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ABSTRACT

NARDI, D. C. The failure modelling of structures composed of quasi-brittle
materials via IGABEM and Extended the Lumped Damage approach. 2024.
117p. Dissertation (Master) - Escola de Engenharia de São Carlos, Universidade de São
Paulo, São Carlos, 2024.

Accurately predicting the mechanical behavior of structures poses a challenge for civil
engineers, requiring the translation of numerous fundamental aspects into the adopted
numerical model. For instance, the type of the structure’s material is a factor that needs
to be considered. A significant range of quasi-brittle materials is present in the engineering
world, due to their versatility and applicability. Ceramics and cementitious are classic
examples of this class of materials. In parallel, it is known that the mechanical response is
highly affected when physical phenomena such as cracking appear and start to propagate
in elements composed of quasi-brittle materials. The strong material nonlinear behaviour
caused by this problem can be represented in the numerical models by the damage
mechanics, a theory which incorporates the internal variable of damage into the problem.
In this context, the present work presents the development of a damage formulation via
the Boundary Element Method (BEM). The adopted constitutive model is the Lumped
Damage Mechanics for bidimensional media, the so-called Extended Lumped Damage
Mechanics (XLMD). The model effectively captures the material nonlinear behavior due
to crack propagation. Nonlinear analysis in the BEM context proves to be a challenging
task. The main reason is the requirement for domain discretization, making the use of
a boundary-based method unfeasible. In light of this, the present work proposes the
coupling of XLDM in the context of an isogeometric analysis in Boundary Element Method
(IGABEM). Quadrilateral cells are employed to account for the nonlinear effects via the
initial stress field approach. The domain is only discretized where the damage is expected
to propagate, enabling the application of BEM in the context of damage mechanics. A total
of five examples are presented: the initial two ones for validating the IGABEM formulation
and the later ones for validating the proposed damage approach. The results achieved
by the proposed formulation are compared with numerical and experimental outcomes
available in the literature. A good agreement with both experimental and numerical
findings are achieved. The proposed approach is promising and improvements are proposed
for future works.

Keywords: boundary element method; isogeometric analysis; extended lumped damage
mechanics; nonlinear analysis.





RESUMO

NARDI, D. C. Modelagem da falha de estruturas compostas por materiais
quase-frágeis via IGABEM e a abordagem do Dano Concentrado Expandido.
2024. 117p. Dissertation (Master’s degree) - Escola de Engenharia de São Carlos,
Universidade de São Paulo, São Carlos, 2024.

Prever com precisão o comportamento mecânico de estruturas representa um desafio para
os engenheiros civis, exigindo a tradução de inúmeros aspectos fundamentais no modelo
numérico adotado. Por exemplo, o tipo do material estrutural é um aspecto que precisa
ser levado em consideração. Uma variedade significante de materiais quase-frágeis está
presente na engenharia, devido a sua versatilidade e aplicabilidade. Em paralelo, sabe-se
que a resposta mecânica é altamente afetada quando fenômenos físicos como a fissuração
aparecem e iniciam o processo de propagação em elementos feitos de tal material. O forte
comportamento não linear causado por esse problema pode ser representado em modelos
númericos por intermédio da mecânica do dano, teoria a qual incorpora a variável interna
de dano ao problema. Neste contexto, o presente trabalho apresenta o desenvolvimento
de uma formulação de dano via Método dos Elementos de Contorno (BEM). O modelo
constitutivo adotado é a Mecânica do Dano Concentrado Expandida (MDCX). O modelo
captura efetivamente o comportamento material não linear devido à propagação de fissuras.
A análise não linear no contexto do MEC é considerada uma tarefa desafiadora. O principal
motivo é a exigência de discretização de domínio, inviabilizando o uso de um método
baseado em apenas discretização de contorno. Diante disso, o presente trabalho propõe o
acoplamento da MDCX no contexto de uma análise isogeométrica no Método dos Elementos
de Contorno (IGABEM). Células quadriláteras são empregadas para considerar os efeitos
não lineares via abordagem de campo de tensões iniciais. O domínio é discretizado apenas
onde se espera que o dano se propague, possibilitando a aplicação do MEC no contexto
da mecânica do dano. Um total de cinco exemplos são apresentados: os dois primeiros
para validação da formulação do IGABEM e os últimos para validação da abordagem de
dano proposta. Os resultados alcançados pela formulação proposta são comparados com
respostas numéricas e experimentais disponíveis na literatura. Uma boa concordância com
resultados experimentais e numéricos é alcançada. A abordagem proposta é promissora e
melhorias são propostas para trabalhos futuros.

Palavras-chave: método dos elementos de contorno; análise isogeométrica; mecânica do
dano concentrado expandida; análise não-linear.
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1 INTRODUCTION

Materials characterized by a gradually decreasing stress after the stress peak, known
as softening, such as ceramic and cementitious ones, are called quasi-brittle materials
(SHAH; SWARTZ; OUYANG, 1995). These are heterogeneous materials with brittle
constituents, which typically do not lose all their capacity of load-carrying at the onset of
damage. There is a gradual degradation of the material strength, which comes from the
microscale decohesion and damage mechanisms (NARAYAN; ANAND, 2019).

Besides, quasi-brittle materials present large extension of strain softening zones,
which has been defined as the deterioration of material strength with increasing strain,
reflecting the material’s ability to resist crack propagation (LEUNG, 2001). The microcracks
triggered in the damaging process come from uniformly distributed isotropic damage,
which becomes localized until it evolves into a macro-crack (SOARES; ITURRIOZ, 2016).

In this context, it is important to point out that concrete structures, in which
the main constituent is quasi-brittle, have been employed widely in engineering practice.
Examples of such structures, illustrated in Figure 1, contribute significantly to improving
the quality of human life worldwide. Hence, concrete is considered one of the main structural
materials used in construction and it belongs to a research field that has gained notoriety
in the last century since engineers started to look for improvements in safety and economic
issues (BARBOSA et al., 1998; HAIFENG; JIANGUO, 2009).

Once the concrete is relatively weak and brittle in tension, concrete cracking
and the interactions between steel and cracked concrete can cause highly nonlinear
material behaviour. The failure of many structures is due to this crack propagation (HU;
SCHNOBRICH, 1990). Mechanical models can capture the material’s nonlinear behaviour,
as well as predict crack initiation and propagation, by simulating how a structure responds
to applied loads and physical, thermal, or chemical phenomena.

The correct understanding and the mechanical modelling of the damage process
are of vital importance to discuss the effects of material deterioration in macroscopic
behaviour. For this reason, according to Ghrib and Tinawi (1995), a systematic relationship
to interrelate the defects distribution and such macroscopic behaviour can be given through
the introduction of an internal variable. This variable directly characterizes the microcracks
distribution, establishing equations that describe both its evolution and the mechanical
behaviour of the damaged element. Thus, the spread of diffuse cracking is continually
represented by the internal damage variable.

Therefore, following the concepts presented in Flórez-López, Marante and Picón
(2015), as the goal of damage mechanics involves the description and quantification



20 Chapter 1 Introduction

Figure 1 – (a) Concrete section of Itaipu Dam (b) Concrete tunnel in the São Paulo subway
and (c) Concrete bridge in the city Winnipeg, Canada.

Source: The author.

of these flaws, the authors proposed a nonlinear theory for that purpose, the so-called
Lumped Damage Mechanics (LDM). The LDM is considered an alternative form of damage
mechanics and it was primarily created to provide a better description of the structural
deterioration phenomena for applications in civil engineering (AMORIM, 2016).

The LDM has its roots in bar elements, where it is commonly utilized. Nevertheless,
as it is a comprehensive theory, its applications go beyond. The pioneering work from
Amorim (2016) extends the LDM to any continuous media analysis, being then named
Extended Lumped Damage Mechanics (XLMD). All the works available in the literature
considering either LDM or XLDM use the Finite Element Method (FEM) for solving the
numerical problem. A different proceeding, such as the Boundary Element Method (BEM),
for example, has never been considered yet, which inspires the developments herein.

Summarily, while the FEM is a domain discretization method for solving differential
equations, the BEM provides boundary discretization and the solution to boundary integral
equations. Hence, in the BEM, the numerical discretization is conducted at reduced
dimensionality of the problem, i.e., for problems in two spatial dimensions, for example,
the discretization is performed over boundary curves. This reduced dimension enables
smaller linear systems, less computer memory requirements, and consequently, more
efficient computation (CHENG; CHENG, 2005).

The BEM has a wide range of applications in several engineering areas: geotechnics
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(PROCHÁZKA, 1992; LIANG et al., 2012; PANJI; ANSARI, 2017; NIE et al., 2020),
fluid mechanics (RAVNIK; ŠKERGET; HRIBERŠEK, 2004; HELTAI et al., 2017), in
thermoelasticity (HOSSEINI-TEHRANI; ESLAMI, 2000; ZHANG; QU; CHEN, 2013), frac-
ture mechanics (PAN, 1999; QIN; MAI, 2002; OLIVEIRA; LEONEL, 2013; CORDEIRO;
LEONEL; BEAUREPAIRE, 2017), and others.

Added to these applications, it is important to mention that crack growth simulation
is one of the most appealing applications of the BEM due to the ability of the method
to automatically follow the path of a growing crack with limited remeshing and no user
intervention. Furthermore, the BEM can also be used for plasticity analysis, where the
potential plastic zone can be discretized into cells (LEITAO; ALIABADI; ROOKE, 1995;
ALIABADI, 2002).

As the BEM provides a very good precision for the stress field evaluation (RAVEEN-
DRA; CRUSE, 1989; MELLINGS; BAYNHAM; ADEY, 2005; LEONEL; VENTURINI;
CHATEAUNEUF, 2011), the use of this method allows an adequate estimative of the
adopted constitutive model, predicting accurately the real behaviour of the structures.

In this context, the present study aims to be the first to propose a model using
the XLDM formulation within BEM. It is believed that besides making use of a recent
theory that can predict the mechanical response of quasi-brittle materials, the range of
BEM applications is also expanded. These contributions are fundamental for enhancing
nonlinear discretizations methods and for broadening computational mechanics in terms
of efficiency and computational time and costs.

1.1 Research Group Development Records

This topic presents the research group’s works developed over the past few years,
which examine the deteriorating process of structures using damage models. For instance,
in light of providing a computational model that can estimate the service life of reinforced
concrete structures under the corrosion phenomenon, Pellizzer (2015) treated this problem
in reinforced concrete structures subjected to chloride penetration through a mechanical-
probabilistic approach. The study of Pellizzer (2015) was the first contribution that
considered a damaging technique.

In the proposed model, the mechanical nonlinear analysis is performed with (FEM)
taking into account the Mazars damage model to describe the concrete mechanical be-
haviour, while the steel behaviour is determined by the elastoplastic model. The results
show that the rigidity of the structure is degraded as the corrosive process advances. For
the same loading value, higher displacements and strains are obtained.

The model proposed by Pellizzer (2015) however has some restrictions. For instance,
some points worth mentioning are: (i) the model is only valid for the analysis of frames; (ii)
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the plastic strains in unloading situations are neglected; (iii) the unilateral behaviour of the
concrete, which is the stiffness recovery caused by the cracking closure, is not considered,
once the Mazars model is formulated only for increasing loads. Such aspects could not be
taken into consideration due to the intrinsic limitations of the adopted damage model.

Still regarding the corrosion problem, Coelho (2017) proposed a model for evaluating
the mechanical degradation of the same kind of structures. Unlike Pellizzer (2015), corrosion
by carbonation is also considered in this work. In addition, the Lumped Damage Mechanics
(LDM) model rather than the Mazars model describes the process of structural deterioration.
The LDM presents fewer restrictions when compared to the Mazars model. For instance,
the model has several advantages, such as the consideration of inelastic hinges, the ability
to describe plastic strains during unloading situations, and the inclusion of the cracking
closure effect.

In this sense, to better describe the corrosive process, the lumped damage law is
modified in this work to include a state variable of corrosion. Thus, a corrosion evolution
law is given, based on semi-empirical equations, available in the literature. The results
indicate that, when corrosion is considered, the structure’s critical failure values alter
significantly. The strength is penalized by the damage evolution as well. Similarly as
demonstrated in Pellizzer (2015), when a structure’s stiffness is reduced, the strain values
increase. Also, alike Pellizzer (2015), the model proposed by Coelho (2017) is also restricted
to the analysis of frames.

A subsequent damage work is proposed by Silva (2023), where a three-dimensional
multiphysics model is developed to evaluate the mechanical behaviour of reinforced concrete
structures subjected to corrosion. The model is based on the Finite Element Method
(FEM) as well, and it considers the chloride penetration in concrete. Similar to Pellizzer
(2015), the Mazars damage model is adopted to describe the mechanical behaviour in
a positional formulation of the FEM. One limitation of this study lies in the challenge
of achieving objectivity in the solution, primarily attributed to the strain localization
phenomenon. To address this issue, the author employed a regularization technique for
fracture energy, a widely accepted approach in the literature.

Mentioning at this point the current contributions in the team research, parallel
to this dissertation, the continuation of Teles (2022) is being developed. Differently from
Pellizzer (2015) and Coelho (2017), the work of Teles (2022) addresses two-dimensional
problems. The author advanced with XLDM formulations, by introducing a nonlinear
damage law in the element proposed by Amorim (2016), improving the representation of
material behaviour after the elastic regime. A great advantage of using the LDM model
is that it circunvents the strain localization problem, which is a common issue in most
damage models. In this sense, the work from Teles (2022) is the main used to contrast
with the results provided via FEM. Also, as the proposed nonlinear damage law given
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by the author shows promising results and solution objectivity, the dissertation herein
developed makes use of this law for describing the cracking evolution.

1.2 Objectives and Contributions

The main objective of the present work is to implement the Extended Lumped
Damage Mechanics (XLDM) within Boundary Element Method (BEM) framework, for
obtaining the representation of the mechanical behaviour of quasi-brittle materials, such
as concrete.

As specific objectives, it is aimed to:

• Develop a nonlinear IGABEM formulation based on the XLDM theory and propose
a predictor-corrector algorithm for solving the nonlinear algebraic system;

• Implement quadrileteral cells for capturing the nonlinear behaviour via the initial
stress field approach;

• Obtain results that allow the evaluation of the mechanical behaviour of selected
examples (damage evolution, stiffness reduction, force-displacement relationship, and
others);

• Carry out a comparative analysis, evaluating the potential of the implemented
numerical method, contrasting with XLDM via FEM formulations that are available
in the literature.

1.3 Methodology

This master’s dissertation contributes to the development of the research group
on damage models of the Department of Structural Engineering from the São Carlos
School of Engineering at the University of São Paulo, under the supervision of Dr. Edson
Denner Leonel. As previously specified, the present study is the pioneer involving BEM
and damage mechanics in the research group.

Firstly, a literature review using the main available databases (ScienceDirect,
Scopus and Web of Science, for example) is carried out to provide a strong theoretical
foundation, clearly explaining the main issues that drive the present research.

In parallel to it, the construction of BEM strategies for coupling the XLDM theory
is performed. For this, an isogeometric formulation is implemented, along with extra
numerical tools that broaden the applicability of the BEM. Non-homegenous and body
forces effects, for instance, are considered. A refinement strategy is also implemented,
which is based on the knot-insertion technique. Linear problems are addressed, for assesing
the accuracy of the numerical implementation. In sequence, via a nonlinear analysis, it is
expected to evaluate the mechanical behaviour of quasi-brittle materials by a stress field
correction. For such purposes, an in-house code is implemented in FORTRAN 90 language.
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After the selection of examples of interest for showing the potential of the new
formulation, the numerical results are contrasted with the ones given by the FEM available
in the literature. Computational efforts and the results accuracy, when compared to the
structure’s experimental response, are highlighted. The main contributions are then pointed
out and suggestions for future works are made.

1.4 Layout of the Dissertation

The present dissertation is organized as follows: at first, the theoretical basis of the
adopted numerical method, the Boundary Element Method (BEM), is presented in Chapter
2. The main concepts of the method are introduced, as well as the main formulations and the
numerical discretization procedure. In this topic, the isogeometric analysis (IGA) concept
is also presented, as it is the basis for the numerical implementation. Extra techniques that
broaden the applicability of the BEM are also examined: the Galerkin Vector Approach
approximates body forces, the subregions technique handles non-homogeneous materials,
and the knot-insertion strategy refines the the isogeometric boundary mesh.

In sequence, in Chapter 3, introduces BEM strategies for solving nonlinear problems.
In this work, the initial stress field approach is adopted. The integral representation as
well as the algebraic system are presented. Insights on coupling a constitutive model into
the BEM framework are also given. As the material nonlinear behavior requires a domain
discretization, the cells formulation is also discussed. The adopted numerical integration
techniques for eliminating the singularities are also presented.

Afterwards, the Lumped Damage Mechanics (LDM) and the Extended Lumped
Damage Mechanics (XLDM) theories are presented in Chapter 4. The main concepts of
the theories are introduced, as well as the numerical discretization procedure. Additionally,
the nonlinear damage law proposed by Teles (2022), serving as the foundation for the
numerical implementation, is discussed. The numerical implementation is then described,
highlighting the main aspects of the Algorithm.

Finally, in Chapter 5, five numerical examples are presented and discussed. The
first and second examples are linear elastic problems, which are used to verify the accuracy
of the IGABEM implementation. The subsequent examples are nonlinear problems, which
evaluate the potential of implemeting the XLDM into IGABEM. Computational efforts
and the accuracy of the results, when compared to the structure’s experimental response,
are highlighted. The main contributions are then pointed out and suggestions for future
works are made.
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2 THE BOUNDARY ELEMENT METHOD (BEM)

Engineering problems have been represented by physical laws which can be mathe-
matically described by differential equations and boundary conditions (BCs). For solving
these boundary value problems, it is aimed to determine a response to given BCs. In
general, analytical solutions of boundary value problems satisfying both the differential
equations and the BCs can only be obtained for a few range of problems, usually with
simple geometry and BCs. Hence, approximation solutions are required. For this, one needs
to decide between satisfying only the differential equation or the BCs, i.e, it is necessary
to choose one of the two and minimize the error of the other one. For example, if the
BCs are chosen to be exactly satisfied, the error in satisfying the differential equation is
then required to be minimized. This is the purpose of weigthed residue and Ritz methods,
which are the basis of the Finite Element Method (FEM).

Notwithstanding, it is known that in some cases, the physical laws representing real
problems can be described in terms of integral equations as well. Thus, the most general
and most commonly used method for solving such integral equations is the Boundary
Element Method (BEM). Similarly, in this case, the functions used for approximating
the solution inside the domain are chosen to be those which exactly satisfy the governing
differential equations, then the error in satisfying the boundary conditions is minimized
and this involves a boundary integral (ALIABADI, 2002; BEER; SMITH; DUENSER,
2008).

According to Leonel (2006), Abel in 1823 was the first to apply integral equations
to solve an isochronous pendulum problem. Following Cheng and Cheng (2005), Green in
the year 1828 formulated for the first time an integral equation for solving problems of
electrostatics and magnetism. In addition to them, other authors such as Euler, Lagrange,
Laplace, Fourier, and Poisson also formulated works which have been fundamental for the
development of differential and integral equations.

In the field of structural analysis, boundary integral methods were introduced
by Russian authors such as Muskelishvili, Mikhlin and Kupradze and the methods at
that time were considered difficult to be implement numerically. By using Betti’s and
Somiglina’s equation, Rizzo presented the direct formulation for elastostatic problems
(ALIABADI; BREBBIA, 1970).

At the beginning of the twentieth century, the introduction of variational methods
for partial differential equations led to a loss of importance of integral equations for the
area under analysis. That happened due to the difficulty of formulating precise results
on existence and uniqueness employing classical integral equations. However, along with
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the advancement of scientific computing in the middle of the twentieth century, the need
for numerical methods for solving boundary value problems began to grow (SAUTER;
SCHWAB, 2010). The method presents some particularities concerning other numerical
methods and some advantages that it has over such methods, especially over the domains
ones, are:

• The resolution of boundary value problems for domains defined over geometricaly
complex domains is simpler in terms of mesh generation, i.e., spatial discretization,
since only contour meshes are needed, as opposed to an entire volume mesh (see
Figure 2). This leads to a consequent reduction in model preparation time;

• For some parameter-dependent boundary value problems, such as problems in the
area of electromagnetism under high frequencies, numerical methods based on integral
boundary equations remain more stable for extreme parameter values when compared
to domain discretization methods;

• The approach uses high-quality solutions (fundamental solutions), and it treats
singularities more appropriately;

• The primary challenges of the method, such as the efficient resolution of fully
populated systems of equations and numerical integration of improper integrals,
are being overcome by means of sophisticated formulations that have been under
continuous improvement since the 1980s.

Figure 2 – The domain method (FEM) and the boundary method (BEM).

FEM BEM

The whole domain is discretized. Only boundary is discretized.

Source: Adapted from Tonyali and Ates (2018)

In this sense, traditional numerical solution techniques for integral equations include
the Nyström or quadrature formula methods and the BEM collocation approach. Since
approximately the 1980s to 1990s, the BEM Galerkin method has been increasingly
important for discretizing boundary integral equations in practical applications (SAUTER;
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SCHWAB, 2010). The reciprocal theorem, the weighted residual idea, and the variational
approach are a few ways to derive the BEM formulations (ALIABADI, 2002). The first
one (reciprocal theorem) is herein used to derive boundary integral equations.

2.1 Boundary Element Formulation for Linear Elasticity

The main concepts of the Theory of Linear Elasticity used for the boundary integral
equations are presented in Appendix A. It is important to mention that more in-depth
concepts of the Theory of Linear Elasticity are available in Timoshenko and Goodier
(1934). The index notation (Einstein summation convention) is herein adopted.

2.1.1 Boundary Integral Equations

The formulation of the elastic problem requires the determination of the funda-
mental solution. This solution considers an infinite domain under the action of a singular
load. In other words, the fundamental solution for displacements is then an expression
which provides the displacements in any part of the domain due to the presence of a
concentrated force acting at a certain point of a homogeneous solid of infinite dimensions.
This concetrated force has its intensity described the Delta Dirac function. According to
Brebbia and Walker (2016), the solution given in the following text is called the Kelvin
solution. Thus, for obtaining such a solution, the concepts given in Aliabadi (2002) are
herein followed and described in the sequence.

From the equilibrium equation and by means of the weighted residual method, the
weak form of the problem is written as:

∫
Ω

(σij,j + bi) u∗
i dΩ = 0 (2.1)

where u∗
i is the weighting function corresponding to a displacement field from a self-

equilibrated state. The integral related to σij,ju
∗
i can be written according to:

∫
Ω

σij,ju
∗
i dΩ =

∫
Ω

(σiju
∗
i ),j dΩ −

∫
Ω

σijε
∗
ijdΩ (2.2)

once the following equality is valid:

σijε
∗
ij = 1

2
(
σiju

∗
i,j + σiju

∗
j,i

)
= 1

2
(
σiju

∗
i,j + σjiu

∗
j,i

)
= σiju

∗
i,j

(2.3)
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The Divergence theorem (Gauss theorem), defines the relationship between the
integrals of certain tensor operations in the domain of a field with operations on its
boundary, by the following:

∫
Ω

fi,idΩ =
∫

Γ
finidΓ (2.4)

where ni denotes the outward unit normal vector. Thus, applying such theorem in the first
integral of the right-hand side of Eq. (2.2), one obtains:

∫
Ω

(σiju
∗
i ),j dΩ =

∫
Γ

σijnju
∗
i dΓ =

∫
Γ

tiu
∗
i dΓ (2.5)

where the last relation comes from Cauchy’s formula given in (A.4).

Therefore, Eq. (2.2) is rewritten as:

∫
Ω

σij,ju
∗
i dΩ =

∫
Γ

tiu
∗
i dΓ −

∫
Ω

σijε
∗
ijdΩ (2.6)

Replacing now Eq. (2.6) in Eq. (2.1), the following relationship is given:

∫
Γ

tiu
∗
i dΓ +

∫
Ω

biu
∗
i dΩ =

∫
Ω

σijε
∗
ijdΩ (2.7)

Remembering the Hooke’s Law in Eq. (A.6), the equation on the right hand side
can still be rewritten according to:

∫
Ω

σijε
∗
ijdΩ =

∫
Ω

cijklεklε
∗
ijdΩ =

∫
Ω

σ∗
ijεijdΩ (2.8)

Similar to the relation shown in Eq. (2.2), one has that σ∗
ijεij = σ∗

ijui,j. Thus, Eq.
(2.8) becomes:

∫
Ω

σ∗
ijεijdΩ =

∫
Ω

σ∗
ijui,jdΩ =

∫
Ω
(σ∗

ijui),jdΩ −
∫

Ω
(σ∗

ij),juidΩ (2.9)

which is equivalent to:

∫
Ω

σ∗
ijεijdΩ =

∫
Γ

σ∗
ijnjuidΓ −

∫
Ω
(σ∗

ij),juidΩ (2.10)

Therefore, by recalling the equilibrium relationship with respect to the fundamental
problem (similar to Eq. (A.3)), Eq. (2.7) is finally rewritten and the Betti’s reciprocal
work theorem for two equilibrated elastic states is finally obtained:



2.1 Boundary Element Formulation for Linear Elasticity 29

∫
Γ

tiu
∗
i dΓ +

∫
Ω

biu
∗
i dΩ =

∫
Γ

t∗
i uidΓ +

∫
Ω

b∗
i uidΩ (2.11)

Consider now that the body force b∗
i corresponds to a point force represented by

the Dirac delta function ∆ (x′, x):

b∗
i = ∆ (x′, x) ei (2.12)

in which x′ is the point where the force is applied and ei is a unit positive force vector
in xi direction. For the two-dimensional problems herein studied, ei is a force per unit
thickness. The Delta Dirac function has the property

∫
Ω

g(x)∆ (x − x′) dΩ = g (x′) (2.13)

which allows the domain term in the right hand side of Eq. (2.12) to be rewritten as

∫
Ω

b∗
i uidΩ =

∫
Ω

∆ (x − x′) eiuidΩ = ui (x′) ei (2.14)

The displacement and the traction fields of where the point load is applied are
given by

u∗
i = U∗

ij (x′, x) ej

t∗
i = T ∗

ij (x′, x) ej

(2.15)

where U∗
ij and T ∗

ij are, respectively, the displacement and the traction fundamental solutions.
Appendix A presents the development for obtaining their expressions.

Replacing Eqs. (2.14) and (2.15) into Eq. (2.11), and then applying the property
shown in (2.13), the Somegliana’s identity is obtained:

ui (x′) +
∫

Γ
T ∗

ij (x′, x) uj(x)dΓ =
∫

Γ
U∗

ij (x′, x) tj(x)dΓ +
∫

Ω
U∗

ij (x′, x) bj(x)dΩ (2.16)

Such identity allows the determination of the internal displacement fields from the
magnitudes known at the boundary. Differentiating the displacements in this equation
with respect to the source point x’ gives

ui,k (x′) +
∫

Γ
T ∗

ij,k (x′, x) uj(x)dΓ =
∫

Γ
U∗

ij,k (x′, x) tj(x)dΓ +
∫

Ω
U∗

ij,k (x′, x) bj(x)dΩ (2.17)
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Once Eq. (2.17) represents an integral equation written in terms of displacement
gradients, by applying the strain-displacement relationship given in Eq. (A.5) and then by
applying the Hooke’s law, an integral representation for the stresses is obtained:

σij (x′) +
∫

Γ
S∗

kij (x′, x) uk(x)dΓ =
∫

Γ
D∗

kij (x′, x) tk(x)dΓ +
∫

Ω
D∗

kij (x′, x) bk(x)dΩ (2.18)

where D∗
kij and S∗

kij are obtained from U∗
ij,k and T ∗

ij,k, respectively. Their expressions are
detailed in Appendix A as well.

2.1.2 Boundary Integral Equations for Points on the Boundary

The Somigliana’s identity given in Eq. (2.16) is valid for any source point located
inside the domain Ω. In order to resolve the boundary value problem, a limit analysis must
be carried out to bring the source point to the boundary, i.e, it is necessary to consider
the limit as X′ → x′ ∈ Γ. Such a situation results in singular problems, once improper
values are obtained in the integral formulations when this analysis is carried out (r 7→ 0).

For evaluating the source point on the boundary, consider that the domain is
increased by a circular region of radius ε centred at x′, as shown in Figure 3.

Figure 3 – Source point over the boundary.
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Source: Adapted from Aliabadi (2002).

The Somigliana’s identity is then rewritten as:

ui (x′)+
∫

Γ−Γε+Γ+
ε

T ∗
ij (x′, x) uj(x)dΓ =

∫
Γ−Γε+Γ+

ε

U∗
ij (x′, x) tj(x)dΓ+

∫
Ω+Ωε

U∗
ij (x′, x) bj(x)dΩ

(2.19)
where the following limit must be operated:
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Figure 4 – Illustration of (a) the derivative of the distance r and of (b) a smooth boundary.
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Γ = lim
ε→0

(
Γ − Γε + Γ+

ε

)
Ω = lim

ε→0
(Ω + Ωε)

(2.20)

Each term of the Eq. (2.19) is analyzed separately. The geometric relation shown in
Figure 4a is considered for the development of the limits herein presented. Firstly, consider
the domain integral given by:

∫
Ω+Ωε

U∗
ij (x′, x) bj(x)dΩ =

∫
Ω

U∗
ij (x′, x) bj(x)dΩ +

∫
Ωε

U∗
ij (x′, x) bj(x)dΩε (2.21)

Since the first term of the second member of the Equation (2.21) does not depend
on ε, only the second term of the second member is studied. Considering the fundamental
solution for the displacements as given in (B.10) and that dΩε = εdεdθ, is results:

I = lim
ε→0

{
−(3 − 4ν)δlk

8πµ(1 − v)

∫ θ2

θ1

∫ ε

0
ln(ε)εdεdθ + 1

8πµ(1 − v)

∫ θ2

θ1

∫ ε

0
r,lr,kεdεdθ

}
(2.22)

in which θ1 and θ2 are the angles illustrated in 4. After some manipulations, the
first part of the limit shown above is rewritten as
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I1 = lim
ε→0

[
−(3 − 4v)δlk

8πµ(1 − v)

(
ε2 ln(ε)

2 − ε2

4

)
(θ2 − θ1)

]
(2.23)

relation that vanishes to zero when L’Hôpital’s rule is applied in the indeterminate form
ε2 ln(ε). Thus, the second part of the limit gives:

I2 = lim
ε→∞

[
1

8πµ(1 − v)

∫ θ2

θ1

∫ ε

0
r,lr,kεdεdθ

]
(2.24)

which after several manipulations vanishes to zero as well. Hence, it is concluded that:

lim
ε→0

∫
Ω+Ωε

U∗
ij (x′, x) bj(x)dΩ =

∫
Ω

U∗
ij (x′, x) bj(x)dΩ (2.25)

Analyzing now the first term on the right-hand side of Eq. (2.19), it is given that:

∫
Γ−Γε+Γ+

ε

U∗
ij (x′, x) tj(x)dΓ =

∫
Γ−Γε

U∗
ij (x′, x) tj(x)dΓ +

∫
Γ+

ε

U∗
ij (x′, x) tj(x)dΓ (2.26)

Once again, the first term of Eq. (2.26) does not depend upon the external radius
ε, which implies that only the second integral is of interest. Therefore, taking the limit

I = lim
ε→0

∫
Γ+

ε

U∗
ij (x′, x) tj(x)dΓ (2.27)

gives that

I = lim
ε→0

{
−(3 − 4ν)δlk

8πµ(1 − v)

∫ θ2

θ1
ln(ε)εdθ + 1

8πµ(1 − ν)

∫ θ2

θ1
r,lr,kεdθ

}
(2.28)

where the first limit goes to zero, similarly to the previous analysis, once L’Hôpital’s rule is
applied. Regarding the second part of the limit, after several mathematical manipulations,
one obtains that I = 0, giving then that:

lim
ε→0

∫
Γ+

ε

U∗
ij (x′, x) tj(x)dΓ =

∫
Γ

U∗
ij (x′, x) tj(x)dΓ (2.29)

Analogously, the term present on the left-hand side of Eq. (2.19) is written as:

∫
Γ−Γε+Γ+

ε

T ∗
ij (x′, x) uj(x)dΓ =

∫
Γ−Γε

T ∗
ij (x′, x) uj(x)dΓ +

∫
Γ+

ε

T ∗
ij (x′, x) uj(x)dΓ (2.30)

where the first integral is independent of ε, which implies that only the following limit
should be taken

I = lim
ε→0

∫
Γ+

ε

T ∗
ij (x′, x) uj(x)dΓ (2.31)
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Once the displacement field is continuous in the boundary, the following limit is
obtained:

I = uj(x′) lim
ε→0

∫
Γ+

ε

T ∗
ij (x′, x) dΓ (2.32)

Considering the traction fundamental solution presented in (B.13), the above limit
can be operated as:

I = lim
ε→0

∫
Γ+

ε

− 1
4π(1 − ν)r

{
∂r

∂n
[(1 − 2ν)δlk + 2r,lr,k] + (1 − 2ν) (n,lr,k − n,kr,l)

}
uj(x′)

(2.33)

As dΓ+
ε = εdθ, and as r⃗ ⊥ n⃗ (which gives ∂r

∂n
= 1), Eq. (2.33) can be rewrriten as:

I = lim
ε→0

{∫
Γε

− (1 − 2ν)
4π(1 − ν)

[
δlk + nlr,k − nkr,l

r

]
dΓ +

∫
Γε

−2
4π(1 − ν)

r,lr,k

r
dΓ
}

uj(x′) (2.34)

Taking l = k = 1, and remembering the relations shown in Figure 4a, Eq. (2.34)
becomes:

I =
{

θ1 − θ2

2π
− 1

4π(1 − ν) [sin (θ2) cos (θ2) − sin (θ1) cos (θ1)]
}

uj(x′) (2.35)

Taking now l = k = 2, Eq. (2.34) gives:

I =
{

θ1 − θ2

2π
+ 1

4π(1 − ν) [sin (θ2) cos (θ2) − sin (θ1) cos (θ1)]
}

uj(x′) (2.36)

Finally, for l = 1 and k = 2 or l = 2 and k = 1, the limit goes to:

I = − 1
4π(1 − ν)

(
− cos (2θ2) + cos (2θ1)

2

)
uj(x′) (2.37)

Such values (2.35-2.37) are defined for a general condition, i.e, for cases where the
source point is localized in boundaries with discontinuous derivatives. However, for source
points located in smooth boundaries, θ1 = −π

2 and θ2 = π
2 (see Figure 4b), resulting in

I =
 −1

2 0
0 −1

2

uj(x′) (2.38)

Thus, the integral equation of the elastic problem results in:
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−1
2ui (x′) + ui (x′) +

∫
Γ

T ∗
ij (x′, x) uj(x)dΓ =

∫
Γ

U∗
ij (x′, x) tj(x)dΓ +

∫
Ω

U∗
ij (x′, x) bj(x)dΩ

(2.39)
or better writing,

1
2ui (x′) +

∫
Γ

T ∗
ij (x′, x) uj(x)dΓ =

∫
Γ

U∗
ij (x′, x) tj(x)dΓ +

∫
Ω

U∗
ij (x′, x) bj(x)dΩ (2.40)

2.2 Numerical Discretization

As previously mentioned, the Boundary Element Method is a numerical method for
solution of boundary integral equations, based on a discretization procedure (ALIABADI,
2002). Then, a boundary discretization for a finite number of elements is carried out (Figure
5), where for each element e, both the displacements and the tractions are approximated
with interpolation functions and nodal values.

Figure 5 – Discretization of the boundary into elements.

Elements

Source: Adapted from Aliabadi (2002).

In the following text, [] indicate matrices, while {} indicate vectors. The isoparamet-
ric formulation is herein considered, where the boundary coordinates x, the displacement
fields u(x) and the traction fields t(x) are approximated by the following interpolation
functions, as shown:

xe =
m∑

α=1
Nα(ξ)xα

ue =
m∑

α=1
Nα(ξ)uα

te =
m∑

α=1
Nα(ξ)tα

(2.41)

where Nα are the shape functions defined in terms of non-dimensional coordinates ξ

(−1 ≤ ξ ≤ 1), as represented in Figure 6, and xα, uα and tα are the values of the functions
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Figure 6 – Boundary elements in the isoparametric space.

Source: Adapted from Aliabadi (2002)

at node α. The interpolatory shape functions are derived from the Lagrangian polynomials,
presented in 2.42.

Nα(ξ) =
m∏

i=0,i ̸=α

ξ − ξi

ξα − ξi

(2.42)

where its degree is m − 1, in which m is the total number of nodes, and they assume the
value 1 at node α and zero at all other nodes. The sum of all shape functions must equal
to 1 while the sum of its first derivative assumes the value of zero.

In matrix form, the kernels T ∗(x’,x) and U∗(x’,x) can be presented as:

T ∗ =
 t∗

11 t∗
12

t∗
21 t∗

22

 (2.43)

U ∗ =
 u∗

11 u∗
12

u∗
21 u∗

22

 (2.44)

where the subindices i and j of tij and uij are the resulting tractions and displacements,
respectively, in j direction due to the application of a unitary force in i direction.

By disregarding the presence of the body forces and by discretizing the problem
into N elements, Eq. (2.40) leads to the following:

Cij (x′) uj (x′) +
N∑

n=1

∫
Γn

T ∗
ij (x′, x) uj(x)dΓ =

N∑
n=1

∫
Γn

U∗
ij (x′, x) tj(x)dΓ (2.45)
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where Γ = ∑N
n=1 Γn and Cij (x′) = 1/2δij.

After substituting the expressions given in Eq. (2.41) into the integral equation
(2.45), one obtains

Cij (x′) uj (x′) +
N∑

n=1

m∑
α=1

[DH]nα
ij unα

j =
N∑

n=1

m∑
α=1

[DG]nα
ij tnα

j i, j = 1, 2 (2.46)

where

[DH]nα
ij =

∫ 1

−1
Nα(ξ)T ∗

ij (x′, x(ξ)) Jn(ξ)dξ

[DG]nα
ij =

∫ 1

−1
Nα(ξ)U∗

ij (x′, x(ξ)) Jn(ξ)dξ

(2.47)

where the Jacobian of transformation J(ξ) is given by:

J(ξ) =

√√√√(dx1

dξ

)2

+
(

dx2

dξ

)2

(2.48)

From Eq. (2.46) , a system of equations can be assembled for solving the problem:

[H ]{u} = [G]{t} (2.49)

where the square matrix [H ] contains all the influence terms associated to T ∗(x’,x) kernel
and [G] of the U∗(x’,x) one. Both are fully populated and non-symmetric matrices. The
vectors {u} and {t} contain the nodal displacements and the tractions. After prescribing
the boundary conditions, Eq. (2.18) is rearranged according to the following system:

[A]{x} = {f} (2.50)

where {x} corresponds to the vector of unknown degrees of freedom and f to the indepedent
vector.

2.2.1 The Isogeometric Boundary Element Method (IGABEM)

Usually, in numerical analysis, Lagrangian polynomial functions are used to describe
the geometry and unknown fields, while in CAD software, the geometries are most
commonly described using the so-called Non-Uniform Rotational B-splines (NURBS).
Consequently, there is a mismatch between these two tools. In contrast, the isogeometric
analysis (IGA) uses the same functions used in CAD software, provinding thus a direct
link between the CAD and the numerical analysis (SIMPSON et al., 2012). Thus, in the
IGABEM, the Lagrangian polynomials are replaced by the NURBS basis functions.
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Figure 7 – Exemplification of the interpolatory property of the B-Spline function.

መ𝜉 = 0 መ𝜉 = 3

መ𝜉 = 5

Source: Adapted from Beer, Smith and Duenser (2008).

Once the NURBS are built from the B-splines, their construction is first addressed.
The primary distinction between the two lies in the fact that NURBS employ a projection
technique on B-splines during assembly. This enables the creation of intricate geometries,
as B-splines are parametric functions that can map curves within the geometric space.

In this sense, the following concepts herein described are based in Cottrell, Hughes
and Bazilevs (2009), Simpson et al. (2012) and in Simpson et al. (2013). Thus, it is known
that one of the most essential elements of such type of functions is the knot vector, which is a
non-decreasing set of coordinates in the parametric space given by Ξ = {ξ1, ξ2, . . . , ξn+p+1},
where i is the knot index, ξi is the ith knot, p is the polynomial order and n is the number
of basis functions used to form the B-Spline curves. A knot vector is said to be open if
its first and last knot values appear p + 1 times. The number of basis functions is given
by the number of control points, which are similar to the nodes in conventional BEM
(Lagrangian). Also, the curve order p is equivalent to the degree of the polynomial used in
the isoparametric formulation.

In the present work, the knot spans are considered elements once the numerical
quadrature is carried out at the knot span level. If a knot is repeated k times, then the
B-spline curve’s continuity at the point is Cp−k and if the curve is C0 continuous at a
point, then the curve is interpolatory at this location. Figure 7 shows as an example such
property for a knot vector KV = [0, 0, 0, 1, 2, 3, 3, 4, 5, 5, 5] and p = 2, where the curve is
interpolatory at ξ = 3 (C0) and at the extremities with ξ = 0 and ξ = 5 (C−1).

The parametrization of a B-spline curve in terms of its basis functions and control
points pa is given by:

c(ξ) =
n∑

a=1
Na,p(ξ)pa (2.51)
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where c(ξ) is a vector containing the Cartesian coordinates of the location described by
the parametric coordinate ξ, and Na,p stands for the set of B-spline basis functions of
degree p. The basis functions are defined recursively starting with piecewise constants for
p = 0, with 1 ⩽ a ⩽ n:

Na,0 =

1 if ξa ⩽ ξ < ξa+1

0 otherwise
(2.52)

For p = 1, 2, 3..., the recursive Cox-de Boor formula (COX, 1972; BOOR, 1972) is
used:

Ni,p(ξ) = ξ − ξi

ξi+p − ξi

Ni,p−1(ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (2.53)

It is important to mention that the basis functions are non-negative at every point
and they constitute a partition of unity, that is:

n∑
i=1

Ni,p(ξ) = 1 ∀ξ (2.54)

The first-order derivatives of a B-spline function can be obtained through:

d

dξ
Ni,p(ξ) = p

ξi+p − ξi

Ni,p−1(ξ) − p

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (2.55)

While the B-splines only approximate circular shapes, the NURBS can reproduce
their exact form (SIMPSON et al., 2013). For that, such functions are generated from a
projection of higher dimentional B-splines, and the additional coordinate is understood as
a weight. The interpolation via NURBS is given by:

c(ξ) =
n∑

a=1
Ra,p(ξ)pa (2.56)

where

Ra,p = Na,p(ξ)wa∑m
â=1 Nâ,p(ξ)wâ

(2.57)

Note that in the case where the weights are equal to one (i.e., wa = 1 ∀a), Eq.
(2.57) returns the B-spline functions.

The first-order derivatives of the NURBS are obtained by:

d

dξ
Ra,p(ξ) = wa

W (ξ)N ′
a,p − W ′(ξ)Na,p(ξ)

W (ξ)2 (2.58)
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in which

W (ξ) =
n∑

â=1
Nâ,p(ξ)wa, (2.59)

N ′
a,p ≡ d

dξ
Na,p (2.60)

and

W ′(ξ) =
n∑

â=1
N ′

â,p(ξ)wa. (2.61)

For the numerical implementations, once the integration is carried out into the
knot spans and not directly in the NURB, an additional transformation Jacobian must
be considered. In a knot span [ξ1, ξ2], for example, the parametric coordinate is defined
according to:

ξ = (ξ2 − ξ1) ξ̂ + (ξ2 + ξ1)
2 (2.62)

where ξ̂ is the Gauss coordinate. Hence, the Jacobian is given by:

∂ξ

∂ξ̂
= ξ2 − ξ1

2 (2.63)

An important difference between IGABEM and the conventional BEM that should
be mentioned relies on the location of the collocation points. As not all the control
points are on the boundary, the Greville abscissae (GREVILLE, 1964; JOHNSON, 2005)
definition is used to overcome such a problem. For each control point, there is an associated
collocation point. For the control points situated in each curve end, the collocation points
should be discontinuous. For the remaining ones, the collocations can be positioned at the
Greville abscissae, given by:

ξ′
a = ξa+1 + ξa+2 + · · · + ξa+p

p
a = 1, 2, . . . , n (2.64)

where p is the curve order and n is the number of control points.

2.3 Singularity Subtraction - Regularization of Kernels U∗
ij and T ∗

ij

The kernels U∗
ij and T ∗

ij presented in Eq. (2.40) are singular when the source point
x′ is located on the boundary Γ. Regular numerical integration cannot be uniquely applied
as the kernels are improper. Hence, in order to solve this problem, principles of integral
regularization are applied, which consist in subtracting the singular part of the kernel
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from the integral equation. For in deep detailes about the regularization process, see Kzam
(2009).

In this sense, the first integral on the right-hand side of Eq. (2.40) can be written
as:

∫
Γ

U∗
ij (x′, x) tj(x)dΓ =

∫
Γ

U∗
ij (x′, x) tj(x)dΓ −

∫
Γ

Ū∗
ij (x′, x) tj(x)dΓ̄ +

∫
Γ

Ū∗
ij (x′, x) tj(x)dΓ̄

(2.65)
in which,

Ū∗
ij (x′, x) = 1

8πG(1 − v) [− (3 − 4ν) ln (|r∗|) δij] (2.66)

where r∗ (ξ0, ξ) = J (ξ0) |ξ − ξ0|, where ξ0 is the parametric coordinate of the source
point; ξ is the parametric coordinate of the field point and J (ξ0) is the Jacobian of the
transformation evaluated at ξ0. This relation comes from a Taylor series expansion of the
field coordinates written in terms of the source coordinates. It is important to mention that
the term rirj

8πµ(1−ν) presented in Eq. (B.10) is not considered in the regularization process,
since it is not singular.

Thus, U∗
ij and Ū∗

ij present the same singularity intensity. The two first integrals in
the right-hand side of Eq. (2.65) can be evaluated numerically, while the last one can be
analytically solved, in the Principal Cauchy Value (PCV) sense. The numerical part is
evaluated via Gauss-Legendre quadrature, according to:

∫
Γ

U∗
ij (x′, x) tj(x)dΓ −

∫
Γ

Ū∗
ij (x′, x) tj(x)dΓ =∫ 1

−1

1
8π(1 − v) [−(3 − 4v) ln(r)δij + r,i(ξ)r,j(ξ)] J (ξ0) ϕ (ξ0) dξ

−
∫ 1

−1

1
8π(1 − v) [−(3 − 4v) ln (|r∗|) δij] J (ξ0) ϕ (ξ0) dξ

(2.67)

where ϕ is the basis function. In sequence, the PCV is defined as:

PCV = −(3 − 4ν)δij

8πG(1 − ν) J(ξ0)
∫ 1

−1
ln(|r∗|)dξ. (2.68)

The above integral can be evaluated according to the following limit:

PCV = lim
ε→0

{
− (3 − 4ν) δijJ (ξ0)

8πG(1 − ν)

[∫ −ξ

−1−ξ0
ln (|J (ξ0) ξ|) dξ +

∫ 1−ξ0

ξ
ln (|J(ξ0)ξ|)

)
dξ

]}
(2.69)

which results in:
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PCV = −(3 − 4v)δijJ (ξ0)
8πG(1 − ν) [(1 + ξ0) ln (|J (ξ0) (1 + ξ0)|) + (1 − ξ0) ln (| J (ξ0) (1 − ξ0 |) − 2]

(2.70)

The above relationship is valid only when ξ0 ̸= ±1, i.e, only for discontinuous
elements. Thus, for the remaining for cases where ξ0 = ±1, the following expression is
valid:

PCV = −(3 − 4v)δijJ (ξ0)
8πG(1 − ν) [2 ln (|2J (ξ0)| − 2)] (2.71)

For eliminating the singularity present on the kernel T ∗
ij, the same procedure is

applied to the second integral of the right-hand side of Eq. (2.40), which can be rewritten
in terms of:

∫
Γ

T ∗
ij (x′, x) uj(x)dΓ =

∫
Γ

T ∗
ij (x′, x) uj(x)dΓ−

∫
Γ

T̄ ∗
ij (x′, x) uj(x)dΓ̄+

∫
Γ

T̄ ∗
ij (x′, x) uj(x)dΓ̄

(2.72)

Similarly, Tij∗ and T̄ ij∗ exhibit the same level of singularity intensity. The first
two integrals on the right-hand side of Eq. (2.72) can be numerically evaluated using
Gauss-Legendre quadrature, as outlined below:

∫
Γ

T ∗
ij (x′, x) uj(x)dΓ −

∫
Γ

T̄ ∗
ij (x′, x) uj(x)dΓ =∫ 1

−1

−1
4π(1 − v)r

{
∂r

∂n
[(1 − 2v)δij + 2r,ir,j] + (1 − 2v) (nir,j − njr,i)

}
J (ξ0) ϕ (ξ0) dξ

−
∫ 1

−1

−1
4π(1 − v)r∗

[
(1 − 2v)

(
ni (ξ0) r∗

,j − nj (ξ0) r∗
,i

)]
J (ξ0) ϕ (ξ0) dξ

(2.73)

The term 1
r

∂r
∂n

is not singular, thereby it is not considered in the regularization
process. The PCV of the second integral of the right-hand side of Eq. (2.72) is defined as:

PCV = lim
ξ→0

−

[
(1 − 2v)

(
ni (ξ0) r∗

,j − nj (ξ0) r∗
,i

)]
4π(1 − v)

[∫ −ξ

−1−ξ0

1
ξ

dξ +
∫ 1−ξ0

ξ

1
ξ

dξ

] (2.74)

limit that results in:

PCV =
−
[
(1 − 2v)

(
ni (ξ0) r∗

,j − nj (ξ0) r∗
,i

)]
4π(1 − v) [ln (1 − ξ0) − ln (1 + ξ0)] (2.75)
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Once again, this relationship holds true exclusively when ξ0 ̸= ±1. Therefore, for
instances where this equality is satisfied, the following expression can be applied:

PCV =
−
[
(1 − 2v)

(
ni (ξ0) r∗

,j − nj (ξ0) r∗
,i

)]
4π(1 − v) ln(2) if ξ0 = −1

PCV =
−
[
(1 − 2v)

(
ni (ξ0) r∗

,j − nj (ξ0) r∗
,i

)]
4π(1 − v) ln(−2) if ξ0 = 1

(2.76)

2.4 Knot Insertion: h-refinement

Refinement of NURBS may be necessary or desired in certain situations. For
instance, the most common reason is to better represent the underlying geometry. Notwith-
standing, it can be required to achieve higher levels of accuracy in numerical analysis:
in nonlinear problems such as damage analysis, NURBS refinement can be necessary to
achieve higher levels of accuracy in predicting the behaviour of the damaged structure.
According to Piegl and Tiller (1996), numerous strategies can be employed to enhance
the precision and adaptability of the NURBS representation of a surface or curve, such
as knot insertion, knot removal, degree elevation, degree reduction, and others. In this
work, the knot insertion technique is utilized, which is a type of h-refinement. It involves
increasing the total number of elements (knot spans in the case of IGABEM) without
changing the order of interpolation functions. New control points are then introduced, and
the weights of existing control points are adjusted.

In this sense, consider the following generic knot vector Ξ = {ξ1, ξ2, . . . , ξn+p+1}
where ξ̄ ∈ [ξa, ξa+1[ is the desired new knot. The new knot vector is then given by
Ξ̄ =

{
ξ1, ξ2, . . . , ξa, ξ̄, ξa+1, . . . ξn+p+1

}
and the rational basis functions relative to the new

knot span are constructed according to the conventional way presented in Eq. (2.57). The
relationship for defining the new coordinates (xi, yi) and weights wi of control points can
be found in Piegl and Tiller (1996), which are presented as follows:

Qi = αiPi + (1 − αi) Pi−1 (2.77)

where Qi = (x̄iwi, ȳiwi, wi) are the new coordinates of control point i and Pi = (xiwi, yiwi, wi)
are the coordinates of the existing control point i. The coefficient αi is given by:

αi =


1, 1 ≤ i ≤ a − p

ξ̄−ξi

ξi+p−ξi
, a − p + 1 ≤ i ≤ a

0, i ≥ a + 1

(2.78)
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Figure 8 – Multi-regions.

𝑉1

𝑉2

𝑆1

𝑆2

𝑆𝐼

Source: Adapted from Aliabadi (2002).

2.5 Subregion Technique

Non-homogenous structures can be characterized by the presence of more than
one region. The integral formulation presented herein can be applied to such problem
types. For this, each homogenous portion is individually moldeled and then compatibility
of displacements and equilibrium of tractions are imposed along the materials interface.
Consider a domain V assembled by two different materials, as shown in Figure 8, where
V1 and V2 are two different subregions of the domain which have boundaries S1 and S2

and are connected by an interface SI .

The nodal displacements and tractions at the external boundary S1 is defined
by U 1 and T 1, respectively; similarly, U 2 and T 2 are defined for boundary S2 and U 1

I ,
U 2

I , T 1
I and T 2

I are displacements and tractions at the interface SI . Thus, the system of
equations for the subregion V1 can be written as:

[
H1 H1

I

] U1

U1
I

 =
[

G1 G1
I

] T1

T1
I

 (2.79)

Similarly for V2, there is:

[
H2 H2

I

] U2

U2

 =
[

G2 G2
I

] T2

T2
I

 (2.80)

The compatibility and the equilibrium conditions at the interface SI are

U1
I = +U2

I ≡ UI

T1
I = −T2

I ≡ TI

(2.81)

Combining Eq. (2.79) to Eq. (2.80) and applying the relations shown in (2.81), the
following expression is obtained:
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H1 H1

I 0 0
0 0 H2 H2

I

0 1 0 −1
0 0 0 0





U1

U1
I

U2

U2
I


=


G1 G1

I 0 0
0 0 G2 G2

I

0 0 0 0
0 1 0 1





T1

T1
I

T2

T2
I


(2.82)

Rearranging the given system in terms of UI and TI , one gets

 H1 H1
I −G1

I 0
0 H2

I −G2
I H2




U1

UI

TI

U2


=
 G1 0

0 G2

 T1

T2

 (2.83)

Hence, after applying the boundary conditions, the resulting system of equations is
given by

 A1 H1
I −G1

I 0
0 −H2

I −G2
I A2




X1

U12

T12

X2


=

 f1

f2

 (2.84)

where f1 and f2 are vectors that raise from prescribed values from boundaries S1 and S2.
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3 BEM SOLUTION STRATEGIES FOR NONLINEAR PROBLEMS

This chapter addresses a manner for handling physical nonlinear problems through
the BEM. According to Brebbia, Telles and Wrobel (2012), the first publication involving
such type of problem was presented by Swedlow and Cruse (1971), where a generalization
of the strain hardening elastoplastic constitutive equations was carried out. Thereafter,
Riccardella (1973) implemented the Von Mises yield criterion (isotropic hardening) for
two-dimensional problems by means of piece-wise constant interpolation for the plastic
strains. Around the same period, Mendelson (1973) presented different integral formulations
for elastoplastic problems. In 1975, this work was extended to a torsion problem of a
bar involving the deformation theory of plasticity. Two years later, Mukherjee (1977)
gave modified versions for the kernels of the plastic strain integral. Another important
work came out by Telles and Brebbia (1979), in which the complete boundary element
formulation for three- and two-dimensional plasticity problems were presented. Already
in the 80s, willing to solve elastoplastic problems in two dimensions, Telles and Brebbia
(1981) presented an "initial strain" form of the inelastic term along with a formulation
that handled incompressible plastic strains using the isotropic von Mises yield criterion
with strain hardening, ideal plasticity, and strain softening behaviour.

Different nonlinear material behaviours are of concern as well. For instance, it is
known that problems where the formation of micro-cracks results in the loss of strength
and rigidity of the structural members can be addressed by damage mechanics. However,
so far, only limited applications of BEM to damage mechanics have been reported in the
literature. Works from Herding and Kuhn (1996), Garcia, Florez-Lopez and Cerrolaza
(1999), Botta, Venturini and Benallal (2005), Junior (2011) and Li et al. (2023) can be
mentioned as examples.

Thus, with the aim to treat nonlinear damage mechanics problems, the following
sections present the BEM formulation considering initial fields as well as a form of domain
discretization via cells. The discretization using cell elements is a technique employed
in the literature to address nonlinear effects, as they are mathematically represented by
domain integrals, requiring the generation of a domain mesh (TELLES; BREBBIA, 1979;
BOTTA; VENTURINI; BENALLAL, 2005; RIBEIRO; BEER; DÜNSER, 2008; TELLES,
2012; BEER et al., 2016; BEER; DUENSER, 2023).

3.1 Integral Representations and the BEM for Problems with Initial Fields

Following Botta (2003), initial strain or stress fields are notary essential in problems
where domain variables are indispensable to the description of the mechanical problem.
For materials with nonlinear behavior, the incremental procedure for solving the problem
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makes use of such a technique. Therefore, the components of the strain tensor in the source
x′ point are given by:

εij(x′) = εe
ij(x′) + ε0

ij(x′) (3.1)

where εe is the elastic strain tensor and ε0 is the initial one. Similarly, the components of
the stress tensor are decomposed as

σij(x′) = σe
ij(x′) + σ0

ij(x′) (3.2)

In this way, Eq. (A.6) can be rewritten as:

σij(x′) = λδij
[
εkk(x′) − ε0

ll(x′)
]

+ 2µ
[
εij(x′) − ε0

ij(x′)
]

(3.3)

or, similar to the expression given in Eq. (B.1), in terms of displacements the relationship
is expressed as:

σij(x′) = λul,l(x′)δij + µ [ui,j(x′) + uj,i(x′)] − λε0
kk(x′)δij − 2µε0

ij(x′) (3.4)

Hence, with the same Kelvin’s fundamental solution, the integral equation of the
elastic problem is increased by an integral with initial stress terms, i.e.:

1
2ui (x′) +

∫
Γ

T ∗
ij (x′, x) uj(x)dΓ =

∫
Γ

U∗
ij (x′, x) tj(x)dΓ +

∫
Ω

U∗
ij (x′, x) bj(x)dΩ

+
∫

Ω
ε∗

ijk(x′, x)σ0
jk(x)dΩ

(3.5)

where the fundamental solution for strains, which can be derived from the fundamental
solution of displacements, ε∗

ijk(x′, x), is given by:

ε∗
ijk(x′, x) = −1

8π(1 − v)µr
[(1 − 2ν) (r,kδij + r,jδik) − r,iδjk + 2r,ir,jr,k] (3.6)

In Eq. (3.5), the term σ0
jk(x) refers to the initial stress tensor, which depends

on the adopted constitutive model (PEIXOTO; RIBEIRO; PITANGUEIRA, 2018). The
nonlinear equilibrium equation is general for any nonlinear constitutive law. This makes
the formulation unique and applicable to a wide range of nonlinear models (BOTTA, 2003).
In this work, the Extended Lumped Damage Model is adopted, where a comprehensive
explanation is given in Chapter 4.
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3.2 Algebraic Equations for Problems with Initial Fields

For the sake of simplicity, the body forces from this point on will be disregarded.
Hence, in the discretized form, Somigliana’s identity equals an algebraic equation as shown
below:

[H]{u} = [G]{t} + [Q]{σ0} (3.7)

where [H], [G] and [Q] are fully populated and nonsymmetric matrices with the influence
terms arising from the integration of T ∗

ij, U∗
ij and ε∗

ijk, respectively; {u}, {t} and {σ0} are
the vectors with the nodal displacements, the tractions and the domain initial stresses,
respectively. Therefore, still following Botta (2003) and considering the relations given in
Venturini and Brebbia (1984), for a known initial stress field {σ0} applied into the domain,
the displacement and traction fields on the boundary can be obtained through Eq. (3.7).

For computing the internal displacements, as the source point is inside the domain,
the displacement and traction kernels are nonsingular. Thus, the internal displacements
{u}int are obtained via:

{u}int = −[H]′{u} + [G]′{t} + [Q]′{σ0} (3.8)

The method proposed by Venturini and Brebbia (1984) offers a means to transform
the algebraic systems outlined in Eqs. (3.7) and (3.8) into a more convenient form. This
transformation is particularly advantageous for implementing the initial stress field required
in nonlinear analysis. The authors reorganize the terms considering the stress integral
equation for internal points. In this study, where the adopted constitutive model is the
Extended Lumped Damage Model (XLDM), we suggest a similar approach. Instead of
using the stress integral equation for internal points, the displacement integral equation
for internal points is considered, aligning with the nature of the chosen model. The XLDM
incorporates nonlinear effects by considering the increase in band thickness, an effect that
is indirectly influenced by the displacement field. Further details are presented in Chapter
4.

Hence, by rearranging the terms from Eq. (3.7), where all unknowns are left on the
left-hand side, one obtains:

[A]{x} = {f} + [Q]{σ0} (3.9)

After multiplying both sides of the above relation by the inverse of the matrix [A],
the following equation is obtained:
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{x} = [R]{σ0} + {m} (3.10)

where
[R] = [A]−1[Q]

{m} = [A]−1{f}
(3.11)

In a similar way, Eq. (3.8) can be rewritten as:

{u}int = −[A]′{x} + {f}′ + [Q]′{σ0} (3.12)

that can be rearrenged according to:

{u}int = [S]{σ0} + {n} (3.13)

where
[S] = [Q]′ − [A]′[R]

{n} = {f}′ − [A]′{m}
(3.14)

As pointed out by Venturini and Brebbia (1984), the vectors {m} and {n} represent
the elastic solution resulting from the application of any prescribed load or displacement
on the boundary. In the same way, the nonlinear effects are represented by the matrices
[R] and [S]. These matrices are used in the iterative solution technique to model nonlinear
responses.

Considering all the above relations, a predictor-corrector algorithm can be imple-
mented. In the predictor stage, the nonlinear effects are assumed to be null. However, before
introducing the predictor algorithm, it is necessary to introduce domain discretization
via cells, since the nonlinear effects due to the application of {σ0} are represented by a
domain integral, as previously presented in Eq. 3.5. This is the subject of the next section.

3.3 Domain Discretization via Cells

There are several methodologies for treating domain integrals in BEM. For instance,
when the fields are known, which is the case of constat body forces, the effect of the
domain integral can be transformed into a boundary one, as shown in Appendix C. In
the case of nonlinear problems, the initial stress field is initially unknown and vary along
the structural domain. Works from Venturini and Brebbia (1984), Barbirato et al. (1999),
Botta (2003), Junior (2006), Peixoto (2016) are examples where the domain is discretized
into cells. The effects resulting from the application of {σ0} are captured through this
discretization process.
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Figure 9 – Domain discretization into cells and the corresponding coordinates mapping to the
bivariate parametric space.

Cells

(-1, -1)

(1, 1)(-1, 1)

(1, -1)

Cell nodes

Source: The author.

The domain Ω is discretized into M cells of Ωm domain, as shown in Figure (9).
In two-dimensional problems, such Ωm domains are plane surfaces. In this work, linear
quadrilateral elements are considered, as illustrated in Figure (9) as well.

The adopted bivariate shape functions for the quadratic elements are linear bivariate
Lagrangian polynomials, according to the following:

N1(ξ, η) = 1 − ξ

2
1 − η

2
N2(ξ, η) = 1 + ξ

2
1 − η

2
N3(ξ, η) = 1 + ξ

2
1 + η

2
N4(ξ, η) = 1 − ξ

2
1 + η

2

(3.15)

Note that with such sequence the functions assume a unity value at its own node
and zero on the others, respecting the Kronecker delta property, as shown in Figure (10).
Once the shape functions are known, the geometry of each cell can be approximated by
the following interpolation:

x =
4∑

i=1
Ni(ξ, η)xi (3.16)

where xi refers to the xi and yi coordinates for each local node of the quadrilateral element.

The bivariate first order derivatives with respect to ξ of the shape functions given
in Eq. (3.15) are defined by:
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Figure 10 – Bivariate shape function evaluated at node 1.
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Source: Adapted from Beer, Smith and Duenser (2008).

∂N1

∂ξ
= −1

4 + η

4
∂N2

∂ξ
= 1

4 − η

4
∂N3

∂ξ
= 1

4 + η

4
∂N4

∂ξ
= −1

4 − η

4

(3.17)

Deriving the same shape functions now with respect to η, one obtains:

∂N1

∂η
= −1

4 + ξ

4
∂N2

∂η
= −1

4 − ξ

4
∂N3

∂η
= 1

4 + ξ

4
∂N4

∂η
= 1

4 − ξ

4

(3.18)

With the first-order derivatives, the Jacobian of transformation for the bivariate
space can be obtained through the following:

J = JξJη (3.19)

where Jξ = ∂x/ξ and Jη = ∂x/η.
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Finally, to account for the initial stress field effects, the domain integral with the
new kernel ε∗

ijk(x′, x) given in Eq. (3.6) is approximated by:

∫
Ω

ε∗
ijk (x′, x) σ0

jk(x)dΩ =
M∑

m=1

∫
Ωm

ε∗
ijk (x′, x) σ0

jk(x)dΩm (3.20)

As mentioned in Aliabadi (2002), the kernel ε∗
ijk(x′, x) exhibits a weakly singular

or nearly singular behavior, depending on the position of the collocation point under
analysis. The nearly singular case arises when the collocation point does not lie on the
integration cell. In contrast, a weakly singular case occurs when the collocation point lies
on a cell node, as the kernel contains a singularity of order 1 for 2D problems. Therefore,
these circumstances imply that the integral given in Eq. (3.20) is improper, and additional
techniques for eliminating the singularity become necessary. The techniques adopted in
this work are addressed in the subsequent subsection.

3.4 Numerical Integration for Weakly and Nearly Singular Domain Integrals

Based on the nature of the kernel and the collocation point’s relative position
within the cell, integrals can exhibit nearly, weakly, or strongly singular behavior. In this
study, the first and the second are of concern. These are defined by Aliabadi (2002) as
follows:

• Nearly singular: the collocation node does not lie on the integration cell. Consequently,
the integrands exhibit sharp variations as the source point approaches the integration
cell. These integrals can be computed using standard Gauss quadrature with a cell
subdivision technique.

• Weakly singular: these integrals are defined by a singular kernel of order 1/r, where
the collocation node lies on the integration cell. The integrals can be approximated
by employing a variable transformation technique in order to cancel the singularity.

In this sense, for illustrative purposes, consider a hypothetical rectangular region
with boundary Γ and domain Ω, as shown in Figure 11. 4 linear NURBS, totalling 12
control points are used to discretize the problem. The nonlinear effects are approximated
by only a single cell of domain Ωm. The control points are shown in grey and cell nodes in
black. Control points 2, 3, 8 and 9 coincide with cell nodes a, b, c and d. Thus, a weakly
singular behavior is observed for these collocation points, as they lie on the cell nodes.
The remaining ones exhibit a nearly singular behavior.

The transformation technique adopted herein for eliminating the singular behavior
is a change of variables to polar coordinates. The works from Botta (2003) and Cordeiro
(2018) are examples where this technique is employed. Through this transformation, the
singularity 1/r is canceled by the appearence of a new jacobian of transformation ρ. All
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Figure 11 – Hypothetical retangular element, its colocation points and the corresponding cell.
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Source: The author.

the subsequent approaches are adapted from Cordeiro (2018). Hence, the integral which
contains the kernel ε∗

ijk(x′, x) given in Eq. (3.6) is expressed in the parametric as:

∫
Ω

ε∗
ijk (x′, x(ξ, η)) σ0

jk(x)dΩ =
∫ 1

−1

∫ 1

−1
ε∗

ijk (x′, x(ξ, η)) ϕl(x(ξ, η))J(ξ, η)σ0
jkdξdη (3.21)

where J(ξ, η) is the Jacobian of transformation from the physical to the bivariate space,
ϕl(x(ξ, η)) is the shape function related to node l, and σ0

jk(x)l is the initial stress field at
the node l.

Expressing coordinates in the parametric space is also possible by means of polar
coordinates ρ and θ. As illustrated in Figure 12, the transformation from Cartesian
parametric coordinates to polar coordinates can be described by:

 ξ

η

 =

 ρ cos(θ)
ρ sin(θ)

+

 ξ0

η0

 (3.22)

Hence, the relationships between the differentials of area are expressed as dξdη =
ρdρdθ, where ρ represents the scalar Jacobian of the transformation. Once the relationships
between the differentials of area from the physical space to Cartesian parametric coordinates
and from the latter to parametric space with polar coordinates are established, the integral
presented in Equation (3.21) can be reformulated as follows:

∫
Ω

ε∗
ijk (x′, x(ξ, η)) σ0

jk(x)dΩ =
∫ θf

θi

∫ ρ̂(θ)

0
ε∗

ijk (x′, x(ξ, η)) ϕl(x(ξ, η))J(ξ, η)σ0
jkρdρdθ (3.23)

in which ρ̂(θ) is a distance from a point to a line, which corresponds to the maximum
value of ρ for a given θ and θi and θf are the initial and final angles, respectively.
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Figure 12 – Parametric space of a retangular element in polar coordinates ρ and θ.

Source: The author.

Figure 13 – Polar coordinates mapped to an auxiliary parametric space ξ∗ × η∗ .
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Source: The author.

In order to proceed with standard Gauss quadrature, the polar coordinates can
be related to auxiliary parametric coordinates denoted as ξ∗ and η∗ (see Figure 13), as
follows:

ρ = η∗ρ̂(θ)
2 + ρ̂(θ)

2 (3.24)

θ = ξ∗
(

θf − θi

2

)
+
(

θf + θi

2

)
(3.25)

The differentials dρ and dθ can be calculated as:

dρ = ξ∗ρ̂(θ)
2 (3.26)
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Figure 14 – Values of θi and θf for cases where the collocation point is located on a corner.
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Source: The author.

dθ = η∗π

4 (3.27)

The integral presented in Eq. (3.23) can be rewritten in terms of the auxiliary
parametric coordinates as:

∫
Ω

ε∗
ijk (x′, x(ξ, η)) σ0

jk(x)dΩ

=
∫ 1

−1

∫ 1

−1
ε∗

ijk (x′, x (ξ∗, η∗)) ϕl (ξ (ξ∗, η∗) , η (ξ∗, η∗)) J (ξ (ξ∗, η∗) , η (ξ∗, η∗)) σ0
jkρdρdθ

(3.28)

Numerically, the above integral can be approximated by:

∫ 1

−1

∫ 1

−1
ε∗

ijk (x′, x (ξ∗, η∗)) ϕl (ξ (ξ∗, η∗) , η (ξ∗, η∗)) J (ξ (ξ∗, η∗) , η (ξ∗, η∗)) σ0
jkρdρdθ =

NGξ
NGηη∗
ξ∗∑

i=1

∗∑
j=1

ε∗
ijk (x′, x (ξ∗, η∗)) ϕl (ξ∗, η∗) J (ξ∗, η∗)

θf − θi

4
ρ̂
(
θ
(
η∗

j

))
2

 ρw (ξ∗
i ) w

(
η∗

j

)
σ0

jk

(3.29)
where NGξ∗ and NGη∗ are the number of Gauss points in the ξ∗ and η∗ directions, respec-
tively; w (ξ∗

i ) and w
(
η∗

j

)
are the Gauss weights in the ξ∗ and η∗ directions, respectively.

The values of θi and θf depend on which edge the collocation point under analysis lies on.
The four possible cases are shown in Figure 14.

Finally, one can observe in Eq. (3.29) that the appearence of the new jacobian
of transformation ρ cancels the term 1/r from the kernel ε∗

ijk(x′, x) given in Eq. (3.6).
Therefore, the weakly singular behavior is eliminated.
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Figure 15 – Values of θ for cases where the collocation point is not in a cell corner.
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Source: The author.

Similarly, when the collocation point is not specifically situated on a cell corner, the
singular behavior can be canceled by using the same transformation technique. The key
distinction lies in subdividing the parametric space into three subelements, as illustrated
in Figure 15. The corresponding values of θi and θf are depicted in the same figure for
reference.

In order to show the effectivity of the proposed technique, the kernel ε∗
ijk(x′, x)

given in Eq. (3.6) is evaluated for the collocation point cp = 2 from Figure 11 before and
after the transformation. As clearly seen in Figure 16a, the function exhibits a singular
variation as the field point approaches the source one. After the transformation, the
singular behavior is eliminated, as shown in Figure 16b.

To illustrate a scenario where the collocation point is displaced from the cell corner,
a case analogous to the hypothetical one depicted in Figure 11 is examinated. In this
case, the collocation points 2, 3, 8, and 9 are shifted from the corners by 1/4 of the cell
side length. The kernel ε∗

ijk(x′, x) exhibits a singular behavior before the transformation
to polar coordinates, as depicted in Figure 17a. After the transformation, the singular
behavior is eliminated, as illustrated in Figure 17b. Finally, in Figure 17c a 2D view of the
subelementation of the parametric space can be observed.
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Figure 16 – Comparison of the kernel ε∗(x′, x) for a collocation point situated in a cell corner
(a) before and (b) after the transformation.

Source: The author.

Figure 17 – Comparison of the kernel ε∗(x′, x) for a collocation point shifted from the cell corner
(a) before (b) after the transformation and (c) 2D view of the subelementation of
the parametric space.

Source: The author.
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4 LUMPED DAMAGE MECHANICS (LDM)

In this chapter the main concepts concerning the Lumped Damage Mechanics
(LDM) are presented. The theory has its roots well consolidated in Flórez-López (1993)
and Cipollina, López-Inojosa and Flórez-López (1995), and has been used in several works
for the study of material failure in engineering structures (MARANTE; FLÓREZ-LÓPEZ,
2002; AMORIM; PROENÇA; FLÓREZ-LÓPEZ, 2013; BAI et al., 2016; BAZÁN; BECK;
FLÓREZ-LÓPEZ, 2019; BAI et al., 2021; ZHOU et al., 2022). The process of structural
deterioration is captured through the incorporation of the internal damage variable, initially
formulated for one-dimensional problems in the earlier literature. The damage variable
is coupled into plastic hinges and its evolution law depend on thermodynamic forces
associated to damage. The extension for two-dimensional problems was first addressed
in Amorim (2016). In the following, the main concepts of the LDM are presented, with
emphasis on the formulation for two-dimensional problems, since the present work is based
on this formulation.

4.1 Lumped Damage Mechanics (LMD) - 1D problems

Lemaitre and Chaboche (1994) are pioneers in the field of continuum damage
mechanics. Their theory is based on the thermodynamics of irreversible processes and
draws from concepts introduced and established in earlier works, such as those by Kachanov
(1958) and Rabotnov (1969). According to the authors, the damage theory describes the
evolution of the phenomena between the unaltered state and the macroscopic crack
initiation. The alteration of the material is represented by a scalar variable, called damage
variable. This variable is a measurement of the material degradation. By considering a
uniform damage distribution in every material’s direction, the scalar damage variable ω is
defined as the ratio between the damaged area Ad and the total area of the material A, as
follows:

ω = Ad

A
(4.1)

Thus, mathematically, ω assumes values from 0 to 1, where 0 represents the
undamaged state and 1 represents the fully damaged state. In addition to the concept
of damage variable, the authors also introduce the concept of effective stress, which is
the stress which effectively resistis the acting forces once the damage is considered. The
effective stress σ̄ is defined as:

σ̄ = P

A − Ad

(4.2)
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Figure 18 – Frame element as a combination of an elastic beam and inelastic hinges.

Source: The author.

where P is a unixal force acting on the material. This relation is rewritten in terms of the
damage variable, by substituting the damaged area Ad into Eq. (4.2), as follows:

σ̄ = P

A − Aω
= P

A(1 − ω) ⇒ σ̄ = σ

1 − ω
(4.3)

The effective stress tends to infinity when the damage variable tends to one, and it
assumes the normal stress value when the damage variable is equal to zero.

Therefore, with the aim to broader the applicability of the damage theory, Flórez-
López (1993) first formulated LDM for the analysis of framed structures. By considering
fracture mechanics concepts and the classic damage theory, a finite element for the inelastic
analysis of frames considering elasto-plastic effects and damage is proposed. The general
idea was to consider the inelastic effect due to damage coupled into plastic hinges. It
enables the quantification of structural damage and represents the mechanical behaviour
by considering the internal variable of damage (D)b = (di, dj) coupled into plastic hinges.
These hinges are then inelastic hinges (Figure 18). This consideration enables the simulation
of material degradation phenomena caused by crack growth. The strain localization effect
is lumped into a region with a very small thickness when compared to the element size,
while the rest of the element remains elastic (FLÓREZ-LÓPEZ; MARANTE; PICÓN,
2015).

The model also includes linear kinematic hardening for reinforcements, which
accounts for the Bauschinger effect in the formulation. This refinement of the basic
relationships between material microstructure and plastic behavior allows for a better
interpretation of the internal stresses on the hardening, as stated by Bate and Wilson
(1986). This effect influences the decrease of the yield stress of the material due to the
process of loading until the plastic limit, unloading and then loading it again with opposite
values of loads (ZHONGHUA; HAICHENG, 1990). Such phenomenon has been ignored
in models that consider plastic strains, such as in the perfect plasticity and isotropic
hardening models (ARMSTRONG; FREDERICK et al., 1966).
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In fracture mechanics, the Griffith criterion is used to evaluate the fracture process
from an energy criterion. Similarly, the propagation simulation in LDM respects the same
criterion, i.e., the energy release rate is set to be equal to the resistance to cracking,
otherwise the damage value is equal to zero. From this perspective, a damage evolution
law is settled:

 ḋ = 0 if y < R

y = R if ḋ > 0
(4.4)

where the dot over the variable d indicates a variation. Hence, the damage ḋ is equal to
zero while the energy release y rate assumes a value less than the resistance to cracking R,
and in case this value is reached, the damage starts to evolve.

Important to mention is that the mesh-independency is an important characteristic
of LDM in front of the classical continuous damage theory. In the classical hypothesis, the
structure response force-displacement remains the same until the moment when the strain
localization begins to exist. This problem represents a physical phenomenon characterized
by the appearence of the localization bands and it leads to ill-posed mathematical problems,
since the solution is not unique (FLÓREZ-LÓPEZ; MARANTE; PICÓN, 2015). Hence,
as explained in Amorim (2016), the term localization refers to two distinct situations:
(i) in experimental mechanics, where localization defines the formation of shear bands
with strain discontinuities, for example; (ii) in structural mechanics, where localization is
related to the mathematical analysis of classic damage models, being observed in cases
with loss of ellipticity leading to ill-posed and mesh-dependent problems.

Thus, in order to illustrate the mesh-dependence in classic damage mechanics,
Flórez-López, Marante and Picón (2015) and Amorim (2016) consider a uniaxial case,
where the displacement is prescribed at both ends, as shown in Figure 19a. The total
element of length l is divided into two parts of length l1 and l2. According to Amorim
(2016), the local damage constitutive equation is defined by:

σ = (1 − ω)Eε (4.5)

where σ is the stress, ω is the damage variable, E is the Young’s modulus ε is the strain.
The damage evolution law is given by:

Gω(ε) − Rω(ω) ≤ 0 ∴

 Gω(ε) = |ε|
Rω(ω) = εcrεu

εu+ω(εcr−εu)
(4.6)

in which Gω(ε) is the energy release rate, Rω(ω) is the resistance to cracking, εcr and εu

are the critical and ultimate strain, respectively, as shown in Figure 19b. A two-node finite
element with linear displacement can be obtained by conventional procedures. In such
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Figure 19 – (a) Uniaxial bar (b) stress-strain relationship in the local damage model and (c)
force-displacement relationship for different l1 values.
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Source: Adapted from Amorim (2016).

case, an exact solution is known. The mesh-dependence of the numerical response can
ben seen in Figure 19c, where the force-displacement curve is shown for different l1 values.
The response starts to depend on the chosen length of the element under analysis, when
solutions localizing in only one element are chosen (AMORIM, 2016).

The mesh-dependece is not observed when LDM is used. The replacement of the
kinematic variable is the main point for this to happen: the elongation is used instead of
the strain. Similar to the strain equivalence hypothesis defined by Lemaitre and Chaboche
(1994), as presented in Eq. (4.7) - where the strain is decomposed into an elastic term εe

and a damage-related term εd - Amorim et al. (2018) introduces the elongation equivalence
hypothesis, as provided in Eq. (4.8).

ε = σ

(1 − ω)E ; ⇔ ε = εe + εω (4.7)

δ = δe + δd; δe = L

E
σ (4.8)

where δ is the total elongation, δe is the elastic part, δd is a measure of deformation for the
localization band and L is the length of the element. The localization band is the region
where the damage is concentrated.

By considering the strain equivalence hypothesis, the constitutive equations shown
in Eqs. (4.5) and (4.6) can be rewritten as:



4.2 Extended Lumped Damage Mechanics (XLMD) - 2D Problems 61

ε = 1
E

σ + εω; g = σ − σcr

(
1 − εω

εu

)
≤ 0 (4.9)

Therefore, anagously, the elongation equivalence hypothesis can be used to rewrite
the damage function according to:

g = σ − σcr

(
1 − δd

δu

)
≤ 0 (4.10)

where σcr and δu are the critical stress and ultimate elongation, respectively, being material
parameters. Amorim et al. (2018) compare Eq. (4.10) with the tension-softening law in
the Fracture Process Zone (FPZ), from fracture mechanics, where the damage-related
elongation is analogous to the crack-opening displacement.

For concluding, still following Amorim et al. (2018), it is possible to observe that
in the classic damage model, when the material is fully damaged, meaning the damage
variable reaches a value of one, the stress is reduced to zero. This implies that the elastic
strain is likewise reduced to zero, leaving only the strain associated to damage. Looking at
Eq. (4.9), if the stress value is equal to zero, εw = εu, i.e, there is a mesh-dependence, since
the ultimate displacement is equal to the ultimate strain times the length of the element.
On the other hand, as the lumped damage model considers the elongations instead of the
strains, the elongation of the localization band is equal to δu when damage is equal to one
and the stress is equal to zero. This gives a mesh-independent solution, as shown in Figure
19e, since the ultimate displacement does not depend on the length of the element.

4.2 Extended Lumped Damage Mechanics (XLMD) - 2D Problems

As the LDM is limited for the study of arches and frames, Amorim (2016) proposed
an extension of the theory for the analysis of two-dimensional continuous media. The
formulation is based on the same principles of the conventional LDM. However, adaptations
are necessary to consider the two-dimensional discretization. For instance, in this case, the
inelastic effect is no longer coupled into hinges: there are now inelastic lines. Thus, such
inelastic lines are localization bands concentrating material nonlinear phenomena while
the rest of the element remains elastic. Figure 20 shows as an example the idealisation of
the lumped damage model for a two-dimensional element.

The first idealization of XLDM considers a conventional four-node quadrilateral
element. Figure 21a shows this element in the cartesian space and 21c presents the
element representation in the parametric (reference) space. Through the conventional
shape functions for a quadrilateral element, the strains can be obtained via Eq. 4.11.

{ε}b = [B]b{q}b (4.11)
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Figure 20 – Inelastic lines in the XLDM.

Elastic element

Hinge lines

Source: Adapted from Amorim (2016).

where {ε}b is the vector of nodal strains and {q}b is the vector of nodal displacements b.
The matrix [B]b is the kinematic transformation matrix for the element b, presented in
Appendix D.

Hence, as can be seen in Figure 21b, Amorim (2016) introduces the idealisation
of an equivalent five-bar truss. These bars are considered numerical extensometers, then
called “numexes”, and the generalized deformation where the total elongations of the bars
are represented by the expression given below:

{δ}T = [δij, δik, δil, δjk, δkl] (4.12)

where δij represents the elongation of the bar defined by nodes i and j; δik of the bar
defined by nodes i and k and so on. Any combination of five numexes could be assumed
to define the deformed state of the element, in other words, the diagonal bar j-l could be
replaced by any other bar. Hence, the elongations and the displacements of an element b

can be related according to:

{δ}b = [b]b{q}b (4.13)

where {q}b is the vector of generalized displacements b and [b]b is the kinematic transfor-
mation of the numexes, which is also presented in Appendix D.

The strain tensor in any point of the conventional element depends on five constants
and can be written as a function of the elongations, as follows:

{ε}b = [T ]b{δ}b (4.14)

where [T ] is the kinematic transformation matrix in cartesian coordinates relating the
numexes and the strains. For obtaining the matrix [T ], Eqs. (4.11) and (4.14) are combined,
resulting in:
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Figure 21 – (a) Conventional four-node quadrilateral element; (b) equivalent truss and (c)
parametric space.
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[T ]b =
(
[B]b[b]Tb

) (
[b]b[b]Tb

)−1
(4.15)

Therefore, the stress matrix is then expressed as:

{σ}b = [H ]b[T ]b{δ}b (4.16)

where [H]b is the matrix of elastic coefficients. It is important to remember that for a
pure elastic analysis, {δ}b = {δe}b.

Up to this point, all relationships have solely taken into account the elastic part of
the analysis. The localization bands are the location where the material’s deterioration
process is inserted. Initially, the bands have zero thickness. During the analysis, the
elongations associated to the lumped damage are added. The relationship between the
damage elongations and the band’s thickness, in the reference space, is given by:

{
δd
}

b
=



0
ϵiη

√
2/2

ϵiη

ϵjη

0


+



ϵjξ

ϵkξ

√
2/2

0
0
ϵiξ


+



0
ϵkη

√
2/2

ϵlη

ϵkη

0


+



ϵiξ

ϵiξ

√
2/2

0
0
ϵlξ


(4.17)

where the thicknesses of the bands, ϵiξ, ϵjξ, ϵkξ, ϵlξ, ϵkη and ϵiη in each correspondent node
are shown in Figure 22. Furthermore, it can be observed that a linear variation in these
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Figure 22 – Representation of the (a) localization bands and of (b) the thickness of each
localization band.
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thicknesses is assumed due to the nature of the shape functions of the element. The
{
δd
}

in cartesian coordinates is presented in Appendix D as well.

In this sense, the additive strain decomposition - valid only for small strains - sets
that the elongations can be written as a sum of the elastic elongations {δe} and the ones
that come from the localization bands

{
δd
}
, as shown below:

{δ} = {δe} +
{
δd
}

(4.18)

The material behaviour is then described when the set of constitutive equations is
completed by the introduction of a damage law for each band thickness. For an element
with four localization bands, the damage laws in each node of the element for each band
are the nonlinear ones proposed by Teles (2022), as follows:

gij
i = σij

i − σij
cri

exp
(
qδij

i

)
≤ 0; gij

j = σij
j − σij

crj
exp

(
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j

)
≤ 0;

gil
i = σil

i − σil
cri

exp
(
qδil

i

)
≤ 0; gil

l = σil
l − σil

crj
exp

(
qδil

l

)
≤ 0;

gjk
j = σjk

j − σjk
crj

exp
(
qδjk

j

)
≤ 0; gjk

k = σjk
k − σjk

crk
exp

(
qδjk

k

)
≤ 0;

gjk
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l − σlk
crl

exp
(
qδlk

j

)
≤ 0; glk

k = σlk
k − σlk

crk
exp

(
qδlk

k

)
≤ 0;

(4.19)

where gij
i , σij

i , σij
cri

, and δij
i are, respectively, the damage law, the perpendicular stress

value at the node, critical stress and the band thickness referent to node i at the ij band,
and so on for the other indices; q is a parameter of the model.

The damage laws provided in Teles (2022) differ from those presented in Amorim
(2016), as they exhibit exponential behavior. The parameter q is introduced into the
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new exponential functions, presenting an interesting aspect. According to Teles (2022),
the parameter is related to the concept of fracture energy addressed in classic fracture
mechanics. Fracture energy refers to the work required to rupture a notched cross-section
and is calculated as follows:

Gf =
∫ δc

0
σ
(
δd
)

dδd (4.20)

in which δc is the critical band thickness that leads to the rupture of the material and
σ
(
δd
)

is the stress as a function of the band thickness opening due to damage, as given
by:

σ
(
δd
)

= σcr exp
(
qδd

)
(4.21)

which is nothing but the general form of the damage law given in Eq. (4.19). Integrating
Eq. (4.20) from zero to δc, one obtains:

Gf =
σcr

(
expqδc − 1

)
q

(4.22)

Note that in Eq. (4.21) as σ approaches to zero, regardless of the σcr value, δc

assumes a negative value divided by q. Taking this information into Eq. (4.22) leads to
the following:

Gf = −σcr

q
(4.23)

Hence, by analyzing the units of the terms in Eq. (4.23), it becomes evident that
the parameter q assumes units inversely proportional to length measurements (e.g., m−1,
mm−1, etc.). This parameter is then adjusted by each material through experimental
studies, as given in Teles (2022). Therefore, in the following subsection, a solution procedure
for solving the nonlinear equations of the XLDM constitutive model is presented.

4.2.1 Solution of the Constitutive Nonlinear System of Equations

For the local solution, the calculation of variables related to the numexes and band
thickness is performed. Given the interdependence between stress node values and band
thickness - where stress node values rely on the band thickness, and the band thickness is
influenced by the stress node values - the constitutive system of equations is nonlinear. To
solve this system, the Newton-Raphson method is employed.

As discussed in Teles (2022), from the plane state relationships, the stresses acting
on the plane perpendicular to the localization band are obtained through the rotation of
the stress tensor components to the local coordinate system, i.e:
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[σ′] = [R]T [σ][R] (4.24)

where [R] is the rotation matrix, which is defined as:

[
R
]T

=
 cos(θ) sin(θ)

− sin(θ) cos(θ)

 (4.25)

in which θ is the angle the angle between the x1 direction and the direction normal to the
localization band. For instance, for the stress value at node i on the plane normal to the
localization band ik, one obtains:

σik
i = σ11cos(θ)2

ik + σ22sin(θ)2
ik + τ12cos(θ)iksin(θ)ik (4.26)

In the analysis, an incremental procedure is employed, where displacements are
progressively incremented at each load step. The elastic prediction step is performed by
assuming that the damage is equal to zero. Then, with the perpendicular stress values, the
damage criterion given in Eq. (4.19) is verified. If the damage law is satisfied, i.e, if g ≤ 0,
a new load step is performed. Otherwise, the corrector algorithm is called to solve the
nonlinear constitutive equations and, consequently, to obtain the new values of stresses
and band thicknesses.

For each cell element, there are five elasticity laws, i.e, an elastic law for each
numex that must be satisfied, as follows:

{σ}b − [H ]b[T ]b{δe}b = 0 (4.27)

in which {δe}b = {δ}b − {δd}b.

Additionally to the five elasticity laws, there are eight damage evolution laws, given
in Eq. (4.19). Therefore, the system of equations to be solved is equal to:

R ({σ}b + {∆σ}b, {δ}b + {∆δ}b) = {σ}b − [H ]b[T ]b {δe}b = 0

g ({σ}b + {∆σ}b, {δ}b + {∆δ}b) = 0
(4.28)

where R represents the elasticity law and g the damage one. The system is linearized
and solved through an iterative process based on the Newton-Raphson method. Hence,
expanding in Taylor series and truncating at the linear term, the following is obtained:

R0(σ, δ) + ∂R(σ, δ)
∂σ

∆σ + ∂R(σ, δ)
∂δ

∆δ = 0

g0(σ, δ) + ∂g(σ, δ)
∂σ

∆σ + ∂g(σ, δ)
∂δ

∆δ = 0
(4.29)

which in matrix form is given by:
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Figure 23 – Flowchart of the corrector algorithm.
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 (4.30)

or better writting in order to explicit the size of each matrix:


[

∂R
∂σ

]
12×12

[
∂R
∂δ

]
12×8[

∂g
∂σ

]
8×12

[
∂g
∂δ

]
8×8

 {∆σ}12×1

{∆δ}8×1

 =

 {R0}12×1

{g0}8×1

 (4.31)

in which ∆σ is the vector of increments of the stress components, ∆δ is the vector
of increments of the elongation components, R0 and g0 are the residual vectors of the
elasticity and damage laws, respectively.

The matrices given in Eq. (4.31) are detailed in Appendix D. Hence, when the
adopted damage tolerance is achieved, the solution is obtained. Therefore, the corrector
algorithm for the local problem is illustrated in Figure (23) and explicited in Algorithm 1.
Note that the convergence is achieved when the adopted damage tolerance is respected
for every cell. Moreover, a final assessment of the band thickness is conducted to ensure
that the updated values accurately reflect the physical reality of problem, i.e, if it indeed
demonstrates the proper evolution of material failure mechanisms.

Therefore, with the defined constitutive damage model and with the discretization
via cells to represent the initial stress fields, the solution to the global equilibrium equations
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Algorithm 1: Corrector Algorithm
1 foreach cell do
2 while damage criterion is TRUE do
3 call subroutine assemble XLDM matrices - In this subroutine the following

matrices and vectors are assembled:
4 

[
∂R
∂σ

]
12×12

[
∂R
∂e

]
12×8[

∂g
∂σ

]
8×12

[
∂g
∂e

]
8×8

 (4.32)

5 and
6 {

{R0}12×1
{g0}8×1

}
(4.33)

7 call subroutine solve linear system - This subroutine provides the solution of the
system of equations, where the new values of {∆σ} and {∆δ} are obtained.

8 if damage law is verified then
9 damage criterion = .FALSE. else

10 damage criterion = .TRUE.
11 end
12 end
13 end
14 end
15 if band thickness(i).LE.band thickness(i-1) then
16 band thickness(i) = band thickness(i-1) else
17 band thickness(i) = band thickness(i)
18 end
19 end

can be obtained by the implementation of a predictor-corrector algorithm. Through the
relations presented in section 3.2, the global solution is obtained by the steps shown in
Algorithm 2. Note that in this last Algorithm, a subroutine named cell nodes ID is called
for determining cell nodes position by verifying whether each node is located within the
domain or on the boundary. If a node is on the boundary, the subroutine further checks
whether it coincides with a control point or a collocation point. This is necessary for
correctly defining the term positions in vectors {x}i and {uint }i. In addition, the tensor
of initial stresses is assigned to the vector ∆σ provenient from the corrector algorithm.
Hence, the stresses are reapplied on the body and the global solution is sought.
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Algorithm 2: Predictor-corrector algorithm
1 Assembling constant BEM matrices and vectors of the problem, given in section 3.2:

[A],
[
A′] ,

[
A−1

]
, {f}, {f ′} → [R], [S], {m} and {n}

2 call subroutine cell nodes ID
3 PREDICTOR STAGE:
4 foreach increment do
5

{∆x} = {∆m}
{∆u} = {∆n}

{∆x}i = {∆x}i + {∆x}
{uint }i = {uint }i + {∆m}

6 foreach cell do
7

{δ} =
{

δe + δd
}

→ δd = {0}

{∆ε} = [T ] {∆δe}
{ε} = {ε} + {∆ε}

{∆σ} = [H][T ] {δe}
{σ} = {σ} + {∆σ}

8 end
9 CORRECTOR STAGE:

10 if damage criterion = .TRUE. then
11 foreach violated cell node do
12 call corrector subroutine given in Algorithm 1.
13 end
14 {∆σ0} = {∆σ} from the corrector Algorithm. This is reapplied on the boundary.

{∆x} = [R] {∆σ0}
{∆uint } = [S] {∆σ0}
{x}i = {x}i + {∆x}

{uint }i = {uint }i + {∆uint }

15 call elasticity law subroutine - With the new displacements, the elasticity law is
called, and the new stress values are computed via:

{∆σ} = [H][T ] {∆δe}
{σ} = {σ} + {∆σ}

16 Compute ∥∆uint i∥
∥uini ∥

17 if ∥∆uint i∥
∥uini ∥ >global tolerance then

18 call corrector subroutine
19 else
20 go to a new increment.
21 end
22 end
23 end
24 end
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5 RESULTS AND DISCUSSIONS

In this chapter, the BEM is applied to study both linear and nonlinear problems.
The unknown functions of displacements and tractions are obtained via such numerical
method. All the techniques and methodologies presented in this work are implemented in
an in-house code written in FORTRAN 90. The numerical discretization considers the
isogeometric approach with h-refinement. Additional techniques have been incorporated to
address a wider range of problems, including the subregions technique and the application
of the Galerkin vector methodology for handling body forces (C).

To assess the accuracy of the implementations developed so far, the following
numerical examples are presented: in the first section, two linear problems are solved,
namely, a dam with three different materials and concrete tunnel under uniform pressure.
The problems serve to assess the accuracy of the implementations regarding pure linear
problems. Comprehensive results of these two problems are given in Nardi and Leonel
(2023). On the other hand, in the second section, three nonlinear problems are solved: a
square plate under uniform displacement, a L-shaped plate and a three-point bending
beam.

The results provided by the proposed BEM approach have been compared to
numerical and experimental responses available in the literature. For the linear ones, the
results are contrasted with those obtained via the well-known FEM ANSYS © software.
Meanwhile, for the nonlinear scenarios, the results of the first two problems are compared
against the findings from a FEM analysis presented in Teles (2022) and experimental
responses available in the literature. The three point bending beam is a showcase example,
with the outcomes compared with the ones provided by Saleh et al. (1997). The nonlinear
problems section presents the effectiveness of the initial stress field approach via BEM
with the adopted constitutive model, the XLMD.

5.1 Linear Problems

The two problems presented here in are given in Nardi and Leonel (2023). In this
work, besides the elastic analysis, a reliability approach is also performed. However, for
sake of simplicity, only the deterministic analysis is presented herein. The first problem
is a dam with three different materials, while the second one is a concrete tunnel under
uniform pressure. The results are compared with those obtained by the ANSYS © software.
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Figure 24 – (a)Dam composed of three different materials: transition, clay and rockfill and (b)
FEM mesh in Ansys©.

(a)

(b)

Source: Nardi and Leonel (2023).

5.1.1 Multi-material dam

The dam draws inspiration from the original section K of the Itaipu Binational Dam
(ITAIPU, 2023). It comprises three distinct materials distributed across five subregions:
rockfill, clay, and a transitional zone, as illustrated in Figure 24a. The dam section stands
at a height of 70 meters and extends for a length of 350 meters, facing a water level
of H = 60 meters. The material properties include: transition material, E = 240MPa,
ν = 0.375, γ = 1800kg/m3; for the clay, E = 50MPa, ν = 0.35, γ = 1500kg/m3; and
for the rockfill, E = 35000MPa, ν = 0.2, γ = 2000kg/m3. The dam is subjected to the
following hydrostatic pressure:

 ρgh 0
0 ρgh

 nx

ny

 =

 tx

ty

 (5.1)

in which ρ = 1000kg/m3 is the water density, g = 9.81m/s2 is the gravity acceleration, h

is the water level, nx and ny are the components of the normal vector to the boundary and
tx and ty are the tractions components. The water level, denoted as h, varies depending
on the collocation point position. Consequently, a pre-processing step is necessary for
applying boundary conditions. The definition of the water level is defined as follows:
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Figure 25 – Principal stress and strain along the path A − A′.
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Source: Nardi and Leonel (2023).

h = H − y(ξ) (5.2)

where H is the water level, y is the collocation point position that depends on the
parametric coordinate ξ.

The dam is discretized with 18 linear NURBS, with a total of 510 control points. For
comparative purposes, the dam is modeled in ANSYS© with 571 elements of PLANE−183
type, with a total of 1842 nodes. The FEM mesh is presented in Figure 24b. A plane strain
state is considered, and mesh convergence studies were carried out for both IGABEM and
FEM models.

Figure 26 illustrates the deformed configuration. The obtained results demonstrate
a satisfactory alignment between the two numerical approaches. Furthermore, the zones
displaying maximum displacements precisely align with areas primarily composed of
clay material, which possesses the lowest elasticity modulus among the constituents, as
expected.

A chosen internal path A − A′ is considered to evaluate the principal stress and
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Figure 26 – Defomed configuration via FEM versus IGABEM.
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strains. The path is presented in Figure 24, starting at A = (−70, 35)m and ending at
A′ = (70, 20)m). The results are presented in Figure 25.

Concerning the principal stresses, the IGABEM analysis yields a maximum principal
stress value of σI = 4.4979MPa, and a minimum of σII = −7.1206MPa. In the FEM
analysis, the corresponding values are σI = 3.2002MPa and σII = −6.0714MPa. A
relative difference of 33.71% is observed for the maximum principal stress, and 15.904% for
the minimum stress. The disparity can be attributed to the more effective representation
of stress fields in IGABEM within discontinuity regions. This advantage stems from
IGABEM’s independence from a mesh domain, a feature not shared by FEM. Thus, for
approximating the results between the two methods, a more refined mesh for the FEM
analysis would be required.

5.1.2 Concrete tunnel under uniform pressure

This example refers to a tunnel excavated within a rock mass, depicted in Figure
27a. The tunnel, constituting the first subregion, measures 10 meters in width and 5
meters in height, situated 25 meters below the ground (second subregion). It features an
external radius, re, of 6 meters and an internal radius, ri, of 5 meters. The concrete tunnel
possesses a Young’s modulus of 15 GPa and a Poisson ratio of 0.3. The surrounding rock
soil mass has a Young’s modulus of 13 GPa and a Poisson ratio of 0.12. The tunnel is
subjected to a uniform pressure of q = 1kPa.

For the analysis, a plane strain state is considered. In IGABEM, 15 NURBS are
used to discretize the tunnel, where 13 are linear and 2 are quadratic. A total of 237
control points are used. Again, for comparative reasons, the tunnel is modeled in ANSYS©
with 8638 PLANE − 183 elements, totaling 26317 nodes. The FEM mesh is presented in
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Figure 27 – (a) Concrete tunnel in an elastic medium and (b) BEM boundary conditions
representation.

(a) (b)

Source: Nardi and Leonel (2023).

Figure 28 – (a) Comparative displacements values in x and y direction and (b) tunnel deformed
configuration via FEM and IGABEM.
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Figure 29a.

Figure 29 – (a) FEM mesh and (b) internal path for the concrete tunnel.

Source: Nardi and Leonel (2023).

An internal path crossing through the tunnel is selected for evaluating displacements
in both directions, as presented in Figure 29b. The path encompasses 62 points, starting
at coordinates (0.3935m, 5.2907m) and ending at coordinates (0.3937m, −0.6691m). The
deformed configuration is illustrated in Figure 28a. The displacement results are presented
in Figure 28b. Therefore, similar to the preceding example, the results indicate a strong
agreement between the two methods.

Therefore, the achieved results for both illustrative examples underscore the efficacy
of IGABEM and the extra employed numerical techniques. This allows a step forward in
advancing the applicability of BEM to a broader range of problems, including nonlinear
ones. With the linear stage well-consolidated, the next section presents the results of three
nonlinear problems, showcasing the outcomes of coupling XLDM with IGABEM.

5.2 Nonlinear Problems

The problems presented in this section form the central focus of this dissertation.
Here, the set of tools and techniques developed in the previous chapters are applied
to solve three nonlinear problems, where the damaging process as well as the softening
phase of each problem are observed through the adopted constitutive model, the XLDM.
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The outcomes highlight the effectiveness of two primary challenges tackled in this work:
evaluating the accuracy of the cells and the regularized kernels containing the domain
effects, and assessing the effectiveness of the implemented predictor-corrector algorithm
outlined in Algorithm 2.

An AMD Ryzen 9 7950X with 64GB RAM computer performs the numerical
simulations with OpenMP directive for its parallelization. The parallelized subroutines
involve the assembly of the following matrices: firstly, the matrix Q (refer to Eq. (3.7))
is assembled, incorporating influence terms arising from the integration of the kernel
ε∗

ijk; following, the assembly includes [H]′ and [G]′ for calculating internal displacements;
finally, the last matrix, [Q]′, is also assembled to the posterior calculation of the internal
displacement field (see Eq. (3.8)).

In this way, the first example, a square plate under uniform displacement, is the
initial test for the proposed methodology. The second example, an L-shaped plate, is a
benchmark test since there are numerical results considering the XLDM approach in the
literature. Moving on to the third problem, a three-point bending beam, it stands as a
classical benchmark test for fracture mechanics problems. The results of the first two
problems are compared against the findings from FEM analysis presented in Teles (2022),
as well as the experimental responses available in the literature. The three point bending
beam serves as a showcase example, with outcomes compared to those provided by Saleh
et al. (1997). Finally, for exploring the advantages of the Isogeometric approach, the last
example addresses a problem involving a curved geometry, with results compared with
those obtained by Lu et al. (2021).

For all the problems, the global criteria for convergence is:

∥∥∥∆⃗uint i

∥∥∥
∥u⃗ini ∥

≤ tol (5.3)

where ∥ ∆⃗uint i
∥ is the norm of the internal displacement in the load step i, ∥ u⃗ini ∥ is

norm of the initial displacement vector and tol is the tolerance value, defined in each case.
The damage tolerance is settled to be equal to 10−8 for all the cases.

5.2.1 Square Under Uniform Displacement

This first illustrative example refers to a 250x250mm square plate under a prescribed
uniform displacement field. The results are compared with those obtained by the FEM
methodology provided in Teles (2022). In order to test the accuracy of the implemented
cells, a domain evolutive convergence analysis is carried out. For this, the mesh is refined,
starting with 1 cell covering the entire domain and then doubling the number of cells in
each analysis. This refinement is essential to assess the accuracy of the new kernels related
to the domain integral, which includes the initial stress field term. The consideration of
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Figure 30 – Square plate under uniform displacement: meshes and boundary conditions.

a.1) a.2) a.3) a.4)

b.1)

Collocation points

Cell nodes

b.2) b.3) b.4)

u u u u

uuu u

Source: The author.

the initial stress field allows the nonlinear behaviour of the material to be captured, as the
damage propagates.

Therefore, Figure 30 shows the meshes used in the analysis, with 1, 2, 4 and 16
cells, respectively. The considered material properties are E = 25850MPa, σcr = 2.7MPa

and q = −5mm−1. The analysis is performed for both Poisson values equal to ν = 0.0 and
ν = 0.3. The prescribed displacement value is ū = 1mm. The boundary conditions are
shown in Figure 30.

The implemented code initially identifies each cell node is situated on the boundary
as well as those within the domain. For those nodes on the boundary, the code verifies if it
coincides with a collocation point. If so, the collocation point displacement value is assigned
to the cell node displacement. Otherwise, in case the node lies on the boundary and it does
not coincide with a collocation point, as in an edge, for example, the displacement value
is obtained by interpolation of the nearest collocation point values. For those inside the
domain, the relation shown in Eq. (3.13) is used to obtain the internal displacement value.

In sequence, an incremental procedure is performed. The predictor corrector algo-
rithm shown in Algorithm 2 is used to obtain the unknown fields. The global tolerance
adopted for this example is 10−6. Given that in BEM these unknown fields represent
both traction and displacement, a post-processing step is undertaken upon algorithm
convergence. This post-processing involves obtaining the resulting force in each case, as
determined by the following relationship:
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R =
∫

Γ
tkdΓ (5.4)

where R is the resultant force, tk is the traction field in direction k and Γ is the boundary
of the domain. Numerically, the above integral is approximated by:

R =
ng∑
i=1

ϕi (ξi) ti
kJ (ξi) wi (5.5)

in which ng is the number of Gauss points, ϕi is the shape function, ξi is the Gauss point
position, ti

k is the traction field in direction k at the Gauss point i, J (ξi) is the Jacobian
of transformation and wi is the Gauss weight.

Therefore, the force-displacement relationship is shown in Figures 31 and 32. The
results are compared to those obtained by a FEM analysis (Teles (2022) methodology),
using the same mesh. Additionaly, the band thickness opening for each case is presented
in Figures 33 and 34. One can observe that when v = 0.3 and the boundary condition is
fixed-fixed, the damage tends to concentrate near the supports, as expected. In other cases,
however, the damage is more uniformly distributed. Although XLDM treats concentrated
damage, this outcome is expected due to the cells positioned throughout the domain,
allowing for damage to be distributed across different regions, particularly in this pure
traction case.

The results show a good agreement between the two methods. Notably, in both
FEM and IGABEM analyses, the bands exhibit consistent thickness. This thickness
decreases as the number of cells increases. Moreover, for the meshes where the boundary
condition is fixed-fixed and ν = 0.3, the bands tend to concentrate near the supports,
assuming a maximum value of 0.99. Hence, the nonlinear effect due to damage propagation
is effectively captured via the XLDM-IGABEM approach.

In conclusion, although this problem is quite simple and with a purely academic
character, it has an exploratory nature, as the entire domain is discretized using cells.
This enables the exploration of various cell sizes and different positions for cell nodes,
offering the flexibility to match with a collocation point, an internal point, or not to match
at all. In the subsequent examples, the focus is to discretize the domain in a minimal
manner, where only the crack path is known in advance. This approach is feasible for a
BEM analysis, as it avoids the need to discretize the entire domain, reducing significantly
the computational cost. For instance, for the a.4 mesh with ν = 0.3, the processing time is
13.5 seconds, while for the b.4 mesh ν = 0.3, the processing time is 11.47 seconds.
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Figure 31 – Force vs. displacement curves for the square plate under uniform displacement, for
meshes a.1, a.2, b.1 and b.2, with ν = 0.0 and ν = 0.3.

Source: The author.
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Figure 32 – Force vs. displacement curves for the square plate under uniform displacement, for
meshes a.3, a.4, b.3 and b.4, with ν = 0.0 and ν = 0.3.

Source: The author.
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Figure 33 – Band thickness opening for the square plate under uniform displacement, for the
following meshes and Poisson values: (a) a.1 and b.1 for ν = 0.0 and b.1 for ν = 0.3;
(b) a.1 for ν = 0.3; (c) a.2 and b.2 for ν = 0.0 and b.2 for ν = 0.3; (d) a.2 for
ν = 0.3.

Source: The author.
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Figure 34 – Band thickness opening for the square plate under uniform displacement, for the
following meshes and Poisson values: (e) a.3 and b.3 for ν = 0.0 and b.3 for ν = 0.3;
(f) a.3 for ν = 0.3; (g) a.4 and b.4 for ν = 0.0 and b.4 for ν = 0.3; (h) a.4 for
ν = 0.3.

Source: The author.
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5.2.2 L-Shaped Plate

This example corresponds to a benchmark test featuring an L-shaped structural
member undergoing a prescribed displacement applied 30mm from its edge, as shown in
Figure 35. The experimental results are provided by Winkler, Hofstetter and Niederwanger
(2001). This problem has already been addressed via FEM using the XLDM in Teles
(2022). As FEM is a mesh-based method, a convergence study was conducted in order to
determine the optimal mesh for accurately capturing the damage propagation. In contrast,
considering that IGABEM is a boundary-based method, the focus is on determining the
optimal number of cells for analysis without the need to discretize the entire domain. In this
context, only the crack path available in the reference is discretized by cells. This is feasible
because this region is known a priori, as provided in the experimental results. Consequently,
the cells can be strategically placed to ensure that the crack path is consistently contained
within cells.

The material properties are E = 20GPa, ν = 0.18, σcr = 2.7MPa, q = −25mm−1,
and the thickness is 100mm. The structural member is discretized using 13 linear NURBS,
comprising 213 control points. A plane stress state is considered. A controled displacement
of u = 1mm is applied at the top left corner of the plate in incremental steps. The
considered global tolerance is 10−4.

Hence, a total of 10 meshes are studied, where one and two lines of cells are used
to discretize the region where the crack evolves. The meshes are presented in Figure 36.
The objective is to examine the convergence of results with varying cell numbers, with the
aim of minimizing domain discretization and, consequently, maximizing the advantages
offered by the boundary-based method.

Therefore, after post-processing the traction field, with the relations shown in Eqs.
5.4 and 5.5, the equivalent force at the location where the displacement is applied is
obtained. The force-displacement curves are presented in Figure 37. As can be observed,
convergence is achieved as the number of cells increases. However, nearly identical results
are consistently obtained regardless the number of cell lines. This is attributed to the
violation of internal stress values occurring within a well-defined region, delineated by the
crack path. The XLDM constitutive model utilizes the opening of the band thickness to
provide crucial insights into this phenomenon. For better understanding, the thickness
of the localization band is presented in Figure 38. The band thickness values are higher
near the corner and decrease as the crack propagates. This is expected, as the damage is
concentrated near the crack tip. The maximum value is 0.51, which is consistent with the
results obtained by Teles (2022). The total processing time for the case with 32 cells in
one line is 194.83 seconds.

Furthermore, both the force-displacement relationship and the band thickness
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Figure 35 – L-shaped structural member: test set-up.
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Source: Adapted from Winkler, Hofstetter and Niederwanger (2001).

Figure 36 – L-shape meshes: one and two lines of cells, from 10 to 32 cells.

2 lines – 10 cells in each 2 lines – 16 cells in each 2 lines – 20 cells in each 2 lines – 25 cells in each 2 lines – 32 cells in each

1 line – 10 cells 1 line – 16 cells 1 line – 20 cells 1 line – 25 cells 1 line – 32 cells

Source: The author.

values are in good agreement with the results provided by a FEM analysis in Teles (2022).
The results demonstrate the effectiveness of the initial stress field approach via BEM
with the adopted constitutive model. Undoubtedly, the most compelling aspect and key
advantage of the proposed model is its ability to yield accurate results with a minimal
domain mesh. This is advantageous for the BEM community as it enables the method
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Figure 37 – Force vs. displacement curves for the L-shaped plate under uniform displacement.

Source: The author.

Figure 38 – Band thickness opening for the L-shaped plate under uniform displacement.

Source: The author.
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to be employed in a broader spectrum of problems without requiring extensive domain
discretization. It aligns seamlessly with the inherent nature of a numerical method that
is naturally boundary-based, thereby eliminating contradictions that may arise when
extensive domain discretizations are required.

5.2.3 Three-Point Bending Beam

The example provided in Saleh et al. (1997) is a benchmark test for fracture
mechanics problems. The beam is subjected to a three-point bending test, as shown in
Figure 39. The notch is l = 50mm long. For the numerical modeling, an investigation
was conducted on both the notch size and the region where the boundary conditions are
applied. This was achieved by calibrating the linear elastic regime based on the reference
response. A lenght a = 40mm for the boundary conditions application and a notch length
of b = 8mm yielded the most accurate results and was consequently adopted for subsequent
analyses.

Figure 39 – Three-point bending beam: test set-up.

Source: Adapted from Saleh et al. (1997).

The considered material properties are: E = 30GPa, ν = 0.15, σcr = 3MPa,
Gf = 0.075N/mm and the thickness is 1000mm, as given in Saleh et al. (1997). A plane
stress state is considered. A global tolerance of 10−4 is adopted. The damage parameter q

is computed based on Eq. (4.23), as follows:

q = −σcr

Gf

= 3 N/mm2

0.075 N/mm = −40 mm−1 (5.6)

An incremental vertical load at the top mid-point of the beam is applied, using the
displacement control method. The final displacement value is u = 0.21mm. The beam is
discretized using 12 linear NURBS, totalling 452 control points. For capturing the nonlinear



88 Chapter 5 Results and discussions

Figure 40 – Three-point bending beam: mesh illustrating the two lines of cells.

Source: The author.

behavior, once again the domain mesh is chosen to be minimal. In this example, similar
to the previous one, the crack path is predetermined: here it is known due to the notch
existence. It is located at the center of the beam, displaying higher values at the notch
border that gradually decrease as it approaches the point of displacement application.

Convergence studies were conducted to determine the optimal number of cells.
Meshes with 40, 80, 160 and 200 cells were analyzed. It was observed that the results
became consistent from 160 cells onwards. In Figure 40, for the sake of simplicity, only the
two lines of cells discretization are illustrated, each with a generic number of cells.

This example has been a classical benchmark test for fracture mechanics problems.
The works from Oliveira (2017), Rocha (2020), Cordeiro (2018), Andrade (2017) and Neto
(2023), for instance, have already addressed this problem via BEM considering cohesive
models. The results obtained herein are in good agreement with those provided by the
aforementioned works.

Hence, the equivalent force versus displacement relationship at the point of dis-
placement application is presented in Figure 41 for the studied meshes, comparing the
results with those obtained by Saleh et al. (1997) and by Andrade (2017). It is noteworthy
to highlight that in the original work by Saleh et al. (1997), the presented curve considers
a linear cohesive law, while in the curve given by Andrade (2017) and herein presented, it
is exponential. This explains why the results obtained through the coupling of XLDM-
IGABEM exhibit a better fit with those from Andrade (2017), given that the damage law
employed in this study, as proposed by Teles (2022), is characterized by an exponential
function. This outcome is significant as it demonstrates the effectiveness of the employed
methodology.

In addition, the results show the crack path through the band thickness opening,
as illustrated in Figure 42 for the mesh holding 160 cells. It is possible to note that the
bands tend to open on the right-hand side of the beam, as expected due to the considered
boundary condition application on this side. The higher values (0.144) are concentrated
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Figure 41 – Comparison of the force-displacement curves for the three-point bending beam as
the number of cells increases.
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near the notch, gradually decreasing in direction to the point of displacement application.

In conclusion, Figure 43 illustrates the stress versus band thickness opening for the
case with a mesh of 160 cells. This result closely resembles the Crack Opening Displacement
(COD) measure used in fracture mechanics to quantify the crack opening. The specific
cell analyzed in this result corresponds to the one containing the highest band thickness
opening value, i.e, the cell positioned at the notch border on the right-hand side of the
beam. As can be noted, the stress values decrease as the band thickness opening increases,
demonstrating the loss of resistence as the damage propagates.
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Figure 42 – Band thickness opening for the three-point bending beam.

Source: The author.

Figure 43 – Stress at the notch border versus the band thickness opening for the three-point
bending beam.

Source: The author.
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5.2.4 Semi-circular Bending Test

To explore the advantages of isogeometric analysis within the framework presented
herein, an example considering a curved surface is addressed. The study conducted by
Lu et al. (2021) provides both experimental and numerical findings for a semi-circular
bending test. This test is considered a well-established method for evaluating the cracking
behavior of asphalt concrete mixtures. In this sense, the problem consists of a semi-circular
specimen subjected to a three-point bending test, as illustrated in Figure 44. The authors
employ a 3D Discrete Element Method (DEM) formulation to numerically evaluate the
cracking evolution, with the provided experimental results serving to validate the numerical
outcomes.

Figure 44 – Semi-circular bending test: test set-up.
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Source: The author.

The semi-circular specimen is discretized using 12 NURBS, 2 of which are quadratic,
resulting in a total of 340 control points. The NURBS lenghts a and b for the boundary
conditions application are 8mm and 2mm, respectively. The authors investigate the
influence of the notch lenght c, assuming values equal to 5mm, 10mm, 15mm and 20mm.

Additionally, as per the findings of Lu et al. (2021), the material properties are
adopted as follows: E = 61MPa, ν = 0.42, σcr = 0.45MPa, q = −1.50mm−1 and the
thickness is 30mm. The prescribed displacement value is u = 2.475mm. Important to
mention is that the extended lumped damage parameters σcr and q are adopted through
a calibration process to best fit the experimental results. A total of 640 cells distributed
into 8 cell lines are used to discretize the domain. Just as in the previous examples, the
crack path is known in advance, and the cells are strategically placed to ensure that the
crack path is consistently contained within cells, as shown in Figure 45.

The force-displacement relationship is depicted in Figure 46 for the four different
notch lengths. For comparison, three random experimental results selected by Lu et al.
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Figure 45 – Chosen domain discretization containing 640 cells distributed into 8 cell lines.

Source: The author.

Figure 46 – Force-displacement relationship for notch values equal to (a) 5mm, (b) 10mm, (c)
15mm and (d) 20mm.

Source: The author.

(2021) are included, represented by the curves plotted in black. Furthermore, five numerical
outcomes are represented by the curves in blue. These results vary among themselves due
to the authors’ consideration of the random arrangement of DEM particles. The outcomes
provided by the XLDM-IGABEM approach show a good fit with the experimental results,
particularly for the notch lengths c = 5mm, c = 10mm and c = 15mm. The results
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Figure 47 – Band thickness for notch values equal to (a) 5mm, (b) 10mm, (c) 15mm and (d)
20mm.

Source: The author.

for c = 20mm are slightly less accurate, but still in good agreement with the author’s
numerical findings.

The band thickness opening for each notch length is presented in Figure 47. The
results show that as the notch lenght increases, the band thickness opening decreases.
The average computational time for this example is 10000 seconds, being the most time-
consuming case among the examples presented in this work. This is due to the large
number of cells used to discretize the domain.

In conclusion, the outcomes achieved through the XLDM-IGABEM method are
in good agreement with both the experimental and numerical results presented by Lu
et al. (2021). This particular example explores the advantages of isogeometric analysis
within the framework presented herein. The use of NURBS functions enables precise
representation of curved and conical surfaces, resulting in more accurate approximations
for both geometry and mechanical fields. In contrast, representing the same problem using
traditional FEM analysis would necessitate a more complex mesh with a higher number of
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elements and nodes. Therefore, the effectiveness of the proposed methodology in capturing
the damage propagation in a curved surface is provided, giving rise to a new perspective
for the application of BEM in a broader range of nonlinear problems.
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6 CONCLUDING REMARKS

The present work contributes to advancing Boundary Element Method (BEM)
formulations for damage mechanics problems. The use of BEM in this context is still
incipient, as most of BEM formulations for this purpose adopt extensive domain discretiza-
tions, which are required to obtain acceptable accuracy. Therefore, the main advantage of
BEM, i.e., the boundary only discretization, is lost when dealing with damage mechanics
problems.

In this context, the present research proposes a novel boundary element formulation
for modeling damage mechancis problems. Besides the use of an isogeometric analysis,
which provides enhanced geometry and mechanical field representation, the proposed work
also introduces the Extended Lumped Damage Mechancis (XLDM) consitutive model into
an initial stress boundary element approach. The XLDM is a mesh independent model,
which is advantageous since most damage models are ill-posed. The model captures the non-
linear effect by replacing the kinematic variable: the band elongations are considered rather
than directly using the strain values. Furthermore, the XLDM is also capable of capturing
the softening behavior and the of circumventing the strain localization phenomenon, which
are fundamental aspects for reproducing the structural failure behavior. It’s crucial to
emphasize that the XLDM has only been formulated within the Finite Element Method
(FEM) framework. Therefore, the present research is the first to propose the use of the
XLDM in the context of BEM. The proposed approach distinguishes itself by eliminating
the requirement for full domain discretization, thereby making more interesting the use of
BEM in the context of damage mechanics.

To couple XLDM within IGABEM, the displacement integral equation accounting
for the initial stresses is applied. The domain discretization, requeried only at the damaged
bands of the XLDM, is performed by considering discretizations with linear cells. From
the cell nodal displacements, both the strains and elongations of the constitutive model
are defined. A predictor-corrector algorithm is then proposed, effectively inserting the
XLDM constituve model into the initial stress field BEM framework. The initial stress
field integral equation contains a singular kernel, which is herein regularized by means of
a polar integration followed by a subelementation of the parametric space.

The results obtained with the proposed formulation showed that it was possible to
obtain a good fit between the present work and those available in the literature. Through
a cell convergence study, the optimal number of cells required to obtain accurate results
could be determined. The region where the band thickness evolves coincides with the most
solicited region of the structure. The computational time required for the nonlinear analysis
demonstrates that it tends to increase as the number of cells increases. This is expected
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since domain discretization is usually costly in BEM. However, as in the examples herein
presented the damage localization path was known a priori, the domain discretization was
performed only where the inelastic behavior was expected to propagate. This is a limitation
of the proposed approach for more complex cases, where the damage localization path
is not always known. A recomendation for cases where the damage localization path is
unknown is to carry out a linear elastic analysis to identify the region where the principal
stresses are concentrated. This region would be the most solicited region of the structure
and, therefore, the region where the cells should be placed.

6.1 Recomendations for future work

The current research development leaves certain aspects for future investigation.
The following list presents some of the most relevant topics that can be addressed in the
next contributions to this work:

• Non-linear analyzes in large scale problems, such as the dam example, could be per-
formed. In massive structures, specially in large volume-to-boundary ratio problems,
the use of BEM is suitable as no domain discretization is required. Hence, only the
region where the crack is expected to propagate needs to be discretized with the
cells;

• The automatic generation of cells could be implemented. The current implementation
requires the user to manually define the cells. This is not a major issue for small
problems, but it can become a time-consuming task for mesh generation in large
scale problems;

• A tagent operator for the global convergence could be used instead of the constant
one used in the present work. This would improve the convergence rate of the
proposed algorithm.
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APPENDIX A – FUNDAMENTALS OF THE LINEAR ELASTICITY

This appendix outlines the key concepts of elasticity theory that are relevant to
the BEM formulations discussed in this study. The present study is carried out only
for a two-dimensional state of stress and strain, considering small displacements and
deformations. Besides, the material is considered perfectly elastic, satisfying the conditions
of homogeneity and isotropy. Firstly, consider a closed domain Ω with an enclosed boundary
Γ, as shown in Figure A.

Figure 48 – Two-dimensional solid.
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Considering an infinitesimal element dΩ, the stress state inside the solid can be
analyzed, as shown in Figure A. After balancing the moments, the Cauchy stress tensor is
obtained:

σij = σji, i = 1, 2 (A.1)

Thus, the tensor is symmetrical, where there are only 6 independent stress compo-
nents, as shown:

σ = σt =


σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 = σij = σji (A.2)

Moreover, the static equilibrium equations, considering the body forces bi, are given
by:
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Figure 49 – Stress state in an infinitesimal element.
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σij,j + bi = 0, i = 1, 2. (A.3)

The traction components at the boundary are defined from Cauchy’s formula,
which is obtained by the balance on an infinitesimal boundary element:

ti = σijnj, i = 1, 2. (A.4)

where nj are the outward unit normal vector components at the boundary.

It is also necessary to define the displacement field of a body when it is subjected to
some variation. The resulting displacements come exclusively from deformation processes,
once in structural terms, rigid body displacements (translations and rotations) are avoided
through constraints. Thus, the linear stress tensor, which similarly to the stress one has 6
independent components, is defined as:

εij = ui,j + uj,i

2 , i = 1, 2. (A.5)

where ui are the displacements.

Regarding now the constitutive relationships, through Hooke’s law it is established
that:
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σij = λδijεkk + 2µεij (A.6)

where λ is the Lamé constant; and δij is the Kronecker delta, as respectively shown:

λ = 2vµ

(1 − 2v) (A.7)

δij =

 1, i = j

0, i ̸= j
(A.8)

The inverse relationship between strains and stresses is defined as

εij = σij

2µ
− ν

E
σkkδij (A.9)

where µ is given by

µ = E

2(1 + v) (A.10)

If a plane stress state is considered, i.e, if σzz = σxz = σyz = 0, on the surface of
the body and in its domain, the following relations are valid for the deformations:

εzz = − v

1 − v
(εxx + εyy) , εxz = εyz = 0 (A.11)

On the other hand, if a plane strain state is taken into account, i.e, if εzz = εxz =
εyz = 0, the following relationships are valid:

σzz = v (σxx + σyy) , σxz = σyz = 0 (A.12)

εxx = 1 − v2

E

(
σxx − v

1 − v
σyy

)
, εyy = 1 − v2

E

(
σyy − v

1 − v
σxx

)
e εxy = 1 + v2

E
σxy

(A.13)

for the stresses and the strains, respectively.

The constitutive law in the plane strain state can represent the problems in the
plane stress state by modifying the Poisson coefficient and the longitudinal modulus of
elasticity of the material, through the following:
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v̄ = v

1 + v
(A.14)

Ē = E

[
1 −

(
v

1 + v

)2
]

(A.15)

Hence, the set of equations contemplating the equilibrium equations, the compatibil-
ity and the constitutive ones along with the boundary conditions form the boundary value
problem. Such problems present an analytical solution for just a few range of problems.
Numerical modelling is then required in order to abroad the applications of the method.
In the present work, the BEM is adopted for obtaining the approximated results.

More specifically, for the problems herein analyzed, once the force and displacement
values in the contour are known, it is necessary to determine the other unknown fields, for
example, it is aimed to determine the internal fields, such as displacements, stresses and
the deformation ones.
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APPENDIX B – FUNDAMENTAL SOLUTIONS

Initially, consider that the body force in the differential equation that governs the
problem (the equilibrium one, given in A.3) is represented by a punctual action whose
intensity is provided by the Dirac Delta function. As it is known, such a function assumes
an infinity value at its application point and zero at the other points of the domain. Thus,
it is aimed to obtain the displacement field due to such action.

For that, in the first place, (A.6) is written in terms of displacements, by substituting
(A.5) into it and by remembering that εkk = uk,k:

σij = λδijuk,k + µ(ui,j + uj,i) (B.1)

By taking the derivative of (B.1) and by remembering the relations shown in (A.7)
and (A.10), after some manipulations, one obtains

σij,j = G

[
uk,ki

(1 − 2v) + ui,jj

]
(B.2)

Thus, replacing (B.2) into (A.3), the Navier’s equation is obtained:

1
1 − 2ν

uj,ji + ui,jj + bi

µ
= 0 (B.3)

The solution of such a relation can be obtained via the Galerkin vector strategy, a
vector which replaces the displacements by second-order derived functions, as shown:

u∗
i = ϕi,kk − 1

2(1 − ν)ϕk,ik (B.4)

Hence, substituting (B.4) into (B.3) and considering (2.12), the following is written:

µϕi,kkjj − µ

2(1 − ν)ϕk,ikjj + µ

(1 − ν)

(
ϕj,kkij − 1

2(1 − ν)ϕk,jkij

)
+ ∆ (x − x′) ei = 0 (B.5)

Since ϕk,jkij = ϕk,jjki, ϕj,kkjj = ϕk,jjki, and ϕk,ikjj = ϕk,jjki, (B.12) is reduced to

µϕi,kkjj + ∆ (x − x′) ei = 0 (B.6)

or
∇2Fi + 1

µ
∆ (x − x′) ei = 0 (B.7)
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where Fi = ∇2ϕi. The solution for such differential equation (B.7) is well known from the
potential theory, given by:

Fi = − 1
2πµ

ln(r)ei (B.8)

which implies that

ϕi = − 1
8πµ

r2 ln(r)ei (B.9)

Substituting (B.9) into (B.4) and considering the first relation shown in (2.15), the
displacement fundamental solution is obtained according to:

U∗
ij (x′, x) = 1

8πµ(1 − ν)

[
(3 − 4ν) ln

(1
r

)
δij + r,ir,j

]
(B.10)

satisfying, in this way, (B.3), where the distance derivatives are evaluated as:

r,i = ∂r

∂xi

= xi − x′
i

r
(B.11)

µϕi,kkjj − µ

2(1 − ν)ϕk,ikjj + µ

(1 − ν)

(
ϕj,kkij − 1

2(1 − ν)ϕk,jkij

)
+ ∆ (x − x′) ei = 0 (B.12)

The traction fundamental solution can be obtained from (A.5), the generalized
Hooke’s Law and then by applying (A.4), as follows:

T ∗
ij (x′, x) = − 1

4π(1 − ν)r {(1 − 2ν) (r,jni − r,inj) + r,n [(1 − 2ν)δij + 2r,ir,j]} (B.13)

where
r,n = ∂r

∂n
= r,mnm (B.14)

From differentiating U∗
ij and T ∗

ij with respect to x′, the kernels for calculating the
internal stresses shown in Eq. (2.18) are given by:

D∗
kij (x′, x) = 1

4π(1 − ν)r [(1 − 2ν) (r,iδjk + r,jδik − r,kδij) + 2r,ir,jr,k] (B.15)

S∗
kij (x′, x) = µ

2π(1 − ν)r2

{
2 ∂r

∂n
[(1 − 2ν)r,kδij + ν (r,iδjk + r,jδik) − 4r,ir,jr,k] +

+2ν (nir,jr,k + njr,ir,k) + (1 − 2ν) (2nkr,ir,j + niδjk + njδik) − (1 − 4ν)nkδij}
(B.16)
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APPENDIX C – BODY FORCES

The presence of forces acting on the volume of a body can be represented by
definite integrals over the problem domain. For the particular case of gravitational forces,
b is constant, so b = ρ(x)g(x), where ρ(x) and g(x) are the density of the material and
the gravity’s acceleration, respectively. The Galerkin vector can be used to transform the
domain body force into boundary ones. The displacement fundamental solution is related
to the Galerkin vector according to

U∗
ij (x′, x) = ϕij,kk (x′, x) − 1

2(1 − v)ϕik,jk (x′, x) (C.1)

and the domain integral can be written as

Bi =
∫

Ω
U∗

ij (x′, x) bj(x)dΩ =
∫

Ω

[
ϕij,kk (x′, x) − 1

2(1 − v)ϕik,jk (x′, x)
]

bjdΩ (C.2)

Applying the Divergence theorem shown in (2.4) and taking the constant term bj

out of the integral, one obtains

Bi = bj

∫
Γ

{
ϕij,k − 1

2(1 − ν)ϕik,j

}
nkdΓ =

∫
Γ

PidΓ (C.3)

where the solution of the Galerkin vector is given by

ϕki = −1
8πG

r2 ln(r)δki (C.4)

in which the δki and r are the Kronecker Delta and the distance from the source point
x’ to field one x. After substituting (C.1) into (C.3) and after some manipulations, one
obtains:

Pi = r

8πµ

{[
2 ln 1

r
− 1

] (
binkr,k − 1

2(1 − v)bkr,kni

)}
(C.5)

Notwithstanding, the domain term must be included in the internal stress values,
that is:

∫
Ω

DkijbkdΩ =
∫

Γ
DijdΓ (C.6)
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where

Dij = 1
8π

{2nmr,m (bir,j + bjr,i)

+ 1
1 − v

[
vδij

(
2nmrmbkr,k +

[
1 − 2 ln 1

r

]
bmnm

)
− bmr,m (nirj + njri)

+1 − 2v

2

(
1 − 2 ln 1

r

)
(binj + bjni)

]} (C.7)
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APPENDIX D – MATRICES FROM XLDM

In the present appendix, the matrixes and vectors of the XLDM theory are pre-
sented. First, the kinematic matrixes are introduced. These include a matrix that converts
displacements to strains, another that transforms displacements to the elongations of
numexes, and a third that converts numexes elongations to strains. The first one, featured
in Eq. 4.11, is expressed as follows:

[B]b =


∂ϕi/∂x1 0 ∂ϕj/∂x1 0 ∂ϕk/∂x1 0 ∂ϕl/∂x1 0

0 ∂ϕi/∂x2 0 ∂ϕj/∂x2 0 ∂ϕk/∂x2 0 ∂ϕl/∂x2

∂ϕi/∂x2 ∂ϕi/∂x1 ∂ϕj/∂x2 ∂ϕj/∂x1 ∂ϕk/∂x2 ∂ϕk/∂x1 ∂ϕl/∂x2 ∂ϕl/∂x1


(D.1)

in which ϕi, ϕj, ϕk and ϕl are the shape functions of the element.

The second transformation matrix, presented in Eq. 4.13, is given by:

[b]b =



b11 b12 b13 b14 0 0 0 0
b21 b22 0 0 b25 b26 0 0
b31 b32 0 0 0 0 b37 b38

0 0 b43 b44 b45 b46 0 0
0 0 0 0 b55 b56 b57 b58


(D.2)

where the coefficients bij are defined as follows:

b11 = xi − xj√
(xj − xi)2 + (yj − yi)2

b12 = yi − yj√
(xj − xi)2 + (yj − yi)2

b13 = xj − xi√
(xj − xi)2 + (yj − yi)2

b14 = yj − yi√
(xj − xi)2 + (yj − yi)2

(D.3)

b21 = xi − xk√
(xk − xi)2 + (yk − yi)2

b22 = yi − yk√
(xk − xi)2 + (yk − yi)2

b25 = xk − xi√
(xk − xi)2 + (yk − yi)2

b26 = yk − yi√
(xk − xi)2 + (yk − yi)2

(D.4)

b31 = xi − xl√
(xl − xi)2 + (yl − yi)2

b32 = yi − yl√
(xl − xi)2 + (yl − yi)2

b37 = xl − xi√
(xl − xi)2 + (yl − yi)2

b38 = yl − yi√
(xl − xi)2 + (yl − yi)2

(D.5)



114 Chapter D Matrices from XLDM

b43 = xj − xk√
(xk − xj)2 + (yk − yj)2

b44 = yj − yk√
(xk − xj)2 + (yk − yj)2

b45 = xk − xj√
(xk − xj)2 + (yk − yj)2

b46 = yk − yj√
(xk − xj)2 + (yk − yj)2

(D.6)

b55 = xk − xl√
(xl − xk)2 + (yl − yk)2

b56 = yk − yl√
(xl − xk)2 + (yl − yk)2

b57 = xl − xk√
(xl − xk)2 + (yl − yk)2

b58 = yl − yk√
(xl − xk)2 + (yl − yk)2

(D.7)

Finally, the third transformation matrix, presented in Eq. 4.14, is defined by a
simple multiplication of the two previous matrixes, as already shown in Eq. 4.15, but
rewritten here for the sake of completeness:

[T ]b =
(
[B]b[b]Tb

) (
[b]b[b]Tb

)−1
(D.8)

Finally, the vector containing the elongations due to damage of the numexes, shown
in 4.17, is expressed by the following relationship:

{δ}d = [b]{q}d (D.9)

where {q}d is the vector of displacements due to damage, defined as:

{
qd
}

=



sij · eij
i − sil · eil

i

−cij · eij
i + cil · eil

i

sij · eij
j + sjk · ejk

j

−cij · eij
j − cjk · ejk

j

sjk · ejk
k − slk · elk

k

−cjk · ejk
k + clk · elk

k

−sil · eil
l − slk · elk

l

cil · eil
l + clk · elk

l



(D.10)

where sij and cij are the sine and cosine of the angle between the i and j nodes, respectively,
and eij

i is the band thickness of the element ij at node i, and so on for the other indexes.

The matrices of the linerized system of equations given in Eq. 4.31 are presented
below. The derivative of the elasticity matrix with respect to the stress is performed for
every node, as follows:
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[
∂R

∂σ

]
12×12

=



∂R1
∂σi

11

∂R1
∂σi

22

∂R1
∂σi

12

∂R1
∂σj

11

∂R1
∂σj

22

∂R1
∂σj

12

∂R1
∂σk

11

∂R1
∂σk

22

∂R1
∂σk

12

∂R1
∂σl

11

∂R1
∂σl

22

∂R1
∂σ1

12
∂R2
∂σi

11

∂R2
∂σi

22

∂R2
∂σi

12

∂R2
∂σj

11

∂R2
∂σj

22

∂R2
∂σj

12

∂R2
∂σk

11

∂R2
∂σk

22

∂R2
∂σk

12

∂R2
∂σl

11

∂R2
∂σl

22

∂R2
∂σl

12
∂R3
∂σi

11

∂R3
∂σi

22

∂R3
∂σi

12

∂R3
∂σj

11

∂R3
∂σj

22

∂R3
∂σj

12

∂R3
∂σk

11

∂R3
∂σk

22

∂R3
∂σk

12

∂R3
∂σl

11

∂R3
∂σl

22

∂R3
∂σl

12
∂R4
∂σi

11

∂R4
∂σi

22

∂R4
∂σi

12

∂R4
∂σj

11

∂R4
∂σj

22

∂R4
∂σj

12

∂R4
∂σk

11

∂R4
∂σk

22

∂R4
∂σk

12

∂R4
∂σl

11

∂R4
∂σl

22

∂R4
∂σl

12
∂R5
∂σi

11

∂R5
∂σi

22

∂R5
∂σi

12

∂R5
∂σj

11

∂R5
∂σj

22

∂R5
∂σj

12

∂R5
∂σk

11

∂R5
∂σk

22

∂R5
∂σk

12

∂R5
∂σl

11

∂R5
∂σl

22

∂R5
∂σl

12
∂R6
∂σi

11

∂R6
∂σi

22

∂R6
∂σi

12

∂R6
∂σj

11

∂R6
∂σj

22

∂R6
∂σj

12

∂R6
∂σk

11

∂R6
∂σk

22

∂R6
∂σk

12

∂R6
∂σl

11

∂R6
∂σl

22

∂R6
∂σl

12
∂R7
∂σi

11

∂R7
∂σi

22

∂R7
∂σi

12

∂R7
∂σj

11

∂R7
∂σj

22

∂R7
∂σj

12

∂R7
∂σk

11

∂R7
∂σk

22

∂R7
∂σk

12

∂R7
∂σl

11

∂R7
∂σl

22

∂R7
∂σl

12
∂R8
∂σi

11

∂R8
∂σi

22

∂R8
∂σi

12

∂R8
∂σj

11

∂R8
∂σj

22

∂R8
∂σj

12

∂R8
∂σk

11

∂R8
∂σk

22

∂R8
∂σk

12

∂R8
∂σl

11

∂R8
∂σl

22

∂R8
∂σl

12
∂R9
∂σi

11

∂R9
∂σi

22

∂R9
∂σi

12

∂R9
∂σj

11

∂R9
∂σj

22

∂R9
∂σj

12

∂R9
∂σk

11

∂R9
∂σk

22

∂R9
∂σk

12

∂R9
∂σl

11

∂R9
∂σl

22

∂R9
∂σl

12
∂R10
∂σi

11

∂R10
∂σi

22

∂R10
∂σi

12

∂R10
∂σj

11

∂R10
∂σj

22

∂R10
∂σj

12

∂R10
∂σk

11

∂R10
∂σk

22

∂R10
∂σk

12

∂R10
∂σl

11

∂R10
∂σl

22

∂R10
∂σl

12
∂R11
∂σi

11

∂R11
∂σi

22

∂R11
∂σi

12

∂R11
∂σj

11

∂R11
∂σj

22

∂R11
∂σj

12

∂R11
∂σk

11

∂R11
∂σk

22

∂R11
∂σk

12

∂R11
∂σl

11

∂R11
∂σl

22

∂R11
∂σl

12
∂R12
∂σi

11

∂R12
∂σi

22

∂R12
∂σi

12

∂R12
∂σj

11

∂R12
∂σj

22

∂R12
∂σj

12

∂R12
∂σk

11

∂R12
∂σk

22

∂R12
∂σk

12

∂R12
∂σl

11

∂R12
∂σl

22

∂R12
∂σl

12


(D.11)

where R1, R2 and R3 are the elasticity laws evaluated for node i; R4, R5 and R6 are
the elasticity laws evaluated for node j, and so on. Thus, by recalling the initial relation
presented in Eq. 4.28, the derivatives above yield a 12 × 12 identity matrix.

The derivative of the elasticity law with respect to the band thickness for each
node is defined as:

[
∂R

∂δ

]
3x8

= [H ](3x3)[T ](3x5)[B](5x8)

[
∂{qd}
∂{δ}

]
(8×8)

(D.12)

in which
[

∂{qd}
∂{δ}

]
is easily obtained by differentiating the vector {qd} given in D.9 with

respect to the band thickness, as follows:

[
∂R

∂δ

]
8×8

=



sinij 0 −sinil 0 0 0 0 0
−cosij 0 cosil 0 0 0 0 0
0 sinij 0 0 sinjk 0 0 0
0 cosij 0 0 −cosjk 0 0 0
0 0 0 0 0 sinjk 0 −sinlk

0 0 0 0 0 −cosjk 0 coslk

0 0 0 −sinil 0 0 −sinlk 0
0 0 0 cosil 0 0 coslk 0


(D.13)

In sequence, for obtaining the derivative of the damage law with respect to the
stresses, recall the relation given in 4.19. Thus, for sake of readability, the obtained matrix
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is presented as:



a b c 0 0 0 0 0 0 0 0 0
0 0 0 a b c 0 0 0 0 0 0
d e f 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 d e f

0 0 0 g h i 0 0 0 0 0 0
0 0 0 0 0 0 g h i 0 0 0
0 0 0 0 0 0 0 0 0 j k l

0 0 0 0 0 0 j k l 0 0 0



(D.14)

where
a = sin2

ij b = cos2
ij c = −2 cosij sinij

d = sin2
il e = cos2

il f = −2 cosil sinil

g = sin2
jk h = cos2

jk i = −2 cosjk sinjk

j = sin2
lk k = cos2

lk l = −2 coslk sinlk

(D.15)

Finally, the last derivative is the one of the damage law with respect to the band
thickness, which is given by the subsequent diagonal matrix:

[
∂g

∂δ

]
8x8

=



a11 0 0 0 0 0 0 0
0 a22 0 0 0 0 0 0
0 0 a33 0 0 0 0 0
0 0 0 a44 0 0 0 0
0 0 0 0 a55 0 0 0
0 0 0 0 0 a66 0 0
0 0 0 0 0 0 a77 0
0 0 0 0 0 0 0 a88



(D.16)

in which

a11 = −σcrqeqδi
ij a22 = −σcrqeqδj

ij a33 = −σcrqeqδi
il a44 = −σcrqeqδl

il

a55 = −σcrqeqδj
jk a66 = −σcrqeqδk

jk a77 = −σcrqeqδl
lk a88 = −σcrqeqδk

lk (D.17)
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