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RESUMO

HAYASHI, E. Y. Uma formulacao baseada na decomposicao de Flory para analise
termomecanica de solidos termo-visco-elasto-plasticos. 2024. 259p. Dissertacdo
(Mestrado) — Escola de Engenharia de S&o Carlos, Universidade de S&o Paulo, Séo Carlos,
2024,

Em diversas areas da engenharia, a analise termomecénica é indispensavel para a analise de
materiais e estruturas, devido a importancia de se considerar 0s prejuizos as propriedades
mecanicas e ao comportamento mecéanico sob cargas térmicas acentuadas. Pode-se mencionar
como exemplos os problemas de incéndio, balistica e conformacdo de metais. Nessas situacdes
que envolvem elevadas temperaturas, verifica-se com frequéncia o desenvolvimento de grandes
deslocamentos e de grandes deformacgdes nos corpos, apresentando intrinsecamente um
comportamento ndo-linear geométrico e fisico. Dada a importancia do modelo constitutivo para
a adequada simulacéo do comportamento do material, foi desenvolvido um modelo constitutivo
termo-visco-elasto-plastico alternativo e implementado em programa computacional préprio,
resultando na capacidade de modelar adequadamente problemas termomecéanicos, com énfase
em materiais metalicos submetidos as a¢Ges térmicas acentuadas. O programa foi desenvolvido
utilizando o Método dos Elementos Finitos Posicional como estratégia de resolucdo numérica,
o qual considera, de forma intrinseca, a ndo-linearidade geométrica exata em suas formulacdes,
sendo utilizados elementos finitos de sélido prismatico de base triangular para a discretizacao
do dominio dos corpos analisados em subdominios aproximados. O modelo constitutivo
hiperelastico implementado é resultante da combinacdo dos modelos de Rivlin-Saunders e de
Hartmann-Neff, sendo adequado para analises de problemas em regime de grandes
deformacgdes. Os modelos de plasticidade e viscosidade foram implementados utilizando
formulacdes baseadas na decomposicdo multiplicativa do tensor de alongamento a direita de
Cauchy-Green em parcelas volumétricas e isocéricas. O cddigo de andlise térmica foi
desenvolvido a partir da equacéo diferencial da conducgéo de calor transiente, tanto para o caso
linear quanto para o caso nao-linear. O modelo termomecanico foi construido a partir do
acoplamento unidirecional explicito, também denominado de modelo termomecénico
desacoplado. A combinacdo de todas as implementacdes efetuadas anteriormente resultou no
modelo termo-visco-elasto-plastico alternativo adequado para grandes deformacgdes. O
programa desenvolvido foi validado com sucesso por meio de compara¢fes com exemplos da
literatura cientifica e foi verificado que o mesmo € capaz de simular satisfatoriamente o
comportamento termo-elasto-plastico de estruturas metalicas submetidas a elevadas
temperaturas, bem como o comportamento termo-visco-elasto-plastico de s6lidos em mudanca
de fase.

Palavras-chave: termomecanica; termo-visco-elasto-plastico; Método dos Elementos Finitos
Posicional; transferéncia de calor; grandes deslocamentos e deformagdes.






ABSTRACT

HAYASHI, E. Y. A formulation based on Flory’s decomposition for thermomechanical
analysis of thermo-visco-elasto-plastic solids. 2024. 259p. Thesis (Master’s degree) — Sao
Carlos School of Engineering, University of S&o Paulo, S&o Carlos, 2024.

In several engineering fields, thermomechanical analysis is crucial for the analysis of materials
and structures, due to the importance of considering the degradation of mechanical properties
and behavior under significant thermal loads. Examples include fire problems, ballistics, and
metal forming. In these high-temperature situations, large displacements and strains of bodies
are frequently observed, exhibiting an intrinsic geometric and physical nonlinear behavior.
Given the importance of the constitutive model for the proper simulation of material behavior,
an alternative thermo-visco-elasto-plastic constitutive model was developed and implemented
in a proprietary computational program. This program enables the appropriate modeling of
thermomechanical problems, with emphasis on metallic materials subjected to high thermal
loads. The program was developed using the Positional Finite Element Method as the numerical
solution strategy, which intrinsically considers the exact geometric nonlinearity in its
formulations, and triangular-based prismatic solid finite elements were used to discretize the
domain of analyzed bodies into approximate subdomains. The implemented hyperelastic
constitutive model is a combination of the Rivlin-Saunders and Hartmann-Neff models, which
is suitable for large strain analysis. The plasticity and viscosity models were implemented using
formulations based on the multiplicative decomposition of the right Cauchy-Green stretch
tensor into volumetric and isochoric parts. The thermal analysis code was developed from the
transient heat conduction differential equation, considering both linear and nonlinear cases. The
thermomechanical model was built using one-way explicit coupling, also referred to as the
uncoupled thermomechanical model. The combination of all the previous implementations
resulted in the alternative thermo-visco-elasto-plastic model, which is appropriated for large
strain problems. The developed program was successfully validated by comparing it with
examples from the scientific literature. It was found that the program can satisfactorily simulate
the thermo-elasto-plastic behavior of metallic structures subjected to high temperatures, as well
as the thermo-visco-elasto-plastic behavior of phase-changing solids.

Keywords: thermomechanics; thermo-visco-elasto-plastic; Positional Finite Element Method;
heat transfer; large displacements and strains.
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1 INTRODUCAO

As anélises termomecénicas encontram-se presentes em diversos problemas de
engenharia, devido a necessidade de considerar influéncias do campo térmico sobre o campo
mecanico para a realizacdo de uma analise eficaz e precisa. Entre as suas aplicacfes, pode-se
mencionar a andlise de pilares de perfil | biengastados sob situagdo de incéndio
(Pournaghshband; Afshan; Foster, 2019), a conformacgdo de metais a quente para a inddstria
(Odenberger; Schill; Oldenburg, 2013) e a simulacdo termomecanica numérica de painéis
fotovoltaicos (Springer; Bosco, 2022).

A importancia de se considerar a influéncia da temperatura nas propriedades mecéanicas
dos materiais é evidenciada, por exemplo, na elaboracéo de projetos de estruturas metalicas, 0s
quais requerem a seguranca contra incéndio. Apesar do material metalico possuir excelente
resisténcia e rigidez a temperatura ambiente, uma grande desvantagem na sua aplicacédo € a sua
baixa resisténcia ao fogo devido a elevada condutividade térmica e ao baixo calor especifico,
acarretando a reducdo acelerada de suas propriedades mecénicas em situacdes de elevadas
temperaturas (Kodur; Dwaikat; Fike, 2010).

Mesmo na auséncia prejuizos fisicos ou geométricos visiveis no material apds eventos
envolvendo acgdes térmicas acentuadas, é importante verificar a sua resisténcia reduzida pela
alteracdo das suas propriedades (Tang et al., 2019). Nesses casos, torna-se importante a revisao
de parametros mecanicos e térmicos dependentes da temperatura para a adequada modelagem
da resposta dos materiais metalicos submetidos aos elevados carregamentos térmicos (Kodur;
Dwaikat; Fike, 2010).

Também é relevante mencionar que, apesar do reconhecimento de anélises lineares de
estruturas como uma alternativa de calculo, as mesmas sdo limitadas aos casos com
desenvolvimento de pequenos deslocamentos e pequenas deformacdes. Quanto as analises que
ndo se enquadram nas condic¢Bes supracitadas, torna-se necessaria a consideracdo de efeitos
ndo-lineares, geométricos e fisicos por exemplo. A primeira ndo-linearidade é presente em
problemas de estruturas desenvolvendo grandes deslocamentos, enquanto a segunda, em casos
onde niveis de tensdes elevados estdo presentes no material.

Apesar da adocdo de andlises termomecanicas em variadas areas de conhecimento da
engenharia, uma parcela significativa das pesquisas em engenharia consultadas ndo apresenta
preocupacbes com o desenvolvimento das formulagOes tedricas dos modelos constitutivos,

limitando-se a focar na simulacdo de problemas termomecénicos utilizando-se softwares
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comerciais como se todos 0s aspectos teoricos estivessem fechados. Além disso, é notavel a
quantidade reduzida de estudos existentes de termomecénica aplicada ao segmento de
engenharia civil, indicando a necessidade de desenvolver formulacGes e programas para a
modelagem de problemas termomecanicos destinados a rea em questdo, bem como a formacéo

de profissionais qualificados.

1.1 Justificativa

E conhecido que, quando submetidos as acBes térmicas elevadas, comumente o0s
materiais que compdem o0s elementos estruturais ou geometrias brutas a serem moldadas
apresentam reducdes significativas nas suas propriedades mecanicas, revelando a importancia
da analise termomecénica em problemas de engenharia. Apesar da relevancia das analises
termomecanicas em diversos segmentos da engenharia, uma parcela significativa das pesquisas
existentes ndo apresenta preocupac@es com o desenvolvimento das formulagdes tedricas dos
modelos constitutivos, limitando-se a utilizacao de softwares comerciais ou mesmo de solucgdes
apresentadas por grupos internacionais bem estabelecidos como se todos os aspectos tedricos
estivessem resolvidos de forma definitiva.

Tratando-se de analises de problemas estruturais, existem abordagens experimentais,
analiticas e numeéricas, entretanto, a primeira alternativa, apesar da sua necessidade, demanda
um elevado custo de materiais e também de mao-de-obra. Quanto as solucfes analiticas, em
casos de possibilidade do seu emprego para resolucéo de problemas, estas séo limitadas a casos
especificos e, em geral, sdo lineares. Portanto, a ado¢do de estratégias numéricas configura-se
como uma alternativa de maior praticidade e generalidade, as quais ainda sdo favorecidas pelo
crescente desenvolvimento dos recursos computacionais que possibilitam resolugdes de
problemas de elevado grau de complexidade de forma réapida e precisa.

Como exemplos de analises termomecanicas, pode-se mencionar estruturas em
situacdes de incéndio, balistica e conformacéo a quente. Nos problemas mencionados, além da
ndo-linearidade fisica comentada anteriormente, verifica-se o0 desenvolvimento de grandes
deslocamentos, induzidos pela rigidez reduzida em fungdo do aumento da temperatura,
apresentando, dessa forma, comportamento ndo-linear geométrico.

Diante da natureza dos problemas termomecanicos, torna-se relevante a aplica¢do do
Método dos Elementos Finitos Posicional como estratégia numerica para a sua resolugdo, o
qual considera a ndo-linearidade geomeétrica exata de forma intrinseca nas suas formulacdes.

Além disso, pelo levantamento bibliogréafico realizado até o momento, acredita-se que a
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interacdo volumétrica (temperatura/volume) Lagrangiana em grandes deformacdes proposta
neste trabalho ainda ndo foi abordada, dando um grau de originalidade tedrica importante a
pesquisa. Portanto, o desenvolvimento deste trabalho apresenta contribui¢des para a ampliacéo
do campo de aplicagdes do presente metodo numérico, bem como contribuicdo original ao
estado da arte, e pode consistir como base para o desenvolvimento de futuras pesquisas visando

0 seu aperfeicoamento.

1.2 Objetivos

O objetivo do presente trabalho consiste em apresentar uma contribuicdo com
originalidade na consideracdo da relacdo temperatura/volume em problemas de interacdo
termomecanica Lagrangeana em grandes deformacgdes e desenvolver uma ferramenta
computacional para a analise dindmica transiente de problemas termomecanicos nao-lineares
de sélidos sujeitos a grandes deslocamentos e grandes deformacdes. Como objetivos
especificos, pode-se mencionar 0s seguintes itens:

a. Desenvolvimento de cddigo computacional para anélise estatica e dindmica de sélidos;

b. Estudo e implementacdo do modelo constitutivo hiperelastico adequado para regime de
grandes deformacdes;

c. Estudo e implementacdo do modelo alternativo de plasticidade adequado para regime
de grandes deformacdes;

d. Estudo e implementacdo do modelo alternativo de viscosidade adequado para regime
de grandes deformacdes;

e. Estudo e implementacdo do modelo de transferéncia de calor em sélidos;

f. Proposicao, estudo e implementacdo de acoplamento termomecanico alternativo para
grandes deformacdes volumeétricas;

g. Proposicao, estudo e implementacdo do modelo termo-visco-elasto-plastico alternativo
para grandes deformacdes;

h. Validagdo dos resultados numéricos obtidos com os exemplos existentes em literatura.

1.3 Breve estado da arte

A fim de situar o leitor acerca dos topicos a serem desenvolvidos nessa pesquisa,

apresenta-se um breve estado da arte inerente a mecéanica dos sélidos computacional, incluindo
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modelos constitutivos da elasticidade e da plasticidade em grandes deformacdes, viscosidade,

transferéncia de calor em sélidos e termomecanica, com énfase em analises numéricas.

1.3.1 Mecénica dos so6lidos computacional — um breve historico

Acompanhado do crescente desenvolvimento tecnolégico e computacional, verifica-se
0 aumento do emprego de estratégias numeéricas para resolucdo de problemas de variados
ambitos cientificos, sendo que o Método dos Elementos Finitos (MEF) consiste em uma
ferramenta numérica amplamente difundida e utilizada em anélises de diversas &reas do
conhecimento, incluindo os campos da mecanica dos solidos e das estruturas.

Intimamente relacionado com o advento dos recursos computacionais, ha registros de
emprego de andlises numéricas através da discretizacdo do dominio em subdominios
aproximados ja na década de 1940, como é possivel verificar em Courant (1943) e Prager e
Synge (1947). Entretanto, o trabalho inovador no desenvolvimento do MEF foi apresentado
posteriormente por Turner et al. (1956). Nesse trabalho, foi proposto o primeiro uso de
elementos triangulares para analise estrutural continuado em Turner et al. (1960). De acordo
com Jing (2003), apesar da existéncia de registros de utilizacdo do método supracitado desde a
referida época, a estratégia numérica foi nomeada como “Método dos Elementos Finitos”
somente no trabalho de Clough (1960).

A partir desse periodo, o Método dos Elementos Finitos foi largamente aceito e
difundido, passando a ser empregado em escada universal com geracdo satisfatoria de
resultados na resolucao de problemas em variados campos cientificos, como pode ser observado
no livro de Bathe (1982). Tratando-se especificamente das contribui¢cfes nas areas de mecéanica
das estruturas e dos sélidos, ndo devem deixar de ser mencionados os trabalhos envolvendo
tanto a linearidade como a ndo-linearidade fisica e geométrica dos seguintes autores: Argyris et
al. (1979), Bonet e Wood (1997), Crisfield (1997) e Ogden (1997).

1.3.2 Anélise ndo-linear pelo Método dos Elementos Finitos

Uma analise de mecéanica dos solidos ou de estruturas empregando o Método dos
Elementos Finitos pode ser definida como ndo-linear caso os deslocamentos ndo consistam em
uma funcéo linear das forcas aplicadas. As ndo-linearidades sdo segmentadas nas trés categorias

comentadas abaixo (Piedade Neto, 2013):
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I) N&o-linearidade geométrica, inerente a determinagdo do equilibrio da estrutura na sua
configuracdo deslocada, sendo preferencialmente geometricamente exata;

I1) Néo-linearidade fisica, correspondente a relacdo ndo-linear entre tensdo e deformacéo,
com possibilidade de possuir dependéncia em relagdo aos parametros como histérico de
deformacéo ou temperatura;

I11) Ndo-linearidade de contato (ndo abordado neste trabalho), que ocorre quando, durante
uma analise mecanica, dois corpos buscam ocupar a mesma regido do espaco ao mesmo

tempo.

As analises estruturais utilizando o Método dos Elementos Finitos podem ser efetuadas

a partir de dois tipos de abordagem distintos, definidos a partir do sistema de referéncia adotado:

I) Lagrangeana: pardmetros cinematicos e estaticos referenciados a uma configuragdo
conhecida, apresentando duas subdivisoes:

1. Lagrangeana total: todos os parametros mencionados acima sdo referenciados
em relacdo a configuracdo inicial (indeslocada e indeformada) em todas as
etapas de anélise;

2. Lagrangeana atualizada: as variaveis em questdo sdo referenciadas a ultima
configuracdo determinada;

I1) Euleriana: parametros cinematicos e estaticos referenciados a configuracdo atual

(incognita), deformada e deslocada.

A descricdo Euleriana (alternativamente denominada de descricdo espacial) €
empregada com mais frequéncia para o estudo de fluxos de fluidos e transferéncia de calor por
convecgdo, enquanto a descricdo Lagrangeana (também conhecida como descricao material) é
comumente utilizada para aplicaces envolvendo a conducdo de calor e a analise de tensdes e
deformacdes em corpos sélidos (Reddy; Gartling, 2010).

Desde o surgimento do MEF, varios autores desenvolveram formulagdes alternativas do
método tradicional, sendo que em Coda (2003) é descrita uma formulacéo alternativa do MEF
chamada Posicional pela utilizacdo das posic¢des atuais como parametros nodais em substituicdo
aos deslocamentos, conforme proposto originalmente. E valido mencionar que Bonet et al.
(2000) apresenta uma formulacéo semelhante, utilizada na analise de estruturas pneumaticas de
membrana.

De acordo com Coda (2018), uma descri¢do Lagrangeana total é empregada no MEF

Posicional, em outras palavras, o metodo adota a posic¢do inicial, ndo-deformada e ndo-
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deslocada, como referéncia ao longo de todas as fases de analise. Ressalta-se que a presente
estratégia considera, de forma intrinseca, a ndo-linearidade geométrica, com simplicidade
didatica e resultados precisos. Por essas razdes, 0 método em questdo vem sendo utilizado (no
departamento de Engenharia de Estruturas da EESC-USP) na resolugdo de problemas
envolvendo grandes deslocamentos.

Com o intuito de ilustrar o bom desempenho do MEF posicional, pode-se citar uma série
de trabalhos. Coda e Greco (2004) apresenta a aplicacdo do método na analise estatica de
porticos bidimensionais desenvolvendo grandes deslocamentos, enquanto em Greco et al.
(2006) esté descrita a analise de estrutura composta por elementos de trelicas espaciais com um
modelo constitutivo elasto-plastico. A andlise dindmica empregando o presente método é
introduzida por Greco e Coda (2006), com a sua formulacdo aplicada em porticos planos,
utilizando-se o algoritmo de Newmark para a integragéo temporal.

Além disso, as formulag¢bes podem ser aplicadas para a analise de elementos de casca,
como descrito em Coda e Paccola (2007), Pascon (2008) e Coda e Paccola (2009), problemas
de interacdo fluido-estrutura, conforme apresentado em Sanches e Coda (2013) e Fernandes,
Coda e Sanches (2019) e também em problemas envolvendo nao-linearidades fisicas,
abordados nos trabalhos dos seguintes autores: Rigobello (2011), Pascon (2012), Pascon e Coda
(2013a), Pascon e Coda (2013b), Pascon e Coda (2015), Siqueira e Coda (2017), Kishino et al.
(2022) e Carvalho, Coda e Sanches (2023). Tratando-se de aplicagdes do MEF Posicional
envolvendo as ndo-linearidades de contato, geométrica e fisica, é possivel mencionar os
trabalhos de Carvalho, Coda e Sanches (2020) e de V. H. Kishino, R. T. Kishino e Coda (2022).

1.3.3 Modelos constitutivos hiperelasticos

Em estudos cientificos, a analise experimental tem grande importancia, pois é a base
dos desenvolvimentos tedricos fundamentais. Porém, a simulacdo numérica € o método mais
conveniente, pelo seu baixo custo e grande praticidade, para a avaliagdo do comportamento de
componentes de engenharia sob diferentes condigdes de carregamento. Além disso, a analise
numérica tornou-se ao longo dos anos ferramenta de projeto em diversos ramos da engenharia.
No entanto, a precisdo da analise numérica esta diretamente relacionada a escolha do modelo
constitutivo a ser aplicado, que deve corresponder da melhor forma possivel ao real
comportamento do material empregado. Dessa forma, a pesquisa sobre a modelagem
matematica do comportamento do material € essencial para a obtencéo de resultados com maior

preciséo e confiabilidade (Melly et al., 2022).
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Com uma parcela significativa das pesquisas dedicadas ao estudo de modelos
constitutivos hiperelasticos tem como objetivo simular materiais elastoméricos e tecidos
biolégicos vivos. Nesse sentido observa-se que a quantidade de trabalhos relacionados ao
desenvolvimento desse tipo de modelo vem sendo ampliada desde o século XX (Beatty, 1987).
Nessas pesquisas fica evidente que o tensor de deformacéo apresenta duas componentes (Gent,
2012):

I) Volumétrica (ou dilatacional): referente a mudanca do volume do corpo, com a auséncia

de variacdo na sua forma e;

I1) Isocorica (ou desviadora): a qual envolve a mudanca na forma do corpo, sem alteracdo

do seu volume.

Como um dos primeiros e principais modelos hiperelasticos, pode-se mencionar aquele
proposto por Mooney (1940) para borrachas submetidas a grandes deformacdes elasticas. Neste
trabalho, foi sugerida uma expressao geral para a energia especifica de deformacéo definida em
funcdo dos alongamentos principais para a representacdo do comportamento mecanico de
materiais supereldsticos homogéneos e isentos de histerese. Um material superelastico é
referente aquele que é isétropo, desenvolve deformacBes isométricas (auséncia de variacdo
volumétrica) e, quando submetido ao cisalhamento simples, a tensdo de cisalhamento
desenvolvida em qualquer plano is6tropo é proporcional a distorcdo correspondente. Ja a
histerese é caracterizada pelo atraso na resposta do material quando sujeito a uma solicitacdo
externa ou quando esta é retirada.

A partir da formulacdo proposta por Mooney (1940), Rivlin (1948a, 1948b) apresentou
uma generalizacdo da expressdo da energia especifica de deformacdo através de uma série
polinomial. Essa generalizacdo deu origem ao modelo constitutivo denominado Mooney-Rivlin.

Posteriormente, Rivlin e Saunders (1951) apresentaram um trabalho baseado na
expressao sugerida por Mooney (1940), destinado a descricdo comportamental das borrachas
vulcanizadas. No trabalho em questdo, a expressdo da energia especifica de deformacdo foi
definida em funcdo dos invariantes da parcela isocorica do tensor de deformacao.

Ja no trabalho de Hartmann e Neff (2003), foram apresentadas diversas expressdes
hiperel&sticas escritas a partir dos invariantes de deformacdes para materiais isotropos quase
incompressiveis, tanto para as parcelas isocoricas quanto para as parcelas volumétricas. Os
estudos desses autores foram efetuados a partir de uma abordagem de decomposi¢do
multiplicativa do gradiente da funcdo mudanca de configuracdo em parcelas isocoricas e
volumétrica, proposta por Flory (1961).
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Além dos modelos constitutivos supracitados, pode-se mencionar outras relacfes
hiperelasticas relevantes sugeridas por seguintes pesquisadores: Ogden (1972); Yeoh (1990) e;
Arruda e Boyce (1993).

Tratando-se de estudos recentes de modelos constitutivos hiperelasticos, é possivel
mencionar alguns trabalhos como exemplos. Moerman, Fereidoonnezhad e McGarry (2020)
propuseram formulagdes de energia especifica de deformacdo volumétrica adequadas para
problemas envolvendo grandes deformacg6es volumétricas, enquanto Shahverdi Moghaddam et
al. (2021) efetuaram um estudo experimental e numérico de cisalhamento atuante no nucleo do
compdsito com alvéolos hexagonais (estrutura em colméia) desenvolvendo grandes
deformacgdes, com proposicdo de um novo modelo constitutivo hiperelastico ortotropico
destinado a descricdo adequada do problema. J& em Melly et al. (2022) é proposto um modelo
constitutivo fenomenoldgico hipereléstico para a previsdo de comportamento mecéanico de
materiais elastoméricos trabalhando em regime de moderadas e grandes deformacGes. Cabe
mencionar que a definicdo de materiais superelasticos deve ser considerada como uma
aproximacdo e ndo como uma regra geral, sendo os modelos hiperelasticos capazes de simular

materiais com comportamento quase isocoérico.

1.3.4 Plasticidade

A plasticidade corresponde a deformacéo irreversivel desenvolvida por um material
sujeito a niveis de tensdo que excederam um determinado limite. Como um ramo da mecanica
dos solidos, o principal objetivo da teoria da plasticidade consiste no estudo das condi¢des sob
as quais ocorre a deformacéo plastica e na distribuicdo de tensbes e deformacdes ao longo do
desenvolvimento da deformacéo plastica (Yu; Xue, 2022).

De acordo com Gao et al. (2011), o inicio do estudo cientifico da plasticidade foi
marcado por Tresca (1864) com a publicacdo dos seus resultados experimentais de extrusao e
da formulacdo do seu famoso critério de escoamento. Este critério de escoamento foi utilizado
posteriormente por Saint-Venant (1870) e Lévy (1870) para o desenvolvimento de uma teoria
de solido perfeitamente rigido-plastico. Um outro critério de escoamento bem conhecido foi
proposto por von Mises (1913) baseado em consideragdes puramente matematicas mais tarde
interpretado por Hencky (1924) como o escoamento decorrente de valores elevados de energia
de distor¢do (cisalhamento). Dentre as demais contribuigdes relevantes no desenvolvimento

inicial da teoria da plasticidade encontram-se os trabalhos de Prandtl (1925) e Reuss (1930).
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Por volta do ano de 1945, foi verificado o inicio do desenvolvimento de uma teoria
unificada devido as contribuicbes fundamentais proporcionadas na area de plasticidade
continua por Prager (1945) e Drucker (1949), que apresentaram uma definicdo de flexibilidade
(ou rigidez) associada ao trabalho pléstico positivo. Desde entdo, muitos pesquisadores
produziram uma volumosa literatura que vem crescendo rapidamente. Na década de 1950,
surgiram publicacdes de trabalhos fundamentais sobre plasticidade como, por exemplo, de Hill
(1948), Hill (1950), Bishop e Hill (1951) e Kroner (1958). Posteriormente, Green e Naghdi
(1965) formularam a teoria classica da plasticidade no contexto da mecénica do continuo
moderna, segundo a qual a Segunda Lei da Termodindmica € empregada para a determinacéo
das restricdes na forma das equacdes constitutivas. A base cinematica do trabalho de Green e
Naghdi consiste na suposicdo da possibilidade da decomposicdo aditiva da deformacéo total
em tensores de deformacdo eléstica e plastica, frequentemente denominada de decomposicao
de Green-Naghdi na literatura (Horstemeyer; Bammann, 2010).

Segundo Zhang e Montans (2019), na atualidade as principais abordagens sobre a
plasticidade podem ser classificadas em dois tipos: multiescala e continua, sendo os trabalhos
precursores acima mencionados parte da abordagem continua. A primeira abordagem é
relevante para a compreensao do comportamento do material em nivel microscéopico, no entanto
a sua aplicacdo é inviavel em termos de custo computacional para a resolucdo de problemas
praticos de engenharia (Abraham et al., 2002; Buehler et al., 2004; Coda; Sanches; Paccola,
2022). A segunda abordagem refere-se aos modelos continuos de elasto-plasticidade, capazes
de simular o comportamento dos materiais e das estruturas com um custo computacional
moderado.

De acordo com Brepols, Vladimirov e Reese (2014), os modelos de plasticidade
continua em grandes deformacdes podem ser subdivididos segundo dois grupos principais. O
primeiro, com abordagem baseada em modelos hipoelasticos, faz uso da decomposicao aditiva
das taxas de deformacédo (ja comentado anteriormente) em parcelas elasticas e plasticas, de
forma a criar uma lei constitutiva coerente para calcular as taxas de tensdo objetivas, como é o
caso da decomposicdo de Green-Naghdi. Ainda, de acordo com Brepols, Vladimirov e Reese
(2014), observa-se a adoc¢éo dessa estratégia em varios trabalhos, desde nos precursores como
Argyris e Kleiber (1977) até naqueles que buscam solucionar os problemas provenientes da
decomposicéo aditiva quando aplicadas em grandes deformacg6es, como pode ser verificado em
Atluri (1984), Hughes e Winget (1980), Koji¢ e Bathe (1987) e Bruhns, Xiao e Meyers (1999).
Entretanto, de acordo com Eterovic e Bathe (1991), a utilizacdo da decomposicédo aditiva é
limitada ao regime de pequenas deformacoes.
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O segundo grupo de modelos elasto-plasticos continuos de grandes deformacdes
apresentam abordagens baseadas em modelos hiperelasticos, os quais adotam a decomposi¢édo
de Kroner-Lee (Kroner, 1959; Lee, 1969), que consiste na decomposicdo multiplicativa do
gradiente de mudanca de configuracdo em parcelas elésticas e plasticas, com a identificacdo de
um espaco intermediario que contém as deformacGes plésticas residuais apds a descarga
(Mandel, 1971). De acordo com Zhang e Montans (2019), esta abordagem tornou-se
amplamente utilizada apds o progresso alcancado por Simo e Ortiz (1985) na implementacgéo
computacional e o fluxo plastico coerente com preservacao de volume durante a fase pléstica
estabelecido inicialmente por Weber e Anand (1990) e Eterovic e Bathe (1990), seguido de uma
descricdo consistente dada por Simo (1992).

Outros trabalhos como os Johnson e Mellor (1983), Crisfield (1997) e Hill (1998)
podem ser citados em relacéo ao tratamento elastoplastico em pequenas deformacdes, enquanto
em grandes deformacdes, podem-se citar os trabalhos de autores como Simo (1992), Pascon
(2022) e Areias et al. (2022), dentre outros.

No que diz respeito ao grupo de pesquisa onde se insere o presente trabalho (SET-EESC-
USP), a aplicacdo de modelos constitutivos elasto-plasticos classicos com o emprego da
decomposic¢do aditiva de Green-Naghdi e do Método dos Elementos Finitos Posicional pode
ser verificada em Coda e Paccola (2014) e Coda, Sampaio e Paccola (2015). Ja a abordagem
com a decomposicdo multiplicativa de Kroner-Lee pode ser constatada nos trabalhos de Pascon
e Coda (2015), Pascon e Coda (2017), Carvalho (2019), Carvalho, Coda e Sanches (2020) e
Pascon (2022). Além dos modelos elasto-plasticos classicos, no grupo de pesquisa do SET-
EESC-USP vem sendo desenvolvido um modelo elasto-plastico alternativo proposto por Coda
(2021, 2022). Nesse modelo € utilizada a decomposi¢do multiplicativa de Flory ao invés das
decomposicgdes de Koner-Lee ou de Green-Naghdi.

Observando-se o efeito da temperatura na mudanca do tamanho da superficie de
plastificacdo, bem como a dissipacdo térmica promovida pelo escoamento plastico, é possivel
extender o conceito de plasticidade e efetuar analises termoplasticas. Como exemplo, pode-se
mencionar o trabalho de Hibel (1996) que apresenta brevemente os variados aspectos do
processo de deformacdo termoplastica progressiva, submetida a carregamentos ciclicos. No
decorrer do seu trabalho, sdo explicitados alguns fatores que influenciam no processo de
deformacédo progressiva, podendo-se citar como exemplos os estados de tensdo, historicos e
tipologia de carregamentos termomecanicos. Além disso, as propriedades do material, tanto
elasticas quanto plasticas, sdo destacadas devido a sua variagdo em funcdo da temperatura.

Dentre outros trabalhos envolvendo a termoplasticidade, € possivel mencionar dos seguintes
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autores: Rodriguez et al. (2016), Vaghefi e Mahmoudi (2022) e Liu et al. (2023). Tratando-se
de trabalhos envolvendo termoplasticidade na area de métodos numéricos do SET-EESC-USP,
podem-se citar os trabalhos de Rigobello (2011), Rigobello, Coda e Munaiar Neto (2014) e
Salomado (2021).

1.3.5 Viscosidade

De acordo com Barnes, Hutton e Walters (1989), o termo “reologia”, refere-se ao estudo
da deformacéo e do fluxo da matéria e foi introduzido pelo professor Eugene C. Bingham do
Lafayette College, localizado em Easton, Pensilvania (EUA). Esse termo foi oficialmente aceito
em 1929, no ano da fundacdo da Sociedade Americana de Reologia em que foram discutidos,
na primeira reunido, sobre as propriedades e o comportamento reoldgico de materiais como
asfalto, lubrificantes, tintas, plasticos e borracha. Posteriormente, o escopo de estudo da
reologia foi ampliado e foram verificados avancos significativos em bioreologia, reologia de
polimeros e reologia de suspensdo. A viscosidade consiste em uma das principais propriedades
reoldgicas.

O estudo da reologia precedeu a sua denominacdo e, para tomar conhecimento das
origens das teorias classicas relacionadas a reologia, pode ser consultado o livro de Dugas
(1988).

O inicio do estudo de materiais viscoelasticos foi marcado pelo trabalho de Wilhelm
Weber sobre fios de seda, publicado no ano de 1835, época na qual havia um interesse geral em
melhorar a construcao dos galvanémetros e comumente era observado o uso de fibras de seda
em suspensdes de instrumentos e equipamentos. Em seus estudos, Weber notou que o
comportamento elastico das fibras de seda tracionadas ndo era perfeito. Primeiramente, foi
aplicado um carregamento de tracdo a uma fibra de seda e observou-se um alongamento eléstico
imediato, seguido de uma deformacao lenta e continua ao longo do tempo e, por fim, ao remover
0 carregamento imposto, o material apresentou uma contragcdo imediata acompanhada de uma
restituicdo lenta e gradual do seu comprimento até recuperar o seu estado original indeformado.
Dessa forma, foi verificado experimentalmente que o material, além de uma resposta elastica,
apresentou também um comportamento viscoso, estabelendo, dessa forma, o ponto de partida
para os estudos da viscoelasticidade (Barnes; Hutton; Walters, 1989; Tanner, 2000).

A fim de proporcionar uma compreensdo qualitativa do funcionamento dos modelos
viscoelasticos, frequentemente as suas representacdes sdo esquematizadas por meio de anélogos

mecanicos construidos a partir da associacdo de elementos de mola e amortecedor. Para
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respostas lineares, sdo utilizadas molas elasticas lineares e amortecedores viscosos lineares,
cujos comportamentos sdo descritos pelas leis ideais de Hooke e de Newton, respectivamente
(Reddy, 2013).

Dentre os modelos viscoelasticos existentes, os modelos viscoelasticos lineares de
Kelvin-Voigt e de Maxwell sdo os mais simples, os quais podem ser construidos,
respectivamente, por meio da associacdo em paralelo e em série de uma mola hookeana com
um amortecedor newtoniano (Ng, 2019).

Baseado nos dois modelos supracitados, foram originados os modelos de trés
parametros, os quais podem ser encontrados em Findley, Lai e Onaran (1989) e Huber e
Tsakmakis (2000). Dentre esses, verifica-se com mais frequéncia na literatura os modelos de
Zener e Boltzmann, sendo aquele representado pela associacdo em paralelo de uma mola com
0 modelo de Maxwell e este, pela associacdo em série de uma mola com o modelo de Kelvin-
Voigt.

Para uma revisdo bibliogréafica dos modelos viscoelasticos, é sugerida a leitura dos
trabalhos de Banks, Hu e Kenz (2011) e Chen, Yang e Lai (2012). Em relacdo aos detalhes
relativos as formulagdes dos modelos mencionados, é sugerida a leitura dos livros de Simo e
Hughes (1998), Reddy (2013) e Anand e Govindjee (2020).

Tratando-se de modelos viscoplasticos, o primeiro modelo foi proposto por Perzyna
(1966), conhecido como modelo de Perzyna, sendo que a sua formulagédo fornece uma base para
varias implementacfes viscoplasticas computacionais. O modelo em questdo permite o
descumprimento do critério de plastificacdo utilizando integrais convolutivas (ou hierarquicas)
para considerar a evolucdo temporal do modelo, fazendo o uso da decomposicdo da taxa de
deformacdo total em taxas de deformacdo elastica (instantanea) e deformacao visco-plastica.
Em termos de trabalhos empregando o modelo de Perzyna envolvendo grandes deformacoes,
pode-se mencionar os trabalhos de Ponthot (2002) e Garcia Garino et al. (2013), Careglio et al.
(2016) e Kowalczyk-Gajewska et al. (2019). Como um outro modelo classico da
viscoplasticidade, é valido citar aquele proposto por Duvant e Lions (1976). Vale comentar que
esse modelo ndo é estavel para materiais pouco viscosos e ndo apresenta convergéncia para
meios inviscidos.

Atualmente, existem diversos estudos referentes a viscoelasticidade e a
viscoplasticidade, buscando solu¢bes que seguem a decomposi¢do de Kroner-Lee ou que
utilizam a estratégia de Perzyna. Podem ser verificados inclusive modelos desenvolvidos
especificamente para um determinado tipo de material, como pode ser visto nos trabalhos de

Kim e Muliana (2009) e Kim e Muliana (2010), no contexto de materiais poliméricos em regime
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de pequenas deformac6es. Em relacéo aos estudos aplicados as grandes deformacdes, é possivel
citar os trabalhos de Abu Al-Rub, Tehrani e Darabi (2014), Areias et al. (2022) e Carvalho,
Coda e Sanches (2023). O comportamento visco-elasto-plastico pode ser avaliado também em
materiais metalicos sujeito as altas temperaturas (Benaarbia; Rouse; Sun, 2018; Kazemi et al.,
2023), materiais asfalticos (Shojaeifard; Baghani; Shahsavari, 2020; Tong et al., 2022) e
materiais geotécnicos (Ai et al., 2022; Deng et al., 2020).

1.3.6 Anélise térmica

Nesta subsecdo, primeiramente foram apresentados brevemente alguns conceitos

preliminares da termodinamica e, na sequéncia, sobre transferéncia de calor em solidos.

1.3.6.1 Conceitos preliminares da termodinamica

Primeiramente, sdo apresentados a seguir alguns conceitos relativos a termodinamica,
para situar o trabalho nos conceitos fundamentais envolvidos.

Segundo Rajput (2009), a termodinamica consiste em uma &rea da ciéncia axiomatica
que aborda as relacdes entre calor, trabalho e propriedades de sistemas que se encontram em
equilibrio, descrevendo o estado e as mudancas no estado dos sistemas fisicos. Em sua
abordagem macroscopica, também conhecida como termodinamica classica, o estudo é
efetuado desprezando-se 0s eventos que ocorrem em nivel molecular, de forma a se preocupar
com o comportamento geral do sistema analisado.

Regida por principios, a termodinamica é composta por quatro leis e definidas conforme
apresentadas a seguir (CENGEL; BOLES; KANOGLU, 2019):

I) Lei zero da termodindmica: formulada e rotulada primeiramente por R. H. Fowler em
1931, estabelece que, se dois corpos estdo em equilibrio térmico com um terceiro corpo,
eles também se encontram em equilibrio térmico entre si. Apesar de parecer um fato
obvio para a composicdo de uma das leis fundamentais da termodinamica, o principio
zero € inconclusivo a partir das outras leis da termodinamica;

I1) Primeira lei da termodindmica: também conhecida como lei da conservacao da energia,
constitui uma base solida para o estudo das rela¢fes entre as variadas formas de energia
e as interagbes energeticas. Baseado em constatacBes experimentais, 0 primeiro

principio afirma a impossibilidade de criagcdo ou destruicdo da energia durante um
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processo, sendo possivel apenas a sua mudanca de forma. Portanto, cada parcela de
energia deve ser contabilizada durante um processo;

I11) Segunda lei da termodinamica: referente ao fluxo de calor entre dois corpos com
diferentes temperaturas, diz que o processo de transferéncia de calor ocorre em um
determinado sentido, mas ndo no sentido oposto, sendo impossivel para qualquer
sistema que opere em um ciclo termodinamico a conversao integral do calor recebido
em trabalho (enunciado de Kelvin-Planck) e a transferéncia de calor espontanea de um
corpo de menor temperatura para um outro corpo de maior temperatura (enunciado de
Clausius);

IV) Terceira lei da termodinamica: afirma que a entropia (grandeza termodinamica que afere
0 grau de liberdade molecular de um sistema) de uma substancia cristalina pura na

temperatura de zero absoluto é nula.

Pela primeira lei da termodinamica, é possivel definir a taxa de energia térmica interna
(dU/dt) em funcéo do calor e do trabalho, duas formas distintas de energia. Para um processo

termodinamico considerando um sistema fechado, a lei em questdo pode ser expressa por:

du
prial e 1)

sendo Q a taxa de transferéncia de calor e W a taxa de transferéncia de trabalho.

Apesar da Equacdo (1) estabelecer uma relacdo entre a energia interna, calor e trabalho,
a primeira lei da termodindmica ndo define o sentido do fluxo de calor no interior do sistema
analisado. As leis de transporte de calor sdo definidas através de uma outra disciplina
denominada transferéncia de calor, enquanto a termodinamica é responsavel somente pelas leis

de conversdo energética: calor e outras formas de energia.

1.3.6.2 Transferéncia de calor por conducéo

A transferéncia de calor ou transferéncia de energia térmica ocorre entre pontos
justapostos em um meio ou de um meio a outro devido a existéncia de uma determinada
diferencga de temperatura. A transferéncia de calor pode ser classificada em trés formas basicas,
com possibilidade de ocorréncia simultanea destas: conducédo, conveccdo e radiacdo (Reddy;
Gartling, 2010). De acordo com Cengel e Ghajar (2015), os trés modos de transferéncia de calor

podem ser descritos como:
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I) Conducdo: transferéncia de energia das particulas mais energéticas de uma substancia
do corpo para as adjacentes menos energéticas, como resultado de interacGes entre as
particulas. A conducéo pode ocorrer em sélidos, liquidos ou gases;

I1) Conveccdo: modo de transferéncia de energia entre uma superficie sélida e o liquido ou
gas adjacente em movimento, envolvendo os efeitos combinados da condugdo e do
movimento do fluido. A transferéncia de calor por conveccdo € diretamente
proporcional a velocidade de movimento do fluido. Na auséncia de qualquer movimento
de massas fluidas, a transferéncia de calor entre uma superficie sélida e o fluido
adjacente é puramente decorrente da conducéo;

I11) Radiacao: é referente a energia emitida pela matéria na forma de ondas eletromagnéticas
como resultado das mudangas nas configuracdes eletronicas dos &tomos ou moléculas.
Diferentemente da conducéo e da conveccao, a transferéncia de energia por radiagao

ndo requer a presenca de um meio fisico.

De acordo com Cheng e Fujii (1998), no ano de 1701 houve o primeiro registro de
equacdo de taxa tedrica para transferéncia de calor em um trabalho publicado anonimamente
em latim intitulado Scala Graduum Caloris, aplicada a um problema envolvendo um objeto
aquecido e um fluido em movimento em diferentes temperaturas, sendo conhecida
universalmente como lei de resfriamento de Newton nos dias atuais.

Posteriormente, Biot (1804) estudou o processo de transferéncia de calor em sélidos,
apresentando o problema de uma barra aquecida em uma das extremidades. O seu trabalho teve
como ponto de partida a lei de resfriamento de Newton, segundo a qual a taxa da perda de calor
de um corpo para 0 ambiente € proporcional a diferenca de temperatura entre a barra e 0 meio
envolvente.

No entanto, de acordo com Grattan-Guinness e Ravetz (1972), foi admitida por Biot a
idealizacdo de acdo a distancia (conceito referente a possibilidade de movimento ou alteracéo
de um objeto mesmo na auséncia de um contato fisico com um segundo objeto) envolvendo
somente a diferenca de temperatura entre 0os pontos, sem a consideracdo da distancia entre os
pontos como um parametro influente no estudo. Consequentemente, a abordagem de Biot néo
apresentou um gradiente de temperatura, essencial para a formulagédo da equacao diferencial de
conducéo de calor.

O processo transiente de conducdo de calor em sélidos, descrito a partir de uma equagéo
diferencial parcial, foi formulado pela primeira vez e apresentado a instituicdo académica

Institut de France como um manuscrito em 1807 pelo matematico e fisico francés Jean Baptiste
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Joseph Fourier. Na referida época, as ciéncias termodindmicas, da teoria do potencial e da teoria
das equac0es diferenciais se encontravam em estagios iniciais de desenvolvimento. Através da
sua excepcionalidade em matematica pura e percepcfes em fisica observacional, Fourier foi
responsavel pela introducéo de novas areas de pesquisa em fisica matematica com a sua obra-
prima de 1807, intitulada Théorie de la Propagation de la Chaleur dans les Solides
(Narasimhan, 1999).

Entretanto, a publicacdo da sua pesquisa e 0 seu acesso pela comunidade cientifica
ocorreram apenas em 1822, sendo a obra intitulada de Théorie Analytique de la Chaleur
(Fourier, 1822). Os resultados da pesquisa de Fourier foram ampla e rapidamente aceitos no
mundo inteiro, com a consagracao de uma lei empirica que afirma o seguinte: o fluxo de calor
resultante do processo de conducdo térmica através de um material € proporcional ao gradiente
negativo da temperatura. Tal principio € mundialmente conhecido como lei de Fourier
(Lienhard IV; Lienhard V, 2020; Narasimhan, 1999).

Desde a proposicao da lei de Fourier, foi verificada uma grande quantidade de pesquisas
envolvendo conducdo de calor em variados campos da engenharia, sendo a sua equacgdo
diferencial a principal expressao de conducdo térmica até os dias atuais e presentes na literatura
de cunho tedrico e pratico.

1.3.7 Termomecanica

A termomecéanica corresponde ao segmento da ciéncia mecanica que possui como foco
de estudo a relacdo entre carregamentos térmicos e carregamentos mecanicos aplicados em um
corpo ou superficie e a intensidade das forcas internas que atuam dentro desse corpo. A
disciplina também é responsavel pelo estudo da alteracdo das dimensdes do corpo analisado em
funcdo da temperatura, bem como de suas deformacoes (Peksen, 2018).

O estudo de um problema termomecanico pode ser realizado a partir de duas opcGes de
modelos matematicos, com abordagem desacoplada ou acoplada. A principal diferenca entre as
duas abordagens corresponde a forma como se consideram a interag@o entre 0 campo mecanico
e 0 campo térmico. Na abordagem acoplada a interacéo é realizada diretamente nas equacdes
governantes da termomecanica (Elfar; Sedaghati; Abdelsalam, 2022). J& na abordagem
desacoplada, o campo mecanico é resolvido separadamente do campo térmico e informacGes
como distribuicdo de temperatura para a solugdo do problema mecénico, ou geracao de calor
por deformacéo plastica para a solu¢do do campo térmico, como pode ser visto no livro de Liu

(2018), sdo comunicadas entre os instantes (ou mesmo iteracdes) do processo de solucéo.
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De acordo com Sherief, Hamza e Saleh (2004), o inicio do estudo da termomecanica
deu-se atravées de Duhamel (1837), o qual foi responsavel pela introducdo da teoria denominada
como teoria da termoelasticidade desacoplada, na qual ha a influéncia do campo térmico na
determinacdo do comportamento mecénico do corpo analisado. Na teoria em questéo,
considera-se a existéncia de um estado inicial de referéncia em que o corpo é isento de tensdes
e deformacdes a uma determinada temperatura.

Para a resolucdo dos problemas termomecanicos desacoplados, € possivel considerar
anélise em regime estacionario ou transiente, sendo que este pode ser subdividido em andlise
dindmica e quase-estatica. Enquanto no modelo dindmico é verificada a consideracdo da inércia
no campo mecanico, tal efeito é desprezado no modelo quase-estatico. Entretanto, a inclusao
do efeito de inércia é necessaria, por exemplo, em casos de estruturas bruscamente carregadas
em um curto intervalo de tempo (carregamentos dependentes do tempo) (Elfar; Sedaghati;
Abdelsalam, 2022).

Tratando-se das aplicacOes da teoria desacoplada dos problemas termomecéanicos, é de
interesse mencionar os trabalhos dos seguintes autores, com 0s seus respectivos contetdos
apresentados resumidamente:

I) Sentiirk, Isyk e Evci (2016): utilizou 0 modelo desacoplado para a investigacéo analitica
da resposta termomecanica de um cano de metralhadora. A distribuicdo de temperatura
ao longo da espessura do cano foi determinada a partir da analise térmica de conduc¢éo
em regime estacionario, seguido de calculo das tensdes em funcdo do campo térmico
obtido;

I1) Neves, Camargo e Azevedo (2021): desenvolvimento do modelo numérico através do
Método dos Elementos Finitos, com a finalidade de simular o comportamento de
estruturas de concreto armado e mistas de aco e concreto submetidas a situacdo de
incéndio. Para a analise, foram admitidas as ndo-linearidades fisica e geomeétrica,
propriedades dos materiais dependentes da temperatura e gradientes térmicos ndo-
lineares;

I11) Song et al. (2023): foi efetuado um estudo tedrico e numérico sobre as tensdes térmicas
residuais causadas pelo processo de brasagem (processo térmico de unido de duas ou
mais superficies metélicas por meio um metal de adicdo em fusdo) em estruturas
anelares e bicamadas, motivado pela sua ameaca a estabilidade e & confiabilidade das

estruturas soldadas.
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Apesar de ndo consistir no foco do presente trabalho, menciona-se brevemente a teoria
da termomecénica acoplada. Apds a descricdo resumida da teoria da termomecénica
desacoplada, houve constatacdo experimental referente a um desacordo entre a teoria e as
observagdes fisicas, as quais referem-se as influéncias da mudanca de configuragcdo do corpo
(inerente a0 campo mecéanico) no campo de temperatura. Dessa forma, no trabalho de Biot
(1956) foi introduzida a teoria classica da termoelasticidade acoplada, a qual indica o
acoplamento dos campos térmico e mecanico, no que diz respeito a deformacéo e ao fluxo de
entropia.

Desde entdo, surgiram diversas contribuic@es cientificas relacionadas a termomecénica
acoplada, incluindo as que sdo inerentes aos procedimentos numéricos. Um exemplo a ser
mencionado, realizado na area de métodos numéricos do departamento de engenharia de
estruturas da EESC-USP (SET) é a tese de doutorado de Carrazedo (2009). Tratando-se de
analise termomecanica desacoplada, é possivel mencionar ainda as teses de Rigobello (2011) e
Salomao (2021).

1.4 Metodologia

O desenvolvimento do presente trabalho foi organizado em sete etapas principais,
conforme organizados e apresentados a seguir.

A primeira etapa corresponde a elaboragdo de um codigo computacional destinada a
andlise estatica e dindmica de sélidos em regime de grandes deslocamentos através do Método
dos Elementos Finitos Posicional, desenvolvida matematicamente a partir de uma abordagem
energética por estacionariedade da energia mecanica total visando a obtencao das equac@es de
equilibrio para 0 modelo constitutivo de Saint-Venant-Kirchhoff. Para a resolu¢do do sistema
de equacGes ndo-lineares e integracdo temporal, empregam-se o método de Newton-Raphson e
o0 algoritmo de Newmark-p, respectivamente. O elemento finito de sélido utilizado corresponde
aquele proposto por Carrazedo e Coda (2017), prismatico de base triangular, implementado
com aproximacao cubica na base e opc¢des de aproximacao linear ou cubica na espessura.

Na segunda etapa, foi efetuada a implementacdo do modelo constitutivo hiperelastico
de Rivlin-Saunders-Hartmann-Neff, adequado para problemas em regime de grandes
deformacbes. A sua formulacdo € desenvolvida a partir da estratégia de decomposicdo
multiplicativa de Flory (Flory, 1961), segmentando o gradiente da funcdo mudanca de

configuragdo em parcelas isocoricas e volumétrica.
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A terceira e a quarta etapas consistem nas implementagdes dos modelos alternativos de
plasticidade e de viscosidade baseados, respectivamente, em Coda (2021, 2022) e R. T. Kishino
(2022), ambos adequados para a resolucao de problemas em regime de grandes deformacdes.

A quinta etapa corresponde & implementacdo do codigo de andlise térmica por
transferéncia de calor linear e ndo-linear, partindo-se da lei de Fourier para obter as equacdes
de equilibrio térmico. Para a resolucao de sistema, tanto linear quanto nao-linear, é utilizado o
método de Newton-Raphson, enquanto a aproximacdo numérica dos termos transientes é
efetuada por meio do Método das Diferencas Finitas, com a discretizacdo desses termos em
passos de tempo.

A sexta etapa é referente ao acoplamento termomecanico, implementado a partir da
teoria classica da termomecanica desacoplada, com o objetivo de determinar a resposta de um
corpo sujeito aos esfor¢os mecanicos e térmicos. O modelo termo-elasto-plastico alternativo
implementado neste trabalho é adequado para grandes deformagdes e consiste em um
aprimoramento daquele apresentado por Rigobello, Coda e Munaiar Neto (2014), o qual é
valido somente para problemas de deformacGes pequenas e moderadas. Aqui comenta-se a
relacdo ndo-linear temperatura/volume proposta originalmente neste trabalho.

Por fim, na ultima etapa foi proposto o0 modelo termo-visco-elasto-pléastico alternativo
apropriado para grandes deformac@es por meio da combinacao do modelo termo-elasto-plastico
e do modelo de viscosidade implementados.

Para a elaboracdo dos c6digos computacionais mencionados, foi utilizada a linguagem
de programacdo Fortran 90, combinado com o compilador Intel® Fortran, através do sistema
operacional Windows. Quanto a resolucdo de problemas de algebra linear de grau de
complexidade superior, foi utilizada a biblioteca LAPACK (Anderson et al., 1999). Visando a
economia de memdria e uma reducdo no tempo de processamento, foi empregado o PARDISO
(Schenk; Gartner; Fichtner, 2000), um solver para sistemas de equacdes contendo matrizes
esparsas, as quais foram preparadas e montadas com o auxilio das bibliotecas sparseSET
(Piedade Neto; Paccola, 2020). O acesso a biblioteca LAPACK e ao solver PARDISO foi
efetuado através do Math Kernel Library da Intel®. Além disso, a fim de reduzir o tempo de
processamento, alguns trechos do cédigo desenvolvido foram paralelizados utilizando a
ferramenta OpenMP (Dagum; Menon, 1998), uma interface de programagéo de aplicativos para
programacéo e processamento paralelo.

A discretizagdo em malha dos solidos a serem analisados foi efetuada atraves do
software Gmsh (Geuzaine; Remacle, 2009) para a geragdo das malhas bidimensionais das bases

triangulares dos elementos finitos prismaticos e, por meio da sua extrusdo na direcdo da
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espessura do solido (realizada com o auxilio do codigo desenvolvido pelo proprio autor), foram
transformadas em malhas tridimensionais. A representacao e a visualizacdo dos resultados de

poOs-processamento foram efetuadas por meio do software AcadView (Paccola; Coda, 2005).
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2 CONCEITOS FUNDAMENTAIS DA MECANICA DOS SOLIDOS

Neste capitulo apresentam-se os conceitos fundamentais da Mecénica dos Sdélidos para

embasar os desenvolvimentos posteriores do presente trabalho.
2.1  Breves comentarios sobre algebra tensorial

Ao longo do desenvolvimento das formulacGes apresentado neste trabalho, foram
utilizadas operacdes da algebra tensorial, comumente verificadas em estudos da mecénica do
continuo. Tendo isso em vista, nesta secdo, comenta-se brevemente sobre tensores e operacdes
tensoriais e, para maiores detalhes, é sugerida a leitura dos livros de Hashiguchi (2020) e Anand
e Govindjee (2020). Na algebra tensorial, escalares, vetores e matrizes correspondem a casos
particulares de tensores, respectivamente, de ordem 0, 1 e 2. Em geral, ao longo do texto, tenta-
se enquadrar as seguintes notacoes:
a. Escalar (tensor de ordem 0): letras em italico ou de traco duplo (por exemplo, a, A
ou A);

b. Vetor (tensor de ordem 1): letras em italico com seta na parte superior — notacao
vetorial (por exemplo, @ ou A);

c. Matriz (tensor de ordem 2): letras maidsculas em italico e negrito (por exemplo, A),
com excecédo do tensor de deformacdo de Green (E);

d. Tensores de ordem 4: letras em formato fraktur (por exemplo, ).

Na sequéncia, sdo apresentadas resumidamente contragdes e produtos tensoriais, duas
operacdes entre tensores utilizadas ao longo dos desenvolvimentos subsequentes. Para cada
operacdo, é representada a esquerda em notacdo compacta (ou dyadica) e a direita em notagédo
indicial. indices repetidos indicam soma e sdo denominados indices mudos, sendo eliminados
da representacéo indicial do tensor resultante. Caso na notacao indicial esteja presente somente
um indice mudo, a operacdo corresponde a contragdo simples (representada por “-”). Caso
sejam empregados dois indices mudos, a operagdo é denominada de contracdo dupla

(representada por “:”’) e assim por diante. Pode-se mencionar como exemplos de contragdes:

—

=b8 d Cl:biCi (2)

=B-C < Ajj=Byly; 3

Q

>

A=B-C < W = By Cmj 4)
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A=B-C < W =BimCnju )
A=B-C-D — Wy =BimCnniiDyj (6)
a=B:C < a=B;(; (7
A=8B:C < A;jj=Buly (8)
U=B:C < Wik = BijmnCrnni (©)

Ja o produto tensorial é denotado pela operagdo “@” e ndo envolve indices mudos.
Como exemplos, pode-se mencionar:
A=bQ®¢ o Aj=bg (10)
A=BRQC < Wy =B;jCy (11)
Em alguns desenvolvimentos das formulacdes deste trabalho, pode ser constatada a

presenca do tensor identidade de segunda ordem, denotado por I e dado por:

na qual &;; e referente ao delta de Kronecker:
5. = {1, sei =j
H7\0,sei # (13)

2.2 Definigdo da Cinemética

A Cinematica corresponde a subarea da Mecéanica que estuda os movimentos dos corpos
sem se preocupar com a sua causa. O estudo da cinematica dos corpos deformaveis, um dos
subcampos da Mecénica de Meios Continuos, é imprescindivel para a analise de problemas que
ndo se enquadram em regime linear geométrico, caracterizado por desenvolver apenas pequenos
deslocamentos, rotacdes e deformacdes. Nesta secdo sdo apresentados alguns conceitos
relativos a Cinematica com base nos livros de Coda (2018), Hashiguchi (2020) e Anand e
Govindjee (2020).

2.2.1 Funcdo mudanca de configuracéo e gradiente da fungdo mudanga de configuragédo

Dado um corpo, continuo no seu dominio, 0 seu movimento da configuragdo inicial
(indeslocada e indeformada) para a configuracédo atual pode ser expresso matematicamente por
meio da funcdo mudanca de configuracao f (conforme exibido na Figura 2.1), a qual realiza o
mapeamento das posi¢des atuais (denotadas por y) a partir das posicdes iniciais (denotadas por

X) para um determinado valor fixo de tempo t:
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y=f@&1 (14)

Figura 2.1 — Mudanga de configuracdo de um sélido deformavel

X7 . Y2
f

7N

X3

Fonte: autor.

A partir da fungdo mudanca de configuracdo, denota-se o0 seu gradiente por A:
9_af_a§ (15)

O gradiente da fun¢do mudanca de configuracao apresenta a propriedade de estabelecer
uma relagédo entre vetores infinitesimais medidos nas configuragdes inicial e atual:
dy =A-dx (16)

2.2.2 Medida de deformacéo

A medida de deformacgdo pode ser definida como uma grandeza capaz de aferir a
alteracdo de forma do corpo verificada entre as configuracdes inicial e atual. E importante que
a medida de deformacdo seja objetiva, em outras palavras, deve ser insensivel aos movimentos
de corpo rigido, tanto de translacdo quanto de rotacdo. Para se definir medidas de deformacéo
objetivas na descricdo Lagrangeana utiliza-se o tensor de alongamento a direita de Cauchy-
Green (C), definido como:

C=A-A (17)

Devido a propriedade matemaética referente ao produto de uma matriz pela sua
transposta resultar em uma matriz simétrica, o tensor € é simétrico.

Ja o tensor de deformacdo de Green-Lagrange (IE), comumente referido apenas como

deformacéo de Green, é dado conforme a expressao abaixo:

1 1
E=-(A"A-D=2(C-D (18)
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sendo que I corresponde a matriz identidade.
2.2.3 Demonstracao da objetividade da deformacéao de Green

O presente trabalho envolve a resolucdo de problemas que desenvolvem grandes
deslocamentos e rotacOes, caracterizando a ndo-linearidade geométrica, 0 que requer o emprego
de uma medida de deformacéo objetiva. A objetividade da deformacéo de Green é demonstrada
a partir da sua insensibilidade aos movimentos de translacéo e rotacao de corpo rigido. A fungéo
mudanca de configuracdo que representa translacéo de corpo rigido é escrita como:

f@&=y=%+d (19)
Sendo d um vetor deslocamento constante.

Dentro desse contexto, o gradiente da funcdo mudanca de configuracédo ¢é dado por:

q_gf_a@+3)_l

A=Vf=-—== - (20)
/ dx dx
Consequentemente, o tensor de alongamento a direita de Cauchy-Green ¢é dado por:
C=A-A=I'"I=1 (21)
Por fim, substituindo-se a Equacao (21) na Equacéo (18), tem-se que:
1 1
E=5(-D=5U-D=0 (22)

Dessa forma, demonstrou-se primeiramente que a deformacgéo de Green assume valor
nulo quando o corpo é submetido ao movimento de translagdo de corpo rigido. Na sequéncia,
demonstra-se a insensibilidade do corpo sujeito a rotacao de corpo rigido, considerando que o
gradiente da funcdo mudanca de configuracédo seja dada por:

A=R (23)
em que R corresponde ao tensor de rotacdo, sendo este ortogonal (Rt - R = I).

A partir da ortogonalidade do tensor de rotagdo, seguem as seguintes relagcdes para o

tensor de alongamento a direita de Cauchy-Green e a deformacao de Green:
C=A""A=R'-R=1 (24)

1 1
[EZE(C—I):E(I—I):O (25)

Mostrando, dessa forma, a insensibilidade da deformacéo de Green ao movimento de
rotacdo de corpo rigido e concluindo que a deformacao de Green € uma medida de deformacéo

objetiva.
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2.2.4 Mudanca de volume

A mudanca de volume pode ser estudada a partir de um cubo infinitesimal ilustrado na
Figura 2.2, com as suas dimensGes iniciais definidas através dos vetores dx,, dx, e dXs
ortogonais entre si, enquanto a sua configuracdo final é dada pelos vetores dy,, dy, e dy;, 0s
quais definem as suas arestas. Portanto, o volume inicial do cubo corresponde a:
dVy = dx, - (dX,; A dx3) = det(dxy, dX,, dX3) (26)

Figura 2.2 — Mudanca de volume de um cubo infinitesimal
Adxz dy,

dX3 d—*
dy;
Fonte: autor.

Os vetores infinitesimais da configuracdo atual podem ser determinados conforme a

Equacéo (16), em funcéo dos vetores dx,, dx, e dXs:

d}_}l =4 d)_él
d}_}3 =4 d)_C>3

De forma analoga ao volume inicial, o volume infinitesimal na configuracéo atual (dV)
do cubo pode ser definido como:
dV = det(dy,,dy,, dys) = det(A) det(dX,,dx,,dx3) =] dV, (28)
na qual J é o jacobiano da transformacdo de coordenadas, também conhecido simplesmente

como jacobiano, equivalente a razdo entre o volume atual e o inicial do corpo:

%
- = det(A) (29)

E importante mencionar que o jacobiano deve assumir apenas valores positivos, pela

J

impossibilidade do material sofrer inversdao ou degeneragédo (condi¢do que deve ser satisfeita

pelos modelos constitutivos):



48

J>0 (30)
Dessa forma, a deformacdo volumétrica (&) pode ser definida conforme a expressao
abaixo:
dav —dv, dv
&y = v, =dV0—1=]—1 (31)

De forma simplificada, imaginando-se que as deformacgdes ocorrem em suas direcdes

principais (sf’j ), efetua-se o desenvolvimento da formulagdo considerando um cubo

infinitesimal de aresta a sujeita a dilatacdo, exibido na Figura 2.3.

Figura 2.3 — Cubo infinitesimal submetido a dilatagéo

N

|l

—a_ s

Fonte: autor.

O volume inicial (dV,) e o volume final (dV) do cubo sdo calculados conforme as
seguintes expressoes:
dVO = a3 (32)
av = [(1+71)a][(1+ &3;)a][(1 + &35 )a]
= (1 + 351)(1 + ‘952)(1 + ‘93?3)“3

A partir dos volumes, pode-se determinar a equacdo da deformacgdo volumétrica em

(33)

funcdo das componentes principais do tensor de deformacéo:

.= av —avy _ (1+el)(1+D,)(1+eh,)a®—ad
v dV, a3

= (1 + 5?1)(1 + 552)(1 + ‘931?3) -1

(34)

_ D P p p P p P p_p p D P
= &1 T &35 + €33 T 185, T E11833 T+ €55833 T €115,833
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A expressao acima pode ser simplificada caso o corpo trabalhe em regime de pequenas

deformacdes:
ey =el +el vl =g teyy tes =y (35)

Dessa forma, a deformacéo volumétrica em pequenas deformacdes é definida pelo traco
do tensor de deformacéo, correspondente ao 1° invariante do tensor de deformacao.

Tratando-se da Lei de Hooke em problemas de regime de pequenas deformacdes, as
deformacgdes normais podem ser determinadas em fungdo das componentes normais do tensor
de tensBes de Cauchy (o;;) e do modulo de elasticidade longitudinal (E):

( 1
€11 = E (011 — VOy; — VO33)

A

&2 = E (022 — Vo1 — VO33) (36)

1
\%33 = ¢ (033 —voy; —V0y)

Portanto, a Equacdo (35) pode ser escrita como:

1 1
&y = i (011 — vOy, —VO33) + I (022 —Vvoy; — V033)

1
+ A (033 — V011 — V0y;)
) (37)
=z [o11 + 025 + 033 — 2v(011 + 035 + 033)]
1 3(011t 0y o0
=— (011 + 055 + 033) (1 — 2v) = _( 11+ 92z % 033) (1-2v)
E E 3
sendo que a tensdo média (a,,,) é definida como:
011 + 055 + 0
Oy = ( 11 22 33) (38)
3
A Equacéo (37) pode ser reescrita conforme a expressao seguinte:
3(1—2v
g =22 (39)
E
isolando o termo ¢, da equagdo acima, tem-se:
Om = KSV (40)

“3(1-2n)
em que K corresponde ao bulk modulus (ou médulo volumétrico), uma constante elastica do
material que indica a sua capacidade de se opor as mudancas de volume quando carregado
hidrostaticamente, ou seja, submetido a um carregamento uniforme em todas as direcdes. A

compressibilidade do material e o bulk modulus sdo inversamente proporcionais.
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Salienta-se que, apesar da auséncia da necessidade de descricdo de agcOes geradoras de
mudanca de configuracdo envolvendo deformacdo volumétrica para a cinematica dos corpos
deformaveis, foram apresentados os desenvolvimentos para a defini¢do de bulk modulus devido
a sua importancia para 0 modelo constitutivo destinado aos materiais em regime de grandes

deformac6es, o qual é abordado nos capitulos posteriores.
2.2.5 Mudanca de area

Para a obtencédo da relacdo entre a tensdo real na configuracdo Euleriana (tenséo de
Cauchy) e a tensdo matematica na configuracdo Lagrangeana (pode-se mencionar as tensdes de
Piola-Kirchhoff de 12 e 22 espécie como exemplos), torna-se necessario estabelecer uma relacéo
entre areas na configuracdo inicial e na configuracao atual.

Para tanto, toma-se como base um elemento prismatico infinitesimal, com as suas

configuracdes inicial e final ilustradas na Figura 2.4.

Figura 2.4 — Mudanca de area do elemento infinitesimal na mudanca de configuracao

dy

/W/h\ N

Fonte: autor.

H"

Sejam dA, e dA as areas da base, nas configuracdes inicial e atual respectivamente,
enquanto 7 e N correspondem aos versores normais as bases do elemento prismatico nas
mesmas respectivas configuracfes. A partir dos pardmetros mencionados, pode-se definir o
vetor area inicial (d/fo) e o vetor area atual (d/f) segundo as expressdes abaixo:

dA, = ndA, (41)

-

dd =N dA (42)
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Para a configuracdo inicial e configuracéo atual, o elemento prismatico € gerado a partir
da extrusdo da sua base na dire¢éo do vetor infinitesimal dx e dy respectivamente, com 0s seus

volumes dV, e dV definidos como:
dV, = dit - dA, = dxt - (R dA,) (43)
dV = dyt-dA = dyt - (N dA) (44)
Desenvolvendo a Equacdo (44) a partir das relagdes dV = J dV, (Equacdo (28)) e dy =
A - dX (Equacdo (16)), tem-se:

dVy, =] 1dxt - A - N dA (45)
Igualando as EquacBes (43) e (45) e reorganizando os termos presentes, obtém-se a
equacdo conhecida como Foérmula de Nanson, a qual estabelece uma relacdo entre a area na

configuracao inicial e a area na configuracdo atual:

NdA=](A) -7 dA, (46)
2.2.6 Principio da conservacdo de massa

Para o presente trabalho, faz-se necessaria a conversdo da descricdo Euleriana para
Lagrangeana envolvendo a conservagdo da massa no desenvolvimento das formulagdes de
equilibrio do corpo, as quais sdo apresentadas em capitulos posteriores. Tal propriedade do
corpo garante que a massa (M), escrita conforme a expressdo (47), seja constante ao longo da
analise, sem adi¢do ou retirada do sistema (sistema fechado):

M= | p,dV,= f p(t) dV 47
Vo V(t)
sendo que p, é a massa especifica inicial e p refere-se a massa especifica atual.

Através da substituicdo da Equacéo (28) no ultimo termo da igualdade da Equacéo (47),
obtém-se:

M= p®)J)dV, (48)
Vo
Estabelecendo a igualdade entre as Equaces (47) e (48), verifica-se que:

dv(t)
v,

As Equac0es (47) a (49) sdo correspondentes ao principio da conservagao de massa nos

po = p®)J (&) = p(t) (49)

pontos do continuo.
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Partindo-se desse principio, pode-se inferir um corolario relevante para a converséo da
descricdo Euleriana para a Lagrangeana. Primeiramente, admite-se uma funcédo diferenciavel

em qualquer instante do tempo f(t) como um dos termos do integrando:

[ sor@a =] prwav, (50)
V(t) Vo
Derivando a expressao anterior em relagdo ao tempo (p, € uma constante):
d d df (t)
d_t,fv(t)p(t)f(t) av = d_t.[;/(, pof (®) dVy = j‘-/o po—7— Vo
(51)
df (t)
= p(t) —— dv
-]V(t) dt
Consequentemente, tem-se que:
d :
S| ror@w = pofwaw (52)
t 14 v

2.3  Tensdo de Cauchy

Nesta secdo, apresenta-se alguns conceitos referentes a tensdo de Cauchy com base nos
livros de Irgens (2008) e Coda (2018).

A tensdo pode ser definida como uma grandeza que quantifica, continuamente, a
interacdo entre particulas constituintes de um solido submetido as aces externas, sendo
composta por componentes de tensdo normal e de tensdo de cisalhamento. A primeira afere a
resisténcia ao afastamento ou a aproximacao de planos ou superficies paralelos, enquanto a
segunda quantifica a resisténcia ao deslizamento relativo entre planos paralelos.

Considerando-se um corpo submetido as acdes externas em sua configuracdo atual de
equilibrio, conforme a Figura 2.5, pela 3% lei de Newton (Principio da Acdo e Reacdo), ao
secciona-lo, devem existir esforcos distribuidos por unidade de superficie interna (ficticia) do

corte capazes de manter o equilibrio. Tais esfor¢os internos séo denominados tensdes ou vetor

de tensoes (7).
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Figura 2.5 — Clonfiguragéo de equilibrio do corpo obtido através do corte imaginario

|
| ~
|
|

Fonte: autor.

Ao imaginar que o corpo em questdo € seccionado seis vezes, sendo cada um dos planos
de corte ortogonais e distanciados infinitesimalmente entre si, obtém-se um cubo infinitesimal,
conforme ilustrado na Figura 2.6. Cada uma das faces do cubo encontra-se submetida a um
vetor de tenséo resultante, o qual pode ser decomposto em trés componentes, denotadas por a;;,
em que o indice i é referente ao plano de atuacdo da tensdo, enquanto o indice j, a direcdo da

Sua componente.

Figura 2.6 — Estado de tensdes de um cubo infinitesimal

Fonte: autor.

Representadas na figura acima, as componentes de tensdo normais as superficies (i)

correspondem as tensdes normais (i = j) e as componentes tangenciais consistem nas tensdes
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cisalhantes (i # j). O estado de tensdo atual ¢ comumente representado em sua forma tensorial,

sendo denominado, nesse caso, de tensor de tensdes de Cauchy (o):

011 012 013
0 =|021 02 033 (53)
031 032 033

Por meio do equilibrio de momentos do cubo em relagdo a um ponto qualquer, verifica-
se que o tensor de tensBes de Cauchy é simétrico (teorema de Cauchy):
o=oct (54)
Pelo fato da tensdo de Cauchy possuir significado fisico imediato e estar escrita na
configuracdo atual do corpo, a mesma € comumente denominada de tensdo real. Salienta-se tal
fato porque sdo mencionadas ao longo do presente trabalho medidas de tensdo matematicas que
ndo possuem significado fisico evidente, mas que possuem relacdo direta com a tensdo de

Cauchy.

2.4  Equilibrio

Para o desenvolvimento do presente trabalho, emprega-se uma formulacdo com
descricdo Lagrangeana total. No entanto, verifica-se que o estado de equilibrio do corpo esta
relacionado a sua configuracdo atual. Portanto, baseado em Coda (2018), primeiramente foram
introduzidas as formulacdes Eulerianas de equilibrio e, utilizando-se as equagdes de mudanca

de érea e de volume, foram deduzidas as suas formulagdes Lagrangeanas.

2.4.1 Equilibrio Euleriano

Na definicdo das componentes de tensdo de Cauchy, foi utilizado o exemplo do cubo
infinitesimal (Figura 2.6), o qual representava um ponto do corpo. Ja para os desenvolvimentos
subsequentes, o elemento infinitesimal é tratado como uma por¢do do continuo que apresenta
variacdo do ente tensdo de Cauchy no interior do seu dominio. Assim, uma componente de
tensdo g; solicitante em uma das faces apresenta um valor oj; + 0j; ;dx;y na face oposta
correspondente, conforme esquematizado na Figura 2.7 (exemplo para o caso das tensdes na

direcdo x; ), também considerando a existéncia das forcas de volume b;.
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Figura 2.7 — Cubo elementar com variagéo de tensdes

)

2

( 921 + (9021
c")_z- dz'l dxg

~— T3, dg,
/)1 //[”/ (
To / o
11 +

T11dzyq,
3
O, 3 d1‘1dz2

Z3

Fonte: autor.

As equacdes de equilibrio em forcas infinitesimais podem ser determinadas por meio da
aplicacdo da 22 Lei de Newton segundo cada um dos trés eixos do espaco cartesiano:

(0ji + 0j; jdxjy)dAjy — 0;dA; + b;dV = py;dV (55)
sendo que dA; corresponde a area infinitesimal ortogonal ao eixo cartesiano j, dV ao volume
do cubo analisado, b; as forcas de volume na direcdo do eixo cartesiano i, p a massa especifica
atual e y; a aceleragdo do corpo inerente a dire¢do do eixo cartesiano i.

Efetuando as devidas simplificacbes na Equacdo (55), obtém-se a expressao

correspondente ao equilibrio Euleriano local:

0ji,j + bi = py; (56)
Realizando a integral da expressdo acima no volume atual do corpo, é obtido:
f 9ji,j AV + f b;dvV = f pyi dV (57)
14 14 14

Aplicando o teorema da divergéncia de Gauss no primeiro termo da adi¢ao, obtém-se:

f a;iN; dA+f bi dvzf py; AV (58)
A %4 14
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em que N; refere-se ao vetor normal a superficie e A indica a area da superficie do contorno do
corpo analisado.
O termo g;;N; pode ser denotado como p;, correspondente a forca de superficie.

Portanto o equilibrio Euleriano global € expresso por:

A 14 14

2.4.2 Equilibrio Lagrangeano

Para a obtencdo da expressdo de equilibrio Lagrangeano global, utiliza-se a equacgéo de
equilibrio Euleriano global como base, através da substituicdo das expressdes de mudanca de
volume e de mudanca de area, dadas pelas Equaces (28) e (46) respectivamente, na Equacédo
(58), resultando em:

JojiBjeny dAg + | JbydVo = | JpyidVy (60)
Ao Vo Vo
sendo B = (A1,

Através do corolario do principio da conservacdo de massa, dado pela Equacgdo (52), é
possivel substituir a parcela Jp do lado direito da equacdo por p,. Ainda, assumindo como
premissa que as forcas de volume sejam conservativas e que uma justificativa analoga ao
principio da conservagdo de massa seja valida, pode-se substituir o termo Jb; por b, o qual
refere-se a forca de volume Lagrangeana. Efetuando as substituicbes mencionadas, obtém-se:

JojiBjny Ao + | b dVy = f po¥i dVy (61)
Ao Vo Vo

Definindo o tensor de Piola-Kirchhoff de primeira espécie (P;) como:

Py = JojiBjx ou Pj; = Joy;By; (62)
e substituindo a Equacéo (62) na Equacéo (61) e realizando a troca do indice k por j, obtém-se
a expressdo de equilibrio Lagrangeano global:

A Vo Vo

0

Aplicando o teorema da divergéncia de Gauss e a arbitrariedade do volume V, na
Equacdo (63), chega-se na expressédo de equilibrio Lagrangeano local:
Pjij + b = poJ; (64)
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2.4.3 Forma fraca do equilibrio Lagrangeano pela estacionariedade da energia mecéanica

Alternativamente, o estudo mecanico de uma estrutura pode ser efetuado por meio da
andlise da forma fraca do equilibrio, que é equivalente a estacionariedade da energia mecénica
total.

A energia mecanica total do sistema (IT) € composta por trés parcelas: energia potencial
das forcas externas (IP), energia de deformacéo (U) e energia cinética (KK).

N=P+U+K (65)

O equilibrio do sistema é definido pelo principio da estacionariedade da energia
mecanica, quando a primeira variacdo do funcional de energia mecanica é nula:

8l = 6P+ 86U+ 6K=0 (66)

A expressdo da variacdo da energia mecanica pode ser encontrada tomando-se como
base a equagdo de equilibrio Lagrangeano local, dada pela Equacdo (64). A equacédo
reorganizada é dada por:

Piij +b) — poy; = 0; = g; (67)
sendo que g; refere-se ao vetor nulo de forca por unidade de volume.

Uma variagdo de trabalho por unidade de volume & realizado pela forca g; inerente a
uma variacdo arbitraria de posicao &y;, é expressa por:

om = g;6y; =0 (68)

Integrando-se a Equacéo (68) no volume inicial do corpo, determina-se a expresséo da
variacdo da energia mecanica:

Sl = | émdVy= j (Pij + b — poyi)8y; dVy = 0 (69)
Vo Vo

Separando cada um dos termos do integrando da expressao acima, a varia¢do da energia

mecénica é escrita conforme abaixo:

bO8ydV, — f PoFi8yidVy = 0 (70)

Vo

j P;; j6y;dVy +
v

0 Vo

Apos algumas manipulacdes algébricas, a expressao anterior resulta em (Coda, 2018):

p%%m%+j‘%ﬁmﬂ%=0 (71)

Vo

S |
Vi Vi

0 0 Ao

a qual consiste na expressdo do principio da estacionariedade da energia mecénica com
referéncia Lagrangeana, sendo que p? representa a forca de superficie Lagrangeana,

considerada também como conservativa.
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Observando-se o ultimo termo da equacdo anterior, pode-se dizer que P;; € conjugado
energético de A;;. Apesar de A;; ser uma medida objetiva do alongamento, esta néo € simétrica

e seu conjugado energético (tensor de tensdes de Piola-Kirchhoff de primeira espécie) também
ndo é simétrico. Dentro desse contexto, define-se o tensor de tensdes de Piola-Kirchhoff de

segunda espécie (§) como:

P=St-At (72)
Através da substituicdo da Equacdo (72) na Equacéo (62), obtém-se:
St-At=JA7 0 - St=]A" 0 (AN (73)

Devido a simetria do tensor a, é possivel concluir que o tensor S também é simétrico:
s=J[A" e (A =]A 0t (AN =] AT g (AN =ST (74)
Substituindo a Equacéo (72) na ultima parcela da Equagdo (71), tem-se que:

fPt:6AdV0=f A-S:(SAdVO:f At-5A4: S dV, (75)
1% Vo

() Vo

Pela simetria do tensor S, é possivel reescrever o integrando da Equacéo (75) como:
1 1
At-SA:S=E(At-6A:S+6At-A:S) =§(At-6A+6At-A) : S (76)

Recordando que a deformacédo de Green é dada pela Equacéo (18), entdo a variacao da

deformacéo de Green (SE) é expressa por:
1
SE =~ (At - 5A + At - A) (77)

Efetuando a substitui¢do da Equacao (77) na Equacdo (76), tem-se que:
A'-5A:S=6E:S=S5:6E (78)
Dessa forma, chega-se a conclusdo de que a tensdo de Piola-Kirchhoff de segunda
espécie é conjugada energética da deformacéo de Green.
E importante mencionar que, ao se isolar o tensor ¢ na Equacdo (73), obtém-se a
expressao que permite determinar a tensdo de Cauchy a partir da tenséo de Piola-Kirchhoff de

segunda espécie:
1
a=7A-S-At (79)

Finalmente, a equacédo do principio da estacionariedade da energia mecanica pode ser

obtida reescrevendo-se a Equacao (71) considerando o par conjugado energético (E, S):

Vo

bi053’idV0 - J

Ap

511 = j poFi8yidVe —
V

() Vo
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3 METODO DOS ELEMENTOS FINITOS POSICIONAL —
ELASTODINAMICO

O presente capitulo é destinado a apresentacdo das formulacbes do Meétodo dos

Elementos Finitos Posicional para sélidos, baseado em Coda (2018).
3.1  Aproximacao multidimensional

A estratégia basica do Método dos Elementos Finitos consiste na subdivisdo do dominio
(meio continuo) em ndmero finito de subdominios, denominados elementos finitos. Os
elementos em questdo sdo compostos por uma determinada quantidade de nds, aos quais sdo
correlacionadas as respectivas funcdes de forma e variaveis de interesse do problema. Para cada
elemento envolvido, as varidveis de interesse sdo aproximadas através da combinacao linear
das funcdes de forma, cujos coeficientes correspondem aos respectivos parametros nodais. No
presente trabalho, as aproximacgdes sdo efetuadas através dos polinbmios de Lagrange
(usualmente referido como funcBes de forma nos textos de elementos finitos), os quais
apresentam a propriedade de particdo da unidade, ou seja, a soma de todos os polindbmios de
uma mesma ordem resulta em uma unidade.

Os polindmios de Lagrange sdo escritos em funcdo das coordenadas adimensionais (¢;)
definidas em um determinado intervalo. Para o caso unidimensional, a equacdo geral dos
polindbmios de Lagrange (y;) de ordem n é dada por:

7 (E-¢)
Y = 1_[ TN (81)
joigsn G~ 6)

No caso de elementos finitos retangulares, as suas func@es de forma (¢,) podem ser
determinadas através do produto das funcBes de forma unidimensional. Semelhantemente ao
caso de aproximacdo unidimensional, as coordenadas adimensionais &; sdo definidas no
intervalo [-1,1]. Dessa forma, a equacdo geral das funcOes de forma (¢y) para elementos de
base retangular é escrita como:

ok (§1,82) = lpi(ﬁ)l/)j(fz) (82)
sendoque k =j(i—1) +j.

Tratando-se de elementos finitos triangulares, o intervalo das coordenadas
adimensionais &; corresponde a [0,1] neste trabalho, sendo que, para o caso de aproximagéo

cubica, as suas fungdes de forma (¢;) respeitando a regra de Pascal sédo expressas por:
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0r(81,82) = apq + agéy + agséy + apaé &y + ak5€12 + ak6522 + ak7f13

+ aksf% + aroéiés + ag1081€5
Os coeficientes das funcbes de forma (ay;, i =1,2,...,10) presentes na expressao

(83)

acima sao as incognitas e podem ser determinados a partir de um sistema de equacoes, tendo
em vista que as funcOes de forma assumem valor unitdrio em seus respectivos nds
correspondentes e valor nulo nos demais:

A-P=1 (84)

Na Equacéo (84), A corresponde & matriz dos coeficientes das fungdes de forma, e P, a
matriz dos valores que multiplicam os coeficientes, os quais obtidos por meio da substituicdo
dos valores das coordenadas adimensionais dos respectivos nés na Equacéo (83).

Para o desenvolvimento do presente trabalho, foi implementado o elemento finito de
solido prismético de base triangular com base no trabalho de Carrazedo e Coda (2017), com
aproximacdo cubica na base e opgdes de aproximacdo linear ou cubica na espessura. A decisao
do uso desse tipo de elemento finito foi pautada na necessidade de admitir um elemento
tridimensional para o desenvolvimento das formulacdes dos modelos constitutivos hiperelastico,
de plasticidade e de viscosidade apropriados para grandes deformacdes, abordados mais adiante
no texto, e no fato de se proporcionar muitas aplicacdes que, apesar de tridimensionais, sao
facilmente geradas a partir da extrusao de discretizacdes bidimensionais.

Pelo fato de ser um elemento tridimensional, admite-se um sistema de coordenadas
ortogonal que origina o espaco adimensional (¢,,¢,,é3) também tridimensional, sendo que o
seu dominio em &; e &, é definido no intervalo [0, 1] e em &; no intervalo [-1, 1].

Uma alternativa simples para a geracao do elemento prismatico é através da extrusao a
partir da base de elemento triangular na direcdo da sua espessura. A vantagem desse método de
criacdo de elemento estd na possibilidade de apresentar graus distintos de aproximacdo da
direcdo extrudada em relacdo a da base triangular. As fungdes de forma do elemento prismético
com grau de aproximacéo qualquer ao longo da espessura (¢, ) sdo definidas a partir do produto
entre as funcdes de forma da base (¢;) e as fungGes de forma da espessura (y;):

Pi (1,82, 63) = 0:i(§1,$)9;(E3) (85)
sendo que k = n(i — 1) + j, em que n refere-se ao nimero de nés por elemento de base (no

caso do elemento triangular de aproximacéo cubica, 10 nos).
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Figura 3.1 — Esquema de composicédo das func¢bes de forma do elemento finito prismético de base
triangular com aproximacgéo cubica na base e linear na espessura

Y1 (§3) ¥2(83)

¢1 (&1,62,83) = 91 (&1, &2) 11 (€3)
d11 (§1,82,83) = 1 (€1,82) 2 (€3)

Fonte: autor.

Com as funcbes de forma determinadas, é possivel proceder as aproximacGes das
varidveis de interesse para o elemento em funcdo dos valores nodais das suas respectivas
varidveis. Os mapeamentos das configuracdes inicial e final do elemento sdo expressos

conforme mostrados a seguir:
x(£) = pu(E)X! (86)
yi(§) = du(OY (87)
sendo X} as posigBes nodais iniciais e Y} as posi¢des nodais atuais (o indice I refere-se ao n6
do elemento, enquanto o indice i, a direcdo).

O mapeamento da configuracdo inicial € definido como uma funcdo que associa o
espaco adimensional as coordenadas iniciais do elemento. Analogamente, 0 mapeamento da
configuragdo atual corresponde a fungdo que associa o espago adimensional as coordenadas
atuais do elemento. Na Figura 3.2, apresenta-se esquematicamente 0s mapeamentos da
configuracdo inicial (denotado por f") e da configuracdo atual (denotado por fl) do elemento

prismético de base triangular.
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Figura 3.2 — Mapeamento do elemento prismatico de base triangular
/\f‘
B B

",

Fonte: Carrazedo e Coda (2017).

Observando a Figura 3.2, verifica-se que a fungdo mudanca de configuragéo f pode ser

escrita como composicéo das fungdes dos mapeamentos inicial e final:

- - - -1
f=fto (fo) (88)
A partir dos mapeamentos, determina-se 0s gradientes dos mapeamentos das

configuracdes inicial (A?j) e final (A}j), respectivamente, conforme as expressdes abaixo:

of _ gy
A =L =—Xx! 89
L af] af} l ( )
_ afll ad)l l

Considerando que a funcdo mudanca de configuracdo € determinada a partir da
composicao de fungdes dos mapeamentos inicial e final, conforme a Equacéo (88), o gradiente
da funcdo mudanca de configurac@o pode ser definido como:

A=A (491 (91)

Tratando-se do gradiente do mapeamento da configuracdo inicial, é importante
comentar sobre o seu determinante (J,), 0 qual € necessario para realizar a integracdo numérica
utilizando a descri¢do Lagrangeana, assunto abordado mais adiante no presente trabalho:

Jo = det(Ay) (92)
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3.2  Formulacgao estatica elastica

Na andlise estatica, a energia mecanica total do sistema é dada apenas pela soma das
parcelas do potencial das forcas externas (IP) e da energia de deformacéo (U), sendo nula a
parcela referente a energia cinética:

n=PrP+U (93)

Pelo principio da estacionariedade da energia mecénica, o equilibrio da estrutura é
obtido quando a variacdo da energia mecanica do sistema torna-se nula. Desenvolvendo as
expressGes matematicas em relacdo as posicdes nodais atuais (Y), as quais sdo as incognitas do

problema, obtém-se:

11
O0ll = —=38Y;, =6U+ 8P =0 (94)
aY;
A forma expandida da Equacdo (94) é dada na versdo Lagrangeana pela seguinte
equacao:
8 = —F8Y! — | bPsy;dV, — f pP8ydA, + f SkjOEjdVy =0 (95)
VO AO VO

sendo que o termo F}8Y; refere-se ao potencial das forgas externas concentradas (F}). Ressalta-
se que a Equacdo (80) representa também representa a forma expandida, entretanto inclui
também a parcela da variacdo da energia cinética, ausente na formulacao estatica.

Escrevendo a Equacdo (95) por meio das aproximacdes pelas funcdes de forma e
considerando a arbitrariedade das variacdes das posi¢des nodais atuais (8Y;'), a expressio que

representa o conjunto de equacdes ndo-lineares resulta em:

Fi = | on@0i(&) @By = [ on(E)ei(®) dagiar
143 A§ (96)

OEkj .,
+fvezs"f—ayil dvel = o}
0

naqual B/™ e Q" sdo referentes, respectivamente, as forgas nodais de volume e as forcas nodais
de superficie, aplicadas na configuragéo inicial.

Sabendo-se que a Equacéo (96) foi obtida a partir da primeira derivada da expressao da
energia mecéanica em relacéo as posi¢des atuais, para recuperar a expressao da energia mecanica

total do sistema basta determinar a sua versao integral, a qual é escrita como:
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N=P+U=-F"Y" - B  Paby dvg'y — Q}""f  PaPr dAg'Y;"
vE Ag

(97)
+ f Y™ dvgt
Vel

0

sendo ¥ a energia especifica de deformagéo.

Observando a Equacdo (96), nota-se que € possivel agrupar os termos correspondentes

aforca interna (F})™ e a forga externa (F/)“* para um elemento finito:

ou int oY (Y™ oY (Y™) OE,
R e e
aY el 6Yl Voel GIEkm aYl
- (98)
_ km
_fvelSkm 0Yl dV
0
ext
w7 = ~(E
(99)

== | 0@oDvsse - | oi@oe()angior
vt A

sendo que foi utilizado o conceito de conjugado energético na ultima passagem da Equacéo
(98).

Observa-se que a Equacdo (99) é composta por trés parcelas, relativas as forcas
concentradas, forcas de volume e forc¢as de superficie, respectivamente.

Portanto, a Equacéo (96), na sua forma resumida, é escrita como:

(F)™ = (F)™ = 0} (100)

A fim de facilitar a implementacdo computacional, optou-se pela integracdo numérica
para a resolucdo de todas as integrais envolvidas através da quadratura de Hammer (Hammer;
Marlowe; Stroud, 1956), de Gauss—Legendre ou por meio de uma combinacdo de ambas.
Quanto a integracdo na base triangular, foram implementadas duas opc¢des de quantidade uso
de pontos de Hammer no programa, de 7 e de 12. A op¢éo de 7 pontos de Hammer fornece
menor precisdo numérica (porém ainda satisfatéria) e menor quantidade de dados a serem
processados (ou seja, menor tempo de processamento), enquanto a opcdo de 12 pontos,
proporciona maior precisdo numérica e maior quantidade de dados a serem processados (maior
tempo de processamento). Tratando-se da integracdo na espessura do elemento prismatico,
foram admitidas opgcbes de 2 ou 4 pontos de Gauss, respectivamente, para 0 caso de

aproximacdo linear ou cubica.
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Considerando que o dominio inicial do corpo é mapeado a partir do espaco adimensional,

uma integral genérica de uma funcdo qualquer & sobre o seu volume inicial é dada por:

FR)dV, = f f f HR(En 62, €)) Jo (61, &2, €3)dE,AE,dEs (101)
Vo 3 Y& Y&

A integral presente na expressdo acima, caso seja resolvida numericamente, é escrita

para elementos finitos prismaticos como:
ng nh

i 5@ =) ) F (7 (6 0)) b (G i) w9 002

ig=1ih=1
sendo que wy, e w, referem-se, respectivamente, ao peso de integracdo da quadratura de
Hammer e ao peso de integracdo da quadratura de Gauss, ih corresponde ao indice do ponto de
Hammer, ig, ao indice do ponto de Gauss, nh, a0 numero de pontos de Hammer e ng, ao
numero de pontos de Gauss.

Dessa forma, € possivel proceder ao célculo da parcela referente as forgas internas para
um elemento finito, definida conforme a Equacéo (98), através da integracdo numeérica:

ng nh
(R = [ flavst =" " fi(EGhigd) Jo (§inihig)) walimyig) - (103)
Vo ig=1ih=1
sendo f;' a contribuicio de um ponto de integragio para as forgas internas, expressa como:
o OE;m
oyl ~ Sm gy

L

fl = (104)

Quanto a Equacéo (99), referente a parcela das forgas externas, aplica-se a integracéo
numeérica na segunda parcela, inerente as forcas de volume, para obter as forcas nodais

equivalentes das forcas de volume:

vol
(F)"™ = | diadvops®
ve

ng nh (105)
={ D) 6 i) (80 (. i) Jown(ihwg (ig) | B

ig=1ih=1
A fim de proceder a integragdo numeérica das forcas distribuidas de superficie, ha trés
alternativas para adocdo de mapeamentos auxiliares para o elemento prismatico de base
triangular adotado no trabalho (apresentadas na Figura 3.3):
I) mapeamentos triangulares com aproximacéo cubica;

I1) mapeamentos retangulares com aproximagao cubica;
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I11) mapeamentos retangulares com aproximacao linear na espessura e cubica na direcdo

paralela as arestas do elemento prisméatico que compdem os lados da base triangular.

Figura 3.3 — Mapeamentos para integracdo no dominio bidimensional
&2 &2
1 1

o O O O o O

0]
O

y
o
o

o
o
o)
o
o

)
A

& -1 -1

(1) (1) (1ID)
Fonte: autor.

Tratando-se do caso I, integra-se numericamente através da quadratura de Hammer por

corresponder a aplicacdo sobre mapeamentos triangulares:

nh
()™ = | oupadoei® = (Z <pl<ih><pa(ih>10wh(ih>) © (0
45 ih=1

Quanto aos casos Il e 1ll, referentes aos mapeamentos retangulares, a integracao

numeérica é realizada através da quadratura de Gauss:

area
(F) = J lQ”z‘PadAoQiaO
A§

ngl ng2 (107)

= D ) wiliglig2)pa(igl, ig2)owis(igDwig(ig2) | 0F°
igl=1ig2=1

Para a resolugdo do sistema de equagOes ndo-lineares, mostrado na Equagéo (96), foi
admitido o método incremental-iterativo de Newton-Raphson. O método exige que
primeiramente seja definido o vetor residuo mecanico (g;), dado pela expressao abaixo:

gj= F}int _ F}ext — Oj (108)

O vetor residuo mecanico apresenta valor nulo caso as posi¢des nodais atuais sejam
coincidentes com as suas posi¢des de equilibrio e valor ndo nulo caso contrario, possuindo,
portanto, um papel importante para validar a convergéncia dos resultados obtidos. Apesar das

posicdes nodais atuais serem incognitas do problema, sdo conhecidas na forma de tentativa ao
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longo de todo o processo de andlise, sendo equivalentes as posi¢fes nodais iniciais no primeiro
passo, possibilitando o calculo do vetor residuo mecanico.

Por meio da expansdo em série de Taylor do vetor residuo mecanico na vizinhanca da
posi¢do tentativa e truncando a expressdo em 12 ordem, determina-se a expressao para o célculo

da corregéo do vetor posicgéo atual (4Y;):

AY, = —(Hy)  g;(¥°) (109)
Calculada a correcdo da posicdo atual, € dado o prosseguimento a atualizacao da posicao
atual tentativa:
YQ — Y2 + 4y, (110)
O procedimento apresentado ¢ iterativo, repetido até a convergéncia dos resultados de

analise, obtida pelo cumprimento do seguinte critério de parada adotado:

M < tol (111)
IX]

ou seja, a convergéncia da posi¢do atual a posi¢do de equilibrio € atingida no instante em que o

valor da sua correcdo seja suficientemente pequeno, inferior a uma determinada tolerancia
adotada, denotada por tol na Equacédo (111).

Apbs a finalizacdo de um passo de analise, inicia-se o préximo pelo incremento no nivel

de carga e/ou posicdo prescrita, com pretensdo de se obter a trajetéria de equilibrio da estrutura.

Observa-se, através da Equacdo (109), que € preciso determinar a matriz hessiana (Hy ;)

para o célculo da correcdo da posicao. Para forcas conservativas, a matriz hessiana € obtida a

partir da segunda derivada da energia de deformacao:

Hij = a?/zgjy

kY 1y

(112)

sendo que Hy; é simétrica devido ao teorema de Schwarz (comutatividade das derivadas).
Para um elemento finito, a matriz hessiana (local) pode ser determinada numericamente

conforme a expresséo abaixo:

Hgé?yz = ,I;/el ha’ﬁyz dVO
ng nh (113)
= > hapya G i, ig))o(E it 1) Jwn(il)wg (ig)

ig=1ih=1
sendo que foi utilizada a notacéo local né-direcdo de indices (os indices S e z séo referentes
aos noés, enquanto os indices a e y correspondem as diregdes do espacgo), a qual pode ser

relacionada a notacdo global da Equacdo (112) (indices globais k e j) pelas relacbes k =
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3(B—1)+aek=3(z—1) +y, considerando espaco tridimensional. h,g,, corresponde a

contribuicdo da matriz hessiana, dada por:
0E 0E _ 0%E

h = A OF +S:
P avE T gyE T T avzoyf

(114)

A fim de possibilitar a resolucdo do sistema de equacdes lineares (ou a inversdo da
matriz hessiana), expresso pela Equacdo (109), é necessario aplicar as condicBes de contorno
em posicoes/deslocamentos. Visto que um corpo tridimensional apresenta 6 movimentos de
corpo rigido, é necessaria a imposicdo de ao menos 6 restricdes independentes em
posi¢es/deslocamentos para a eliminacgdo da singularidade da matriz hessiana. Em termos de
implementacdo computacional, tal procedimento é efetuado através da técnica de zeros e um, a
qual consiste em zerar a linha e a coluna da matriz hessiana referentes ao grau de liberdade
restrito e impor valor unitario na diagonal principal, além de zerar a componente do vetor
residuo mecanico inerente ao mesmo grau de liberdade restrito.

Com a devida aplicacdo das condicdes contorno, as componentes do vetor correcéo da
posicdo, dado pela Equacdo (109), correspondentes aos graus de liberdade restritos ou com
posi¢des prescritas resultam em valores nulos. Por fim, é apresentado o pseudocédigo referente
ao resumo das operagdes realizadas na analise mecénica estéatica implementado no programa,

conforme a Figura 3.4.
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Figura 3.4 — Pseudocodigo da analise mecénica estética

1 Leitura dos dados de entrada

2 Primeira tentativa de posicdo como posicao inicial (17 = X’)

3 Calculo da matriz pseudo-inversa — Equagdes (134) e (135)

4 Parai=1 até n? de passos (etapa incremental)

5 Incremento de carregamento externo (ﬁ «F+ dﬁ)

6 Incremento de posigao prescrita (17 <Y+ d?)

7

8 Calculo das forgas internas (ﬁint) — Equacdo (98)

9 Calculo da matriz Hessiana (H) — Equacdes (113) e (114)
10 Célculo do vetor residuo mecanico (§) — Equagdo (108)
11 Imposi¢cdo das condi¢des de contornoem He g

12 Calculo da corregdo da posicdo (A?) — Equacdo (109)
13 Atualizagdo da posigdo (Y « Y + AY) > Equagdo (110)
14 Calculo da norma ||A17|| para a verificagdo de convergéncia
15

16 Calculo das tensdes de Cauchy — Equacgdo (132)

17 Exportacdo de dados — pds-processamento

18 Fim do loop

Fonte: autor.

3.3  Formulacao dindmica elastica

No caso de analise dinamica, considera-se, além do potencial das forcas externas e da
energia de deformacdo, a parcela referente a energia cinética (IK), sendo a expressdo da energia
mecéanica total do sistema dada por:

N=P+U+K (115)

Comenta-se que a dissipacao de energia s6 pode ser escrita de forma diferencial e sera
acrescida diretamente na equacdo de equilibrio.

Analogamente as formulacBes estéticas elasticas, desenvolve-se as formulagdes
dindmicas elasticas em relagdo as posi¢cGes nodais atuais pela aplicagdo do principio da
estacionariedade da energia mecénica, obtendo-se:

of 0P 90U OJK

e
aYe — ay® " oy« ' ayf

L

= 0% (116)

A anélise dindmica se diferencia em relacdo a analise estatica somente pelo acréscimo
do termo da derivada da energia cinética em relacdo as posi¢des atuais, o qual corresponde ao

vetor de forcas inerciais, calculado a partir da seguinte expresséo:
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oK =
—=M'Y (117)
oY

finer _
sendo 17 o0 vetor de aceleracdo e M a matriz de massa (constante), com o seu calculo efetuado
para cada elemento finito conforme a expressao abaixo:
wi=2= [ pdedav, (118)
oYy Jyg
Ressalta-se que os procedimentos de célculo da matriz de massa e das forgcas nodais
equivalentes das forcas de volume sdo semelhantes.
Portanto, as equacfes ndo-lineares de movimento do problema dindmico séo escritas
como:
Fint(7) — Fert(t) + Finer = G (119)
A resolucdo numérica das equacgdes ndo-lineares de movimento é efetuada através da
combinacdo do método de Newmark-B (Newmark, 1959), o qual consiste em um integrador
temporal, com o método iterativo de Newton-Raphson. Na analise dindmica, o vetor residuo
mecanico é definido em funcdo da equacdo de movimento e de um termo adicionado que

corresponde ao amortecimento:
G=Fnt(P)+ M-V +C-¥—Fert(t) =0 (120)

em que C é a matriz de amortecimento e ; o0 vetor de velocidade.

O calculo da matriz de amortecimento pode ser realizado a partir de uma combinacao
linear da matriz de massa M e da matriz hessiana da estrutura na configuracdo inicial
indeslocada K (conhecida em analises lineares como matriz de rigidez) (Chopra, 2014):

C=1,M+ K (121)
na qual 4,, e A, sdo constantes.

Por se tratar de um método numeérico, surge a necessidade de discretizar o tempo, o qual
é uma variavel continua. Portanto, o tempo do passo atual ¢, ; é determinado por meio da soma
do tempo do passo anterior t, com 0 passo de tempo At:

tes1 = ts + At (122)

Para a resolucdo do problema dindmico, nota-se que é preciso conhecer numericamente

0s vetores de velocidade (17) e aceleracédo ()7), como pode ser verificado na Equagéo (120).

Nesse contexto, adota-se o algoritmo de Newmark-p, partindo das suas aproximagdes escritas

como:
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- - 1 2 2
Yoi1 =Ys + YAt + [(E - ﬁ) Yo + BYS+1] At? (123)

Yooi = Vs + (1 — 1)At¥; + yAths,, (124)
sendo S e y referentes aos pardmetros livres de Newmark. Os indices s + 1 e s denotam as
variaveis referentes ao passo de tempo anterior e atual, respectivamente.

O algoritmo de Newmark-p consiste em um integrador temporal de passo Unico
empregado frequentemente na analise dindmica de estruturas devido a sua simplicidade,
eficiéncia e estabilidade numérica. A utilizacdo do algoritmo é possivel apenas mediante a
adocdo de valores para os parametros livres 8 e y, sendo comumente adotados 8 = 1/4ey =
1/2 em problemas dinamicos comuns que ndo envolvem impacto (Greco, 2004). Para maiores
detalhes da escolha dos valores para os parametros S e y e a sua influéncia na estabilidade do
algoritmo de Newmark-p, é indicada a leitura da tese de Greco (2004).

Reorganizando as Equacdes (123) e (124), pode-se escrever a aceleracdo e a velocidade

atuais, respectivamente, como:

v 17;‘ 1 =
Vo1 = [),Tt — Qs (125)
Vori = ——Vers + Bs — yALG 126
S+ pag st s — YAtls (126)
sendo os vetores auxiliares 55 e ﬁs dependentes somente das variaveis do passo anterior:
= — 4 (=-1)7¥. (127)
Qs BAL? + BAt + 28 s

Substituindo-se as Equacdes (125) e (126) na Equacao (120), o vetor residuo mecanico

¢ reescrito como:

iFo) = v M g oM G+ LSVt CRo—yatc- §
I\Is+1) = = hro Is+1 =M UgT——"Fs4q *hRe =Y *Us
aYlg,, PBAt? BAt (129)

~FH® =0
Analogamente a formulacdo de anélise estatica, realizando uma expansao em série de
Taylor do vetor residuo mecénico na vizinhanca da posicéo tentativa e truncando a expressao
no termo de primeira ordem, obtém-se a expressao para o célculo da correcdo da posi¢éo, a qual
€ a mesma expressdo apresentada para a formulagcdo estatica, dada pela Equacdo (109).

Entretanto, a matriz hessiana do problema dindmico é composta pelas parcelas da matriz
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hessiana estatica, do termo dependente da matriz de massa e do termo dependente da matriz de
amortecimento:
M yC
H=H*"" + —— +—— 130
BAt? ~ BAt (130)
Especificamente para o primeiro passo de tempo, o célculo da aceleracdo é efetuado a

partir da expressao abaixo:

2 o ou
YO — M—l . (Foext _ﬁ

—c- 170> (131)
0

E importante salientar que ha a necessidade da imposig&o das condices de contorno na
matriz hessiana completa, dada pela Equacdo (130), e no vetor de forca resultante (referente
aos termos entre parénteses da expressdo anterior) através da técnica de zeros e um, de forma
semelhante ao procedimento apresentado para a resolucdo do sistema de equacgdes lineares na
analise estatica para o célculo da correcdo da posicao.

Ao final de cada iteracdo do passo de tempo, os valores da aceleracdo e da velocidade
sdo atualizados, respectivamente, através das Equacdes (125) e (126). Com excecdo dos
procedimentos especificos do problema dindmico apresentados neste item, os demais
procedimentos do processo iterativo sdo realizados do mesmo modo da analise estatica.
Finalmente, apresenta-se, na Figura 3.5, o pseudocodigo referente ao resumo das operagdes

realizadas na analise mecanica dinamica implementado no programa.
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Figura 3.5 — Pseudocodigo da anélise mecénica dindmica

1 Leitura dos dados de entrada

2 Primeira tentativa de posicdo como posicao inicial (17 = X’)

3 Calculo da matriz pseudo-inversa — Equagdes (134) e (135)

4  Cdlculo da matriz de massa (M) — Equacgao (118) (para cada elemento)

5  Cdlculo da matriz de amortecimento (C) = Equagdo (121)

6 Imposigdo das condi¢des de contornoem M e [I?’Oext - Zl; . C?O] — Equagdo (131)

7 Cdlculo da aceleracdo no primeiro passo de tempo (170) — Equacao (131)

8 Parai=1 até n2 de passos (etapa incremental)

9 Soma do passo de tempo (t « t + At)

10 Calculo da forca externa transiente (FeXt(t))

11 Calculo do vetor auxiliar 65 — Equacdo (127)

12 Calculo do vetor auxiliar ﬁs — Equacdo (128)

13

14 Calculo das forgas internas (ﬁi”t) — Equacdo (98)

15 Calculo da matriz Hessiana estatica (H gts¢icq) = Equacdes (113) e
(114)

16 Adigao da parcela dinamica a H og¢4¢icq = Equacgao (130)

17 Célculo do vetor residuo mecénico (§) —» Equacdo (129)

18 Imposicio das condi¢des de contornoem He g

19 Calculo da correc¢do da posicdo (A?) — Equacdo (109)

20 Atualizagdo da posicao (17 <Y+ A?) — Equacado (110)

21 Célculo da norma ||A17|| para a verificacdo de convergéncia

22 Atualizacio da velocidade (Y) — Equacdo (126)

23 Atualizac3o da aceleragdo (1._;) — Equag3o (125)

24

25 Calculo das tensdes de Cauchy — Equagao (132)

26 Exportacao de dados — pds-processamento

27 Fimdo loop

Fonte: autor.

3.4  Tensoes de Cauchy

Devido a importancia das tensdes de Cauchy quanto ao seu significado fisico (referidas
como tenses reais pelo fato de proporcionar efetivamente o equilibrio do corpo na
configuracdo atual), optou-se pela implementagdo da sua rotina de calculo no cddigo
desenvolvido. Conforme ja explicitado na secdo 2.4.3, o calculo das tensdes de Cauchy é
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efetuado em funcédo das tensdes de Piola-Kirchhoff de segunda espécie, conforme a Equacao

(79), retomada e apresentada novamente a seguir:

1
a=7A-S-At (132)

E relevante mencionar que as tensdes de Cauchy sio calculadas nos pontos de integragéo
do elemento. No entanto, € comum que seja requisitada pelos pos-processadores a declaragdo
dos valores das variaveis nos nés, surgindo a necessidade de calcular os valores nodais das
tensdes. Essa necessidade da determinacdo dos valores nodais € valida para quaisquer variaveis
cujos valores sdo calculados nos pontos de integracéo.

Os valores nodais das variaveis de interesse calculadas nos pontos de integracdo podem
ser obtidos por meio da resolucdo de um sistema linear de equac@es. O vetor de valores nodais
das variaveis (AT) pode ser determinado conforme a seguinte expressao:

A=L"1-3 (133)
sendo L a matriz das funcGes de forma e d@ o vetor dos valores das varidveis em questdo
calculadas nos pontos de integracdo. A matriz L é dada por:

Li = ¢:(&) (134)

Tratando-se da quantidade de pontos de integracdo em relacdo ao nimero de nds do
elemento finito, ha trés possibilidades:

I) nudmero de pontos de integracdo equivalente ao nimero de n6s do elemento finito;
I1) ndmero de pontos de integracdo maior que o nimero de n6s do elemento finito;

I11) nimero de pontos de integracdo menor que o0 numero de nos do elemento finito.

Para o caso |, a matriz L obtida é quadrada e, dessa forma, torna-se possivel o calculo
direto da sua inversa. J& nos casos Il e Ill, em que a matriz L ndo é quadrada, emprega-se a
técnica de minimos quadrados (cuidados adicionais devem ser tomados em casos de presenca
de descontinuidades no material). Tratando especificamente do caso Il, no qual o nimero de
valores conhecidos nos pontos de integracdo € maior que 0 nimero de pontos nodais disponiveis,
os valores nodais sdo determinados pela seguinte expressao:

A=t -L)-Lt-g (135)

sendo que o termo (Lt - L)~ - L* é denominado matriz pseudo-inversa.

Finalmente, no caso Ill, em que a quantidade de valores conhecidos nos pontos de
integracdo € menor que a quantidade de nds, € preciso reduzir o grau de aproximacdo do

elemento de forma a criar uma nova situa¢do na qual o nimero de pontos de integracdo seja
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equivalente ou superior ao nuimero de nos do elemento. Deste modo, determina-se
primeiramente os valores nodais por meio da técnica de minimos quadrados para o elemento de
aproximacdo inferior, seguido do calculo dos valores nodais do elemento original através das
funcgdes de forma de grau inferior.

Finalmente, com a pretensdo de impor a continuidade das tensfes no pos-processamento,
determinam-se as tensdes nodais médias para 0s nos que recebem contribuicdes de dois ou mais

elementos.
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4 MODELOS CONSTITUTIVOS HIPERELASTICOS

Neste capitulo sdo apresentados brevemente os dois modelos constitutivos
hiperelasticos empregados no presente trabalho:
I) Saint-Venant-Kirchhoff;
I1) Rivlin-Saunders-Hartmann-Neff.

A hiperelasticidade de um material é caracterizada pela existéncia de uma expressao
explicita para a sua energia especifica de deformacdo (trabalho realizado pela tensdo por
unidade de volume ao gerar deformacéo no continuo), para o qual a tensdo pode ser obtida
através da primeira derivada da energia especifica de deformacéo. E importante mencionar que,
para garantir a criacdo de leis constitutivas consistentes, os potenciais geradores devem ser
convexos, além de ser positiva para todas as deformac6es ndo nulas (Anand; Govindjee, 2020;
Ogden, 1997).

4.1  Conceituagdes preliminares

A seguir, sdo apresentados alguns conceitos preliminares para embasar 0s

desenvolvimentos posteriores acerca dos modelos constitutivos hiperel&sticos.

4.1.1 Invariantes dos tensores de tensdo e de deformacéo

Considera-se um tensor de ordem 2 genérico, denotado por A, referente ao estado de
tensbes ou de deformacgdes de um determinado ponto do corpo, e sabe-se que ha mdltiplas
representacdes desse estado, ja que € variavel em funcdo dos eixos coordenados adotados como
referéncia. Dentro do contexto mencionado, define-se os entes denominados invariantes (I, I,
e I3), os quais sdo independentes dos eixos adotados e insensiveis as rotacdes:

I, = Tr(A)
[Tr(A)? — Tr(A?)] (136)
I3 = det(A)

N| =

12=
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4.1.2 Tensoes hidrostaticas e desviadoras

Denotando por ¢ o tensor de tensdes de Cauchy e I; como 0 seu primeiro invariante,
representado pela primeira expressdo da Equacdo (136), o tensor ¢ pode ser decomposto
segundo as parcelas das tensdes hidrostaticas e das tensdes desviadoras, dadas respectivamente,

conforme Hashiguchi (2020), por:

I
" = §11 (137)
I
¢l =g —gh =g — =1 (138)

3
Observar que essas expressGes sao validas na configuracdo atual (Euleriana) para

tensdes e que, no caso das deformacdes, apenas em regime de pequenas deformacdes.

A parcela hidrostatica do tensor de tensdes possui uma relagdo direta com a mudanca
de volume, enquanto a parcela desviadora é inerente a distor¢cdo pura. Tendo em vista essas
relacBes, a decomposicao do tensor de tensdes é conveniente para trabalhar com contextos onde

é preciso operar, separadamente, com as parcelas volumétricas e isocoricas.
4.1.3 Energia especifica de deformacéo

A expressao da energia de deformacéo (U) € dada por:

U= f W qv, (139)
\%

0

sendo ¥ a energia especifica de deformacao, a qual consiste na lei que estabelece uma relacao
entre tenséo e deformagéo.
Para que a Equacdo (139) seja equivalente a ultima parcela da Equacao (80), as seguintes
igualdades devem ser validas:
1
SU = S‘PdVO:J S:(S]EdVoz—J S :68Cdv, (140)
1% 1% 2 1%
0 0 0

Devido a arbitrariedade do volume inicial:
1
§¥ =S:0E=55:6C (141)

Dessa forma, tem-se que:

oV oY

= =2 142
Y s Zac (142)
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Ao escrever a energia especifica de deformacdo em funcéo da deformacdo, que por sua
vez, no Método dos Elementos Finitos, é definida apenas em funcéo das posicoes, € possivel
determinar a parcela da energia de deformacdo da energia mecénica total integralmente em
funcédo da posicao atual Y.

Tratando-se de leis constitutivas isotrdpicas, € necessario que ¥ seja definido
independentemente aos eixos coordenados. Visando garantir essa condi¢do, € conveniente
expressar as leis hiperelasticas em fungdo dos invariantes da deformagédo de Green (E) ou do
tensor de alongamento a direita de Cauchy-Green (C):

Y(C) =¥Y(E) =¥y 15 15) (143)

Para ser considerado como um modelo constitutivo completo, a lei constitutiva deve

respeitar as condi¢des de normalizacdo e de crescimento, expressas respectivamente por:

Y(C=0)=¥(E=0)=0 (144)
i, ¥ = m ¥ = 4o (145)

No caso de problemas com desenvolvimento de grandes deformacdes, a Equacéo (145),
condicdo de crescimento, indica que € necessaria a imposicdo da restricdo / > 0, como
apresentada anteriormente na Equacdo (30), por exemplo. Em casos de impossibilidade de
cumprimento dessa condigdo, € preciso limitar os valores das deformagdes a nivel moderado,
por meio da implementacdo de critério de parada ou de avisos no cédigo computacional, por
exemplo.

A condicdo de crescimento pode ser atendida pela existéncia de um termo da energia
especifica de deformacédo dependente do jacobiano. Nesse caso, a parcela da energia em questéo
é relacionada a tensdo hidrostatica do tensor de tensdes, enquanto os demais termos da
expressao da energia especifica dadas em funcdo dos invariantes sdo inerentes a parcela da

tensdo desviadora.
4.2 Modelo constitutivo de Saint-Venant-Kirchhoff

Considerado como o modelo constitutivo mais simples da hiperelasticidade definido em
fungéo da deformacéo de Green, a lei de Saint-Venant-Kirchhoff apresenta um equacionamento
idéntico a da lei de Hooke generalizada, apenas com a substituicdo da deformacgdo de

engenharia pela deformacdo de Green. Tensorialmente, a sua equacdo € dada por:

1
Y(E) = > Eia i Eij (146)
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sendo que € refere-se ao tensor constitutivo eléstico tangente. A expressdo acima na sua forma
expandida € escrita como:
¥ = (1_6—21/) [(1 - V)(IE%1 + IE%Z + [E§3) + ZV(IEIIIEZZ + II5:111E33 + EZZESB) (147)
+ (1 — 2v)(E%; + Ef5 + E3; + E3; + B3, + E5)]
sendo G 0 modulo de elasticidade transversal e v o coeficiente de Poisson.
A tensdo de Piola-Kirchhoff de segunda espécie corresponde ao conjugado energético
da deformacéo de Green, expresso pela Equagéo (148). A partir desta expressdo, determina-se

cada uma das suas componentes, explicitadas na Equacéo (149):

_E) (148)
CAFTR
f oW 26G
Sy = GE.- T—2%) [(1 = V)Eyq + v(Ey; + Es3)]
oY 26G
522 = a]EZZ = (1 — 21/) [(1 — V)IEZZ + V(Ell + II333)]
oY 26G
Sys = .~ =) [(1 —v)Es3 + v(Eq; + Epy)]
\ ow v (149)
S = S0 =55, = 3E, ~ 20%x = 20Ea
L'
S13 =831 = m = 9E,, = 2GE 3 = 2GE3,
Soms, =2 W G, = 26E
. 23 — Y32 — 6[E23 - 6[E32 - 23 — 32

Dessa forma, a expressao da relacdo entre tensdo e deformacdo no modelo de Saint-
Venant-Kirchhoff é dada conforme a Equacéo (150), onde se observa uma relacdo linear, obtida
pela substituicdo da Equacédo (146) em (148):

Sij = Ciji By (150)

E importante mencionar que a aplicacio do modelo constitutivo de Saint-Venant-
Kirchhoff € restrita aos problemas de deformacGes pequenas e moderadas, pois ndo respeita a

condicédo de crescimento, dada pela Equagéo (145).
4.3 Modelo constitutivo de Rivlin-Saunders-Hartmann-Neff
O modelo constitutivo hiperelastico de Rivlin-Saunders-Hartmann-Neff, adequado para

a analise de problemas no regime de grandes deformacdes, foi implementado no cddigo

desenvolvido como uma alternativa ao modelo constitutivo de Saint-Venant-Kirchhoff,
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superando suas limitacGes. O modelo em questdo € obtido por meio da decomposic¢éo de Flory
(Flory, 1961), apresentada na subsecdo seguinte, com as parcelas isocorica e volumétrica da
energia especifica de deformacdo dadas, respectivamente, pelos modelos constitutivos de

Rivlin-Saunders e de Hartmann-Neff.

4.3.1 Decomposicao de Flory

Proposta por Flory (1961), a decomposi¢do de Flory consiste na divisdo da energia
especifica de deformacdo em duas parcelas, uma associada e a outra dissociada a variagdo
volumétrica, a partir da decomposicdao multiplicativa do gradiente da funcdo mudanca de

configuracdo nas partes volumétrica (A) e isocdrica (4):

A=A-4 (151)

sendo que 4 e 4 sio dados por:
A=J3] (152)
A=]134 (153)

Desenvolvendo a expresséo do tensor de alongamento a direita de Cauchy-Green a partir
das EquacBes (151), (152) e (153), obtém-se:
C=A" " A=A"" A" A-A=J*3A-A=J?3C (154)
e, portanto:
C=J2%3cC (155)
A partir da defini¢do de € como:
C=J?31I (156)
torna-se possivel escrever a expressdo da decomposicdo multiplicativa do tensor de

alongamento a direita de Cauchy-Green:

c=Cc-c=cC-C (157)
Analisando as Equacdes (156) e (153), é possivel verificar, respectivamente, que:
det(C) = J? (158)
det(C) = det(At - A) = det(AY)det(A) = det(A)?> =1 (159)
Portanto, verifica-se que:
det(C) = det(C - C) = det(C)det(C) = J? (160)

Recordando o significado fisico do jacobiano, conforme a Equagéo (29), é possivel
concluir, com base nas Equagdes (158) e (159), que C e C sio referentes a parcela volumétrica

e a parcela isocdrica do tensor de alongamento a direita de Cauchy-Green.
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Dessa forma, torna-se possivel efetuar a decomposi¢do aditiva da energia especifica de
deformac&o em parcelas volumétrica (¥¥°!) e isocorica (¥5°°):
Y = pvol(det(C)) + Pio¢(C) = P7°L()) + P5°¢(C) (161)
Caso 0 material apresente isotropia, a parcela dependente de € na expressdo acima pode

ser escrita em funcdo de seus invariantes I; e I, separadamente, conforme apresentado a seguir:

W = @vol(]) 4 pisocl([ ) 4 wisoc2([ ) (162)

sendo I, e I, dados por:
I, = Tr(C) (163)
L =Tr(C™Y) (164)

Ressalta-se que a parcela do 3° invariante isocorico é ocultada da Equacdo (162) por
assumir um valor constante, pelo fato de I3 = det(C) = 1.

Utilizando-se dos conceitos de conjugado energético e da decomposicdo aditiva do
potencial de energia de deformacdo, determina-se a expressdo da tensdo eléstica de Piola-
Kirchhoff de segunda espécie (5¢'%s¢):

l i 1 i 2
gelast — gvol 4 gisocl 4 gisoc2 — ow™e + oP™ee + 0¥ror (165)

0E 0E O0E
As parcelas volumétrica (S¥°!) e isocoricas (§'5°¢! e §15°¢2) das trés parcelas dadas por:

alpl’Ol B a[Ij'UOl a]

vol — — - 166

S oE d] OE (166)
] alyisocl alplsocl al

Slsocl — _ (167)
OE oI, OE

Sisocz _ aqﬂsocz _ a(pliocz % (168)
OE oL, OE

Quanto ao tensor constitutivo eléstico tangente ((Zf},‘?ft) o calculo de cada uma das suas

parcelas volumétrica (€}7;) e isocoricas (@{j,‘;fl ij,‘;fz) é efetuado através da segunda

derivada da energia especifica de deformacdo em relacdo a deformacéao de Green:

azlpvol azlpisocl azl{jisocz
+ +

elast _ vol isocl isoc2 __
Ciri =Cu +C + 6" = (169)

com a expressao de cada uma das trés parcelas escritas como:

(gvol B azlpvol _ a] anIUOI a] +alpV01 62] (170)
UKL QE; 0K, OE; 8J2 0E, 0] OE;0Ey

(glsocl azlpisocl _ al_l an/isocl 61_1 +aq;iioc1 621_1

U T OE;0Ey  0E; L2 0 oI, OE;;0Ey,

(171)
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isoc2 _ azlpiSOCZ _ 61_2 azlpisocz 61_2 +aqyisocz 621_2
UKL T OEj0Ey, OBy gL° 0By 0L, OE;OE

(172)

4.3.2 Modelo constitutivo de Rivlin-Saunders

A partir do estudo de borrachas vulcanizadas, Rivlin e Saunders (1951) sugeriram um
modelo constitutivo com o intuito de descrever o seu comportamento mecanico através de uma
Unica expressao de energia especifica de deformacdo. O desenvolvimento desta formulacéo,
escrita em funcdo dos invariantes de deformacéo, foi efetuado com base na equacédo proposta
previamente por Mooney (1940), originalmente definida em funcdo dos alongamentos
principais. Baseado em deducdes tedricas e analises laboratoriais, 0s autores propuseram a
seguinte expressao:

W(ly, 1) =CU; —3)+ f(; —3) (173)
sendo que C e f correspondem, respectivamente, a uma constante e a uma funcdo definida a
partir de parametros experimentais.

Sabendo-se que em regime de pequenas deformacdes as leis constitutivas ndo-lineares
e a lei de Saint-Venant-Kirchhoff respondem de forma semelhante, é possivel obter os valores
de C e f através de uma analise comparativa. Por meio dessa analise e da expressao da energia
especifica de deformacdo dada em funcgdo dos invariantes da parcela isocérica do tensor de
alongamento a direita de Cauchy-Green, a Equacdo (173) reescrita é expressa por:

. _ . - G - G -
lplSOCl(]l) + 111;15062(]2) — Z(Il — 3) + Z(Iz — 3) (174)

sendo G 0 modulo de elasticidade transversal.
4.3.3 Modelo constitutivo de Hartmann-Neff

J& no estudo realizado por Hartmann e Neff (2003) acerca dos modelos para a descri¢éo
do comportamento mecanico dos materiais isotropos quase incompressiveis, foram propostas
expressdes relacionadas a sua energia especifica de deformacdo com base nos invariantes
principais, sendo uma delas, referente ao potencial volumétrico, dada por:

yvol — kvol(lzn +]—2n _ 2)1 (175)
sendo que k,,; corresponde a uma constante elastica do material, n (= 0,5) e [ (= 1) sdo

constantes.
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Sabendo-se que o modelo constitutivo de Hartmann-Neff deve reproduzir o
comportamento do modelo constitutivo de Saint-Venant-Kirchhoff em regime de pequenas
deformacdes, determina-se o valor de k,,,; assumindo valor unitario para [. Tendo isso em vista,

define-se a primeira e a segunda derivada da Equacéo (175) em relacdo ao jacobiano:

allyvol
5 = 2nk,y [J2" 1 _]—(2n+1)] (176)
azlpvol
7 = 2nkyo[(2n — 1)J2 + (2n + 1)]72(1+D)] (177)

No caso de desenvolvimento de pequenas deformacdes (J = 1), a Equagéo (176) resulta

em valor nulo e a Equacéo (177) torna-se passivel de simplificacdo, conforme mostrado abaixo:

aZIPUOZ
7 = 8n%kyp; (178)
Além disso, define-se a direcdo hidrostética Lagrangeana da deformacdo como:
a]
vol = —= -1 179
€ g = /¢ (179)

Tomando-se como base a Equacdo (170), referente a parcela volumétrica do tensor
constitutivo elastico, e com o auxilio das Equaces (176), (178) e (179), é determinada a parcela
volumeétrica do tensor constitutivo eléstico inerente ao regime de pequenas deformacdes:

Glijﬁcll = (]Ci;l)Snzkvol(]Ck_ll) (180)
sendo valido ressaltar que o segundo termo da soma da Equacéo (170) é nulo em problemas de

pequenas deformacdes por conta do valor nulo assumido pelo termo da Equacdo (176),

0%]

FERET também

conforme supracitado. Por essa razdo, a formulacdo referente ao termo

existente na Equacdo (170), foi suprimida na presente etapa das deducdes.
Nesta fase de desenvolvimento das formulagdes, é importante salientar que j = 1 e
Cl-}l = §;; em regime de pequenas deformagOes. A Equacdo (180) em sua forma reescrita
corresponde a parcela volumétrica do tensor constitutivo elastico ndo-linear para problemas de
pequenas deformacdes, expressa por:
P = 8n%kyoi8:i61 (181)
Em seguida, procede-se & determinacdo da mesma parcela do tensor constitutivo elastico,
porém daquela referente a lei constitutiva linear de Saint-Venant-Kirchhoff. Primeiramente,
considera-se a parte volumétrica do tensor de tensdes de Piola-Kirchhoff de segunda espécie:
SIPt = KE,6; (182)

na qual K corresponde ao bulk modulus.
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Diferenciando-se em relacéo a deformacéo de Green, obtém-se:
asye
J
Para a verificagdo da consisténcia do modelo constitutivo hiperelastico ndo-linear de
Hartmann-Neff, é preciso que o mesmo reproduza o comportamento linear do material em
regime de pequenas deformacdes, implicando na necessidade de equivaléncia entre as Equacoes
(181) e (183). Portanto, visando o atendimento da condicdo mencionada, conclui-se que a

constante elastica k,,,; deve assumir o seguinte valor:

K

Kpor = =—
vol 8n2

(184)
Na expressdo acima, n (= 0,5) refere-se a uma constante que contribui para a regulagéo
da rigidez volumétrica (com o valor assumido de n = 1 para o presente trabalho).
Dessa forma, a Equacdo (175) € reescrita a partir do valor determinado para 0 k,,;

como:

K
wvol() = @(1211 +J72n —2) (185)

4.3.4 Formulacdes do modelo constitutivo de Rivlin-Saunders-Hartmann-Neff

Portanto, a partir da soma das parcelas da energia especifica de deformacéo que produz
energia com a variacao volumétrica (modelo de Hartmann-Neff), dada pela Equacédo (185), e
gue ndo gera energia com variacao volumétrica (modelo de Rivlin-Saunders), apresentada pela
Equacdo (174), obtém-se a expressao da energia especifica de deformacdo do modelo de Rivlin-
Saunders-Hartmann-Neff:

Y = wvol + (pisocl + (pisocz

K on G _ G - (186)
=WUZ +]7? _2)+Z(11_3)+Z(12_3)

Utilizando-se dos conceitos de conjugado energético e da decomposigdo aditiva,

determina-se a expressdo da tensdo elastica de Piola-Kirchhoff de segunda espécie (§¢145¢):
anVOl alpisocl alpisocz

gelast — gvol Sisocl Sisocz — 187
+ + TR TR T (187)
sendo cada uma das parcelas de $¢14¢ expressas como:
l
vol _ a¥re a] _ K []Zn—l _]—(2n+1)]Gvol (188)

9] OE 4n
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. Wit gL G
gisocl — _ - — _ lsocl 189
oI, OE 4 ¢ (189)

. oy ar, G .
isoc2 — _ ¢ _ _ (isoc2 190
S T, OE &° (190)

nas quais €°! corresponde a direcio hidrostatica Lagrangeana, ja introduzida no item 4.3.3 e
apresentada novamente a seguir, enquanto E%°cl e €%°°2 sjo referentes as diregoes

desviadoras Lagrangeanas, definidas como:

@vol — % — ]C—l (191)
Eisocl — % _ _§]—2/31‘16—1 + 223 (192)
(giSOCZ — % — 2]—4-/3 [_gc—ll_z + 1_11 _ Ct] (193)
além disso:
a({/vol K

5 — i []Zn—l _]—(2n+1)] (194)

alpisocl aq;isocz G
__9r (195)

oI, o, 4

Presentes nas expressoes das direcdes das tensdes, o primeiro e o segundo invariantes
do tensor de alongamento a direita de Cauchy-Green, denotados por I; e I, respectivamente,
séo definidos como:

I, =Tr(C) (196)

L= %[Tr(f)z — Tr(C?)] (197)

Na Figura 4.1, é apresentado o pseudocddigo que resume as operagdes realizadas para
o calculo da componente elastica da tensdo de Piola-Kirchhoff de segunda espécie utilizando o

modelo constitutivo de Rivlin-Saunders-Hartmann-Neff.
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Figura 4.1 — Pseudocodigo do algoritmo para célculo da tenséo eléstica de Piola-Kirchhoff de segunda
espécie utilizando o modelo constitutivo de Rivlin-Saunders-Hartmann-Neff

Calculo de I; — Equacao (196)

Calculo de I, — Equacgio (197)

Célculo de 0¥*°! /9] — Equacdo (194)
Célculo de €Y°! - Equac3o (191)
Célculo de §¥°! - Equac3o (188)
Célculo de a¥s°¢1 /9, - Equagao (195)
Célculo de €°¢! - Equacio (192)
Célculo de §¥%°¢1 - Equagdo (189)
Célculo de a¥°°2 /9, — Equacdo (195)
Célculo de €5°°2 > Equacdo (193)
Célculo de §%°¢2 — Equacdo (190)

12  Calculo de §¢'%5t — Equagdo (187)

O 00 N O U1 A W N B

[
= O

Fonte: autor.

Finalmente, na Figura 4.2, é apresentado o pseudocddigo que resume as operacdes
realizadas para o calculo do tensor constitutivo elastico tangente empregando o modelo
constitutivo de Rivlin-Saunders-Hartmann-Neff. Além disso, mostram-se a seguir as
expressdes restantes das derivadas parciais que compdem as Equacdes (170), (171) e (172), as
quais também necessarias para o calculo do tensor constitutivo elastico tangente.

62%:0[ = % [(2n— 1)/2""2 + (2n + 1))~ @n+2)] (198)
0?] o€y
OE;;0Ey, 0Ey

= J(D;;Dy; — 2Dy, Dyj) (199)

azlpisocl B azlluisocz _ 0 (200)
or,” oL’

621_1 6(55061 4 ) 1
OE;;0E, T OE, §] 23 [§ (DijDit + 3DyeDyj) 1y = Dyjpy = D (201)

621_2 aeg}?ocz
0E;;0E,  OEy

8 2
=273 |(505Dua + DuDis ) I = CoolDigbia + Dady) @02

3
+ D;jCiy + Dy Cji + > (816 — 5ik5jz)]

nas quais D = €1,
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Figura 4.2 — Pseudocodigo do algoritmo para célculo do tensor constitutivo elastico tangente
utilizando 0 modelo constitutivo de Rivlin-Saunders-Hartmann-Neff

Parai=1 até 3 (tridimensional)

1
2
3 Parai=1 até 3 (tridimensional)

4 Parai=1 até 3 (tridimensional)

5 Calculo de 9%/ /0E;;0E,, — Equagao (199)
6 Calculo de (9] /0E;;)(9] /0Ey,)

7 Calculo de 921, /JE;;0E,;, — Equagdo (201)
8 Calculo de (91, /)1, /0E,,)

9 Calculo de 0%1,/0E;;0E,; — Equagdo (202)

10 Calculo de (91, /0E;;)(01,/0Ey;)
11 Fim do loop

12 Fim do loop

13

14 Fim do loop

15 Calculo de ¥V°! /9] — Equacdo (194)

16 Calculo de 32¥°!/9]? - Equac3o (198)
17 Célculo de €5}, — Equagdo (170)

18 Célculo de d¥s°¢1 /9], — Equagdo (195)
19 Calculo de 92wisoc1 /3T, > - Equacdo (200)
20 Calculo de g — Equagdo (171)

21 Calculo de aW°¢? /I, — Equag3o (195)
22 Célculo de 82wisoc2 /3T,? - Equacdo (200)
23 Célculo de €}¢f* — Equagdo (172)

24 Calculo de €/ — Equagdo (169)

Fonte: autor.

4.3.5 Correspondéncia da tensdo volumétrica de Piola-Kirchhoff de segunda espécie a tensédo

hidrostatica de Cauchy

Com base no trabalho de R. T. Kishino (2022) e V. H. Kishino (2022), esta subsecdo é
destinada a demonstracédo da relagdo existente entre a tensdo volumétrica de Piola-Kirchhoff de
segunda espécie (§¥°!) e a tensdo hidrostatica de Cauchy (¢™). Escrevendo a tensdo de Cauchy
em funcdo da componente volumétrica da tenséo de Piola-Kirchhoff de segunda espécie a partir

da Equacéo (132), tem-se:

1
ol = A5 A (203)
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Enguanto a tensdo volumeétrica de Piola-Kirchhoff de segunda espécie é definida através
da Equacéo (166) como:
awvel 9]

Svol — a] ﬁ — Svol(gsvol — svol]C—l (204)

na qual s¥°! é um escalar.

Substituindo a Equacédo (204) na Equacéo (203), obtém-se:

1
o.vol — jA . Svoljc—l . At — SvolA . (At . A)—l . At — SvolI — ShI — O'h (205)

verificando, portanto, a correspondéncia de S”°! a componente hidrostatica do tensor de tensdes
de Cauchy e €V°! a direcdo hidrostatica Lagrangeana da deformagc&o. Ainda é possivel verificar
a equivaléncia de s”°! ao valor da tensdo hidrostatica de Cauchy (s"), sendo este expresso por:

0‘1’”01
a]
As constatacOes supracitadas sdo essenciais para uma melhor compreensdo dos

h _ cvol _

s s (206)

desenvolvimentos da formulacdo de problemas termomecéanicos em regime de grandes

deformacdes, apresentados mais adiante neste trabalho no capitulo 8.

4.3.6 Correspondéncia da tensdo isocorica de Piola-Kirchhoff de segunda espécie a tensdo

desviadora de Cauchy

Semelhantemente ao item 4.3.5, é apresentada nesta subsecdo a correspondéncia das
componentes isocoricas da tensdo de Piola-Kirchhoff de segunda espécie (S15°¢! e §¢50¢2) 3s
componentes desviadoras da tensdo de Cauchy. Escrevendo a tensdo de Cauchy em funcéo da
componente isocorica da tensdo de Piola-Kirchhoff de segunda espécie a partir da Equacao
(132), tem-se:

gisoc — ]lA . gisoc . gt (207)

Na sequéncia, a expressdo da primeira componente da tensdo de Piola-Kirchhoff de
segunda espécie é definida atraves da Equacao (167):

aq;isocl al_l

oI, OE

gisocl —

— gisocl@isocl — gisocl [_ §]—2/3 tT‘(C)C_1 + 2]‘2/3 1 (208)

na qual gs°¢* é um escalar.

Substituindo a Equacédo (208) na Equacéo (207), obtem-se:
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. . tr(At - A)
isocl — pisocl) o -5/3 A- At — 1 2
e T O B
Tendo em vista que tr(At - A) = A : A¢, é valida a seguinte comutatividade:
tr(At-A)=A:A'=A':A=tr(A4-A4YH) (210)
Portanto:
gisocl — gisocl {2]—5/3 [A At — tr(AB' At) Il} = gdesv (211)

Jé& a expressdo da segunda componente da tensdo de Piola-Kirchhoff de segunda espécie

pode ser desenvolvida a partir da Equacéo (168) como:

<02 AT
Sisocz — aq;lioc % — gisoczeisocz
oI, OE
(212)
. 2
— ngOCZ [2]—4-/3 (_ § C—IIZ + 111 _ Ct)]
na qual g's°¢? ¢ um escalar.
Substituindo a Equacédo (212) na Equacéo (207), obtém-se:
. . 2
0150¢2 = 2] 7713 glsocz {[tr(C)(A AN - (A-4YH-(4-AH] - §121} (213)
sendo que:
tr(A-ANtr(A-AY) —tr[(A- AD(A - AY] = 21, (214)
Finalmente, calcula-se o trago de ¢5°¢ como:
tr(ot°¢?) = 2g%°¢2]~73(21, — 21,) = 0 (215)
e, portanto:
gisoc2 — gdesv (216)

Dessa forma, foi demonstrado que as componentes isocoricas da tensdo de Piola-
Kirchhoff de segunda espécie (§'5°¢! e §:$°¢2) correspondem as componentes desviadoras da
tensdo de Cauchy. As relacBes apresentadas nesta subsecdo sdo essenciais para facilitar a
compreensdo do modelo elasto-plastico alternativo adotado no presente trabalho (adequado
para resolucao de problemas em regime de grandes deformacdes), apresentado mais adiante no
item 5.2.
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4.4  Exemplos numéricos

Nesta secdo sdo apresentados quatro exemplos numéricos de validacdo do modelo
mecénico Lagrangeano total implementado utilizando os modelos constitutivos hiperelasticos
de Saint-Venant-Kirchhoff e de Rivlin-Saunders-Hartmann-Neff.

4.4.1 Viga engastada e livre submetida a um carregamento transversal concentrado

O primeiro exemplo tem como objetivo apresentar a correta implementagdo do cddigo
de analise estéatica elastica para problemas de estruturas desenvolvendo grandes deslocamentos.
Analisado por Mattiasson (1981), o problema é referente a uma viga engastada e livre sujeita a
uma forca transversal concentrada na sua extremidade livre, conforme exibido na Figura 4.3.
Ressalta-se que, apesar da estrutura desenvolver grandes deslocamentos, o problema se

enquadra em regime de pequenas deformacdes. Os dados adotados no teste de validacdo sdo

apresentados na Figura 4.4, enquanto a discretizacdo adotada para a analise consta na Figura
4.5.

Figura 4.3 — Viga engastada e livre sujeita a uma forga concentrada transversal aplicada na
extremidade livre

10m

Y777074
-

Fonte: autor.
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Figura 4.4 — Dados adotados no exemplo 4.4.1

Parametros mecanicos

E: 2,4.10° kN/m?
V: 0
Carga P: 160 kN
Dados geométricos
Comprimento: 10 m
Largura: 1m
Altura: 02m
Dados da malha
N2 nos: 273
N2 elementos finitos: 32
N2 pontos de Hammer 12
Grau de aproximacdo na espessura: | Linear
Outros dados
Tolerancia: 10°®

Fonte: autor.

Figura 4.5 — Discretizacdo adotada para o exemplo 4.4.1

Fonte: autor.

s ‘\,’

7
Z

Como parametros de avaliacdo dos resultados obtidos, foram admitidos os

deslocamentos horizontal e vertical (adimensionalizados) da extremidade livre no eixo da viga,

o0s quais foram comparados com os valores apresentados por Mattiasson (1981). A anélise foi

efetuada empregando os modelos constitutivos de Saint-Venant-Kirchhoff e Rivlin-Saunders-

Hartmann-Neff, com os resultados organizados na Tabela 4.1 e na Tabela 4.2, respectivamente.



Tabela 4.1 — Resultados obtidos no teste de validacdo 4.4.1 com o modelo constitutivo de Saint-

Venant-Kirchhoff
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PLZ/EI Autor Mattiasson (1981) Diferenga percentual
u/L w/L u/L w/L u/L w/L

0,0 0,00000 0,00000 0,00000 0,00000 - -
1,0 0,05632 0,30130 0,05643 0,30172 -0,19% -0,14%
2,0 0,15992 0,49184 0,16064 0,49346 -0,45% -0,33%
2,5 0,20887 0,55348 0,20996 0,55566 -0,52% -0,39%
3,0 0,25297 0,60057 0,25442 0,60325 -0,57% -0,44%
3,5 0,29215 0,63726 0,29394 0,64039 -0,61% -0,49%
4,0 0,32684 0,66641 0,32894 0,66996 -0,64% -0,53%
4,5 0,35759 0,69002 0,35999 0,69397 -0,67% -0,57%
5,0 0,38496 0,70948 0,38763 0,71379 -0,69% -0,60%
5,5 0,40943 0,72576 0,41236 0,73042 -0,71% -0,64%
6,0 0,43141 0,73957 0,43459 0,74457 -0,73% -0,67%
6,5 0,45126 0,75143 0,45468 0,75676 -0,75% -0,70%
7,0 0,46928 0,76173 0,47293 0,76737 -0,77% -0,74%
7,5 0,48570 0,77076 0,48957 0,77670 -0,79% -0,77%
8,0 0,50074 0,77874 0,50483 0,78498 -0,81% -0,79%
8,5 0,51456 0,78586 0,51886 0,79239 -0,83% -0,82%
9,0 0,52732 0,79224 0,53182 0,79906 -0,85% -0,85%
9,5 0,53912 0,79801 0,54383 0,80510 -0,87% -0,88%
10,0 0,55009 0,80325 0,55500 0,81061 -0,88% -0,91%

Fonte: autor.

Tabela 4.2 — Resultados obtidos no teste de validagéo 4.4.1 com o0 modelo constitutivo de Rivlin

Saunders-Hartmann-Neff

PLZ/EI Autor Mattiasson (1981) Diferenga percentual
u/L w/L u/L w/L u/L w/L

0,0 0,00000 0,00000 0,00000 0,00000 - -
1,0 0,05629 0,30130 0,05643 0,30172 -0,24% -0,14%
2,0 0,15985 0,49186 0,16064 0,49346 -0,49% -0,32%
2,5 0,20877 0,55352 0,20996 0,55566 -0,57% -0,39%
3,0 0,25286 0,60062 0,25442 0,60325 -0,61% -0,44%
3,5 0,29203 0,63732 0,29394 0,64039 -0,65% -0,48%
4,0 0,32671 0,66648 0,32894 0,66996 -0,68% -0,52%
4,5 0,35745 0,69011 0,35999 0,69397 -0,71% -0,56%
5,0 0,38481 0,70957 0,38763 0,71379 -0,73% -0,59%
5,5 0,40927 0,72586 0,41236 0,73042 -0,75% -0,62%
6,0 0,43125 0,73968 0,43459 0,74457 -0,77% -0,66%
6,5 0,45109 0,75155 0,45468 0,75676 -0,79% -0,69%
7,0 0,46910 0,76185 0,47293 0,76737 -0,81% -0,72%
7,5 0,48552 0,77088 0,48957 0,77670 -0,83% -0,75%
8,0 0,50056 0,77887 0,50483 0,78498 -0,85% -0,78%
8,5 0,51438 0,78600 0,51886 0,79239 -0,86% -0,81%
9,0 0,52713 0,79239 0,53182 0,79906 -0,88% -0,83%
9,5 0,53893 0,79816 0,54383 0,80510 -0,90% -0,86%
10,0 0,54990 0,80341 0,55500 0,81061 -0,92% -0,89%

Fonte: autor.



Verifica-se que os valores obtidos de deslocamentos na analise para cada um dos
modelos constitutivos adotados foram praticamente equivalentes, por se tratar de uma estrutura
que trabalha em regime de pequenas deformaces. Por fim, comenta-se que foi evidenciada a
correta implementacdo do codigo de anélise estatica elastica, devido a proximidade de valores
obtidos para os modelos de Saint-Venant-Kirchhoff e Rivlin-Saunders-Hartmann-Neff em

relacdo aos resultados de Mattiasson (1981).

4.4.2 Vigaengastada e livre submetida a um carregamento transversal concentrado transiente

A validacdo do cddigo de andlise dindmica elastica para grandes deslocamentos
implementado foi efetuada através deste segundo exemplo numérico. Analisado anteriormente
por Greco (2004), Rodriguez (2017), V. H. Kishino (2022) e R. T. Kishino (2022), o problema
consiste em uma viga engastada e livre sujeita a um carregamento transversal concentrado
transiente na extremidade livre, conforme esquematizado na Figura 4.6. Devido a esbeltez da
viga, foram impostas as restricdes nos nds das faces laterais na direcdo da largura da viga com

0 objetivo de eliminar a possibilidade de ocorréncia de instabilidade lateral.

Figura 4.6 — Viga engastada e livre sujeita a um carregamento transversal concentrado transiente
aplicado na extremidade livre

F(t)

‘10, 627 in

«4

120in

Ly
-

Fonte: autor.
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O valor do carregamento aplicado é varidvel em funcdo do tempo, de acordo com o
gréfico exibido na Figura 4.7. Para a analise deste problema, foram considerados dois valores
maximos de carregamento, sendo o primeiro F,,;, = 1.10° Ib, enquanto o segundo, F,,;, =
5.10° Ib. Ja os dados e a discretizagdo adotados no presente exemplo numérico constam,
respectivamente, na Figura 4.8 e Figura 4.9. Apesar do sistema métrico ser mais convencional
na literatura, foram utilizadas unidades imperiais por conta das bibliografias de referéncia deste

exemplo que também adotaram esse sistema de medidas.

Figura 4.7 — Variacgao da forca em relagdo ao tempo no exemplo numérico 4.4.2
600,000

e Fmax = 100.000 |b
Fmax = 500.000 Ib

500,000

400,000

300,000

Foax (D)

200,000

100,000

03 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Tempo (s)

Fonte: autor.
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Figura 4.8 — Dados adotados no exemplo 4.4.2
Parametros mecanicos

E: 3,0.107 psi
V: 0
p: 0,0094116 Ib.s?/in*
Carga F: Variavel conforme a Figura 4.7
Dados geométricos
Comprimento: 120in
Largura: lin
Altura: 10,627 in
Dados da malha
N2 nos: 273
N2 elementos finitos: 32
N2 pontos de Hammer 12

Grau de aproximacdo na espessura: | Linear

Outros dados

At: 0,01s
Tempo total de analise: 1s
Tolerancia: 10°®

Fonte: autor.

Figura 4.9 — Discretizacdo adotada para o exemplo 4.4.2

Fonte: autor.

A validacdo do codigo implementado foi efetuada a partir dos valores de deslocamento
horizontal u(t) e do deslocamento vertical v(t) inerente ao ponto de aplicacdo do
carregamento, considerando os modelos constitutivos de Saint-Venant-Kirchhoff e de Rivlin-
Saunders-Hartmann-Neff. Os resultados obtidos foram comparados com aqueles apresentados
por V. H. Kishino (2022) e representados em forma de gréaficos, conforme a Figura 4.10 e a

Figura 4.11 para os deslocamentos horizontal e vertical, respectivamente.



Figura 4.10 — Gréfico do deslocamento u(t) x tempo do exemplo numérico 4.4.2
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Figura 4.11 — Gréfico do deslocamento v(t) x tempo do exemplo numérico 4.4.2
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Fonte: autor.
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Observando os resultados mostrados graficamente, nota-se a proximidade dos
resultados obtidos pelo codigo desenvolvido em relacdo aqueles apresentados por V. H. Kishino
(2022) para ambos modelos constitutivos. Portanto, foi verificada a correta implementacéo do
cédigo de andlise dindmica elastica, sendo que a proximidade dos valores obtidos de
deslocamento entre os dois modelos constitutivos é justificada pelo fato da viga trabalhar em

regime de pequenas deformacdes.

4.4.3 Distribuicdo de tensdes em viga engastada e livre sujeita a um carregamento

uniformemente distribuido

Retirado de Carrazedo e Coda (2017), este exemplo numérico possui como finalidade a
validacdo do cddigo implementado para o calculo das tensdes de Cauchy, considerando 0s
modelos constitutivos de Saint-Venant-Kirchhoff e Rivlin-Saunders-Hartmann-Neff. O
problema em questdo, referente a uma viga engastada e livre submetida a um carregamento
uniformemente distribuido (Figura 4.12), € destinado a analise da distribuicdo das tensdes de
Cauchy em varios pontos ao longo da altura de determinadas secOes transversais. Salienta-se
que a distribuicdo de tensdes empregando os elementos finitos prismaticos de base triangular

também foi validada pelos autores por meio deste exemplo.

Figura 4.12 — Viga engastada e livre submetida a um carregamento uniformemente distribuido
L3

X2

|
Fonte: autor.

Ao longo da altura das vigas, foram avaliadas as componentes o;, (de tensdo normal) e
013 (de tensdo de cisalhamento) das tensbes de Cauchy nas linhas das seguintes secOes

transversais:
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Dados da malha
Outros dados

1830
240
12

5

5

Dados geométricos
100
50
10

Parametros mecanicos

1,0.10°
Linear

5.
|10°

;=5 < x3 <5
Figura 4.13 — Dados adotados no exemplo 4.4.3

0,—5SX3S
0,—5SX3S

=0

50; x,

20; x5

Para o presente exemplo numérico, foram adotados os dados exibidos na Figura 4.13 e

X1 = 10/3, Xy

X1
X1
X1

[ ]
Grau de aproximagao na espessura:

N2 elementos finitos:
N2 pontos de Hammer

Comprimento:
Largura:

N@ nés:
Tolerancia:
Fonte: autor.

Carga q:
Altura:

a discretizacdo conforme a Figura 4.14.

NN

SN
AR

AN
ATHTAN
RN

Y ,u/%,,
AR

Figura 4.14 — Discretizagéo adotada para o exemplo 4.4.3

Fonte: autor.
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Pelo fato da estrutura trabalhar em regime de pequenos deslocamentos, sdo validas as
comparagOes dos resultados obtidos numericamente para as distribuices de tensdes gy, € 013
com as solucGes analiticas da Resisténcia dos Materiais, as quais Sao expressas respectivamente

por:
ql? qx2\ x
3 4x2

013 = ﬂ(—qx1 +qD(1- Y (218)

nas quais o carregamento uniformemente distribuido g € dado por unidade de comprimento.

Portanto, é preciso multiplicar o valor do carregamento g apresentado na Figura 4.13 (dado por

unidade de area) pela largura da viga para a sua utilizacdo nas formulagdes acima.
A seqguir, sdo apresentadas em forma de graficos as distribuicdes de tensdes a;; € g3

resultantes da analise numérica comparadas com as suas solu¢oes analiticas na Figura 4.15 e na

Figura 4.16, respectivamente.
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Figura 4.15 — Distribuicfes das tensdes o7, nas secfes transversais da viga do exemplo 4.4.3

Fonte:
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Figura 4.16 — Distribuicfes das tensdes 0,3 nas sec¢fes transversais da viga do exemplo 4.4.3

Fonte:

Saint-Venant-Kirchhoff
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Observando os graficos, nota-se que os valores das tensées normais o;, determinados
numericamente e analiticamente sdo praticamente iguais. E valido afirmar o mesmo para as
tensdes de cisalhamento g;3, com excecdo dos resultados referentes a secdo transversal x; =
10/3, mais proxima do engaste. Essa diferenca pode ser explicada pela hipotese cinematica
simplificada considerada pela solucdo analitica (principalmente para as regides proximas ao
engaste). Portanto, foi verificada a correta implementacao do cddigo de célculo das tensGes de

Cauchy a partir dos resultados apresentados.

4.4.4 Cubo comprimido sujeito a grandes deformacdes

O objetivo deste exemplo numérico, proposto por V. H. Kishino (2022), consiste em
verificar a melhor adequagédo do modelo constitutivo de Rivlin-Saunders-Hartmann-Neff em
relacdo ao modelo constitutivo de Saint-Venant-Kirchhoff em problemas de grandes
deformacdes.

O problema analisado corresponde a um cubo de dimensdes unitarias com o controle de
posicdo Az = —0,9 nos nos da face superior (z = 1,0), conforme exibido na Figura 4.17. As
restricbes de deslocamento foram aplicadas nos nos das faces x =0, y =0 e z =0 nas

direcdes x, y e z, respectivamente.

Figura 4.17 — Cubo comprimido sujeito a grandes deformacdes
Z Z

0,9

Fonte: autor.

Os dados e a discretizacdo adotados para o presente exemplo de validagdo sao

apresentados, respectivamente, através da Figura 4.18 e da Figura 4.19.
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Figura 4.18 — Dados adotados no teste de validacdo 4.4.4
Parametros mecanicos

: 1

V: 0,4
Dados geométricos

Comprimento:

Largura:
Altura:
Dados da malha
N2 nds: 32
N2 elementos finitos: 2
N2 pontos de Hammer 12

Grau de aproximacdo na espessura: | Linear
Outros dados

Tolerancia: 10°
Fonte: autor.

Figura 4.19 — Discretizacdo adotada para o exemplo 4.4.4

-‘..
LR
e

Fonte: autor.

A andlise dos resultados obtidos foi efetuada com base nos gréficos plotados de tensao
de Cauchy por deformacdo longitudinal linear (|as5| x |13 — 1]) para cada um dos dois modelos
constitutivos adotados, conforme exibidos na Figura 4.20. Na Figura 4.21 séo apresentadas as
configuracdes atuais do cubo no Gltimo passo de analise (Az = —0,9) com 0s seus respectivos

valores de tenséo o35.
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Figura 4.20 — Graéficos |o33| X |13 — 1| do exemplo numérico 4.4.4 referentes ao modelo constitutivo
de: Saint-Venant-Kirchhoff e Rivlin-Saunders-Hartmann-Neff

0.16
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0.00 ;4 z ¥
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30

e Autor | Rivlin-Saunders-Hartmann-Neff
O Kishino (2022) | Rivlin-Saunders-Hartmann-Neff

25

|0'33|

|7\3‘1|

Fonte: autor.
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Figura 4.21 — Configurac@es atuais do cubo no Gltimo passo de analise (Az = —0,9) com 0s seus
respectivos valores de tensdo a5 do exemplo numérico 4.4.4 referentes ao modelo constitutivo de:
Saint-Venant-Kirchhoff e Rivlin-Saunders-Hartmann-Neff

Saint-Venant-Kirchhoff

-3.546E-02
-3.546E-02
-3.546E-02
-3.546E-02
-3.546E-02
-3.546E-02

-3.546E-02

-3.546E-02
. . -3.546E-02
-3.546E-02

Rivlin-Saunders-Hartmann-Neff

-2.887E+01 '
-2.887E+01 / _\‘ .
-2.887E+01 / . 2
——r
-2.887E+01 -“"f/w
-2.887E401 4,—-—*““’1 __— /‘
-2.887E+01 —— /‘
-2.887E+01

-2.887E+01
' . -2.887E+01
-2.887E+01

Fonte: autor.
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E possivel notar a partir dos graficos que o modelo de Rivlin-Saunders-Hartmann-Neff
respeita a condicdo de crescimento, a qual é dada pela Equacdo (145), fato que ndo foi
verificado para o caso do modelo de Saint-Venant-Kirchhoff. Portanto, comprovou-se que o
modelo constitutivo hiperelastico de Rivlin-Saunders-Hartmann-Neff &, de fato, mais adequado

para a resolucéo de problemas que envolvem grandes deformacdes.
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5 PLASTICIDADE

Este capitulo é dedicado a apresentacdo dos conceitos tedricos da plasticidade,
subdividido em duas secOes. A primeira secéo é referente a uma breve introducéo a teoria da
plasticidade classica, contemplando as formulacdes da plasticidade em regime de pequenas
deformacbes. J& a segunda secdo é destinada a apresentacdo do modelo elasto-plastico
alternativo para grandes deformacGes adotado no presente trabalho, o qual foi proposto por
Coda (2021, 2022).

5.1 Uma breve fundamentacao da plasticidade classica

Apesar da formulacdo do modelo de plasticidade adotado no presente trabalho seja
destinado ao regime de grandes deformacdes, apresenta-se nesta secdo alguns conceitos
fundamentais da teoria classica da plasticidade em regime de pequenas deformacGes para
embasar a apresentacdo subsequente do modelo elasto-plastico alternativo.

5.1.1 Conceituacdo preliminar

A teoria da plasticidade, como um ramo da mecénica do continuo, estuda a deformacéo
ineléstica dos sélidos, descrevendo o estado de tensBes e deformacbes ou taxas de deformacéo
nos corpos solicitados mecanicamente. Na préatica, muitos materiais trabalham elasticamente
até um determinado nivel de tensdo (tensdo de escoamento), porém, a partir dessa tensao limite,
passam a apresentar comportamento plastico. Dessa forma, a teoria da plasticidade é
complementar a teoria da elasticidade para o estudo do comportamento dos sélidos e a
combinacdo dessas duas propriedades do material é denominada elasto-plasticidade (Bruhns,
2020).

E possivel observar o desenvolvimento de deformacdes plasticas em vérios materiais,
como é o caso dos metais, dos solos e dos polimeros (Lubliner, 2008). Tratando-se
especificamente de metais, investigacbes em nivel microestrutural indicam que a causa do
fendmeno de plastificacdo é a movimentacgéo irreversivel das imperfeigdes nas sequéncias das
ligacGes atbmicas sem ocorréncia de rupturas internas ou perda de coesdo (Proenga, 2018).

Segundo Lin (1971), a teoria da plasticidade pode ser classificada em dois grupos: o

primeiro € conhecido como teoria matematica da plasticidade, enquanto a outra, como teoria
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fisica da plasticidade. As teorias matematicas apresentam maior simplicidade em relagdo as
teorias fisicas, visando a facilidade de aplicacdo as analises mecanicas e, conforme apontado
por Drucker (1962), consistem em uma formalizacdo dos resultados experimentais conhecidos,
desprovida de uma investigagdo detalhada associada aos fundamentos fisicos e quimicos.
Ainda de acordo com Lin (1971), as teorias fisicas, por outro lado, buscam explicar 0s
fendmenos a partir dos fundamentos fisicos e quimicos sem se limitar a simplicidade das
abordagens matematicas, estudando, por exemplo, a relacdo tensdo-deformacdo plastica dos
solidos em nivel microestrutural. Ressalta-se que, neste trabalho, a teoria da plasticidade é
apresentada a partir de uma abordagem matematica, sem se preocupar com os fundamentos

fisicos e quimicos do material em nivel microestrutural.

5.1.2 Relagdo constitutiva entre tenséo e deformacéo — plasticidade unidimensional

Por meio de um ensaio de tracdo uniaxial de um material metélico conduzido até a sua
ruptura, é possivel plotar um gréafico que expressa a relacdo entre tensdao nominal (o) e
deformacdo linear (&), semelhante aquele apresentado na Figura 5.1. Ja na Figura 5.2, €
esquematizado graficamente o comportamento tipico de material metalico submetido a tracdo

até atingir o trecho plastico de encruamento e descarregado na sequéncia.

Figura 5.1 — Gréfico tensdo nominal x deformacdo linear caracteristico de material metalico

O'A

Trecho eldstico Trecho pléstico

Encruamento Estric¢ao

Ponto de escoamento
superior

Resisténcia dltima

Fratura

Ponto de escoamento
inferior

Limitede
proporcionalidade

Yy

Fonte: autor.
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Figura 5.2 — Grafico tensdo nominal x deformacdo linear caracteristico de material metalico submetido
a tracdo até o trecho plastico de encruamento e descarregado na sequéncia
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E: médulo de elasticidade longitudinal

Fonte: adaptado de Dieter (1988).

Analisando os graficos mostrados acima, observa-se que o trecho inicial elastico
obedece a lei de Hooke, ou seja, apresenta relacdo de proporcionalidade entre o € € até atingir
o limite de proporcionalidade (ponto A da Figura 5.2). Na sequéncia, verifica-se um trecho com
uma inclinacdo levemente diferente da anterior, sem identificacdo clara do ponto limite de
escoamento que define a transicdo do trecho elastico para o trecho plastico. Dessa forma, o
ponto de escoamento é definido pelas normas internacionais como o ponto da curva
interseccionada pela reta com inclinacéo elastica cujo ponto inicial (descarregado) é marcado
pela deformacdo de 0,2% (ponto B da Figura 5.2) (Dieter, 1988; Yuan et al., 2021).

Como pode ser observado na Figura 5.1, o trecho plastico pode ser subdividido em duas
fases: de encruamento e de estriccao. A fase plastica de encruamento tem inicio e fim definidos,
respectivamente, pelo ponto de escoamento e pelo ponto de resisténcia ultima do material, onde
é verificado o ganho de resisténcia e corresponde a um trecho estavel (Proenca, 2018).

Ja a fase plastica de estriccdo € caracterizada pelo amolecimento do material, na qual
observa-se a perda de resisténcia, ou seja, ocorre a redugdo da tensdo acompanhada do aumento
da deformagéo e o tensor constitutivo tangente deixa de ser positivo definido. Essa perda da
capacidade resistente é associada aos danos distribuidos progressivos (como microfissuras

dispersas), a formacdo de vazios ou a perda de contato entre as particulas do material. O
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amolecimento ocorre ndo apenas na tragdo, mas também na compressdao e no cisalhamento
(Bazant; Belytschko; Chang, 1984; Proenca, 2018).

Em materiais com comportamento elasto-plastico, observa-se a ocorréncia de
descarregamento elastico ao retirar o carregamento, mesmo que a tensdo no material tenha
superado a tenséo de escoamento. Como pode ser visto na Figura 5.2, a inclinagédo da reta de
descarregamento corresponde a inclinacdo do trecho inicial eléstico, equivalente ao mddulo de
elasticidade longitudinal (E = o /¢ — lei de Hooke). Apesar do valor da tensao no material ser
nula apos o descarregamento completo, verifica-se a existéncia de deformacdo pléastica residual
(eP'3st) que, juntamente com a deformacao elastica (£'5t), compdem a deformacéo total no
ponto C. Dessa forma, em regime de pequenas deformacoes, a deformacéo total pode ser dada
pela soma dessas duas parcelas:

gtotal — celast + gblast (219)

Na literatura, frequentemente as curvas o X € sdo aproximadas por meio de diversos
modelos elasto-plasticos, de acordo com a relevancia da deformacdo elastica e do ganho de
resisténcia por encruamento do material. Pode-se mencionar, dentre os modelos que sé&o
empregados com uma maior frequéncia, (a) o0 modelo elasto-plastico perfeito, (b) 0 modelo
elasto-plastico com encruamento linear, (c) o modelo rigido-plastico perfeito e (d) o modelo

rigido-plastico com encruamento linear, representados graficamente na Figura 5.3.
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Figura 5.3 — Representacdo grafica dos modelos: (a) elasto-plastico perfeito; (b) elasto-plastico com
encruamento linear; (c) rigido-plastico perfeito; (d) rigido-pléastico com encruamento linear

(a) Elasto-pléstico perfeito (b) Elasto-pléstico com encruamento linear
OA OA
Oy Oy
€ =
3> r o
(c) Rigido-pléstico perfeito (d) Rigido-pléstico com encruamento linear
oA oA
Oy Oy
E =
- -

Fonte: adaptado de Kelly (2013).

Os modelos perfeitamente plasticos sdo particularmente apropriados para o estudo de
materiais metalicos sujeitos a elevada temperatura, como € o caso de problemas de laminacéo
a quente, onde 0 ganho de resisténcia por encruamento é pequeno. Tratando-se de problemas
de engenharia em que os materiais desenvolvem grandes deformacdes (conformacédo de metais,
por exemplo), as deformacOes elasticas podem ser totalmente desprezadas (por serem
irrelevantes em relacdo as deformacdes plasticas) e a relacdo constitutiva do material pode ser
representada por meio dos modelos (c) ou (d). O modelo rigido-plastico perfeito é o mais
rudimentar dentre os modelos mencionados, o qual é aplicavel, por exemplo, na analise de
estabilidade de solos e rochas (Kelly, 2013).
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5.1.3 Incompressibilidade

Bridgman (1952), em seus estudos, estabeleceu dois principios basicos da plasticidade
metélica, sendo o primeiro referente & incompressibilidade dos materiais metalicos na fase
plastica e o segundo, a independéncia da tensdo hidrostatica no escoamento. Posteriormente,
surgiram varios estudos acerca da plasticidade metalica classica baseada nos dois principios
supracitados, como pode ser visto em Mendelson (1968) e Hill (1998). Mesmo ap06s décadas,
foram preservadas as abordagens cléssicas para a plasticidade dos metais, assumindo que o
escoamento é desvinculado da tensdo hidrostética e que o material é incompressivel na fase
plastica, como pode-se observar em Stouffer e Dame (1996) e Lubliner (2008) (Wilson, 2002).
Para maiores detalhes das formulaces relativas a incompressibilidade, recomenda-se a leitura
dos trabalhos de R. T. Kishino (2022) e V. H. Kishino (2022).

5.1.4 Critério de plastificacdo de von Mises

Na subsecdo 5.1.2, foi comentado sobre a existéncia de dominio elastico delimitado pela
tensdo de escoamento do material (o, ) para o caso unidimensional. Para se realizar a
representacdo matematica de modelos multidimensionais, primeiramente, introduz-se uma
expressao dada em funcdo da tensdo uniaxial (o) e oy

F(o) =lo| -0, <0 (220)

A relacdo acima possui um papel fundamental no modelo matematico da plasticidade,
por estabelecer um critério, denominado critério de plastificacdo, que é essencial para
identificar a natureza (elastica ou plastica) da resposta constitutiva do material sujeito a tenséo
0. Caso F(o) < 0, a tensdo pertence ao dominio elastico e, caso F(o) = 0 a tensdo estd em
regime plastico, ja a condicdo F (o) > 0 € considerada inadmissivel e indica a necessidade de
corrigir (na plasticidade perfeita) o nivel de tensdo para o cumprimento do critério.

Tratando-se de casos tridimensionais, a plastificacdo do material € dada em funcéo de
todas as componentes de tensdo. Admitindo que um determinado estado de tenséo consiste em
um ponto pertencente ao espaco das tensdes, todos os estados de tensdo que provocam o
escoamento do material geram uma superficie continua, denominada superficie de plastificacao,
a qual segmenta o espaco das tensdes em dois dominios: admissivel e inadmissivel, sendo o
espaco admissivel também denominado elastico. Qualquer evolucéo plastica ocorre sobre a

superficie de plastificacdo, cujas dimensfes e posi¢do no espaco das tensGes pode mudar a
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depender do encruamento do material. Genericamente, a func&o do critério de plastificacéo para
0 caso tridimensional pode ser expressa como:

F(O'ij) = E(O'U) — 0y <0 (221)
em que & corresponde a tensdo escalar equivalente, calculado a partir de um determinado estado

de tensdo dado na forma tensorial o;;. Ressalta-se que o estado de tensdo se encontra sobre a

superficie de plastificacdo quando F(aij) = 0, sendo que esta pode permanecer inalteravel
(plasticidade perfeita) no espaco das tensdes ou evoluir (devido ao encruamento do material).
No presente trabalho, foi admitido o critério de plastificacdo de von Mises (Mises, 1913),
comumente aplicado a materiais ddcteis e um dos mais difundidos dentre os critérios existentes
na literatura. Conforme indicado por Bridgman (1952), para materiais metalicos, por exemplo,
a plastificacdo € independente da componente hidrostatica da tensdo. Dessa forma, o

escoamento é dado somente em funcdo da componente desviadora da tensao (o, des”) e o critério

de von Mises estabelece que o inicio da plastificacdo do material € marcado pela seguinte
condicdo:
(011 — 022)% + (022 — 033)* + (033 — 011)* + 6(0f; + 0f3 + 033) = 2033

6] _ 3O.desv desv __ 91.2 (222)
- 2 — oct

Oij
na qual J, corresponde ao segundo invariante da componente desviadora da tensdo e 7,.;
refere-se a tensdo de cisalhamento octaédrica. Para mais detalhes referentes a deducdo do
critério de plastificacdo de von Mises, é indicada a leitura dos trabalhos de R. T. Kishino (2022)
e V. H. Kishino (2022).

Caso seja admitido o sistema de coordenadas principais, os termos fora da diagonal do
tensor o;; sdo nulos (o1, = 031 = 013 = 031 = 033 = 03, = 0), existindo somente as tensoes
principais (a7, o} e o%), e a Equagdo (222) é simplificada na seguinte forma:

(01 - 0'2) + (a7 - 03) + (a3 - 01) =20y =6, = 3‘7desv f}“”
(223)
= 9Toct
A Equacéo (223) é representada graficamente por um cilindro de extremidades abertas
no espaco das tensdes principais, cujo eixo (hidrostatico) é normal ao plano octaédrico,

conforme esquematizado na Figura 5.4.
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Figura 5.4 — Representacdo da superficie de von Mises no espago das tensGes principais

Eixo hidrostatico
p_p_p
\ (o 1—02—03)
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Fonte: adaptado de Wierzbicki (2013).

A tensdo equivalente de von Mises (oy,) consiste em uma medida de tensdo escalar
empregada na previsdo do escoamento do material submetido as condi¢cGes complexas de
carregamento multiaxial, e o seu valor é equivalente a tensdo de escoamento caso o estado de
tensOes esteja localizado sobre a superficie de plastificacdo. Por meio da Equacéo (223), obtém-

se a expressdo da tensdo de von Mises para o sistema de coordenadas principais:

Oym = \/% [(Uf - Gzp)z + (o} - 0'5)2 + (03 - Uf)z] (224)

ou, ainda, utilizando outras formas dadas na Equacéo (223):

3 9
oym = /32 = Eo'i?esvaic}esv = \/; Toct (225)

Assim, por meio da substituicdo da segunda forma da Equacdo (225) na tenséo
equivalente (&) da Equacéo (220), obtém-se a expressdo da funcdo do critério de plastificacdo

de von Mises considerando a plasticidade perfeita:
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3
F(Gij) — Eo.id'esvo.id'esv _ O'y <0 (226)

5.1.4.1 Critério de plastificagdo de von Mises considerando encruamento

Na Equacdo (226), foi apresentada a expressao do critério de plastificacdo de von Mises
admitindo o modelo elasto-pléastico perfeito, em que a superficie de plastificacdo permanece
inalterada no espaco das tensdes. Na sequéncia, sdo mostrados os desenvolvimentos relativos a
funcdo do critério de plastificacdo considerando encruamento is6tropo e cinematico.

O encruamento € caracterizado pelo ganho de resisténcia do material ao serem
submetidos a deformacao plastica. Caso um determinado nivel de tenséo seja capaz de gerar
deformacéo plastica, seré preciso um nivel de tensdo superior (ao nivel de tensdo prévio) para
dar sequéncia ao fluxo de deformacdo (DeGarmo; Black; Kohser, 2007). Segundo Lemaitre
(2001), o encruamento pode possuir duas causas fisicas: acumulo de discordancias
(encruamento isétropo) ou presenca de tensbes residuais internas na rede cristalina
(encruamento cinematico).

Introduzido por Odgvist (1933), ao admitir a ocorréncia de encruamento isétropo, a
superficie de plastificacdo se expande uniformemente em torno do eixo hidrostatico (conforme
esquematizado na Figura 5.5) (Cazacu; Revil-Baudard, 2021; Fjer et al., 2021) e a sua evolucéo
é definida em funcdo da deformacdo plastica. A expressdo do critério de plastificacdo

considerando encruamento is6tropo pode ser escrita genericamente como:

3
F(oyj, k) = oym(ai;) = (o + k) = Edidvesvdidves” —(oy+K) <0 (227)

em que k corresponde ao parametro de encruamento isétropo que descreve a evolucdo da

superficie de plastificacao.
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Figura 5.5 — Representacdo esquematica da evolucao da superficie de plastificacdo do critério de von
Mises atrelada ao encruamento isétropo
Plano 05 =0 Plano octaédrico
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Fonte: autor.

J& no caso do encruamento cinematico, introduzido por Prager (1956), considera-se que
a superficie de plastificacdo sofre uma translacdo no espago das tensGes sem apresentar
mudancas no tamanho e na forma (translacdo de corpo rigido), a qual é controlada pelo back
stress y (tensdo de retorno), conforme esquematizado na Figura 5.6. A expressao do critério de

plastificagdo considerando encruamento cinematico pode ser reformulada como:

3
F(O'ij»Xij) — O-VM(O-ij'Xij) _ Uy — E (O.ic]i_esv _ Xidjesv)(o.ic]l_esv _ X{ijesv) _ Uy (228)

<0

na qual )(idjes” refere-se a componente desviadora do back stress y;;.
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Figura 5.6 — Representacéo esquematica da translacéo da superficie de plastificacdo do critério de von
Mises atrelada ao encruamento cinematico
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Fonte: autor.

Ainda, existe a possibilidade de combinar os modelos de encruamento isétropo e

cinematico e, nesse caso, a expressao do critério de plastificacdo passa a ser dada por:

F(aij, 1 x15) = ovm(0yj, xi5) — (o +x)

3 desv desv desv desv (229)
= E(Uij — x50 ) (08 = x{e") = (0y + 1) < O

5.1.5 Lei de evolucdo plastica

O comportamento plastico dos materiais pode ser descrito por meio de uma relacao
tensdo-deformacdo plastica, denominada lei de evolucdo plastica (Kelly, 2013). As leis de
evolucdo podem ser escritas como:

.99(ay))
splast _ 3 93U/ 230
& o (230)

sendo éf’jl““ o tensor de fluxo da deformagéo pléstica, A 0 mddulo da taxa de deformacéo

plastica que pode assumir valor nulo (quando ndo ocorre evolugéo plastica) ou positivo (quando
ocorre evolucdo plastica) e g o potencial plastico, independente da tenséo hidrostatica.
A lei de evolucéo pléastica pode ser classificada em dois grupos (Lubliner, 2008):
I) Leide evolucdo plastica associativa, caso a funcéo do potencial plastico esteja associada

a funcéo do critério de plastificagdo, ou seja, g(o;;) = F(ay;);
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1) Lei de evolugdo plastica nio associativa, caso contrario, ou seja, g(o;;) # F(a;;).
Portanto, a expressdo da lei de evolucdo plastica associativa pode ser reescrita a partir
da Equacéo (230) como:
. OF (O’- )
.plast lj
ghlast — - UJ (231)
Y aO'ij

Analisando a Equacdo (231), observa-se que éipjl““ é proporcional ao gradiente

oF (a; j) /90;;. Portanto, verifica-se que a diregdo do fluxo da deformacéo plastica &€ normal a

superficie de plastificacdo no processo de evolucéo.
5.2  Modelo elasto-plastico alternativo para grandes deformacdes

O modelo elasto-plastico alternativo adotado no presente trabalho corresponde aquele
proposto por Coda (2021, 2022), cujas formulacGes sdo desenvolvidas a partir da decomposicéo
do tensor de alongamento a direita de Cauchy-Green em partes volumétrica e isocoricas, de
forma a possibilitar a divisdo da energia especifica de deformacdo em uma parcela volumétrica
e duas parcelas isocdricas, conforme apresentado no item 4.3.1. A presente formulacdo admite
trés hipoteses:

I) As variacdes volumétricas sdo exclusivamente elasticas;

I1) As deformacGes plasticas sdo desviadoras em qualquer instante;

I11) As evolugBes independentes das tensGes hidrostaticas sdo asseguradas pela
decomposi¢cdo multiplicativa do gradiente da fungdo mudanca de configuracdo em

parcelas volumétrica e isocoricas.

A seguir, sdo apresentadas as formulacGes do modelo elasto-plastico alternativo com
base em Coda (2021, 2022), R. T. Kishino (2022) e V. H. Kishino (2022).

5.2.1 Limite de plastificagdo
O modelo elasto-pléastico alternativo implementado neste trabalho admite o critério de

plastificacdo de von Mises. A funcédo do critério sem considerar a evolucdo por encruamento,

introduzida na Equacéo (226), € dada em notacdo dyadica por:
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\/; gdesv ; gdesv _ oy <0 (232)

Para os desenvolvimentos subsequentes, admite-se a tensdo cisalhante de escoamento

(7) ao invés da tenséo normal de escoamento (o), as quais séo relacionadas da seguinte forma:
0.
7= % (233)

Portanto, a expressdo do critério de plastificacdo de von Mises pode ser reescrita como:

\/; gdesv ; gdesv _ 27 < () (234)

Considerando a correspondéncia das parcelas isocoricas da tensdo de Piola-Kirchhoff
de segunda espécie (S%°¢! e §U°¢2) 3s componentes desviadoras da tensio de Cauchy,
demonstrada no item 4.3.6, segmenta-se o critério de von Mises para cada uma das duas

direcdes isocdricas existentes:

BE
ESisocl : Sisocl _ T, < 0
) (235)
\/%Swocz : gisoc2 T, < 0
\

a qual pode ser reescrita como:

3 . .
_Slsocl . Slsocl _ (1—.1)2 <0
: (236)
ESlsocz . Slsocz _ (fz)z < 0
Substituindo-se as Equacdes (189) e (190) na Equagéo (236), as relacbes passam a ser

expressas em funcdo das direcdes isocoricas:

3G . .

5 Glsocl . Glsocl _ (T—l)z <0

3G . . (237)
3 @lsocz . (glsocz _ (,L—.Z)Z <0

A partir deste ponto do desenvolvimento, as notagdes foram unificadas a fim de evitar
redundancias nos proximos desenvolvimentos. Primeiramente, a partir de Coda (2022), nas
Equacdes (236) e (237) foi assumido que 7; = 7, = T. Além disso, as notagdes ¢! e E50¢2
foram unificadas como €. Dessa forma, reescreve-se a expressédo anterior de forma unificada

como:
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3G?2
3—2(5:@5—7?2S0 (238)

Por fim, ressalta-se que, diferentemente das formulagGes classicas da plasticidade que
apresentam somente uma Unica superficie de plastificacdo, existem duas superficies de
plastificacdo nesta formulacdo alternativa. Cada uma das duas superficies iniciais de

plastificacdo pode ser obtida por meio da imposigéo da igualdade na Equacéao (238).

5.2.2 Evolucdo plastica

O critério dado pela Equacédo (238) ainda ndo contempla a evolugdo plastica e o fluxo
plastico prévio, necessitando, ainda, de uma adaptacdo. Comenta-se que a evolucdo das
varidveis pode ser associada ao que foi definido por fluxo ou taxa na secdo 5.1 (plasticidade
classica). Primeiramente, definem-se a evolucéo da deformagéo plastica (AEGP!45t) e a variagéo

da tensdo plastica (ASP'st) como:

¢

AEPast = A — (239)
G ¢

Asplast — ZAA\/W (240)

nas quais A1 refere-se a variagdo (evolucdo) do multiplicador plastico e o termo €/VE : €, as
direcdes isocdricas unitérias da evolucao da deformacdo plastica.

E importante comentar que n3o é possivel proceder a uma acumulacio do tipo SP!est =
splast 4 AgPlast nela possibilidade de, em regime de grandes deformagdes, um valor prévio
de ASP'est deixar de ser isocorico. Tendo isso em vista, a expressdo da tensdo plastica (SP!45¢)

¢ escrita como:

Splast — EA( €

241
i ee (241)

sendo A a deformagcéo pléstica escalar, na qual € atribuida a evolugéo pléstica:
28 = (2" +¢an (242)

em que o termo sobrescrito ac indica que a variavel detém valor acumulado e ¢ refere-se ao
sinal da evolug&o pléastica, definida posteriormente na Equacéo (248).

Observa-se que, pela existéncia da proporcionalidade entre SP'%5 e €, a segunda e a
terceira hipotese da formulagéo (comentadas no inicio da secédo 5.2) séo verificadas. Além disso,
nota-se que, diferentemente das formulagdes cléssicas da plasticidade, a dire¢cdo do fluxo

plastico nesta formulacdo é independente de um potencial plastico. Por fim, o potencial
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hiperelastico volumétrico (modelo constitutivo de Hartmann-Neff) garante que a condicéo J >

0 seja sempre atendida, evitando, dessa forma, a autointerseccéo do material.
5.2.3 Encruamento isotropo
O médulo de encruamento isétropo (H') é admitido constante ao longo das iteragdes de

um mesmo passo de analise do processo de solugcdo numérica e dependente do multiplicador

plastico A. Primeiramente, é definida a variavel n como:

H'(})
="~ 243
1 =5 (243)
O valor do multiplicador plastico é acumulado conforme a expressdo abaixo:
A=21%+ A (244)

Por fim, determina-se a evolucdo da varidvel interna inerente ao encruamento isétropo
(r) a partir da seguinte expressao:
Kk = k% +n(1)A1 (245)

5.2.4 Encruamento cinematico

Semelhantemente a0 modulo de encruamento isétropo, 0 mddulo de encruamento
cinematico (H¢) também é considerado constante ao longo das iteragcfes de um mesmo passo
de analise, entretanto, o seu valor é definido em fungdo da deformacéo pléstica escalar A°.
Assim, define-se a variavel § como:

c(12$
ﬁ@ﬂ=ﬂ%) (246)

Na sequéncia, pode-se calcular o valor da variavel interna do encruamento cinematico

(q) através da seguinte expressao:

q = q% + B(25)¢a1 (247)
sendo o sinal da evolucao da deformacdo plastica escalar dado por:
(= sign(\/m -2 —q) (248)
Por fim, o back stress pode ser determinado a partir da expressao abaixo:
G (G4

- 249
X 4qm (249)
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5.2.5 Funcao do critério de plastificacdo

Para as operacdes descritas a seguir, adota-se uma notacdo unificada $*°¢ para as
componentes isocoricas da tensdo de Piola-Kirchhoff de segunda espécie §'°¢! e §t50¢2, A

tensdo a ser admitida para o célculo do valor da funcéo do critério de plastificacdo é dada por:

S = Sisoc _ Splast 4 (250)
Desenvolvendo a Equacao (250), obtém-se:
s=fe_Gp = G, ¢ —G<1 ~ 1 )@ (251)
4 4 JE: € 461\/03:(& 4 VE: E VE: €
A partir da expressdo anterior, tem-se que:
G2 U :
s:S=—<1— __1 )Q’::(ﬁ (252)
16 VE:E VE: €
Ressalta-se que a expressdo da tensao completa (S€°™P) é dada por:
gcomp _ (Svol)elast + (Sisoc1)ep + (Sisocz)ep (253)

sendo (Sveh)elast g tensdo elastica volumétrica definida pela Equacdo (188). Assumindo-se a

notacdo unificada $¢P para representar as duas parcelas isocoricas da tensdo elasto-plastica
isoc1)€P isoc2)€P x o x foe
(S ) e (S ), a expressao unificada para a tensao elasto-plastica isocorica pode ser

definida como:

. G A6
§ep = gisoc _ gplast — 7 <1 N @) (G (254)

Por fim, a funcdo do critério de plastificacdo (f), introduzida na Equacéo (238), pode
ser reescrita considerando a evolugcdo do tamanho (encruamento isotropo) e a translacdo

(encruamento cinematico) das superficies de plastificacdo como:
5 2
3G? y q ) 3G
==—(1- - C:E—| [z=k+T | <0 (255)
f=7 ( VE E VE:E 24

5.2.6 Caélculo do multiplicador plastico

A ocorréncia da evolucao plastica pode ser averiguada por meio do valor assumido pela
funcdo do critério de plastificacdo, dada pela Equacdo (255). Caso f > 0, € verificada a

violag&o do critério:
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2 2
@tr . @tr _ Egkac +T
24 (256)

na qual o termo sobrescrito tr é inerente a tentativa elastica sem evolugdo plastica (previsao

3G? (29 q%

tr _ _ —
f - 32 1 \/(gtr : Gtr \/(gtr : Gtr

>0

elastica).

Em casos de violagéo do critério, o nivel de tensdo desenvolvido deve permanecer sobre
a superficie de plastificacdo. Tal condicéo é satisfeita por meio da imposicao da igualdade na
Equacdo (256) e da introducdo da evolugdo das variaveis internas definidas em funcéo de A4,

resultando em:

32 Ve & N

2
3G _
= Ez(KaC+T]A/1) +7

Pelo fato dos mddulos de encruamento isétropo e cinematico serem admitidos

2 )\4¢ ac
3G {1_[(/1) +q ]_Z(1+ﬁ) A (gtr:(gtr

(257)

constantes ao longo das iteracGes, o valor de AA pode ser determinado por meio da formula de

Bhaskara, equivalente ao menor valor positivo dentre 44, e 44,:

( VET: € — [(29)™ + q%] — k% — %
AA — 24
| (A+p)+n ] (258)
VET: € — [(29)™ + q%] + k% + %
A — 24
(442 SaP) 7

Na Figura 5.7, apresenta-se o pseudocodigo que resume as operacOes realizadas no
modelo alternativo de plasticidade apropriado para grandes deformagbes implementado no
programa. Os procedimentos em questdo sdo executados apos o célculo da tensdo elastica de
Piola-Kirchhoff de segunda espécie (utilizando o modelo hiperelastico de Rivlin-Saunders-
Hartmann-Neff).
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Figura 5.7 — Pseudocodigo do algoritmo do modelo alternativo de plasticidade em grandes
deformacdes

Para cada uma das duas dire¢des isocdricas:

1 Previsdo eldstica — Célculo de f*" — Equacao (256)

2 Se f'" > 0 (violagdo do critério de plastificacdo)

3 Calculo de n — Equacdo (243)

4 Calculo de 8 — Equacdo (246)

5 Determinagao de { = Equagdo (248)

6 Calculo de AA; e AA, — Equagdo (258)

7 Atribuicdao do menor valor positivo dentre A, e AA, a A4
8 Incremento de A = Equacao (244)

9 Incremento de k — Equacdo (245)

10 Incremento de A5 — Equacdo (242)

11 Incremento de g — Equacgao (247)

12 Calculo de SP!%St — Equacdo (241)

13 Calculo de y — Equacao (249)

14 Senao

15 Variacdo do multiplicador plastico nula (A1 < 0)

16 Fim doloop

Fonte: autor.

ApOs a determinagao das tensdes plasticas SP14st1 g §PLast2 calcula-se a tensdo total de
Piola-Kirchhoff de segunda espécie ($¢°¢*!) através da subtragdo da parcela plastica em relacdo
a parcela elastica:

stotal _ gelast _ gplast _ gvol 4 gisocl 4 gisoc2 _ gplastl _ gplast2 (259)

Em casos especificos de exemplos envolvendo carregamentos ciclicos (plasticidade
ciclica), ha a possibilidade de ocorrer mau condicionamento da Equacdo (241) e gerar
resultados indesejaveis. Devido a auséncia de aplicacdes envolvendo plasticidade ciclica neste
trabalho, as estratégias de resolucdo desse tipo de problema ndo foram abordadas, sendo
indicada a leitura dos trabalhos de R. T. Kishino (2022) e de V. H. Kishino (2022) para esse

caso em especifico.
5.2.7 Caélculo do tensor constitutivo elasto-plastico tangente
Devido a validade da Equacéo (240) em um determinado instante, & possivel reescrever

a Equacdo (254) da seguinte forma:
ser — Sisoc _ (Splast)ac _ Asplast (260)
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Considerando que (SP'st)a¢ njo apresenta variagio e ASP!4st corresponde a um valor

finito, escreve-se a variagao da tensao elasto-plastica como:

58eP = o8 SF 0ASTI OF = Goe, SF G AL o€ SF
~ OE OE 40E 47" 9E
G 021 (26D)
= Z(l —A/l)—a]E R SE

Dessa forma, determina-se a expressdo do tensor constitutivo elasto-plastico tangente
isocorico (EePisoc):
021
OE ® O (262)

02T G o
0E ® 0E 4 0E ® 9E
— Q:isoc _ Q:plast

gevisoc = & (1-241) _Sm
4 4

sendo o termo 921/0E ® JE contemplado nas Equagdes (201) e (202), €U°¢ definido nas
Equagbes (171) e (172) e GP!est o tensor constitutivo plastico tangente. Salienta-se que a
parcela volumétrica do tensor constitutivo elasto-plastico tangente é puramente elastica.
Através da expressao anterior, observa-se que a equacdo do tensor constitutivo plastico
tangente é definida como:
G 021
@plast — ZM E® IE (263)
Portanto, para um ponto de integracdo em regime plastico, o tensor constitutivo tangente
total (Gt°**!) ¢ determinado subtraindo-se a parcela plastica da parcela elastica, sendo esta
calculada através da Equacéo (169):
Gtotal — elast _ plast (264)
O procedimento descrito nesta subsecdo é executado subsequentemente ao calculo do

tensor constitutivo elastico tangente (Figura 4.2), caso o ponto de integracdo esteja plastificando.
5.3  Exemplos numéricos

Nesta secdo sdo apresentados dois exemplos numéricos de validacdo do modelo elasto-
plastico alternativo para grandes deformac@es implementado no programa. O primeiro exemplo
é destinado a validagdo do modelo elasto-plastico considerando encruamento isétropo,

enquanto o segundo exemplo, a valida¢do do mesmo modelo adotando encruamento cinematico.
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5.3.1 Casca hemisférica elasto-plastica com encruamento isétropo

Este primeiro exemplo numérico se trata de uma estrutura de casca hemisférica
submetida a quatro carregamentos concentrados (nas diregcoes x e y), conforme ilustrado na
Figura 5.8. O presente problema é frequentemente adotado como exemplo de benchmarking
por diversos autores para a validagdo do modelo elasto-plastico de casca considerando
encruamento isétropo em regime de grandes deslocamentos.

Devido a simetria do problema, somente um quarto da estrutura foi modelada com
imposicdo das condicfes de contorno de superficies deslizantes nos dois planos de simetria
(restricdo dos deslocamentos nas direcdes y e x nos nos pertencentes, respectivamente, aos
planos de simetria xz e yz) e o valor dos carregamentos solicitantes foi reduzido pela metade
(por estarem aplicados nos noés pertencentes aos planos de simetria). Além disso, o

deslocamento vertical z no n6 do topo da estrutura foi restrito a fim de eliminar movimento de

corpo rigido.
Figura 5.8 — Esquema estrutural da casca hemisférica
< | Vista da base:
22
o — A
2P A
2P
oP A B
X

Fonte: autor.

Os parametros mecanicos e os dados geométricos adotados neste exemplo foram
retirados de Eberlein e Wriggers (1999) e Li et al. (2017) e apresentados na Figura 5.9,
juntamente com os demais dados de interesse. A discretizagéo adotada para a estrutura analisada
é exibida na Figura 5.10.

Diferentemente desses autores que utilizaram elementos de casca, no presente trabalho
foram empregados elementos prismaticos para a modelagem e discretizacdo dos corpos

analisados. Dessa forma, foi assumido que o valor do raio que consta nas bibliografias de
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referéncia corresponde ao valor do raio médio e, na sequéncia, foram determinados os valores
do raio interno e do raio externo, respectivamente, pela subtracdo e pela adicdo da metade da
espessura ao raio medio. Destaca-se que 0s carregamentos concentrados foram aplicados nos
nos da superficie externa.

Figura 5.9 — Dados adotados no exemplo de validacdo 6.3.1

Parametros mecanicos

K: 5,5556 kN/cm?
G: 4,1667 kN/cm?
gy 0,2 kN/cm?
H: 9,0 kN/cm?
Carga P: 30,0N
Dados geométricos
Raio interno: 9,75 cm
Raio externo: 10,25 cm
Dados da malha
N2 nods: 5512
N2 elementos finitos: 294
N2 pontos de Hammer 12
Grau de aproximacdo na espessura: | Cubica
Outros dados
Tolerancia: 10°

Fonte: autor.
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Fonte: autor.
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Os resultados obtidos pelo codigo desenvolvido foram organizados e representados na
Figura5.11 em forma de grafico de deslocamentos nas direcdes y e x aferidos, respectivamente,
nos pontos A e B por forcas aplicadas correspondentes. Os resultados extraidos de Eberlein e
Wriggers (1999) sdo aqueles obtidos utilizando elementos finitos de casca de 6 parametros. A
configuragcdo final da estrutura foi ilustrada na Figura 5.12 com as escalas de cores

representando o campo de deslocamentos nas direcfes x e y.

Figura 5.11 — Grafico forca x deslocamento horizontal do exemplo humérico 6.3.1

0.030
0.025 +
0.020 +
3
X~ 0.015 4
o
[ )
0.010 + .ﬁ
Autor | Ponto A
emmsss Autor | Ponto B
0.005 ee oo Lietal (2017) | Ponto A
’ ee oo Lietal (2017) | Ponto B
A Eberlein e Wriggers (1999) - elementos 6p| Ponto A
@ Eberlein e Wriggers (1999) - elementos 6p| Ponto B
0.000 + + + + + + + + + + + +

0 1 2 3 4 5 6 7 8 9 10
Deslocamento (cm)

Fonte: autor.
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Figura 5.12 — Configuracéo final da casca hemisférica do exemplo numérico 6.3.1

5.353E-02
-8.229E-01
-1.699E+00
-2.576E+00
-3.452E+00
-4.329E+00

-5.205E+00
-6.082E+00
-6.958E+00
-7.834E+00

3.837E+00
3.406E+00
2.975E+00
2.544E+00
2.113E+00
1.682E+00

1.250E+00
8.191E-01

3.880E-01
-4.324E-02

Fonte: autor.
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E possivel verificar, a partir do grafico exibido acima, que os resultados obtidos com o
codigo desenvolvido foram bastante proximos em relacéo aqueles apresentados por Eberlein e
Wriggers (1999) e Li et al. (2017). Dessa forma, o modelo elasto-plastico alternativo
implementado foi validado com sucesso para 0 caso do encruamento is6tropo em estrutura

desenvolvendo grandes deslocamentos.

5.3.2 Viga elasto-plastica com encruamento cinematico

O segundo exemplo numérico é referente a uma viga elasto-plastica engastada e livre
submetida a um carregamento transversal na sua extremidade livre, a qual desenvolve grandes
deslocamentos e grandes deformacGes e encontra-se esquematizada na Figura 5.13. Este
problema foi simulado numericamente por Kondoh e Atluri (1987) e Park e Lee (1996)
empregando elementos finitos de portico. A fim de evitar a plastificagdo localizada na
extremidade livre da viga por acdo do carregamento concentrado, optou-se por aplica-lo de
forma uniformemente distribuida na face frontal da estrutura.

Considerando a simetria do problema, modelou-se apenas metade da estrutura com
restricdo de deslocamento na dire¢do da largura da viga nos nés pertencentes ao plano de
simetria (condicdo de contorno de superficie deslizante). Dessa forma, foi evitada a ocorréncia
de instabilidades laterais na estrutura ao longo da andlise. Além disso, os deslocamentos

relativos aos nos do engaste foram restritos nas trés direcGes do espaco.

Figura 5.13 — Configuracdo geométrica da viga elasto-plastica

| |
Fonte: autor.

Kondoh e Atluri (1987) efetuaram a analise empregando um modelo constitutivo elasto-
plastico bilinear. Dessa forma, visando reproduzir a relacéo constitutiva do material (sujeito as
grandes deformacdes) assumida pelos autores em questdo, houve a necessidade de calibrar os

valores do modulo de encruamento cinematico por meio do teste de tracdo uniaxial. No teste,
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foi considerado um cubo elasto-plastico apoiado sobre trés superficies deslizantes (restricdes
de deslocamento aplicadas nos nés das faces x =0, y =0 e z = 0 nas direcbes x, y e z,
respectivamente), o qual foi alongado na direcdo z por controle de posicdo dos nés da face

superior (z = 1 in), conforme esquematizado na Figura 5.14.

Figura 5.14 — Esquematizacdo do teste de tracdo uniaxial para calibracdo do mddulo de encruamento
cinematico para o exemplo 5.3.2

o
L/
(=%}
N

~

P S S 1,

Fonte: autor.

Através do teste de tracdo uniaxial, foram calibrados os seguintes valores para 0 modulo
de encruamento cinematico para cada um dos intervalos correspondentes de deformacéo
plastica (1€), sendo a relacdo entre tensdo de Cauchy (o33) e deformacéo longitudinal linear
(A3 — 1) do material representada em forma de gréfico na Figura 5.15:

a. H®=8,5-10*psicaso 0,0 <A <0,1;

b. H¢=8,7-10%psicaso 0,1 <1 <0,2;

c. H°=9,1-10%psicaso 0,2 < S < 0,4;

d. H°=9,5-10%psicaso 0,4 < AS < 0,6;

H¢ = 10,0 - 10* psi caso 0,6 < A < 1,0;
H¢ =10,6 - 10* psi caso 1,0 < AS < 1,5;
H¢ =10,9 - 10* psi caso 1,5 < AS < 2,0;
H¢ =11,2-10* psi caso 2,0 < A6 < 5,0.

-h @

=«
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Figura 5.15 — Grafico o x € do ensaio de tracdo uniaxial material do exemplo numérico 5.3.2
450000

400000
350000
300000

% 250000

=

o
& 200000

150000

100000

50000

Fonte: autor.

Os dados mecanicos e geométricos assumidos neste problema foram retirados de
Kondoh e Atluri (1987) e apresentados na Figura 5.16, juntamente com os demais dados

pertinentes. J& a discretizacdo adotada para a viga elasto-plastica é mostrada na Figura 5.17.
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< X% < 2,0;

=11,2-10% psicaso 2,0 < A€ < 5,0
750 Ib (metade do valor original devido a simetria adotada)

psicaso 1,0 < A < 1,5;

0-10%* psicaso 0,6 < A5 < 1,0;

]

=9,5-10% psicaso 0,4 < A5 < 0,6;

Dados da malha
Outros dados

1196
120

Dados geométricos
12

H¢ =8,5-10%psicaso 0,0 <A <0,1;
5,0in

HE =8,7-10%psicaso 0,1 <A <0,2;
H¢=9,1-10%psicaso 0,2 < A < 0,4;

H¢=10,9 - 10* psicaso 1,5

HC

Parametros mecanicos

3,0.107 psi

0,0
H¢=10,6-10*

3,0.10% psi
HC

H¢ =10
0,5in
0,1in
Linear

| 10*

Figura 5.16 — Dados adotados no exemplo de validagdo 5.3.2

Grau de aproximacdo na espessura:

Carga P:
Comprimento:
Altura:
Largura:
N2 nos:
N2 elementos finitos:
N2 pontos de Hammer
Tolerancia:

Fonte: autor.
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Figura 5.17 — D_iﬁscretizagéo adotada para o exemplo 5.3.2

A S A
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Atraves dos resultados obtidos com o codigo desenvolvido, plotou-se o gréafico de forga

aplicada por posi¢do horizontal e deslocamento vertical (aferidos no baricentro da face da
extremidade livre da viga), apresentado na Figura 5.18. Além disso, as configuragdes finais das

Fonte: autor.
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fases de carregamento e descarregamento foram ilustradas na Figura 5.19 (deslocamentos x e

y referentes as dire¢Oes horizontal e vertical, respectivamente).

Figura 5.18 — Grafico forca x posicao horizontal / deslocamento vertical do exemplo numérico 5.3.2

1500

1200 A

900 -

Forga (lbf)

600 -

300 A

0 1 2 3 4

Posicdo horizontal (in) / Deslocamento vertical (in)

Autor | Posi¢do horizontal atual
essmms Autor | Deslocamento vertical
e o o o Parke Lee (1996) | Posigdo horizontal atual (40 elementos)
e ¢ o o Parke Lee (1996) | Deslocamento vertical (40 elementos)
A Kondoh e Atluri (1987) | Posigdo horizontal atual (8 elementos)
@ Kondoh e Atluri (1987) | Deslocamento vertical (8 elementos)

Fonte: autor.
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Figura 5.19 — Configuracdes finais das fases de carregamento e descarregamento do exemplo
numerico 5.3.2

Deslocamento X: Deslocamento Y:

1.490€-03
+5.293€-01
-1.060E+00
-1.591E+00

1.179€-01
-3.386E-01
-7.952€-01
-1.252€400
-2.122€400
-2.652E400

-1.708E+00
-2.165E+00
-3.183E+00
-3.714E+00
~4.245E400
-4.776E+00

-2.621E+00
-3.078E+00
-3.534E+00
-3.991E+00

Fonte: autor.

A partir do gréafico apresentado acima, observa-se uma proximidade satisfatoria entre os
resultados obtidos por meio do cddigo desenvolvido e aqueles apresentados por Kondoh e
Atluri (1987) e Park e Lee (1996), tanto para a fase de carregamento quanto para a fase de
descarregamento. Portanto, foi possivel validar com sucesso o modelo elasto-plastico

alternativo implementado considerando encruamento cinematico.
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6 VISCOSIDADE

Diferentemente das deformacdes plasticas que, comumente sdo independentes da taxa
(as tensdes induzidas no material sdo independentes da taxa de deformacdo), nos fluidos
viscosos, por exemplo, os niveis de tensdo sdo governados pela taxa de deformacéo por meio
da viscosidade do fluido (Kelly, 2013). Apesar da viscosidade estar forte e diretamente
associada aos fluidos, essa propriedade reoldgica também é aplicavel aos sélidos.

Os materiais que apresentam tanto comportamento elastico quanto Vviscoso Sao
denominados viscoelasticos e, devido a viscosidade, a sua resposta € dependente da taxa de
deformacéo/carregamento. De forma semelhante, caso os efeitos relativos ao processo de
plastificacdo sejam dependentes da taxa de deformacé&o/carregamento, o material € denominado
viscoplastico. Como exemplos de materiais que exibem dependéncia em relacdo a taxa, pode-
se mencionar polimeros, asfalto, concreto e metais submetidos a elevados niveis de temperatura
(Kelly, 2013; Lubliner, 2008; Reddy, 2013).

As teorias da Mecénica do Continuo apresentadas anteriormente neste trabalho foram
descritas com enfoque na Mecénica dos Solidos. Tendo isso em vista, é importante comentar
que as equacdes de equilibrio em tensGes, apresentadas no item 2.4, também sdo vélidas para
fluidos. A diferenca béasica para a descricdo do comportamento de solidos e fluidos reside na
lei constitutiva, considerando sistemas adiabaticos. Para fluidos, o seu comportamento
cisalhante deve ser descrito a partir de um modelo de viscosidade, o qual pode descrever
comportamento de fluidos newtonianos (relacéo linear entre tensdo e taxa de deformacéo) ou
ndo-newtonianos (relacdo ndo-linear entre tensdo e taxa de deformacdo), enquanto o seu
comportamento volumétrico pode ser descrito utilizando-se um modelo eléstico Lagrangeano
desde que a cinematica das deformacdes esteja definida adequadamente (Kishino, R. T., 2022).

Neste capitulo, é apresentado, baseado no trabalho de R. T. Kishino (2022), um modelo
alternativo de viscosidade para grandes deformacgdes com uma descricdo Lagrangeana total,
cuja formulacdo € unificada, com capacidade de descrever o comportamento tanto de sélidos

quanto de fluidos (viscosos e compressiveis).

6.1  Modelos de viscosidade para pequenas deformagdes

Apesar da formulacdo do modelo de viscosidade considerado neste trabalho seja

destinado a resolucdo de problemas em regime de grandes deformacdes, a sua formulacéo é
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baseada nos conceitos fundamentais da teoria classica da viscosidade em regime de pequenas
deformacdes. Tendo esse aspecto em vista, apresenta-se brevemente nesta secdo os modelos

classicos da viscoelasticidade e viscoplasticidade comumente empregados na literatura.

6.1.1 Modelos viscoelasticos

Em regime de pequenas deformacdes, 0 comportamento viscoelastico do material pode
ser modelado por meio de modelos viscoelasticos lineares, os quais apresentam uma relacdo de
proporcionalidade direta entre tensdo e historia de deformacédo (Banks; Hu; Kenz, 2011).

Uma compreensdo qualitativa do comportamento viscoelastico dos materiais pode ser
proporcionada por meio de representacfes esquematicas utilizando analogos mecéanicos,
construidos por meio da associacdo de mola e amortecedor. Para uma resposta linear, sao
utilizadas combinacGes de molas elasticas lineares e amortecedores viscosos lineares (Reddy,
2013).

De acordo com a teoria classica da elasticidade (regime de pequenas deformacdes), a
relacdo constitutiva dos sélidos perfeitamente elasticos é descrita pela lei de Hooke, em que a
tensdo no material é diretamente proporcional a deformacdo e independente da taxa de
deformacdo, com resposta elastica instantanea (Ferry, 1980). A relacdo constitutiva uniaxial da
mola hookeana (cujo andlogo mecénico é esquematizado na Figura 6.1) € descrita pela seguinte
expressao:

o=Ee (265)

J& o comportamento dos fluidos perfeitamente viscosos é descrito pela lei de Newton na
teoria classica da hidrodindmica, a qual afirma que a tensdo desenvolvida é diretamente
proporcional a taxa de deformacdo e independente da deformacédo (Ferry, 1980). A parcela
viscosa do modelo viscoelastico é representado pelo amortecedor newtoniano (o qual é analogo
a um pistdo imerso no fluido viscoso contido em um recipiente, conforme ilustrado na Figura
6.1). A sua relagéo reoldgica unidimensional governada pela lei de Newton é expressa como:

o ="né (266)

na qual n corresponde & viscosidade do material.
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Figura 6.1 — Representacdo da mola hookeana e do amortecedor newtoniano

Mola hookeana Amortecedor newtoniano

.—N\/v\—. ® - ®

Fonte: autor.

De acordo com Reddy (2013), os dois modelos mais simples que podem ser construidos
a partir da associacdo de mola hookeana e amortecedor newtoniano sdo os modelos de Kelvin-
Voigt e de Maxwell, esquematizados na Figura 6.2.

Figura 6.2 — Representacdo esquematica dos modelos viscoelasticos de Kelvin-Voigt e Maxwell

Modelo de Kelvin-Voigt Modelo de Maxwell
E

U]

Para o entendimento dos modelos viscoelasticos introduzidos, parte-se da compreensao

Fonte: autor.

do funcionamento de cada um dos andlogos mecanicos basicos ao serem associados. No caso
do modelo de Kelvin-Voigt, primeiramente, supde-se que uma tensdo o de tracdo é aplicada
subitamente em cada uma das duas extremidades do modelo por um tempo ilimitado. Nota-se,
observando o arranjo, que ambos elementos serdo deformados a uma mesma taxa em resposta
ao carregamento aplicado, ou seja, a mola é impedida de apresentar uma resposta elastica
instantanea devido a acdo do amortecedor, no qual o pistdo € lentamente deslocado para fora
do recipiente por causa da viscosidade do fluido envolvente. Esse processo ocorre
continuamente até que a configuracgéo final de equilibrio correspondente a tenséo aplicada seja
atingida pela mola e, nesse estado, o amortecedor é automaticamente desativado e a tensdo
passa a ser integralmente equilibrada pela mola (Malkin; Isayev, 2022).

No modelo de Kelvin-Voigt, a mola e o amortecedor desenvolvem o mesmo nivel de
deformacéo ao serem solicitados, porém cada um dos andlogos mecanicos é sujeito a niveis
diferentes de tensdo. Observando o arranjo da Figura 6.2, nota-se que a tensao total (o) pode

ser determinada por meio da soma das tensdes solicitantes em cada um dos elementos:
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o = gt 4 gViS¢ = [ +né (267)

O material descrito pelo modelo de Kelvin-Voigt é capaz de descrever com uma boa
precisdo o fendbmeno de fluéncia em diversos materiais viscoelasticos. Em contrapartida, o
mesmo é incapaz de modelar adequadamente o fenémeno de relaxagéo de tensdo, por suportar
a tensdo (constante) aplicada por um tempo ilimitado, por conta da mola hookeana que mantém
o0 nivel de tensdo para deformacdo mantida constante (Banks; Hu; Kenz, 2011; Malkin; Isayev,
2022).

Apesar do comportamento descrito pelo modelo de Kelvin-Voigt seja caracteristico de
um solido (a aplicacdo de uma forca/tensdo constante gera um deslocamento/deformacéo
limitado(a)), também é possivel reproduzir, por meio deste mesmo modelo, um comportamento
analogo a um fluido newtoniano impondo-se um valor nulo ao médulo de elasticidade da mola
hookeana. Nessa situacdo, o modelo viscoelastico é reduzido a um Unico elemento de
amortecedor viscoso, possibilitando, dessa forma, o desenvolvimento ilimitado de deformacéo.

Quanto ao modelo de Maxwell, ¢ admitido que, repentinamente, € imposto um
deslocamento em cada uma das extremidades do analogo mecénico (de forma a alongé-lo) e
sdo aplicadas as restricdes de deslocamento a esses nos por um tempo ilimitado. Analisando o
seu modelo esquematizado na Figura 6.2, observa-se que, devido ao deslocamento imposto, a
mola hookeana é imediatamente alongada e, na sequéncia, 0 amortecedor newtoniano é ativado,
sendo o seu pistdo lentamente puxado para fora do recipiente por agdo da mola tracionada que
busca restaurar o seu estado original indeformado e descarregado. Esse processo (relaxagéo)
ocorre continuamente até que o comprimento original da mola seja restituido (Malkin; Isayev,
2022).

Ao serem conectados em série, a mola e 0 amortecedor sdo sujeitos a mesma tensao,
enquanto as taxas de deformagdo s&o distintas entre si. No modelo de Maxwell, a taxa de
deformacdo total (£) pode ser determinada por meio da soma das taxas de deformacdo da mola
(£¢195t) e do amortecedor (£V55¢):

o

&= éelast + évisc — E +— (268)
E 7

Percebe-se que o material descrito pelo modelo de Maxwell é andlogo a um fluido, pelo
fato da aplicacdo de uma forga/tensdo constante gerar um deslocamento ilimitado no pistdo do
amortecedor newtoniano, ou seja, corresponde a um modelo de escoamento. Contrariamente ao
modelo de Kelvin-Voigt, o modelo de Maxwell é capaz de reproduzir o efeito de relaxacéo,
entretanto, a sua resposta elastica relativa a tenséo aplicada é imediata e, portanto, incapaz de

reproduzir adequadamente o efeito da fluéncia (Malkin; Isayev, 2022; Ng, 2019).
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Ainda, é interessante comentar que, ao supor que a viscosidade representada pelo
amortecedor newtoniano seja infinita, o tempo de relaxagdo tende ao infinito. Nesse caso, 0
modelo de Maxwell se torna equivalente a um unico elemento de mola hookeana devido a
auséncia de relaxacdo, e o material descrito pelo modelo viscoelastico em questdo passa a se
comportar como um sélido eldstico.

Baseado nos dois modelos supracitados, foram originados os modelos de trés
parametros, 0s quais podem ser encontrados em Findley, Lai e Onaran (1989) e Huber e
Tsakmakis (2000). Dentre esses, verifica-se com mais frequéncia na literatura os modelos
viscoelasticos de Zener e Boltzmann (Figura 6.3), sendo aquele representado pela associacao
em paralelo de uma mola com o modelo de Maxwell e este, pela associacdo em série de uma

mola com o0 modelo de Kelvin-Voigt.

Figura 6.3 — Representacéo esquematica dos modelos viscoelasticos de Zener e Boltzmann

Modelo de Zener Modelode Boltzmcmn

Ta bl

Fonte: autor.

Analogamente a esses modelos, é possivel modelar outros materiais viscoelasticos que
apresentam comportamentos mais complexos utilizando-se maior quantidade de elementos e/ou

aprimorando-se 0s arranjos.

6.1.2 Modelos viscoplasticos e elasto-viscoplasticos

A viscoplascidade corresponde a teoria da Mecéanica do Continuo que descreve as
respostas mecanicas inelasticas dos sélidos dependentes do tempo (Lemaitre, 2001).

O comportamento de um material viscoplastico ideal pode ser reproduzido utilizando-
se 0 modelo de Bingham, o qual é o modelo mais simples da viscoplasticidade construido por
meio da associacdo em paralelo do amortecedor newtoniano com o elemento deslizante com
atrito de Coulomb, conforme esquematizado na Figura 6.4. Um material de Bingham se

comporta como um sélido rigido até que a tenséo de escoamento (o;,) seja excedida pela tensdo

desenvolvida no material e, ao ultrapassar essa tensdo limite, passa a se comportar como um



144

fluido newtoniano, exibindo uma relacgdo linear entre tensdo e taxa de deformacéo (Butz; von
Stryk, 2002; Lubliner, 2008; White; Majdalani, 2022).

Figura 6.4 — Representacéo esquematica do modelo viscopléstico de Bingham

Fonte: autor.

O elemento deslizante com atrito de Coulomb, esquematizado na Figura 6.4, atua como
um limitador de tensdo, impedindo o surgimento de niveis de tensdo superiores a tensdo de
escoamento e de deformacd@es até o instante em que essa tensdo limite seja atingida pela tenséo
desenvolvida no material (Schwer, 1994).

Por meio da associacdo do elemento de mola hookeana ao modelo viscoplastico de
Bingham, torna-se possivel a construcdo de modelos elasto-viscoplasticos. De acordo com
Irgens (2008), os dois modelos elasto-viscoplasticos mais simples sdo de Bingham-Maxwell e
de Bingham-Kelvin, esquematizados na Figura 6.5, os quais podem ser construidos,
respectivamente, por meio da combina¢do dos modelos de Bingham e de Maxwell e dos
modelos de Bingham e de Kelvin-Voigt (substituicdo do amortecedor newtoniano presente nos

modelos de Maxwell e Kelvin-Voigt pelo arranjo viscoplastico de Bingham).

Figura 6.5 — Representacdo esquematica dos modelos elasto-viscoplasticos de Bingham-Maxwell e
Bingham-Voigt

Modelo de Bingham-Maxwell Modelo de Bingham-Kelvin
7
]
E E
- AW :
Oy
/v Oy
° & V.

Fonte: autor.
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Dessa forma, é possivel construir diversos modelos viscoplasticos e elasto-
viscoplasticos a partir de associacdes da mola hookeana, do amortecedor newtoniano e do
elemento deslizante com atrito de Coulomb. Nesse contexto, é interessante mencionar o modelo
de Perzyna (1966), reconhecido como primeiro modelo viscoplastico classico da literatura, cuja
formulacdo fornece uma base para vérias implementacGes viscoplésticas computacionais.
Ainda, como um outro modelo classico da viscoplasticidade, pode-se citar aquele proposto por
Duvant e Lions (1976).

6.1.3 Modelos visco-elasto-plasticos

Baseado no modelo viscoelastico de Kelvin-Voigt (Figura 6.2), pode-se construir o
modelo visco-elasto-plastico (ou viscoelastico-viscoplastico, como é comumente denominado
na literatura) do tipo Kelvin-Voigt através da substituicdo da mola hookeana pelo arranjo elasto-

plastico com encruamento, cujo analogo mecanico é esquematizado na Figura 6.6.

Figura 6.6 — Representacdo esquematica do modelo visco-elasto-plastico do tipo Kelvin-Voigt
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Fonte: autor.

Através da representacdo esquematica mostrada acima, observa-se que, devido a
associacdo em paralelo do amortecedor newtoniano com o arranjo elasto-plastico com
encruamento, 0 modelo em questao apresenta comportamento viscoso tanto para a fase elastica

quanto para a fase plastica. Destaca-se que, para reproduzir o comportamento de fluidos
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viscosos, mantém-se no modelo da Figura 6.6 a elasticidade volumétrica e a viscosidade

cisalhante.
6.2  Modelo de viscosidade adaptado para grandes deformacgdes

Nesta secdo é apresentado o modelo implementado de viscosidade adaptado para
grandes deformacdes a partir do modelo viscoelastico de Kelvin-Voigt (esquematizado na
Figura 6.2), com base no trabalho de R. T. Kishino (2022). A adaptacdo é baseada na
decomposicdo de Flory, também utilizada para a descricdo de materiais hiperelasticos (item
4.3.1) e elasto-plasticos que desenvolvem grandes deformacdes (item 5.2). A combinacdo do
modelo elasto-plastico alternativo e do modelo de viscosidade em questdo resulta na base da
formulacdo do modelo visco-elasto-plastico unificado empregado no presente trabalho, o qual
possui capacidade de descrever o comportamento tanto de sélidos quanto de fluidos quase-
newtonianos e ndo-newtonianos.

A formulacéo € desenvolvida a partir da substituicdo do conceito de energia especifica
de deformacéo pelo de energia livre de Helmholtz, o qual pode ser representado segundo duas
parcelas, elastica (¥,;.s¢:) € Viscosa (¥, ), decompostas aditivamente. Na sequéncia,
decompde-se cada uma das duas parcelas em uma componente volumétrica e duas componentes
isocoricas por meio da decomposicao de Flory, como pode ser visto na Equacdo (162). Assim,
a expressdo da energia livre de Helmholtz pode ser escrita da seguinte forma:

¥ = Verast + Puisc
( vol lSOCl lSOCZ) + (lpvol + [IleOCl + qﬂsocz

elast elast elast visc visc visc

(269)

A partir da derivada da energia livre de Helmholtz em relagdo a deformacéo de Green,
obtém-se a tensdo de Piola-Kirchhoff de segunda espécie:
0¥ _ (0, | 0w | OWIER) | (9WiEL | 0¥ 0w
OE OE OE OE 0E 0E 0E

) (270)

A fim de incorporar a tensdo viscosa dada pelo segundo termo em parénteses da Equacao
(270) no processo de solugéo, assume-se, como uma ideia inicial, que a sua expressao segue o
modelo viscoelastico de Kelvin-Voigt (Figura 6.2):

. K . G .. G ..
visc — _ gvol 4 — @gisocl y _ grisoc2 271
) 7 €+ T 4 € (271)

sendo SV¢ a tensdo viscosa de Piola-Kirchhoff de segunda espécie, K a viscosidade

volumeétrica e G a viscosidade cisalhante isocorica.
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Porém, como as derivadas numéricas em relacdo ao tempo das dire¢fes volumétrica e
isocoricas Lagrangeanas ndo preservam necessariamente as direcGes originais, a expressao
anterior ¢ tomada apenas como uma inspiracdo para 0s desenvolvimentos subsequentes.
Portanto, baseado na Equacéo (271), define-se a variagédo do trabalho virtual viscoso como:

K dj*® Gy dI!

SY = ———§] +

i
I
4 dt J

4 dt
( a]a 1]

na qual a e y sdo parametros de viscosidade adimensionais. Assumindo-sea =1ey = 0,5, é

_ _ 272
] Gi 120 G . 1. 0L\ (272)
4 1] Il a]E + _)/212 12 a]E . 6]E

possivel reproduzir o comportamento de fluidos quase-newtonianos pelo aqui denominado
modelo visco-hiperelastico de Kelvin-Voigt e outros comportamentos atribuindo-se diferentes
valores para os parametros a e y.

Tendo em vista a relacdo de conjugacéo energética entre a tensao de Piola-Kirchhoff de
segunda espécie e a deformacédo de Green, escreve-se a expressao da tensao viscosa a partir da
Equacdo (272) como:

gvisc — K ]a 1](gvol +i yll“h—lj‘l@isocl +%y21‘;/2—11"2(€i5002 (273)
Visando a capaudade de resolucdo tanto de problemas de sélidos quanto de fluidos,
aproximam-se as taxas dos invariantes da deformacéo por meio de diferencgas finitas de primeira

ordem, resultando na seguinte expressao:

Svisc — Ka, sa+11 (]s+1 ]s) Gvol + G—)/ I—yl <(11)s+1 t_ (11)s> @isocl

4 At 4 T A
_ _ _ (274)
Gz (I2)s+1 — (2)s g
7V2—1 27s+1 2)s 2
+— 4 V2 Iz€s+1)< At Eoe

em que os indices subscritos s + 1 e s indicam, respectivamente, 0s termos inerentes ao passo
atual e anterior.

Em termos operacionais, a tenséo viscosa deve ser adicionada a tensdo elastica e, caso
exista, a tensdo plastica no procedimento de resolucdo, mais especificamente na Equacéo (96),
no caso de andlise visco-elasto-plastica. Essa adaptacdo é efetuada diretamente na tenséo total
da Equacdo (96), a qual encontra-se simplesmente dada por §t°t@ = g /9, passando a ser

expressa como:
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Stotal SZlast + sep + svisc — Selast _ Splast + svisc

elast

— (Svol + Sisocl + Sisocz) _ (Sisocl + Sisocz)plaSt (275)

+ (Svol + Sisocl + Sisocz)"isc
sendo S¥2! . atensdo elastica volumétrica dada pela Equagéo (188), S€P a tenséo elasto-plastica
(isocdrica) obtida pela Equagio (254), $¢1%5t a tensdo elastica calculada através da Equagdo
(187) e SP'est 3 tensdo plastica (isocorica) definida na Equacéo (241).

A expressdo do tensor constitutivo viscoso tangente atual (€V*¢), pode ser obtida

diferenciando-se a Equacéo (274) em relacdo a deformacédo de Green atual:

(Svisc — asvisc I? 2]a 1(gv0l ® (gvol + a]a 62]
JE 4At JE @ OE
LG _ 921,
4At <)/1 I‘V1 1@15061 ® (ngOCI + V111 = ®1aIE ) (276)

52 27V2—1lgeisoc2 isoc2 Y2 621_2
4At<” L €T ET YL sr g oE

Substituindo-se as expressdes das direcGes volumétrica e isocdricas, dadas pelas
Equacdes (191), (192) e (193) respectivamente, na Equacéo (276), obtém-se a expresséo final
do tensor constitutivo viscoso tangente atual:

a] ad] 0%/
visc _ _— 21a-1 a
Ukl = 277 K( S 3k, 98, T Y 3K, 9K,
61_1 ol 0%l
I‘h
3E, 0Eg "' 3K, 0k, 277)

) of, ol 921
c -1 92 9% 2 2
* 2(”2 3E, 0Ey ' '*'? 3E,0E,

Analogamente a adaptacdo da tensdo total para contemplar as tensdes viscosas, 0 tensor

+G_1<y1]_y1 1

constitutivo tangente completo (€*°**) pode ser determinado por meio da soma da parcela
viscosa as parcelas elastica e plastica (caso exista), sendo as duas Gltimas parcelas definidas,
respectivamente, nas Equacdes (169) e (263). Portanto, €t°t# passa a ser definido como:
@total — elast _ gplast 4 visc (278)

0 qual é incorporado no processo de solucao a partir da sua substituicdo na Equacédo (114) para
o calculo da matriz hessiana.

Finalmente, ressalta-se que a formulacdo apresentada do modelo visco-elasto-plastico é
unificada para a resolucdo tanto de problemas de sélidos quanto de fluidos, sendo que a Equacao

(275) é a base para a compreensao da capacidade resolutiva oferecida pela formulacéo. O bulk
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modulus nunca assumird valor nulo, pelo fato de nenhuma aplicacdo (sélido ou fluido)
apresentar uma grande variacéo de volume, justificando a presenca da elasticidade volumétrica
nos problemas. Apresenta-se abaixo resumidamente os tipos basicos de problemas que podem
ser resolvidos pela formulag&o:
a. Solidos elasticos: constantes viscosas nulas e tenséo de escoamento acima dos niveis
desenvolvidos de tensao elasto-plastica (5¢P);
b. Solidos elasto-plasticos: constantes viscosas nulas e tensdo de escoamento abaixo
niveis desenvolvidos de tensdo elasto-plastica (§¢P);
c. Solidos viscoelasticos: constantes viscosas ndo nulas e tensao de escoamento acima
dos niveis desenvolvidos de tensdo elasto-plastica (S¢P);
d. Solidos visco-elasto-plasticos: constantes viscosas ndo nulas e tensao de escoamento
abaixo dos niveis desenvolvidos de tensdo elasto-plastica (S¢P);
e. Fluidos viscosos: constantes viscosas ndo nulas e madulo de elasticidade transversal

nulo.

6.3  Exemplos numéricos

Nesta secdo sdo apresentados dois exemplos numéricos de validacdo do modelo

alternativo de viscosidade para grandes deformac6es implementado no programa.

6.3.1 Bloco viscoelastico

Este primeiro exemplo numérico tem como objetivo validar o modelo de viscosidade
implementado para solidos e a sua capacidade de simular o efeito da fluéncia, o qual foi
simulado anteriormente por R. T. Kishino (2022) empregando o0 mesmo modelo de viscosidade.
O efeito da fluéncia foi estudado a partir de um bloco composto por material viscoelastico,
apoiado sobre trés superficies deslizantes (restricdo dos nds pertencentes as faces x = 0,y = 0
e z = 0, respectivamente, nas direcdes x, y e z) e submetido ao carregamento constante de

tracdo distribuido na face da coordenada z = 1 m, cuja geometria € representada na Figura 6.7.



150

Figura 6.7 — Configuracdo geométrica do bloco viscoelastico

, : Super ficies de apoios deslizantes
! (restricdo de deslocamento somente na direcdo normal a super ficie)

Fonte: autor.

Visando a reprodugédo do problema, foram considerados os mesmos valores assumidos
por R. T. Kishino (2022) para as propriedades mecénicas e reoldgicas e também para a malha
de elementos finitos, conforme apresentado na Figura 6.8. A discretizacdo adotada para o

presente exemplo numeérico é ilustrada na Figura 6.9.



Figura 6.8 — Dados adotados no exemplo de validacdo 6.3.1
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Parametros mecanicos

K: 1,5 MPa
G: 9,0 kPa
p: 0,0
Carga de superficie g: 40,0 kPa
Parametros reolégicos
K: 0,0
G: 2,0 kPa.s / 20,0 kPa.s / 200 kPa.s
Y1 0,5
V2! 0,5
Dados geométricos
Comprimento: 1,0m
Altura: 0,5m
Largura: 0,5m
Dados da malha
N2 nods: 48
N2 elementos finitos: 4
N2 pontos de Hammer 12
Grau de aproximacdo na espessura: | Linear
Outros dados
Tolerancia: 107
At: 0,2s/4,0s/20,0s

Fonte: autor.

Figura 6.9 — Discretizacdo adotada para o exemplo 6.3.1

Fonte: autor.
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O comportamento do bloco viscoelastico foi estudado para trés valores distintos de
viscosidade cisalhante e passo de tempo:

a. G=20kPas/At =0,25s;

b. ¢ =20,0kPas/At =4,0s;

c. G =200,0kPa.s/At =20,0s.

Para cada um dos trés casos descritos, foram determinadas utilizando o cddigo
desenvolvido, a tensdo de Cauchy na direcdo do eixo z (033), decomposta em componentes
elastica (o£4%5t) e viscosa (a74°¢), e a deformagéo de engenharia na mesma diregéo (1; — 1), as
quais foram representadas em forma de gréaficos em funcdo do tempo, respectivamente, na
Figura 6.10, na Figura 6.11 e na Figura 6.12.

Ressalta-se que, devido a impossibilidade das tensdes viscosas apresentarem valores
nulos no instante inicial da analise, as suas curvas sdo representadas a partir do primeiro passo

de tempo no grafico da Figura 6.11.

Figura 6.10 — Grafico tensdo elastica x tempo do exemplo numérico 6.3.1
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Figura 6.11 — Gréfico tensdo viscosa x tempo do exemplo numérico 6.3.1
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Figura 6.12 — Gréafico deformacdo de engenharia x tempo do exemplo numérico 6.3.1
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Observa-se, por meio dos trés graficos apresentados acima, que os resultados obtidos
foram coincidentes com aqueles apresentados por R. T. Kishino (2022). Portanto, foi validado,
com éxito, o0 modelo de viscosidade implementado para a analise de s6lidos viscoelsticos,

incluindo a sua capacidade de modelar o efeito da fluéncia.

6.3.2 Rompimento de barragem

Com o objetivo de validar o modelo de viscosidade implementado para problemas de
fluidos com superficie livre, simulou-se numericamente um exemplo de rompimento de
barragem, frequentemente considerado como referéncia para a validacdo de cddigo de analise
de fluidos compressiveis com escoamento de superficie livre. O exemplo é baseado no trabalho
de Martin e Moyce (1952) que realizaram uma andlise experimental, o qual foi reproduzido
numericamente por Nithiarasu (2005) utilizando formulacdo Lagrangeana-Euleriana Arbitraria
(ALE) e também por R. T. Kishino (2022) empregando o mesmo modelo de viscosidade
considerado neste trabalho.

O problema em questdo consiste em um reservatorio de agua que se encontra
inicialmente em repouso, com o dominio do fluido delimitado por duas paredes verticais e uma
superficie horizontal de base, conforme esquematizado na Figura 6.13. Tais barreiras sdo
tratadas como superficies deslizantes (deslocamento permitido na direcdo horizontal x e
vertical y para o liquido que esteja em contato, respectivamente, com a superficie da base e
com as paredes verticais). Na sequéncia, a parede da barragem localizada a direita € subitamente

removida, ocasionando o inicio do escoamento do fluido.
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Figura 6.13 — Configuracdo geométrica da barragem no estado inicial e esquematizacdo do
escoamento do fluido apds ruptura da parede vertical
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A
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W ! L

Super ficies de apoios deslizantes que permanecem intactas
(restricio de deslocamento somente na direcio normal a super ficie)

Super ficie de apoios deslizantes existente somente antes da sua ruptura
(restrigio de deslocamento somente na direcio normal a super ficie)

Fonte: autor.

Os dados utilizados para o presente exemplo foram retirados de Nithiarasu (2005) e
organizados na Figura 6.14. O artigo de referéncia indica que a andlise foi efetuada
considerando fluido incompressivel, assumindo-se, dessa forma, um valor elevado para o bulk
modulus.

A discretizacdo adotada para a andlise é exibida na Figura 6.15 e, por se tratar de um
problema bidimensional, foram restritos os deslocamentos nos nos pertencentes as faces
triangulares na direcdo da altura dos elementos finitos prismaticos, adotando-se aproximagéo

linear nessa direcéo.
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Figura 6.14 — Dados adotados no exemplo de validacdo 6.3.2

Parametros mecanicos

K: 2,15.10°
G: 1,0 (12 fase) / 0,0 (22 fase)
p: 1,0
g: 1,0
Parametros reolégicos
K: 0,0
G: 0,001
Y1 0,5
V2! 0,5
Dados geométricos
Comprimento: 0,35
Altura: 0,70
Largura: 1,00
Dados da malha
N2 nods: 3782
N2 elementos finitos: 400
N2 pontos de Hammer 12
Grau de aproximacdo na espessura: | Linear

Outros dados

Tolerancia: 107
At: 2,5.10*
Tempo total de analise: 1,675

Fonte: autor.

Figura 6.15 — Discretizacdo adotada para o0 exemplo 6.3.2

Fonte: autor.
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O desenvolvimento deste exemplo foi efetuado em duas etapas:

a. Analise estatica: considerando a parede da barragem ainda intacta, foi assumido um
valor suficientemente pequeno de modulo de elasticidade transversal (G = 1,0) a
fim de obter a distribuicéo inicial de tensdo hidrostatica, anteriormente ao colapso
do anteparo vertical;

b. Anélise dindmica: foi atribuido valor nulo ao mddulo de elasticidade transversal e
removida a parede vertical localizada a direita para dar inicio a analise dinamica do

escoamento do fluido.

A partir dos resultados obtidos com o codigo desenvolvido, plotou-se um gréafico do
alargamento relativo da base do fluido (L/W) em relacdo ao tempo adimensional (t*), sendo
este calculado por meio da Equacdo (279) onde t é o tempo real de analise. O grafico é
apresentado na Figura 6.16, no qual foram plotados também os resultados experimentais de
Martin e Moyce (1952) e das simulacdes numéricas de Nithiarasu (2005) e R. T. Kishino (2022).

2g
*— ¢ [ZZ£ 279
=t | (279)

Figura 6.16 — Grafico alargamento relativo da base x tempo adimensional do exemplo humérico 6.3.2
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Fonte: autor.
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Na Figura 6.17, sdo apresentados os snapshots do escoamento do fluido, juntamente

com a escala de cores indicando campo de deslocamento na direcdo horizontal x

Figura 6.17 — Snapshots do escoamento do fluido do exemplo numérico 6.3.2
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A partir do grafico, observou-se um Otimo ajuste da curva obtida pelo cédigo
computacional desenvolvido com os dados extraidos dos trabalhos de Nithiarasu (2005) e R. T.
Kishino (2022), além de uma proximidade satisfatoria com os resultados experimentais
disponibilizados por Martin e Moyce (1952). Considerando os resultados satisfatdrios obtidos,
validou-se, com sucesso, 0 modelo de viscosidade para analise de problemas de escoamento de
fluidos com superficie livre.
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7 ANALISE TERMICA

O presente capitulo é destinado a apresentacdo dos conceitos envolvidos e das
estratégias de resolucdo do problema térmico. Para efetuar a analise térmica em meios continuos,
foi adotado o Método dos Elementos Finitos como estratégia numeérica, apresentado no item
7.3.3. A fim de fundamentar os desenvolvimentos conceituais do método supracitado,
primeiramente sdo apresentados os desenvolvimentos preliminares para a obtencéo da equacéo
diferencial de conducéao de calor transiente em sélidos, seguido de uma breve explanagdo das

condicdes de contorno desse tipo de problema térmico.
7.1  Equacdo diferencial de conducédo de calor transiente em solidos

A conducdo térmica, como o processo de transferéncia de calor mais significativo em
meios solidos, tem sido estudada hd mais de duzentos anos. Proposta pelo matematico e fisico
francés Joseph Fourier em 1822 (Lurie; Belov, 2020), a lei de Fourier de condugéo de calor
afirma que o fluxo de calor através de um material € proporcional ao gradiente negativo de
temperatura. Para materiais isotropicos e lineares, a lei de Fourier é escrita como:

q: = —k6; (280)
sendo q; o vetor fluxo de calor, k o coeficiente de condutividade térmica e 8 a temperatura.

Para os desenvolvimentos das equagfes diferenciais da conducdo de calor transiente,
considera-se um volume de controle V (referente ao corpo inteiro, parte do corpo ou mesmo
uma porcdo pequena de material em um ponto no espaco) delimitado pela superficie de
contorno A, além dos diferenciais de volume dV e de area de superficie dA. O sistema é
assumido como fechado, ou seja, ndo ha troca de massa através da sua fronteira.

Nesse contexto, é possivel escrever, para um determinado volume de controle, a
expressdo da energia interna de um sistema termodindmico (U), gerada internamente ou
proveniente de um meio externo ao volume, definida em funcdo da energia calorifica por

unidade de volume (u):
U= f wdv (281)
14

Dentre as causas da varia¢do da energia interna do sistema, pode-se mencionar o fluxo
de calor, através da troca de energia do volume de controle com o meio circundante, e a geracao

ou perda de calor interno, cujas quantidades séo dadas em taxas. Portanto, a quantia trocada de
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energia interna (em termos de taxa, denotada por U{'}) com o meio através da superficie é

expressa por:

g = — f qm; dA = — f qi dV = f (k6,) , dv (282)
A v 14 '

sendo n; o versor normal a dA. Na primeira passagem, utilizou-se o teorema de divergéncia de
Gauss para a conversdo da integral de superficie em integral de volume, enquanto para a ultima
passagem, foi empregada a lei de Fourier, dada pela Equacéo (280).

J& para a expressdo referente a geracdo ou perda interna de energia, considera-se uma
taxa de calor interno gerado por unidade de volume para um determinado volume de controle,
denotado por g, proveniente de reac@es nucleares ou quimicas (desde que ndo haja mudanca de
massa) ou dissipacdo de trabalho plastico, por exemplo. Dessa forma, a expressao da taxa de

energia interna em funcéo de ¢, denotada por U2}, é dada por:
Uiz = f g dv (283)
14

Portanto, através da combinacdo das Equacdes (282) e (283) obtém-se a expressdo para

a taxa de mudanca de energia interna no volume de controle:

U=-f ql,l.dv+f g dv (284)
14 |4

Quanto a variacdo de energia interna (AU), € possivel calcula-la, em termos de taxa,
como:
U =mch =CH (285)
sendo m a massa, ¢ a capacidade térmica especifica e C a capacidade téermica (C = mc).
Considerando a hipdtese da incompressibilidade dos sélidos e, dessa forma, a constancia

do volume ao longo de todo o processo, € possivel obter a seguinte relacao termodinamica:

C C 1 dU
c=;=—=———>dU=pcd0V (286)

sendo p a massa especifica.
A Equacdo (286) escrita em termos de taxa é dada por:
U=pcV (287)
Caso o célculo da taxa de energia interna calorifica seja efetuado para um diferencial de
volume (dV), é possivel integra-la, obtendo-se uma outra expresséo para a taxa de mudanca de

energia interna calorifica no volume de controle:
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U= f pch dv (288)
174

Finalmente, estabelecendo a igualdade entre as Equacdes (284) e (288), chega-se a
expressdo correspondente ao equilibrio de energia térmica para um determinado volume de

controle:

f pch dV = —f qi; dV +f g dv (289)
14 174 1’4

Agrupando os termos da Equacéo (289), obtém-se:

f [pc6 + g — g AV = 0 (290)
14

Devido a arbitrariedade do volume, ou seja, a Equacdo (290) deve ser valida para todo
e qualquer volume, conclui-se que o termo entre colchetes deve equivaler a zero (considerando
a hipdtese do sistema conservativo) resultando na forma forte do equilibrio térmico:
pcbd+qi;—q =0 (291)
Através da substituicdo da Equacdo (280), correspondente a lei de Fourier, no segundo
termo da Equacéo (291), obtém-se a equacdo diferencial de condugdo de calor em sélidos:

pch — (k@_i)’i —3=0 (292)
7.2 Condig6es de contorno

A solucdo da conducdo de calor é possivel apenas mediante as especificacdes das
condicBes de contorno inerentes a superficie do corpo analisado.

Para o estudo das condi¢cfes de contorno, considera-se a superficie segmentada em 3
areas distintas (A = A; + A;; + A;;;), sendo cada uma dessas correspondentes a uma espécie de
condicdo de contorno:

I) Condigédo de contorno essenciais (de Dirichlet ou de primeira espécie): a temperatura
em A; é prescrita e, portanto, a sua variacao € nula (66 = 0);

I1) Condig&o de contorno naturais (de Neumann ou de segunda espécie): o fluxo de calor é
prescrito em A;;, sendo considerado positivo quando sai do dominio. Um caso particular
dessa condicéo de contorno corresponde a superficie adiabatica (fluxo de calor nulo);

I11) Condig&o de contorno inerente ao fluxo de calor por conveccdo (ou de terceira espécie):
considerado como uma das condi¢cBes de Neumann, o fluxo de calor neste caso é

definido em funcdo da temperatura do meio (fluido) circundante (6.,), da temperatura
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da superficie analisada (6) e do coeficiente de transferéncia de calor por convecgéo (h°),

conforme apresentado na Equacgdo (293). Analogamente a condi¢do de contorno de

Neumann (item I1), o fluxo € positivo quando sai do dominio.

q¢ = h°(6 — 0) (293)

Ainda, concomitantemente ao fluxo de calor por convecc¢éo, pode estar presente também
o fluxo de calor por radiacdo (g™) em uma mesma superficie de contorno do corpo. Nesse caso,
o fluxo de calor total por convecc¢éo e radiacdo (q¢") pode ser obtido por meio da soma dessas
duas parcelas:

" =q°+q" (294)
sendo que o fluxo de calor por radiacdo pode ser calculado pela seguinte expressao (Franssen;
Vila Real, 2010):

q" =o0"e9e%(6* - 6%) (295)
na qual o refere-se a constante de Stephan-Boltzmann (¢” = 5,67 - 1078 W /m?°C*), €9 ao
coeficiente de emissividade do gas (fluido) envolvente, comumente adotado €9 = 1,0, e €5 a0
coeficiente de emissividade do material.

Seguindo a estratégia apresentada por Rigobello (2011), em analogia a Equacéo (293),
referente a transferéncia de calor por conveccdo, assume-se que o coeficiente de transferéncia
de calor por radiacdo (h") € dado por, considerando-se €9 = 1,0:

h" = o"e5(6% + 62)(0 + 6.,) (296)

Dessa forma, analogamente a expressdo do fluxo de calor por conveccdo, a Equacéao
(295) pode ser reescrita de forma linearizada:

q" =h"(0 —0s) (297)

Portanto, verifica-se que, caso deseje incluir também a contribuicdo do fluxo de calor
por radiacdo, basta modificar o valor de h¢, somando-se a0 mesmo o valor de h", para, na
sequéncia, proceder ao calculo do fluxo de calor resultante:

q" = (h* +h")(0 — 0,) = h°" (0 — O,) (298)

na qual h" corresponde ao coeficiente de transferéncia de calor total por convecc¢éo e radiacao.

7.3 O Meétodo dos Elementos Finitos aplicado a resolu¢do do problema térmico

Nesta secdo, apresenta-se a estratégia de resolucdo do problema térmico através do

Método dos Elementos Finitos, baseado em Rigobello (2011). O modelo de transferéncia de
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calor foi desenvolvido empregando descricdo Lagrangeana total, devido & maior praticidade
proporcionada para a implementacdo computacional.

Primeiramente, é necessario escrever a equacao diferencial de conducéo de calor em sua
forma variacional fraca. Para se estabelecer a forma fraca, multiplica-se a Equagéo (292) por
uma variagdo da temperatura 56 e procede-se a integracdo no volume inicial, ou seja:

f [p69 — (k6,), - 4] 56 dVy = 0 (299)
g ,

0

Visando a operacao do segundo termo dentro de colchetes da Equacdo (299), emprega-

se o divergente sobre o produto entre o termo k6 ; e a variagdo da temperatura 56:

(ko 66) , = (k6,) 66 + (k6,)56, (300)
isolando o termo (k6,;) .56, tem-se que:

(ko) 86 = (ko 56) , — (k6,)56, (301)

Na sequéncia, substitui-se a Equacgéo (301) no segundo termo do integrando da Equacéo
(299), obtendo-se:

f pch 56 AV, — f (k8 59)l,dV0 + f (k6,)86,; dV, — f 60 dV, =0 (302)
1% Vo ’ Vo 1%

0 0

a qual pode ser reescrita através da aplicacdo do teorema de divergéncia de Gauss sobre o
segundo termo da expressao:

)

0

pch 56 v, — f (k6 ,)n;66 dA, + f (k0,)860,dVo— | 66 dVy, =0 (303)
Ao Vo

Yo
reescrevendo o termo (k@_i)ni do segundo integrando como (—q™), por meio da lei de Fourier
expressa pela Equacéo (280), e reordenando os termos da expressdo anterior, obtém-se a forma

fraca da equacgéo de conducdo de calor:

j (k6,)86; dV, + J pch 80 dVy— | (—q™)66 dA, — f 400 dV, =0 (304)
VO VO VO

Ao
sendo g™ o fluxo de calor normal a superficie.

Caso o material apresente propriedades térmicas distintas em cada uma das direcoes,
efetua-se a substituicdo da parcela k& ; por k; ;6 ;, sendo k;; o tensor diagonal de condutividade
térmica. Dessa forma, a Equacdo (304) é reescrita como:

Vo Vo Ao Vo
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Como o termo g™ é conhecido no contorno, € possivel expandir a integral de superficie
em duas parcelas, uma referente ao fluxo de calor imposto (g") e a outra, ao fluxo de calor por
convecgdo e radiacdo, ambos normais a superficie:

(™60 dAy = | (~g")60 dA, + f [—he (6 — 0,)]60 dA,  (306)
Ao Ao Ag
A partir da discretizacdo do dominio em elementos finitos, sdo definidas as seguintes

aproximacdes para as variaveis de interesse:

( 6=¢6
9 = d)lél
96 l
o 0;=¢,0
l
{ 60 = ¢,66" (307)
56 = ¢,,,66"
4 = gt
q" = o, (@")"
\ O, = (pl(eoo)l

sendo ¢; a funcdo de forma do elemento finito prismatico referente ao nd [ e ¢,; a fungdo de
forma do elemento finito auxiliar de superficie triangular ou retangular. Além disso,

01 _ 09,05,
axi afk axi

sendo &, a coordenada adimensional e, portanto, Dy; = (451),; sendo A, correspondente ao

b1 = = ¢y Dy (308)

gradiente do mapeamento da configuracdo inicial. Essa representacdo foi adaptada do MEF
posicional, permitindo uma facil implementacao de elementos finitos “curvos” ou distorcidos.

A partir das aproximagdes apresentadas na Equacao (307) e das Equacdes (305) e (306),
escreve-se a equacdo de conducdo de calor em funcdo das aproximacgdes do Método dos

Elementos Finitos:

I b1l jPm,; AV 01 + f pchpm AVo 0L — | 1 AV g
Vo Vo Vo
[ pomde @'+ [ h" 0o dag (309)
Ap Ag

h Qi dAg (Bm)ll 5™ =0

_Lo

Devido a arbitrariedade de 66™, o termo entre colchetes da expressdo acima deve

resultar em valor nulo, obtendo-se a seguinte expressao:
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b1,k dVo 61 + f peipm AVo ' — | i dVy g
VO VO VO

4 f 01pm dAo (@) + f BT 1 dAy 6" (310)
A A

0 0

- f R 1 dAo (6)! = Oy
A

0

Denota-se os termos da Equacéo (310) por:

p
Kpi= | &uikijdmidVo = | ¢Omkijpr; dVy
Vo Vo
Mo = | pctidm Vo= | pcomiavs
Vo Vo
9 Ny =1 ¢1omdVo= | ¢Pme, dVy (311)
Vo Vo
Fr =f ©1Pm dA =f PmP dAg
Ao Ao
Omi=| h"@omdAg = | hTQne dAg
\ Ao Ao

sendo que, pelo fato de k;; consistir em uma matriz diagonal, k;; € dado por:

kij = &mKijdri = Om jKjidri = Omiki1dr1 + Pmakoo @iz + Pmskssds  (312)
Apds os devidos célculos das integrais e montagem dos vetores e matrizes segundo 0s

graus de liberdade, obtém-se:

Kmlel + Mmlél - leq)l + le(qn)l + Omlel - Oml(eoo)l = Om (313)
Ainda, denota-se os vetores independentes das temperaturas nodais por:
rflTl} = le‘ll
= (@) (314)

) = Oy (60)!
Dessa forma, a Equacdo (313) é reescrita de acordo com as defini¢fes da Equagéo (314)
como:
K8 + 08 + My 0! — £ 4 £ — 13 = (315)

sendo estes denominados de:

e K,,;: matriz de condutividade do dominio;

e 0,,;: matriz de condutividade no contorno;

e M,,;: matriz de capacitancia;

e £ vetor de fluxo de calor do dominio;
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n{1T2}5 vetor de fluxo de calor imposto;

o ,flm: vetor de fluxo de calor por conveccao e radiagao.

A partir da reorganizacdo da Equacdo (315), obtém-se o seguinte sistema linear de

equacdes diferenciais ordinérias:

kDol + M, 0! = £i1 (316)
sendo:
Kgl} = K,y + Oy — matriz de rigidez térmica
(T} _ (11} _ (T2} | (T3} (317)
m =fm  —fm +fm ~ — vetor de fluxo de calor total

Com o interesse de facilitar a introdugdo de conceitos futuros (Equacdo (342)) de
assimetria de matriz Hessiana para célculos de problemas térmicos nao-lineares, faz-se uma
associacdo dos desenvolvimentos efetuados para o caso de conducdo de calor linear com
modelos mecanicos elasticos lineares. Escreve-se o gradiente da temperatura 6 ; como sendo
uma grandeza vetorial ficticia ¢;. Seja 6% a variacdo da energia interna correspondente a
primeira parcela da Equacéo (305):

0Q 0Q
62 =f 6 ;k;;66,; dV, = —f ﬁ&?i dv, = —f E&i dV, (318)
v Vo i Vo i

0

onde definiu-se de forma empirica um potencial de energia térmica Q dependente do vetor
ficticio g;.
Para problemas lineares, define-se o potencial ficticio (Q) considerando condutividade

termica k;; independente da temperatura como:

1

Dessa forma, a derivada presente no ultimo termo da igualdade da Equacdo (318)

corresponde a:

0Q 1[0¢, d¢; 1
a_é‘l- = —E<a—gikmj€j + gmkmj a_&‘l = —E (kijgj + gjkji) (320)
Pelo fato de k;; consistir em uma matriz diagonal, tem-se que:
0Q

obtendo, dessa forma, a lei de Fourier para k;; constante a partir de Q, concluindo-se que o

vetor fluxo de calor definido pela lei de Fourier com k;; constante € conservativo.
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7.3.1 Formulagdes para problema de condugdo térmica ndo-linear

Caso o problema de conducéo térmica analisado apresente nao-linearidade, ou seja, a
propriedade térmica de condutividade possua dependéncia em relagdo a temperatura, torna-se
necessario reavaliar a matriz de condutividade térmica K,,,; presente na Equagédo (315) em cada
etapa de anélise na qual a variacdo de temperatura seja verificada. Além disso, sdo apresentados
posteriormente no item 7.3.3 os desenvolvimentos que mostram a existéncia de uma parcela
assimétrica da matriz hessiana térmica para o caso de conducdo ndo-linear. Dessa forma,
apresenta-se nesta subse¢é@o os desenvolvimentos relativos ao modelo de condugéo nao-linear,
considerando a condutividade térmica dependente da temperatura.

Primeiramente, € assumido que a lei de Fourier é valida para condutividade térmica
dependente da temperatura escrevendo-se:

q; = —l;;[0]¢; (322)
onde ¢; foi definido na Equagdo (318). Observa-se que na Equagdo (322) ndo é possivel se
escrever explicitamente um potencial de energia do qual o vetor de fluxo de calor seria obtido,
tal como apresentado na Equacdo (319), assim o problema torna-se ndo conservativo.

A partir da sua substituicdo no Gltimo termo da Equacdo (318), define-se a expressdo da
parcela da variacdo da energia interna como:

S0 = —f qi6g; dVo = | k;;[B]eide; dVy (323)
Vo Vo

Reescrevendo a Equacdo (323), obtém-se:

Jd= dg;
E = 50" = fv ki [0]e;8z; AV, = fv by [0]e) = dV 5™ (324)
0 0
sendo que a variacdo d¢; da expressdo acima foi denotada por:
a&'i
6€i = (,)H—maem (325)

Relembrando as definicbes dadas pela Equacdo (307) e que &; = 6 ;, escreve-se as
aproximacdes g; = 6; = ¢,;6' e g=0;= qbl,jel, de forma a obter, a partir da Equagéo (324):

d, 0
5E = f u«ij[e]qbl,jel;bé—jn AVo80™ = | ¢y k(0] dVo 6'56™  (326)
Ve Vo

0
Portanto, escrevendo a expressao completa da variagdo da energia interna para o caso
ndo-linear a partir da Equagdo (309) (admitindo a substituicdo da parcela linear K,,,;6*), tem-

Se:
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l ¢1,k;;[0]1Ppm; dVo 6" + f pchipm AVo 0" — | 1y dVo gt
Vo Vo

Vo

+ f o1om ddo (@' + f BT 1 d A, 6 (327)
A A

0 0
']:4

a qual, devido a arbitrariedade de §T™, resulta em:

he" @, dA, (Hoo)ll 5™ =0

0

1y, (0] AV 01 + f pchibm Vo6 — [ dudm Vo g
A Vo Vo
4 f 010 dAo @) + f BT 1 pm dAy 6! (328)

— | hT@10 dAy (05) =0

Ao
Nota-se que a matriz de condutividade do dominio para problemas térmicos nao-lineares
¢ semelhante a matriz do caso linear, tornando a condutividade térmica dependente da

temperatura:

K= | ¢1;kij[0]dm,: dVy (329)
Vo

Reorganizando a Equacdo (328) a partir das defini¢cbes das Equacdes (311) e (314),
obtém-se a seguinte equacdo ndo-linear, com a matriz de condutividade do dominio definida
em funcdo da temperatura:

Ko[016" + 0y0' + M,y 61 — T8 4 T2 _ £33 _ g (330)

Reescrevendo-se a expressdo anterior com o uso das defini¢des do vetor de fluxo de
calor total e da matriz de rigidez térmica conforme explicitado na Equacéo (317), determina-se,
para cada nivel de temperatura, o seguinte sistema ndo-linear de equacOes diferenciais
ordinarias:

kD616 + M, 6! = £ (331)
7.3.2 Solucdo de problemas em regime transiente

Para a solucéo da equacdo de conducéo de calor linear ou ndo-linear, correspondentes
as Equacdes (313) e (330) respectivamente, faz-se necessaria a discretizacdo do operador
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diferencial inerente ao termo transiente. Dessa forma, foi admitido o Método das Diferencas
Finitas para a aproximacgdo numeérica dos termos dependentes do tempo.

O grafico da Figura 7.1 corresponde a variacdo da temperatura no dominio entre 0s
instantes s e s + 1. Atraves da expansdo dos termos transientes em série de Taylor, é possivel
descrever a variagdo da temperatura no instante s + a, conforme mostrado a seguir:
0051 At?0%65,4

ot Y2 oz
Para um determinado passo de tempo At, escreve-se a aproximagdo temporal de

(332)

Osiq = 05 + alt

interesse como:
00;+q . 0541 — 05 (333)
ot At

sendo os indices s + 1 e s referentes, respectivamente, aos passos de tempo atual e anterior.

Figura 7.1 — Representacéo grafica da aproximacédo temporal pelo Método das Diferencas Finitas

0 A
A Osii

AD | o,

0,

Fonte: adaptado de Rigobello, Coda e Munaiar Neto (2014).

Substituindo a Equacao (333) na Equacéo (332) (série de Taylor) truncada em 12 ordem,
determina-se a relacdo da temperatura no instante do tempo s + a« em funcdo de suas
temperaturas correspondentes nos instantes s + 1 e s:

Os1a = absy1 + (1 — a)bg (334)
sendo a um parametro que pode assumir valores definidos no intervalo [0,1].
Dessa forma, obtém-se a expressdo para a conducdo de calor linear com o termo

transiente discretizado a partir das substituicdes das Equagdes (333) e (334) na Equacao (316):
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[ K{T}] 0l,, — [—+( —-DKBlel - M=o, (335)

De forma anéloga a equacao linear, considerando-se a matriz de condutividade térmica
constante no intervalo de tempo, é possivel determinar a expressdo para a conducéo de calor
néo-linear com aproximacédo temporal substituindo-se as Equagdes (333) e (334) na Equacéo
(331):

M
[A—mtl+a1<{” l Ly — l—+( - DK 61| 6l - £ =0, (336)

Presente nas Equacdes (335) e (336), o parametro a é responsavel por regular o tipo de
integrador temporal a ser empregado. Caso @ = 0, o integrador reproduzido é denominado
explicito, enquanto para @ = 1, o integrador correspondente é implicito. Tratando-se de valores
intermediéarios, o integrador é denominado semi-implicito. Ainda, de acordo com Rigobello
(2011), é indicado a = 2/3 para andlises térmicas e termomecanicas em situacdo de incéndio.

A equacdo (335) é resolvida diretamente, ou seja, conhecendo-se 0 carregamento
térmico e as temperaturas do passo anterior, resolve-se um sistema linear onde se determinam
as temperaturas atuais. Ja na equacdo (336), a dependéncia da matriz de condutividade em

relacdo a temperatura, implica em tratamento ndo-linear descrito na préxima subsecao.
7.3.3 Estratégia de resolucéo de problema térmico ndo-linear

Em casos de analises térmicas ndo-lineares para variagfes importantes nas propriedades
térmicas como condutividade térmica e capacidade térmica especifica, torna-se necessario
recorrer as técnicas iterativas de solucdo. Semelhantemente a técnica de solucédo de problemas
mecanicos estaticos e dindmicos, emprega-se o método de Newton-Raphson (combinado com
0 Método das Diferengas Finitas para a aproximacao temporal) com os procedimentos descritos
brevemente a seguir.

Primeiramente, é requisitado pelo método a defini¢do do vetor residuo térmico (g,,),

dado pela expressdo abaixo:

M
gm=[A—’“tl+aK{” ] [—+( DK, (0104 = f = 0 (337)

Em situacdes de equilibrio térmico, o vetor residuo térmico apresenta valor nulo e, caso
contrério, retorna um valor ndo nulo, servindo como critério para avaliar a convergéncia dos
resultados obtidos. As temperaturas nodais no passo de tempo atual correspondem as incognitas

a serem determinadas do problema, as quais sdo conhecidas na forma de tentativa ao longo de
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todo o processo de analise. Para o primeiro passo de tempo, toma-se 0 vetor de temperaturas

Através da expansdo em série de Taylor do vetor residuo térmico, dado pela Equacao
(337), na vizinhanca da temperatura tentativa e truncando a expressao em 12 ordem, determina-
se a expressdo para o céalculo da corre¢do do vetor temperatura (A8%):

o ([My M
gm=g&+ﬁ{[ I K{”[e]] 0541 — [A—’; + (a = DK 16]] 63
N

(338)
- ,51”}49" =0

considerando a decomposicao aditiva de K,{nTl}[H] em K,,,;[0] e 0,,;, conforme a Equacéo (317),
tem-se que:
-1
0K, 1016 .
20% = = [Mm 1 (0, + L%t o) (339)
06541
sendo que a hessiana do problema térmico (H,{:l}) nédo-linear corresponde a (denotando

K, [616%, , por Y, e omitindo s + 1 por simplicidade):

M ay,
il =+« (Ome+ 358 (340

A seguir, mostram-se 0s desenvolvimentos relativos a contribuicdo adicional da matriz
de condutividade térmica a matriz hessiana térmica em problemas de condugdo ndo-lineares. A
parcela 0Y,,/00% da expressio anterior pode ser determinada de forma direta, considerando-se

a lei de Fourier com condutividade térmica dependente da temperatura:
Yy _ 0Km[6]6" _ ] (k[ pp6F] 1 ;6")
Ve

90k — 9@k a0k $m,i dVo

=JV < a]e[] [(ggk ]4’1.1'6”+kij[¢ﬁ9ﬁ]¢k,j>¢m,i dv,  (341)

ok;;[6] 1
- JV 20 ¢k¢l‘j9 + kij [9]¢k,j ¢m,i dVy

A expressdo acima resulta em:

Yy, 0k;;[6]
WZJVO ¢m.-< b1/ >¢k Wot | Omibilblb;dVo (349)

assimétrica

Dessa forma, a matriz hessiana térmica para k;; dependente da temperatura contém uma

parcela assimétrica. Tal fato € geralmente decorrente da presenca de campos vetoriais ndo

conservativos no sistema, sendo neste caso correspondente ao fluxo de calor definido pela lei
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de Fourier dependente da temperatura (q; = —k;;[616 ;). Novamente, fazendo um paralelo com
a elasticidade ndo-linear, entende-se que ndo se pode escrever explicitamente um potencial
térmico Q (introduzida no item 7.3.1) do qual, por derivada, resultaria o fluxo de calor.

A fim de acelerar 0 processo de convergéncia, pode-se utilizar a sua parcela simétrica
obtida através da decomposicdo matricial aditiva (como soma das partes simétrica e

antissimétrica):

v, 1 otk 0] ok, [6]
e ELO Dm,i (Tfﬁl,j@l b + P Td)l,jel b dVy

parte simétrica (343)

+ | Omiki[0]dk; dVy
Vo

Observando-se a Equacdo (343), é possivel verificar que, caso a condutividade térmica
seja independente da temperatura, a parte simétrica em questdo torna-se nula. Assim, para
problemas térmicos lineares, a parcela 8Y,,/00% é equivalente & matriz de condutividade do
dominio (K,,), dada por:

Y,
0k Kk = . Om,ikKij Py, AV (344)

Ainda existe a possibilidade da capacidade térmica especifica c (e, consequentemente,
a matriz de capacitanciatérmica M,,,; ) apresentar dependéncia em relacdo a temperatura e gerar
contribuicdo adicional a matriz hessiana térmica. Antes de proceder a expansdo em série de
Taylor do vetor residuo térmico (Equacéo (338)) considerando M, [6], foi efetuado um teste
de convergéncia do problema térmico considerando c[8], porém desprezando a parcela
adicional da matriz hessiana térmica proveniente de M,,,[6]. Como a convergéncia do
problema térmico foi obtida com poucas iteracdes, ndo foi considerada a contribuicao adicional
de M, [8] & matriz hessiana térmica neste trabalho.

Portanto, ap6s o calculo da matriz hessiana pela Equacéo (340), procede-se a imposi¢do
das condicBes de contorno essenciais (ou de Dirichlet) através da técnica de zeros e um
(conforme ja mencionado no item 3.2), a fim de eliminar a singularidade da matriz hessiana e
possibilitar a resolucdo do sistema de equacdes lineares (ou a inversdo da hessiana), expresso
pela Equacdo (339).

Apo0s determinar a corre¢do da temperatura no passo atual a partir da Equacéo (339),
atualiza-se a temperatura tentativa:

6) — 6 + 46; (345)
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Por se tratar de procedimento iterativo, repete-se 0s processos de calculo até atingir a
convergéncia dos resultados de analise, verificada através do seguinte critério de parada

adotado:

L < tol (346)

sendo tol a tolerancia adotada para a verificagdo da convergéncia.
Por fim, apresenta-se na Figura 7.2 o pseudocddigo que resume as operacdes realizadas

na andlise térmica ndo-linear.

Figura 7.2 — Pseudocddigo da andlise térmica

1 Leitura dos dados de entrada
2 L . T UiV
Primeira tentativa de temperatura como temperatura no tempo inicial (6 = 6 )
3 Parai=1 até n2 de passos (etapa incremental)
4 Soma do passo de tempo (t <« t + At)
5
6 Calculo da matriz de condutividade do dominio (K) — Equagao (329)
7 Calculo da matriz de condutividade no contorno (0) = Equacao (311)
8 Calculo da matriz de capacitancia (M) — Equacdo (311)
9 Calculo do vetor de fluxo de calor do dominio (fT1) -
Equacdes (311) e (314)
10 Calculo do vetor de fluxo de calor imposto (fT3) -
Equacdes (311) e (314)
11 Calculo do vetor de fluxo de calor por convecc¢ao e radiagao (f{”}) -
Equacgdes (311) e (314)
12 Calculo da matriz hessiana térmica (H}) - Equacdo (340)
13 Célculo do vetor residuo térmico (g) — Equagdo (337)
14 Imposicdo das condi¢des de contorno em HT e g
15 Célculo da correcdo da temperatura (Aﬁ) — Equacdo (339)
16 Atualizac3o da temperatura (6 « 8 + A8) —» Equac3o (345)
17 Célculo da norma ||A§|| para a verificagcdo de convergéncia
18
19 Exportacao de dados — pds-processamento

20 Fimdoloop

Fonte: autor.
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7.4 Exemplo numérico

Apresenta-se, a seguir, um exemplo numérico para a validacdo do modelo de
transferéncia de calor implementado no programa para problemas estacionarios (M,,; = 0).
Ressalta-se que a validacdo desse mesmo modelo para problemas térmicos ndo-lineares

transientes serd mostrada no exemplo numérico termoeléstico do item 8.4.3.

7.4.1 Analise térmica estacionaria linear e nao linear de chapa

O presente exemplo numeérico, retirado de Salomdo (2021), consiste em uma anélise
térmica linear e ndo-linear em regime estacionario de uma chapa de dimensdes unitarias (sendo
0 valor da espessura também unitaria), com o esquema do problema a ser analisado
representado na Figura 7.3. A chapa apresenta condi¢des de Dirichlet nos nos de duas faces das
quatro faces, ou seja, as temperaturas nodais sao prescritas, e condigdes de Neumann nas duas
faces restantes, com o fluxo de calor imposto. Destaca-se que as outras duas superficies

(correspondentes a base e ao topo da chapa-espessura) foram assumidas adiabaticas.

Figura 7.3 — Chapa analisada com as condigdes de Dirichlet e Neumann

(1‘:10—2
m
IADE
g =
= p —_— a2
1m T /,’ — ‘F
S /,'/ E’: =
A'/ 0 =10°C —
1m

Fonte: autor.

Os dados considerados para este exemplo de validacéo sdo apresentados na Figura 7.4.
Ressalta-se que, para o caso de analise linear, foi empregado um valor constante para a
condutividade térmica (k) do material constituinte da chapa, enquanto para o exemplo de

conducdo de calor ndo-linear, a condutividade térmica é dependente da temperatura (6).



Figura 7.4 — Dados adotados no teste de validagdo 7.4.1
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Parametros térmicos

Kk (linear):

2,75 W/m°C

k (ndo-linear):

2,75-0,260 W/m°C

Dados geométricos

Comprimento: Im
Largura: 1m
Espessura: Im
Dados da malha
N2 nds: 1922
N2 elementos finitos: 200
N2 pontos de Hammer 12
Grau de aproximacdo na espessura: | Linear

Outros dados

Tolerancia:

| 10°

Fonte: autor.

A fim de reproduzir o comportamento de uma chapa, foi considerado um grau de

aproximacdo linear na direcdo da espessura com uma Unica camada de elementos finitos

prismaticos na discretizacdo, conforme mostrado na Figura 7.5, com as superficies

correspondentes a base e ao topo dos elementos finitos prismaticos assumidas adiabaticas.

Figura 7.5 — Discretizagdo adotada para o exemplo 7.4.1

Fonte: autor.

5
ety

H
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Os valores obtidos de temperaturas nos nos pertencentes a diagonal AB foram

organizados em forma de grafico na Figura 7.6, em que é possivel observar a diferenca de

resultados entre um modelo linear e ndo-linear de analise térmica de conducéo de calor, sendo

esses valores coincidentes com aqueles apresentados por Saloméo (2021). Os campos de

temperatura obtidos sdo apresentados na Figura 7.7, tanto para a analise linear quanto para a

analise ndo-linear.

Ressalta-se que, para o caso de anélise térmica ndo-linear, foi utilizada a matriz hessiana

considerando a parte simétrica da sua parcela assimétrica, conforme apresentada na Equacéo

(343) (solucdo implicita).

Figura 7.6 — Grafico Temperatura x posicdo na diagonal AB para modelos linear e ndo-linear de
conducao de calor do exemplo numérico 7.4.1

11.0
1 O Salomado (2021) | Linear
10.0 = sﬁ\ O @ Salomdo (2021) | Ndo-linear
50 1 - O Autor | Linear
T ~ o == e Autor | Ndo-linear
1 =
8.0 t+ ()
,,G 7.0 4 O
€ ol n °
% | N\ O
o 50+ L o]
o N\
| n
@ 40 ~
3.0 + S ~
20 ¥+ k ~
1 ]
1.0 +
0.0 e L L e s e L e B '
0.0 0.2 04 0.8 1.0 1.2 14 1.6
A-B (m)

Fonte: autor.



177

Figura 7.7 — Campos de temperatura obtidos para os modelos linear e ndo-linear de conducéo de calor
do exemplo numérico 7.4.1

Modelo de condugao linear

1,000E+01
9,454E+00
8,909E+00
8,363E+00
7,817E+00
7,271E+00
6,726E+00
6,180E+00

5,634E+00
5,089E+00

Modelo de condug¢do nao-linear

1.000E+01
9.060E+00
8.120E+00
7.179E+00

6.239E+00
5.299E+00
4.359E+00
3.419E+00

2.478E+00
1.538E+00

Fonte: autor.
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A partir dos dados mostrados anteriormente, foi possivel verificar a correta
implementacdo do codigo de analise térmica por conducédo de calor linear e ndo-linear em
regime estacionario por meio da elevada proximidade de resultados obtidos em relagdo aqueles
apresentados por Salomdo (2021). Portanto, para que a andlise térmica seja efetuada
adequadamente, ficou evidenciado que é necessario avaliar os parametros dependentes da
temperatura, principalmente em casos destes serem sensiveis a sua variacdo, conforme pdde ser
visto neste exemplo em que os resultados obtidos para o problema linear e ndo-linear

apresentaram uma diferenca que néo € desprezivel.
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8 TERMOMECANICA

Termomecénica é um ramo da fisica (multifisica) originada a partir do acoplamento
entre 0 campo térmico e o campo mecanico. No a@mbito da modelagem computacional, a
simulacdo multifisica pode ser definida como simulacdo simultanea de diferentes aspectos de
sistemas fisicos e as interagdes entre 0os mesmos. Nesse contexto, “fisica” em “multifisica”
significa um campo fisico, o qual é uma variavel de estado fisico que varia em relacdo ao espaco
e/ou tempo de acordo com as leis fisicas para a sua evolugdo ou equilibrio. Assim, um campo
é uma distribuicdo espacial dependente do tempo de uma variavel de estado em um problema
transiente ou uma distribuicéo espacial de uma varidvel de estado em um problema de equilibrio
(Liu, 2018).

A relacéo entre diferentes campos fisicos pode ser estabelecida através de acoplamentos,
0s quais podem ser classificados como unidirecionais ou bidirecionais de acordo com a forma
como os dois campos interagem entre si. Um acoplamento é dito unidirecional quando, para um
determinado tipo de interacdo, um campo € influente sobre o outro, porém o contrério ndo é
valido, enquanto é classificado como bidirecional quando os dois campos exercem uma
influéncia matua por meio dos mecanismos fisicos relevantes (Liu, 2018).

Do ponto de vista operacional (técnicas de solugdo), o acoplamento em problemas
multifisicos pode ser classificado em dois tipos, implicito (direto) ou explicito (sequencial). Em
um sistema acoplado implicitamente (diretamente), € montado um sistema de equacGes
matriciais algébricas baseado em todos os mecanismos fisicos relevantes e entdo resolvido, no
entanto, pode ser desvantajoso em termos de custo computacional elevado. Alternativamente,
em um sistema acoplado explicitamente (sequencialmente), cada um dos campos fisicos é
solucionado de forma isolada e sequencial, ou seja, a solu¢do do primeiro conjunto de equacdes
governantes € passada para 0 segundo conjunto de equacBes governantes e assim
sucessivamente, até a obtencdo de uma solucéo final (Liu, 2018).

Para o desenvolvimento do presente trabalho considera-se modelo termomecéanico
unidirecional explicito, muitas vezes chamado de modelo desacoplado. Neste modelo o campo
de temperatura influencia no campo mecanico, porém despreza-se a geracdo de calor por
plastificacdo ou atrito no equilibrio térmico.

Dessa forma, ao empregar a teoria em questdo, considera-se que ndo ha a interferéncia
do campo mecanico sobre o campo térmico ao longo da analise, procedendo a resolugéo

separada de cada um dos campos fisicos.
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8.1 Termoelasticidade

Para um determinado passo de tempo t, resolve-se primeiramente o campo de
temperatura atuante sobre o corpo analisado. Em seguida, 0 campo mecanico é solucionado
considerando a influéncia do campo térmico, acompanhado de deformacdes térmicas e tenses
decorrentes destas. Caso as propriedades mecanicas do corpo sejam definidas em funcéo da
temperatura, torna-se necessaria a reavaliacdo de seus valores a cada passo/iteracao de analise
em que a mudanca de temperatura seja verificada, previamente a resolucdo do problema
mecanico.

No caso da analise termoelastica, efetua-se a substituicdo do ultimo termo da soma da
Equacao (80), referente a variacdo da energia de deformacéo elastica, pela seguinte expressao
correspondente a variacao da energia de deformacao termoeléastica:

oU = f S{FSE;;dV, (347)
Ve

0
sendo SiTjE a tensdo de Piola-Kirchhoff de segunda espécie inerente ao campo termoelastico.
Os resultados do campo térmico influenciam somente na parcela volumétrica do tensor
de tensdes e ao proceder a resolucdo do problema mecéanico, uma tensao proveniente do campo
térmico € aplicada. A seguir sdo descritas as formulagGes correspondentes ao campo
termoelastico para os modelos constitutivos hiperelasticos de Saint-Venant-Kirchhoff e Rivlin-

Saunders-Hartmann-Neff.
8.1.1 Termoelasticidade com modelo constitutivo de Saint-VVenant-Kirchhoff

Salienta-se que as formulagdes apresentadas neste item para 0 modelo constitutivo de
Saint-Venant-Kirchhoff sdo destinadas a analise termoelastica em regime de deformacdes
pequenas e moderadas, sendo inapropriada para a analise de problemas envolvendo grandes
deformac6es. A deformacéo (aplicada na forma de residuo em tenséo) resultante do problema
térmico (E"¢™™) é descrita pela seguinte expressao:

Etherm = (0 — 019) I (348)
em que a; e 6% correspondem, respectivamente, ao coeficiente de expanséo térmica linear e &

temperatura inicial de referéncia do corpo.
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Solucionado o campo térmico, é necessario proceder a resolucao do problema mecanico
elastico levando-se em consideracdo a parcela de tensdo/deformacdo de origem elastica
acrescida de uma tenséo proveniente do campo térmico. Tal condi¢do pode ser atendida a partir
da subtracdo da tensdo de origem térmica (composta apenas pela parcela volumétrica) em
relagdo a tensdo eldstica:

STE — Selast _ Stherm (349)

na qual St"¢™™ ¢ calculada como:
Stherm — K&ﬁherml (350)
glgherm — Tr(IEtherm) (351)

sendo K o bulk modulus e 5*¢™™ a deformagcéo volumétrica oriunda do campo térmico.
Destaca-se que, como St¢™™ ¢ independente da componente mecanica da deformagéo
de Green neste caso, 0 tensor constitutivo termoelastico tangente é equivalente ao tensor

constitutivo elastico tangente, sem nenhuma contribuicédo proveniente do campo térmico.

8.1.2 Termoelasticidade com modelo constitutivo de Rivlin-Saunders-Hartmann-Neff

Ja neste item sdo apresentadas as formulacBes inerentes ao modelo constitutivo de
Rivlin-Saunders-Hartmann-Neff, as quais sdo adequadas para a resolucdo de problemas
termoelésticos em regime de grandes deformagdes. Primeiramente, escreve-se a expressdo da
variagdo da energia termoelastica volumétrica (§¥7°")TE da seguinte maneira:

(6qjvol)TE — (Svol)TE : SE (352)
sendo ($V°Y)TE a tensdo termoelastica volumétrica de Piola-Kirchhoff de segunda espécie e SE
a variacdo da deformacéo de Green.

Lembrando-se da correspondéncia existente entre a tensdo hidrostatica de Cauchy e a
componente volumétrica da tensdo de Piola-Kirchhoff de segunda espécie, conforme
apresentada no item 4.3.5, a tensdo termoeléstica é calculada como segue:

a]
voINTE _ hyelast __ .therm — hyelast _ .therm .
(SWPODTE = [(sh)elast — stherm]g] = [(shyelast — stherm] - : OF 353)

— [(Sh)elast _ Stherm]@vol : OF
sendo (s")e!est o valor escalar da tensdo hidrostatica elastica, s#¢™™ o valor escalar da tens&o
hidrostatica proveniente do campo térmico e €"°! a direcdo hidrostatica Lagrangeana da
deformacao, dada pela Equacéo (191). Finalmente, (s™)¢!ast e sthe™™ s3o dados por:
(Sh)elast — Kgslast (354)
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Stherm — Kgltiherm (355)
sendo K o bulk modulus. egl@st e gthe™™ correspondem, respectivamente, a deformacio

elastica volumétrica e a deformacao térmica volumétrica, dadas por:

2n—-1 __ 7—(2n+1)
elast _ [] ] ] (356)
& 4n
giherm = g, (0 — 019) = @,A0 (357)

sendo a,, 0 coeficiente de expansao térmica volumétrica (usualmente admitido como a,, = 3,
em que a; é referente ao coeficiente de expansdo térmica linear), 8%} a temperatura inicial de
referéncia do corpo e A9 a variagdo da temperatura. Salienta-se que £'*St corresponde a
deformacéo volumétrica assumida para 0 modelo constitutivo de Hartmann-Neff.

Dessa forma, através da analogia ao problema elastico linear, é possivel reescrever a
Equacao (353) como:

(Svol)TE — K(gslast — ggherm)(gvol — Kgglast@vol — Kgﬁhermcgvol (358)
Ainda, agrupando os termos referentes as componentes de tensao elastica e de tenséo

térmica da expressdo anterior, tem-se:

(Svol)TE — (Svol)elast _ (Svol)therm (359)

sendo que:
(Svol)elast — Kgslastevol (360)
(Svol)therm — Stherm — Kgﬁherm@vol (361)

Ressalta-se que, para o calculo da parcela volumétrica do tensor constitutivo tangente,
mostrado na Equacdo (170), deve-se, primeiramente, escrever a Equacdo (358) de forma

completa, ou seja, incluindo-se a Equacdo (356):

K
Svol TE _ 2n—-1 _ 7—(2n+1) evol - K therm(gvol
(5% 4n U J | &v (362)

(Svol)elaSt

Na sequéncia, escreve-se a variagdo da tensdo termoeléstica como:

0 Svol elast __ Svol therm
(svotyrs _ A16™D aE( )"

a(Svol)elast
- 9E

a(gvol

a(svol)elast 62]
- 0E 9E ® O -
Portanto, a expressdao do tensor constitutivo termoelastico tangente volumétrico
(€¥°HTE fica dada por:

 OF — Kegherm

: 6F — Kelherm SE
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a(svol)elast 02]
JE JE @ 0E

na qual (Gvob)elast g (gvobytherm correspondem, respectivamente, as parcelas elastica e

(cgvol)TE — _ Kgéherm

— ((gvol)elast _ ((Svol)therm (364)

térmica do tensor constitutivo tangente volumeétrico, sendo aquela definida na Equacéo (170) e
esta, em especifico, dada por:
0%]
0E Q JE
sendo que o termo 02 /9E & OE foi definido previamente na Equacéo (199).

Ith — h
((gvo )t erm Kglti erm

(365)

Portanto, nos problemas termoelasticos, o tensor constitutivo tangente total (€totat) é
obtido por meio da subtracdo da parcela térmica (volumétrica) em relacdo a parcela elastica

total:

elast

@total — elast _ (Q:vol)therm — (Q:vol 4 @isocl 4 (g;isocz)

Destaca-se que ndo foi encontrado na revisdo bibliografica encaminhamento semelhante

_ (@vol)therm (366)

ao proposto neste trabalho para a consideracdo do efeito de temperatura em problemas
termomecanicos. Dessa forma, entende-se que as Equactes (362) e (365) sdo originais deste
trabalho.

8.2  Termo-elasto-plasticidade

O modelo termo-elasto-plastico alternativo empregado neste trabalho é uma extensdo
do modelo termoelastico descrito no item 8.1.2 e passa a considerar o0 modelo elasto-plastico
adequado para grandes deformacbes, o qual foi introduzido no item 5.2, atribuindo-o a
dependéncia em relacdo aos niveis de temperatura. Dessa forma, o presente modelo termo-
elasto-plastico alternativo consiste no aprimoramento daquele apresentado por Rigobello, Coda
e Munaiar Neto (2014), que era valido somente para problemas em regime de deformacGes
pequenas e moderadas.

Semelhantemente & resolugdo de problemas termoelésticos, a estratégia desacoplada
adotada para a resolucdo de problemas termo-elasto-plasticos pode ser segmentada em trés
etapas:

a. Resolucdo do problema térmico, conforme os procedimentos indicados no

pseudocodigo da Figura 7.2;
b. Atualizacdo dos parametros mecéanicos (e também do coeficiente de expanséo

térmica) dependentes da temperatura em funcdo do campo térmico determinado
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anteriormente: médulos de elasticidade volumétrico (bulk modulus) e transversal,
tensdo de escoamento e modulos de encruamento iso6tropo e cinematico;
c. Resolucédo do problema mecéanico transiente (dindmico ou quase-estatico), conforme

0 pseudocodigo da Figura 3.5.

O modelo termo-elasto-plastico implementado neste trabalho apresenta relacéo tenséo-
deformacdo do tipo bilinear para o material em todos os niveis de temperatura, conforme
esquematizado na Figura 8.1 (tracdo uniaxial). Caso o nivel de temperatura seja pertencente a
um determinado intervalo compreendido entre as temperaturas 6, e 6,, 0s valores das
propriedades térmicas e mecéanicas dependentes da temperatura sdo calculadas através da

interpolacdo linear utilizando os seus valores conhecidos nos niveis de temperatura 8, e 9,.

Figura 8.1 — Relacdo tensdo—deformacao termo-elasto-plastico bilinear

O A
0,
oy (6,)
0,
oy (02)
)

Fonte: autor.

Apesar das opinides controversas na literatura acerca da necessidade ou ndo de corrigir
o nivel de deformacdo pléstica em funcéo da variacdo de temperatura (a cada passo de analise
apos a resolucdo do problema térmico), no presente trabalho foi assumido que ndo é preciso
efetuar essa correcdo, conforme descrito no trabalho de Franssen (1990), o qual afirma que a
deformacéo plastica ndo é afetada pela variacdo de temperatura. Essa hipotese também foi
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admitida por outros autores como Lien et al. (2010) e Rigobello, Coda e Munaiar Neto (2014),
cujos trabalhos também envolvem analises termoplasticas.

Dessa forma, o equilibrio resultante do presente acoplamento termomecéanico
(considerando a evolugdo temporal de um determinado instante s para o proximo instante s +

1) é esquematizado graficamente na Figura 8.2 (tragcdo uniaxial).

Figura 8.2 — Equilibrio resultante do acoplamento termomecénico
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/
/
/
/
/
// 03 +1
—
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e &
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£

Fonte: adaptado de Lien et al. (2010).

Em termos de implementacdo, é preciso adaptar a tensdo de Piola-Kirchhoff de segunda
espécie total (St°t*) e o tensor constitutivo tangente total (€t°¢4!). A tensdo completa no caso

do modelo termo-elasto-plastico passa a ser dada pela Equacéo (367):
Stotal — Selast _ Stherm _ Splast

elast

— (Svol + gisocl + Sisocz)

plast

_ (Svol)therm (367)
_ (Sisocl + Sisocz)
Analogamente a adaptacdo da tensdo de Piola-Kirchhoff de segunda espécie completa

para contemplar as componentes térmica e plastica, o tensor constitutivo termo-elasto-plastico

tangente também pode ser determinado através da soma da parcela eléstica e, caso existam, das
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parcelas térmica e pléstica, as quais podem ser calculadas, respectivamente, a partir das

Equacdes (169), (365) e (263). Portanto, €t°t* passa a ser definido como:
(Stotal — (gelast _ (gtherm _ (Zplast

elast

— ((gvol + (gisocl + (gisocz)

plast

_ ((Svol)therm (368)

_ ((gisocl + (gisocz)
8.3  Termo-visco-elasto-plasticidade

Finalmente, ao combinar os modelos alternativos de viscosidade e de termo-elasto-
plasticidade apresentados, respectivamente, nos itens 6.2 e 8.2, pode-se construir o modelo
termo-visco-elasto-plastico alternativo para grandes deformacgdes. De forma semelhante aos
modelos termoelastico e termo-elasto-plastico supracitados, primeiramente calcula-se a tenséo
de Piola-Kirchhoff de segunda espécie completa (§t°¢@!) por meio da soma da componente

elastica e, caso existam, das componentes térmica, pléstica e viscosa:
Stotal — Selast _ Stherm _ Splast + Svisc

elast

— (Svol + Sisocl + Sisocz) _ (Svol)therm (369)

plast visc

_ (Sisocl 4+ Sisocz) + (Svol + Sisocl + Sisocz)
Analogamente a adaptacdo da tensdo de Piola-Kirchhoff de segunda espécie mostrada
acima, o célculo do tensor constitutivo tangente completo (€t°t#!) pode ser efetuado a partir da

soma de cada uma de suas parcelas envolvidas no problema termo-visco-elasto-plastico:

(Stotal — (Selast _ Gtherm _ @plast + (Svisc

elast

— (Q:vol + C(/isocl + Q:isocz) _ (Q:vol)therm (370)

plast visc

— (@isoet 4 isoc2) + (@Ol 4 Eisoct 4 gisocz)
sendo que as parcelas elastica (€¢'st), térmica (€"¢™™), plastica (EP!45t) e viscosa (€7¢) do
tensor constitutivo tangente podem ser calculadas por meio das Equacdes (169), (365), (263) e
(277), respectivamente.

Os procedimentos para a resolucdo do problema termo-visco-elasto-plastico s&o
semelhantes aqueles apresentados para 0 modelo termo-elasto-plastico no item 8.2. Em cada
passo de tempo da analise transiente, resolve-se primeiramente o problema térmico e, a partir
do campo de temperatura determinado, atualiza-se os valores das propriedades mecanicas e do

coeficiente de expansdo térmica dependentes da temperatura para, finalmente, proceder a
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resolucéo do problema mecénico. Na Figura 8.3 é apresentado o pseudocddigo que resume as

operacdes realizadas na andlise termo-visco-elasto-plastica.

Figura 8.3 — Pseudoctdigo da anélise termo-visco-elasto-pléastica

O 00 N o L b W N B

Leitura dos dados de entrada

o . . ole=0}
Primeira tentativa de temperatura como temperatura no tempo inicial (6 = 6 )

Primeira tentativa de posigdao como posi¢ao inicial (17 = )?)

Calculo da matriz pseudo-inversa — Equagdes (134) e (135)

Calculo da matriz de massa (M) — Equacdo (118) (para cada elemento)
Calculo da matriz de amortecimento (C) = Equacgao (121)

Imposicao das condi¢des de contornoem M e [17"06’“ - glé - C?O] — Equacdo (131)
0
Calculo da aceleragdo no primeiro passo de tempo (170) — Equacao (131)

Parai=1 até n? de passos (etapa incremental)
Soma do passo de tempo (t « t + At)

----------------------- Inicio do campo térmico-------------------------

Calculo da matriz de condutividade do dominio (K) — Equacgao (311)
Calculo da matriz de condutividade no contorno (0) = Equagao (311)
Calculo da matriz de capacitancia (M) — Equagao (311)

Calculo do vetor de fluxo de calor do dominio (f (1) -

Equacgdes (311) e (314)

Calculo do vetor de fluxo de calor imposto (fT3) -

Equacgdes (311) e (314)

Célculo do vetor de fluxo de calor por conveccdo e radiacdo (f{m}) -
Equagdes (311) e (314)

Calculo da matriz hessiana térmica (H™}) - Equaco (340)

Célculo do vetor residuo térmico (g) — Equacio (337)

Imposicdo das condi¢bes de contorno em HT} e g

Calculo da corre¢do da temperatura (Aﬁ) — Equacdo (339)
Atualizagdo da temperatura 6 « 6+ A6) - Equacgado (345)

Célculo da norma ||A§|| para a verificacdo de convergéncia

------------------------ Fim do campo térmico-------------------------

Atualizacdo dos valores das propriedades mecénicas e do coeficiente de
expansao térmica dependentes da temperatura

----------------------- Inicio do campo mecanico-----------------------
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-------------------------- Inicio do campo mecanico------------------um---

26 Calculo da forga externa transiente (ﬁeXt(t))

27 Calculo do vetor auxiliar (_js — Equagdo (127)

28 Calculo do vetor auxiliar ﬁs — Equacdo (128)

29

30 Célculo da tensdo total (§t°%) - Equacg3o (369)

31 Célculo do tensor constitutivo tangente total (€t°t*) - Equac3o (370)
32 Calculo das forgas internas (Fint) - Equacdo (98)

33 Calculo da matriz Hessiana estdtica (H og¢4ricq) = Equacdes (113) e (114)
34 Adigao da parcela dinamica a H o¢4¢icq = Equagao (130)

35 Célculo do vetor residuo mecanico (§) — Equagdo (129)

36 Imposi¢cdo das condi¢des de contornoem He g

37 Calculo da corregdo da posicdo (A?) — Equacdo (109)

38 Atualizagdo da posigdo (Y « Y + AY) > Equagdo (110)

39 Calculo da norma ||A17|| para a verificagdo de convergéncia

40 Atualizac3o da velocidade (?) — Equac3o (126)

41 Atualizac3o da aceleragdo (1._;) — Equag3o (125)

42

43 Calculo das tensdes de Cauchy — Equacgdo (132)

--------------------------- Fim do campo mecanico------------------------
44 Exportacdo de dados — pds-processamento
45 Fim do loop

Fonte: autor.

Por fim, ressalta-se que, apesar dos procedimentos indicados no pseudocodigo da Figura
8.3 sejam especificamente referentes a andlise de solidos termo-visco-elasto-plasticos em
regime transiente dinamico, é possivel também realizar analises considerando modelos mais
simples a partir desse. Caso deseje efetuar uma andlise transiente quase-estatica de sélido
termo-elasto-plastico, por exemplo, basta desprezar as contribuicdes inerciais e de
amortecimento da analise dindmica e as variaveis reoldgicas inerentes ao modelo de viscosidade.

Comenta-se que as propriedades viscosas também podem ser dependentes da
temperatura e a sua atualizacdo é efetuada independentemente do campo mecanico, ou seja,

sem ocasionar alteragdo no tensor constitutivo tangente.

8.4  Exemplos numéricos

Nesta secdo sdo apresentados, ao todo, sete exemplos numéricos termomecanicos,

organizados e descritos resumidamente como segue:
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Exemplo com objetivo de validar o modelo termoelastico (térmico linear)
implementado utilizando o modelo constitutivo hiperelastico de Saint-Venant-
Kirchhoff;

Exemplo com objetivo de verificar o comportamento do modelo termoelastico
proposto para grandes deformacg6es utilizando o modelo constitutivo hiperelastico
de Rivlin-Saunders-Hartmann-Neff;

Exemplo com objetivo de validar o modelo termoelastico ndo-linear implementado
considerando tanto as propriedades mecénicas e quanto as propriedades térmicas
dependentes dos niveis de temperatura;

Exemplo com objetivo de validar o modelo termo-elasto-plastico implementado
para analise de problemas de aquecimento uniforme;

Exemplo com objetivo de validar o modelo termo-elasto-pléstico implementado
para anélise de problemas de aquecimento e resfriamento uniforme;

Exemplo com objetivo de validar o modelo termo-elasto-plastico implementado
para analise de problemas envolvendo transferéncia de calor néo-linear por
conducéo, conveccao e radiagéo;

Exemplo de aplicacdo de carater ilustrativo, com o objetivo de demonstrar a
capacidade resolutiva do codigo computacional desenvolvido para a analise
dindmica do soélido termo-visco-elasto-plastico em mudanca de fase empregando a

formulacéo alternativa proposta no presente trabalho.

Chapa termo-elastica em expansdo térmica transiente

Proposto por Copetti (2002), o presente exemplo numérico consiste na analise transiente

quase-estatica (com os efeitos inerciais e de amortecimento desprezados) de uma barra

submetida a expansédo termoelastica em regime transiente de conducdo de calor linear, com o

objetivo de validar a adequada resolucdo do problema mecénico de um elemento estrutural sob

influéncia do campo térmico transiente.

Este problema também foi analisado numericamente por Saloméo (2021), tratando a

barra como uma chapa termoelastica. Dessa forma, a fim de reproduzir o seu exemplo, a barra

em questao foi considerada como uma chapa termoelastica com o modelo constitutivo de Saint-

Venant-Kirchhoff, sendo desprezados os efeitos térmicos na terceira dimensdo do sélido. O

esquema termomecénico do problema é mostrado na Figura 8.4, enquanto os dados deste

exemplo, retirados do trabalho de Salomdo (2021), sdo apresentados na Figura 85 e a
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discretizacdo adotada na Figura 8.6, com as superficies correspondentes & base e ao topo dos
elementos finitos prismaticos consideradas adiabaticas (visando reproduzir o comportamento

de chapa termoelastica).

Figura 8.4 — Barra analisada termomecanicamente em processo de conducdo de calor transiente com o
campo térmico no instante t = 0

0,2

0,4

1,0

0{t=0} = 10 cos(2 7z x)

Fonte: autor.
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Figura 8.5 — Dados adotados no exemplo de validacdo 8.4.1
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Fonte: autor.

Figura 8.6 — Discretizacéo adotada para o exemplo 8.4.1
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Fonte: autor.

A Figura 8.7 e a Figura 8.8 séo referentes, respectivamente, aos graficos com resultados

obtidos de temperatura e de deslocamento ao longo do comprimento da barra para trés instantes

distintos de tempo. E possivel notar que os valores determinados numericamente sdo bastante

les apresentados por Copetti (2002) e Salomao (2021).

8o aque

laca

s

proximos em re
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Figura 8.7 — Gréficos temperatura x posicao ao longo do comprimento do exemplo numérico 8.4.1
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Fonte: autor.
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Figura 8.8 — Graficos Deslocamento x posi¢do ao longo do comprimento do exemplo numérico 8.4.1
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Posicdo x

Fonte: autor.
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J& a Figura 8.9 e a Figura 8.10 mostram a configuracdo deformada (escala real) da

estrutura analisada no instante t = 0 e t = 0,2 respectivamente.

Figura 8.9 — Configuracéo da estrutura do exemplo numérico 8.4.1 no instante t = 0

Deslocamento em x

4,122€-02
3,191€-02
2,261E-02
1,331E-02
4,010€E-03
-5,291€E-03

-1,459€-02
-2,389E-02
-3,319€-02
-4,250E-02

Deslocamento em y

3,614E-02
2,811E-02
2,008E-02
1,205€-02
4,016E-03
-4,016€E-03

-1,205E-02
-2,008E-02
-2,811E-02
-3,614E-02

Fonte: autor.

Figura 8.10 — Configuracéo da estrutura do exemplo numérico 8.4.1 no instante t = 0,2

Deslocamento em x

7,789E-02
6,923E-02
6,058E-02
5,192€-02
4,327€-02
3,462€-02

2,596E-02
I 1,731€-02
8,654E-03
0,000E+00

Deslocamento em y

3,145€-02
2,446E-02
1,747€-02
1,048€-02
3,494€-03
-3,494E-03
-1,048E-02
-1,747€-02
-2,446E-02
-3,145€-02

Fonte: autor.
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As configuracbes deformadas determinadas com o codigo desenvolvido séo
semelhantes aquelas apresentadas por Saloméo (2021). Portanto, com base na proximidade dos
resultados obtidos em rela¢do aos valores das bibliografias de referéncia, foi possivel validar
com éxito o codigo implementado para a analise termoeléstica utilizando o modelo constitutivo
de Saint-Venant-Kirchhoff.

8.4.2 Cubo termoeléstico sujeito a grandes deformacdes

Este exemplo numérico é destinado a verificacdo do codigo de analise termoelastica
implementada para a resolucdo de problemas em regime de grandes deformacdes utilizando o
modelo constitutivo de Rivlin-Saunders-Hartmann-Neff. Os desenvolvimentos deste item,
subdivididos em trés etapas, foram efetuados a partir de um cubo termoeléstico de dimensGes
unitarias (l, = 1 m para cada um dos lados) apoiado sobre trés superficies deslizantes
(restricbes foram aplicadas nos nos das faces x =0, y =0 e z = 0 nas direcdes x, y e z
respectivamente).

Primeiramente procura-se averiguar a consisténcia do modelo constitutivo em questdo
em regime de pequenas deformacdes através de uma analise comparativa com o modelo de
Saint-Venant-Kirchhoff (validado anteriormente para aplicacdes em problemas termoelasticos
no exemplo numérico 8.4.1), sendo que os resultados devem ser coincidentes nessa condig&o.

Para essa primeira verificacdo, foi considerado para o coeficiente de dilatacdo térmica
linear um valor de ; = 107% °C™*, com aplicagdo de uma variacéo de temperatura equivalente
aAf@ = 10 °C a partir de uma determinada temperatura inicial de referéncia em que o cubo se
encontra na sua configuracdo indeslocada e indeformada. Nessas condi¢des, € esperado que, ao
aplicar a variacdo de temperatura, o valor da variacdo de comprimento (Al) em cada uma das
trés diregOes seja equivalente a Al = a;AB1, = 10~° m. O problema ¢ esquematizado na Figura
8.11.
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Figura 8.11 — Cubo termoelastico sujeito a pequenas deformacdes

A6 00

Fonte: autor.

Os resultados de deslocamentos obtidos pelo codigo computacional desenvolvido
constam na Figura 8.12 e, como pode ser observado, os seus valores nas faces livres foram
equivalentes a variagdo de comprimento prevista (Al = 107°m) para cada uma das trés
direcbes. Devido a igualdade dos resultados obtidos para os modelos de Saint-Venant-
Kirchhoff e Rivlin-Saunders-Hartmann-Neff (fato que ja era esperado em regime de pequenas
deformacdes, conforme comentado no inicio deste item), € apresentado um Unico esquema

valido para ambos modelos.

Figura 8.12 — Deslocamentos obtidos para o cubo termoeléstico sujeito a pequenas deformacdes

Deslocamento em x Deslocamento em y Deslocamento em z

1.000E-05
8.889E-06
7.778E-06
6.667E-06

1.000€-05
8.889E-06
7.778E-06
6.667E-06

1.000E-05
8.880E-06
7.778E-06
6.667E-06
5.556E-06

5.556E-06 5.556E-06

4.445E-06 4.445E-06

4.445E-06

3.333e-06

2.222€-06
I 1.111E-06
0.000E+00 |

3.333€-06
2.222€-06
1.111E-06

3.333E-06

2.222E-06
. 1.111E-06
0.000E+00 |

0.000E+00 "

Fonte: autor.

Verificada a consisténcia do modelo de Rivlin-Saunders-Hartmann-Neff no problema
termoelastico em regime de pequenas deformacdes, procede-se a comparacao dos dois modelos
constitutivos em regime de deformacgdes moderadas (referente a um intervalo aproximado de
0,75 < J < 1,25). A andlise foi efetuada por meio da imposicéo de variacdo da temperatura

(AB) uniforme no cubo termoelastico a cada passo, considerando intervalo de [—8, 8] °C para
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AB com incremento de §A8 = 0,2 °C, totalizando 81 passos. Os dados e a discretizacédo

adotados para a segunda etapa deste exemplo sdo apresentados, respectivamente, na Figura 8.13

e na Figura 8.14.
Figura 8.13 — Dados adotados no teste de validacédo 8.4.2
Parametros mecanicos
E: 1Pa
V: 0,0
Parametros térmicos
ap: 0,01°C?
Dados geométricos
Comprimento: Im
Largura: 1m
Altura: 1m
Dados da malha
N2 nds: 32
N2 elementos finitos: 2
N2 pontos de Hammer 12
Grau de aproximacdo na espessura: | Linear

Outros dados

Tolerancia: 10°
Fonte: autor.

Figura 8.14 — Discretizagdo adotada para o exemplo 8.4.2

=
s

Fonte: autor.
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A andlise dos resultados obtidos foi efetuada por meio dos graficos plotados de

jacobiano por variacao da temperatura (J x A@), conforme exibidos na Figura 8.15.

Figura 8.15 — Gréfico J x A6 do exemplo numérico 8.4.2 contemplando regime de deformacdes
moderadas considerando os modelos constitutivos de: Saint-Venant-Kirchhoff e Rivlin-Saunders-
Hartmann-Neff

1.25

Saint-Venant-Kirchhoff T
1.20

emmmRivlin-Saunders-Hartmann-Neff

1.15

1.10

1.05

- 1.00

0.95

0.90

0.85

0.80 T

0.75

A6 (°C)

Fonte: autor.

A partir do gréfico, é possivel notar a semelhanca de comportamento do cubo
termoelastico entre os modelos constitutivos analisados em regime de pequenas deformacdes,
conforme ja apresentado na primeira etapa de analise. No entanto, a medida que o corpo
apresenta maiores deformacdes volumétricas em funcdo de maiores variages de temperatura,
sdo verificadas diferengas mais relevantes entre os valores obtidos para o jacobiano a um
mesmo nivel de Af. Dessa forma, é perceptivel a necessidade de uma avaliagdo mais rigorosa
do comportamento do material ao realizar uma analise termoelastica em regime de grandes
deformacdes.

Finalmente, na terceira etapa da analise, busca-se averiguar a resposta termoelastica do

cubo em regime de grandes deformacdes por meio da contracéo térmica em funcao da variagédo



199

negativa de temperatura imposta de até A6 = —300 °C utilizando o modelo constitutivo de
Rivlin-Saunders-Hartmann-Neff, conforme mostrado na Figura 8.16. Os dados e a discretizacdo

adotados correspondem aqueles apresentados na Figura 8.13 e da Figura 8.14, respectivamente.

Figura 8.16 — Cubo termoelastico sujeito a grandes deformagdes

Fonte: autor.

A Figura 8.17 apresenta graficamente os resultados obtidos de J x |A8] (jacobiano X
variacdo da temperatura) para os modelos constitutivos de Rivlin-Saunders-Hartmann-Neff e
Saint-Venant-Kirchhoff, sendo este mostrado apenas para fins comparativos uma vez que esse
nivel de deformacdo volumétrica associado a variacdo de temperatura ndo ocorre na pratica, de
modo a evidenciar um melhor comportamento geral da proposta totalmente ndo-linear de
acoplamento termomecénico do que aquela quase-linear utilizada, por exemplo, por Copetti
(2002) e Salomao (2021). Ja na Figura 8.18 é apresentada a configuracdo deformada do cubo
termoelastico no Ultimo passo de andlise (A8 = —300 °C) com os campos de deslocamento nas

direcOes x, y e z.
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Figura 8.17 — Gréfico J x |A6| do exemplo numérico 8.4.2 contemplando regime de grandes

deformacdes considerando os modelos constitutivos de Rivlin-Saunders-Hartmann-Neff e Saint-

1.0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Venant-Kirchhoff

es=wRivlin-Saunders-Hartmann-Neff

50 100 150 200 250

1461 (°C)

Fonte: autor.

300
|61 (°C)
Saint-Venant-Kirchhoff
0 5 10 15 20 25 30 35 40 45 50 55 60
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Figura 8.18 — Configuracdes atuais do cubo termoeléstico do exemplo numérico 8.4.2 no ultimo passo
de analise (A® = —300) utilizando 0 modelo constitutivo de Rivlin-Saunders-Hartmann-Neff
Deslocamento x: Deslocamento y: Deslocamento z:

0.000E+00 0.000E+00 0.000E+00
-3.656E-02 -3.656€-02 -3.656E-02
-7.313€-02 -7.313€-02 -7.313€-02
-1.097E-01 -1.097E-01 -1.097E-01
-1.463€-01
-1.828E-01

-1.463€-01
-1.828E-01

-1.463€-01
-1.828€-01
-2.194€-01

-2.559E-01
l -2.925E-01
-3.201E-01

-2.194€-01

-2.559E-01
l -2.925€-01
-3.291E-01

-2.194E-01

-2.559E-01
l -2.925E-01
-3.291€-01

Fonte: autor.

Lembrando-se dos resultados apresentados no exemplo numérico 4.4.4, referente a
validacdo do modelo constitutivo de Rivlin-Saunders-Hartmann-Neff, foi verificado que o
mesmo respeita a condicdo de crescimento dado pela Equacao (145). A partir do gréafico acima,
pode ser observado também neste exemplo que o modelo termoelastico implementado
utilizando o modelo de Rivlin-Saunders-Hartmann-Neff respeita a condi¢do de crescimento (de
modo a impedir a inversdo ou a degeneracdo do material), evidenciando o comportamento
esperado. Portanto, foi verificada a validade do modelo termoelastico implementado para
grandes deformagoes.

Quanto ao comportamento do cubo termoelastico utilizando o modelo de Saint-Venant-
Kirchhoff, nota-se através do grafico acima que, ao atingir uma variacdo de temperatura de
aproximadamente |A6| = 50 °C, o jacobiano passa a assumir valor nulo, indicando que o
material deixa de existir.

Portanto, em todos os exemplos numéricos termomecanicos subsequentes, foi

empregado somente o0 modelo constitutivo de Rivlin-Saunders-Hartmann-Neff.

8.4.3 Viga termoelastica com conducdo de calor ndo-linear submetido ao carregamento

transversal uniformemente distribuido

Analisado originalmente por Zhang et al. (2020), este exemplo numérico é referente a
analise transiente quase-estatica de uma viga termoelastica engastada e livre sujeita ao
carregamento mecanico transversal uniformemente distribuido de valor constante e aos fluxos
de calor de valor constante (imposto) e por convecgdo. Objetiva-se, por meio deste exemplo,
validar o modelo termoeléstico ndo-linear implementado, considerando propriedades

mecanicas e térmicas dependentes dos niveis de temperatura.
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O problema termomecénico analisado € esquematizado na Figura 8.19, incluindo a
identificacdo dos pontos B (localizado na face superior da extremidade livre) e C (situado no
centro da face superior), nos quais foram aferidos os deslocamentos e as temperaturas,
apresentados mais adiante. J& os dados deste exemplo s8o mostrados na Figura 8.20 e a
discretizacdo adotada na Figura 8.21, com as superficies laterais (correspondentes a base e ao

topo dos elementos finitos prismaticos), inferior e do engaste da viga assumidas adiabaticas.

Figura 8.19 — Viga termo-elastica submetida aos carregamentos mecanicos e térmicos

Configuracao geométrica inicial:

Y

X

Problema térmico: Problema mecanico:

Super ficie com temperatura prescrita
(condi¢io de contorno de primeira espécie)

Fluzode calor imposto (§) saindo pela super ficie

(condicdo de contorno de segunda espécie)

ANZAONENEN i ict
VRIS Fluzo de calor por convecgio entrando pela super ficie

= (condicao de contorno de terceira espécie)

Fonte: autor.
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Figura 8.20 — Dados adotados no exemplo de validacdo 8.4.2

Grau de aproximacao na espessura:
a (Método das Diferencas Finitas):

At:

610} (temperatura de referéncia):
Fonte: autor.

Fluxo de calor q:

he:
N2 pontos de Hammer

Carga distribuida g:
Comprimento:
Altura:

Largura:

N2 nos:

N2 elementos finitos:
Tolerancia:

ag.

Figura 8.21 — Discretizacao adotada para o exemplo 8.4.2

RS
..l//@.»"t//‘v?l S
N
it

'éw"

Fonte: autor.
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Os resultados obtidos foram organizados em dois gréaficos, sendo o primeiro de
temperatura por tempo e o segundo, de deslocamento absoluto (resultante no ponto B e na
direcdo do eixo z no ponto C) por tempo, apresentados, respectivamente, na Figura 8.22 e
Figura 8.23.

Figura 8.22 — Gréfico temperatura x tempo do exemplo numérico 8.4.2

318.15
313.15 +
< i 00000000 OCOOCOOIOOOOOODODO
© 308.15 + >
=1 °
o+ o
s 4
8_ °
GE) 303.15 -
|_
essmms Autor | Ponto B
298.15 - Autor | Ponto C
e o o o Zhang et al. (2020) - ABAQUS | Ponto B
e o o o Zhang et al. (2020) - ABAQUS | Ponto C
293.15 + + + + + + + + + + + +
0 400 800 1200 1600 2000 2400
Tempo (s)

Fonte: autor.

Figura 8.23 — Grafico deslocamento x tempo do exemplo numérico 8.4.2

0.7
| | s Autor | Ponto B
06 1 Autor | Ponto C
| | ® ® @ @ Zhang et al. (2020) - ABAQUS | Ponto B
'é* o5 JLeeee Zhang et al. (2020) - ABAQUS | Ponto C
E
L o4 ¢
c
()
S
s 03 1
&)
[}
s
do2¢
0.1 +
oooooooooooooooooooo""
o000
0.0 | ....Iooooloooolooool | | | | |
0 400 800 1200 1600 2000 2400

Tempo (s)

Fonte: autor.
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Os campos de temperatura e de deslocamento vertical y no instante final da analise (t =
2400s) séo ilustrados por meio da escala de cores, respectivamente, na Figura 8.24 e Figura
8.25.

Figura 8.24 — Campo de temperatura do exemplo numérico 8.4.2 no instante t = 2400s
3.173E+02

3.152E+02
3.130E+02
3.109E+02
3.088E+02
3.067E+02
3.045E+02
3.024E+02

3.003E+02
2.981E+02

Fonte: autor.

Figura 8.25 — Campo de deslocamento vertical do exemplo numérico 8.4.2 no instante t = 2400s
0.000E+00

-7.325E-02
-1.465E-01
-2.198E-01
-2.930E-01
-3.663E-01

-4.395E-01
-5.128E-01

-5.860E-01
-6.593E-01

Fonte: autor.

Finalmente, com base na proximidade dos resultados obtidos pelo cédigo desenvolvido
em relacdo aqueles apresentados por Zhang et al. (2020), observada ao longo do
desenvolvimento do presente exemplo numérico, verificou-se, com sucesso, a validade do
coédigo implementado para a resolugdo de problemas termoelasticos em regime transiente
quase-estatico, com propriedades mecanicas e térmicas dependentes dos niveis de temperatura

(transferéncia de calor ndo-linear).
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8.4.4 Ensaio de viga metalica termo-elasto-plastica aquecida uniformemente

Este exemplo numérico busca reproduzir os resultados experimentais apresentados por
Rubert e Schaumann (1986), com os ensaios conduzidos em vigas metalicas que possuem secao
transversal do tipo IPE8O, simplesmente apoiadas e carregadas no meio do véo, conforme
apresentado na Figura 8.26, e entdo submetidas a um aquecimento uniforme ao longo de todo
0 seu comprimento, em regime de analise quase-estatico. A analise foi efetuada para quatro

niveis distintos de carregamento: 20%, 50%, 70% e 85% do valor da carga Gltima de ruptura
(F)-

Figura 8.26 — Viga metélica com se¢do IPE8O simplesmente apoiada e sujeita a um carregamento
concentrado no meio do véo

Configuragao geométrica inicial:

1140 w2

Apoio mével
(z=1140 mm)

b
T 46,0
Apoio fixo 21,1 21,1
(z=0mm) o
Dimensoes da se¢ao transversal (em mm): l l
ol ©
5| 2
N.\

Fonte: autor.
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Devido a auséncia de informacdes a respeito do valor da carga ultima F, na bibliografia
de referéncia, 0o mesmo foi calculado da seguinte forma (unidade de medida da dimensao linear
em mm e da forca em kN):

a. Calculo da area da secéo transversal acima/abaixo do seu baricentro (Asgo):

Asoy, = 46 -5,2 + 3,8 - 34,8 = 371,44 mm? (371)

b. Calculo da distancia compreendida entre o baricentro da figura geométrica cuja area

foi calculada no item (a) em relacdo ao baricentro da secéo transversal completa

cg \.
50%)'

co _(46-52) 374+ (38-348) 174
Y50% 46-52 + 383438

c. Célculo do momento ultimo (M,,) a partir da expressdo do momento do binario,

= 30,2796 mm? (372)

considerando a tensdo de plastificagdo do material (o,) como tensdo limite e a
distancia entre as duas cargas equivalentes aplicadas (com sentidos opostos) no
baricentro das respectivas areas Asqy, COMO d.; = 2y§g% :
M, = E,d.; = (0,450%)(2Ys3,) = 8975,1507 kN - mm (373)
d. Calculo da carga tltima aplicada no centro do véo (equivalente ao comprimento da

viga, denotado por L) a partir do momento Gltimo determinado no item (c):

E,L 4M
Mu=% — F, = L”E31,5kN (374)

Na literatura, estdo presentes diversos resultados de analise numérica dos ensaios
realizados por Rubert e Schaumann (1986), entretanto, uma parcela significativa desses
trabalhos mostra os resultados obtidos utilizando o modelo constitutivo eliptico destinado
especificamente para 0 aco em situacdo de elevadas temperaturas, indicado pela norma CEN
EN 1993-1-2:2005.

Ja no trabalho de lzzuddin et al. (2000) sdo apresentados os resultados de analise
numérica utilizando tanto o modelo eliptico quanto o modelo termo-elasto-plastico bilinear
(empregando elementos de portico), sendo que este reproduz uma relagdo constitutiva
semelhante ao do modelo termo-elasto-plastico implementado no presente trabalho.

Dessa forma, assumiu-se 0s mesmos valores adotados por 1zzuddin et al. (2000) para as
propriedades mecéanicas dependentes da temperatura do modelo termo-elasto-plastico bilinear,
o0s quais foram organizados na Figura 8.27. Além disso, no trabalho de Lien et al. (2010) podem

ser encontrados os resultados de andlise numérica conduzida sob condi¢Ges semelhantes,
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também utilizando elementos de portico e modelo termo-elasto-plastico cuja relacdo tenséo-
deformacéo admitida para o material é bilinear.

Destaca-se que houve a necessidade de calibrar o valor do médulo de encruamento
isétropo H!(0) por meio do teste de tragdo uniaxial, semelhante aquele introduzido no exemplo
numérico do item 5.3.2, a fim de reproduzir a rela¢do constitutiva no trecho plastico indicado
no trabalho de lzzuddin et al. (2000) para os niveis de temperatura de interesse. Caso um
determinado valor da temperatura pertenca a alguma das faixas de temperatura estabelecidas na
Figura 8.27, os valores correspondentes dos parametros mecéanicos podem ser determinados por
meio da interpolacao linear.

Na Figura 8.28, sdo apresentados os valores dos parametros mecanicos e térmicos
independentes da temperatura, além dos dados geométricos e da malha de elementos finitos.
Destaca-se que, a fim de reduzir o tempo de processamento, foi aproveitada a dupla simetria do
problema e modelou-se somente um quarto da viga metalica (e, consequentemente, o valor do
carregamento aplicado foi reduzido para um quarto do seu valor original). Dessa forma, foram
impostas condi¢cBes de contorno de superficies deslizantes (restringem os deslocamentos
normais as superficies) nos dois planos de simetria, de modo a impedir também a ocorréncia de
instabilidades laterais (pela restricdo de deslocamento na direcdo x aplicada nos noés
pertencentes ao plano yz de simetria). A discretizacdo adotada para um quarto do elemento
estrutural modelado é mostrado na Figura 8.29 e ressalta-se que a malha admitida foi

suficientemente refinada para obter a convergéncia de resultados.

Figura 8.27 — Pardmetros dependentes da temperatura assumidos no exemplo de validacdo 8.4.4

Temperatura E Temperatura Oy Temperatura H!
(°C) (GPa) (°C) (MPa) (°C) (MPa)
20 210,0 20 399,0 20 0,0
100 210,0 300 399,0 300 0,0
700 84,0 700 59,9 400 383,0
1100 0,0 1000 0,0 900 0,0

Fonte: autor.




Figura 8.28 — Demais dados adotados no exemplo de validacédo 8.4.4

Parametros mecanicos

Vv: 0,3
Carga P: y.E, (v variavel de 0,2 a 0,85)

Parametros térmicos
a;: 1,4.10°°C?
o10 (temperatura de referéncia): 20 °C

Dados geométricos
Comprimento: 1140 mm
Altura: 80 mm
Largura da mesa: 46 mm
Espessura da mesa: 5,2 mm
Espessura da alma: 3,8 mm

Dados da malha e tolerancia
N2 nés: 1534
N2 elementos finitos: 80
N2 pontos de Hammer 12
Grau de aproximacado na espessura: | Cubica
Outros dados

Tolerancia: ‘ 10°

Fonte: autor.

Figura 8.29 — Discretiza¢do adotada para o exemplo 8.4.4

Fonte: autor.

Por se tratar de um problema em que o elemento estrutural é submetido a um
aquecimento uniforme, assumiu-se que todos 0s pontos do corpo apresentam um unico de valor
de temperatura para um mesmo passo de analise, considerando que todas as superficies da viga
metalica sejam adiabaticas. Foi adotado um incremento de temperatura igual a 2,5 °C a cada
passo de andlise.

A fim de evitar a ocorréncia de plastificacdo concentrada no local de aplicacdo do
carregamento pontual, optou-se, neste exemplo, pela aplicacdo do carregamento distribuido em

uma area reduzida na face superior da regido do centro do vao, em um comprimento equivalente



210

a, aproximadamente, 5% do comprimento total da viga e na largura da projecédo da alma (30,0
mm x 1,9 mm considerando a dupla simetria considerada na modelagem).

O gréafico de deslocamento vertical no centro do vao da viga metalica (aferido na sua
face inferior) por temperatura é mostrado na Figura 8.30. Nota-se que os valores obtidos pela
formulag&o proposta implementada sdo proximos aos obtidos por Rubert e Schaumann (1986),
Izzuddin et al. (2000) e Lien et al. (2010).

Figura 8.30 — Gréfico deslocamento vertical x temperatura do exemplo numérico 8.4.4
40
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Fonte: autor.

Observando-se os resultados apresentados no grafico da Figura 8.30, pode-se concluir
que a validade do modelo termo-elasto-plastico implementado para a anélise de problemas de
aquecimento uniforme foi verificada com sucesso a partir da proximidade satisfatoria dos

resultados obtidos em relacéo aqueles indicados nas bibliografias de referéncia.
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8.4.5 Viga metélica termo-elasto-plastica aquecida e resfriada uniformemente

O presente exemplo numérico foi extraido de Yu et al. (2010) e trata-se de uma
simulacdo numérica em regime quase-estatico de uma viga metalica de secdo quadrada,
simplesmente apoiada e carregada pontualmente no meio do véo, conforme esquematizado na
Figura 8.26. O elemento estrutural em questdo é submetido, primeiramente, a um aquecimento
uniforme de 20 °C a 670 °C ao longo de todo o seu comprimento, e, em seguida, a um
resfriamento uniforme de 670 °C a 20 °C, também ao longo de toda a sua extensdo.
Originalmente, a analise foi efetuada por meio dos programas comerciais ABAQUS e ANSYS

utilizando o modelo constitutivo eliptico do aco indicado na norma CEN EN 1993-1-2:2005.

Figura 8.31 — Viga metalica com quadrada simplesmente apoiada e sujeita a um carregamento
concentrado no meio do véo

Configuragao geométrica inicial:

1500 02

Apoio mével
(x=1500 mm)

Apoio fixo
(x=0mm)

Dimensdes da se¢ao transversal (em mm):

|: 50,0
AT
On
3
-

Fonte: autor.



212

Pelo fato da analise ter sido efetuada empregando o modelo constitutivo eliptico por Yu
et al. (2010), optou-se por assumir valores distintos para 0 mddulo de elasticidade longitudinal

(E) e atensdo de escoamento (a,) em relagdo aqueles adotados pelos autores em questdo. Essa

estratégia é semelhante aquela apresentada por 1zzuddin et al. (2000) (ja comentada no exemplo
numerico do item 8.4.4), na qual os valores dos pardmetros mecanicos dependentes da
temperatura do modelo termo-elasto-plastico bilinear foram calibrados de modo que os
resultados obtidos com o modelo em questao apresente um bom ajuste em relacao aos resultados
obtidos com o0 modelo eliptico da norma CEN EN 1993-1-2:2005, utilizada como referéncia.
Observa-se que ndo foi objetivo deste trabalho implementar modelo constitutivo elasto-plastico
com variacdo do encruamento, justificando-se a estratégia assumida desde que os valores
assumidos ndo sejam exageradamente distantes dos adotados pelas referéncias.

Os valores assumidos para E € g,, sdo apresentados na Figura 8.32, juntamente com 0s

valores do moédulo de encruamento is6tropo (H'), os quais também foram calibrados para
reproduzir os resultados de Yu et al. (2010). Caso o valor da temperatura seja pertencente a
alguma das faixas de temperatura estabelecidas na Figura 8.32, determina-se os valores
correspondentes dos parametros mecanicos por meio da interpolacdo linear.

Ja na Figura 8.33 sédo indicados os valores adotados para 0s parametros mecanicos e
térmicos independentes da temperatura, além dos dados geométricos e da malha de elementos
finitos, enquanto na Figura 8.34 é mostrada a discretizacdo assumida para o elemento estrutural
analisado. De forma semelhante ao exemplo numérico do item 8.4.4, foi modelado somente um
quarto da viga metalica aproveitando a dupla simetria do problema (e, consequentemente, o
valor da carga aplicada foi reduzido a um quarto do seu valor original), com imposicao de
condicBes de contorno de superficies deslizantes nos dois planos de simetria. Além disso,
comenta-se que a malha adotada foi suficientemente refinada para obter a convergéncia de

resultados.

Figura 8.32 — Parametros dependentes da temperatura assumidos no exemplo de validacdo 8.4.5

Temperatura E Temperatura Oy Temperatura H!
(°C) (GPa) (°C) (MPa) (°C) (MPa)
20 210,0 20 355,00 20 0,0
100 210,0 100 355,00 100 0,0
500 126,0 500 213,00 400 490,0
600 73,5 600 78,10 500 285,0
700 42,0 700 53,25 900 0,0

Fonte: autor.
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Figura 8.33 — Demais dados adotados no exemplo de validacdo 8.4.5
Parametros mecanicos

v: 0,0

Parametros térmicos
a: Conforme a CEN EN 1993-1-2:2005
o10 (temperatura de referéncia): 20 °C

Dados geométricos
Comprimento: 1500 mm
Altura: 50 mm
Largura: 50 mm

Dados da malha

N2 nos: 962
N2 elementos finitos: 96
N2 pontos de Hammer 12

Grau de aproximacdo na espessura: | Linear

Outros dados

Tolerancia: 10°
Fonte: autor.

Figura 8.34 — Discretizacdo adotada para o exemplo 8.4.5

Fonte: autor.

Semelhantemente ao exemplo numérico 8.4.4, o presente exemplo se trata de um
problema em que o elemento estrutural é sujeito a um aquecimento (e resfriamento) uniforme,
ou seja, todos 0s pontos do corpo apresentam um Unico de valor de temperatura para um mesmo
passo de analise. Assumiu-se que todas as superficies da viga metalica sdo adiabaticas, com o
elemento submetido a incremento/decremento uniforme de temperatura de 2,5 °C a cada passo
de andlise.

Os resultados obtidos de deslocamento vertical no centro do vdo da viga metélica
(aferido na face inferior) em fungéo da temperatura séo representados graficamente na Figura
8.35, juntamente com os valores determinados por Yu et al. (2010) para elementos de solido e
de viga utilizando os programas comerciais ABAQUS e ANSYS. As configuragdes deformadas
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da estrutura para o tltimo passo de aquecimento (0 = 670 °C) e de resfriamento (6 =20 °C) sdo
apresentadas na Figura 8.36, juntamente com a escala de cores referente ao campo de

deslocamento na direcdo y (vertical) e a configuracdo indeslocada e indeformada da viga.

Figura 8.35 — Gréfico deslocamento vertical x temperatura do exemplo numérico 8.4.5
0
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-40 - ' - ' - ' : - : - :
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Temperatura (°C)

Fonte: autor.
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Figura 8.36 — Configuracéo da estrutura no ultimo passo de aquecimento e de resfriamento do
exemplo numérico 8.4.5

o 4.221E-01
Aquecimento (0 = 670 C) -3.068E+00
-6.558E+00
-1.005E+01
-1.354E401
-1.703E+01
-2.052E+01
-2.401E+401

-2.750E+01
-3.099E+01

Resfriamento (6 =20°C): it

-2.678E+00
-4.017E+00

-5.356E+00
-6.695E+00

. -8.033E+00

, -9.372E+00
. -1.071E+01
-1.205E+01

Fonte: autor.

A partir do grafico mostrado acima, observa-se que, apesar das diferencas no modelo
constitutivo termo-elasto-plastico empregado, foi possivel reproduzir, de forma satisfatoria, 0s
resultados apresentados por Yu et al. (2010) tanto na fase de aquecimento quanto na fase de
resfriamento, utilizando-se a estratégia de calibragdo dos valores dos pardmetros mecéanicos
dependentes da temperatura apresentada no trabalho de Izzuddin et al. (2000).

Tal estratégia mostrou-se ser interessante para analise de problemas em que o modelo
constitutivo empregado é de maior complexidade em termos de implementacdo computacional
e de elevada especificidade que, no caso do modelo eliptico mencionado da norma CEN EN
1993-1-2:2005, é voltado principalmente para andlise e desenvolvimento de projeto de
estruturas metalicas sujeitas as elevadas temperaturas em situacdo de incéndio. No entanto,
ressalta-se que, para analises mais rigorosas e complexas, deve-se recorrer aos modelos
constitutivos especializados que dispensem ou dependam menos da calibracdo dos parametros

envolvidos na andlise.
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8.4.6 Viga metalica termo-elasto-pléstica em situacdo de incéndio

O presente exemplo numérico teve como objetivo validar o modelo termo-elasto-
plastico implementado considerando a transferéncia de calor por condugdo, convecgdo e
radiacdo, por meio da analise numérica do ensaio de uma viga metalica em situacéo de incéndio,
conduzido originalmente por Cong, Liang e Dong (2005) e simulado numericamente por
diversos autores como Lien et al. (2010), Paik et al. (2013) e Alshaikh et al. (2023). O
experimento é referente a uma viga metélica com secédo transversal do tipo H250x125x6x9,
simplesmente apoiada e sujeita a quatro carregamentos concentrados ao longo do comprimento,
conforme indicado na Figura 8.37, e submetida as a¢6es térmicas (fluxo de calor por convecgéo
e radiacdo) que simulam uma situacdo em incéndio, as quais sdo esquematizadas também na
Figura 8.37.
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Figura 8.37 — Viga metélica com se¢do H250x125x6x9 simplesmente apoiada e sujeita aos
carregamentos mecanicos concentrados e aos carregamentos térmicos ao longo do comprimento

Configuracdo geométrica inicial:

Apoio mébvel

(z=4200mm)
|
X
7 Apoio fixo
(z=0mm)
Dimensoes da secdo transversal (em mm): Esquema do problema térmico:
1250 T 1 T T T Fluzo de calor por convecgio e radiagio (incéndio)
59,5 59,5
s = Placa de aluminio
T =
A AR RRRN] (ORAAN
Y
[ O 1 — >
= ¢ HHt

Fonte: autor.

Na Figura 8.38, sdo indicadas as informacdes acerca da geometria, da malha de
elementos finitos e do passo de tempo adotado, enquanto na Figura 8.39 é apresentada a
discretizacdo considerada para o exemplo analisado. Semelhantemente aos dois exemplos
anteriores referentes as analises termo-elasto-plasticas de vigas metéalicas (itens 8.4.4 e 8.4.5),
foi modelado somente um quarto do elemento estrutural considerando a dupla simetria do
problema (e, consequentemente, o valor das cargas aplicadas correspondem a metade do seu

valor original), com imposicdo de condic¢des de contorno de superficies deslizantes nesses dois
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planos de simetria. Comenta-se também que a malha adotada foi suficientemente refinada para

a convergéncia dos resultados.

Figura 8.38 — Demais dados adotados no exemplo de validacdo 8.4.6
Dados geométricos

Comprimento: 4200 mm
Altura: 250 mm
Largura da mesa: 125 mm
Espessura da mesa: 9 mm
Espessura da alma: 6 mm
Dados da malha
N2 nos: 2560
N2 elementos finitos: 140
N2 pontos de Hammer 12

Grau de aproximacdo na espessura: | Cubica

Outros dados
At: 5s
Fonte: autor.

Figura 8.39 — Discretizacdo adotada para o exemplo 8.4.6

Fonte: autor.

A validacdo do modelo termo-elasto-plastico implementado por meio do presente
exemplo foi efetuada em duas etapas. A primeira etapa corresponde & validacdo do problema
térmico, enquanto a segunda etapa, a validacdo do problema mecénico elasto-plastico
dependente do campo de temperatura.
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8.4.6.1 Validacéo do problema térmico néo-linear

O desenvolvimento do problema térmico foi efetuado assumindo-se os dados indicados
por Paik et al. (2013) (Figura 8.40) e os resultados obtidos foram comparados com aqueles
apresentados pelos autores em questdo e também com os resultados experimentais de Cong,
Liang e Dong (2005).

Figura 8.40 — Dados do problema térmico adotados no exemplo de validacdo 8.4.6
Parametros térmicos

a: 1,4.10%°C?
k: Conforme a CEN EN 1993-1-2:2005 (Apéndice A)
c: Conforme a CEN EN 1993-1-2:2005 (Apéndice A)
p: 7850 kg/m3

6%} (temperatura de referéncia): |20 °C

Outros dados

Tolerancia: 10°®
a (Método das Diferencas Finitas): | 2/3
At: 5s

Fonte: autor.

Para a simulacdo do problema térmico, considerou-se a transferéncia de calor por
conveccao e radiacdo atraves de suas superficies expostas ao incéndio, com o0s parametros
relativos a conveccdo e a radiacdo indicados na Figura 8.41, os quais foram retirados do trabalho
de Paik et al. (2013). Quanto a face superior que nao é exposta ao incéndio, foi assumido que
estd em contato com gases a uma temperatura ambiente constante de 20 °C, condi¢do também
assumida por Alshaikh et al. (2023). Além disso, as superficies da secdo transversal das
extremidades da viga foram assumidas adiabaticas.

Com relacdo a temperatura dos gases (6,) para as faces expostas ao incéndio ao longo
do tempo, assumiu-se os valores aferidos experimentalmente, os quais foram organizados na

Figura 8.42 em forma de quadro e representados graficamente na Figura 8.43.

Figura 8.41 — Valores assumidos para 0s parametros inerentes a transferéncia de calor por conveccao e
radiacdo no exemplo de validacdo 8.4.6

Convecgao
h€ (faces expostas ao incéndio): 16,4 W/(m? °C)
h€¢ (face n3o exposta ao incéndio): |9,0 W/(m? °C) (radiacdo considerada implicitamente)

Radiacao

es:

Fonte: autor.

0,24
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Figura 8.42 — Valores assumidos para temperatura dos gases em situacdo de incéndio no exemplo de
validacdo 8.4.6

Tempo | Temperatura| Tempo |Temperatura| Tempo |Temperatura| Tempo | Temperatura

(s) (°C) (s) (°C) (s) (°C) (s) (°C)

0,00 20,00 637,24 502,29 |1490,12 | 612,21 |2453,75| 704,58
5,83 60,31 691,64 505,34 | 150567 | 615,27 |2508,15| 703,82
13,60 102,29 732,43 512,21 | 1534,81| 615,27 |254506| 708,40
17,49 141,22 786,83 530,53 | 155424 | 622,14 |2581,98 | 712,21
25,26 176,34 847,06 539,69 | 1587,26 | 622,14 |2620,83| 709,92
33,03 208,40 878,14 539,69 | 1630,01| 629,01 |[2659,69| 708,40
42,74 245,04 915,06 548,09 |1676,63| 630,53 |2698,54 | 715,27
50,51 274,05 969,45 551,15 | 1709,66 | 635,11 |[2737,40 | 722,14
62,17 304,58 |1010,25| 543,51 |1734,92| 634,35 |2778,20| 722,14
79,65 338,17 | 103551 | 549,62 |1777,66| 642,75 |281511| 722,90

101,03 364,12 1066,59 545,80 1816,51 643,51 2857,85 731,30

124,34 386,26 1107,39 545,80 1874,80 650,38 2898,65 731,30

149,60 406,11 1126,82 542,75 1936,97 656,49 2933,62 731,30

192,34 422,14 1146,25 550,38 2014,68 658,02 2962,76 735,11

233,14 439,69 1229,79 548,09 2055,48 665,65 2989,96 735,11

289,48 458,02 1245,33 544,27 2121,53 673,28 3040,47 742,75

351,65 473,28 1290,02 544,27 2152,62 674,05 3085,16 744,27

390,50 474,05 1317,22 549,62 2170,10 677,10 3131,79 749,62

423,53 483,21 1336,64 567,94 2208,96 677,10 3186,18 750,38

456,56 481,68 1350,24 583,97 2238,10 683,21 3232,81 755,73

503,18 489,31 1379,38 596,95 2296,38 687,79 3296,92 758,02

551,75 496,18 1420,18 605,34 2343,01 694,66 3366,86 761,83

594,50 492,37 1457,10 609,92 2401,30 703,82 3434,86 766,41

Fonte: autor.



221

Figura 8.43 — Gréfico temperatura x tempo para 0s gases em situacao de incéndio do exemplo
numerico 8.4.6

800

600 T

400 1

Temperatura (°C)

200 A

0 600 1200 1800 2400 3000 3600
Tempo (s)

Fonte: adaptado de Cong, Liang e Dong (2005).

Na Figura 8.44 sdo apresentadas, em forma de grafico, as temperaturas obtidas para a
mesa superior (aferida no ponto A indicado na Figura 8.37), alma (aferida no ponto B indicado
na Figura 8.37) e mesa inferior (aferida no ponto C indicado na Figura 8.37) em funcdo do

tempo.
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Figura 8.44 — Gréfico temperatura x tempo para as mesas e a alma do exemplo numérico 8.4.6
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Fonte: autor.

Observa-se que os valores determinados numericamente sdo bastante proximos em
relacdo aqueles obtidos, também em simulacdo numérica, por Paik et al. (2013). Tratando-se
dos resultados experimentais apresentados por Cong, Liang e Dong (2005), apesar de uma
maior diferenca entre os valores obtidos, observa-se que os resultados com o codigo
computacional desenvolvido ainda sdo satisfatorios, considerando que existem diversas
incertezas envolvidas no processo de transferéncia de calor por conveccdo e radiacéo, o qual

foi considerado simplificadamente para a realizacao da analise numérica.
8.4.6.2 Validacéo do problema mecanico dependente do campo de temperatura

Quanto ao problema mecénico dependente dos niveis de temperatura, a validacdo do
problema foi efetuada a partir dos resultados apresentados por Cong, Liang e Dong (2005), Paik
et al. (2013) e Alshaikh et al. (2023), porém com ajuste nos valores da tensdo de escoamento
do material e calibracdo dos valores do modulo de encruamento isotropo, pelo fato desses dois
ultimos autores terem conduzido as analises numéricas admitindo o modelo termo-elasto-

plastico eliptico da norma CEN EN 1993-1-2:2005 (comentado previamente nos itens 8.4.4 e
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8.4.5), diferentemente do modelo termo-elasto-plastico do tipo bilinear considerado neste
trabalho. Devido a adocao de modelos constitutivos distintos, novamente surgiu a necessidade
de calibrar os parametros mecanicos dependentes dos niveis de temperatura, assim como foi
efetuado no trabalho de 1zzuddin et al. (2000), o qual também j& foi mencionado nos itens 8.4.4
e 8.4.5.

Para cada nivel de temperatura de interesse, primeiramente foram assumidos os valores

para a tensdo de escoamento g, e, na sequéncia, foram calibrados os valores do modulo de

encruamento isotropo H' por meio do teste de tragdo uniaxial (analogo ao caso do exemplo
numeérico 8.4.4), de forma que as curvas calibradas que exprimem a relacéo tensdo-deformacéo
do material sejam concorrentes, no nivel de deformacdo de 2% (regime de pequenas
deformacdes), com as curvas do modelo constitutivo eliptico apresentadas pela CEN EN 1993-
1-2:2005, conforme ilustrado na Figura 8.45. O nivel de deformacéo de referéncia de 2% para
a calibracdo do moédulo de encruamento também pode ser visto em trabalhos de outros autores,

como Lin, Huang e Yang (2012).

Figura 8.45 — Curvas de tenséo x deformacao do ago para cada nivel de temperatura adaptada da
norma CEN EN 1993-1-2:2005 para o exemplo 8.4.6

360
S22 20888l R -
300 +
240 1
©
[
S 180
b ..................O.
120
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....................Q..........O.Q...Q.....l.‘....
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0.000 0.005 0.010 0.015 0.020
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200 °C | Eliptico e e e300 °C | Eliptico e e e e 0400 °C | Eliptico
500 °C | Eliptico e 0000600 °C | Eliptico 700 °C | Eliptico

Fonte: autor.
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Os valores assumidos neste exemplo para as propriedades mecanicas dependentes da
temperatura constam na Figura 8.46. Caso uma determinada temperatura pertenca a algum
intervalo de temperatura apresentado, os valores correspondentes dos parametros mecanicos
podem ser determinados por meio da interpolacdo linear. Ja na Figura 8.47, s&o indicados 0s

demais dados do problema mecanico.

Figura 8.46 — Pardmetros dependentes da temperatura adotados no exemplo de validacdo 8.4.6

Temperatura E Temperatura Oy Temperatura H!
(°C) (GPa) (°C) (MPa) (°C) (MPa)
20 210,00 20 330,00 20 0,00
100 210,00 100 330,00 100 0,00
200 189,00 200 300,00 200 115,00
300 168,00 300 265,00 300 280,00
400 147,00 400 230,00 400 455,00
500 126,00 500 180,00 500 350,00
600 65,10 600 99,00 600 260,00
700 27,30 700 42,00 700 160,00
800 18,90 800 26,00 800 45,00

Fonte: autor.

Figura 8.47 — Demais dados adotados no exemplo de validacdo 8.4.6
Parametros mecanicos

0,3

Outros dados

Tolerancia: ‘ 10°
Fonte: autor.

No exemplo em questdo, o processo de carregamento € quase-estatico, conforme
afirmado por Alshaikh et al. (2023), sendo possivel, portanto, desprezar os efeitos inerciais e
de amortecimento para a andlise (analise transiente quase-estatica). Foi assumido que, no
instante t = 0, os carregamentos aplicados sdo nulos, sendo esses incrementados a uma taxa
constante até atingir o seu valor maximo de 10,5 kN no instante t = 600 s e, a partir desse
momento, 0s seus valores permanecem inalterados.

Os resultados de deslocamento ao longo do tempo no meio do vao obtido pelo cédigo
desenvolvido, aferido no ponto central da face inferior da viga metélica, foram representados
em forma de grafico na Figura 8.48, juntamente com os resultados experimentais de Cong,
Liang e Dong (2005) e os resultados das simula¢des numéricas de Paik et al. (2013) e Alshaikh
et al. (2023).
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Figura 8.48 — Grafico deslocamento vertical x tempo do exemplo numérico 8.4.6
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Fonte: autor.

Na Figura 8.49, sdo exibidas as configuracdes deformadas da viga metalica em
diferentes instantes do tempo de andlise, juntamente com a escala de cores indicando o campo
de deslocamento na direcédo y (vertical) e, em cor cinza claro, a configuracdo indeslocada e

indeformada do elemento estrutural.
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Figura 8.49 — ConfiguracGes deformadas da viga metélica em diferentes instantes do tempo de analise
do exemplo numérico 8.4.6
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Fonte: autor.

A partir dos resultados referentes ao problema térmico e ao problema mecanico que sao
apresentados na forma de graficos, respectivamente, na Figura 8.44 e na Figura 8.48, foi
possivel verificar, com sucesso, a validade do codigo implementado para a analise termo-elasto-
plastica envolvendo o processo de transferéncia de calor ndo-linear por condugdo, conveccéo e
radiacdo, devido a proximidade satisfatéria dos valores obtidos em relagdo aos resultados

apresentados nas bibliografias de referéncia.
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8.4.7 Aquecimento da peca metalica de aluminio contemplando a mudanca de fase

Neste exemplo de aplicacdo de carater ilustrativo, apresenta-se uma simula¢édo numeérica
de uma peca tronco-conica de aluminio apoiada sobre uma superficie aquecida e, dessa forma,
sujeita ao fluxo de calor através da sua base, com o objetivo de demonstrar o comportamento
de solido termo-visco-elasto-plastico em mudanca de fase empregando a formulacao descrita
no presente trabalho. Na Figura 8.50, € apresentado o esquema termomecanico da peca metalica
analisada, contemplando os dados de geometria e dimensdes iniciais (estado indeslocado e
indeformado). Destaca-se que foi aproveitada a dupla simetria do problema e somente um
quarto da peca metalica foi modelada, com imposicdo de condi¢des de contorno de superficies
deslizantes nos dois planos de simetria e também na base do corpo. Destaca-se que as
superficies de contorno da peca metélica, com excecdo da superficie da base, foram

consideradas adiabaticas.

Figura 8.50 — Geometria, dimensGes iniciais da peca metalica e fluxo de calor proveniente da
~ ~___ superficie aguecida
Configuragao geométrica inicial: ~

-\

\

Ritopo=_8mm

10 mm

A

Rpgse=10mm

X

Esquematizacao do problema:

superficie aquecida

Fonte: autor.
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A andlise do presente problema foi conduzida conforme descrito a seguir:

a. Configuracdo termomecéanica inicial (t = 0): a peca metalica apresenta inicialmente
uma temperatura uniforme em todo o seu corpo equivalente a 660,30 °C e se
encontra no estado solido indeslocado e indeformado;

b. Analise termo-visco-elasto-plastica (fase solida): inicia-se a analise considerando a
fase s6lida do material, ou seja, corresponde a etapa antes da mudanca de fase. Foi
assumido que a peca metalica € solicitada mecanicamente somente pelo peso proprio,
considerando tanto a plasticidade quanto a viscosidade nessa etapa;

c. Mudanca de fase (transicdo do estado solido para o estado liquido que ocorre
gradualmente no sentido ascendente): acontece no instante em que a temperatura no
material atinge a sua temperatura de fusdo, admitida igual a 660,32 °C, conforme
indicado no trabalho de Leitner et al. (2017). Na literatura, existem pesquisas que
estudam o comportamento do aluminio liquido a partir de modelos fisicos utilizando
agua (pelos valores de viscosidade que sdo bastante proximos, por exemplo), como
pode ser visto nos trabalhos de Gomez et al. (2013b) e Wang et al. (2024). Tratando-
se de simulacBGes numeéricas na area da fluidodindmica computacional que utiliza a
agua em substituicdo ao aluminio liquido, pode-se mencionar os trabalhos de Gomez
et al. (2013a) e Yamamoto et al. (2018). Dessa forma, foi assumido que, apos a
mudanca de fase, 0 material passa a se comportar como um fluido viscoso analogo
a agua (semelhante aquele apresentado no exemplo numérico de rompimento de
barragem, descrito no item 6.3.2). Visando atribuir o comportamento de fluido
viscoso (sem plasticidade) ao material, foi imposto que o valor do seu médulo de
elasticidade transversal passa a ser nulo (G = 0), além de desprezar todos 0s
parametros relativos a plasticidade a partir deste instante (foi assumido que a tensdo
plastica € nula e sem qualquer possibilidade futura de evolucéo pléastica);

d. Analise termo-viscoelastica (fase liquida): o material se comporta como um fluido
viscoso, consistindo em um problema de escoamento de superficie livre. Nesta
ultima etapa, foram considerados um determinado valor de viscosidade cisalhante e
a elasticidade volumétrica (modelo de Hartmann-Neff) que previne a inversdo ou a

autointerseccdo do material em regime de grandes deformacoes.

Os valores assumidos para 0s parametros mecanicos dependentes da temperatura neste

exemplo numérico constam na Figura 8.51. Para o modulo de elasticidade transversal (G) e a
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tenséo de escoamento (a,,), foram assumidos valores bastante reduzidos (porém, minimamente
significativos para evitar instabilidades numéricas na fase sélida do material) considerando que
a temperatura na peca de aluminio esta proxima a sua temperatura de fusdo. Novamente,
destaca-se que foi assumido G = 0 apds a mudanca de fase (fluidos ndo possuem resisténcia ao

cisalhamento).

Figura 8.51 — Parametros mecanicos dependentes da temperatura adotados no exemplo de validagéo

8.4.7
Temperatura G Temperatura oy
(°C) (MPa) (°C) (kPa)
650,32 6,0 650,32 800
660,32 0,6 660,32 80

Fonte: autor.

Ja na Figura 8.52, sdo organizados os valores assumidos para os demais parametros
mecanicos e térmicos, além dos dados geométricos e da malha de elementos finitos. Os
materiais metalicos geralmente possuem ganhos reduzidos de resisténcia por encruamento em
niveis elevados de temperatura. Por esse motivo, assumiu-se um valor baixo e constante para o
moédulo de encruamento is6tropo (H') neste exemplo. Os valores de bulk modulus (K) e
coeficiente de expansdo térmica linear («;) foram extraidos do trabalho de Ikuta, Kono e Shen
(2016), os quais realizaram estudos experimentais para determinar os valores das propriedades
mecanicas e térmicas do aluminio no estado liquido. J& o valor de densidade (p) no ponto de
fusdo foi admitido equivalente aquele indicado por Kozyrev e Gordeev (2022), em que 0sS
valores das propriedades mecénicas e térmicas do aluminio em estado sélido e liquido foram
calibrados a partir dos resultados experimentais de outros trabalhos adotados como referéncia.
Os valores de condutividade térmica (k) e capacidade térmica especifica (c) do aluminio, tanto
para o estado solido quanto para o estado liquido, foram extraidos do trabalho de Leitner et al.
(2017). A condutividade térmica do aluminio no estado liquido foi assumida constante (89,3
W/m°C no ponto de fusdo) apesar de ser dado por uma expressdo polinomial de segundo grau
em funcdo da temperatura em Leitner et al. (2017), por apresentar variagao irrelevante para o
intervalo de temperatura analisado.

Em relagdo a viscosidade (G) do aluminio no estado liquido, o seu valor foi calculado a
partir da expressdo indicada por Assael et al. (2006) (temperatura em Kelvin):

G a,
| — ) =- — 375
0810 <TIO> a; + ) (375)
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na qual n° =1 mPas, a; = 0,7324 e a, = 803,49 K. A expressdo acima é valida para
temperaturas pertencentes ao intervalo de temperatura de [933;1270] K.

A temperatura de fusdo admitida para o aluminio neste exemplo, convertida de °C para
K, corresponde a 933,47 K. A partir desse valor, foi determinado por meio da Equacdo (375),
o valor da viscosidade do aluminio liquido no ponto de fusdo G = 1,344 mPa, assumida
constante neste problema devido a variacdo irrelevante no seu valor ao longo da analise.
Ressalta-se que o mesmo valor de viscosidade foi considerado também na fase sélida do
material.

A discretizacdo adotada para o presente exemplo numeérico pode ser verificada na Figura

8.53.
Figura 8.52 — Demais dados adotados no exemplo de validagéo 8.4.7
Parametros mecanicos
K: 40,44 GPa
H: 20 kPa
g: 9,81 m/s?
p: 2373 kg/m3
Parametros térmicos
ap: 1,521.10°°C*
k: (229,71 -0,0678) W/m°C (fase sdlida)
' 89,3 W/m°C (fase liquida)
o 1199 J/kg°C (fase solida)
' 1127 J/kg°C (fase liquida)
610} (temperatura de referéncia): 660,30 °C
Fluxo de calor g: -35000 W/m?
Parametros reoldgicos
G: 1,344 mPa.s
Dados geométricos
Diametro inferior: 20 mm
Diametro superior: 16 mm
Altura: 10 mm

Dados da malha

NQ nds: 3625
N¢ elementos finitos: 224
N2 pontos de Hammer 12

Grau de aproximacdo na espessura: | Cubica

Outros dados

Tolerancia: 107 (problema térmico) / 10 (problema mecanico)
a (Método das Diferencas Finitas): | 2/3
At: 0,00005 s

Fonte: autor.
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Figura 8.53 — Discretizacdo adotada para o exemplo 8.4.7

P
we

Fonte: autor.

As temperaturas obtidas ao longo do tempo foram aferidas ao longo da altura em cinco
pontos distintos da superficie lateral externa, inicialmente localizados em z = 0, z = 2,5 mm,
z=>5,0mm, z=7,5mme z = 10,0 mm. Primeiramente, os dados de temperatura no material
foram coletados até atingirem o ponto de fusdo (660,32 °C) e representados em forma de grafico
(Figura 8.54). Observa-se que a temperatura na base alcanca o ponto de fusao logo ap6s o inicio
da analise, devido ao fluxo de calor que incide diretamente na superficie da base, enquanto as
temperaturas nos pontos intermediarios e superior da superficie lateral externa requerem um

determinado tempo para atingirem o ponto de fuséo por conducéo de calor.
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Figura 8.54 — Gréfico temperatura x tempo na superficie lateral externa da peca de aluminio na fase

solida do exemplo numérico 8.4.7
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Fonte: autor.

Na Figura 8.55 e na Figura 8.56 sdo apresentados, respectivamente, o deslocamento
vertical médio na face superior e o raio médio da base da peca metalica, ambos registrados ao
longo do tempo e representados em forma de graficos. Os snapshots do derretimento e do
escoamento da peca metalica sdo apresentados na Figura 8.57, com a escala de cores indicando

0 campo de deslocamento vertical z.
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Figura 8.55 — Gréfico de deslocamento vertical médio da face superior x tempo do exemplo numérico
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Fonte: autor.

Figura 8.56 — Grafico de raio médio da base x tempo do exemplo numérico 8.4.7
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Figura 8.57 — Snapshots do derretimento e escoamento da peca metélica com a escala de cores
representado o campo de deslocamento vertical
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Fonte: autor.
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Como é possivel verificar por meio dos snapshots, a peca metéalica, que inicialmente se
encontra em estado sélido, é deformada (elastica e plasticamente) somente por acdo do peso
préprio devido aos valores bastante reduzidos de modulo de elasticidade transversal e tensao
de escoamento. Por conta do fluxo de calor na base da peca (e também das demais superficies
de contorno assumidas adiabaticas que mantém o calor confinado no corpo), a temperatura no
material gradualmente atinge o ponto de fusdo no sentido ascendente por conducao (como pode
ser visto no grafico da Figura 8.54), ocasionando a mudanca de fase de forma gradativa. Apds
a mudanca de fase, o material passa a se comportar e escoar como fluido viscoso e a elasticidade
volumeétrica (modelo de Hartmann-Neff) previne a autointersec¢do do material em regime de
grandes deformacdes.

Por fim, apresenta-se o grafico de temperatura por tempo semelhante ao da Figura 8.54
com os valores aferidos nos mesmos pontos, porém contemplando maiores intervalos de
temperatura e de tempo para evidenciar o processo de transferéncia de calor ao longo de toda a
analise (Figura 8.58). Além disso, mostra-se novamente o0s shapshots do derretimento e do
escoamento da peca metalica, porém com a escala de cores indicando o campo de temperatura
(Figura 8.59):

Figura 8.58 — Gréfico temperatura x tempo na superficie lateral externa da pe¢a de aluminio nas fases
solida e liquida do exemplo numérico 8.4.7

662.3
a7 =0 mm
662.1 +
e e7=25mm

6619 T|ew em» ez=5mm

6617 1| == 2= 7.5 mm
G aaEm—— 7 = 10 mm
% 661.5
5 -
)
g 661.3 - - -
o s -
qE) 661.1 C d
[t

660.9 o

-
-
660.7 “o‘
Y 4
P
660.5 —-—
P
e
e
660.3 + + } 4
0.0 0.1 0.2 0.3 0.4 0.5

Fonte: autor.
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Figura 8.59 — Snapshots do derretimento e escoamento da peca metélica com a escala de cores

representado 0 campo de temperatura
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Ao observar o grafico da Figura 8.58 e os snapshots da Figura 8.59, verifica-se que,
mesmo nos instantes finais em que a peca metalica se encontra integralmente no estado liquido
apos o escoamento, a distribuicdo de temperatura no corpo ndo € proxima de ser uniforme.
Nessa situacdo, haveria um acréscimo significativo na quantidade de calor fornecido a peca
metalica devido ao alargamento da base e a transferéncia de calor na direcdo z por condugédo
seria mais rapida por conta da altura bastante reduzida. Dessa forma, era esperado que, com a
mudanca na forma do corpo ap0s 0 escoamento, 0 material passasse a apresentar uma
distribuicdo mais uniforme de temperatura no seu dominio.

Esse resultado pode ser explicado pelo modelo térmico Lagrangeano total utilizado na
andlise de transferéncia de calor, o qual é incapaz de levar em consideracdo as mudancgas na
forma do corpo analisado na conducao e também no que diz respeito as condi¢des de contorno.
Tendo isso em vista, seria interessante utilizar modelos térmicos com descricdo Lagrangeana
atualizada ou Euleriana (visando atualizar a configuracdo do corpo a cada passo/iteracao).

A partir dos resultados apresentados acima, observa-se que é possivel simular
numericamente o comportamento de solidos termo-visco-elasto-plasticos em mudanca de fase
utilizando a formulacédo descrita neste trabalho, com algumas ressalvas em relacdo a limitacao
do modelo térmico Lagrangeano total para a resolucdo de problemas de transferéncia de calor
em regime de grandes deformagoes.
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9 CONCLUSOES

No presente trabalho, foi desenvolvido e implementado uma estratégia resultante da
combinacdo de formulacGes em grandes deslocamentos (Método dos Elementos Finitos
Posicional), elasticidade, plasticidade e viscosidade em grandes deformacdes, termodinamica,
transferéncia de calor e acoplamento termomecanico, resultando em um cédigo computacional
capaz de modelar o comportamento termomecanico de solidos, aplicado as estruturas metélicas
(termo-elasto-plasticas) sob elevadas temperaturas e a peca metalica (termo-visco-elasto-
plastica) em mudanca de fase. A base do cddigo computacional foi desenvolvida a partir do
Método dos Elementos Finitos Posicional empregando elementos finitos de sélido prismatico
de base triangular. O modelo constitutivo hiperelastico implementado consiste na combinacgéo
dos modelos de Rivlin-Saunders e de Hartmann-Neff, o qual é adequado para a anélise de
corpos sujeitos as grandes deformacgfes. O modelo elasto-plastico alternativo implementado
corresponde aquele proposto por Coda (2021, 2022), o qual utiliza a decomposicdo
multiplicativa de Flory para o desenvolvimento de suas formulagdes. A viscosidade foi
implementada por meio da formulagdo do modelo alternativo unificado descrito no trabalho de
R. T. Kishino (2022), sendo este apropriado para grandes deformacdes e capaz de simular o
comportamento tanto de solidos quanto de fluidos. O codigo de andlise térmica por conducéo
linear e ndo-linear foi elaborado com base no trabalho de Rigobello, Coda e Munaiar Neto
(2014) e o modelo termo-elasto-plastico alternativo empregado neste trabalho consiste na sua
versdo aprimorada, por ser apropriado também para a analise de problemas em regime de
grandes deformacdes tanto em sua formulacdo termo-elasto-plastica quanto na estratégia de
calculo das deformacdes e tensdes térmicas para grandes deformacdes. Por fim, foi construido
0 modelo termo-visco-elasto-plastico alternativo para grandes deformacfes a partir da
combinacdo do modelo termo-elasto-plastico e do modelo de viscosidade implementados.

O codigo computacional desenvolvido foi validado com éxito por meio de comparagoes
com os resultados existentes na literatura. Foi possivel constatar, por meio dos exemplos
numéricos, que a formulacdo e o codigo implementado foram capazes de simular
satisfatoriamente o comportamento termo-elasto-plastico das estruturas metalicas sujeitas aos
niveis elevados de temperatura e também o comportamento de solidos e fluidos viscosos.

Apesar de consistir em um exemplo ilustrativo, o ultimo exemplo numérico demonstrou
que os objetivos da presente pesquisa foram atingidos, mostrando que é possivel simular sélidos
termo-visco-elasto-plasticos em mudanga de fase com o cddigo computacional elaborado,

contemplando tanto o comportamento de um sélido quanto o comportamento de um fluido,
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respectivamente, antes e depois da temperatura no material analisado atingir a temperatura de
fusdo. Deve-se comentar que o presente modelo Lagrangeano total de transferéncia de calor
apresenta limitacdes em regime de grandes deformacgdes por ndo considerar a mudanca na
forma do corpo ao longo da analise, como foi observado no exemplo de aplica¢éo do item 8.4.7.

Dessa forma, a utilidade do codigo computacional desenvolvido foi demonstrada com
éxito para a andlise de solidos termo-visco-elasto-plasticos, de modo a ampliar, mais uma vez,
o campo de aplicacdo do Método dos Elementos Finitos Posicional. Finalmente, conclui-se que,
considerando os resultados obtidos, os objetivos propostos neste trabalho foram atingidos com
sucesso.

Como uma das possibilidades de futuros desenvolvimentos, pode-se mencionar a
otimizacdo do codigo elaborado visando o aumento na eficiéncia para a simulacdo de, por
exemplo, elementos estruturais e materiais sujeitos as condi¢cdes de analise de maior
complexidade que exigem discretizagdes mais refinadas. Tratando-se de modelos fisicos, seria
interessante implementar plasticidade com encruamento variavel, algoritmo de contato/impacto
para possibilitar, por exemplo, a analise de problemas de conformacdo a frio e a quente de
materiais metalicos e poliméricos, além de problemas de balistica. Por fim, pode ser sugerido
também a transicdo do modelo de transferéncia de calor Lagrangeano total para o modelo
Lagrangeano atualizado, a fim de considerar a mudanca na forma do corpo ao longo da analise,
visando principalmente a mudanca nas condi¢Bes de contorno de transferéncia de calor por

radiacdo e convecgao.
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APENDICE A — Propriedades térmicas do aco estrutural

Apresenta-se, neste anexo, as propriedades térmicas (condutividade térmica e calor
especifico) para os agos estruturais especificadas pela norma CEN EN 1993-1-2:2005.
A condutividade térmica (k) do ago é dada (em W/m°C), em fung¢éo da temperatura por:

54 —3,33-107%28 (20°C < 6 < 800°C)
k = (376)
27,3 (800°C <6 <1200°C)
Ja o calor especifico (c) do aco pode ser determinado como segue (em J/kg°C):

(425 +7,73-10710 — 1,69 - 107302 + 2,22 - 10763 (20°C < 0 < 600°C)

666 + 13002 (600°C < 6 < 735°C)
738 — 6 -

c= (377)

545 + 176820 (735°C < 6 <900°C)
6 —731 -

\ 650 (900°C < 6 < 1200°C)






