitutivos de: Saint-Venant-Kirchhoff e Rivlin-Saunders-

Hartmann-Neff 

 
Fonte: autor. 

 

A partir do gráfico, é possível notar a semelhança de comportamento do cubo 

termoelástico entre os modelos constitutivos analisados em regime de pequenas deformações, 

conforme já apresentado na primeira etapa de análise. No entanto, à medida que o corpo 

apresenta maiores deformações volumétricas em função de maiores variações de temperatura, 

são verificadas diferenças mais relevantes entre os valores obtidos para o jacobiano a um 

mesmo nível de Δ𝜃. Dessa forma, é perceptível a necessidade de uma avaliação mais rigorosa 

do comportamento do material ao realizar uma análise termoelástica em regime de grandes 

deformações. 

Finalmente, na terceira etapa da análise, busca-se averiguar a resposta termoelástica do 

cubo em regime de grandes deformações por meio da contração térmica em função da variação 
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negativa de temperatura imposta de até Δ𝜃 = −300 °𝐶 utilizando o modelo constitutivo de 

Rivlin-Saunders-Hartmann-Neff, conforme mostrado na Figura 8.16. Os dados e a discretização 

adotados correspondem àqueles apresentados na Figura 8.13 e da Figura 8.14, respectivamente. 

 

Figura 8.16 – Cubo termoelástico sujeito a grandes deformações 

 
Fonte: autor. 

 

A Figura 8.17 apresenta graficamente os resultados obtidos de 𝐽 x |Δ𝜃| (jacobiano x 

variação da temperatura) para os modelos constitutivos de Rivlin-Saunders-Hartmann-Neff e 

Saint-Venant-Kirchhoff, sendo este mostrado apenas para fins comparativos uma vez que esse 

nível de deformação volumétrica associado à variação de temperatura não ocorre na prática, de 

modo a evidenciar um melhor comportamento geral da proposta totalmente não-linear de 

acoplamento termomecânico do que aquela quase-linear utilizada, por exemplo, por Copetti 

(2002) e Salomão (2021). Já na Figura 8.18 é apresentada a configuração deformada do cubo 

termoelástico no último passo de análise (Δ𝜃 = −300 °𝐶) com os campos de deslocamento nas 

direções 𝑥, 𝑦 e 𝑧. 
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Figura 8.17 – Gráfico 𝐽 x |Δ𝜃| do exemplo numérico 8.4.2 contemplando regime de grandes 

deformações considerando os modelos constitutivos de Rivlin-Saunders-Hartmann-Neff e Saint-

Venant-Kirchhoff 

 
Fonte: autor. 

 



201 

 

Figura 8.18 – Configurações atuais do cubo termoelástico do exemplo numérico 8.4.2 no último passo 

de análise (Δ𝜃 = −300) utilizando o modelo constitutivo de Rivlin-Saunders-Hartmann-Neff 

 
Fonte: autor. 

 

Lembrando-se dos resultados apresentados no exemplo numérico 4.4.4, referente à 

validação do modelo constitutivo de Rivlin-Saunders-Hartmann-Neff, foi verificado que o 

mesmo respeita a condição de crescimento dado pela Equação (145). A partir do gráfico acima, 

pode ser observado também neste exemplo que o modelo termoelástico implementado 

utilizando o modelo de Rivlin-Saunders-Hartmann-Neff respeita a condição de crescimento (de 

modo a impedir a inversão ou a degeneração do material), evidenciando o comportamento 

esperado. Portanto, foi verificada a validade do modelo termoelástico implementado para 

grandes deformações. 

Quanto ao comportamento do cubo termoelástico utilizando o modelo de Saint-Venant-

Kirchhoff, nota-se através do gráfico acima que, ao atingir uma variação de temperatura de 

aproximadamente |Δ𝜃| = 50 °𝐶 , o jacobiano passa a assumir valor nulo, indicando que o 

material deixa de existir. 

Portanto, em todos os exemplos numéricos termomecânicos subsequentes, foi 

empregado somente o modelo constitutivo de Rivlin-Saunders-Hartmann-Neff. 

 

8.4.3 Viga termoelástica com condução de calor não-linear submetido ao carregamento 

transversal uniformemente distribuído  

 

Analisado originalmente por Zhang et al. (2020), este exemplo numérico é referente à 

análise transiente quase-estática de uma viga termoelástica engastada e livre sujeita ao 

carregamento mecânico transversal uniformemente distribuído de valor constante e aos fluxos 

de calor de valor constante (imposto) e por convecção. Objetiva-se, por meio deste exemplo, 

validar o modelo termoelástico não-linear implementado, considerando propriedades 

mecânicas e térmicas dependentes dos níveis de temperatura. 
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O problema termomecânico analisado é esquematizado na Figura 8.19, incluindo a 

identificação dos pontos B (localizado na face superior da extremidade livre) e C (situado no 

centro da face superior), nos quais foram aferidos os deslocamentos e as temperaturas, 

apresentados mais adiante. Já os dados deste exemplo são mostrados na Figura 8.20 e a 

discretização adotada na Figura 8.21, com as superfícies laterais (correspondentes à base e ao 

topo dos elementos finitos prismáticos), inferior e do engaste da viga assumidas adiabáticas.  

 

Figura 8.19 – Viga termo-elástica submetida aos carregamentos mecânicos e térmicos 

 

 
Fonte: autor. 
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Figura 8.20 – Dados adotados no exemplo de validação 8.4.2 

Parâmetros mecânicos 

𝐸: (90,06 + 0,3𝜃) GPa 

𝜈: 0,3 

Carga distribuída 𝑞: (6250𝑡) N/m² (𝑡 em segundos) 

Parâmetros térmicos 

𝛼𝑙: 1,25.10-5 K -1 

𝕜: (21,34 + 0,05𝜃) W/(m.K) 

𝑐: 460 J/(kg.K) 

𝜌: 7850 kg/m³ 

𝜃{0} (temperatura de referência): 293,15 K 

Fluxo de calor 𝑞̅: 5000 W/m²  

ℎ𝑐: 30 W/(m².K) 

𝜃∞: 373,15 K 

Dados geométricos 

Comprimento: 0,08 m 

Altura: 0,02 m  

Largura: 0,02 m 

Dados da malha 

Nº nós: 806 

Nº elementos finitos: 80 

Nº pontos de Hammer 12 

Grau de aproximação na espessura: Linear 

Outros dados 

Tolerância: 10-6 

𝛼 (Método das Diferenças Finitas): 2/3 

Δ𝑡: 10 s 

Fonte: autor. 

 

Figura 8.21 – Discretização adotada para o exemplo 8.4.2 

 
Fonte: autor. 
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Os resultados obtidos foram organizados em dois gráficos, sendo o primeiro de 

temperatura por tempo e o segundo, de deslocamento absoluto (resultante no ponto B e na 

direção do eixo 𝑧 no ponto C) por tempo, apresentados, respectivamente, na Figura 8.22 e 

Figura 8.23. 

 

Figura 8.22 – Gráfico temperatura x tempo do exemplo numérico 8.4.2 

 
Fonte: autor. 

 

Figura 8.23 – Gráfico deslocamento x tempo do exemplo numérico 8.4.2  

 
Fonte: autor. 
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Os campos de temperatura e de deslocamento vertical 𝑦 no instante final da análise (𝑡 = 

2400s) são ilustrados por meio da escala de cores, respectivamente, na Figura 8.24 e Figura 

8.25. 

 

Figura 8.24 – Campo de temperatura do exemplo numérico 8.4.2 no instante 𝑡 = 2400s 

 
Fonte: autor. 

 

Figura 8.25 – Campo de deslocamento vertical do exemplo numérico 8.4.2 no instante 𝑡 = 2400s 

 
Fonte: autor. 

 

Finalmente, com base na proximidade dos resultados obtidos pelo código desenvolvido 

em relação àqueles apresentados por Zhang et al. (2020), observada ao longo do 

desenvolvimento do presente exemplo numérico, verificou-se, com sucesso, a validade do 

código implementado para a resolução de problemas termoelásticos em regime transiente 

quase-estático, com propriedades mecânicas e térmicas dependentes dos níveis de temperatura 

(transferência de calor não-linear). 
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8.4.4 Ensaio de viga metálica termo-elasto-plástica aquecida uniformemente 

 

Este exemplo numérico busca reproduzir os resultados experimentais apresentados por 

Rubert e Schaumann (1986), com os ensaios conduzidos em vigas metálicas que possuem seção 

transversal do tipo IPE80, simplesmente apoiadas e carregadas no meio do vão, conforme 

apresentado na Figura 8.26, e então submetidas a um aquecimento uniforme ao longo de todo 

o seu comprimento, em regime de análise quase-estático. A análise foi efetuada para quatro 

níveis distintos de carregamento: 20%, 50%, 70% e 85% do valor da carga última de ruptura 

(𝐹𝑢). 

 

Figura 8.26 – Viga metálica com seção IPE80 simplesmente apoiada e sujeita a um carregamento 

concentrado no meio do vão 

Fonte: autor. 
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Devido à ausência de informações a respeito do valor da carga última 𝐹𝑢 na bibliografia 

de referência, o mesmo foi calculado da seguinte forma (unidade de medida da dimensão linear 

em mm e da força em kN): 

a. Cálculo da área da seção transversal acima/abaixo do seu baricentro (𝐴50%): 

 𝐴50% = 46 ⋅ 5,2 + 3,8 ⋅ 34,8 = 371,44 𝑚𝑚
2 (371) 

b. Cálculo da distância compreendida entre o baricentro da figura geométrica cuja área 

foi calculada no item (a) em relação ao baricentro da seção transversal completa 

(𝑦50%
𝑐𝑔

): 

 
𝑦50%
𝑐𝑔

=
(46 ⋅ 5,2) ⋅ 37,4 + (3,8 ⋅ 34,8) ⋅ 17,4

46 ⋅ 5,2 + 3,8 ⋅ 34,8
= 30,2796 𝑚𝑚2 (372) 

c. Cálculo do momento último (𝑀𝑢) a partir da expressão do momento do binário, 

considerando a tensão de plastificação do material (𝜎𝑦 ) como tensão limite e a 

distância entre as duas cargas equivalentes aplicadas (com sentidos opostos) no 

baricentro das respectivas áreas 𝐴50% como 𝑑𝑐𝑔 = 2𝑦50%
𝑐𝑔

: 

 𝑀𝑢 = 𝐹𝑦𝑑𝑐𝑔 = (𝜎𝑦𝐴50%)(2𝑦50%
𝑐𝑔
) = 8975,1507 𝑘𝑁 ⋅ 𝑚𝑚 (373) 

d. Cálculo da carga última aplicada no centro do vão (equivalente ao comprimento da 

viga, denotado por 𝐿) a partir do momento último determinado no item (c): 

 
𝑀𝑢 =

𝐹𝑢𝐿

4
   ⟶    𝐹𝑢 =

4𝑀𝑢
𝐿

≅ 31,5 𝑘𝑁 (374) 

 

Na literatura, estão presentes diversos resultados de análise numérica dos ensaios 

realizados por Rubert e Schaumann (1986), entretanto, uma parcela significativa desses 

trabalhos mostra os resultados obtidos utilizando o modelo constitutivo elíptico destinado 

especificamente para o aço em situação de elevadas temperaturas, indicado pela norma CEN 

EN 1993-1-2:2005.  

Já no trabalho de Izzuddin et al. (2000) são apresentados os resultados de análise 

numérica utilizando tanto o modelo elíptico quanto o modelo termo-elasto-plástico bilinear 

(empregando elementos de pórtico), sendo que este reproduz uma relação constitutiva 

semelhante ao do modelo termo-elasto-plástico implementado no presente trabalho. 

Dessa forma, assumiu-se os mesmos valores adotados por Izzuddin et al. (2000) para as 

propriedades mecânicas dependentes da temperatura do modelo termo-elasto-plástico bilinear, 

os quais foram organizados na Figura 8.27. Além disso, no trabalho de Lien et al. (2010) podem 

ser encontrados os resultados de análise numérica conduzida sob condições semelhantes, 
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também utilizando elementos de pórtico e modelo termo-elasto-plástico cuja relação tensão-

deformação admitida para o material é bilinear. 

Destaca-se que houve a necessidade de calibrar o valor do módulo de encruamento 

isótropo 𝐻𝑖(𝜃) por meio do teste de tração uniaxial, semelhante àquele introduzido no exemplo 

numérico do item 5.3.2, a fim de reproduzir a relação constitutiva no trecho plástico indicado 

no trabalho de Izzuddin et al. (2000) para os níveis de temperatura de interesse. Caso um 

determinado valor da temperatura pertença a alguma das faixas de temperatura estabelecidas na 

Figura 8.27, os valores correspondentes dos parâmetros mecânicos podem ser determinados por 

meio da interpolação linear.  

Na Figura 8.28, são apresentados os valores dos parâmetros mecânicos e térmicos 

independentes da temperatura, além dos dados geométricos e da malha de elementos finitos. 

Destaca-se que, a fim de reduzir o tempo de processamento, foi aproveitada a dupla simetria do 

problema e modelou-se somente um quarto da viga metálica (e, consequentemente, o valor do 

carregamento aplicado foi reduzido para um quarto do seu valor original). Dessa forma, foram 

impostas condições de contorno de superfícies deslizantes (restringem os deslocamentos 

normais às superfícies) nos dois planos de simetria, de modo a impedir também a ocorrência de 

instabilidades laterais (pela restrição de deslocamento na direção 𝑥  aplicada nos nós 

pertencentes ao plano 𝑦𝑧 de simetria). A discretização adotada para um quarto do elemento 

estrutural modelado é mostrado na Figura 8.29 e ressalta-se que a malha admitida foi 

suficientemente refinada para obter a convergência de resultados.     

 

Figura 8.27 – Parâmetros dependentes da temperatura assumidos no exemplo de validação 8.4.4 

Temperatura 𝐸 Temperatura 𝜎𝑦 Temperatura 𝐻𝑖 

(°C) (GPa) (°C) (MPa) (°C) (MPa) 

20 210,0 20 399,0 20 0,0 

100 210,0 300 399,0 300 0,0 

700 84,0 700 59,9 400 383,0 

1100 0,0 1000 0,0 900 0,0 

Fonte: autor. 
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Figura 8.28 – Demais dados adotados no exemplo de validação 8.4.4 

Parâmetros mecânicos 

𝜈: 0,3 

Carga 𝑃: 𝛾.𝐹𝑢 (𝛾 variável de 0,2 a 0,85) 

Parâmetros térmicos 

𝛼𝑙: 1,4.10-5 °C -1 

𝜃{0} (temperatura de referência): 20 °C 

Dados geométricos 

Comprimento: 1140 mm 

Altura: 80 mm  

Largura da mesa: 46 mm 

Espessura da mesa: 5,2 mm 

Espessura da alma: 3,8 mm 

Dados da malha e tolerância 

Nº nós: 1534 

Nº elementos finitos: 80 

Nº pontos de Hammer 12 

Grau de aproximação na espessura: Cúbica 

Outros dados 

Tolerância: 10-5 

Fonte: autor. 

 

Figura 8.29 – Discretização adotada para o exemplo 8.4.4 

 
Fonte: autor. 

 

Por se tratar de um problema em que o elemento estrutural é submetido a um 

aquecimento uniforme, assumiu-se que todos os pontos do corpo apresentam um único de valor 

de temperatura para um mesmo passo de análise, considerando que todas as superfícies da viga 

metálica sejam adiabáticas. Foi adotado um incremento de temperatura igual a 2,5 °C a cada 

passo de análise. 

A fim de evitar a ocorrência de plastificação concentrada no local de aplicação do 

carregamento pontual, optou-se, neste exemplo, pela aplicação do carregamento distribuído em 

uma área reduzida na face superior da região do centro do vão, em um comprimento equivalente 
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a, aproximadamente, 5% do comprimento total da viga e na largura da projeção da alma (30,0 

mm x 1,9 mm considerando a dupla simetria considerada na modelagem). 

O gráfico de deslocamento vertical no centro do vão da viga metálica (aferido na sua 

face inferior) por temperatura é mostrado na Figura 8.30. Nota-se que os valores obtidos pela 

formulação proposta implementada são próximos aos obtidos por Rubert e Schaumann (1986), 

Izzuddin et al. (2000) e Lien et al. (2010). 

 

Figura 8.30 – Gráfico deslocamento vertical x temperatura do exemplo numérico 8.4.4  

 
Fonte: autor. 

 

Observando-se os resultados apresentados no gráfico da Figura 8.30, pode-se concluir 

que a validade do modelo termo-elasto-plástico implementado para a análise de problemas de 

aquecimento uniforme foi verificada com sucesso a partir da proximidade satisfatória dos 

resultados obtidos em relação àqueles indicados nas bibliografias de referência. 
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8.4.5 Viga metálica termo-elasto-plástica aquecida e resfriada uniformemente 

 

O presente exemplo numérico foi extraído de Yu et al. (2010) e trata-se de uma 

simulação numérica em regime quase-estático de uma viga metálica de seção quadrada, 

simplesmente apoiada e carregada pontualmente no meio do vão, conforme esquematizado na 

Figura 8.26. O elemento estrutural em questão é submetido, primeiramente, a um aquecimento 

uniforme de 20 °C a 670 °C ao longo de todo o seu comprimento, e, em seguida, a um 

resfriamento uniforme de 670 °C a 20 °C, também ao longo de toda a sua extensão. 

Originalmente, a análise foi efetuada por meio dos programas comerciais ABAQUS e ANSYS 

utilizando o modelo constitutivo elíptico do aço indicado na norma CEN EN 1993-1-2:2005. 

 

Figura 8.31 – Viga metálica com quadrada simplesmente apoiada e sujeita a um carregamento 

concentrado no meio do vão 

 

 
Fonte: autor. 
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Pelo fato da análise ter sido efetuada empregando o modelo constitutivo elíptico por Yu 

et al. (2010), optou-se por assumir valores distintos para o módulo de elasticidade longitudinal 

(𝐸) e a tensão de escoamento (𝜎𝑦) em relação àqueles adotados pelos autores em questão. Essa 

estratégia é semelhante àquela apresentada por Izzuddin et al. (2000) (já comentada no exemplo 

numérico do item 8.4.4), na qual os valores dos parâmetros mecânicos dependentes da 

temperatura do modelo termo-elasto-plástico bilinear foram calibrados de modo que os 

resultados obtidos com o modelo em questão apresente um bom ajuste em relação aos resultados 

obtidos com o modelo elíptico da norma CEN EN 1993-1-2:2005, utilizada como referência. 

Observa-se que não foi objetivo deste trabalho implementar modelo constitutivo elasto-plástico 

com variação do encruamento, justificando-se a estratégia assumida desde que os valores 

assumidos não sejam exageradamente distantes dos adotados pelas referências. 

Os valores assumidos para 𝐸 e 𝜎𝑦 são apresentados na Figura 8.32, juntamente com os 

valores do módulo de encruamento isótropo (𝐻𝑖 ), os quais também foram calibrados para 

reproduzir os resultados de Yu et al. (2010). Caso o valor da temperatura seja pertencente a 

alguma das faixas de temperatura estabelecidas na Figura 8.32, determina-se os valores 

correspondentes dos parâmetros mecânicos por meio da interpolação linear.  

Já na Figura 8.33 são indicados os valores adotados para os parâmetros mecânicos e 

térmicos independentes da temperatura, além dos dados geométricos e da malha de elementos 

finitos, enquanto na Figura 8.34 é mostrada a discretização assumida para o elemento estrutural 

analisado. De forma semelhante ao exemplo numérico do item 8.4.4, foi modelado somente um 

quarto da viga metálica aproveitando a dupla simetria do problema (e, consequentemente, o 

valor da carga aplicada foi reduzido a um quarto do seu valor original), com imposição de 

condições de contorno de superfícies deslizantes nos dois planos de simetria. Além disso, 

comenta-se que a malha adotada foi suficientemente refinada para obter a convergência de 

resultados. 

 

Figura 8.32 – Parâmetros dependentes da temperatura assumidos no exemplo de validação 8.4.5 

Temperatura 𝐸 Temperatura 𝜎𝑦 Temperatura 𝐻𝑖 

(°C) (GPa) (°C) (MPa) (°C) (MPa) 

20 210,0 20 355,00 20 0,0 

100 210,0 100 355,00 100 0,0 

500 126,0 500 213,00 400 490,0 

600 73,5 600 78,10 500 285,0 

700 42,0 700 53,25 900 0,0 

Fonte: autor. 
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Figura 8.33 – Demais dados adotados no exemplo de validação 8.4.5 

Parâmetros mecânicos 

𝜈: 0,0 

Parâmetros térmicos 

𝛼𝑙: Conforme a CEN EN 1993-1-2:2005 

𝜃{0} (temperatura de referência): 20 °C 

Dados geométricos 

Comprimento: 1500 mm 

Altura: 50 mm  

Largura: 50 mm 

Dados da malha 

Nº nós: 962 

Nº elementos finitos: 96 

Nº pontos de Hammer 12 

Grau de aproximação na espessura: Linear 

Outros dados 

Tolerância: 10-6 

Fonte: autor. 

 

Figura 8.34 – Discretização adotada para o exemplo 8.4.5 

 
Fonte: autor. 

 

Semelhantemente ao exemplo numérico 8.4.4, o presente exemplo se trata de um 

problema em que o elemento estrutural é sujeito a um aquecimento (e resfriamento) uniforme, 

ou seja, todos os pontos do corpo apresentam um único de valor de temperatura para um mesmo 

passo de análise. Assumiu-se que todas as superfícies da viga metálica são adiabáticas, com o 

elemento submetido a incremento/decremento uniforme de temperatura de 2,5 °C a cada passo 

de análise. 

Os resultados obtidos de deslocamento vertical no centro do vão da viga metálica 

(aferido na face inferior) em função da temperatura são representados graficamente na Figura 

8.35, juntamente com os valores determinados por Yu et al. (2010) para elementos de sólido e 

de viga utilizando os programas comerciais ABAQUS e ANSYS. As configurações deformadas 
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da estrutura para o último passo de aquecimento (θ = 670 °C) e de resfriamento (θ = 20 °C) são 

apresentadas na Figura 8.36, juntamente com a escala de cores referente ao campo de 

deslocamento na direção 𝑦 (vertical) e a configuração indeslocada e indeformada da viga. 

 

Figura 8.35 – Gráfico deslocamento vertical x temperatura do exemplo numérico 8.4.5  

 
Fonte: autor. 
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Figura 8.36 – Configuração da estrutura no último passo de aquecimento e de resfriamento do 

exemplo numérico 8.4.5 

 
Fonte: autor. 

 

A partir do gráfico mostrado acima, observa-se que, apesar das diferenças no modelo 

constitutivo termo-elasto-plástico empregado, foi possível reproduzir, de forma satisfatória, os 

resultados apresentados por Yu et al. (2010) tanto na fase de aquecimento quanto na fase de 

resfriamento, utilizando-se a estratégia de calibração dos valores dos parâmetros mecânicos 

dependentes da temperatura apresentada no trabalho de Izzuddin et al. (2000).  

Tal estratégia mostrou-se ser interessante para análise de problemas em que o modelo 

constitutivo empregado é de maior complexidade em termos de implementação computacional 

e de elevada especificidade que, no caso do modelo elíptico mencionado da norma CEN EN 

1993-1-2:2005, é voltado principalmente para análise e desenvolvimento de projeto de 

estruturas metálicas sujeitas às elevadas temperaturas em situação de incêndio. No entanto, 

ressalta-se que, para análises mais rigorosas e complexas, deve-se recorrer aos modelos 

constitutivos especializados que dispensem ou dependam menos da calibração dos parâmetros 

envolvidos na análise. 
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8.4.6 Viga metálica termo-elasto-plástica em situação de incêndio 

 

O presente exemplo numérico teve como objetivo validar o modelo termo-elasto-

plástico implementado considerando a transferência de calor por condução, convecção e 

radiação, por meio da análise numérica do ensaio de uma viga metálica em situação de incêndio, 

conduzido originalmente por Cong, Liang e Dong (2005) e simulado numericamente por 

diversos autores como Lien et al. (2010), Paik et al. (2013) e Alshaikh et al. (2023). O 

experimento é referente a uma viga metálica com seção transversal do tipo H250x125x6x9, 

simplesmente apoiada e sujeita a quatro carregamentos concentrados ao longo do comprimento, 

conforme indicado na Figura 8.37, e submetida às ações térmicas (fluxo de calor por convecção 

e radiação) que simulam uma situação em incêndio, as quais são esquematizadas também na 

Figura 8.37. 
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Figura 8.37 – Viga metálica com seção H250x125x6x9 simplesmente apoiada e sujeita aos 

carregamentos mecânicos concentrados e aos carregamentos térmicos ao longo do comprimento 

 

 
Fonte: autor. 

 

Na Figura 8.38, são indicadas as informações acerca da geometria, da malha de 

elementos finitos e do passo de tempo adotado, enquanto na Figura 8.39 é apresentada a 

discretização considerada para o exemplo analisado. Semelhantemente aos dois exemplos 

anteriores referentes às análises termo-elasto-plásticas de vigas metálicas (itens 8.4.4 e 8.4.5), 

foi modelado somente um quarto do elemento estrutural considerando a dupla simetria do 

problema (e, consequentemente, o valor das cargas aplicadas correspondem a metade do seu 

valor original), com imposição de condições de contorno de superfícies deslizantes nesses dois 
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planos de simetria. Comenta-se também que a malha adotada foi suficientemente refinada para 

a convergência dos resultados. 

 

Figura 8.38 – Demais dados adotados no exemplo de validação 8.4.6 

Dados geométricos 

Comprimento: 4200 mm 

Altura: 250 mm  

Largura da mesa: 125 mm 

Espessura da mesa: 9 mm 

Espessura da alma: 6 mm 

Dados da malha 

Nº nós: 2560 

Nº elementos finitos: 140 

Nº pontos de Hammer 12 

Grau de aproximação na espessura: Cúbica 

Outros dados 

Δ𝑡: 5 s 

Fonte: autor. 

 

Figura 8.39 – Discretização adotada para o exemplo 8.4.6 

 
Fonte: autor. 

 

A validação do modelo termo-elasto-plástico implementado por meio do presente 

exemplo foi efetuada em duas etapas. A primeira etapa corresponde à validação do problema 

térmico, enquanto a segunda etapa, à validação do problema mecânico elasto-plástico 

dependente do campo de temperatura. 
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8.4.6.1 Validação do problema térmico não-linear 

 

O desenvolvimento do problema térmico foi efetuado assumindo-se os dados indicados 

por Paik et al. (2013) (Figura 8.40) e os resultados obtidos foram comparados com aqueles 

apresentados pelos autores em questão e também com os resultados experimentais de Cong, 

Liang e Dong (2005).  

 

Figura 8.40 – Dados do problema térmico adotados no exemplo de validação 8.4.6 

Parâmetros térmicos 

𝛼𝑙: 1,4.10-5 °C -1 

𝕜: Conforme a CEN EN 1993-1-2:2005 (Apêndice A) 

𝑐: Conforme a CEN EN 1993-1-2:2005 (Apêndice A) 

𝜌: 7850 kg/m³ 

𝜃{0} (temperatura de referência): 20 °C 

Outros dados 

Tolerância: 10-6 

𝛼 (Método das Diferenças Finitas): 2/3 

Δ𝑡: 5 s 

Fonte: autor. 

 

Para a simulação do problema térmico, considerou-se a transferência de calor por 

convecção e radiação através de suas superfícies expostas ao incêndio, com os parâmetros 

relativos à convecção e à radiação indicados na Figura 8.41, os quais foram retirados do trabalho 

de Paik et al. (2013). Quanto à face superior que não é exposta ao incêndio, foi assumido que 

está em contato com gases a uma temperatura ambiente constante de 20 °C, condição também 

assumida por Alshaikh et al. (2023). Além disso, as superfícies da seção transversal das 

extremidades da viga foram assumidas adiabáticas. 

Com relação à temperatura dos gases (𝜃∞) para as faces expostas ao incêndio ao longo 

do tempo, assumiu-se os valores aferidos experimentalmente, os quais foram organizados na 

Figura 8.42 em forma de quadro e representados graficamente na Figura 8.43.  

 

Figura 8.41 – Valores assumidos para os parâmetros inerentes à transferência de calor por convecção e 

radiação no exemplo de validação 8.4.6 

Convecção 

ℎ𝑐 (faces expostas ao incêndio): 16,4 W/(m² °C) 

ℎ𝑐 (face não exposta ao incêndio): 9,0 W/(m² °C) (radiação considerada implicitamente) 

Radiação 

𝜀𝑠: 0,24 

Fonte: autor. 
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Figura 8.42 – Valores assumidos para temperatura dos gases em situação de incêndio no exemplo de 

validação 8.4.6 

Tempo Temperatura Tempo Temperatura Tempo Temperatura Tempo Temperatura 

(s) (°C) (s) (°C) (s) (°C) (s) (°C) 

0,00 20,00 637,24 502,29 1490,12 612,21 2453,75 704,58 

5,83 60,31 691,64 505,34 1505,67 615,27 2508,15 703,82 

13,60 102,29 732,43 512,21 1534,81 615,27 2545,06 708,40 

17,49 141,22 786,83 530,53 1554,24 622,14 2581,98 712,21 

25,26 176,34 847,06 539,69 1587,26 622,14 2620,83 709,92 

33,03 208,40 878,14 539,69 1630,01 629,01 2659,69 708,40 

42,74 245,04 915,06 548,09 1676,63 630,53 2698,54 715,27 

50,51 274,05 969,45 551,15 1709,66 635,11 2737,40 722,14 

62,17 304,58 1010,25 543,51 1734,92 634,35 2778,20 722,14 

79,65 338,17 1035,51 549,62 1777,66 642,75 2815,11 722,90 

101,03 364,12 1066,59 545,80 1816,51 643,51 2857,85 731,30 

124,34 386,26 1107,39 545,80 1874,80 650,38 2898,65 731,30 

149,60 406,11 1126,82 542,75 1936,97 656,49 2933,62 731,30 

192,34 422,14 1146,25 550,38 2014,68 658,02 2962,76 735,11 

233,14 439,69 1229,79 548,09 2055,48 665,65 2989,96 735,11 

289,48 458,02 1245,33 544,27 2121,53 673,28 3040,47 742,75 

351,65 473,28 1290,02 544,27 2152,62 674,05 3085,16 744,27 

390,50 474,05 1317,22 549,62 2170,10 677,10 3131,79 749,62 

423,53 483,21 1336,64 567,94 2208,96 677,10 3186,18 750,38 

456,56 481,68 1350,24 583,97 2238,10 683,21 3232,81 755,73 

503,18 489,31 1379,38 596,95 2296,38 687,79 3296,92 758,02 

551,75 496,18 1420,18 605,34 2343,01 694,66 3366,86 761,83 

594,50 492,37 1457,10 609,92 2401,30 703,82 3434,86 766,41 
Fonte: autor. 
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Figura 8.43 – Gráfico temperatura x tempo para os gases em situação de incêndio do exemplo 

numérico 8.4.6  

 
Fonte: adaptado de Cong, Liang e Dong (2005). 

 

Na Figura 8.44 são apresentadas, em forma de gráfico, as temperaturas obtidas para a 

mesa superior (aferida no ponto A indicado na Figura 8.37), alma (aferida no ponto B indicado 

na Figura 8.37) e mesa inferior (aferida no ponto C indicado na Figura 8.37) em função do 

tempo.  
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Figura 8.44 – Gráfico temperatura x tempo para as mesas e a alma do exemplo numérico 8.4.6 

  
Fonte: autor. 

 

Observa-se que os valores determinados numericamente são bastante próximos em 

relação àqueles obtidos, também em simulação numérica, por Paik et al. (2013). Tratando-se 

dos resultados experimentais apresentados por Cong, Liang e Dong (2005), apesar de uma 

maior diferença entre os valores obtidos, observa-se que os resultados com o código 

computacional desenvolvido ainda são satisfatórios, considerando que existem diversas 

incertezas envolvidas no processo de transferência de calor por convecção e radiação, o qual 

foi considerado simplificadamente para a realização da análise numérica. 

 

8.4.6.2 Validação do problema mecânico dependente do campo de temperatura 

 

Quanto ao problema mecânico dependente dos níveis de temperatura, a validação do 

problema foi efetuada a partir dos resultados apresentados por Cong, Liang e Dong (2005), Paik 

et al. (2013) e Alshaikh et al. (2023), porém com ajuste nos valores da tensão de escoamento 

do material e calibração dos valores do módulo de encruamento isótropo, pelo fato desses dois 

últimos autores terem conduzido as análises numéricas admitindo o modelo termo-elasto-

plástico elíptico da norma CEN EN 1993-1-2:2005 (comentado previamente nos itens 8.4.4 e 
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8.4.5), diferentemente do modelo termo-elasto-plástico do tipo bilinear considerado neste 

trabalho. Devido à adoção de modelos constitutivos distintos, novamente surgiu a necessidade 

de calibrar os parâmetros mecânicos dependentes dos níveis de temperatura, assim como foi 

efetuado no trabalho de Izzuddin et al. (2000), o qual também já foi mencionado nos itens 8.4.4 

e 8.4.5. 

Para cada nível de temperatura de interesse, primeiramente foram assumidos os valores 

para a tensão de escoamento 𝜎𝑦 e, na sequência, foram calibrados os valores do módulo de 

encruamento isótropo 𝐻𝑖 por meio do teste de tração uniaxial (análogo ao caso do exemplo 

numérico 8.4.4), de forma que as curvas calibradas que exprimem a relação tensão-deformação 

do material sejam concorrentes, no nível de deformação de 2% (regime de pequenas 

deformações), com as curvas do modelo constitutivo elíptico apresentadas pela CEN EN 1993-

1-2:2005, conforme ilustrado na Figura 8.45. O nível de deformação de referência de 2% para 

a calibração do módulo de encruamento também pode ser visto em trabalhos de outros autores, 

como Lin, Huang e Yang (2012). 

 

Figura 8.45 – Curvas de tensão x deformação do aço para cada nível de temperatura adaptada da 

norma CEN EN  1993-1-2:2005 para o exemplo 8.4.6 

 
Fonte: autor. 



224 

 

 

Os valores assumidos neste exemplo para as propriedades mecânicas dependentes da 

temperatura constam na Figura 8.46. Caso uma determinada temperatura pertença a algum 

intervalo de temperatura apresentado, os valores correspondentes dos parâmetros mecânicos 

podem ser determinados por meio da interpolação linear. Já na Figura 8.47, são indicados os 

demais dados do problema mecânico. 

 

Figura 8.46 – Parâmetros dependentes da temperatura adotados no exemplo de validação 8.4.6 

Temperatura 𝐸 Temperatura 𝜎𝑦 Temperatura 𝐻𝑖 

(°C) (GPa) (°C) (MPa) (°C) (MPa) 

20 210,00 20 330,00 20 0,00 

100 210,00 100 330,00 100 0,00 

200 189,00 200 300,00 200 115,00 

300 168,00 300 265,00 300 280,00 

400 147,00 400 230,00 400 455,00 

500 126,00 500 180,00 500 350,00 

600 65,10 600 99,00 600 260,00 

700 27,30 700 42,00 700 160,00 

800 18,90 800 26,00 800 45,00 

Fonte: autor. 

 

Figura 8.47 – Demais dados adotados no exemplo de validação 8.4.6 

Parâmetros mecânicos 

𝜈: 0,3 

Outros dados 

Tolerância: 10-5 

Fonte: autor. 

 

No exemplo em questão, o processo de carregamento é quase-estático, conforme 

afirmado por Alshaikh et al. (2023), sendo possível, portanto, desprezar os efeitos inerciais e 

de amortecimento para a análise (análise transiente quase-estática). Foi assumido que, no 

instante 𝑡 = 0, os carregamentos aplicados são nulos, sendo esses incrementados a uma taxa 

constante até atingir o seu valor máximo de 10,5 kN no instante 𝑡 = 600 s e, a partir desse 

momento, os seus valores permanecem inalterados.  

Os resultados de deslocamento ao longo do tempo no meio do vão obtido pelo código 

desenvolvido, aferido no ponto central da face inferior da viga metálica, foram representados 

em forma de gráfico na Figura 8.48, juntamente com os resultados experimentais de Cong, 

Liang e Dong (2005) e os resultados das simulações numéricas de Paik et al. (2013) e Alshaikh 

et al. (2023). 
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Figura 8.48 – Gráfico deslocamento vertical x tempo do exemplo numérico 8.4.6 

  
Fonte: autor. 

 

Na Figura 8.49, são exibidas as configurações deformadas da viga metálica em 

diferentes instantes do tempo de análise, juntamente com a escala de cores indicando o campo 

de deslocamento na direção 𝑦 (vertical) e, em cor cinza claro, a configuração indeslocada e 

indeformada do elemento estrutural. 
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Figura 8.49 – Configurações deformadas da viga metálica em diferentes instantes do tempo de análise 

do exemplo numérico 8.4.6  

 
Fonte: autor. 

 

A partir dos resultados referentes ao problema térmico e ao problema mecânico que são 

apresentados na forma de gráficos, respectivamente, na Figura 8.44 e na Figura 8.48, foi 

possível verificar, com sucesso, a validade do código implementado para a análise termo-elasto-

plástica envolvendo o processo de transferência de calor não-linear por condução, convecção e 

radiação, devido à proximidade satisfatória dos valores obtidos em relação aos resultados 

apresentados nas bibliografias de referência. 
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8.4.7 Aquecimento da peça metálica de alumínio contemplando a mudança de fase 

 

Neste exemplo de aplicação de caráter ilustrativo, apresenta-se uma simulação numérica 

de uma peça tronco-cônica de alumínio apoiada sobre uma superfície aquecida e, dessa forma, 

sujeita ao fluxo de calor através da sua base, com o objetivo de demonstrar o comportamento 

de sólido termo-visco-elasto-plástico em mudança de fase empregando a formulação descrita 

no presente trabalho. Na Figura 8.50, é apresentado o esquema termomecânico da peça metálica 

analisada, contemplando os dados de geometria e dimensões iniciais (estado indeslocado e 

indeformado). Destaca-se que foi aproveitada a dupla simetria do problema e somente um 

quarto da peça metálica foi modelada, com imposição de condições de contorno de superfícies 

deslizantes nos dois planos de simetria e também na base do corpo. Destaca-se que as 

superfícies de contorno da peça metálica, com exceção da superfície da base, foram 

consideradas adiabáticas.   

 

Figura 8.50 – Geometria, dimensões iniciais da peça metálica e fluxo de calor proveniente da 

superfície aquecida 

 
Fonte: autor. 
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A análise do presente problema foi conduzida conforme descrito a seguir: 

a. Configuração termomecânica inicial (𝑡 = 0): a peça metálica apresenta inicialmente 

uma temperatura uniforme em todo o seu corpo equivalente a 660,30 °C e se 

encontra no estado sólido indeslocado e indeformado; 

b. Análise termo-visco-elasto-plástica (fase sólida): inicia-se a análise considerando a 

fase sólida do material, ou seja, corresponde à etapa antes da mudança de fase. Foi 

assumido que a peça metálica é solicitada mecanicamente somente pelo peso próprio, 

considerando tanto a plasticidade quanto a viscosidade nessa etapa; 

c. Mudança de fase (transição do estado sólido para o estado líquido que ocorre 

gradualmente no sentido ascendente): acontece no instante em que a temperatura no 

material atinge a sua temperatura de fusão, admitida igual a 660,32 °C, conforme 

indicado no trabalho de Leitner et al. (2017). Na literatura, existem pesquisas que 

estudam o comportamento do alumínio líquido a partir de modelos físicos utilizando 

água (pelos valores de viscosidade que são bastante próximos, por exemplo), como 

pode ser visto nos trabalhos de Gómez et al. (2013b) e Wang et al. (2024). Tratando-

se de simulações numéricas na área da fluidodinâmica computacional que utiliza a 

água em substituição ao alumínio líquido, pode-se mencionar os trabalhos de Gómez 

et al. (2013a) e Yamamoto et al. (2018). Dessa forma, foi assumido que, após a 

mudança de fase, o material passa a se comportar como um fluido viscoso análogo 

a água (semelhante àquele apresentado no exemplo numérico de rompimento de 

barragem, descrito no item 6.3.2). Visando atribuir o comportamento de fluido 

viscoso (sem plasticidade) ao material, foi imposto que o valor do seu módulo de 

elasticidade transversal passa a ser nulo (𝐺 = 0 ), além de desprezar todos os 

parâmetros relativos à plasticidade a partir deste instante (foi assumido que a tensão 

plástica é nula e sem qualquer possibilidade futura de evolução plástica); 

d. Análise termo-viscoelástica (fase líquida): o material se comporta como um fluido 

viscoso, consistindo em um problema de escoamento de superfície livre. Nesta 

última etapa, foram considerados um determinado valor de viscosidade cisalhante e 

a elasticidade volumétrica (modelo de Hartmann-Neff) que previne a inversão ou a 

autointersecção do material em regime de grandes deformações. 

 

Os valores assumidos para os parâmetros mecânicos dependentes da temperatura neste 

exemplo numérico constam na Figura 8.51. Para o módulo de elasticidade transversal (𝐺) e a 
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tensão de escoamento (𝜎𝑦), foram assumidos valores bastante reduzidos (porém, minimamente 

significativos para evitar instabilidades numéricas na fase sólida do material) considerando que 

a temperatura na peça de alumínio está próxima à sua temperatura de fusão. Novamente, 

destaca-se que foi assumido 𝐺 = 0 após a mudança de fase (fluidos não possuem resistência ao 

cisalhamento).  

 

Figura 8.51 – Parâmetros mecânicos dependentes da temperatura adotados no exemplo de validação 

8.4.7 

Temperatura 𝐺 Temperatura 𝜎𝑦 

(°C) (MPa) (°C) (kPa) 

650,32 6,0 650,32 800 

660,32 0,6 660,32 80 
Fonte: autor. 

 

Já na Figura 8.52, são organizados os valores assumidos para os demais parâmetros 

mecânicos e térmicos, além dos dados geométricos e da malha de elementos finitos. Os 

materiais metálicos geralmente possuem ganhos reduzidos de resistência por encruamento em 

níveis elevados de temperatura. Por esse motivo, assumiu-se um valor baixo e constante para o 

módulo de encruamento isótropo (𝐻𝑖 ) neste exemplo. Os valores de bulk modulus (𝐾 ) e 

coeficiente de expansão térmica linear (𝛼𝑙) foram extraídos do trabalho de Ikuta, Kono e Shen 

(2016), os quais realizaram estudos experimentais para determinar os valores das propriedades 

mecânicas e térmicas do alumínio no estado líquido. Já o valor de densidade (𝜌) no ponto de 

fusão foi admitido equivalente àquele indicado por Kozyrev e Gordeev (2022), em que os 

valores das propriedades mecânicas e térmicas do alumínio em estado sólido e líquido foram 

calibrados a partir dos resultados experimentais de outros trabalhos adotados como referência. 

Os valores de condutividade térmica (𝕜) e capacidade térmica específica (𝑐) do alumínio, tanto 

para o estado sólido quanto para o estado líquido, foram extraídos do trabalho de Leitner et al. 

(2017). A condutividade térmica do alumínio no estado líquido foi assumida constante (89,3 

W/m°C no ponto de fusão) apesar de ser dado por uma expressão polinomial de segundo grau 

em função da temperatura em Leitner et al. (2017), por apresentar variação irrelevante para o 

intervalo de temperatura analisado. 

Em relação à viscosidade (𝐺̅) do alumínio no estado líquido, o seu valor foi calculado a 

partir da expressão indicada por Assael et al. (2006) (temperatura em Kelvin): 

 
log10 (

𝐺̅

𝜂0
) = −𝑎1 +

𝑎2
𝜃

 (375) 
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na qual 𝜂0 = 1  mPa.s, 𝑎1 = 0,7324  e 𝑎2 = 803,49  K. A expressão acima é válida para 

temperaturas pertencentes ao intervalo de temperatura de [933;1270] K. 

A temperatura de fusão admitida para o alumínio neste exemplo, convertida de °C para 

K, corresponde a 933,47 K. A partir desse valor, foi determinado por meio da Equação (375), 

o valor da viscosidade do alumínio líquido no ponto de fusão 𝐺̅ ≅ 1,344  mPa, assumida 

constante neste problema devido à variação irrelevante no seu valor ao longo da análise. 

Ressalta-se que o mesmo valor de viscosidade foi considerado também na fase sólida do 

material.  

A discretização adotada para o presente exemplo numérico pode ser verificada na Figura 

8.53. 

 

Figura 8.52 – Demais dados adotados no exemplo de validação 8.4.7 

Parâmetros mecânicos 

𝐾: 40,44 GPa 

𝐻𝑖: 20 kPa 

𝑔: 9,81 m/s² 

𝜌: 2373 kg/m³ 

Parâmetros térmicos 

𝛼𝑙: 1,521.10-5 °C -1 

𝕜: 
(229,71 – 0,067𝜃) W/m°C (fase sólida) 
89,3 W/m°C (fase líquida) 

𝑐: 
1199 J/kg°C (fase sólida) 
1127 J/kg°C (fase líquida) 

𝜃{0} (temperatura de referência): 660,30 °C 

Fluxo de calor 𝑞̅: -35000 W/m² 

Parâmetros reológicos 

𝐺̅: 1,344 mPa.s 

Dados geométricos 

Diâmetro inferior: 20 mm 

Diâmetro superior: 16 mm  

Altura: 10 mm 

Dados da malha 

Nº nós: 3625 

Nº elementos finitos: 224 

Nº pontos de Hammer 12 

Grau de aproximação na espessura: Cúbica 

Outros dados 

Tolerância: 10-7 (problema térmico) / 10-5 (problema mecânico) 

𝛼 (Método das Diferenças Finitas): 2/3 

Δ𝑡: 0,00005 s 

Fonte: autor. 

 



231 

 

Figura 8.53 – Discretização adotada para o exemplo 8.4.7 

 
Fonte: autor. 

 

As temperaturas obtidas ao longo do tempo foram aferidas ao longo da altura em cinco 

pontos distintos da superfície lateral externa, inicialmente localizados em 𝑧 = 0, 𝑧 = 2,5 mm, 

𝑧 = 5,0 mm, 𝑧 = 7,5 mm e 𝑧 = 10,0 mm. Primeiramente, os dados de temperatura no material 

foram coletados até atingirem o ponto de fusão (660,32 ºC) e representados em forma de gráfico 

(Figura 8.54). Observa-se que a temperatura na base alcança o ponto de fusão logo após o início 

da análise, devido ao fluxo de calor que incide diretamente na superfície da base, enquanto as 

temperaturas nos pontos intermediários e superior da superfície lateral externa requerem um 

determinado tempo para atingirem o ponto de fusão por condução de calor.  
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Figura 8.54 – Gráfico temperatura x tempo na superfície lateral externa da peça de alumínio na fase 

sólida do exemplo numérico 8.4.7 

  
Fonte: autor. 

 

Na Figura 8.55 e na Figura 8.56 são apresentados, respectivamente, o deslocamento 

vertical médio na face superior e o raio médio da base da peça metálica, ambos registrados ao 

longo do tempo e representados em forma de gráficos. Os snapshots do derretimento e do 

escoamento da peça metálica são apresentados na Figura 8.57, com a escala de cores indicando 

o campo de deslocamento vertical 𝑧. 
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Figura 8.55 – Gráfico de deslocamento vertical médio da face superior x tempo do exemplo numérico 

8.4.7  

 
Fonte: autor. 

 

Figura 8.56 – Gráfico de raio médio da base x tempo do exemplo numérico 8.4.7 

  
Fonte: autor. 
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Figura 8.57 – Snapshots do derretimento e escoamento da peça metálica com a escala de cores 

representado o campo de deslocamento vertical 

 
Fonte: autor. 
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Como é possível verificar por meio dos snapshots, a peça metálica, que inicialmente se 

encontra em estado sólido, é deformada (elastica e plasticamente) somente por ação do peso 

próprio devido aos valores bastante reduzidos de módulo de elasticidade transversal e tensão 

de escoamento. Por conta do fluxo de calor na base da peça (e também das demais superfícies 

de contorno assumidas adiabáticas que mantém o calor confinado no corpo), a temperatura no 

material gradualmente atinge o ponto de fusão no sentido ascendente por condução (como pode 

ser visto no gráfico da Figura 8.54), ocasionando a mudança de fase de forma gradativa. Após 

a mudança de fase, o material passa a se comportar e escoar como fluido viscoso e a elasticidade 

volumétrica (modelo de Hartmann-Neff) previne a autointersecção do material em regime de 

grandes deformações. 

Por fim, apresenta-se o gráfico de temperatura por tempo semelhante ao da Figura 8.54 

com os valores aferidos nos mesmos pontos, porém contemplando maiores intervalos de 

temperatura e de tempo para evidenciar o processo de transferência de calor ao longo de toda a 

análise (Figura 8.58). Além disso, mostra-se novamente os snapshots do derretimento e do 

escoamento da peça metálica, porém com a escala de cores indicando o campo de temperatura 

(Figura 8.59): 

 

Figura 8.58 – Gráfico temperatura x tempo na superfície lateral externa da peça de alumínio nas fases 

sólida e líquida do exemplo numérico 8.4.7 

 
Fonte: autor. 
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Figura 8.59 – Snapshots do derretimento e escoamento da peça metálica com a escala de cores 

representado o campo de temperatura 

 
Fonte: autor. 
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Ao observar o gráfico da Figura 8.58 e os snapshots da Figura 8.59, verifica-se que, 

mesmo nos instantes finais em que a peça metálica se encontra integralmente no estado líquido 

após o escoamento, a distribuição de temperatura no corpo não é próxima de ser uniforme. 

Nessa situação, haveria um acréscimo significativo na quantidade de calor fornecido à peça 

metálica devido ao alargamento da base e a transferência de calor na direção 𝑧 por condução 

seria mais rápida por conta da altura bastante reduzida. Dessa forma, era esperado que, com a 

mudança na forma do corpo após o escoamento, o material passasse a apresentar uma 

distribuição mais uniforme de temperatura no seu domínio. 

Esse resultado pode ser explicado pelo modelo térmico Lagrangeano total utilizado na 

análise de transferência de calor, o qual é incapaz de levar em consideração as mudanças na 

forma do corpo analisado na condução e também no que diz respeito às condições de contorno. 

Tendo isso em vista, seria interessante utilizar modelos térmicos com descrição Lagrangeana 

atualizada ou Euleriana (visando atualizar a configuração do corpo a cada passo/iteração).  

A partir dos resultados apresentados acima, observa-se que é possível simular 

numericamente o comportamento de sólidos termo-visco-elasto-plásticos em mudança de fase 

utilizando a formulação descrita neste trabalho, com algumas ressalvas em relação à limitação 

do modelo térmico Lagrangeano total para a resolução de problemas de transferência de calor 

em regime de grandes deformações. 
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9 CONCLUSÕES 

 

No presente trabalho, foi desenvolvido e implementado uma estratégia resultante da 

combinação de formulações em grandes deslocamentos (Método dos Elementos Finitos 

Posicional), elasticidade, plasticidade e viscosidade em grandes deformações, termodinâmica, 

transferência de calor e acoplamento termomecânico, resultando em um código computacional 

capaz de modelar o comportamento termomecânico de sólidos, aplicado às estruturas metálicas 

(termo-elasto-plásticas) sob elevadas temperaturas e à peça metálica (termo-visco-elasto-

plástica) em mudança de fase. A base do código computacional foi desenvolvida a partir do 

Método dos Elementos Finitos Posicional empregando elementos finitos de sólido prismático 

de base triangular. O modelo constitutivo hiperelástico implementado consiste na combinação 

dos modelos de Rivlin-Saunders e de Hartmann-Neff, o qual é adequado para a análise de 

corpos sujeitos às grandes deformações. O modelo elasto-plástico alternativo implementado 

corresponde àquele proposto por Coda (2021, 2022), o qual utiliza a decomposição 

multiplicativa de Flory para o desenvolvimento de suas formulações. A viscosidade foi 

implementada por meio da formulação do modelo alternativo unificado descrito no trabalho de 

R. T. Kishino (2022), sendo este apropriado para grandes deformações e capaz de simular o 

comportamento tanto de sólidos quanto de fluidos. O código de análise térmica por condução 

linear e não-linear foi elaborado com base no trabalho de Rigobello, Coda e Munaiar Neto 

(2014) e o modelo termo-elasto-plástico alternativo empregado neste trabalho consiste na sua 

versão aprimorada, por ser apropriado também para a análise de problemas em regime de 

grandes deformações tanto em sua formulação termo-elasto-plástica quanto na estratégia de 

cálculo das deformações e tensões térmicas para grandes deformações. Por fim, foi construído 

o modelo termo-visco-elasto-plástico alternativo para grandes deformações a partir da 

combinação do modelo termo-elasto-plástico e do modelo de viscosidade implementados. 

O código computacional desenvolvido foi validado com êxito por meio de comparações 

com os resultados existentes na literatura. Foi possível constatar, por meio dos exemplos 

numéricos, que a formulação e o código implementado foram capazes de simular 

satisfatoriamente o comportamento termo-elasto-plástico das estruturas metálicas sujeitas aos 

níveis elevados de temperatura e também o comportamento de sólidos e fluidos viscosos. 

Apesar de consistir em um exemplo ilustrativo, o último exemplo numérico demonstrou 

que os objetivos da presente pesquisa foram atingidos, mostrando que é possível simular sólidos 

termo-visco-elasto-plásticos em mudança de fase com o código computacional elaborado, 

contemplando tanto o comportamento de um sólido quanto o comportamento de um fluido, 
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respectivamente, antes e depois da temperatura no material analisado atingir a temperatura de 

fusão. Deve-se comentar que o presente modelo Lagrangeano total de transferência de calor 

apresenta limitações em regime de grandes deformações por não considerar a mudança na 

forma do corpo ao longo da análise, como foi observado no exemplo de aplicação do item 8.4.7. 

Dessa forma, a utilidade do código computacional desenvolvido foi demonstrada com 

êxito para a análise de sólidos termo-visco-elasto-plásticos, de modo a ampliar, mais uma vez, 

o campo de aplicação do Método dos Elementos Finitos Posicional. Finalmente, conclui-se que, 

considerando os resultados obtidos, os objetivos propostos neste trabalho foram atingidos com 

sucesso. 

Como uma das possibilidades de futuros desenvolvimentos, pode-se mencionar a 

otimização do código elaborado visando o aumento na eficiência para a simulação de, por 

exemplo, elementos estruturais e materiais sujeitos às condições de análise de maior 

complexidade que exigem discretizações mais refinadas. Tratando-se de modelos físicos, seria 

interessante implementar plasticidade com encruamento variável, algoritmo de contato/impacto 

para possibilitar, por exemplo, a análise de problemas de conformação a frio e a quente de 

materiais metálicos e poliméricos, além de problemas de balística. Por fim, pode ser sugerido 

também a transição do modelo de transferência de calor Lagrangeano total para o modelo 

Lagrangeano atualizado, a fim de considerar a mudança na forma do corpo ao longo da análise, 

visando principalmente a mudança nas condições de contorno de transferência de calor por 

radiação e convecção. 
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APÊNDICE A – Propriedades térmicas do aço estrutural 

 

Apresenta-se, neste anexo, as propriedades térmicas (condutividade térmica e calor 

específico) para os aços estruturais especificadas pela norma CEN EN 1993-1-2:2005. 

A condutividade térmica (𝕜) do aço é dada (em W/m°C), em função da temperatura por: 

 

𝕜 = {
54 − 3,33 ⋅ 10−2𝜃     (20°𝐶 ≤ 𝜃 < 800°𝐶)

27,3     (800°𝐶 ≤ 𝜃 < 1200°𝐶)
 (376) 

Já o calor específico (𝑐) do aço pode ser determinado como segue (em J/kg°C): 

𝑐 =

{
 
 
 
 

 
 
 
 
425 + 7,73 ⋅ 10−1𝜃 − 1,69 ⋅ 10−3𝜃2 + 2,22 ⋅ 10−6𝜃3  (20°𝐶 ≤ 𝜃 < 600°𝐶)

666 +
13002

738 − 𝜃
  (600°𝐶 ≤ 𝜃 < 735°𝐶)

545 +
17820

𝜃 − 731
  (735°𝐶 ≤ 𝜃 < 900°𝐶)

650  (900°𝐶 ≤ 𝜃 < 1200°𝐶)

 (377) 
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