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ABSTRACT
RODRIGUES NETO, A. Numerical formulations based on the Isogeometric
Boundary Element Method for the mechanical analysis of three-dimensional
reinforced nonhomogeneous solids. 2023. 242p. Thesis (Doctorate) - São Carlos
School of Engineering, University of São Paulo, São Carlos, 2023.

The main objective of this doctoral thesis is the development of numerical formulations
based on the Isogeometric Boundary Element Method (IGABEM) for the three-dimensional
mechanical analysis of reinforced and nonhomogeneous structural systems. BEM’s lack
of domain mesh is advantageous in both contexts: the integration with IGA frameworks
and the representation of reinforcements embedded into 3D bodies. This study takes
advantage of those by working in reinforced IGABEM formulations. The sub-region
technique applied to the 3D IGABEM allows for representing non-homogeneous bodies.
The 1DBEM/IGABEM coupling formulation is extended to 3D domains, with the modelling
of crossings between fibres and IGABEM boundaries via the connection element. That
approach does not require remeshing in the NURBS surfaces and makes possible to
represent reinforcements crossing crack surfaces modelled by either the Dual IGABEM
or at interfaces. Nonlinear formulations are presented via elastoplastic reinforcements
and bond-slip. Such formulations allow to accurately model the pull-out phenomenon
in 3D numerical models. Besides, this study works with the cohesive crack approach
to represent nonlinear fractures at the 3D body, via different cohesive laws. With that,
nonlinearities can be represented in both matrix or reinforcements. This study also works
with time-dependent behaviour of reinforced bodies by both the viscoelasticity at matrix
or reinforcements and the viscous response of cohesive interfaces to different loading rates.
Numerical applications show the accuracy of the proposed formulations to represent various
mechanical behaviours, using both numerical or experimental results as reference. The
IGABEM models to lead to accurate results with good performance with fewer degrees
of freedom necessary when comparing against pure FEM or Lagrangian BEM models.
The convergence of the proposed formulations is also studied. In this context, adaptive
refinement strategies are proposed, making possible to use CAD geometrical models as
basis for the mechanical analysis. Such models are refined via knot insertion, having the
adaptive refinement guided by a posteriori error estimator. Innovative error estimators
are proposed for both the IGABEM and its reinforced version. The last approach is able
to identify the refinement required at the most critical fibre’s regions, minimising the
mechanical fields oscillations usually observed. The developed adaptive strategies present
excellent convergence rates, which show better results when compared against global
uniform refinement in several complex numerical applications.

Keywords: Boundary element method. Nonlinear IGABEM. Isogeometric analysis. Rein-
forced materials. Adaptive refinement.





RESUMO
RODRIGUES NETO, A. Formulações numéricas baseadas no Método dos
Elementos de Contorno Isogeométrico para a análise mecânica de solídos
não-homogêneos reforçados tridimensionais. 2022. 242p. Tese (Doutorado) - Escola
de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2022.

O objetivo principal desta tese de doutorado é o desenvolvimento de formulações numéricas
baseadas no Método dos elementos de contorno Isogeométrico (IGABEM) para a análise
mecânica tridimensional de sistemas estruturais enrijecidos e não homogêneos. A não
necessidade de malha de domínio do BEM é uma grande vantagem em ambos os contextos
isogeométrico e a representação de domínios 3D enrijecidos. A técnica de sub-regiões
permite a representação de domínios não homogêneos. A formulação do acoplamento
1DBEM/IGABEM é estendida para domínios 3D, com a modelagem de cruzamentos entre
fibras e contornos do IGABEM via o elemento de conexão. A abordagem não requer
remalhamento nas superfícies NURBS e possibilita a representação de enrijecedores cru-
zando superfícies de fissuras modeladas pelo Dual IGABEM ou em interfaces. Formulações
não lineares são apresentadas via enrijecedores elastoplásticos e escorregamento. Tais
formulações permitem modelar com precisão o fenômeno pull-out em modelos 3D. Além
disso, este estudo trabalha com a abordagem de fissura coesiva para representar fraturas
não lineares no domínio 3D, via diferentes leis coesivas. Com isso, as não linearidades
podem ser representadas tanto na matriz quanto nos enrijecedores. O comportamento
dependente do tempo também é estudado em domínios enrijecidos tanto pela viscoelastici-
dade quanto pela resposta viscosa de fissuras coesivas a diferentes taxas de carregamento.
Aplicações numéricas mostram a precisão das formulações propostas para representar
vários comportamentos mecânicos, usando resultados numéricos ou experimentais como
referência. Os modelos IGABEM levam mostram bom desempenho com menos graus
de liberdade necessários quando comparados com modelos de FEM puros ou BEM la-
grangiano. A convergência das formulações propostas também é estudada. Estratégias de
refinamento adaptativo são propostas, possibilitando o uso de modelos geométricos CAD
como base para a análise mecânica. Os modelos são refinados via “knot insertion”, de
forma adaptativa guiada por um estimador de erro a posteriori. Estimadores de erro são
propostos tanto para o IGABEM quanto para sua versão enrijecida. A última abordagem
é capaz de identificar o refinamento necessário nas regiões mais críticas dos enrijecedores,
minimizando as oscilações dos campos mecânicos normalmente observadas. As estratégias
adaptativas apresentam excelentes taxas de convergência, com melhores resultados quando
comparadas com o refinamento uniforme global em diversas aplicações complexas.

Palavras-chave: Método dos elementos de Contorno. IGABEM não linear. Análise
isogeométrica. Materiais enrijecidos. Refinamento adaptativo.





LIST OF FIGURES

Figure 1 – Illustration of the mechanical collapse process in different reinforced
structural systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 2 – Direct comparison between the discretization of the FEM and BEM.
2D representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3 – Application of reinforcements in engineering: ship hull (a) and aircraft
fuselage (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 4 – Added fictitious boundary Γε+ for the limiting process. . . . . . . . . . 36
Figure 5 – Lagrangian elements: linear triangular (3-node), quadratic triangular

(6-node), linear quadrilateral (4-node) and quadratic quadrilateral (9-node) 40
Figure 6 – Continuous elements (a), edge-discontinuous elements (b) and fully

discontinuous elements (c) . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 7 – Illustration of a NURBS surface in space, highlighting the region corre-

spondent to a knot span. . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 8 – Example of transformation between parametric space and parent space. 48
Figure 9 – Illustration of trivial and non-trivial knot spans in a given NURBS

surface. Parametric space. . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 10 – Example of discontinuous NURBS surfaces: (a) original knot vectors

and (b) updated knot vectors. . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 11 – 2D illustration of the sub-region technique: discretising a nonhomoge-

neous domain (a) into homogeneous sub-domains (b). . . . . . . . . . . 53
Figure 12 – Crack faces discretized for the DBEM. . . . . . . . . . . . . . . . . . . 55
Figure 13 – Representation of the infinite crack analysed in the numerical example. 58
Figure 14 – Prism and crack discretisations considered in the numerical example. . 59
Figure 15 – Displacements field over the crack in z direction obtained via the IGA-

BEM. Scale factor equals 25. . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 16 – Convergence of the IGABEM error considering the analytical result for

the crack opening. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 17 – Scheme of the matrix/reinforcement coupling technique. . . . . . . . . 65
Figure 18 – Integration scheme over a reinforcement element, considering 4 integra-

tion points over the angular coordinate and a fixed axial coordinate. . . 68



Figure 19 – Adherence force over reinforcements elements: three-dimensional repre-
sentation (a) and one-dimensional approximation (b). . . . . . . . . . . 69

Figure 20 – 1D fibre-reinforcement element illustration with a n − 1 degree approxi-
mation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 21 – Possible crossing situations between reinforcement and boundary. . . . 80
Figure 22 – Approach adopted for crossings between reinforcements and sub-domains

interfaces: Connection element positioned at discontinuous reinforcement
mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 23 – Numerical application of the elastic coupling: numerical model (a) and
experimental scheme (b) for an uniaxial compression test (1). . . . . . 82

Figure 24 – Boundary mesh utilised for the cylinder representation. . . . . . . . . . 83
Figure 25 – Stiffness variation as a function of the fibre volume. . . . . . . . . . . . 84
Figure 26 – Stiffness variation as a function of the fibre volume using different

distributions of fibres in the numerical model. . . . . . . . . . . . . . . 84
Figure 27 – Displacements in x direction over the reinforcements using: BEMalig

with Vf = 1% (a) Vf = 2% (b). . . . . . . . . . . . . . . . . . . . . . . 85
Figure 28 – Displacements in x direction over the reinforcements using: BEMtransv

with Vf = 1% (a) Vf = 2% (b). . . . . . . . . . . . . . . . . . . . . . . 86
Figure 29 – Displacements in x direction over the reinforcements using: BEMrand

with Vf = 1% (a) Vf = 2% (b). . . . . . . . . . . . . . . . . . . . . . . 86
Figure 30 – Displacements in x direction over the reinforcements using: BEMnormal

with Vf = 1% (a) Vf = 2% (b). . . . . . . . . . . . . . . . . . . . . . . 86
Figure 31 – Reinforced cracked solid analysed with linear IGABEM coupling formu-

lation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 32 – Isogeometric meshes considered in the numerical example’s analyses. . 88
Figure 33 – Crack opening displacements along the crack mouth (direction x). . . . 89
Figure 34 – Deformed shape and z displacements field obtained via the IGABEM

for each scenario. Scale factor equals 50. . . . . . . . . . . . . . . . . . 90
Figure 35 – Axial stresses along the fiber that crosses the crack obtained in each

reinforced scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 36 – Different laws considered for the bond-slip behaviour modelling. . . . . 96
Figure 37 – Connection element applied for the prescribed displacement directly at

the fires. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 38 – Constitutive elastoplastic: perfect yielding (a) and hardening (b). . . . 102
Figure 39 – Bi-linear hardening models: isotropic (a) and kinematic (b). . . . . . . 102
Figure 40 – Structure for the elastoplastic modelling: external dimensions (a) and

fibres positioning (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 41 – Lagrangian model with linear quadrilateral elements (a) and collocation

points of the IGABEM model (b). . . . . . . . . . . . . . . . . . . . . . 109



Figure 42 – Normal stress (a) and plastic strain (b) along the upper fibre. . . . . . 109
Figure 43 – Normal stress (a) and plastic strain (b) along the lower fibre. . . . . . . 110
Figure 44 – uy and uz displacements along the centre-fibre (a) and ux displacements

along the right fibre (b). . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 45 – Colour map of displacements magnitude (in cm) along the boundary

obtained by the Lagrangian formulation (a) and the isogeometric for-
mulation (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Figure 46 – Colour map of plastic strains along all fibres, obtained by the Lagrangian
formulation (a) and the isogeometric formulation (b). . . . . . . . . . . 112

Figure 47 – Pull-out test in reinforced concrete: specimen’s dimensions, in mm, (a)
and experimental scheme (b). . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 48 – BEM model collocation points meshes. . . . . . . . . . . . . . . . . . . 114
Figure 49 – Adherence stress (τad) as function of the slip at point p1. . . . . . . . . 115
Figure 50 – Reinforcements and domain displacements (uE and uD respectively) in

x direction, as a function of the bar length Sf , at different load levels. . 115
Figure 51 – Colour map of displacements (in mm) over the boundary obtained via

the IGABEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 52 – Colour map of displacements (in mm) over the boundary obtained via

the Lagrangian BEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 53 – Structure analysed in Application 3: geometry (dimensions in cm) and

loads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 54 – Normal force N along the fibre length S, considering all four scenarios. 119
Figure 55 – Adherence force values fD along the fibre length S, considering all four

scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 56 – Plastic strains εpl along the fibre length S, considering ep and bsp

scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 57 – Slip results s along the fibre length S, considering bs and bsp scenarios. 120
Figure 58 – Reinforcements and domain displacements (uE and uD, respectively) in

x direction, as a function of the fibre length S, considering bs (a) and
bsp (b) scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Figure 59 – Colour map of y direction displacements (in cm) over the boundary,
considering bsp scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Figure 60 – Basic elements representation: (a) spring and (b) dashpot. . . . . . . . 125
Figure 61 – Association scheme of the Kelvin-Voigt viscoelastic model. . . . . . . . 126
Figure 62 – Association scheme of the Boltzmann viscoelastic model. . . . . . . . . 127
Figure 63 – Marching process scheme during the fibre elastoplasticity process in

viscoelastic formulations. . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Figure 64 – Nonhomogeneous structure analysed via the Lagrangian viscoelastic

BEM. Dimensions in cm. . . . . . . . . . . . . . . . . . . . . . . . . . . 137



Figure 65 – Boundary mesh (a) and reinforcements mesh (b) of the BEM model for
the viscoelastic application. . . . . . . . . . . . . . . . . . . . . . . . . 138

Figure 66 – Axial stress results at reinforcements: values over fibre FI at time equals
to 200 days (a) and evolution along time in point p6 (b). . . . . . . . . 139

Figure 67 – Boundary displacements evolution along time at points: p3 (a) and p4 (b).139

Figure 68 – Displacements along z direction at the final time step of the viscoelastic
analysis (in cm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Figure 69 – Reinforcement’s displacements evolution along time at points: p5 (a)
and p6 (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Figure 70 – Structure analysed through the nonlinear viscoelastic formulation: ge-
ometry (dimensions in cm) and loads. . . . . . . . . . . . . . . . . . . . 141

Figure 71 – Normal stress σN and plastic strain εpl at 400 days along the lower-right
fibre length S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Figure 72 – Selected points pi in the structure for the analysis of mechanical results
along time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Figure 73 – Evolution of normal force N and plastic strain εpl along time at p1 (a)
and p2 (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Figure 74 – Displacements in y and z directions at p3 along time. . . . . . . . . . . 144

Figure 75 – Displacements in x and y directions at p4 along time. . . . . . . . . . . 144

Figure 76 – Magnitude of displacements (in cm) at 400 days over the boundary results.145

Figure 77 – Structure analysed in Application 5: isometric view and detailed view
of each sub-region I and II. Dimensions in cm. . . . . . . . . . . . . . 146

Figure 78 – Detailed views of the reinforcing long fibres within sub-region I, consid-
ering symmetry in x direction. Dimensions in cm. . . . . . . . . . . . . 147

Figure 79 – Mesh convergence results regarding displacements magnitude at p1 and
p2 (a) and fibre normal force N (b), as a function of the total amount
of nodes in the mesh np. . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Figure 80 – Collocation point meshes: obtained directly from CAD geometric model
(a) and refined for the mechanical fields representation with knot inser-
tion (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Figure 81 – Displacements magnitude |u| in cm at p4 (a) and p2 (b) along time,
considering all different scenarios. . . . . . . . . . . . . . . . . . . . . . 148

Figure 82 – von Mises stress σV M at the internal point p5 (a) and normal forces
N at p3 along time, considering ke scenario. (el) refers to the elastic
portion, (v) refers to the viscous portion, (tot) is the total value and
“Elastic” is the result obtained by the linear time-independent model. . 149



Figure 83 – von Mises stress σV M at p5 (a) and normal forces N at p3 along time,
considering kv1 scenario. (el) refers to the elastic portion, (v) refers to
the viscous portion, (tot) is the total value and “Elastic” is the result
obtained by the linear time-independent model. . . . . . . . . . . . . . 150

Figure 84 – von Mises stress σV M at p5 (a) and normal forces N in p3 along time,
considering kv2 scenario. (el) refers to the elastic portion, (v) refers to
the viscous portion, (tot) is the total value and “Elastic” is the result
obtained by the linear time-independent model. . . . . . . . . . . . . . 150

Figure 85 – Colour map of displacements (in cm) along x direction (ux) over the
boundary obtained at the end of the viscoelastic analysis. . . . . . . . . 151

Figure 86 – Colour map of displacements (in cm) along y direction (uy) over the
boundary obtained at the end of the viscoelastic analysis. . . . . . . . . 151

Figure 87 – Colour map of displacements (in cm) along z direction (uz) over the
boundary obtained at the end of the viscoelastic analysis. . . . . . . . . 152

Figure 88 – Colour map of displacements magnitude (in cm) over the fibres obtained
at the end of the viscoelastic analysis. . . . . . . . . . . . . . . . . . . 152

Figure 89 – Colour map of normal force (in kN) over the fibres obtained at the end
of the viscoelastic analysis. . . . . . . . . . . . . . . . . . . . . . . . . . 153

Figure 90 – Illustration of the fictitious crack model proposed by (2). . . . . . . . . 156
Figure 91 – Cohesive linear law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Figure 92 – Cohesive bilinear law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Figure 93 – Exponential bilinear law . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Figure 94 – Illustration of the reapplication process of a single tk

exc to the control
points of a selected knot span. . . . . . . . . . . . . . . . . . . . . . . . 161

Figure 95 – Structure analysed in the first application of the cohesive fracture
modelling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Figure 96 – Tractions at the cohesive interface as a function of the applied displace-
ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Figure 97 – Number of iterations to achieve convergence per load step . . . . . . . 163
Figure 98 – Structure analysed in the second application of the viscous-cohesive

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Figure 99 – Mesh of collocation points applied in the mechanical analysis of the

second application of the cohesive model. . . . . . . . . . . . . . . . . . 164
Figure 100 – Normalised tractions at the cohesive interface as a function of the

applied displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Figure 101 – Number of iterations to achieve convergence per load step . . . . . . . 165
Figure 102 – Load vs displacement curves for High-Strength Concrete at different

load rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166



Figure 103 – Reactive tractions at crack face versus applied displacement obtained
by different viscous-cohesive laws. . . . . . . . . . . . . . . . . . . . . . 170

Figure 104 – Mesh of collocation points applied in the mechanical analysis of the
second application of the viscous-cohesive model. . . . . . . . . . . . . 171

Figure 105 – Applied force versus CMOD obtained using different cohesive laws with
the same parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Figure 106 – Applied force versus CMOD for comparing the obtained numerical
results with the conventional concrete experimental envelope. . . . . . . 172

Figure 107 – Viscous cohesive curve applied for conventional concrete. . . . . . . . . 173
Figure 108 – Example of NURBS refinement by knot insertion on both directions u

and v. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Figure 109 – Structure analysed in Application 1. . . . . . . . . . . . . . . . . . . . 186
Figure 110 – Convergence of Application 1. . . . . . . . . . . . . . . . . . . . . . . . 186
Figure 111 – Final control points meshes obtained in Application 1 . . . . . . . . . . 186
Figure 112 – Displacement modulus obtained by the final mesh of the Adaptive

scheme (a), by the reference Ansys model (b) and by the initial mesh (c).188
Figure 113 – Strains L2 norm obtained by the final mesh of the Adaptive scheme (a),

by the reference Ansys model (b) and by the initial mesh (c). . . . . . 189
Figure 114 – Structure analysed in Application 2. . . . . . . . . . . . . . . . . . . . 190
Figure 115 – Convergence graphs of Application 2 considering two different error

estimators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Figure 116 – Position of L1 and p1 at the boundary of the structure. . . . . . . . . . 191
Figure 117 – Displacement modulus at p1 throughout the Adaptive and homogeneous

refinement processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Figure 118 – Final control points meshes obtained in Application 2. . . . . . . . . . 192
Figure 119 – Difference in displacement modulus along L1 obtained by meshes M0,

M1 and M2 in relation to the homogeneous reference mesh. . . . . . . . 193
Figure 121 – Colour map of displacement modulus obtained by M1 (a) and the final

homogeneous mesh (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Figure 120 – Colour map of displacement modulus difference obtained by meshes M0,

M1 and M2 in relation to the homogeneous reference mesh. . . . . . . . 194
Figure 122 – Reinforced structure analysed in Application 3. . . . . . . . . . . . . . 195
Figure 123 – Geometric initial models of Application 3. . . . . . . . . . . . . . . . . 195
Figure 124 – Convergence graphs of Application 3 considering two different error

estimators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Figure 125 – Convergence of each portion of the error in the Adaptive refinement,

considering the two different error estimators. . . . . . . . . . . . . . . 197
Figure 126 – Final reinforcements meshes obtained in Application 3. . . . . . . . . . 198
Figure 127 – Final boundary meshes obtained in Application 3. . . . . . . . . . . . . 199



Figure 128 – Axial stress along fibre F1 obtained by initial mesh and the final meshes
from the Adaptive and homogeneous reinforcements. . . . . . . . . . . 200

Figure 129 – Distribution of the tractions modulus over surface S1 obtained by ini-
tial mesh and the final meshes from the Adaptive and homogeneous
reinforcements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Figure 130 – Reinforced structure analysed in Application 4. . . . . . . . . . . . . . 202
Figure 131 – Geometric initial models of Application 4. . . . . . . . . . . . . . . . . 202
Figure 132 – Convergence graph of Application 4 . . . . . . . . . . . . . . . . . . . . 203
Figure 133 – Final reinforcements meshes obtained in Application 4. . . . . . . . . . 203
Figure 134 – Final boundary meshes obtained in Application 4. . . . . . . . . . . . . 204
Figure 135 – Axial stress along fibres obtained by initial mesh and the final meshes

from the Adaptive and homogeneous reinforcements. . . . . . . . . . . 204
Figure 136 – Displacements modulus along fibres obtained by initial mesh and the

final meshes from the Adaptive and homogeneous reinforcements. . . . 205
Figure 137 – Colour map of displacement modulus obtained with the final meshes

from the following refinement schemes. . . . . . . . . . . . . . . . . . . 206
Figure 138 – Reinforced cracked solid analysed in Application 5. . . . . . . . . . . . 207
Figure 139 – Geometric initial models of Application 5. . . . . . . . . . . . . . . . . 207
Figure 140 – Convergence graphs obtained in Application 5 considering two initial

boundary meshes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Figure 141 – Final boundary meshes obtained in Application 5. . . . . . . . . . . . . 208
Figure 142 – Final reinforcements meshes obtained in Application 5. . . . . . . . . . 209
Figure 143 – Colour map of z displacements obtained at the crack faces in Application

5. Scale factor equals 50. . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Figure 144 – Colour map of displacements modulus obtained with model B in Appli-

cation 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Figure 145 – Representation of a continuous body. . . . . . . . . . . . . . . . . . . . 234
Figure 146 – Stress state at a given point . . . . . . . . . . . . . . . . . . . . . . . . 234
Figure 147 – Representation of cut in infinitesimal . . . . . . . . . . . . . . . . . . . 235
Figure 148 – Strains in infinitesimal element. 2D representation . . . . . . . . . . . . 236
Figure 149 – Boundary conditions for a general BVP . . . . . . . . . . . . . . . . . . 237
Figure 150 – Illustration of fundamental problem 3D . . . . . . . . . . . . . . . . . . 239





CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.1 Objectives and innovative aspects . . . . . . . . . . . . . . . . . . . 27
1.2 Organisation of the text . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 FUNDAMENTALS OF THE BOUNDARY ELEMENT METHOD 31
2.1 The BEM: Literature Review . . . . . . . . . . . . . . . . . . . . . 31
2.2 Integral equations in elastostatics . . . . . . . . . . . . . . . . . . . 33
2.3 Boundary integral equations: limiting process . . . . . . . . . . . 36
2.4 Boundary approximations via polynomials . . . . . . . . . . . . . 39
2.4.1 Geometry approximation at the boundary . . . . . . . . . . . . . . . . . 40
2.4.2 Mechanical fields approximation at the boundary . . . . . . . . . . . . . 42
2.5 Boundary approximations via NURBS . . . . . . . . . . . . . . . 44
2.5.1 Collocation Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.6 The BEM algebraic equations . . . . . . . . . . . . . . . . . . . . . 50
2.7 Sub-region technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.8 Dual Boundary Element Method . . . . . . . . . . . . . . . . . . . 54
2.9 Computational details: The Isogeometric preprocessing . . . . . 56
2.10 Numerical application of the 3D IGABEM formulation . . . . . 58

3 DOMAIN/REINFORCEMENT COUPLING . . . . . . . . . . 63
3.1 Coupled formulations: Literature Review . . . . . . . . . . . . . . 63
3.2 Algebraic representation of the elastic coupling . . . . . . . . . . 64
3.3 Load line integration scheme . . . . . . . . . . . . . . . . . . . . . . 68
3.4 Reinforcements modelling via FEM . . . . . . . . . . . . . . . . . 70
3.5 Reinforcements modelling via 1DBEM . . . . . . . . . . . . . . . 75
3.6 Crossing between fibres and boundaries: the connection element 79
3.7 Numerical applications of the linear coupling formulation . . . 81
3.7.1 Reinforced Lagrangian BEM application: Random fibres modelling . . . 81
3.7.2 Reinforced IGABEM application: Single-edge notched body . . . . . . . 87

4 NONLINEAR REINFORCED FORMULATIONS . . . . . . . 93
4.1 Bond-slip modelling: Literature Review . . . . . . . . . . . . . . . 93
4.2 Bond-slip modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.1 Prescribed displacements applied at reinforcement nodes . . . . . . . . . 97
4.2.2 The nonlinear coupling formulation considering bond-slip effects . . . . 98
4.3 Elastoplasticity: Literature Review . . . . . . . . . . . . . . . . . . 100



4.4 Elastoplasticity modelling at the reinforcements . . . . . . . . . 101
4.5 Bond-slip modelling and elastoplasticity reinforcements formu-

lation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.6 Numerical applications of the nonlinear coupled formulations . 107
4.6.1 Elastoplasticity modelling: Nonhomogeneous reinforced cylinder . . . . . 108
4.6.2 Bond-slip modelling: Pull-out test . . . . . . . . . . . . . . . . . . . . . 112
4.6.3 Bond-slip modelling in elastoplastic fibre . . . . . . . . . . . . . . . . . 117

5 REINFORCED TIME DEPENDENT FORMULATIONS . . . 123
5.1 Viscoelasticity and BEM: Literature Review . . . . . . . . . . . 123
5.2 The rheological models . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2.1 Basic elements of the rheological models . . . . . . . . . . . . . . . . . . 124
5.2.2 Kelvin-Voigt model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.2.3 Boltzmann model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.3 Viscoelastic BEM formulations . . . . . . . . . . . . . . . . . . . . 128
5.3.1 Kelvin Voigt’s 3D domains formulation . . . . . . . . . . . . . . . . . . 128
5.3.2 Kelvin Voigt’s 1D domains formulation . . . . . . . . . . . . . . . . . . 130
5.3.3 Boltzmann’s 3D domains formulation . . . . . . . . . . . . . . . . . . . 132
5.4 Reinforced viscoelastic formulations . . . . . . . . . . . . . . . . . 132
5.4.1 Kelvin/Elastic coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.4.2 Kelvin/Kelvin coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.4.3 Boltzmann/Elastic coupling . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.5 Reinforcements elastoplasticity behaviour modelling in Vis-

coelastic formulations . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.6 Numerical applications of the viscoelastic coupled formulations 136
5.6.1 Lagrangian BEM viscoelastic formulation application . . . . . . . . . . 136
5.6.2 Nonlinear viscoelastic application . . . . . . . . . . . . . . . . . . . . . 141
5.6.3 IGABEM viscoelastic formulation application . . . . . . . . . . . . . . . 145

6 NONLINEAR FRACTURE MECHANICS VIA THE IGABEM155
6.1 Fracture mechanics for quasi-brittle materials . . . . . . . . . . . 155
6.1.1 The linear cohesive law . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.1.2 The bilinear cohesive law . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.1.3 The exponential cohesive law . . . . . . . . . . . . . . . . . . . . . . . . 158
6.2 IGABEM formulation for the nonlinear crack growth . . . . . . 159
6.2.1 Nonlinear problem solving: the constant operator . . . . . . . . . . . . . 159
6.2.2 Numerical application of the cohesive formulation: Cube under tension . 162
6.2.3 Numerical application of the cohesive formulation 2: Three-point bending

of concrete specimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.3 Cohesive Crack Propagation Accounting for Loading Rates . . 166



6.3.1 Viscous cohesive model . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.3.2 Updated linear, bilinear and exponential laws . . . . . . . . . . . . . . . 168
6.3.3 Numerical application of rate dependent cohesive behaviour: Cube under

tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.3.4 Numerical application of rate dependent cohesive behaviour 2: Three-

point bending of concrete specimen with different loading rates . . . . . 169

7 ADAPTIVITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.2 Hypersingular Error estimator . . . . . . . . . . . . . . . . . . . . . 177
7.2.1 Displacements based error estimator . . . . . . . . . . . . . . . . . . . . 177
7.2.2 Strains based error estimator . . . . . . . . . . . . . . . . . . . . . . . . 177
7.3 Adaptive scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.4 NURBS refinement process: knot insertion . . . . . . . . . . . . . 182
7.5 Adaptive scheme for reinforced cracked solids . . . . . . . . . . . 183
7.5.1 Numerical Applications for convergence analysis . . . . . . . . . . . . . 185
7.5.2 Application 1: Homogeneous fixed beam . . . . . . . . . . . . . . . . . . 185
7.5.3 Application 2: Nonhomogeneous 3D structure . . . . . . . . . . . . . . . 189
7.5.4 Application 3: Reinforced Quarter Cylinder . . . . . . . . . . . . . . . . 193
7.5.5 Application 4: Reinforced Cylinder with hole . . . . . . . . . . . . . . . 200
7.5.5.1 Exemple 5: Convergence analysis of reinforced single-edge notched body 205

8 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . 213
8.1 Recommendations for future work . . . . . . . . . . . . . . . . . . 215

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

APPENDIX A FUNDAMENTALS OF ELASTICITY . . . 233
A.1 Cauchy stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
A.2 Strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
A.3 Stress-strain relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
A.4 Elasticity problems solution techniques . . . . . . . . . . . . . . . 237
A.5 Kelvin’s fundamental solutions . . . . . . . . . . . . . . . . . . . . 238





23

1

INTRODUCTION

Foreseeing the correct mechanical behaviour of materials and structures is essential
in any engineering project, being in aeronautics, automotive or any construction field.
With that, the engineers can properly evaluate all of the project variables in a realistic
and reliable way during the analysis phase. Thus, the project’s costs, geometry, materials,
design and manufacturing may be more efficient and adequate to each scenario. Besides, the
project’s safety is directly affected once the most probable failure scenarios are identified in
the analysis phase, such as stress concentrations, critical loads and weak points. Then, the
probability of occurring a failure during posterior project phases is minimised. The cost of
failures or modifications at those phases is significantly higher than at the analysis phase.
Hence, one highlights the importance of carefully analysing the projects beforehand.

Engineers usually deal with these analyses through two different approaches. The
first is the analytical solving of mathematical problems related to engineering projects
and structures, which can be assisted by experimental tests or scale models. The second
approach is the numerical solving of such mathematical problems. Nevertheless, the advent
of accessible and efficient numerical processing tools has brought a true revolution in
this area, making the numerical approach more common nowadays. With that, engineers
have more robust, efficient and fast tools to model and analyse the projects. Especially
in structural engineering, the numerical analyses are now fundamental tools in basically
every single design, rather than the classical approaches.

The mechanical collapse and its correct prediction is a primary concerning in
engineering. The collapse in many situations is a result of crack growth, that means,
discontinuities propagation into the continuous medium. Figure 1 illustrates the crack
process in different structural components, such as gears, fibre reinforced composite
materials, short fibre reinforced concrete and aircraft panels. Hence, it is clear that this
phenomenon is observed in several engineering areas.
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Figure 1 – Illustration of the mechanical collapse process in different reinforced structural systems.

Source: (3, 4, 5, 6), adapted.

The classical continuous mechanics is not exactly efficient in representing the
complex cracking process. On the other hand, the fracture mechanics field contains a
set of tools that allow the precise representation of the mechanical behaviour of cracked
deformable solids. Besides, it provides adequate parameters that allow the correct evaluation
of the crack growth process as a function of the applied loads. Then, the analytical
solutions in the context of fracture mechanics are restricted to a few simple problems,
such as infinite media and elastic materials. In addition, the experimental approach of this
phenomenon is usually expensive and limited. This approach could require, for instance,
several experimental tests for a single engineering project. Therefore, the best course
of action herein would be coupling the numerical methods to the fracture mechanics
framework.

This study is inserted in this context, which has been receiving special attention
from several renowned research centres worldwide. Both the proposition of robust numerical
approaches to handle real-world engineering problems and the development of adequate
methodologies to represent different mechanical phenomena are priorities in the engineering
context. Those represent research lines currently in evidence. One may highlight the
representation of the mechanical degradation of solids composed by materials of complex
behaviour. Among the most common numerical methods applied for those purposes, two
main groups stand out: the methods based on domain discretization, such as the Finite
Element Method (FEM) and the methods in which such procedure is not necessary, such
as the Boundary Element Method (BEM) and meshless/mesh-reduced methods.
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Figure 2 illustrates a comparison between the main idea behind the discretisation
proposed by the FEM and the BEM for 2D elastostatic homogeneous problems. In that
case, the BEM only requires the discretization of the contour of the solid, thus one observes
a dimensionality reduction in the discretization. This feature is not only an advantage for
several particular problems, but also results in a reduced number of variables associated
with the numerical model, which leads to in smaller algebraic systems. Despite that fact,
the algebraic system obtained by the BEM is non-symmetric and non-sparse, in opposition
to the FEM. Hence, the BEM system requires more complex and demanding solution
procedures, which might be seen as unfavourable. In the end, there is a balance between
the disadvantage of the system’s complexity and the advantage of its smaller dimensions
regarding the system solver procedures.

Figure 2 – Direct comparison between the discretization of the FEM and BEM. 2D representation.

Source: (7), adapted.

In fact, particularities of the BEM make it an excellent technique to approach
specific engineering problems, which are related to the representation of high gradients in
the mechanical fields. Due to the mesh’s dimensionality reduction, the BEM naturally and
precisely represents stress concentrations present in the domain related to the existence of
physical discontinuities, such as cracks or reinforcements. This aspect makes the method
adequate and effective to solve fracture mechanics problems, leading to more efficient and
accurate models when compared against FEM models. Besides, the mesh’s dimensionality
reduction leads to a easy representation of cracks and remeshing, which may be required
for numerous modelling problems.

In the context of the BEM, a different approach has been standing out recently:
the Isogeometric approach known as IGABEM (Isogeometric Boundary Element Method).
The IGABEM is specially interesting for the straightforward connection between the
mechanical analysis and the geometry model design. That is because engineering projects
often carry out the geometry design using CAD (Computer Aided Design) software,
which represent solids through Splines and NURBS (Non Uniform Rational Basis Spline)
surfaces positioned at the solids’ contours. The IGABEM adopts these same functions to
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approximate both geometry and mechanical fields at the boundary. Thus, one completely
eliminates the need for creating a mesh specially for the mechanical analysis from the CAD
model. For complex structures, this process could demand a huge computational time,
which may even exceed the mechanical analysis time itself (8). Besides, it also creates a
source of error in the geometry input of the analysis process.

The IGA approaches use the exact geometry model provided by the CAD, which
completely eliminates the errors regarding the creating of a polynomial mesh. In addition,
the use of NURBS functions allows for the exact description of complex shapes, such as
spheres, cylinders, propellers and torus. Then, the number of elements and nodes necessary
to describe such geometries is smaller when compared against polynomial approximations.
It is worth mentioning that the IGABEM is particularly interesting, since both the
numerical method and the CAD designs only require the discretization of the boundaries.
IGA approaches of the FEM, on the other hand, still require the construction of an
isogeometric domain mesh from the CAD design. These features contribute for the good
performance and accuracy of the IGABEM in the mechanical analysis of 3D structures.

Furthermore, the BEM allows for an efficient modelling of reinforced domains. The
absence of domain mesh favours the simple representation of embedded reinforcements.
In this context, one highlights the importance of the coupled domain/reinforcement
formulations based on the technique firstly proposed by Zienkiewicz (9). That study
presented the FEM/BEM coupling technique, in which the FEM represents the reinforcing
substructures and the BEM represents the matrix/domain. On one hand, the FEM is
well-known for the modelling of reticulated structures, such as trusses, beams and shells.
On the other hand, the BEM is particularly efficient to handle two and three dimensional
domains due to the mesh’s dimensionality reduction. Then, the proposed FEM/BEM
coupling takes advantage from the strong points of both methods, which results in effective
and accurate models. The application of this type of coupling for 3D reinforced structures
allows for the efficient representation of complex engineering structures, such as the ones
illustrated in Fig. 3.

In the context of reinforced structures (as illustrated in Fig. 3), it is worth high-
lighting that its application has become essential in several engineering areas. This concept
allows the design of efficient components, i.e., with high stiffness and low weight. It is
well-known that these components are extremely important in mechanical and aeronautic
engineering (12), in addition to civil engineering, in which many projects apply reinforced
concrete and reinforced soils. Furthermore, nowadays one cannot neglect the fibre-reinforced
materials, such as the polymers reinforced by steel, carbon or glass fibres, which can be ori-
ented in different ways (aligned, continuous or random). Different material matrices can be
found as well, such as ceramic, polymeric, metallic or thermoplastic. Thus, these materials
present a huge variety and are excellent to achieve high-stiffness and low-weight designs.
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Figure 3 – Application of reinforcements in engineering: ship hull (a) and aircraft fuselage (b).
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Source: (10), adapted and (11).

In this context, the mechanical analysis of such materials requires numerical techniques,
since their mechanical behaviour is usually quite complex and challenging. Therefore, it is
clear how the proposition of numerical approaches, particularly the numerical coupling
approaches, to adequately handle such structures and materials is of high importance in
the engineering field.

Above all, it is clear that the accurate representation of complex mechanical
behaviours considering the mechanical-material degradation is a significantly relevant
topic. In this regard, the knowledge produced in this area must increase throughout time
in order to keep up with the increasing complexity of engineering projects and materials.
Hence, there is a vast motivation to develop and propose new formulations and approaches
to handle more complex structural systems effective and accurate ways. This is the main
motivation for the development of this PhD thesis, which will deeply contribute to the
study of the representation of reinforced structures and materials in different situations
and considering various mechanical behaviours.

1.1 Objectives and innovative aspects

The main objective of this work is proposing IGABEM formulations to properly
represent reinforced media and fracture behaviour of 3D solids. For that, concepts from the
linear and nonlinear fracture mechanics should be applied to adequately represent cracked
reinforced bodies. The use of the Isogeometric approach in the proposed formulation
is remarkable, since it allows the exact representation of a vast amount of geometries
and shapes frequently used in engineering projects. Besides, it enables a straightforward
integration between the mechanical analysis tool and the geometric model construction



28 1. Introduction

from any CAD software.

Initially, the 1DBEM/BEM coupling technique (13) is applied for nonhomogeneous
3D domains using a Lagrangian approach of the BEM. Using this mechanical model,
nonlinear formulations are developed to represent the mechanical degradation at the
fibres, characterised by yielding and bond-slip modelling. The reinforced formulations
developed are then coupled with a Isogeometric approach of the 3D BEM, originating the
1DBEM/IGABEM coupling. This Reinforced IGABEM formulation should be able to ef-
fectively represent complex 3D reinforced solids and structures. The nonlinear formulations
regarding the reinforcements mechanical behaviour are applied to the 1DBEM/IGABEM
coupling, leading to a innovative nonlinear approach of the 3D IGABEM.

Based on the Reinforced IGABEM formulation developed, the fracture analysis of
3D bodies is carried out considering linear and nonlinear fracture mechanics. The linear
fracture mechanics (LEFM) approach applies the Dual BEM technique (14) to properly
represent the presence of cracks. Furthermore, nonlinear cracks analysis and propagation
are assessed by considering the cohesive behaviour at interfaces. The existence of fibres
that cross crack surfaces can also be represented by the proposed connection element
strategy, which is another novel aspect of this study.

The analysis of viscoelastic reinforced bodies is another mechanical behaviour
modelling objective of this study. Time-dependent behaviours of both matrix and rein-
forcements are proposed based on rheological models of Kelvin-Voigt and Boltzmann. The
nonlinear behaviour of the reinforcements can be coupled with the viscoleastic behaviour
of the solid, which leads to the modelling of nonlinear and time-dependent structures.
This formulation will be able to properly represent real-life engineering structures and
materials, such as polymeric composites reinforced by steel fibres. This point is also a
relevant contribution of this work, since such formulations based on the IGABEM are not
vastly exploited in the available literature.

A pre-processing computational tool is built to receive IGA models directly from
CAD software as the numerical models’ mesh. For that, the library “pyiges” (15) based on
Python language provides intrinsic functions to read information from IGES files. This
type of file is commonly used for most CAD tools. With that, the exact geometry from
the CAD design can be used as the mesh itself for the mechanical analysis. However,
the mechanical fields representation usually demands finer meshes than the geometry
representation, which leads to the necessity to refine the IGA models from the CAD. The
strategy of knot insertion (16) is applied herein to refine the meshes of NURBS surfaces.

In order to properly evaluate the refinement necessity of meshes obtained directly
from CAD models, mesh adaptativity strategies are studied. Those strategies are based on
the procedure presented by Zienkiewicz (17) and are initially based on the hypersingular
error estimator available in the literature (18). Afterwards, different error estimators
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are proposed for homogeneous or reinforced media, in order to produce more effective
mesh adaptativity strategies. Thus, a fully integration between CAD and the mechanical
modelling via the IGABEM can be achieved.

1.2 Organisation of the text

The remainder of this thesis is structured as follows: Chapter 2 describes the
applied 3D formulation of the BEM (including IGABEM and the Dual approach). Chapter
3 describes the coupling formulation technique for linear applications. Chapter 4 presents
the developed nonlinear reinforced formulations, regarding yielding and bond-slip, that
may be applied to both the 1DBEM/BEM and the 1DBEM/IGABEM. Chapter 5 presents
the developed time-dependent formulations regarding the viscoelastic behaviour of both
matrix and reinforcement. Chapter 6 presents the developed cohesive fracture formulation
implemented for cracks at interfaces of the IGABEM, also considering the crack viscous
behaviour. With the mechanical models covered, Chapter 7 presents the mesh refinement
adaptivity strategies studies and developments. All chapters present, in the beginning,
the extensive literature review made for each topic and, in the ending, the numerical
applications executed with the implemented formulations. Finally, Chapter 7 draws some
conclusions obtained from the present research and offers some recommendations for future
work.
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2

FUNDAMENTALS OF THE BOUNDARY

ELEMENT METHOD

This chapter presents the numerical method utilized to represent the mechanical
behaviour of structures in this study. The method presented herein is the basis for all of
the developments of the work. Appendix A presents the essential points of the theory of
elasticity that are necessary for this chapter, thus its previous reading is recommended.

2.1 The BEM: Literature Review

The BEM has been applied to mathematical problems originated from physical
models in several contexts. For this, the governing equations of the problem must be
written in a integral form, which is the reason why the method was initially called the
integral equations’ method. Thus, the process of transforming differential equation into
integration equations is essential. In this regard, the study of Abel in 1823 (19) can be
considered a starting point for the integral representation of physical models. Abel applied
integral equations to obtain the solution of a classic problem called "isochronous pendulum",
which initiated the main ideas that would eventually culminate in the BEM as known
today.

In that early period in the history of the method, it is worth mentioning the studies
that concern potential problems. These problems apply Green’s theorem to obtain the
integral representation. The technique has been firstly presented for acoustics, by (20)
and for elasticity, by (21, 22). Still in 1848, Lord Kelvin demonstrated the fundamental
problem’s solutions for isotropic materials, which represent the displacements integral
equation until today (23). From these solutions, Somigliana developed an equation that
correspond to Green’s theorem for elasticity problems, also known as Somigliana’s identity
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(24).

After that period, there was a rapid development of electronic computers, which
affected the research studies in the area. The use of computational methods in researches
has been encouraged and significantly increased. The integral equations’ method was then
applied for wave propagation (25), acoustics (26), elasticity (27), among many other areas.
It is worth mentioning the study of Kupradze (28), which discussed the application of a
functional equations’ method for potential problems. This approach can be considered the
origin of the fundamental solutions’ method (29).

The studies mentioned so far deal with indirect methods, i.e., with variables without
physical meaning. Rizzo (30) firstly presented a method to solve Somigiliana’s Identity
in a direct way. Two-dimensional problems of elasticity have been solved considering
variable with physical meaning, such as displacements and tractions. Rizzo utilised straight
elements with constant displacements and force approximations, which was applied to
study the correspondency between potential and elastic problems. In another study (31),
the sub-region technique was presented to properly represent nonhomogeneous problems,
which is applied in BEM formulations until today. Furthermore, this author also proposed
a formulation to deal with non-isotropic linear elasticity (32), which preceded a two-
dimensional formulation for materials with general anisotropy (33). In that period, there
was a significant increase in the use of the integral equation’s method, which has been
encouraged by the important studies recently published and the rise of computers.

In that same decade, Brebbia (34) demonstrated that the integral formulation
for elasticity problems can be achieved through the method of mean weighted residuals.
That made clear the common root between the integral formulations and other numerical
methods such as the FEM, which favored exploring couplings between such methods.
Brebbia was also one of the creators of the name “Boundary Element Method”, which was
firstly mentioned in 1977 in (35), (36) and (37). With that, the BEM gets relevance in
a context in which other numerical methods were previously dominant, as mentioned in
(9). Particularly, Zienkiewicz (9) was pioneer when introduced the coupled formulation
between the BEM and the FEM, which is recurrently mentioned in the literature for
several applications. This coupling technique takes advantages of the positive sides of
each numerical method and has been applied in numerous studies such as (38, 39, 40, 41),
among many others.

The fracture mechanics is an important field in which the BEM stands out. It
presents several advantages over other numerical methods for dealing with cracked bodies.
The fracture mechanics’ theories are based on the work of Griffith (42), which presented
an energy formulation for crack growth inside continuous bodies. In another study (43),
the Westergaard solutions for infinite media with a central crack were presented, which
would be further developed in (44) e (45). The first studies to apply the BEM in fracture
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mechanics problems were published in the 70’s (46, 47). At first, the formulations were
limited due to singularities present in the elements over the crack, which was overcome by
the Dual BEM formulation. This approach utilises a displacements integral equation for
one side of the crack and a tractions integral equation for the other side. Such approach
was firstly published by (14, 48) and rapidly became relevant in the literature (49, 50, 51).
Thus, the Dual BEM became a consolidated and effective tool to treat fracture mechanics
problems. Besides, the SET/EESC research group have produced several studies in this
field: (52, 53, 54) and (55).

Therefore, the BEM has received the attributes and characteristics that we know
today. It has also established itself as a well-consolidated tool to treat several problems,
such as: infinite media, fracture mechanics, soil mechanics, soil-structure interaction,
reinforced domains, among others.

2.2 Integral equations in elastostatics

Consider a linear-elastic Boundary Value Problem (BVP) with domain Ω and
contour Γ. The dynamic effects can be neglected. As demonstrated in the Appendix A, its
governing equation is as follows:

σij,j + bi = 0 (2.1)

The integral BEM equations can be obtained by the weighted residual technique
(56, 57). The error obtained in the approximate evaluation of Eq. 2.1 throughout the
domain Ω is weighted by the fundamental solution of displacements U∗

ki, as follows:
∫

Ω
(σij,j + bi)U∗

kidΩ = 0 (2.2)

Applying partial integration in the first term of Eq. 2.2, one writes:
∫

Γ
U∗

kiσijηjdΓ −
∫

Ω
U∗

ki,jσijdΩ +
∫

Ω
U∗

kibidΩ = 0 (2.3)

where ηj is the normal vector to Γ. Applying the Cauchy formula (Eq. A.3) and the
fundamental problem’s displacement-strain relations (Eq. A.25), one writes:

∫
Γ

U∗
kitidΓ −

∫
Ω

E∗
kijσijdΩ +

∫
Ω

U∗
kibidΩ = 0 (2.4)

in which E∗
kij is the fundamental solution of strains.

Equation 2.4 is the basis to obtain the BEM integral expressions. In order to achieve
the elastostatics integral form, the elastic constitutive relation (Eq. A.8) is applied herein,
which leads to:
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∫
Γ

U∗
kitidΓ −

∫
Γ

E∗
kijDijlmεlmdΩ +

∫
Ω

U∗
kibidΩ = 0 (2.5)

where Dijlm is the elastic constitutive tensor.

Then, applying the fundamental problem’s constitutive and displacement-strain
relations (Eq. A.24 and Eq. A.25), one writes:

∫
Γ

U∗
kitidΓ −

∫
Ω

P ∗
kijui,jdΩ +

∫
Ω

U∗
kibidΩ = 0 (2.6)

Partial integration can be applied into the second term of Eq. 2.6, which leads to:

∫
Γ

U∗
kitidΓ −

∫
Γ

P ∗
kijηjuidΓ +

∫
Ω

P ∗
kij,juidΩ +

∫
Ω

U∗
kibidΩ = 0 (2.7)

One applies the fundamental problem’s equilibrium equation and Cauchy formula
(Eq. A.20 and Eq. A.23) into Eq. 2.7, which results in:

∫
Γ

U∗
kitidΓ −

∫
Γ

T ∗
kiuidΓ +

∫
Ω

−∆(xf − xs)δkiuidΩ +
∫

Ω
U∗

kibidΩ = 0 (2.8)

Therefore, the Dirac function integration property can be considered, which elimi-
nates the domain integration term. Then:

uk (xs) =
∫

Γ
U∗

kitidΓ −
∫

Γ
T ∗

kiuidΓ +
∫

Ω
U∗

kibidΩ (2.9)

in which the free term uk (xs) is the source point displacement along the direction k.

Equation 2.9 is known as Somigliana’s identity, which represents a integral for-
mulation in displacements of the BVP. This expression calculates any internal points
displacements xs, being all fields at the boundary and body forces known.

To obtain stress and strain in internal points, Eq. 2.9 is differentiated with respect
to the source point coordinates, as follows:

∂uk (xs)
∂xs

j

+
∫

Γ

∂T ∗
ki

∂xs
j

uidΓ =
∫

Γ

∂U∗
ki

∂xs
j

tidΓ +
∫

Γ

∂U∗
ki

∂xs
j

bidΓ (2.10)

The fundamental solutions U∗
ki e T ∗

ki are functions of the vector r, as mentioned in
Appendix A. Therefore, the following chain rule must be applied:

∂U∗
ki

∂xs
j

= ∂U∗
ki

∂r
∂r
∂xs

j

(2.11)

what can be similarly written for T ∗
ki.

Considering the orientation definition of r, one writes:
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∂r
∂xs

j

= − ∂r
∂xf

j

(2.12)

Applying Eq. 2.12 into Eq. 2.11 for both displacements and tractions, one obtains:

∂Uki

∂xs
j

= −Uki,j

∂Tki

∂xs
j

= −Tki,j

(2.13)

The relations from Eq. 2.13 may now be applied into Eq. 2.10, which leads to:

uk,j (xs) −
∫

Γ
T ∗

ki,juidΓ = −
∫

Γ
U∗

ki,jtidΓ (2.14)

Applying the displacement-strain relation of the fundamental problem (Eq. A.25)
and the constitutive law (Eq. A.10) into Eq. 2.14, one writes the following:

σpq (xs) =
∫

Γ
D∗

ipqtidΓ −
∫

Γ
S∗

ipquidΓ +
∫

Ω
D∗

ipqbidΩ = 0 (2.15)

in which D∗
iqp e S∗

iqp are the hypersingular fundamental kernels. σpq are the Cauchy stresses.

Equation 2.15 is the integral formulation for stress in internal points, also known
as hypersingular equation for internal points. To obtain the hypersingular kernels, one
writes from the passage from Eq. 2.14 to Eq. 2.15 the following:

D∗
ipq = −P ∗

iqp (2.16)

where P ∗
iqp is the fundamental solution in stress (Eq. A.37).

S∗
iqp gathers the tractions terms from Eq. 2.14. Considering isotropic media, one

applies the constitutive and displacement-strain relations, which results in:

S∗
ipq = −2µ

[
T ∗

pi,q + T ∗
qi,p

2 + ν

1 − 2ν
T ∗

mi,mδpq

]
(2.17)

Applying Eq. A.37 and Eq. A.38 into Eq. 2.16 and Eq. 2.17, one writes the
hypersingular kernel’s expressions as follows:

D∗
ipq = 1

8π(1 − ν)r2 [(1 − 2ν) (r,iδpq + r,pδiq − r,qδpi) + 3r,ir,pr,q] (2.18)

S∗
ipq = µ

4π(1 − ν)r3


3∂r

∂η
[(1 − 2ν)δpqr,i + ν (δpir,q + δqir,p) − 5r,ir,pr,q] +

3ν (ηpr,qr,i + ηqr,pr,i) − (1 − 4ν)ηiδpq+
(1 − 2ν) (3ηir,pr,q + ηqδpi + ηpδqi)


(2.19)
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2.3 Boundary integral equations: limiting process

Equations 2.9 and 2.15 are only valid for the evaluation of mechanical fields at
internal points. The boundary integral equations can be obtained by placing xs at Γ. This
process consists of creating a fictitious domain Ωε around the point xs positioned at Γ. Ωε

is a semi-sphere with radius equals ε and boundary Γε+ . This process can be named as
limiting process and is illustrated in Fig. 4.

Figure 4 – Added fictitious boundary Γε+ for the limiting process.

Source: The author.

ε tends to zero in the limiting process, therefore both final domain (Ω + Ωε) and
boundary (Γ − Γε + Γ+

ε ) tend to the initial Ω and Γ, respectively. With that, the integral
equations can be evaluated at the boundary.

Applying the limiting process into the Somigliana’s identity (Eq. 2.9), one writes:

ui (xs) = lim
ε→0

∫
Γ−Γε+Γ+

ε

U∗
ijtjdΓ − lim

ε→0

∫
Γ−Γε+Γ+

ε

T ∗
ijujdΓ + lim

ε→0

∫
Ω+Ωε

T ∗
ijbjdΩ (2.20)

in which Γε is the intersection between Γ and Γε+ , as illustrated in Fig. 4.

The singularity orders of the fundamental solutions U∗
ij e T ∗

ij are, respectively,
O(1/r) and O(1/r2). O(1/r) is called weak singularity and O(1/r2) is a strong singularity,
in the 3D analysis. The weak singularities can be simply solved as improper integrals. The
strong singularities are solved by a regularisation process described in (51), which is based
on Taylor series expansions of the displacements uj around xs. Only the first term of the
expansion must be considered, thus:

uj

(
xf
) ∼= uj (xs) (2.21)

The second integration in Eq. 2.20 can then be rewritten as follows:

lim
ε→0

∫
Γ−Γε+Γ+

ε

TijujdΓ = lim
ε→0

∫
Γ−Γε

Tijuj

(
xf
)

dΓ+

lim
ε→0

∫
Γ+

ε

Tij

[
uj

(
xf
)

− uj (xs)
]

dΓ + uj (xs)
∫

Γ+
ε

TijdΓ
(2.22)
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The Cauchy Principal Value (CPV) evaluates the first integral term in the right
side of Eq. 2.22. The next term results in zero in the limit ε → 0, because of Hölder
continuity condition. The last term leads to the free term αij (xs) uj (xs), which can be
associated with the original free term from Eq. 2.9 as cij(xs) = δij + αij(xs).

The last integral term from Eq. 2.20 can be splitted into: an integration over Ω and
an integration over Ωε. The second one tends to zero in the limiting process, because the
integration domain dΩ has a higher order then the singularity of T ∗

ij. Thus, the boundary
integral equation in displacements is as follows:

cij (xs) uj (xs) + −
∫

Γ
T ∗

ijuj

(
xf
)

dΓ =
∫

Γ
U∗

ijtj

(
xf
)

dΓ +
∫

Ω
U∗

kibidΩ (2.23)

in which the symbol −
∫

denotes the CPV integral.

The free term in Eq. 2.23 results in cij(xs) = δij/2 if xs is positioned at smooth
boundaries. Otherwise, it can be calculated by numerical strategies. More details about
this term can be found in (58). This work handles only source points at smooth boundaries,
therefore collocation strategies are necessary to deal with corners in the geometry. These
strategies are covered ahead in this chapter. Nevertheless, Eq. 2.23 is known as displacement
boundary integral equation (DBIE) or singular form of the BEM.

Applying the limiting process into expression for internal stresses (Eq. 2.15), one
writes:

σij (xs) = lim
ε→0

∫
Γ−Γε+Γ+

ε

D∗
kijtkdΓ − lim

ε→0

∫
Γ−Γε+Γ+

ε

S∗
kijukdΓ + lim

ε→0

∫
Ω+Ωε

D∗
ipqbidΩ = 0 (2.24)

The first integral term in the right side of Eq. 2.24 presents a strong singularity
order. Once again, Taylor series are applied to solve this singularity, considering only the
first term of the expansion of tj around xs:

tj

(
xf
) ∼= tj (xs) (2.25)

The first integration in Eq. 2.24 can then be rewritten as follows:

lim
ε→0

∫
Γ−Γε+Γ+

ε

D∗
kijtkdΓ = lim

ε→0

∫
Γ−Γε

D∗
kijtk

(
xf
)

dΓ+

lim
ε→0

∫
Γ+

ε

D∗
kij

[
tk

(
xf
)

− tk (xs)
]

dΓ + tk (xs)
∫

Γ+
ε

D∗
kijdΓ

(2.26)

The CPV evaluates the first integral term in the right side of Eq. 2.26. The next
term results in zero in the limit ε → 0, taking into account the Hölder continuity condition.
The last term results in a additional free term βij(xs)uj(xs). Thus, Eq. 2.26 can be
rewritten as follows:
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lim
ε→0

∫
Γ−Γε+Γ+

ε

D∗
kijtk

(
xf
)

dΓ = −
∫

Γ−Γε

D∗
kijtk

(
xf
)

dΓ + βkij (xs) tk (xs) (2.27)

The second term in the right side of Eq. 2.24 presents a singularity order O(1/r3),
which is called hypersingularity. Its regularization can be achieved by expanding uk around
xs and considering the first and second terms of the Taylor series, as follows:

uk

(
xf
) ∼= uk (xs) + uk,m (xs) (2.28)

Thus:

lim
ε→0

∫
Γ−Γε+Γ+

ε

S∗
kijukdΓ = lim

ε→0

∫
Γ−Γε

S∗
kijuk

(
xf
)

dΓ+

lim
ε→0

∫
Γ+

ε

S∗
kij

[
uk

(
xf
)

− uk (xs) − uk,m (xs)
(
xf

m − xs
m

)]
dΓ+

uk (xs) lim
ε→0

∫
Γ+

ε

S∗
kijdΓ + uk,m (xs)

∫
Γ+

ε

S∗
kij

(
xf

m − xs
m

)
dΓ

(2.29)

The second term in the right side of Eq. 2.29 results in zero in the limit ε → 0,
from the Hölder continuity condition. The first and third terms result in equally opposite
singularities (59, 60), which allows considering the Hadamard finite-part integral (HFP)
as follows:

lim
ε→0

∫
Γ−Γε

Skijuk

(
xf
)

dΓ + uk (xs) lim
ε→0

∫
Γ+

ε

S∗
kijdΓ =

lim
ε→0

[∫
Γ−Γε

S∗
kijuk (xs) dΓ + uk

(
xf
) bkij (xs)

ε

]
= −−
∫

Γ
S∗

kijuk

(
xf
)

dΓ
(2.30)

in which the symbol −−
∫

denotes the HFP integral.

The last integral term in Eq. 2.29 results in a free term γkijm (xs) uk,m (xs), in
which γkijm is constant. This term is proportional to the displacements derivatives. (61)
has demonstrated that adding this term to βij(xs)uj(xs) from Eq. 2.27 results in the
following:

βkij (xs) tk (xs) + γkijm (xs) uk,m (xs) = 1
2σij (xs) (2.31)

in which σij(xs) is the Cauchy stress tensor. This expression is valid for xs positioned at
smooth boundaries (61).

The analysis of the domain integration term from Eq. 2.24 is similar to the analysis
above-presented for the domain term in Eq. 2.20. Therefore, applying Eqs. 2.27, 2.30, 2.31
into Eq. 2.24, one writes:

1
2σij (xs) + −−

∫
Γ

S∗
kijuk

(
xf
)

dΓ = −
∫

Γ
D∗

kijpk

(
xf
)

dΓ +
∫

Γ
D∗

kijbkdΓ (2.32)
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The Cauchy formula (Eq. A.3) can be applied into Eq. 2.32, which can then be
rewritten as follows:

1
2tj (xs) + ηi (xs) −−

∫
Γ

S∗
kijuk

(
xf
)

dΓ =

ηi (xs) −
∫

Γ
D∗

kijtk

(
xf
)

dΓ + ηi (xs)
∫

Γ
D∗

kijbkdΓ
(2.33)

where ηi (xs) are the components of the normal vector at xs. This vector is orthogonal
to the boundary and must be pointed to the outside of Ω. This expression is known as
tractions boundary integral equation (TBIE) or hypersingular form of the BEM.

It is worth mentioning that this work handles the regular integrals, as well as the
CPV and HFP integrals through numerical integration. More details about the numerical
schemes can be found in (62).

2.4 Boundary approximations via polynomials

The geometry and the mechanical fields (displacements and tractions) are numeri-
cally approximated at the boundary Γ. For that, Γ is subdivided into two-dimensional
boundary elements, which may have two distinct approximations: via Lagrange polyno-
mials or NURBS. The first type of approximation handled in this study is through the
Lagrange polynomials. In this case, polynomial functions Mi (ξ1,ξ2) are defined over a
dimensionless parametric coordinates system ξ1 x ξ2, which is also called Gaussian space
since −1 ≤ ξ1 ≤ 1 , − 1 ≤ ξ2 ≤ 1. The polynomial functions describe the geometry of Γ
through nodal interpolation of the geometric nodes coordinates. Thus:

xi (ξ1,ξ2) = Mj (ξ1,ξ2) Xj
i (2.34)

where ξ1 and ξ2 are the dimensionless parametric coordinates of the xi point, inside its
respective element. Xj

i are the nodal coordinates in the global coordinate system of the
same element.

Lagrangian isoparametric elements, in general, present the same approximation
functions for both geometry and mechanical fields (displacements and tractions). However,
defining different approximation functions for each purpose might be necessary due to
discontinuities of boundary conditions or geometry. It is worth stressing that the boundary
integral equations usually require a C1 level of continuity at the source points. Therefore,
different functions Nα (ξ1,ξ2), which are also Lagrange polynomials, approximate mechanical
fields over the boundary elements. These functions interpolate displacements and tractions
from their values at the collocation points, which are defined based on the geometric nodes.
The approximation of displacements ui and tractions ti can be defined in a similar form as
Eq. 2.34, as follows:
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ui (ξ1,ξ2) = Nα (ξ1,ξ2) uα
i

ti (ξ1,ξ2) = Nα (ξ1,ξ2) tα
i

(2.35)

in which uα
i are the displacements at the collocation points α in the direction i, which is

analogous for the tractions tα
i .

2.4.1 Geometry approximation at the boundary

The interpolation functions Mi (ξ1,ξ2) for the geometry, also called shape functions,
are Lagrange polynomials that satisfy portion of unity (PU). This work deals with four
different Lagrangian element types: linear quadrilateral (4-node) and triangular (3-node),
quadratic quadrilateral (9-node) and triangular (6-node). Figure 5 illustrates the four
types of elements in the Gaussian space.

Figure 5 – Lagrangian elements: linear triangular (3-node), quadratic triangular (6-node), linear
quadrilateral (4-node) and quadratic quadrilateral (9-node)

Source: The author.

The Lagrange polynomials are expressed as follows:

Mi (ξ1,ξ2) = ci
1 + ci

2ξ1 + ci
3ξ2 for the 3-node element (2.36)

Mi (ξ1,ξ2) = ci
1 + ci

2ξ1 + ci
3ξ2 + ci

4ξ1ξ2 + ci
5ξ

2
1 + ci

6ξ
2
2 for the 6-node element (2.37)

Mi (ξ1,ξ2) = ci
1 + ci

2ξ1 + ci
3ξ2 + ci

4ξ1ξ2 for the 4-node element (2.38)
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Mi (ξ1,ξ2) = ci
1 + ci

2ξ1 + ci
3ξ2 + ci

4ξ1ξ2 + ci
5ξ

2
1 + ci

6ξ
2
2 + ci

7ξ
2
1ξ2

+ci
8ξ

2
1ξ2 + ci

9ξ
2
1ξ2

2 for the 9-node element
(2.39)

The parameters ci
k can be obtained by applying the Kronecker delta property of

the shape functions at each node i:

Mi

(
ξj

1,ξj
2

)
=
1, if i = j

0, if i ̸= j
(2.40)

in which i and j assume the values from 1 to n, being n the number of nodes in the
element. Then, Mi is the shape function related to the node i.

(
ξj

1,ξj
2

)
are the parametric

coordinates of a node j.

The geometry approximation for a given element k, Eq. 2.34, can then be written
algebraically as follows:

x (ξ) = Mk (ξ) xk (2.41)

where xk =
{
X1

1 X1
2 X1

3 ... Xn
1 Xn

2 Xn
3

}⊺
are the nodal coordinates (in the global

system) of the nodes 1,2,...,n contained in the element k. x(ξ) =
{
x1 x2 x3

}⊺
is the

vector of global coordinates of a given point inside the element k of parametric coordinates
ξ =

{
ξ1 ξ2

}⊺
. Mk (ξ) contains the shape functions of each node i of the element k

calculated at ξ, as follows:

Mk (ξ) =


M1 (ξ) 0 0 Mn (ξ) 0 0

0 M1 (ξ) 0 · · · 0 Mn (ξ) 0
0 0 M1 (ξ) 0 0 Mn (ξ)

 (2.42)

In order to integrate the BEM kernels over the boundary elements, it is necessary
to find the relation between the differential area elements from the global space and
the Gaussian space. With that, the integrations may be performed numerically over the
Gaussian space, which allows for applying Gaussian integration techniques. Then, for
a give point over the surface Γe which global coordinates are x(ξ), the differential area
element is written as a function of o the parametric coordinates as follows:

dΓe =
∣∣∣∣∣ ∂x (ξ)

∂ξ1
× ∂x (ξ)

∂ξ2

∣∣∣∣∣ dξ1dξ2 = |jac (ξ)| dξ1dξ2 (2.43)

where jac(ξ) is the Jacobian vector defined as the result of the above-presented vector
product, which can be written as:
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jac(ξ) =



∂x2 (ξ)
∂ξ1

∂x3 (ξ)
∂ξ2

− ∂x3 (ξ)
∂ξ1

∂x2 (ξ)
∂ξ2

∂x3 (ξ)
∂ξ1

∂x1 (ξ)
∂ξ2

− ∂x1 (ξ)
∂ξ1

∂x3 (ξ)
∂ξ2

∂x1 (ξ)
∂ξ1

∂x2 (ξ)
∂ξ2

− ∂x1 (ξ)
∂ξ2

∂x2 (ξ)
∂ξ1


(2.44)

in which the partial derivatives of xi with respect to ξi are obtained from differentiating
Eq. 2.41 with respect to ξ. It is possible to notice that the Jacobian expression is in fact
a vector product of two tangent vectors. Thus, the Jacobian vector is a normal outward
vector of the surface Γe at the point x(ξ). Consequently, a unitary normal outward vector
ηi(ξ) can be obtained through:

ηi(ξ) = jaci(ξ)
|jac(ξ)| (2.45)

For the adequate compatibility of the terms from the TBIE (Eq. 2.33), a normal
outward matrix N(ξ) for the point ξ is defined as follows:

N (ξ) =


η1(ξ) 0 0 η3(ξ) 0 0

0 η1(ξ) 0 · · · 0 η3(ξ) 0
0 0 η1(ξ) 0 0 η3(ξ)

 (2.46)

2.4.2 Mechanical fields approximation at the boundary

The interpolation functions Nα(ξ1,ξ2) adopted to represent the mechanical fields
are also Lagrange polynomials. However, their coefficients ci

k are obtained by applying Eq.
2.40 to the collocation points instead of the geometric nodes. In this case, the collocation
points may differ from the geometric nodes by considering the possibility of discontinuous
elements, as illustrated in Fig. 6.

In continuous elements, all collocation points coincide with the geometric nodes,
thus Nα(ξ1,ξ2) = Mi(ξ1,ξ2). Nevertheless, discontinuous elements are applied in the case of
geometrical or boundary conditions discontinuities between two adjacent elements, which
requires moving the collocation points away from the discontinuous edge. Then, those
collocation points are positioned inside the element, as illustrated in Fig. 6(b) and 6(c),
which guarantees the continuity requirement of the boundary integral equations. Therefore,
edge-discontinuous elements are applied when one or more edges of the elements are
discontinuous, whereas fully discontinuous elements represent the case in which all edges
are discontinuous.

It is worth mentioning the distance that collocation points are moved away from the
discontinuous edge, which have been tested in previous studies: (62, 63) for 3D formulations
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Figure 6 – Continuous elements (a), edge-discontinuous elements (b) and fully discontinuous
elements (c)

(a) (b)

(c)
Source: The author.

and (64, 65, 66) for 2D formulations. Besides, the distances illustrated in Fig. 6 follow the
ranges for discontinuous elements suggested by Aliabadi (58).

Then, the coefficients of Nα(ξ1,ξ2) are defined as follows:

Nα

(
ξj

1,ξj
2

)
=
1, se α = j

0, se α ̸= j
(2.47)

in which α and j assume the values of collocation points from 1 to n, being n the total
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number of collocation points at the current element.

Having the functions Nα(ξ1,ξ2) defined, the mechanical fields approximation (Eq.
2.35) can be algebraically written for a given element α as follows:

u (ξ) = Nα (ξ) uα

t (ξ) = Nα (ξ) tα
(2.48)

where uα =
{
u1

1 u1
2 u1

3 ... un
1 un

2 un
3

}⊺
are the displacements at each one of the

collocation points 1,2,...,n of the element α. u (ξ) =
{
u1 u2 u3

}⊺
is the vector of

displacements at a given point over the surface Γα of the element, with parametric
coordinates ξ =

{
ξ1 ξ2

}⊺
. The same definitions are valid for tractions t(ξ) and tα. Nα(ξ)

contains the interpolation functions of the element α calculated at ξ and is organized
similarly to Eq. 2.42.

2.5 Boundary approximations via NURBS

The second type of approximation handled in this study is via NURBS, which
leads to the IGABEM formulation. This section presents the NURBS formulation and
further details about this matter can be found in (16, 62).

NURBS functions can be obtained from the projection of B-splines. The uni-
variate B-splines are piecewise parametric recursive functions defined over a knot vector
U = {u1,u2,...,uk} containing k values of the independent parameter u (called knots).
It is worth mentioning that, whereas the parametric space is a Gaussian space in the
Lagrangian BEM, in the IGABEM the parametric space regards the knot vector space,
which is not Gaussian. Then, the knot vector defines the basis functions for the B-spline.
The curve may be represented by n geometric parameters called control points and basis
functions Ni,p(u), as follows:

Cj(u) =
n∑

i=1
Ni,p(u)P i

j (2.49)

where Cj represents the position (considering a global coordinate system) of the point
with parametric coordinate u. P i

j is the set that contains the position j of the control
point i, where n is the total of control points and p is the degree of the B-spline curve. It
is worth mentioning that the size of the knot vector is t = n + p + 1 for open knot vectors,
which have the first and last knots with a multiplicity p + 1 and enforce an interpolatory
behavior of the curve at the first and last control points. This study handles only open
knot vectors because its use is common in CAD packages (67).

The basis functions Ni,p(u) can be defined recursively from the Cox-de-Boor formula
(68, 69):
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Ni,p(u) = u − ui

ui+p − ui

Ni,p−1(u) + ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u) (2.50)

where the zero order basis functions are:

Ni,0(u) =

1 ui ≤ u < ui+1

0 otherwise
(2.51)

The derivative of the B-spline curve is necessary to calculate tangent and normal
outward vectors. Then, the basis function’s derivative of order d is also recursive and it is
defined as follows:

N
(d)
i,p = p

 N
(d−1)
i,p−1

ui+p − ui

−
N

(d−1)
i+1,p−1

ui+p+1 − ui+1

 (2.52)

The B-splines basis functions have interesting mathematical properties (70), mainly
regarding continuity. Ni,p(u) are all C∞ at points positioned inside knot spans (ui < u ≤
ui+1) and are Cp−k continuous at the knots (u = ui), in which k is the multiplicity of the
knot value ui. Besides, the B-spline basis functions constitute a partition of unity, i.e.,∑n

i=1 Ni,p(u) = 1, ∀u and are all positive, i.e., Ni,p ≥ 0.

It is worth stressing that it is usual to obtain values such as 0/0 when evaluating
the basis functions and their derivatives (Equation 2.50 and 2.52). In these cases, it is
adopted 0/0 = 0 to proceed the analysis (16).

NURBS curves are defined from open B-Spline curves with the addition of an
extra parameter for each control point i, called weight wi. Then, the parametric curve is
obtained from a ratio of two basis function, which is weighted by wi, as follows:

Cj(u) =

n∑
i=1

Ni,p(u)wiP
i
j

n∑
k=1

Nk,p(u)wk

=
n∑

i=1
Ri,p(u)P i

j (2.53)

in which Ri,p are the rational basis functions defined as:

Ri,p(u) = Ni,p(u)wi
n∑

k=1
Nk,p(u)wk

(2.54)

The rational basis function’s derivatives of order d are recursively calculated as:

R
(d)
i,p (u) =

wiN
(d)
i,p −

d∑
l=1

d

l

 n∑
j=1

N
(l)
j,pwjR

(d−l)
i,p (u)


n∑

j=1
Nj,p(u)wj

(2.55)
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For the 3D IGABEM, two-dimensional surfaces must be represented through
NURBS. Then, regular bi-variate NURBS surfaces S(ξ,η) can be obtained by the tensor
product of two uni-variate NURBS curves of knot vectors Ξ = {ξ1,...,ξn+p+1} and N =
{η1,...,ηm+q+1}, where p and q are the respective polynomial orders. In this case, it is
defined a net of control points Bij, i = 1,...,n and j = 1,...,m, which results in n ∗ m

control points with respective weights wij. Therefore, one writes the representation of a
regular NURBS surface as follows:

Sk(ξ,η) =

n∑
α=1

m∑
β=1

Nα,p(ξ)Mβ,q(η)wαβBαβ
k

n∑
α=1

m∑
β=1

Nα,p(ξ)Mβ,q(η)wαβ

=
n∑

i=1

m∑
j=1

Rij,pq(ξ,η)Bij
k (2.56)

in which Sk(ξ,η) is the position of the point with parametric coordinates ξ and η. Nα,p

and Mβ,q are the uni-variate basis functions of the directions ξ and η, respectively, and
are given by Eq. 2.50. The bi-variate rational basis functions is expressed as follows:

Rij,pq(ξ,η) = Ni,p(ξ)Mj,q(η)wij
n∑

i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)wij

(2.57)

The rational basis functions also approximate displacements ue(ξ,η) and tractions
te(ξ,η) in a NURBS surface e as follows:

ue(ξ,η) =
n∑

i=1

m∑
j=1

Re
ij,pq(ξ,η)ûe

inc(i,j,e)

te(ξ,η) =
n∑

i=1

m∑
j=1

Re
ij,pq(ξ,η)̂te

inc(i,j,e)

(2.58)

where ûinc(i,j,e) and t̂inc(i,j,e) are the variables for the displacements and tractions approx-
imations, respectively, at each one of the control points denoted by inc(i,j,e). Unlike
Lagrangian approximations, these variables do not have physical meaning because the
rational basis functions do not satisfy the Kronecker delta property at the control points.
The function inc() refers to the connectivity of the NURBS regarding the global and local
numbering of the control points mesh. This expression can be written in the algebraic
form as follows:

u(x) = Nαûα

t(x) = Nαt̂α
(2.59)

in which u(x) and t(x) are, respectively, the displacements and tractions of a given point
x = x(ξ) = x(ξ,η) with parametric coordinates ξ and η inside the NURBS α. Nα represents
the bi-variate rational basis functions Rα

ij,pq, defined by Eq. 2.57. ûα and t̂α are vectors
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that contain ûinc(i,j,e) and t̂inc(i,j,e), respectively, of all of the control points present in α. It
is worth mentioning that this expression replaces Eq. 2.48 from the Lagrangian approach.

The piecewise parametric behaviour of the B-Splines is also observed in the NURBS
curves and surfaces. In fact, NURBS surfaces present two-dimensional piecewise divisions
[ξi, . . . ,ξi+p+1] × [ηj, . . . ,ηj+q+1], which are called knot spans. Figure 7 illustrates the
piecewise characteristic of a NURBS surface, highlighting the region correspondent to
a knot span. The knot spans represent the domain for integration in the IGABEM
formulation, which can be understood as similar to the elements in the Lagrangian BEM.
The continuity properties of the B-Splines are still valid for NURBS surfaces, therefore
C∞ is guaranteed inside the knot span.

Figure 7 – Illustration of a NURBS surface in space, highlighting the region correspondent to a
knot span.

Source: (8), adapted.

Thus, the parametric local space inside a knot span can be converted into a Gaussian
space [−1,1] × [−1,1] for the integration, also called parent space, as follows:

ξ = (ξi+p+1 − ξi)ξ̂ + (ξi+p+1 + ξi)
2

η = (ηi+q+1 − ηi)η̂ + (ηi+q+1 + ηi)
2

(2.60)

in which (ξ̂,η̂) ∈ [−1,1] × [−1,1] are the parent space coordinates and (ξ,η) ∈ [ξi,ξi+p+1] ×
[ηi,ηi+q+1] are the parametric coordinates. Figure 8 illustrates the transformation between
the parametric space (of the knot vectors) and the parent space (Gaussian) for a given
NURBS surface. It is worth stressing that this transformation occurs locally inside a knot
span.

This transformation allows for using the same standard Gauss-Legendre quadrature
from the Lagrangian BEM for the numerical integrations herein. The additional coordinate
transformation introduces a new Jacobian Ĵ , in addition to the traditional Jacobian
presented in Eq. 2.44. Ĵ can be written as:
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Figure 8 – Example of transformation between parametric space and parent space.

Source: (8).

Ĵ = ∂S
∂ξ

(ξi+p+1 − ξi)
2 + ∂S

∂η

(ηi+q+1 − ηi)
2 (2.61)

It is worth mentioning that the multiplicity of knots inside the knot vectors may
lead to some knot spans with initial and final knots with the same value. In this case, the
knot span is called trivial and does not need to be part of the integration. For instance, Fig.
9 illustrates how a NURBS surface with Ξ = [0,0,0,1/2,1,1,1] and N = [0,0,0,1/3,2/3,1,1,1]
presents 36 trivial knot spans and only 6 nontrivial ones due to the multiplicity of the
first and last knots in the knot vectors.

Figure 9 – Illustration of trivial and non-trivial knot spans in a given NURBS surface. Parametric
space.

Source: (8).

During the integration process, the equations presented for the Lagrangian BEM
(Eq. 2.42 to Eq. 2.46) are still valid herein, considering the adequate approximation
functions. Since the integrations are carried out through the same Gaussian scheme for
numerical integration, the techniques presented in Sec. 2.3 are properly applied for both
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the Lagrangian BEM and the IGABEM. More details about the integration process in the
3D IGABEM are available in the literature (71, 67).

2.5.1 Collocation Strategy

With the discretization of Γ into NURBS surfaces, the collocation points (which
are applied in Eq. 2.23 and Eq. 2.33 as source points) must be defined. Unlike Lagrangian
formulations, the collocation points differ from the control points that represent the NURBS
in the IGA formulation. This happens because the control points are not necessarily
positioned at the boundary, thus the integral equations and elasticity relations may not
apply to them. Because of that, a collocation strategy based on the Greville abscissae (72)
is adopted herein. In this technique, the collocation points parametric coordinates (ξ0

i ,η0
i )

are defined from the original knot vectors Ξ = {ξ1,...,ξn+p+1} and N = {η1,...,ηm+q+1}, as
follows:

ξ0
i = ξi+1 + ξi+1 + · · · + ξi+p

p
, i = 1,2, . . . ,n

η0
j = ηj+1 + ηj+1 + · · · + ηj+q

q
, j = 1,2, . . . ,m

(2.62)

This technique requires a slight adaptation to guarantee that all collocation points
are positioned at smooth boundaries, which means they cannot be at the extremities of
the NURBS surfaces. This adaptation is based on the concept of discontinuous NURBS
surfaces (67) and it produces updated knot vectors Ξ∗ and N∗ that replace the original
ones Ξ and N. Figure 10 illustrates this technique applied for a NURBS surface with
original knot vectors Ξ = [0,0,0,1,2,3,4,5,5,5] and N = [0,0,0,1,2,3,4,5,5,5].

Figure 10 – Example of discontinuous NURBS surfaces: (a) original knot vectors and (b) updated
knot vectors.

Source: (67), adapted.

For a given knot span [ξa,ξb] × [ηa,ηb], the updated knots are obtained as follows:
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ξ∗
a =

ξa + 0.1(ξb − ξa) if multiplicity of ξa is p

ξa otherwise

ξ∗
b =

ξb − 0.1(ξb − ξa) if multiplicity of ξb is p

ξb otherwise

(2.63)

η∗
a =

ηa + 0.1(ηb − ηa) if multiplicity of ηa is q

ηa otherwise

η∗
b =

ηb − 0.1(ηb − ηa) if multiplicity of ηb is q

ηb otherwise

(2.64)

Therefore, the collocation strategy guarantees the continuity C1 at all collocation
points, in addition to produce a number of collocation points always equal to the number
of control points.

2.6 The BEM algebraic equations

After applying the numerical technique and discretising Γ into Ne NURBS surfaces
(or Lagrangian elements), the continuous boundary integral equations can be written in
an algebraic numerical form. The DBIE (Eq. 2.23) and the TBIE (Eq. 2.33), respectively,
are evaluated considering each collocation point as the source point xs as follows:

C (xs) Nᾱ(xs)ûᾱ
inc(xs) +

Ne∑
α=1

∫
Γα

T (x (ξ) ,xs) Nα (ξ) |jacα (ξ)| Ĵdξ̂dη̂ ûα

=
Ne∑

α=1

∫
Γα

U (x (ξ) ,xs) Nα (ξ) |jacα (ξ)| Ĵdξ̂dη̂ t̂α +
∫

Ω
U∗

kibidΩ

(2.65)
1
2Nᾱ(xs)t̂ᾱ

inc(xs) + N (xs)
Ne∑

α=1

∫
Γα

S (x (ξ) ,xs) Nα (ξ) |jacα (ξ)| Ĵdξ̂dη̂ ûα

= N (xs)
Ne∑

α=1

∫
Γα

D (x (ξ) ,xs) Nα (ξ) |jacα (ξ)| Ĵdξ̂dη̂ t̂α + ηi (xs)
∫

Ω
D∗

kijbkdΩ

(2.66)

in which U(x(ξ),xs) and T(x(ξ),xs) contain the fundamental solutions Uij and Tij,
respectively, evaluated at the field point x(ξ) considering the source point xs. ᾱ is the
NURBS surface (or Lagrangian element) that contains xs. The index inc(xs) represents
the variables related to the nodes of ᾱ. The field point x(ξ) is defined by the parametric
coordinates, being ξ = (ξ,η) for NURBS or ξ = (ξ1,ξ2) for Lagrangian elements. C (xs)
represents the free term, which is equal δij/2 for source points positioned at smooth
boundaries. Γα denotes the surface of α, which is defined over the parametric space. N (xs)
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contains the components of the normal outward vector at the source point. S(x(ξ),xs)
and D(x(ξ),xs) contains the fundamental solutions Skij and Dkij, which are arranged as
follows:

S (x (ξ) ,xs) = S(j+3i−3)k (x (ξ) ,xs)
D (x (ξ) ,xs) = D(j+3i−3)k (x (ξ) ,xs)

(2.67)

It is worth stressing that the domain terms in both Eq. 2.65 and Eq. 2.66 cannot
be algebraically written yet, because they have not been numerically treated so far. This
term will be used in the next chapter to write the compatibility with the reinforcements.

The BEM algebraic equations must be evaluated for all collocation points, con-
sidering each one as the source point in Eq. 2.65 and Eq. 2.66. Each collocation point
produces a DBIE and a TBIE algebraic equation. Thus, when one considers all collocation
points in the mesh, systems of algebraic equations can be written as follows:

CiNαûi +
Ne∑

α=1

∫
Γα

T
(
x (ξ) ,xi

)
Nα (ξ) |jacα (ξ)| Ĵdξ̂dη̂ ûj

=
Ne∑

α=1

∫
Γα

U
(
x (ξ) ,xi

)
Nα (ξ) |jacα (ξ)| Ĵdξ̂dη̂ t̂j +

∫
Ω

U∗
kibidΩ

(2.68)

1
2Nαt̂i + Ni

Ne∑
α=1

∫
Γα

S
(
x (ξ) ,xi

)
Nα (ξ) |jacα (ξ)| Ĵdξ̂dη̂ ûj

= Ni

Ne∑
α=1

∫
Γα

D
(
x (ξ) ,xi

)
Nα (ξ) |jacα (ξ)| Ĵdξ̂dη̂ t̂j + ηi (xs)

∫
Ω

D∗
kijbkdΩ

(2.69)

in which ûj and t̂j contain the control point’s parameters for displacements and tractions
as uj =

{
u1 ... uα ... uNe

}⊺
and tj =

{
t1 ... tα ... tNe

}
. It is worth stressing that

in the Lagrangian BEM, the control points coincide with the collocation points and the
above-mentioned parameters are nodal displacements and tractions.

The terms related to U(x(ξ),xs) and T(x(ξ),xs) in Eq. 2.68 can be denoted by H̄
and G, respectively. As well as H′ and Ḡ′, which denote the terms related to S(x(ξ),xs)
and D(x(ξ),xs) in Eq. 2.69. Besides, Nα can be incorporated to the free term matrix Ci.
Therefore, those expressions can be rewritten as follows:

Ciûi + H̄ijûj = Gij t̂j +
∫

Ω
U∗

kibidΩ (2.70)

C̄it̂i + H′
ijûj = Ḡ′

ij t̂j + ηi (xs)
∫

Γ
D∗

kijbkdΓ (2.71)

where C̄i contains the TBIE free term for each source point i.

The free term from Eq. 2.70 can be added to H̄ as follows:
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Hij =
 H̄ij if i ̸= j

H̄ij + Ci if i = j
(2.72)

The free term from Eq. 2.71 can be added to Ḡ′ as follows:

G′
ij =

 Ḡ′
ij if i ̸= j

Ḡ′
ij − C̄i if i = j

(2.73)

Equations 2.72 and 2.70 can now be applied into Eq. 2.73 and Eq. 2.71. Therefore,
both DBIE and TBIE result in algebraic systems of equations, which can be written as
follows:

Hû = Gt̂ + b (2.74)

in which û and t̂ contain all variables for displacements and tractions at the control points,
respectively. H and G represent the global matrices resulting from Hij and Gij for the
DBIE, or H′

ij and G′
ij for the TBIE. b represent the vector resulting from the domain

term, which depends on the chosen equation as follows:

b =


∫

Ω
U∗

kibidΩ for DBIE

ηi (xs)
∫

Ω
D∗

kijbkdΩ for TBIE
(2.75)

It is worth mentioning that Eq. 2.74 results in a square system (equal number of
lines and columns) only if the number of collocation points and control points are the same.
In the IGABEM, this feature is guaranteed by the collocation strategy adopted herein
and previously presented in Sec. 2.5.1. Whereas in the Lagrangian BEM, such feature is
naturally respected.

The algebraic system from Eq. 2.74 does not consider the boundary conditions so
far. Applying the boundary conditions in the IGABEM is not as straightforward as in the
Lagrangian BEM, since the variables in the system of Eq. 2.74 does not have physical
meaning. Thus, the inverse of Eq. 2.58 must be computed to the NURBS ē in which
displacements or tractions are imposed, which makes possible to identify the known values
ûē and t̂ē. It is worth mentioning that this process is trivial when one applies constant and
uniform boundary conditions, since all of the ûē or ûē receive the same value corresponding
to the applied displacement or traction.

With that, the vectors û and t̂ are divided into their unknown and known portions
û =

{
û ûē

}⊺
and t̂ =

{
t̂ t̂ē

}⊺
, in which û and t̂ are now the unknown values. Hence,

Eq. 2.74 can be rewritten as follows:

[
H H̄

] û
ûē

 =
[
G Ḡ

] t̂
t̂ē

+ {b} (2.76)
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Then, the known values are moved to the right-hand side of the equation and the
unknown ones go to the left-hand side, which leads to:

[
H −G

]û
t̂

 =
[
−H̄ Ḡ

]ûē

t̂ē

+ {b} (2.77)

in which all values in the right-hand can be written in a single free term f . The matrix
resulting from the left-hand side of this expression is invertible, thus the final algebraic
system can be summarised as:

Ax̂ = f (2.78)

where x̂ contains all unknown boundary values, as x̂ =
{
û t̂

}⊺
. Therefore, the solution

of Eq. 2.78 provides all the boundary variables for displacements and tractions. It is worth
stressing that such variables does not have physical meaning in the IGABEM, whereas
the values of displacements and tractions at the boundary can be obtained by Eq. 2.58.

2.7 Sub-region technique

The BEM sub-region technique (31) is applied herein for the solution of nonho-
mogeneous structural systems. In this technique, different homogeneous sub-domains are
interconnected by interfaces, which results in the mechanical representation of a nonho-
mogeneous structure. The key-point is dealing with the interfaces, because each BEM
integral equation must be applied for the boundary elements of a homogeneous domain.
Therefore, pairs or elements with coincident positions are defined over the interfaces. So,
each element of the pair describes the boundary of a different homogeneous domain, as
illustrated in Fig. 11.

Figure 11 – 2D illustration of the sub-region technique: discretising a nonhomogeneous domain
(a) into homogeneous sub-domains (b).

Source: (65), adapted.
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The BEM formulation (Eq. 2.74) is applied for each homogeneous sub-domain (k)
separately, as follows:

Hkûk = Gkt̂k + bk (2.79)

Displacements and tractions over the interfaces must be coupled. For that, Eq. 2.58
is considered to describe displacements and tractions. However, as long as the discretization
(NURBS surfaces or Lagrangian elements) of each interface are identical, i.e., have the
same rational basis functions Rij,pq and control points Bij or the same approximation
polynomial functions Mi(ξ1,ξ2) and collocation points, the coupling relations may consider
directly the variables û and t̂. Such variables are truly displacements and tractions in
the Lagrangian BEM and are NURBS parameters in the IGABEM. Thus, for a interface
between sub-domains k1 and k2, one writes the displacements compatibility and equilibrium
of tractions as follows:

ûI
k1 = ûI

k2

t̂I
k1 + t̂I

k2 = 0
(2.80)

in which the index I represents the boundary portion at the interface.

A global system of equations can be written by coupling the expressions from Eq.
2.79 of each sub-domain k. After applying the relations from Eq. 2.80, one writes the
following system:

HB
k1 HI

k1 0
0 HI

k2 HB
k2




ûB
k1

ûI
k1

ûB
k2

 =
GB

k1 GI
k1 0

0 GI
k2 GB

k2




ˆ̂tB
k1

ˆ̂tI
k1

ˆ̂tB
k2

+ bk1 + bk2 (2.81)

in which the index B represents the external boundary portions (excluding the interfaces).
Despite this expression being written for two sub-domains k1 and k2, one can consider any
number of sub-domains in a similar form.

It is worth stressing that the final expression of the sub-region technique (Eq. 2.81)
can be algebraically written in the same form of Eq. 2.74.

2.8 Dual Boundary Element Method

The Dual BEM (DBEM) is a strategy to represent physical discontinuities (cracks)
in solids via the BEM. The crack is always composed by two faces that are at the same
position when the crack is closed (in the beginning of the analysis). Consequently, the
discretization of both faces via the traditional BEM represents the crack collocation points
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as internal points, since each face would be represented by the same equation. An elegant
approach to overcome this issue is using different integral equations for each crack face:
the DBIE and the TBIE. Such strategy was firstly proposed by Hong and Chen (14) and
it is known as Dual BEM.

Let Γ∗
f and Γ−

f denote each one of the crack faces, as illustrated in Fig. 12. The
DBIE (Eq. 2.23) is applied to the collocation points x+, that are at Γ+

f , as follows:

cij(x+)uj(x+) + cij(x−)uj(x−) + −
∫

Γ
T ∗

ijuj(xf )dΓ =
∫

Γ
U∗

ijtj(xf )dΓ +
∫

Ω
U∗

kibidΩ (2.82)

in which x− are the collocation points at Γ−
f . It is worth mentioning that the free terms

related to these points must also be included in this expression due to the limiting process
applied to the crack contour. In this case, both x− and Γ−

f would be encompassed by the
fictitious domain illustrated in Fig. 4, which would lead to two free terms.

Figure 12 – Crack faces discretized for the DBEM.

Crack face

Crack face

Crack tip

Source: (63), adapted.

The TBIE (Eq. 2.33) is applied to the points x− at Γ−
f , which will present both

free terms for similar reasons, as follows:

1
2tj(x−) + 1

2tj(x+)+ηi(x−) −−
∫

Γ
S∗

kijuk(xf )dΓ =

ηi(x−) −
∫

Γ
D∗

kijtk(xf )dΓ + ηi(x−)
∫

Γ
D∗

kijbkdΓ
(2.83)

Therefore, the solid’s representation in the DBEM is achieved by combining Eq.
2.23 for the source points at the boundaries and Eqs. 2.83 and 2.82 for the cracks faces.
After applying the boundary discretization, the process described in Sec. 2.6 can be applied
similarly to the DBEM. The resulting system of algebraic equations is as follows:

H
H+

H−




û
û+

û−

 =


G

G+

G−




t̂
t̂+

t̂−

+ b (2.84)
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in which the indexes + and − represent the variables referent to the collocation points
x+ and x−, respectively. It is worth stressing that this expression can be written in the
same algebraic form as Eq. 2.74 by grouping the variables and matrices into global ones.
Hence, the further developments can be coupled to the DBEM, although the formulations
consider the BEM algebraic form presented in Eq. 2.74.

2.9 Computational details: The Isogeometric preprocessing

The advantages of IGA formulations over traditional Lagrangian formulations
comprehend the effective representations of complex geometries in addition to the straight-
forward connection between preprocessors and CAD models and accuracy. The process of
creating a Lagrangian mesh based on engineering designs is significantly time-consuming
(8). In addition to the inherent complexities associated with the mesh construction such
as conformity and geometry discontinuities issues, the mesh refinements are complex and
require large computational efforts. Therefore, the use of the IGA model itself in the
mechanical modelling is computationally efficient. This strategy enables easy and short
path connection between geometry design and analysis technique, since the functions
describing the geometry can be utilised as the mesh itself.

The preprocessor developed for this study utilises the CAD model information
directly by reading IGES files, which contain information of the 3D solid’s models. This
file format is very common in commercial CAD software. Therefore, the geometric design
can be provided by any CAD package. The preprocessor utilised herein requires only the
output describing the geometric entities. Besides, the IGES files from CAD represent 3D
solids through NURBS surfaces at the boundaries, which is exactly the same representation
as the IGABEM. The pyiges library (15) from Python enables reading the IGES files and
extracting all information, such as knot vectors, control points and connectivity. This
information inputs the IGABEM program, which can calculate the NURBS surfaces as
presented in Sec. 2.5. It is worth mentioning that the IGABEM processing kernels are
implemented in FORTRAN programming language. Additionally, nonhomogeneous 3D
structures can be modelled by coupling two or more IGES files, being each one for a
sub-domain.

The knot insertion process (16) has been applied herein when mesh refinement
is necessary. This process adds knots and control points, which consequently creates
more knot spans and improves the mechanical fields’ representation without changing the
NURBS surfaces’ geometry. Therefore, the implemented IGABEM program is robust and
efficient regarding the representation of complex 3D models.

The developed preprocessor also inputs the Lagrangian BEM program. For that,
the IGA model provided by the IGES files is used as a basis to construct a polynomial mesh
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of linear Lagrangian elements (4-node). The polynomial mesh creator from IGA models
was developed by Cordeiro (62) and uses the software Ansys to obtain the Lagrangian
elements information (nodes coordinates and elements connectivity). In that case, the
knot insertion is not necessary, since the mesh refinement is provided by Ansys itself.
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2.10 Numerical application of the 3D IGABEM formulation

This section presents a numerical example that applies the 3D IGABEM formulation
implemented in this study for a crack problem. Thus, the DBEM presented in Sec. 2.8
is used to represent the crack in the isogeometric approach. This numerical example is
composed by a circular crack in an infinite homogeneous medium, as illustrated in Fig. 13.

Figure 13 – Representation of the infinite crack analysed in the numerical example.

Source: (73).

This problem presents a analytical solution for the opening at the centre of the
crack δ (73), which is as follows:

δ = 8(1 − ν2)
πE

σ a (2.85)

in which σ is the traction applied and a is the radius of the crack.

The physical properties considered in the numerical model are: Young’s modulus
E = 3000 kN/cm2, Poisson’s ratio ν = 0.2, crack dimension a = 0.5 cm and the applied
traction σ = 50 kN/cm2. To represent the infinite medium with Kelvin’s fundamental
solution, the crack is centred in a prism with dimensions 50 × 50 × 100 (in cm), in which
the third one is the direction of σ. The numeric model is based on a isogeometric model
that has 6 regular NURBS surfaces to represent the prism and 5 regular NURBS surfaces
to represent the circular crack, all bi-quadratic (p = q = 2). Four IGABEM meshes are
constructed from this model by a knot insertion process (16), in order to verify the mesh
convergence of the IGABEM solutions:

• Mesh A: Based on the original isogeometric model. Total of 304 collocation points.
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• Mesh B: 1 knot inserted into each NURBS surface of the original model. Total of
510 collocation points.

• Mesh C: 2 knots inserted into each NURBS surface of the original model. Total of
976 collocation points.

• Mesh D: 3 knots inserted into each NURBS surface of the original model. Total of
2200 collocation points.

The meshes A, B, C and D are illustrated in Fig 14, which presents the crack and
the prism meshes side by side.

Figure 14 – Prism and crack discretisations considered in the numerical example.

(a) Mesh A (b) Mesh B

(c) Mesh C (d) Mesh D
Source: The author.

Figure 15 illustrates the z displacements fields obtained through the 4 proposed
meshes over the crack. The NURBS surfaces are subdivided into 20 auxiliary Lagrangian
elements (4 nodes) to generate the visualisation with the software Paraview. The deformed
shape is constructed considering a scale factor of 25 for all meshes. In this figure, one
observes the coherence of the displacements obtained by the numerical analyses. All of the
results are in agreement with the expected behaviour. Besides, it is worth mentioning that
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the continuity of the crack’s deformed shape is improved with the more refined meshes,
specially at the NURBS surfaces’ intersections.

Figure 15 – Displacements field over the crack in z direction obtained via the IGABEM. Scale
factor equals 25.

(a) Mesh A (b) Mesh B

(c) Mesh C (d) Mesh D
Source: The author.

Figure 16 illustrates the convergence of the error in percentage, considering the
crack opening at centre given by Eq. 2.85. The error is presented as a function of the
number of collocation points Nc. These results are obtained from the numerical models
by computing the difference between the z displacements of each side of the crack, at its
centre. One observes good convergence of the results throughout the 4 proposed meshes.
Besides, the error values are around 1% for both meshes C and D. Therefore, the 3D
IGABEM formulations for cracked bodies via the Dual BEM can be considered precise
and adequate to represent such problem.
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Figure 16 – Convergence of the IGABEM error considering the analytical result for the crack
opening.
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3

DOMAIN/REINFORCEMENT COUPLING

In this study, reinforced domains are modelled through a numerical coupling
technique based on the BEM. The solid is represented by either the 3D IGABEM or 3D
BEM, whereas the 1DBEM represent embedded fibres. This chapter presents the coupling
formulation in its elastic approach, as well as numerical examples that demonstrate the
robustness and accuracy of the proposed coupling scheme.

3.1 Coupled formulations: Literature Review

The coupling between the numerical methods FEM and BEM (FEM/BEM coupling)
for the modelling of reinforced structures was previously presented in (9) and (74). Since
then, several studies have been published regarding this theme, which made the coupling
technique well-recognised and established. A comprehensive literature review on this
matter can be found in (75) and (76). Besides, (77) and (78) present further details about
the state of the art, whereas (79) discusses limitations and advantages of this type of
coupling.

Among the several citations of the coupling technique in the literature for numerous
applications, one may highlight: (39) presented a formulation that treats BEM sub-regions
as equivalent FEM domains; (80) applied the coupling technique to handle fracture
mechanics problems, with the use of boundary elements at crack faces whereas the
remaining domain was represented via FEM; (81) demonstrated accurate results by the
FEM/BEM coupling regarding the modelling of composite materials with elastic and
viscoelastic behaviour from experimental tests and pure-FEM approaches; (82) presented
a multi-scale analysis for nonhomogeneous materials based on the coupling technique;
soil-structure interaction problems have also been treated by this scheme (83, 84).

The FEM/BEM coupling is particularly applied for fracture mechanics problems
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in reinforced media. This approach becomes effective in such problems since one may
take advantage from the strong points of each numerical method. Most applications
have been found in aeronautic engineering, but the literature also presents applications in
different fields (85, 86, 87). Studies carried out in the Department of Structural Engineering
SET/EESC-USP deserved to be mentioned as well: (41) applied the coupling technique
for elasto-dynamic analyses of 2D problems and posteriorly 3D (88); (89) modelled the
reinforcements via the sub-region BEM technique and compared it against the coupled
formulation, which demonstrated the efficiency of the coupled strategy; (90, 91) presented
reinforced viscoelastic formulations based on Lagrangian FEM/BEM approaches; (92)
studied contact problems in the interface matrix/reinforcement by considering a nonlinear
bond-slip modelling.

More recently, the research group under Prof. Edson Leonel supervision studied the
alternative technique based on the FEM/BEM coupling for 2D linear-elastic homogeneous
domains. In that case, 1D BEM elements represent the fibre-reinforcements instead of the
FEM. The 1DBEM is based on a axial fundamental solution for 1D domains available
in the literature (93, 94, 95). This alternative is called 1DBEM/BEM coupling and it
demonstrated superior results when compared against the traditional FEM/BEM (13),
especially in some aspects that the FEM/BEM shows some instabilities. Moreover, this
author proposed a strategy called connection element to represent nonhomogeneous
reinforced domains through the 1DBEM/BEM in 2D analyses, in addition to present a
detailed analysis of the comparison between the 1DBEM/BEM and the FEM/BEM results
(13). Therefore, the extension of the 1DBEM/BEM coupling for 3D problems using the
IGABEM is a subject of this work.

3.2 Algebraic representation of the elastic coupling

Let Ω be the three-dimensional solid and the reinforcing fibres be positioned along
the line Γ̄, which is totally immersed into Ω. Figure 17(a) illustrates this scheme. The
interaction between the substructures (solid and reinforcement) is represented by an
adherence force, which arises when the substructures are detached. In that situation, one
split Γ̄ into two different lines: Γ̄E along the reinforcements and Γ̄D within the domain, as
illustrated by Fig. 17(b). Γ̄D determines the direction of the adherence force applied into
Ω, therefore it is also called “load line”. In addition, the reinforcements node’s positions
can be understood as internal points in Ω, which defines the line Γ̄D.

By the action-reaction principle, one can establish that the adherence force in
the reinforcements (fE (Γ)) are equal and opposite to the adherence force applied into Ω
(fD (Γ)). Besides, one considers initially perfect bond conditions between reinforcements
and domain. Hence, the displacements’ compatibility and the adherence force’s equilibrium
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Figure 17 – Scheme of the matrix/reinforcement coupling technique.

(a) (b)

Source: The author.

can be written as follows:

fE

(
Γ̄
)

= −fD

(
Γ̄
)

uE

(
Γ̄
)

= uD

(
Γ̄
) (3.1)

in which the indexes D and E represent domain and reinforcement, respectively.

Both displacements and adherence force are numerically approximated by linear
combinations of similar functions in the domain and in the reinforcements. Therefore, the
continuous relation from Eq. 3.1 can be represented by a discretized relation between the
nodal parameters, as follows:

fE = −fD (3.2a)
uE = uD (3.2b)

in which u and f contain nodal values of displacements and adherence forces, respectively.

The adherence force is accounted as a body force (bi) into the BEM formulation of
the 3D solid. Thus, the domain integral term in Eq. 2.9 becomes a line integral term and is
evaluated solely over Γ̄. It is worth mentioning that this assumption requires a particular
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integration scheme, which is properly described in the next section of this chapter. Hence,
the IGABEM integral equation for boundary points can be written as follows:

cs
iju

s
j +

∫
Γ

T ∗
ijujdΓ =

∫
Γ

U∗
ijtjdΓ +

∫
Γ̄

U∗
ij(fD)jdΓ̄ (3.3)

where the index s indicates the mechanical fields evaluated at the source point xs.

The BEM integral equation for internal points displacements must be written for
the Γ̄D points. Considering the adherence force contribution in the domain term, this
integral equation can be written as follows:

(uD)i =
∫

Γ
U∗

ijtjdΓ −
∫

Γ
T ∗

ijujdΓ +
∫

Γ̄
U∗

ij(fD)idΓ̄ (3.4)

Equations 3.3 and 3.4 can be algebraically written considering the numerical
discretization of the reinforcements and the solid’s contour, which results in:

HCCûC = GCCt̂C + GCFfD (3.5)

uD = GFCt̂C − HFCûC + GFFfD (3.6)

in which the index C in the vectors û and t̂ indicates that these fields are evaluated at the
boundary. The index D indicates the fields evaluated over the reinforcements line Γ̄. Note
that the above-presented expressions can represent both the IGABEM and the Lagrangian
BEM, in which the vectors û and t̂ are control points parameters for the IGABEM or
nodal displacements and tractions for the Lagrangian BEM. Besides, the matrices names
consider the following system:

- HCC is the H matrix of the BEM considering source points at the boundary and
integrating over the boundary;

- GCC is the G matrix of the BEM considering source points at the boundary and
integrating over the boundary;

- GCF is the G matrix of the BEM considering source points at the boundary and
integrating over the reinforcements;

- GFC is the G matrix of the BEM considering source points at the reinforcements
and integrating over the boundary;

- HFC is the H matrix of the BEM considering source points at the reinforcements
and integrating over the boundary;

- GFF is the G matrix of the BEM considering source points at the reinforcements
and integrating over the reinforcements;

The last required expression is the reinforcements mechanical representation, which
can be described by any numerical method for 1D domains under axial loads. In this
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study, either the FEM or the 1DBEM can be considered. For both numerical methods,
this expression can be algebraically written as follows:

KEuE = GEfE (3.7)

in which uE and fE are the nodal values of displacements and adherence force evaluated
over the reinforcements, respectively. The matrices KE are GE are properly defined for
each numerical method afterwards.

Thus, the resulting linear system of equations is defined by coupling the Eq. 3.5,
3.6 and 3.7. The compatibility and equilibrium relations from Eq. 3.2 are also applied in
the coupling system, which leads to:


HCC 0 −GCF

HFC I −GFF

0 KE GE




ûC

uD

fD

 =


GCC

GFC

0

{t̂C
}

(3.8)

where I is the identity matrix.

Equation 3.8 can be solved by enforcing the boundary conditions applied over Γ,
as usual in BEM formulations. The final system of equations is as follows:


ACC 0 −GCF

BFC I −GFF

0 KE GE




x̂C

uD

fD

 =


ĀCC

B̄FC

0

 {p̂C} (3.9)

in which x̂C and p̂C are, respectively, the unknown and the known boundary values.

Equation 3.9 results in a linear system of equations likewise Ax = f . This system
presents a straightforward solution, which leads to the displacements and traction values
at the boundary, in addition to the displacements and adherence force values at the
reinforcements.

Te mechanical fields can be evaluated at other internal points rather than the Γ̄
points. The internal displacements ui can be determined through Eq. 3.4, considering
(uD)i as ui. The hypersingular integral equation (Eq. 2.15) must be rewritten in order to
evaluate stresses and strains. Considering the adherence force into the bi in Eq. 2.15, one
writes:

σs
jk =

∫
Γ

D∗
ijktidΓ +

∫
Γ̄

D∗
ijk(fD)idΓ̄ −

∫
Γ

S∗
ijkuidΓ (3.10)

in which the integral kernels D∗
ijk e S∗

ijk can be found in Eq. 2.18 and 2.19, respectively.
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3.3 Load line integration scheme

The load line integration scheme regards the last integral terms of Eq. 3.3 and Eq.
3.4. The reinforcements are assumed as one-dimensional, then these integrations should
hypothetically be performed along the line Γ̄D. This approach is adequate when dealing
with 2D BEM formulations, because the kernels integration scheme is already formulated
along the one-dimensional elements that represents the boundary. In 3D BEM formulations,
the fundamental solutions are integrated over areas at the boundary. Thus, integrating U∗

ij

(Eq. A.32) along the line Γ̄D leads to significant errors, which are directly proportional to
the reinforcement element area and inversely proportional to the distance between source
and field points. Besides, the integration of reinforcement elements that contain the source
point results in divergent singular values, i.e., which cannot be regularised.

This study adopts a particular integration scheme, based on the strategy proposed
in (41, 96) for 3D FEM/BEM coupling techniques. The integration is performed over a 2D
domain, which is considered to be the surface area of the reinforcements. One considers a
cylindrical shell, as a result of hypothetical cylindrical fibre-reinforcements. Then, the filed
points remain positioned along the reinforcements central axis (Γ̄) in Eq. 3.4, which allow
for the proper displacements compatibility (Eq. 3.2). However, the fields points are now
positioned over the cylindrical shell of radius RF that covers Γ̄, as illustrated in Fig. 18.

Figure 18 – Integration scheme over a reinforcement element, considering 4 integration points
over the angular coordinate and a fixed axial coordinate.

x1
x2

x3

Source: The author.

At first sight, the adopted integration scheme might seem equivalent to applying
the BEM sub-region technique (97) to represent the fibre-reinforcements. However, the
sub-region technique would require a much higher number of source points, which would
be positioned over the cylindrical shell. The adopted scheme is more efficient because all
source points are along the fibre central axis. In addition, this aspect results in no singular
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integrations, because the distance between source and field points is always higher or equal
RF .

The tractions distribuited over the cylindrical Shell are named Qi and are illustrated
in Fig. 19(a). For thin fibres (much higher length than radius), one can simplify Qi as
constant along θ for a given dΓ̄. Then, this value can be represented by a resulting
concentrated force fD, which is positioned at the fibre centre axis as illustrated by Fig
19(b). This resulting force is given by:

fD = 2πRF Qi (3.11)

Figure 19 – Adherence force over reinforcements elements: three-dimensional representation (a)
and one-dimensional approximation (b).

(a) (b)

Source: The author.

Then, the integration can be numerically evaluated by applying twice the Gauss-
Legendre quadrature: g1 to map the centre axis direction (x̄) and g2 to map the cylindrical
coordinate θ. The radius in θ is always constant and equals RF . Thus, the numerical
integration results in the following:

∫
Γ̄

U∗
ij(Qi)jdΓ =

np1∑
g1=1

 np2∑
g2=1

[
Uij

(
xf (ξg1 ,ξg2),xs

)
|jac2(ξg2)| ωg2

]
|jac1(ξg1)| ωg1ϕm(ξg1)

 (fD)j

2πRF

(3.12)

where np1 and np2 are the total amount of integration points along x̄ and θ directions,
respectively. ω are the quadrature weights. The integrations Jacobians are as follows:

|jac1(ξg1)| =
√(

xb
1,ξ(ξg1)

)2
+
(
xb

2,ξ(ξg1)
)2

(3.13)

|jac2(ξg2)| = πRF (3.14)

in which xb is the field point’s projection over x̄. Its global coordinates (xb
i) can be

found from the g1 mapping through the nodal values interpolation, which considers the
Lagrangian polynomial functions. θ is mapped by the following:
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θ(ξg2) = π (ξg2 + 1) (3.15)

Based on xb and θ, one can find the field point (xf ) coordinates, which is applied
in Eq. 3.12, as follows:

xf = xb + f (θ) RF (3.16)

where f (θ) is a vector-valued function as follows:

f(θ) = 1√
cos2(α1) + cos2(α2)


− cos(α2) cos(θ) − cos(α1) cos(α3)sen(θ)
cos(α1) cos(θ) − cos(α2) cos(α3)sen(θ)

[cos2(α1) + cos2(α2)] sen(θ)

 (3.17)

in which αi are angles the between the local axis x̄ and the global axis xi at xb. In the
particular scenario that the reinforcement is aligned with the global x3, i.e., cos(α1) =
cos(α2) = 0, Eq. 3.17 must be replaced by:

f (θ) =


−sen(θ)
cos(θ)

0

 (3.18)

It is worth remarking that integrating the load line simply along Γ̄ is equivalent
to neglect the θ dependent portion in Eq. 3.16. In fact, this assumption is reasonable for
reinforcement elements that do not contain the source point and with RF significantly
small in relation to xb. Thus, this simplified integration could be applied for elements
considerably far way from the source point, which results in minor integration errors.
Nevertheless, the proposed integration scheme over a cylindrical shell must be applied
when the integration over Γ̄ results in singular or quasi-singular values and when RF is
significant.

3.4 Reinforcements modelling via FEM

Let V be a 3D solid with boundary Γ, in which external loads p are applied over
Γp and displacement are prescribed over Γ − Γp. b are the body forces applied in V . That
is a BVP, which can be described by the Principle of Virtual Works (PVW) as follows:

∫
V

δε⊺σdV =
∫

V
δu⊺bdV +

∫
Γp

δu⊺pdΓ , ∀δu (3.19)

where δ indicates the virtual fields.
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Any given point in V has three components of displacements: (u,v,w). The vector
u contain them. Stress and strain can also be represented in the vectors σ and ε, which
consider the Voigt notation. Thus, one can write the compatibility relation (Eq. A.7) in a
algebraic form through the matrix of differential operators (B ), as follows:

ε = Bu

δε = Bδu
(3.20)

Besides, the constitutive relation can also be algebraically written through the
constitutive matrix D, as follows:

σ = Dε (3.21)

Applying Eq. 3.20 and Eq. 3.21 into the PVW expression (Eq. 3.19), one writes:

∫
V

δu⊺B⊺DBudV =
∫

V
δu⊺bdV +

∫
Γp

δu⊺pdΓ , ∀δu (3.22)

In the FEM, the mechanical fields of displacements and tractions are represented
by linear combinations of the Lagrangian functions, as follows:

u(x) = ϕi(x)ui

v(x) = ϕi(x)vi

p(x) = ϕi(x)pi

(3.23)

where ui and vi are the nodal values of horizontal and vertical displacements, respectively.
pi are the nodal values of tractions, which can be considered oriented along the axial
direction x̄ in 1D domains. x represents the problem’s dimension (x̄1, x̄2 e x̄3).

Equation 3.23 can be algebraically written, considering the matrix Φ of the La-
grangian functions, as follows:

u(x) = Φun

δu(x) = Φδun
(3.24)

in which both real and virtual mechanical fields are expressed. u(x) contains the displace-
ments at a given point and un contains the nodal displacements. Besides, real and virtual
fields of strains can also be represented likewise:

ε(x) = BΦun

δε(x) = BΦδun
(3.25)
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It is worth remarking that both virtual and real fields are approximated by the
same functions Φ, which characterises this formulation as a Galerkin method.

One applies Eq. 3.24 and Eq. 3.25 into the algebraic form of PVW (Eq. 3.22). The
condition to establish the PVW as valid for any δun is as follows:

∫
v

(BΦ)⊺D (BΦ) undV =
∫

V
Φ⊺bdV +

∫
Γp

Φ⊺pdΓ (3.26)

Since the nodal values un are constant, the integration of un is not required in Eq.
3.26. Thus, this expression defines a linear system of equations with un as unknown values
and a matrix called stiffness (KF), as follows:

KF =
∫

V
(BΦ)⊺D (BΦ) dV (3.27)

The right-hand side of Eq. 3.26 is composed by a vector of free terms, which is
usually denoted as feq:

feq =
∫

V
Φ⊺bdV +

∫
Γp

Φ⊺pdΓ (3.28)

Therefore, the final linear system of the FEM in the local coordinate system is:

KFun = feq (3.29)

Equation 3.29 enable determining the nodal displacements through the discretiza-
tion of the domain into finite elements and the application of boundary conditions. The
global fields are then composed by a linear combination of the local solutions in each finite
element.

The FEM formulation is then particularised for 1D domains defined by any number
of points, as illustrated in Fig. 20.

In this 1D element, only axial fields (displacements, tractions and internal forces)
are approximated, which is illustrated as x̄1 in Fig. 20. Orthogonal directions present free
displacements and no stiffness. Therefore, the stiffness matrix is as follows:

(KF)ij = EA
∫ L

0
ϕi,x (x̄1) ϕj,x (x̄1) dx̄1 (3.30)

in which E is the Young’s modulus and A the cross section area. These values are considered
constant and uniform.

The stiffness matrix integration is numerically solved by a Gauss-Legendre quadra-
ture. Its Jacobian is given by:
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Figure 20 – 1D fibre-reinforcement element illustration with a n − 1 degree approximation.

𝑥1

𝑥2

𝑥3

Source: The author.

|jac(ξ)| =
√

(ϕk,ξ(ξ)Xk)2 + (ϕk,ξ(ξ)Yk)2 (3.31)

where Xk and Yk are the global coordinates of the finite element nodes.

Thus, Eq. 3.30 is numerically evaluated as follows:

(KF)ij = EA

 Np∑
k=1

ϕi,ξ(ξk)ϕj,ξ(ξk) |jac(ξk)| ωk

 (3.32)

in which Np is the number of integration points used in each finite element.

Equation 3.28 leads to the lumping matrix (GE in Eq. 3.7) by considering nill
concentrated forces at the boundaries p = 0 the following approximation of the body
forces b:

b = ΦfE (3.33)

in which fE are the nodal values of the distribuited force along the 1D domain.

Applying Eq. 3.33 into Eq. 3.28 and considering p = 0, one can express feq as
follows:

(feq)ij =
[∫ L

0
ϕiϕjdx

]
(fE)i (3.34)

Vector fE in constant, therefore its integration is not required in Eq. 3.34. Then,
the lumping matrix is defind as follows:

(GF)ij =
∫ L

0
ϕi (x̄1) ϕj (x̄1) dx̄1 (3.35)
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Equation 3.35 is also numerically solved by a Gauss-Legendre quadrature.

It is worth mention the functions ϕi calculation, which are based on the Lagrangian
polynomials and the nodal dimensionless coordinates ξj . At a given point of dimensionless
coordinate ξ inside a finite element, one writes:

ϕi(ξ) =
np∏

j=1
j ̸=i

(
ξ − ξj

ξi − ξj

)
(3.36)

in which np is the finite element’s number of nodes.

The derivatives of ϕi are as follows:

ϕi,ξ(ξ) =
np∑

j=1
j ̸=i

 1
ξi − ξj

np∏
k=i
k ̸=j

(
ξ − ξk

ξi − ξk

) (3.37)

All developments presented so far consider the local coordinate system of the finite
element. To assemble the global matrices, one must rotate the local system to the global
(x1, x2, x3) through a rotation matrix R as follows:

un = RuG
n

fE = RfG
E

(3.38)

in which the indexes G indicate the global system. For 1D elements in spece, R is as
follows (98, 99):

Ri =



ci
1 ci

2 ci
3

− ci
1c

i
3√

(ci
1)

2 + (ci
3)

2

√
(ci

1)
2 + (ci

3)
2 − ci

2c
i
3√

(ci
1)

2 + (ci
3)

2

− −ci
3√

(ci
1)

2 + (ci
3)

2
0 ci

3√
(ci

1)
2 + (ci

3)
2


(3.39)

where cj
i = cos(αj

i ) and αj
i is the angle between the local axis (x̄1) and the global axis (xi)

calculated at the j point. Ri is the component of the rotation matrix associated with a
given i node of the finite element. Let n be the total number of nodes of the finite element,
then its rotation matrix is composed by:

R =



R1 . . . 0
. . .

... Ri
...

. . .
0 . . . Rn


(3.40)
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It is worth stressing that for elements aligned with the x2 axis (in which ci
3 = ci

1 = 0),
Eq. 3.39 must be replaced by the following:

Ri =


0 ci

2 0
−ci

2 0 0
0 0 1

 (3.41)

Thus, the global matrices KE and GE from Eq. 3.7 are as follows:

KE = (R)⊺ KF(R)
GE = (R)⊺ GF(R)

(3.42)

The global linear system of equations of the 1D FEM is then given by:

KEun = f + GEfE (3.43)

in which f are the nodal applied forces and fE the nodal values that interpolate the traction
distribuited along the element. It is woroth mentioning the equivalence between Eq. 3.43
and Eq. 3.7, when one considers f = 0 and un = uE.

3.5 Reinforcements modelling via 1DBEM

Consider a 1D element as illustrated in Fig. 20, in which a distribuited traction
p(x̄) is applied. The BVP is governed by a expression called strong form, as follows:

EAu,x̄x̄(x̄) = −p(x̄) (3.44)

in which u(x̄) is the displacement along the axial direction x̄ in the local system. This
orientation is equivalent to x̄1 in Fig. 20.

The weighted residual technique is adopted herein, using the fundamental solution
of displacements u∗(x̄), which leads to:

∫ L

0
[EAu,x̄x̄(x̄) + p(x̄)]u∗(x̄)dx̄ = 0 (3.45)

Partial integration is applied twice over Eq. 3.45, which results in the following:

(EAu∗(x̄)u,x̄(x̄))
∣∣∣∣∣
L

0
−
(
EAu∗

,x̄(x̄)u(x̄)
)∣∣∣∣∣

L

0
+
∫ L

0

[
u(x̄)EAu∗

,x̄x̄(x̄) + p(x̄)u∗(x̄)
]
dx̄ = 0 (3.46)

Equation 3.44) can also represent the fundamental problem as follows:
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EAu∗
,x̄x̄(x̄) = −p∗(x̄) (3.47)

Applying Eq. 3.47, the constitutive and compatibility relations (Eq. A.8 and Eq.
A.7) particularized for 1D domains into Eq. 3.46, one writes:

(Nu∗)
∣∣∣∣∣
L

0
− (uN∗)

∣∣∣∣∣
L

0
−
∫ L

0
up∗dx +

∫ L

0
pu∗dx = 0 (3.48)

where N is the axial force. The (x̄) terms have been suppressed in this expression, although
the mechanical fields dependency on x̄ is implicit.

The Dirac delta function (∆) applied at the source point s represents the body
forces in the fundamental problem. For 1D domains, the body force is uni-dimensinal and
can be expressed as follows:

p∗ = ∆(xf − xs) (3.49)

Applying Eq. 3.49 into Eq. 3.48, one eliminates the domain integration and writes:

us − (Nu∗)
∣∣∣∣∣
L

0
+ (uN∗)

∣∣∣∣∣
L

0
−
∫ L

0
pu∗dx = 0 (3.50)

where us is the source point displacement. The fundamental solutions for 1D domains can
be obtained in the literature (93, 94, 95) and is expressed as follows:

u∗
s(x̄f ) = −|x̄f − x̄s|

2EA
(3.51)

N∗
s (x̄f ) = sign (x̄f − x̄s)

2 (3.52)

in which sign () is the sign function. x̄f and x̄s are the local coordinates of field and source
points, respectively. The index s of the fundamental solutions indicates their dependency
on the source point position x̄s.

Equation 3.50 must be evaluated for each source point that describes the boundary
to obtain the 1DBEM representation. The boundary is composed solely of the endpoints 1
and n, which results in the following 2x2 system:

1 − N∗
1 (x̄1) N∗

1 (x̄n)
−N∗

n(x̄1) 1 + N∗
n(x̄n)

u1

un

 =
−u∗

1(x̄1) u∗
1(x̄n)

−u∗
n(x̄1) u∗

n(x̄n)

N1

Nn

+
q1

qn

 (3.53)

where q1 are qn are as follows:

qi =
∫ L

0
p(x̄)u∗

i (x̄)dx̄ (3.54)
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The integration from Eq. 3.54 can be numerically solved by the Gauss-Legendre
quadrature. However, p(x̄) must be numerically evaluated by interpolating its nodal values
fj with the Lagrangian polynomials, similar to Eq. 3.23. With that, Eq. 3.54 can be
rewritten as follows:

qi =
∫ L

0
ϕj(x̄)fju

∗
i (x̄)dx̄ =

[∫ L

0
ϕj(x̄)u∗

i (x̄)dx̄

]
fj = Ḡf (3.55)

in which f contain the nodal values fj. This integration can be properly solved by the
numerical quadrature, which results in the matrix Ḡ.

Besides, the matrices from Eq. 3.53 that are composed by the fundamental kernels
are denoted by H and G, in an analogy with the 3D BEM formulation. Thus, one writes
the following algebraic system from Eq. 3.53:

Hu = Gn + Ḡf (3.56)

in which u contains u1 and un. n contain N1 and Nn. q is given by Eq. 3.54. This expression
is directly equivalent of Eq. 2.9 from 3D BEM.

However, the reinforcement element representation by Eq. 3.56 produce a poor
distribuited traction modeling (p(x̄)), which is limited by a linear behavior. This aspect
is relevant in the coupling technique applied in this study, because p(x̄) represents the
adherence force. Therefore, internal points can be accounted into the 1DBEM system
in order to improve the p(x̄) representation. From Eq. 3.50, one can write the following
equation for a given internal point j:

uj − N∗
j (x̄1)u1 + N∗

j (x̄n)un = −u∗
j(x̄1)N1 + u∗

j(x̄n)Nn + qj (3.57)

Equation 3.57 and Eq. 3.55 are applied into the system from Eq. 3.53, which results
in the following:


1 − N∗

1 (x̄1) 0 N∗
1 (x̄n)

−N∗
j (x̄1) 1 N∗

j (x̄n)
−N∗

n(x̄1) 0 1 + N∗
n(x̄n)




u1

uj

un

 =


−u∗

1(x̄1) 0 u∗
1(x̄n)

−u∗
j(x̄1) 0 u∗

j(x̄n)
−u∗

n(x̄1) 0 u∗
n(x̄n)




N1

Nj

Nn

+

∫ L

0


ϕ1(x̄)u∗

1(x̄) ϕj(x̄)u∗
1(x̄) ϕn(x̄)u∗

1(x̄)
ϕ1(x̄)u∗

j(x̄) ϕj(x̄)u∗
j(x̄) ϕn(x̄)u∗

j(x̄)
ϕ1(x̄)u∗

n(x̄) ϕj(x̄)u∗
n(x̄) ϕn(x̄)u∗

n(x̄)

 dx̄


f1

fj

fn


(3.58)

One can represent any number of internal points together with the endpoints
through Eq. 3.58. Regardless of its final dimension, this system of equations can still be
algebraically written by Eq. 3.56. To obtain the solution of this system, one must multiply
its expression by the inverse of G, which leads to:
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G−1Hu = n + G−1Ḡf (3.59)

It is worth mentioning that G, as defined in Eq. 3.58, is not invertible. However,
the internal points equations that compose the centre lines of the system does not
affect the boundary solutions. Their purpose is only to improve the distributed force
representation. Hence, one may impose the terms correspondent to internal points equations
as (G)jj = EA/L for jj ̸= 1 and jj ̸= n by establishing Nj = 0. This procedure does not
affect the product Gn in any way. With that, G becomes invertible without disturbing
the 1DBEM system solution. Besides, Nj values of internal points can be recovered from
the equilibrium relation, once the solution of u and f is known.

Equation 3.59 format is equivalent to Eq. 3.43. Thus, this expression can be
represented by the same algebraic form by stating the matrices KE and GE as:

KE = (R)⊺ G−1H(R)
GE = (R)⊺ G−1Ḡ(R)

(3.60)

Equation 3.59 can now represent the global system as follows:

KEu = n + GEf (3.61)

which allows obtaining the problems solution regarding displacements. This expression
is also equivalent to Eq. 3.7 by considering n = 0, similar to the equations obtained via
FEM.

The internal axial forces can be found via 1DBEM by rearranging Eq. 3.61, which
results in the follow:

n = KEu − GEf (3.62)

which results in the axial force results at the reinforcements interfaces, i.e., the endpoints.
All internal points n result in zero, because of the procedure above-mentioned to make G
invertible. These values can be obtained from the equilibrium relation, as follows:

N,x̄ = −p(x̄) (3.63)

Integrating Eq. 3.63 and applying Eq. 3.33, one writes the following:

Nj = N1 −
∫ X̄j

0
ϕi(x̄)dx̄fi (3.64)

which leads to the axial force at a internal point j of local coordinate X̄j.
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Equation 3.64 is also numerically solved by the Gauss-Legendre quadrature. How-
ever, an additional coordinates transformation is required, regarding the dimensionless
system [−1, 1] and the partial interval [−1, ξj ]. ξj is the dimensionless coordinate associated
with X̄j. Thus, the additional integration’s Jacobian is written as follows:

JE = ξj + 1
2 (3.65)

Besides, the dimensionless coordinate resulting from both transfornations is:

ξ = (ξE + 1) ξj + 1
2 − 1 (3.66)

3.6 Crossing between fibres and boundaries: the connection ele-
ment

The coupling formulation presented so far requires all reinforcements fully embedded
into a solely 3D BEM domain. This fact is a well known limitation of the coupling
formulations found in the literature (100). Together with the sub-region technique, one
must overcome this limitation in order to properly model nonhomogeneous domains. A
special element scheme, called connection element, is applied herein for that purpose. It
is worth mentioning that the authors initially proposed this approach for 2D reinforced
domains (13).

The main challenge to model reinforcements that cross 3D BEM sub-region inter-
faces is in Eq. 3.5 and Eq. 3.6. These expressions require a defined 3D BEM sub-region for
all reinforcement elements. Besides, all reinforcement nodes must be internal nodes of the
3D BEM formulation.

Figure 21 illustrates the possible crossing scenarios: an element J over the interface
in (a) or a node i over the interface in (b). Both options fail to follow the requirements
mentioned in the previous paragraph.

The connection element stands out as an alternative approach, which follows all
requirements. Figure 22 illustrates the connection element between the nodes i and i + 1.
These nodes are moved along its respective elements, which accomplish the requirement
of the nodes internal position. The connection element is positioned in the created gap,
which provides the reinforcements’ material continuity between elements J − 1 and J . This
element contributes only in the reinforcement expression, i.e., matrices KE and GE from
Eq. 3.7.

In this approach, all reinforcement nodes remain as internal nodes of the 3D BEM
formulation. Besides, the connection element is neglected in Eq. 3.5 and Eq. 3.6. Thus, both
above-mentioned demands are attended. This approach does not affect the 3D boundary



80 3. Domain/Reinforcement Coupling

Figure 21 – Possible crossing situations between reinforcement and boundary.

(a) (b)

Source: The author.

Figure 22 – Approach adopted for crossings between reinforcements and sub-domains interfaces:
Connection element positioned at discontinuous reinforcement mesh.

connection element

Source: The author.

integral equations or the compatibility relations on the interface from the sub-region
technique. Furthermore, there is no need to modify the boundary mesh, which highlights
the efficiency and robustness of this approach, especially when dealing with complex
geometries.

The connection element formulation is simple. It is always a linear element defined
by the nodes i and i + 1 illustrated in Fig. 22, so numerical integration is not necessary.
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Besides, it usually has small dimensions, therefore its poor approximation does not disturb
the reinforcement global response. When the FEM represents the reinforcements, the
connection element’s stiffness and lumping matrix are as follows:

K =
 1 −1
−1 1

 EA

L
(3.67)

GF =
1/3 1/6
1/6 1/3

L (3.68)

When the 1DBEM represents the reinforcements, the connection element matrices
from Eq. 3.59 are the following:

H =
 1/2 −1/2
−1/2 1/2

 (3.69)

G =
 0 −1
−1 0

 L

2EA
(3.70)

Ḡ =
1/6 1/3
1/3 1/6

 −L2

2EA
(3.71)

The connection element’s mechanical properties (E, A) are the same as the adjacent
element’s. Furthermore, rotation (Eq. 3.42) must be applied into the above-presented
expressions in order to properly consider them into the global matrices KE and GE.

3.7 Numerical applications of the linear coupling formulation

This Section presents the numerical applications executed with the proposed rein-
forced formulation. The first application validates the numerical results with experimental
reference results for a random fibre reinforced structure, whereas the second presents the
robustness of the formulation to present a cracked reinforced structure.

3.7.1 Reinforced Lagrangian BEM application: Random fibres modelling

This application handles the mechanical analysis of a concrete matrix reinforced
by short fibres distributed randomly/pseudo-randomly inside the domain. The stiffening
effect of different fibre volumes can be measured through the equivalent longitudinal elastic
modulus (Eef ). For this purpose, an uniaxial stress scenario is simulated as illustrated in
Fig. 23(a), which involves the compression test. Figure 23(b) illustrates the test scheme,
whereas (101) presents the experimental results. The numerical model (Fig. 23(a)) consists



82 3. Domain/Reinforcement Coupling

of a cylinder with diameter of 20 mm and length of 20 mm. The material properties for
the matrix are: Young’s modulus EM = 39.6 GPa and Poisson ratio ν = 0.2. The applied
load simulates an uniform uniaxial stress by a unitary applied displacement ū. The steel
fibres have the following mechanical properties: Young’s modulus Ef = 220 GPa, length
lF = 13 mm and cross-section radius rF = 0.1 mm.

Figure 23 – Numerical application of the elastic coupling: numerical model (a) and experimental
scheme (b) for an uniaxial compression test (1).

(a)

93 

 

 

 
Figure 63 – Compression test set-up 

 

Figure 64 presents a more detailed image of the clip gages. Two points of each clip 

are fixed at the sample with the distance of 50 mm. One of them is the end of a flexible steel 

beam where strain gauges are glued to determine the strain correspondent to the gauge 

length.  

 
Figure 64 – Details of the clip gage 

The displacement applied had the speed of 0.005 mm/s. For gauge length of the 

LVDT, the strain rate 5×10-5 s-1. The initial inclination of the stress-strain curves obtained 

from clip and LVDT are different because the LVDT measurements account for 

accommodations between the machine plates and specimen. Equation (44) enables to correct 

such effect, (OSORIO; BAIRÁN; MARÍ, 2013), 

 
1 1, 1

clip LVDT

LVDT

clip LVDT

E E

E E
  


   (44) 

Where ε1, LVDT is the average axial strain measured by the LVDTs, σ1 is the axial 

stress, Eclip and ELVDT are the modulus of elasticity obtained from the clip and LVDTs 

(b)

Source: The author and (102), adapted.

The equivalent longitudinal elastic modulus can be determined as follows:

Eef = L

ū1πr2

∫
Γs

t1 (Γ) dΓ (3.72)

where L is the structure’s length in the axial direction (x), r is the cylinder radius (in the
plane x2 x3), Γs is the cylinder face where ū is applied and t1 (Γ) are the traction results
at the boundary.

The Lagrangian BEM mesh of the contour is composed by 4250 linear quadrilateral
elements and 4442 collocation points. Figure 24 illustrates this mesh. 5 quadratic 1DBEM
elements discretise each short fibre. Previous analyses have shown mesh convergence of
these meshes regarding displacements.

The numerical results of the Lagrangian 1DBEM/BEM are compared against
experimental responses from (101). A steel-fibre reinforced concrete was used in the tests,
which match the material properties previously presented for this numerical application.
This application accounts for three different fibre’s contents Vf : 0%, 1% and 2% in volume.
The experimental tests assume linear-elastic material behaviour. Thus, the numerical
approach disregards the material nonlinearities. It is worth mentioning that the sense
(compression or tension) is indifferent for the numerical analysis, since the constitutive
model is symmetric.

Three different fibre’s Random/pseudo-random distributions represent the fibres
spacial position:
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Figure 24 – Boundary mesh utilised for the cylinder representation.

Source: The author.

• “BEMrand” assumes fibre position and fibre inclination governed by uniform statistical
distribution. This assumption leads to random distributed fibres;

• “BEMalig” assumes fibre position governed by uniform statistical distribution and
inclination aligned with the x axis;

• “BEMtransv” assumes fibre position governed by uniform statistical distribution and
inclination aligned with y axis.

The pseudo-random fibres generation starts by determining the first fibre’s endpoint,
which must be positioned inside the cylinder from Fig. 23(a). Then, the opposite endpoint
can be defined through a spherical coordinates system (lF ,θ,φ) originated in the first
endpoint. In BEMrand, both θ and φ are uniformly distributed within [0,π] and [0,2π]
respectively. In BEMalig and BEMtransv, such angles are both constant and equal to
(θ = 0,φ = π/2) and (θ = π/2,φ = π/2), respectively. One generates each single fibre
consecutively until the specified fibre content in volume is reached.

Figure 25 illustrates the results obtained from the three above-mentioned dis-
tributions and its comparison with experimental responses. Such comparison has been
performed through the relation between the equivalent elastic modulus (Eef) and the
matrix Young’s modulus (EM). In this figure, the results are tendency lines (from linear
regression) of the multiple values obtained for each point. The experimental values refer
to the mean “Exp. val.” and the respective maximum and minimum responses, “Expmax”
and “Expmin”.

The results on Fig. 25 demonstrate the accuracy of the proposed formulation in
modelling the mechanical influence of fibres. It is worth remarking that the experimental
mean responses lead to a behaviour between BEMrand and BEMalig. It suggests a possible
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Figure 25 – Stiffness variation as a function of the fibre volume.
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randomness over the real fibre spacial position. Such randomness influence on the fibre
position has been indicated in the literature, as mentioned by (103, 104).

In this regard, a fourth pseudo-random distribution, called BEMnormal, has been
accounted for achieving the experimental mean values. In this additional scenario, the
fibre spacial position is random and its inclination follows a Gaussian bi-variate statistical
distribution. The inclination’s mean values are nil in relation to x axis and the standard
deviations are calibrated based on the experimental results (101). Previous analyses have
indicated that the accurate standard deviation is 0.23 rad. Figure 26 illustrates the results
obtained with the calibrated distribution: its values in one simulation (BEMnormal val.),
its the tendency line (BEMnormal), the reference results and the transversely and aligned
fibres distributions results.

Figure 26 – Stiffness variation as a function of the fibre volume using different distributions of
fibres in the numerical model.
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Figure 26 illustrates the good agreement among the responses of BEMnormal and
the experimental results. Therefore, these results successfully demonstrate the accuracy
of the proposed formulation in the mechanical representation of the coupling between
matrix and reinforcements in a linear-elastic condition. Besides, these results demonstrate
the influence of the spacial fibre position randomness on the mechanical response of fibre
reinforced concrete specimens. Further researches could perform a parametric study using
the proposed formulation. Then, the statistical characterisation could be properly handled.
Nevertheless, this suggestion is beyond the purpose of the present article.

Because all simulations consider pseudo-random fibre distribution, 5 simulations of
each scenario were performed for each fibre content. Thus, standard deviation values have
been assessed, which can measure the variability of the analysis. The higher variability
was observed in the BEMrand model with Vf = 1%, which led to a standard deviation of
0.8%. Nevertheless, the variability of the experimental test is considerably larger, with
standard deviations up to 5.8%.

The next Figures 27, 28, 29 and 30 illustrate the fibre displacements along x

direction obtained with the different fibres’ distributions. Figure 27 refers to the BEMalig

case, Fig. 28 refers to BEMtransv, Fig. 29 refers to BEMrand and Fig. 30 to BEMnormal. All
of these figures exhibit both the fibres content Vf = 1% and Vf = 2%. A tension scenario
(ūD = 1 mm) was considered in these figures.

The analysis of Figures 27, 28, 29 and 30 allows concluding that, in all scenarios,
the displacements obtained at the fibres are in agreement with the applied load and within
the expected range. Besides, one observes the fibres’ position for each case. It is worth
stressing that the calibrated pseudo-random distribution proposed exhibits a coherent
fibres’ positioning, which agrees with the expected behaviour in the experimental tests.

Figure 27 – Displacements in x direction over the reinforcements using: BEMalig with Vf = 1%
(a) Vf = 2% (b).

(a) (b)
Source: The author.
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Figure 28 – Displacements in x direction over the reinforcements using: BEMtransv with Vf = 1%
(a) Vf = 2% (b).

(a) (b)
Source: The author.

Figure 29 – Displacements in x direction over the reinforcements using: BEMrand with Vf = 1%
(a) Vf = 2% (b).

(a) (b)
Source: The author.

Figure 30 – Displacements in x direction over the reinforcements using: BEMnormal with Vf = 1%
(a) Vf = 2% (b).

(a) (b)
Source: The author.
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3.7.2 Reinforced IGABEM application: Single-edge notched body

This numerical example consists of applying the linear fracture mechanics approach
to a solid with a single-edge notch, as illustrated in Fig. 31. Thus, the coupling technique
presented herein considers the DBEM formulation (Sec. 2.8) to represent the crack. The
physical properties illustrated in Fig. 31 are: h = 10 cm, b = 5 cm, a = 2.5 cm and σ = 1
kN/cm2. In addition, the material properties of the solid are: Young’s modulus E = 1000
kN/cm2 and Poisson’s ratio ν = 0.2. The fibres present circular cross-section with radius
r = 0.2 cm and three different values of Young’s modulus are analysed: E0 = 0, E500 = 500,
E1000 = 1000 and E1500 = 1500 kN/cm2.

Figure 31 – Reinforced cracked solid analysed with linear IGABEM coupling formulation.

xy

z Cross-section

y

x

Source: The author.

Reference results are found in the literature (73) for a 2D equivalent problem
without the fibres. The results are presented as the crack mouth opening displacement
(CMOD) values, which can be used as reference for the scenario with EF = 0. The CMOD
(δ) present in (73) is:

δ =
(4σa

E ′

) 1.46 + 3.42
(
1 − cos πa

2b

)
(
cos πa

2b

)2 (3.73)

in which E ′ = E/(1 − ν2). It is worth mentioning that the reference results are constant
along the dimension y of the analysed model, since they come from a 2D equivalent
problem.

Two isogeometric meshes are used to represent the solid in this example. Both of
them are composed by 14 bi-quadratic (p = q = 2) regular NURBS surfaces that represent
the external boundaries and 2 regular NURBS surfaces of p = q = 4 that represent the
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crack faces. Mesh A is used for the mechanical analyses without fibres (scenario EF = 0)
and presents all NURBS surfaces with only one knot span, which results in 176 collocation
points. Mesh B is derived from Mesh A and it is obtained by refining the crack surfaces
with 3 knot insertions (16), which results in 254 collocation points. The second mesh is
used in the analyses with the presence of fibres, which require thinner discretization of
the crack due to its complex mechanical behaviour when affected by the crossing fibres.
Figure 32 illustrates both meshes. Mesh convergence has been previously verified regarding
displacements at the crack mouth opening.

Figure 32 – Isogeometric meshes considered in the numerical example’s analyses.

(a) Mesh A (b) Mesh B
Source: The author.

The fibres discretisation is the same in all of the scenarios. Each one of the four
long fibres is represented by 16 quadratic elements, which leads to a total of 134 collocation
points. The crossing between the fibres and the crack is represented by the connection
element strategy, as presented in Sec. 3.6.

Figure 33 illustrates the results of CMOD along the crack mouth (direction y)
obtained in all of the three scenarios and the reference results (from Eq. 3.73) labelled as
“Analytical”. In the numerical models, the CMOD is calculated from the difference between
the z displacements of the superior and the inferior crack faces, at the crack mouth. In
this figure, one observes that increasing the fibres Young’s modulus leads to a decrease
in the value of the CMOD, as expected. In fact, all of the scenarios with non-zero fibres
Young’s modulus are significantly far from the results without fibres, which is expected
since the presence of fibres introduces a linear continuity at the crack surface. Provided
that this analysis imposes a linear behaviour in the fibres, they surely must drastically
affect the crack opening.

It is worth mentioning that the greatest error value between E0 and the analytical
results from Eq. 3.73 was 0.72%. Thus, the results demonstrate accuracy as far as the
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Figure 33 – Crack opening displacements along the crack mouth (direction x).
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reference comparison is valid. Although there is no reference results for the reinforced
analyses, the obtained CMOD’s are in agreement with the expected behaviour.

Figure 34 illustrates the z displacements fields over the solid’s deformed shape
obtained in all of the four scenarios. A scale factor of 50 is considered. The NURBS
surfaces are subdivided into 100 auxiliary Lagrangian elements (4 nodes) to generate
the visualisation with the software Paraview. This figure demonstrates that the solid’s
deformed shape is coherent in all of the analyses. Besides, it is interesting to observe
the effect of the fibres in the resulting displacement fields. It is clear how the linear and
continuous fibres prevented the crack opening, as expected. Furthermore, one observes the
fibre’s effect on the crack surface, which presents a slight deformation that reminds a fibre
pullout. All of the mentioned observations are in agreement with the expected behaviour.

Figure 35 presents the axial stresses obtained in each scenario along the fibre’s
length (Sf ), considering the fibre that crosses the crack. It is worth mentioning that the
results at both fibres that cross the crack are identical due to symmetry. In this figure,
one observes a massive stress concentration in the fibre’s region near the crack (around
S = 8 cm, which is the crossing). This extreme behaviour is explained by the fact that the
fibres remain linear-elastic in these analyses. In a real scenario, that region would present
both yielding and slipping, which would cause energy dissipation and decrease the stress
concentration. Since the formulation applied herein does not allow for these nonlinearities
so far, this behaviour is expected. Besides, it is worth highlighting that the scenarios with
higher fibres Young’s modulus show higher values of axial stress along the fibre, which is
also in agreement to what is expected.

Therefore, this numerical example demonstrates that the proposed elastic reinforced
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Figure 34 – Deformed shape and z displacements field obtained via the IGABEM for each
scenario. Scale factor equals 50.

(a) E0 (b) E500

(c) E1000 (d) E1500

Source: The author.

formulation is adequate to simulate reinforced cracked problems. Later in this study, the
addition of the yield and the bond-slip behaviours to this formulation is expected to
lead to more accurate and representative models, which would be able to model real-life
engineering problems regarding cracked reinforced solids.



3.7. Numerical applications of the linear coupling formulation 91

Figure 35 – Axial stresses along the fiber that crosses the crack obtained in each reinforced
scenario.
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4

NONLINEAR REINFORCED

FORMULATIONS

This study consider two nonlinear behaviours at the reinforcements: the bond-
slip and the elastoplasticity. The first one allows for representing the adherence loss
phenomenon, i.e., the mechanical degradation of the interface matrix/reinforcement. The
second one properly represents the degradation of the reinforcement’s material, specially
when dealing with steel. This chapter presents each formulation in details separately.
Then, it presents the proper approach to combine the two nonlinearities into one solely
nonlinear formulation, which is able to represent the mechanical degradation of both the
reinforcement’s material and the interface.

4.1 Bond-slip modelling: Literature Review

The adherence stress analysis in the classic pullout tests (105) can be considered
the starting point of the study of adherence mechanisms between matrix and reinforcing
elements. In the pullout test, a concrete specimen is reinforced by a steel rebar at its
centre, which presents an outward extremity. A machine claw pulls this extremity under
tension. Several studies were able to investigate the adherence mechanism in a deeper
level using this experimental scheme: (106) experimented with loading cycles, being able
to analyse the load history’s contribution and cumulative effects; (107) analysed high-
performance concrete reinforced by steel bars. More recently, several studies have worked
on experimental analyses focused on ultra high-performance concrete reinforced by steel
bars, as mentioned in (108). (109) presents a modified pullout test, in which only half of the
steel bar’s length is adhered to the concrete. Comparing against the classical methodology,
this strategy would take to smaller perturbations in the adherence region, which are
caused by its proximity to the support plate. In addition, the traditional experimental
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scheme usually consists of a squared-base concrete prism. However, several authors adopt
cylindrical concrete specimens (110, 108), which provides a constant concrete cover to
protect the reinforcing bar.

It is clear that the adherence mechanism in reinforced concrete is significantly
complex. Although one can easily measure the consequences of the adherence loss (called
slip), its causes consist of the combination of several physical phenomena. According to
(111) and (112), the adherence is virtually composed by three distinct portions, however it
is impossible to measure each one of them separately. The first portion is the adhesion
related to the physicochemical bonds between the materials from matrix and reinforcement.
The second portion is the friction, which emerges from the energy transmission between
matrix and reinforcement as a result of the contact. The third is the mechanical adherence
due to overhangs usually present on reinforcing bars. Considering all of the variables and
phenomena related to the adherence, the use of various different models to describe the
adherence loss mechanism is understandable. Besides, these models are usually applicable
to specific pairs of materials and might present a few discontinuous regions, in which each
region is meant to represent a different adherence phenomena. The models proposed by
(113, 114) and (115) are examples of reinforced concrete adherence models.

The numerical simulation of adherence models for structures has always been a
relevant topic in this field. The FEM was initially applied by (116), which used bond link
elements to represent the adherence. This element’s parameter are given by a constitutive
adherence law (adherence stress vs slip). (117) applied the same approach to develop
analytical models that represent eccentric pullout tests. (118) expanded the formulation
with two-dimensional bond link elements, which incorporate parameter from the steel, the
concrete and the adherence law. (119) presented static and dynamic FEM formulations,
which consider the adherence loss effects.

Therefore, this context demonstrates the importance of studying the adherence
effects on concrete structures, as well as incorporating them to the structural designs and
analyses. In this regard, BEM formulations have been marginally treated in the literature.
(64) and (120) dealt with BEM approaches for adherence loss only in 2D formulations
using the FEM/BEM coupling. Hence, it is a contribution of this study the proposition of
3D BEM formulations considering the adherence loss using the 1DBEM/BEM coupling
technique. It is worth mentioning that the 1DBEM/BEM stands out as more suitable
for this problem than the classic FEM/BEM, since it shows smaller oscillations in force
results (13). Besides, the 3D approach is more adequate to represent real-world structures
through effective numerical models.
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4.2 Bond-slip modelling

The bond-slip modelling is based on the existence of a relative displacement between
the reinforcement and the domain. Hence, the displacements compatibility presented in
Eq. 3.2b is no loger valid. This relation can be rewritten as follows:

s = uD − uE (4.1)

in which s is the relative displacements vector. This expression is applied into Eq. 3.7 as
follows:

KEuD + GEfD = KEs (4.2)

Thus, one updates the coupling algebraic system as:
HCC 0 −GCF

HFC I −GFF

0 KE GE




ûC

uD

fD

 =


GCC

GFC

0

{t̂C
}

+


0
0

KE

 {s} (4.3)

Equation 4.3 is the starting point of the nonlinear modelling of the bond-slip.
The adherence law express the relation between the slip values and the adherence force
values. Then, this process become similar to the cohesive procedures. This study deals
with three different adherence laws: (a) constant law, (b) linear law and (c) multi-linear
law, as illustrated in Fig. 36. The laws (a) and (b) are generally used in purely theoretical
applications. Whereas (c) is based on a linearisation of the most suggested empirical laws
used to model reinforced concrete structures (113, 114).

The constant law (Fig. 36(a)) is composed only by a maximum constant value for
the adherence force (fmax). When one reaches this value, the slip can grow indefinitely.
Thus, this law can be mathematically represented as follows:

f(s) ≤ fMAX , s = 0
f(s) = fMAX , s > 0

(4.4)

The linear law (Fig. 36(b)) allows for the adherence force relaxation after a peak
plateau of fMAX . The relaxation phase ends in a constant residual value fRES. This law
can be mathematically represented as follows:

f(s) ≤ fMAX , s = 0
f(s) = fMAX , 0 < s ≤ s1

f(s) = fMAX −
(

fMAX − fRES

s2 − s1

)
(s − s1) , s1 < s ≤ s2

f(s) = fRES , s > s2

(4.5)
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Figure 36 – Different laws considered for the bond-slip behaviour modelling.
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The multi-linear law (Fig. 36(c)) presents a upward phase, which is limited by
the slip value s0. When this point is passed, the law still has a peak plateau and two
relaxation phases until the slip values goes to zero. One expect to obtain results more
close to experimental data with this adherence law, due to its inspiration in empirical
laws, as above-mentioned. Besides, its piecewise linear behavior should guarantee a good
convergence rate in the iterative process. This law can be mathematically expressed as
follows:

f(s) ≤ f0 , s = 0

f(s) = f0 +
(

fMAX − f0

s0

)
s , 0 < s ≤ s0

f(s) = fMAX , s0 < s ≤ s1

f(s) = fMAX −
(

fMAX − fRES

s2 − s1

)
(s − s1) , s1 < s ≤ s2

f(s) = fRES − fRES

(
s − s2

s3 − s2

)
, s2 < s ≤ s3

(4.6)

The laws’ parameters (fMAX , fRES, f0, s0, s1, s2 e s3) must be adequately informed
in each application.
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4.2.1 Prescribed displacements applied at reinforcement nodes

The formulations developed so far consider only prescribed boundary conditions at
the external boundaries, through p̂C in Eq. 3.9. However, it is worth considering to apply
prescribed displacements directly at reinforcement nodes, which allows the modelling of
pullout tests. In this experimental test, displacement controlling is applied into a external
point of the reinforcing steel bar.

The solution scheme requires the connection element (Sec. 3.6), positioned over
the external boundary as illustrated in Fig. 37. This element shall transfer the applied
load/displacement to the nearest reinforcement node.

Figure 37 – Connection element applied for the prescribed displacement directly at the fires.

connection element

Source: The author.

Unlike the formulation presented in Sec. 3.6, the connection element herein has
only one adjacent reinforcement element. Therefore, its other end consists of a new node
that must be added to the global matrices K̄E and ḠE. The degrees of freedom related
to these additional nodes are positioned at the end of the reinforcement mesh, thus the
global matrices can be rewritten as follows:

K̄E =
KE

¯̄Ksup
¯̄Kinf

¯̄Kdiag

 (4.7a)

ḠE =
GE

¯̄Gsup
¯̄Ginf

¯̄Gdiag

 (4.7b)

where KE and GE are the original global matrices, which does not consider the additional
nodes contribution. K̄E and ḠE are the updated global matrices that must be considered
into the algebraic system.

Equation 4.7 allows splitting the degrees of freedom into the original ones and the
additional ones, which have been created by the connection elements. Then, the prescribed
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displacements are applied into the additional ones. Equation 4.2 can now be rewritten,
by setting the reinforcements prescribed displacements (ūD) apart from the unknown
displacements (uD), which results in the following:

KEuD + ¯̄KsupūD + GEfD = KEs (4.8)

Equation 4.8 represents the original reinforcement nodes equilibrium. In addition
to this expression, one also writes the reinforcement’s formulation for the additional nodes,
as follows:

¯̄KinfuD + ¯̄KdiagūD + ¯̄GinffD = freac + ¯̄Kinfs (4.9)

where freac is the reaction force related to the prescribed ūD. It is worth stressing that Eq.
4.9 and Eq. 4.8 consider null adherence force at those nodes.

Then, one rewrites the algebraic system from Eq. 4.3 as follows:

HCC 0 −GCF 0
HFC I −GFF 0

0 KE GE
¯̄Ksup

0 ¯̄Kinf
¯̄Ginf

¯̄Kdiag





ûC

uD

fD

ūD


=


GCC

GFC

0
0


{
t̂C
}

+


0
0
0
I

 {freac} +


0
0

KE
¯̄Kinf

 {s} (4.10)

One must considered the prescribed ūD when applying the boundary conditions,
which results in the following:

ACC 0 −GCF 0
BFC I −GFF 0

0 KE GE 0
0 ¯̄Kinf

¯̄Ginf −I





x̂C

uD

fD

freac


=


ĀCC

B̄FC

0
0

 {p̂C}+


0
0

− ¯̄Ksup

− ¯̄Kdiag

 {ūD}+


0
0

KE
¯̄Kinf

 {s} (4.11)

4.2.2 The nonlinear coupling formulation considering bond-slip effects

The numerical solution of the bond-slip nonlinear problem is also performed by
a Newton-Raphson solution technique, which enforces trial and correction phases. The
prescribed boundary conditions are sub-divided into load steps: ∆p̃C and ∆ũD. In the
trial phase, the slip variation ∆s is assumed as nill and the loads are applied into Eq. 4.10
as follows:

ACC 0 −GCF 0
BFC I −GFF 0

0 KE GE 0
0 ¯̄Kinf

¯̄Ginf −I





∆x̂C

∆uD

∆fD

∆freac


=


ĀCC

B̄FC

0
0

 {∆p̂C} +


0
0

− ¯̄Ksup

− ¯̄Kdiag

 {∆ūD} (4.12)
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The adherence force variations at the reinforcement nodes are given by:

∆fE = −∆fD (4.13)

Then, the unbalanced adherence force ∆fdes appears from the adherence law
threshold values fadm, which are given by Eq. 4.4, 4.5 or 4.6 and the accumulated slip
responses s. Thus:

∆fdes = −fD + ∆fE − fADM (4.14)

The k nodes in which ||∆fdes
k|| ≠ 0 are identified for running the correction phase.

The current iteration reapplies these unbalanced values into the structure, by considering
these nodes unbound from the domain. Then, the increment on the slip values δsk is
determined at the k nodes. On the other hand, the j nodes in which ∆fdes

j = 0 are
assumed as perfectly bonded and the increment on the adherence force δfdes

j is determined
during the iterations. This process results in an algebraic system of equations as follows:


ACC 0 0k −Gj

CF 0
BFC I 0k −Gj

FF 0
0 KE −Kk

E Gj
E 0

0 ¯̄Kinf − ¯̄Kk
inf

¯̄G
j

inf −I





δx̂C

δuD

δsk

δf j
D

δfreac


=


Gk

CF

Gk
FF

−Gk
E

− ¯̄G
k

inf


{
∆fk

des

}
(4.15)

As a consequence of the analysis evolution, particularly near the collapse, all
reinforcements nodes become k nodes in Eq. 4.15. Then, the algebraic system is written
as Eq. 4.16. At this point, rigid body movement may occurs, which may lead to the
instabilities during the numerical procedure. The prescribed displacement applied directly
at the reinforcements allows the solution of the algebraic system in all situations. Otherwise,
the responses could be undetermined due to the possible rigid body movement.

ACC 0 0 0
BFC I 0 0

0 KE −KE 0
0 ¯̄Kinf − ¯̄Kinf −I





δx̂C

δuD

δs
δfreac


=


GCF

GFF

−GE

− ¯̄Ginf

 {∆fdes} (4.16)

After solving the algebraic system, all variables are accumulated as follows:

∆x̂C = ∆x̂C + δx̂C

∆uD = ∆uD + δuD

∆sk = ∆sk + δsk

∆fk
D = ∆fk

D + ∆fk
des

∆f j
D = ∆f j

D + δf j
D

(4.17)



100 4. Nonlinear Reinforced Formulations

The adherence law is once again verified considering the accumulated values. If
any unbalanced adherence forces ∆fdes

k ̸= 0 are found, the process advances to the next
iteration. The convergence is verified accounting for the modulus of ∆fdes normalised by
the accumulated values fD, as follows:

εs = ||∆fdes||
||fD||

(4.18)

which defined the convergence of a given load step by the point in which εs becomes
smaller than the prescribed tolerance. It is worth mentioning that the vector fD may
achieve a nill value, when the multi-linear law is considered. At this point, εs is simply
given by the norm of ∆fdes.

At the end of the load step, all variables obtained by Eq. 4.17 can be accumulated
into their total values.

4.3 Elastoplasticity: Literature Review

The plasticity theory is applied in this work to the fibre elements and it is based on
a well-consolidated classical approach. The beginnings of this theory date back to the XIXth

and XXth centuries (121, 122). Initially, the theories were based on the perfect plastic
behaviour, in which the stress is limited by a horizontal plateau at the yielding stress.
Then, the elastoplasticity with positive hardening behaviour was presented (123, 124),
which allows for increments of stress above the yielding point. From these works, the
following could be defined: the concept of constitutive relations of elastoplasticity, load
and unload conditions, consistency relation of elastoplasticity and permanent (Plastic)
strains. These concepts establish the elastoplasticity theory as known nowadays. Further
details about it can be found in the literature (125) and in disciplines material (126).

The treatment of elastoplastic problems via the BEM initiated in the 70’s (127, 128).
Domain discretization is necessary to represent it at least in the regions in which plastic
strains occur, which is usually called internal cells in the context of the BEM. However,
as pointed by Telles and Brebbia (129), there is still advantage of using the BEM for
these problems, such as a reduced amount of information and degrees of freedom to obtain
the solution. Researches of the Department of Structural Engineering (SET-EESC-USP)
have worked with elastoplastic BEM formulations (130), in which the visco-elastic-plastic
behaviour for anisotropic media was properly represented with the use of internal cells.
Besides, Leonel (64) worked with reinforced 2D domains by the FEM/BEM, in which
plastification could occur at the fibres represented by FEM trusses. In this last work, the
elastoplastic behaviour was able to represent positive hardening only by the FEM and
such formulation was also applied to fracture analyses of reinforced domains.
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Using the FEM/BEM coupling to represent the plastic region by the FEM is
a well-known and successful approach available in the literature (78, 40). Whereas the
representation of plasticity by the BEM itself is yet not further developed, as well as the
application of the 1DBEM/BEM coupling. A elastoplastic 1DBEM/BEM formulation
to represent the fibre’s plastification was already presented by these authors for 2D
analyses (13). Thus, this work presents the extension of that formulation for 3D problems
and for Isogeometric formulations. With that, the final formulation will be much more
representative and effective.

4.4 Elastoplasticity modelling at the reinforcements

The classical elastoplasticity theory is applied herein. It is based on the principle
of additive decomposition of strains, in which a permanent deformation portion exists and
is called plastic strain. This strain occur when the applied loads exceed the elastic limit,
also called yielding point. There is a change in the material’s stiffness when the plastic
region is achieved, as illustrated in Figs. 38(a) and 38(b). The solution of the mechanical
response of a elastoplastic material then becomes nonlinear, since the stiffness depend on
the stress current level and its evolution. Deeper details about the elastoplasticity theory
applied herein are found in (131) and (126).

The strains additive decomposition into the elastic and (εe) and plastic (εpl) portions
can be stated as:

ε = εe + εpl (4.19)

Thus, the Hooke’s law application leads to:

σ = Eεe = E (ε − εpl) (4.20)

It is worth stressing that the elastoplasticity formulated herein is a one-dimensional
approach, since it is applied to the reinforcement elements.

The definition of the elastoplastic model is the next step. The simplest option
would be the perfect plasticity, illustrated in Fig. 38(a). In this model, the yield stress is
the maximum value of stress and the plastic strains can grow indefinitely after the yielding
point. Hence, a nill stiffness is observed in the plastic region of the constitutive law. More
representative models consider the hardening behaviour in the plastic region. In that case,
there may be stress increasing above the yield stress, as illustrated in Fig. 38(b). Thus,
there is a non-null stiffness in the plastic region, called tangent stiffness, which is usually
smaller than the initial elastic stiffness. Besides, the evolution of plastic strains causes an
increase of the elastic limit in the case of an unload and reload situation. This specific
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Figure 38 – Constitutive elastoplastic: perfect yielding (a) and hardening (b).

(a) (b)
Source: The author.

behaviour can follow two different models: isotropic or kinematic hardening. Figure 39
illustrates both this models.

Figure 39 – Bi-linear hardening models: isotropic (a) and kinematic (b).
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This study adopts a bi-linear isotropic hardening model, illustrated by Fig. 39(a).
The bi-linear term refers to the piecewise linear behaviour of the model. The isotropic
hardening considers a symmetric expansion of the elastic limit in relation to the reload in-
terval centre. In bi-linear models, the hardening is directly proportional to the accumulated
plastic strain in modulus, which is defined as the parameter α. Thus:

α =
∫

t
|dεp|dt (4.21)

The constant of proportionality between α and the hardening is the plastic modulus
Kp. Therefore, one writes the yield function f (σ,α) as follows:
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f (σ,α) = |σ| − (σy + Kpα) ≤ 0 (4.22)

in which σy is the yield stress. This function defines the threshold stress values by
f (σ,α) < 0. In the case of f (σ,α) > 0, the stress state is not valid and there must be
plastic strains evolution in order to find a valid point.

The nonlinear elastoplastic problem is solved by a Newton-Raphson scheme. Thus,
The prescribed boundary conditions are sub-divided into load steps ∆p̃C. The incremental
unknown variables are found by applying ∆p̃C into Eq. 3.9. Then, one calculates the
incremental predicted elastic strains dε by applying Eq. 3.62, Eq. 3.64 and the 1D Hooke’s
law. The yield function (Eq. 4.22) is verified considering the obtained responses and
predicted strains. Then, the plastic strains evolution is governed by the consistency and
complementary conditions, which are as follows:

dλf (σ,α) = 0
dλdf (σ,α) = 0

(4.23)

in which df (σ,α) is the yield function increment and dλ is equal the increment of α, i.e.,
dλ = dα.

From Eq. 4.23 and Eq. 4.22, one writes the following expression for dλ:

dλ = sign (σ)
E + Kp

dε (4.24)

which relates to the plastic strain increment as follows:

dεpl = dλ sign (σ) (4.25)

The real stress increment dσ can then be calculated through Eq. 4.20 in its
incremental form and Eq. 4.25, which results in:

dσ = E (dε − dεp) (4.26)

The stress and plastic strain increments calculated in Eq. 4.25 and Eq. 4.26 represent
the correction phase of the Newton-Raphson scheme.

Besides, Eq. 4.26, 4.24 and 4.25 allow finding the material’s stiffness at the plastic
region of the constitutive law, which is called elastoplastic modulus (EEP ). This stiffness is
constant in the plastic region due to the bi-linear characteristic of the model (Fig. 39(a)).
Thus, the constitutive law’s inclinations can be stated as:

E , se |σ| ≤ σy

EEP = EKp

E + Kp
, se |σ| > σy

(4.27)
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In order to numerically apply the Newton-Raphson scheme, the incremental vari-
ables are treated as finite increments. Therefore, the above-presented expressions are
evaluated for all integration points of the reinforcement elements mesh, considering the
finite increments ∆ε, ∆εpl and ∆σ. The mechanical fields at the integration points can be
determined through the Lagrangian polynomials interpolation, as follows:

∆ε = ϕj (ξi) ∆εj (4.28)

where ξi is the dimensionless coordinate of the integration point. ∆εj and ∆ε are the
nodal strain values and the strain at the integration point, respectively. This expression is
valid for each one of the reinforcement elements and can be similarly applied for stresses
and plastic strains.

From the predicted elastic strain ∆ε, the objective of a given iteration is to
determine the final finite increments of plastic strains, hardening parameter, plastic and
elastic stresses. The obtained values must satisfy the elastoplastic model relations, which
allows accumulating them as follows:

εn+1 = εn + ∆εn

εn+1
pl = εn

pl + ∆εn
pl

αn+1 = αn + ∆αn

(4.29)

The finite increment of the elastically predicted stress σn+1
t is calculated from Eq.

4.28 as follows:

σn+1
t = E

(
εn + ∆εn − εn

pl

)
(4.30)

which represents the trial phase. Then, the finite yield function is as follows:

fn+1
t =

∣∣∣σn+1
t

∣∣∣− (σy + Kpαn) (4.31)

Equation 4.31 verifies if the trial phase is valid, as above-described for Eq. 4.22. If
the trial is confirmed, there is no correction phase and Eq. 4.29 is applied to accumulate
all mechanical fields, considering ∆εn

pl = ∆αn = 0.

Otherwise, the plastic strain finite increment is determined by imposing fn+1 = 0,
which results in:

∆εn
pl = ∆λnsign

(
σn+1

t

)
∆αn = ∆λn

(4.32)

in which the parameter ∆λn is as follows:
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∆λn = fn+1
t

E + KP
(4.33)

Thus, Eq. 4.29 accumulates all mechanical fields. Nevertheless, the stress value is
corrected and accumulated as follows:

∆σn = E∆εn − E∆εn
pl

σn+1 = σn + ∆σn
(4.34)

which represents the correction phase.

The trial and correction phases above-presented must be applied for all integration
points of the reinforcements elements mesh. Thus, one determines all the mechanical fields
values at the step n + 1. These values must be interpolated back to the reinforcements
nodes. For this, new Lagrangian functions ϕj are defined based on the integration points
and then evaluated at the nodal dimensionless coordinates ξi. With that, Eq. 4.28 provides
the inverse interpolation, which allows determining the nodal mechanical fields values from
the known integration points values.

The corrected adherence forces ∆fE can be obtained considering the nodal updated
mechanical fields. Equation 3.64 provides this result, by considering fi as unknown values
and all of the Nj as known ones. Equation 3.2 transforms the obtained results into the
updated adherence forces, which are given by ∆fD + ∆fD

corr. The final expression for the
correction portion ∆fD

corr is as follows:

{∆fD
corr} =

[∫ X̄j

0
ϕi(ξ(x̄))dx̄

]−1 {
E∆εj

pl − E∆ε1
pl

}
(4.35)

in which i is in the range of nodes and j is in the range of integration points, both within a
given reinforcement element. This expression results in a linear system of equations, which
can be determined if the number of nodes and integration points are equal. Otherwise, the
least squares method is applied herein to obtain an approximate solution.

The updated and the initially predicted adherence force vectors might differ from
each other. This indicates the existence of unbalanced forces, which is also known as residual.
The nonlinear iterative process consist of reapplying the residuals into the structure in the
next iteration step. In theory, the actual level of external loads in the current load step is
only achieved when the residuals become nill.

The residual consists of a balance between the structure’s internal response and
the external loads. In the reinforced BEM formulations, this balance considers the whole
reinforced system (Eq. 3.9), as follows:

fdes =


ĀCC

B̄FC

0

 {∆p̂C} −


ACC 0 −GCF

BFC I −GFF

0 KE GE




∆x̂C

∆uD

∆fD + ∆fD
corr

 (4.36)
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in which fdes is the unbalanced force vector that represents the residual. The matrices
ĀCC, B̄FC, ACC and BFC have been previously presented for Eq. 3.9. ∆xC, ∆uD and
∆fD are the elastically predicted values in the trial phase. ∆fD

corr are the correction
values of adherence force from Eq. 4.35.

Thus, the reapplication of fdes in the next iteration proceeds as follows:


ACC 0 −GCF

BFC I −GFF

0 KE GE




δ∆x̂c

δ∆uD

δ∆fD

 = {fdes} (4.37)

where the values δ∆xC, δ∆uD and δ∆fD are unknown variables of the next iteration.
Hence, the elastoplastic equations above-presented are once again verified. One repeats
this process until the stipulated convergence is achieved. The convergence criteria is based
on the normalised norm of fdes, as follows:

∥fdes∥ =

√
(∑n

i {fdes}i)2√
(∑n

i {fD}i)2
(4.38)

in which n is the total number of nodes of the reinforcements mesh.

It is worth mentioning that there are at least two different approaches for the
unbalanced forces reapplication in the Newton-Raphson technique. The stiffness of the
reinforcement elements can be updated in KE considering the current constitutive region
(plastic or elastic) of each element. For this, the elastoplastic modulus EEP from Eq. 4.27 is
applied at the elements in the plastic regions. This procedure is usually known as Tangent
Operator of Tangent Stiffness method and it is applied in classical approaches of the
Newton-Raphson method.

Alternatively, the initial elastic stiffness can be considered in all reinforcement
elements, regardless of their current constitutive region. In this case, all matrices of the
algebraic system from Eq. 3.9 and 4.37 remain unmodified throughout the iterative process.
This approach is known as Constant Operator or Modified Newton-Raphson method.
Despite it takes a larger number of iterations to achieve convergence, every iteration herein
is faster than in the Tangent Operator.

This study applies the Constant Operator. In the context of BEM formulations,
re-evaluating the matrices and changing the system of equations at all iterations has
significantly bigger computational costs. This is mainly due to the fully-populated and
non-symmetric matrices found in BEM formulations. Therefore, it is highly efficient to
reduce the number of different algebraic systems to be solved throughout the iterative
procedure, which is elegantly accomplished in the adopted Constant Operator.
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4.5 Bond-slip modelling and elastoplasticity reinforcements for-
mulation

The previously presented nonlinear formulations can be coupled into an unified
nonlinear process. With that, the proposed formulation is able represent the mechanical
degradation of both the reinforcements material and the interface reinforcement/domain,
which is The superposition principle can be considered in each of trial and correction
phases because the Newton-Raphson technique handles the nonlinear solution problem.

Equation 4.3 represents the trail phase considering ∆p̂C and s = 0 in the right
hand-side of the expression. Then, the unbalanced forces of bond-slip ∆pbs

des can be
obtained by Eq. 4.14. The unbalanced force of elastoplasticity fpl

des is defined by Eq. 4.36,
which can be rearranged as follows:

fpl
des = −


−GCF

−GFF

GF

 {∆fD
corr} (4.39)

which defines the unbalanced force of elastoplasticity modelling.

Therefore, ∆pbs
des is reapplied by Eq. 4.15 and fpl

des, by Eq. 4.37. The obtained
correction values of all variables can be accumulated together. The total error norm ||e|| is
defined by:

||e|| = ∆pbs
des

pD
+ fpl

des
fext

(4.40)

The unified nonlinear process follows the Newton-Raphson technique, dividing the
problem into n load steps and applying trail and correction phases, as above presented,
until convergence is achieved in Eq. 4.40.

4.6 Numerical applications of the nonlinear coupled formulations

This Section presents the numerical applications executed with the proposed
nonlinear reinforced formulations. The first application compares the accuracy and efficiency
of the Lagrangian and the IGABEM reinforced formulations. The second application models
the pull-out text with a 3D reinforced IGABEM model. The third application presents
and example of the complete nonlinear formulation, in which both bond-slip and yielding
are modelled.
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4.6.1 Elastoplasticity modelling: Nonhomogeneous reinforced cylinder

This application handles the mechanical analysis of a nonhomogeneous structure
reinforced by fibres, which follow elastoplastic behaviour as illustrated in Fig. 40. Thus,
the formulation presented in Sec. 4.4 is applied herein. Figure 40(a) exhibits geometry,
boundary conditions and the positioning of the 17 long fibres, which cross the sub-region
interface between materials I and II. Figure 40(b) presents the fibres positioning along
the cylinder cross-section. The following geometry and load parameters are considered:
D = 2 cm, L = 10 cm ϕd1 = 0.6 cm, ϕd2 = 1.4 cm, p = 5 kN/cm2 and q = 0,5 kN/cm2.
The material properties of the 3D domains are: Young’s modulus EI = 1000 kN/cm2,
EII = 500 kN/cm2 and Poisson ratio νI = νII = 0.2. The long fibres are composed by two
materials, with Ef1 = 2500 kN/cm2, Ef2 = 1500 kN/cm2, Yield stresses σf1

Y = 20 kN/cm2,
σf2

Y = 7.5 kN/cm2 and plastic modulus Kp
f1 = 250 kN/cm2 and Kp

f2 = 150 kN/cm2. Fibres
positioned at y > 0 (illustrated in green colour in Fig. 40(b)) consider material f2 and the
other fibres (illustrated in blue colour) consider f1. All fibres have circular cross-section
with radius equals to 0.1 cm.

Figure 40 – Structure for the elastoplastic modelling: external dimensions (a) and fibres posi-
tioning (b).
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Source: The author.

The Lagrangian and the isogeometric models handle the problem modelling herein.
The Lagrangian mesh is composed by 2064 quadrilateral linear elements and 2604 colloca-
tion points. The IGABEM mesh is based on an isogeometric model of 28 regular NURBS
surfaces with bi-quadratic basis functions, i.e. p = q = 2. The IGABEM mechanical model
results in 356 collocation points. Figure 41(a) and 41(b) exhibit both numerical models.
Figure 41(b) illustrates only the collocation points of the isogeometric model. 28 quadratic
reinforcement elements represent each long fibre in the mechanical modelling, which result
in 986 nodes. These models have demonstrated mesh convergence in previous analysis,
regarding displacements at the boundary and both displacements and stresses results at
the fibres.

The nonlinear analysis is performed within 10 load steps and a tolerance for
convergence of 10−6 is prescribed because fibres allow for elastoplastic behaviour. The
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Figure 41 – Lagrangian model with linear quadrilateral elements (a) and collocation points of
the IGABEM model (b).

(a)

(b)
Source: The author.

average number of iterations to achieve convergence at each load step is 25. The isogeometric
and Lagrangian formulations do not differ considerably in this aspect.

The upper fibre (positioned at y = 0.7, z = 0 cm) and the lower fibre (positioned
at y = −0.7, z = 0 cm) illustrate the mechanical results at the reinforcements. Figures 42
and 43 illustrate the normal stress and the plastic strain results as a function of each one
of the above-mentioned fibres length (Sf ), respectively.

Figure 42 – Normal stress (a) and plastic strain (b) along the upper fibre.
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Figure 44(a) illustrates displacements obtained along the centre fibre (positioned
at y = 0, z = 0 cm), in which x displacements are nil due to the symmetry of the problem.
The right fibre (positioned at y = 0, z = −0.7 cm) illustrates the x displacements, which
can be observed in Fig. 44(b).
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Figure 43 – Normal stress (a) and plastic strain (b) along the lower fibre.
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Figure 44 – uy and uz displacements along the centre-fibre (a) and ux displacements along the
right fibre (b).
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All results presented along fibres compare the Reinforced IGABEM formulation
with the Lagrangian reference formulation (BEM) (132). One observes good agreement
in all figures, regarding stresses, plastic strains and displacements. Some results exhibit
a slight difference between the two models (as observed in Figura 42) because of the
usual perturbations observed near fibres ends and discontinuity points. However, these
perturbations have already been reported in the literature (133, 13) because of the
stress/force fields discontinuity at the interface.

Figura 45 illustrates the displacements along the boundary in the form of colour
maps. This figure presents the displacements magnitude (

√
u2

x + u2
y + u2

z) and the deformed
shape considers real scale. Besides, it compares the Lagrangian formulation (a) with the
IGABEM formulation (b) results. Each direction of the NURBS surfaces was subdivided
into 30 linear auxiliary cells to visualise the mechanical fields. The Paraview ® software
uses the auxiliary cells for generation the images without the support for NURBS basis
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functions. One observes good agreement between the results from both Lagrangian and
isogeometric formulations in Figura 45. It is worth mentioning that the uy displacements
exhibit the highest differences, which do not exceed a limit of 3%.

Figure 45 – Colour map of displacements magnitude (in cm) along the boundary obtained by
the Lagrangian formulation (a) and the isogeometric formulation (b).

(a) Lagrangian results

(b) IGABEM results
Source: The author.

Figure 46 illustrates the colour map of plastic strains distribution along the fibres.
The results obtained by the Lagrangian formulation (a) and isogeometric formulation
(b) are compared in this figure. One observes excellent agreement between them, with
maximum difference below than 1%. Besides, one notices that a considerable part of the
reinforcements exhibit yielding behaviour, which has been obtained due to the use of f1
and f2 materials, with different Yield stresses.
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Figure 46 – Colour map of plastic strains along all fibres, obtained by the Lagrangian formulation
(a) and the isogeometric formulation (b).

(a) Lagrangian results

(b) IGABEM results
Source: The author.

It is worth mentioning that the Isogeometric mesh required a significant lower
number of degrees of freedom to achieve the same level of accuracy of the Lagrangian
mesh. Although, the computational time of both models doesn’t differ by a significant
amount, because the integrations on the Isogeometric model are far more computationally
demanding. Yet, the fewer number of degrees of freedom is a big advantage in terms of
memory consumption, since BEM formulations have non-sparse matrices.

4.6.2 Bond-slip modelling: Pull-out test

This application handles the numerical modelling of the pull-out test. Thus, this
application illustrates the performance of the formulation described in Sec. 4.2. The
specimen for this classical test is composed by a steel bar immersed into a concrete cylinder,
as illustrated in Figura 47(a). The steel bar is pulled-out by the machine claw, which
enables the adherence behaviour analysis by force versus displacement curves. Experimental
results of this test have been presented by (108), which used the experimental scheme
illustrated in Figura 47(b).

Figura 47(a) illustrates the specimen dimensions. Only a central zone of 48 mm
length in the steel bar has contact with the concrete. The specimen’s extremities regions of
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80 mm length each (called upper and bottom regions) are contactless zones. The bottom
concrete region performs the mechanical stresses transmission between the steel bar and
the support plate. The upper concrete region is free of mechanical loading. Therefore,
the displacements assessed by the transducer can be numerically represented by the
displacements at the last contact point of steel bar and concrete (p1 in Figura 48). Hence,
the numerical model does not require the representation of the 80-mm concrete upper
region.

Figure 47 – Pull-out test in reinforced concrete: specimen’s dimensions, in mm, (a) and experi-
mental scheme (b).

(a) (b)
Source: (108),adapted.

Figure 48(a) illustrates the collocation points for the IGABEM model. The isogeo-
metric model is composed by 26 regular NURBS surfaces with p = q = 2 and a total of
762 collocation points. A Lagrangian mesh is also constructed for the mechanical analysis
of this application, which is illustrated in Fig. 48(b). This mesh is composed by 3861
linear quadrilateral Lagrangian elements and 4271 collocation points. For both models, 100
quadratic Lagrangian reinforcement elements (202 nodes) discretise the steel bar. Previous
analyses have shown mesh convergence for these models, regarding displacements at the
boundary and all mechanical fields along the reinforcements.

The experimental results provide the relative displacement between the upper con-
crete end and the steel bar as normalised adherence stress (τad). This relative displacement
is numerically represented by the slip value at p1 (Figura 48). τad is evaluated from the
reaction force freac at the opposite fibre extremity as follows:

τad = freac/πϕlb

(70/fcm)1/4 (4.41)
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Figure 48 – BEM model collocation points meshes.

(a) IGABEM (b) Lagrangian BEM

Source: The author.

where ϕ is the steel bar diameter, lb is the length of the adherence region and fcm is the
concrete compression strength.

The mechanical properties considered in this application are (108): Young modulus
and Poisson ratio of concrete equal to 41.16 GPa and 0.2, respectively; fcm = 67.44 MPa;
Young modulus of the steel bar equals to 201.8 GPa and ϕ = 16 mm. The prescribed
displacement at the steel bar end (ūD = 10 mm) represents the action of the claw machine
illustrated in Fig. 47(b). The following parameters govern the adherence law, which are
based on suggested values (114):

• s0 = 0.8 mm;
• s1 = 2.0 mm;
• s2 = 10.0 mm;
• s3 = 3 s2;
• fMAX = 0.55 (fcmπϕ);
• fRES = 0.4fMAX .

The nonlinear process for the bond-slip analysis has been solved within 150 load
steps. Besides, the tolerance for convergence is 10−6 in terms of the norm of unbalanced
forces. The iterative process required a number of iterations in the range of 3 to 20 for
convergence within each load step.

Figura 49 illustrates the results achieved by the proposed model (IGABEM), the
Experimental analysis (Experimental) and the equivalent Lagrangian BEM model (BEM).
This figure demonstrates excellent agreement among numerical and experimental responses
for all slip values. The proposed numerical approach predicted accurately the experimental
behaviour. Particularly, both the accuracy on the maximum adherence stress value and on
the post-peak behaviour are excellent. Besides, the obtained IGABEM and BEM results
are almost indistinguishable.
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Figure 49 – Adherence stress (τad) as function of the slip at point p1.

0 3 6 9
0.0

6.4

12.8

19.2

25.6

32.0

p1 slip (mm)

τ
a
d
(M

P
a)

IGABEM
BEM
Exp.

Source: The author.

Figura 50 exhibits fibre displacements (uE) and the load line displacements (uD),
which is the group of domain internal points of coincident position with the reinforcements
nodes. These results account for the bar length Sf and were obtained via the IGABEM.
Four distinct steps along the analysis were assessed: at 2.5% of ū applied (a), 10% (b),
40% (c) and 100% (c). These load levels have been chosen for better illustrating the slip
behaviour evolution throughout the analysis.

Figure 50 – Reinforcements and domain displacements (uE and uD respectively) in x direction,
as a function of the bar length Sf , at different load levels.
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One clearly observes the slip evolution process along the bar length in Figura 50.
As expected, the slip evolution begins at the bar right-end, which is ū application point.
As the analysis evolves, the slipping intensity is transferred to the other bar end, leading
to an uniform slip along Sf at the analysis end. This behaviour can be explained by the
slipping contribution modelling in the reinforcements equation as proportional to the
stiffness (Eq. 4.2) and the adherence law, which limits the intensity of energy transmitted
between domain and fibre.

Figures 51(a) and 51(b) illustrate, respectively, the displacements over the boundary
in x and z directions obtained via the IGABEM. uy are not illustrated herein because
it is identical to Figura 51(b), rotated 90◦. For the visualisation, each NURBS surfaces
direction was subdivided into 45 auxiliary 4-node cells. Figures 52(a) and 52(b) illustrate
the same results obtained via the Lagrangian BEM. Both figures illustrate reinforcements
and boundary results.

Figures 51 and 52 present consistent behaviour for displacements over the concrete
specimen. Besides, the proposed coupling procedure leads to the accurate stress transfer
among the structural elements involved in system. Such behaviour has major importance
during the nonlinear process. Moreover, Figs. 51(b) and 52(b) show clearly the symmetrical
response obtained around the cylinder’s central axis, which is within the expected behaviour.
The results obtained via the IGABEM and the Lagrangian BEM are in excellent agreement
between each-other, which is expected in this application since the fibre’s behaviour is
predominant for the overall results.

It is worth stressing that the Lagrangian BEM requires 4271 collocation points at
the boundary, whereas the IGABEM requires only 762. Therefore, the IGABEM model
proposed herein requires less collocation points than the Lagrangian model to represent the
same mechanical behaviour with an equivalent accuracy. Thus, the IGABEM formulation
demonstrates an excellent numerical and computational efficiency in addition to the
observed precision.
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Figure 51 – Colour map of displacements (in mm) over the boundary obtained via the IGABEM.

(a) Displacements x (b) Displacements z

Source: The author.

Figure 52 – Colour map of displacements (in mm) over the boundary obtained via the Lagrangian
BEM.

(a) Displacements x (b) Displacements z

Source: The author.

4.6.3 Bond-slip modelling in elastoplastic fibre

This application handles the bond-slip modelling of a long fibre with elastoplastic
behaviour, which reinforces a prismatic solid as illustrated in Fig. 53. Thus, this application
demonstrates the performance of the formulation described in Sec. 4.5. The following
material properties are considered: domain Young’s modulus E = 3 kN/cm2, Poisson ratio
ν = 0, fibre Young’s modulus Ef = 10 kN/cm2 and fibre cross-section area Af = 0.1 cm2.
The applied load is p = 0.01 kN/cm2. The long fibre has yield stress and plastic modulus,
respectively, equal to σy = 0.05 and Kp = 1 kN/cm2. A linear adherence law is considered
herein, with the following parameters:
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• s1 = 0.5 cm;
• s2 = 2.5 cm;
• fMAX = 0.08 kN/cm;
• fRES = 0.4fMAX .

The isogeometric model is composed by 6 regular NURBS surfaces with p = q = 2.
The number of control points is equal to 17 in the solid axial direction (global x) and 6 in
the transverse directions (global y and z). The mechanical model totalises 464 collocation
points. 25 quadratic Lagrangian reinforcement elements discretise the long fibre, which lead
to 51 nodes. This model demonstrated mesh convergence in previous analyses, regarding
displacements at the boundary and both displacements and all mechanical fields over the
fibre. Only the IGABEM model is considered for this application.

Figure 53 – Structure analysed in Application 3: geometry (dimensions in cm) and loads.
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The nonlinear process has been solved into 50 load steps whereas the tolerance for
convergence was 10−6. This application considers four distinct scenarios:

• “e”: elastic reinforcements;
• “ep”: elastoplastic reinforcements;
• “bs”: bond-slip behaviour in elastic reinforcements;
• “bsp”: bond-slip behaviour in elastoplastic reinforcements;

where the scenarios consider different available nonlinear behaviours of the reinforcements.
The four scenarios responses can be compared against each other to demonstrate consistency
of the obtained results.

Figure 54 exhibits the normal force results N along the long fibre length S obtained
in all scenarios. The elastic result Ne corresponds to the expected mechanical behaviour
considering the applied external load, i.e., maximum tensile value at the fibre centre
point and nil value at the end-points. One observes a considerable decrease of the normal
force values (comparing against Ne) in the scenarios with elastoplasticity (Nep and Nbsp).
These scenarios achieved the fibre elastic limit and presented the hardening behaviour.
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Furthermore, bs scenario also shows an attenuation of normal forces due to the slipping
behaviour, which is more pronounced near the fibre ends. The yielding clearly influences
the central region of the fibre because of the higher stress values.

Figure 54 – Normal force N along the fibre length S, considering all four scenarios.
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Figure 55 illustrates the adherence force values fD along the fibre length S, con-
sidering the four scenarios. One observes a symmetric behaviour in the elastic results
(fD)e (in relation to the fibre centre point) with the maximum values at the end points,
which agrees with the adherence forces results available in the literature (89) for similar
structures. The bond-slip effects can be observed in (fD)bs and (fD)bsp, in which fMAX

limited the adherence force values. Besides, the presence of the elastoplasticity in bsp

leads to an extension of the fD limited region, which indicates that the yielding causes an
increase in the slipping behaviour.

Figure 55 – Adherence force values fD along the fibre length S, considering all four scenarios.
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Source: The author.

Figure 56 exhibits the plastic strain results εpl along the long fibre length S obtained
in ep and bsp scenarios. The obtained results match the expected behaviour. Then, the
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fibres central region exhibits the yielding, which is the region with higher stress levels (Fig.
54). Besides, one notices the effect of the bond-slip in these results: intensifying the plastic
strains in the central region and reducing the intensity of yielding as approaching the fibre
ends. This behaviour is related to the slipping near the extremities.

Figure 57 shows the slip values s along the long fibre length S obtained in bs

and bsp scenarios. Both scenarios demonstrate pronounced slipping behaviour near the
extremities, with opposite sign in each side. This behaviour is a result of the observed
adherence force (Fig. 55). When elastoplasticity is accounted, which occurs in the central
region, one observes an increase in the slip values (sbsp) on that region. Besides, the slip sbsp

is attenuated near the fibre ends because it is non-nil in a large S range when compared
against sbs.

Figure 56 – Plastic strains εpl along the fibre length S, considering ep and bsp scenarios.
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Figure 57 – Slip results s along the fibre length S, considering bs and bsp scenarios.
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Figure 58(a) and 58(b) illustrate the fibre displacements (uE) and the domain
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load line displacements (uD), in x direction, obtained in bs and bsp scenarios, respectively.
One understands better the opposite signs of slips in Fig. 57 by comparing these figures.
The slipping ensures that fibre displacements are smaller, in modulus, than domain
displacements because the external load is applied on the boundary. The opposite behaviour
can be observed when the external load is applied directly on the fibre, such as the pull-out
test, in which the fibre displacements are always higher than the domain’s (Fig. 50).

Figure 58 – Reinforcements and domain displacements (uE and uD, respectively) in x direction,
as a function of the fibre length S, considering bs (a) and bsp (b) scenarios.
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Considering the above-mentioned analyses, one concludes that yielding together
with slipping lead to the normal forces and the plastic strains attenuation in addition
to an increase in slip values. Obviously, when the nonlinear laws follow the parameters
presented in this application. This behaviour can be explained by the yielding effect, which
intensifies the fibres displacements and causes intense slipping behaviour. On the other
hand, the slip limits the adherence force values, which causes the normal force attenuation.
Although these results do not have reference values, the presented discussion is consistent
and demonstrate coherence of the obtained mechanical responses.

Figure 59 illustrates y direction displacements over the boundary obtained in bsp

scenario. A magnification factor equals to 2 is considered in the deformed shape. The
displacements behaviour is in agreement with the expected for the external loads applied
on the structure (Fig. 53).
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Figure 59 – Colour map of y direction displacements (in cm) over the boundary, considering bsp
scenario.

Source: The author.
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5

REINFORCED TIME DEPENDENT

FORMULATIONS

The time dependent behaviour of 3D reinforced and non-reinforced domains is
presented herein through the viscoelastic formulations. The rheological models (134)
of Kelvin-Voigt or Boltzmann represent the linear viscoelastic behaviour. The BEM
formulations consider the rheological model to represent the viscoelasticity without the need
for convolutional integration or domain discretization. Coupling viscoelastic formulations
are also presented, which are obtained through the 1DBEM/BEM coupling technique.

5.1 Viscoelasticity and BEM: Literature Review

The usual approach for viscoelasticity in elasticity problems is the use of fluency
and relaxation functions, which leads to a quasi-static incremental problem. In that case,
the time dependent solution is obtained from integral transformations or the correspon-
dence principle (97). Then, the application complex geometries and nonuniform boundary
conditions becomes a true challenge. Besides that, the problem becomes too sensible to
the time step size. More details about the classical approach can be found in the literature
(135, 136, 137).

An alternative to the classical approach is the use of rheological models to represent
the viscoelastic behaviour (134). With that, different time-dependent models can be
constructed from the basic rheological elements, including linear and nonlinear models.
In this context, the use of the BEM for modelling viscoelastic problems via rheological
formulations is truly effective. The advantages previously mentioned in this text allow
for modelling numerous viscoelastic problems without the need for domain discretization.
Among the studies found in the literature with BEM approaches for viscoelastic modelling,
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one may highlight: the evaluation of Stress Intensity Factors in viscoelastic polymers via
the BEM (138); the use of Laplace transformation to evaluate the crack behaviour within a
Kelvin-Voigt rheological model material (139); a BEM energetic approach for viscoelastic
media (140) and the mechanical analysis of anisotropic viscoelastic domains with the
consideration of initial imperfections (141).

An alternative procedure to handle the rheological models via BEM was presented by
Mesquita (142), which proposed a simplification to make the viscous constitutive matrices
directly proportional to the elastic constitutive matrix. Applying this strategy along with
disregarding the inertia terms, all terms of the time-dependent integral equation become
written as a function of the same constitutive matrix. Then, the same discretization used
for the elastic problem can be applied straightforwardly to the time-discretized viscoelastic
problem. This approach have showed great potential to be the basis of further developments
in BEM viscoelastic formulations, being expanded for reinforced (90, 81) and 3D domains
(143). Additionally, this approach have been utilised into fracture mechanics problems (54)
and viscoplastic anisotropic media (130). Finally, the 2D viscoelastic BEM Lagrangian
formulation for reinforced domains have been proposed by this author (66) recently. Thus,
the expansion of that formulation for 3D Isogeometric analyses is a subject of this work.

5.2 The rheological models

The viscoelastic materials present a time dependent behaviour called memory or
hereditary effects. This means that the mechanical response of such materials depend
no only on the applied load intensity, but also on its historic throughout time. The
rheological models are an alternative to mathematically represent this phenomenon (144).
This approach adopts the following hypothesis: stationary and homogeneous physical
properties, in addition to quasi-static behaviour. Besides, different classical formulations
can be mentioned to treat the viscoelasticity phenomenon as mentioned in (145, 146),
which are also briefly mentioned in (147).

5.2.1 Basic elements of the rheological models

The rheological models are built from the association of basic elements. Each
one of the basic elements represents a theoretical mechanical behaviour through simple
mathematical relations. Figure 60 illustrates these elements. The parallel with elements of
electric circuits (transistors, transformers and capacitors) is clear and valid.

Figure 60(a) exhibits a spring element, which represents the perfectly elastic
behaviours. This element responds instantly with strains when subjected to an applied
load. The response is directly proportional to a constitutive tensor, similarly to Eq. A.8.
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Besides, there are no permanent strains, i.e., the materials returns to its original shape
once the load is removed, regardless of its intensity.

Figure 60 – Basic elements representation: (a) spring and (b) dashpot.

(a) (b)
Source: The author.

The constitutive relation of the spring is similar to the Hooke’s law (Eq. A.8) as
follows:

σ
(el)
ij = Dijlmε

(el)
lm (5.1)

in which the index (el) identify the elastic fields related to the spring element.

Figure 60(b) exhibits a dashpot element, which represents the perfectly viscous be-
haviour. When subjected to an applied load, this element responds with strains rate, which
demonstrates the time dependency. The dashpot element is mathematically represented
by:

σ
(v)
ij = ηijlmε̇

(v)
lm (5.2)

in which ηijlm is the viscous constitutive tensor, analogously to Dijlm from Eq. 5.1. ε̇v
lm

represent the derivative of εv
lm with respect to time. It is worth mentioning that there is

no instant response in the dashpot element, since it responses only with a strains rate.

The viscous constitutive tensor is mathematically represented by the following
expression:

ηijlm = θλλδijδlm + θµµ (δilδjm + δimδjl) (5.3)

where µ and λ are the parameters presented for Eq. A.10. θλ and θµ are viscous repre-
sentative parameters (144). A acceptable simplification of these parameters, according to
Mesquita (144), is as follows:

θλ = θµ = γ (5.4)

Thus, Eq. 5.3 is rewritten as follows:



126 5. Reinforced time Dependent Formulations

ηijkl = γ [λδijδlm + µ (δilδjm + δimδjl)] = γDijlm (5.5)

in which Dijlm is the elastic constitutive tensor.

Hence, the dashpot relation (Eq. 5.2) can be rewritten as a function of the same
constitutive matrix Dijlm of the spring element, as follows:

σ
(v)
ij = γDijlmε̇

(v)
lm (5.6)

Likewise the electric circuits, the basic elements presented herein can be arranged
in different ways (parallel and series associations) to assemble the rheological models.

5.2.2 Kelvin-Voigt model

The Kelvin-Voigt model (or simply Kelvin model) is composed by a series association
of a spring and a dashpot, as illustrated in Fig. 61.

Figure 61 – Association scheme of the Kelvin-Voigt viscoelastic model.
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In the electric circuits analogy, the strain is analogous to the electric potential
difference (or voltage). Therefore, both elements in Fig. 61 must be subjected to the same
strain ε. The stress σ is analogous to the intensity of current in the electric circuit, thus σ

must be divided into the spring and dashpot elements in Fig. 61. With these considerations,
one writes:

εij = ε
(el)
ij = ε

(v)
ij

σij = σ
(el)
ij + σ

(v)
ij

(5.7)

Applying Eq. 5.1 and 5.6 into Eq. 5.7, one writes the Kelvin model’s relation as
follows:

σij = Dijlmεlm + γDijlmε̇lm (5.8)

in which σij and εlm are the total stresses and strains, respectively. ε̇lm is the rate of
strains, i.e., the strains derivatives with respect to time.
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It is worth mentioning that the Kelvin model does not present any immediate
strains when subjected to σij. This is explained by the series association, which implies
that both the sprint and the dashpot present the same εlm. Thus, the absence of immediate
strains in the dashpot impede any immediate response of the spring. This mechanical
behaviour is not realistic for a large number of real materials, hence more complex models
are necessary.

5.2.3 Boltzmann model

The Boltzmann model is composed by a series association of one spring and one
Kelvin-Voigt’s scheme, as illustrated in Fig. 62.

Figure 62 – Association scheme of the Boltzmann viscoelastic model.
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Stresses and strains in the Boltzmann model are divided into: the purely elastic
portions (σ(e)

ij , ε
(e)
ij ) that are related to the spring E1 and the viscoelastic portions (σ(ev)

ij ,
ε

(ev)
ij ) that are related to the Kelvin scheme of E2 and η. One can relate these portions as

follows:

εij = ε
(e)
ij + ε

(ve)
ij

σij = σ
(e)
ij = σ

(ve)
ij

(5.9)

Equation 5.8 can be applied to the association of E2 and η, as follows:

σ
(ve)
ij = E2D̄ijlmεlm

(ve) + γE2D̄ijlmε̇
(ve)
lm (5.10)

in which E2D̄ijlm = Dijlm for the spring E2. Using this same concept, Eq. 5.1 can be
applied for the spring E1 as follows:

σ
(e)
ij = E1D̄ijlmε

(e)
lm (5.11)

Thus, applying Eq. 5.10 and the time derivative of Eq. 5.11 into Eq. 5.9, one writes
the Boltzmann’s relation as follows:
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σij = E1E2

E1 + E2
D̄ijlm (εlm + γε̇lm) − γE2

E1 + E2
σ̇ij (5.12)

in which σij and εlm are the total stresses and strains, respectively. σ̇ij is the rate of
stresses, i.e., the stresses derivative with respect to time.

It is worth mentioning that the Boltzmann model overcomes the mentioned limita-
tions of the Kelvin model, due to properly represent both immediate and time dependent
responses. Because of this fact, the Boltzmann model is also called standard solid.

5.3 Viscoelastic BEM formulations

The rheological model’s relation must be applied into the BEM formulation in
order to produce a viscoelastic formulation. Therefore, each rheological model leads to a
different numerical formulation.

5.3.1 Kelvin Voigt’s 3D domains formulation

Equation 5.8 must be applied into the boundary relation from Eq. 2.4, instead of
the elastic constitutive relation. Thus:

∫
Γ

U∗
kitidΓ −

∫
Ω

E∗
kijDijlmεlmdΩ −

∫
Ω

E∗
kijγDijlmε̇lmdΩ +

∫
Ω

U∗
kibidΩ = 0 (5.13)

Applying Eq. A.24, Eq. A.25 and Eq. A.7 into Eq. 5.13, one writes:
∫

Γ
U∗

kitidΓ −
∫

Ω
P ∗

kijui,jdΩ − γ
∫

Ω
P ∗

kiju̇i,jdΩ +
∫

Ω
U∗

kibidΩ = 0 (5.14)

in which u̇i,j is the derivative of the term ui,j with respect to time.

Then, integrating the second and third terms by parts and applying Eq. A.23 and
A.20, one writes:
∫

Γ
U∗

kitidΓ−
∫

Γ
T ∗

kiuidΓ−
∫

Ω
∆kuidΩ−γ

∫
Γ

T ∗
kiu̇idΓ−γ

∫
Ω

∆ku̇idΩ+
∫

Ω
U∗

kibidΩ = 0 (5.15)

The source point is considered to be internal to Ω, thus one may applies the sifting
property of the Dirac delta function ∆k. This process results in the free terms us

i and u̇s
i .

One may now write the viscoelastic version of the Somigliana’s identity as follows:

us
i + γu̇s

i +
∫

Γ
T ∗

kiuidΓ + γ
∫

Γ
T ∗

kiu̇idΓ =
∫

Γ
U∗

kitidΓ +
∫

Ω
U∗

kibidΩ (5.16)

Equation 5.16 is analogous to the elastic Somigliana’s identity (Eq. 2.9). The
boundary integral equation is obtained by applying the limiting process (Sec. 2.3). Thus,
one obtains the following:
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cs
ki [us

i + γu̇s
i ] +

∫
Γ

T ∗
kiuidΓ + γ

∫
Γ

T ∗
kiu̇idΓ =

∫
Γ

U∗
kitidΓ +

∫
Ω

U∗
kibidΩ (5.17)

in which the free term cs
ki is the same presented for Eq. 2.23.

Equation 5.17 can be rewritten in an algebraic from, following the process described
in Ch. 2. With that, both the Lagrangian or NURBS approximations can be applied herein
to represent a viscoelastic BEM or IGABEM formulation. Thus:

Hû + γH ˙̂u = Gt̂ +
∫

Ω
U∗

kibidΩ (5.18)

in which ˙̂u is the derivative of the displacements parameters û with respect to time.

Besides the boundary and domain integrations already treated in Ch. 2 and 3, Eq.
5.18 presents a first order time derivative of the displacements. The implicit version of the
Finite Difference Method (backward finite differences) is applied herein to solve the time
differential equation. This approach is based on discretising the time differential equation
into a finite number of time steps and applying the following approximation:

˙̂ut+1 = ût+1 − ût

∆t
(5.19)

in which t + 1 is the current time step and t is the previous time step. The size of a time
step is constant and equals ∆t.

Applying Eq. 5.19 into Eq. 5.18, one writes:
(

1 + γ

∆t

)
Hût+1 = Gt̂t+1 + γ

∆t
Hût +

∫
Ω

U∗
kib

t+1
i dΩ (5.20)

Equation 5.20 then defines the boundary solutions (displacements and tractions)
at a given time step t + 1. Note that this is a time marching process, for which initial
conditions (at t = 0) are required. Besides, the convergence of the Finite Difference Method
must be verified regarding the time step size ∆t. This equation is in fact well-behaved in
relation to ∆t and more details about it can be found in the literature (144, 147).

The expression for internal stress can be obtained from Eq. 5.17 by following the
process detailed in Ch. 2. Firstly, the derivative of Eq. 5.17 with respect to the source
point coordinates are computed. Then, applying Eq. A.7), one writes the following:

εs
ij + γε̇s

ij −
∫

Γ
T ∗

ki,juidΓ − γ
∫

Γ
T ∗

ki,ju̇idΓ = −
∫

Γ
E∗

kijtidΓ −
∫

Ω
E∗

kijbidΩ (5.21)

Applying Eq. 5.7, Eq. 5.1 and Eq. 5.6 into the first and second terms of Eq. 5.21,
one writes:

σs
jk +

∫
Γ

S∗
ijkuidΓ + γ

∫
Γ

S∗
ijku̇idΓ =

∫
Γ

D∗
ijktidΓ +

∫
Ω

D∗
ijkbidΩ (5.22)
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in which the integral kernels S∗
ijk and D∗

ijk are the hypersingular solutions given Eq. 2.19
and 2.18, respectively. σs

jk represents the total stress at the source point, which is equal to
the sum of the elastic and viscous portions in the Kelvin-Voigt model.

Equation 5.22 can be algebraically written as follows:

σs + H′û + γH′ ˙̂u = G′t̂ +
∫

Ω
D∗

ijkbidΩ (5.23)

in which the matrixes H′ and G′ are the same presented in Ch. 2 for the TBIE.

Applying the Finite Difference Method, one writes:

σs
t+1 = G′t̂t+1 − H′ût+1 − γH′ ˙̂ut+1 +

∫
Ω

D∗
ijkbt+1

i dΩ (5.24)

where u̇t+1 is obtained from Eq. 5.19, since the boundary displacements at t + 1 and t are
both known.

To determine the elastic and viscous portions of σs
t+1, one must recall the Kelvin-

Voigt model’s relations. For that, the time derivative of Eq. 5.1 is written as follows:

σ̇
(el)
ij = Dijlmε̇

(el)
lm (5.25)

Then, applying Eq. 5.25 and 5.1 into Eq. 5.8, one obtains the following differential
equation for stress:

σij = σ
(el)
ij + γσ̇

(el)
ij (5.26)

The total stress σij is known from Eq. 5.24, thus applying the Finite Differences
Method is enough to solve Eq. 5.26 regarding the elastic stress portion, which results in:

σt+1
el = σs

t+1 + γ/∆tσ
t
el

1 + γ/∆t

(5.27)

in which σt+1
el is the elastic portion of σt+1

s . Finally, the viscous stress portion σt+1
v can be

find as follows:

σt+1
v = σs

t+1 − σt+1
el (5.28)

5.3.2 Kelvin Voigt’s 1D domains formulation

The 1DBEM viscoelastic formulation is obtained from Eq. 5.22. This expression
can be applied to 1D domains, in which the domain integrations become line integrations
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along x̄ and the boundary integrations become the simple evaluation of the fundamental
solutions at the endpoints (1 e n), as follows:

us + γu̇s + (uN∗)
∣∣∣∣∣
L

0
+ (γu̇N∗)

∣∣∣∣∣
L

0
= (Nu∗)

∣∣∣∣∣
L

0
+
∫ L

0
pu∗dx (5.29)

which replace the elastic formulation presented in Eq. 3.50.

The expression for internal displacements (Eq. 3.57) is rewritten as follows:

uj + γu̇j − N∗
j1u1 + N∗

jnun − N∗
j1u̇1 + N∗

jnu̇n = −u∗
j1N1 + u∗

jnNn + qj (5.30)

in which j is a given internal point.

The 1DBEM algebraic system can be rewritten considering Eq. 5.29 and 5.30 as
follows:

Hu + γHu̇ = Gn + Ḡf (5.31)

in which the matrices H, G and Ḡ are the same presented for Eq. 3.55.

The same procedure presented in Sec. 3.5 is applied into Eq. 5.31. Thus, one writes:

KEu + γKEu̇ = GEf (5.32)

in which the matrices KE and GE are given by Eq. 3.60.

The Finite Difference Method as detailed in Sec. 5.3.1 is applied into Eq. 5.32,
which results in the following:(

1 + γ

∆t

)
KEut+1 = GEf t+1 + γ

∆t
KEut (5.33)

The procedure presented in Sec. 3.5 for the axial forces calculation is also valid
herein. However, Eq. 3.62 must be replaced by:

nt+1 =
(

1 + γ

∆t

)
KEut+1 − GEf t+1 − γ

∆t
KEut (5.34)

Besides, the axial internal force is divided into the elastic N(el) and viscous N(v)
portions in the Kelvin viscoelastic formulation. In order to find these portions, one writes
Eq. 5.26 for axial forces as follows:

N(tot) = N(el) + γṄ(el) (5.35)

in which N(tot) is the total axial force, resulting from N(el) + N(v). The solution of this
expression determines the elastic portion as follows:
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N t+1(el) = N t+1(tot) + γ/∆t

1 + γ/∆t

(5.36)

The viscous portion can be obtained by subtracting the elastic portion from the
total axial force, similarly to Eq. 5.28.

5.3.3 Boltzmann’s 3D domains formulation

To obtain the viscoelastic BEM formulation for Boltzmann, Eq. 5.12 must be
applied into Eq. 2.4. A process similar to the one described in Sec. 5.3.1 is followed, as
demonstrated in (143, 54), which leads to:

cki [ui + γu̇i] +
∫

Γ
T ∗

kiuidΓ + γ
∫

Γ
T ∗

kiu̇idΓ =
(

E1 + E2

E2

) ∫
Γ

U∗
kitidΓ+

γ
∫

Γ
U∗

kiṫidΓ +
(

E1 + E2

E2

) ∫
Ω

U∗
kibidΩ + γ

∫
Ω

U∗
kiḃidΩ

(5.37)

in which ṫi and ḃi are the time derivatives of ti and bi, respectively.

The Finite Difference Method is applied into Eq. 5.37, as described in Sec. 5.3.1. In
this case, boundary tractions and body forces also have their time derivatives approximated,
similarly to Eq. 5.19 for displacements. Equation 5.38 can then be algebraically written,
by applying the Lagrangian or NURBS approximations, as described in Ch. 2. Thus:

(
1 + γ

∆t

)
Hût+1 =

(
γ

∆t
+ E1 + E2

E2

)(
Gt̂t+1 +

∫
Ω

U∗
kib

t+1
i dΩ

)
+

γ

∆t

(
Hût − Gt̂t −

∫
Ω

U∗
kib

t
idΩ

) (5.38)

The expression for internal stress (σs) can be obtained through a process similar
to the one presented in Sec. 5.3.1. Its algebraic representation is as follows (54):

σt+1
s =

[
G′t̂t+1 − E2

E1 + E2

(
H′ût+1 + γH′ ˙̂ut+1 − γG′ ˙̂t

t+1
− γ

∫
Ω

D∗
ijkḃt+1dΩ

)

+
∫

Ω
D∗

ijkbt+1dΩ + γ

∆t

E2

E1 + E2
σt

s

] (
1 + γ

∆t

E2

E1 + E2

)−1 (5.39)

As well as the Kelvin-Voigt formulation, the total stress σs is divided into the
elastic and viscous portions through Eq. 5.27 and 5.28.

5.4 Reinforced viscoelastic formulations

The expressions of the BEM viscoelastic presented in this chapter must be applied
into the coupling technique formulation presented in Ch. 3. Thus, different couplings can
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be obtained from mixing the different viscoelastic models for fibre and domain. Each one of
this couplings may represent a different mechanical behaviour from real-world engineering
applications.

5.4.1 Kelvin/Elastic coupling

Elastic 1DBEM fibres reinforce 3D Kelvin-Voigt’s domains in this time-dependent
coupling model. The coupled formulation requires the expressions of boundary values and
internal displacements algebraic representations, which are considered instead of Eq. 3.5
and Eq. 3.6. The viscoelastic BIE is represented by Eq. 5.20, which must consider the fibre’s
adherence force as the body forces bi. For this, the integration scheme presented in Sec.
3.3 is considered herein, which provides the numerical evaluation of the domain integral
term in Eq. 5.20. Therefore, the algebraic representation of Eq. 5.20 can be rewritten as
follows (13):

(1 + α)HCCûC = GCCt̂C + αHCCû(−)
C + GCFfD (5.40)

where α = γ/∆t. The index (−) herein represents the variables evaluated at the previous
time step (t), all vectors without it contain information at the current time step (t + 1).

The algebraic equation for internal displacements can also be obtained from Eq.
5.20, by applying it for internal points. This equation provides displacements at domain
positions coincident with reinforcements nodes. Then:

(1 + α) uD + (1 + α) HFCûC = GFCt̂C + GFFfD + αHFCû(−)
C + αu(−)

D (5.41)

The matrices in Eq. 5.40 and Eq. 5.41 are the same presented in Sec. 3.2.

Equation 3.7 remains valid because the reinforcements are elastic. Therefore, one
writes the algebraic representation for the Kelvin/Elastic coupling by considering the
relations from Eq. 3.2, Eq. 3.7, Eq. 5.40 and Eq. 5.41 as follows:


(1 + α) HCC 0 −GCF

(1 + α) HFC (1 + α) I −GFF

0 KF GF




ûC

uD

fD

 =


GCC αHCC 0
GFC αHFC αI

0 0 0




t̂C

u(−)
C

u(−)
D

 (5.42)

Then, one properly enforces the boundary conditions, in a similar process to the
one presented for Eq. 3.9. This system then determines the unknown boundary values
xC and the unknown reinforcements values uD, fD at the current time step t + 1. It is
worth mentioning that the previous time step information is necessary to solve this system,
which characterises it as a time marching process like Eq. 5.20. Hence, initial conditions
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must be informed to start the time marching process and the analysis is performed along
a discretised time, as usual in time approximated problems.

The expression for internal stress σs (Eq. 5.24) is then updated to account for the
fibre’s adherence force in the domain term, as follows:

σs = G′
SCt̂C + G′

SFfD − H′
SCûC − γH′

SC
˙̂uC (5.43)

in which the index S represents the source point positioned at an internal point (not
coincident with any fibre nodes). The time derivative u̇C is given by Eq. 5.19.

5.4.2 Kelvin/Kelvin coupling

1DBEM fibres following Kelvin-Voigt behaviour reinforce 3D Kelvin-Voigt’s domains
in this coupling scheme. The 3D integral equations from Sec. 5.4.1 (Eq. 5.40 and Eq. 5.41)
remain valid herein. Besides, the reinforcements viscoelastic equation (Eq. 5.33) and the
compatibility relations from Eq. 3.2 are considered herein to obtain the following system
of equations for this coupling scheme:

(1 + α) HCC 0 −GCF

(1 + α) HFC (1 + α) I −GFF

0 (1 + α) KF GF




ûC

uD

fD

 =


GCC αHCC 0
GFC αHFC αI

0 0 αKF




t̂C

u(−)
C

u(−)
D

 (5.44)

Equation 5.43 for internal stress remain valid in this coupling scheme, because this
expression does no depend on the reinforcements mechanical behavior.

5.4.3 Boltzmann/Elastic coupling

Elastic 1DBEM fibres reinforce 3D Boltzmann’s domains in this time-dependent
coupling model. The viscoelastic BIE for Boltzmann’s represented by Eq. 5.38. The fibres
contribution are accounted in the domain integral term through the adherence force, which
applies the integration scheme presented in Sec. 3.3. Thus, Eq. 5.38 is rewritten as follows
(13):

(1 + α) HCCûC =
(
α + E1+E2

E2

) (
GCCt̂C + GCFfD

)
+α

(
HCCû(−)

C − GCCt̂(−)
C − GCFf (−)

D

)
(5.45)

This expression can be applied to internal points coincident with the reinforcement
nodes as follows:

(1 + α) uD + (1 + α) HFCûC =
(
α + E1+E2

E2

) (
GFCt̂C + GFFfD

)
+

α
(
HFCû(−)

C + u(−)
D − GFCt̂(−)

C − GFFf (−)
D

) (5.46)
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Equation 3.7 remains valid because the reinforcements are elastic. Therefore, one
writes the algebraic representation for the Boltzmann/Elastic coupling by considering the
relations from Eq. 3.2, Eq. 3.7, Eq. 5.45 and Eq. 5.46 as follows:


(1 + α) HCC 0 −

(
α + E1+E2

E2

)
GCF

(1 + α) HFC (1 + α) I −
(
α + E1+E2

E2

)
GFF

0 KF GF




ûC

uD

fD

 =


(
α + E1+E2

E2

)
GCC αHCC 0 −αGCC −αGCF(

α + E1+E2
E2

)
GFC αHFC αI −αGFC −αGFF

0 0 0 0 0





t̂C

û(−)
C

u(−)
D

t̂(−)
C

f (−)
D



(5.47)

The expression for internal stress σs (Eq. 5.39) is then updated to account for the
fibre’s adherence force in the domain term, as follows:

σs =
[
G′

SCt̂C − E2

E1 + E2

(
H′

SCûC + γH′
SC

˙̂uC − γG′
SC

˙̂tC − γG′
SFḟD

)

+γG′
SFfD + γ

∆t

E2

E1 + E2
σ(−)

s

] (
1 + γ

∆t

E2

E1 + E2

)−1 (5.48)

5.5 Reinforcements elastoplasticity behaviour modelling in Vis-
coelastic formulations

The elastoplastic formulation presented in Sec. 4.4 can be straightforward applied
to any reinforced viscoelastic formulation that consider the reinforcements behaviour
time-independent. Thus, both the Kelvin/Elastic and the Boltzmann/Elastic allow it.

In order to apply the elastoplastic formulation, the coupling system (Eq. 5.42 or
Eq. 5.47) must be written in terms of incremental values, since the elastoplastic approach
is solved by a Newton-Raphson scheme. Therefore, at a given time step t, the incremental
values of all variables present in the system are:

∆p̂C = p̂t
C − p̂t−1

C ∆x̂C = x̂t
C − x̂t−1

C

∆û(−)
C = ût−1

C − ût−2
C ∆uD = uD

t − uD
t−1

∆u(−)
D = uD

t−1 − uD
t−2 ∆fD = fD

t − fD
t−1

(5.49)

The current unknown incremental values ∆uC, ∆uD and ∆pD are obtained by
applying Eq. 5.49 into the coupling system (Eq. 5.42 or Eq. 5.47). Besides, the unbalanced
vector fdes in the Kelvin/Elastic coupling can be calculated as follows:
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fdes = −


−GCF

−GFF

GE

 {∆fD
corr} (5.50)

In the Boltzmann/Elastic coupling, the unbalanced vector is given by:

fdes = −


−
(
α + E1+E2

E2

)
GCF

−
(
α + E1+E2

E2

)
GFF

GE

 {∆fD
corr} (5.51)

Thus, an iterative nonlinear problem is solved into a unique load step within each
time step of the viscoelastic time marching process. Figure 63 illustrates the marching
process scheme, in which tF is the total number of time steps.

Figure 63 – Marching process scheme during the fibre elastoplasticity process in viscoelastic
formulations.
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5.6 Numerical applications of the viscoelastic coupled formulations

This Section presents the numerical applications executed with the proposed
viscoelastic formulations. The first application presents a reinforced BEM model, having a
pure FEM model from Ansys as reference. The second application validates the nonlinear
reinforced viscoelastic IGABEM formulation with pure FEM Ansys model reference results.
The third application presents the modelling of a complex 3D model inspired by lifting
mechanism structures.

5.6.1 Lagrangian BEM viscoelastic formulation application

This application handles the mechanical analysis of the structure illustrated in Fig.
64. Figure 64(a) illustrates the external geometry and loadings. The structure is reinforced
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by two webs of connected fibres, as illustrated in Fig. 64(b). Such reinforcements webs
are positioned at domain I, at positions z = 2.5 cm and z = 7.5 cm. The fibres have
been assumed as linear elastic with the following mechanical properties: Young’s modulus
Ef = 240 GPa and cross-section area Af = 0.6 cm2. Figure 64 illustrates the key points
pi, in which the results will be presented. The time dependent behaviour of the matrix
(domains I and II) is governed by the Kelvin-Voigt model with γI = 45.454545 days,
γII = γI/2, Young’s moduli EI = 30 GPa and EII = 220 GPa;

Figure 64 – Nonhomogeneous structure analysed via the Lagrangian viscoelastic BEM. Dimen-
sions in cm.
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(b) Internal web of fibres
Source: The author.

Only the Lagrangian approximation is applied in this example. The boundary
element mesh is composed by 5148 linear quadrilateral elements and 6484 collocation
points. Structured mesh discretises the lateral sides of the domain I. The reinforcement’s
mesh have 352 quadratic elements and 656 nodes. Figure 65 illustrates both boundary
and reinforcements mesh in (a) and (b), respectively. An equivalent pure FEM model
has been constructed on Ansys, which led to references responses for the scenarios that
consider the Kelvin viscoelastic model. The pure FEM model is composed by 82424 solid
20-nodes elements and 1598 link elements, with a total of 153213 nodes. Previous analysis
demonstrated mesh convergence for both the pure FEM and 1DBEM/BEM models.
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Figure 65 – Boundary mesh (a) and reinforcements mesh (b) of the BEM model for the viscoelastic
application.

(a)

(b)
Source: The author.

The time dependent analysis is set to finish at 200 days with a time step of ∆t = 2
days for both the 1DBEM/BEM and the Ansys analysis. It is worth mentioning that the
entire analyses required a computational time of 27 minutes for the 1DBEM/BEM and 33
minutes for the Ansys, approximately.

Figure 66 illustrates the fibres’ axial stress results through its variation along the
FI fibre’s length (Sf ) at 200 days in (a) and its evolution along time at point p6 in (b). FI

is the bottom long fibre illustrated in Fig. 64(b) and p6 is the maximum stress (in modulus)
point among all fibres, also illustrated in the same figure. Both mentioned entities are at
the web of fibres at z = 7.5 cm.

Figure 66 demonstrates good agreement between the 1DBEM/BEM results (“Kelvin”
series) and the reference (“Ansys” series) responses in both (a) and (b). This result
demonstrates the accuracy of the proposed formulation. It is worth mentioning the slightly
differences among the axial stress values at the fibres ends. Besides, the results have
excellent agreement in smooth regions.

The differences of mechanical predictions at the fibre ends have been previously
reported in the literature (88, 133, 89, 13). Because of the domain mesh, ANSYS smooths
the mechanical predictions at those regions. For sake of clarity, concentrated forces have
not been applied at the fibre ends. Thus, the normal force should be nil at those positions.



5.6. Numerical applications of the viscoelastic coupled formulations 139

The 1DBEM/BEM achieves accurately this prediction whereas ANSYS fails on it. This
analysis demonstrates that 1DBEM/BEM is superior to the classical pure FEM approach
in this particular problem.

Figure 66 – Axial stress results at reinforcements: values over fibre FI at time equals to 200 days
(a) and evolution along time in point p6 (b).
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Figure 67 illustrates the evolution along time of the boundary displacements (uX ,
uy and uz) obtained from the 1DBEM/BEM (“Kelvin” series) and the reference (“Ansys”
series), at point p3 in (a) and at point p4 in (b). This figure illustrates the excellent
agreement for boundary displacements, which demonstrates the accuracy of the proposed
formulation.

Figure 67 – Boundary displacements evolution along time at points: p3 (a) and p4 (b).
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Figure 68 illustrates the colour map of displacements along z direction at the final
time step obtained via 1DBEM/BEM in (a) and via Ansys in (b). This figure illustrates
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the excellent correspondence of the boundary displacement field between the proposed
model and the reference. The maximum values have a difference about 1.5%.

The displacements results at the reinforcement’s points are in Fig. 69. The results
obtained via 1DBEM/BEM (“Kelvin” series) are compared against the Ansys responses.
Only the maximum displacements points have been illustrated for each direction: ux at p5

in (a), uy and uz at p6 in (b). This figure demonstrates once again good agreement among
the responses, which demonstrates the accuracy of the proposed formulation.

Figure 68 – Displacements along z direction at the final time step of the viscoelastic analysis (in
cm).
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Figure 69 – Reinforcement’s displacements evolution along time at points: p5 (a) and p6 (b).
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5.6.2 Nonlinear viscoelastic application

This application handles the mechanical analysis of the structure illustrated in Fig.
70. Four long fibres reinforce the nonhomogeneous Kelvin-Voigt viscoelastic solid. The
fibres cross the interface between material I and II. The fibres account for elastoplastic
behaviour, thus, the formulation presented in Sec. 5.5 is applied herein. The material
properties of the 3D domains are: Young’s modulus EI = 600 kN/cm2, EII = 400 kN/cm2,
Poisson ratios νI = νII = 0. 25 and viscoelastic parameter γI = γII = 45. 45454545 days.
The fibre properties are: Ef = 1000 kN/cm2, cross-section area Af = 0. 1 cm2, yield
stress σy = 10 kN/cm2 and plastic modulus Kp

f = 100 kN/cm2. The applied load is p = 1
kN/cm2, which is constant throughout the viscoelastic analysis. This application considers
nil initial conditions.

Figure 70 – Structure analysed through the nonlinear viscoelastic formulation: geometry (dimen-
sions in cm) and loads.
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The viscoelastic analysis is performed within 200 time steps of ∆t = 2 days each,
which lead to a total of 400 days. The nonlinear analysis of each time step considers a
tolerance for convergence of 10−6. The IGABEM model is composed by 12 bi-quadratic
NURBS surfaces (p = q = 2). The NURBS surfaces have 16 control points in the solid axial
direction (global x) and 5 in the transverse direction (global y and z). The mechanical
model results in 780 collocation points. The sub-region interface is composed by a pair of
NURBS with coincident position of collocation and control points. The reinforcements
mesh is composed by 160 quadratic elements and 328 nodes (40 elements in each long fibre).
The crossings between fibres and boundary interfaces enforce the Connection Element
presented in Sec. 3.6. Only the Isogeometric approximation is used in this example.

A pure FEM model constructed on ANSYS ® software is the reference in this
application. This model is composed by 40000 solid quadratic elements and 480 link linear
elements (trusses), considering the symmetry property of the problem along z direction.
ANSYS ® can represent the Kelvin-Voigt response by considering a dumping behaviour
directly proportional to the stiffness with a factor equals to γ. The time step size is ∆t = 2
and the analysis finishes at 200 days. Mesh convergence has been achieved herein, regarding
displacements at the boundary and both displacements and stresses at the reinforcements.

Figura 71 illustrates normal stresses and plastic strains at 400 days as a function
of the lower-right fibre (positioned at y = 0. 25, z = 0. 25 cm) length (S). This figure
compares the results obtained by the proposed model (IGABEM) and the reference
responses (Ansys).

Figure 71 – Normal stress σN and plastic strain εpl at 400 days along the lower-right fibre length
S.
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Figura 71 demonstrates good agreement among the responses. Some minor differ-
ences can be observed, although it can be explained by the oscillations in force results,
which are prominent in mesh domain methods.
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Four points (p1, p2, p3 and p4) illustrate the evolution of mechanical responses
along time. Figura 72 illustrates the points’ positions. p1, p2, p3 and p4 are lower-right
fibre points, in which p3 is the centre point (on the sub-regions interface), p1 is positioned
in the fibre’s region within I and p2 is positioned in the region within II. p4 is a internal
point at the sub-region I.

Figure 72 – Selected points pi in the structure for the analysis of mechanical results along time.
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Figures 73(a) and 73(b) illustrate the normal force N and plastic strain εpl evolu-
tion along time at p1 and p2 points, respectively. These figures show a good agreement
between the proposed model results (IGABEM) and the reference (Ansys) in both points.
Furthermore, one clearly observes the hardening behaviour in the N evolution at the time
corresponding to the plastic strain evolution start. This behaviour can be explained by
the reinforcements material constitutive law, which exhibits an isotropic hardening after
the elastic limit.

Figure 73 – Evolution of normal force N and plastic strain εpl along time at p1 (a) and p2 (b).
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Figure 74 exhibits the displacements results (in y and z directions) at p3, which
corresponds to the fibres maximum displacements point. One observes excellent agreement
of these results regarding the reference. The displacements follow the characteristic Kelvin-
Voigt behaviour, despite their pure elastic and time independent mechanical behaviour.
This response has been observed because the fibre mechanical response depends directly
on the matrix response, since all the external loads are applied at the structural boundary.



144 5. Reinforced time Dependent Formulations

Figure 75 illustrates the displacements results (in x and y directions) at the
internal point p4. The analysis of this figure enables similar conclusions as performed for
the responses in Fig. 74. Then, it illustrates the excellent accuracy and performance of
IGABEM approach.

Figure 74 – Displacements in y and z directions at p3 along time.
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Figure 75 – Displacements in x and y directions at p4 along time.
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Figura 76 exhibits the colour map of displacements at 400 days over the boundary.
This figure illustrates the results from the proposed model (a) and the reference responses
(b) through the magnitude of the displacements vector {ux , uy , uz}⊺. Besides, the structure
deformed shape considers real scale. Figura 76 demonstrates the accuracy of the proposed
model. The displacements field distribution over the boundary is accurate considering the
reference and the maximum difference is lower than 0.7%.

It is worth emphasising the computational efficiency of the proposed formulation.
The number of degrees of freedom is considerably low (4308) and the computational time
consuming is about 2 minutes. Considering the complexity of the problem (nonlinear and
time discretised) and the accuracy of the obtained results, the computational performance
can be considered excellent.
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Figure 76 – Magnitude of displacements (in cm) at 400 days over the boundary results.
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5.6.3 IGABEM viscoelastic formulation application

This application handles the mechanical analysis of the structure illustrated in
Fig. 77. The 3D geometry has been inspired in lifting mechanism structures and it is
composed by a hook (sub-domain II) and a pad eye (sub-domain I). Long fibres reinforce
the sub-domain I as illustrated in Fig. 78. All reinforcing bars have circular cross-sections
of radius equal to 0. 3 cm (grey coloured fibres in Fig. 78) or 0. 6 cm (black coloured
fibres). This application considers nil initial conditions. The applied loads are qx = 2
kN/cm2 and qz = 2 kN/cm2.

This application considers five distinct scenarios, which cover the coupling of
different constitutive laws (models) of matrix and fibres as presented in Secs. 5.4.1, 5.4.2
and 5.4.3. Tabela 1 details such scenarios. The viscoelastic parameter γ equals 45. 45454545
days, all Young’s moduli are written in GPa and the fibres Young’s modulus is Ef = 200
GPa in all scenarios.

Scenario Domains
Models

Sub-region I Sub-region II Fibres

EI γI (EB)I EII γII (EB)II Model γf

Elastic Elastic 40 - - 220 - - Elastic -
ke Kelvin 40 γ - 220 γ - Elastic -
kv1 Kelvin 40 γ - 220 γ - Kelvin γ
kv2 Kelvin 40 γ - 220 γ - Kelvin 2γ
be1 Boltzmann 120 γ 60 371. 25 γ 540 Elastic -
be2 Boltzmann 72 γ 90 300 γ 825 Elastic -

Table 1 – Different scenarios considered for the viscoelastic analyses.
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Figure 77 – Structure analysed in Application 5: isometric view and detailed view of each sub-
region I and II. Dimensions in cm.
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All scenarios presented upon Tabela 1 have the same global stiffness. To achieve
this condition, the resulting stiffness in Boltzmann models (Young’s modulus in series
with Boltzmann modulus) should be equivalent to the Young’s modulus in Kelvin-Voigt
models for both sub-regions. Thus, the mechanical response at the viscoelastic analysis
end should be the same in all scenarios.

Only the IGABEM formulation is applied for this example. The isogeometric
model is composed by 45 regular NURBS surfaces with bi-quadratic basis functions. The
geometrically exact model has 429 collocation points. However, this model has been refined
through knots insertion for obtaining convergence of the mechanical fields representation.
This technique adds knots and control points, without changing the NURBS surfaces
geometry (16). The knots insertion is uniform over all surfaces leading to the four different
meshes:

• M0: 429 collocation points in the IGABEM model and 216 reinforcement elements
(452 nodes) over the fibres, with approximate length equals to 1. 2 cm each one;

• M1: 989 collocation points in the IGABEM model and 324 reinforcement elements
(668 nodes) over the fibres, with approximate length equals to 0. 8 cm each one;

• M2: 3157 collocation points in the IGABEM model and 652 reinforcement elements
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Figure 78 – Detailed views of the reinforcing long fibres within sub-region I, considering symmetry
in x direction. Dimensions in cm.

Source: The author.

(1324 nodes) over the fibres, with approximate length equals to 0. 4 cm each one;
• M3: 11165 collocation points in the IGABEM model and 1300 reinforcement elements

(2620 nodes) over the fibres, with approximate length equals to 0. 2 cm each one.

in which the reinforcements mesh has been refined simultaneously. All reinforcement
elements are quadratic.

Figure 79(a) exhibits the convergence of the displacements magnitude at p1 (point
over the boundary of II) and p2 (point over the fibres). Figure 79(b) shows the convergence
of normal force N at p3 (over the fibres). These analyses consider the Elastic scenario,
therefore the results are time independent. All pi positions can be found in Figs. 77 and
78.

Figure 79 – Mesh convergence results regarding displacements magnitude at p1 and p2 (a) and
fibre normal force N (b), as a function of the total amount of nodes in the mesh np.
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Mesh M2 handles the mechanical analysis of this problem because of the convergence
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results. The difference considering the most refined mesh is 0. 51% in displacements and
0. 53% in fibre normal forces. Figure 80 illustrates M0 and M2 meshes.

Figure 80 – Collocation point meshes: obtained directly from CAD geometric model (a) and
refined for the mechanical fields representation with knot insertion (b).

(a) M0 (b) M2
Source: The author.

The time dependent analyses are performed with M2 mesh, considering 150 time
steps of ∆t = 2 days and a total analysis time of 300 days. The time increment value ∆t

leads to convergent responses. The internal point p4 and the fibre point p2 illustrate the
displacement results along time, considering the five scenarios. Figura 81 illustrates the
displacements magnitude at p4 in (a) and p2 in (b).

Figure 81 – Displacements magnitude |u| in cm at p4 (a) and p2 (b) along time, considering all
different scenarios.
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Figure 81 illustrates the comparison of the different scenarios responses. All dis-
placements have an asymptotic behaviour, which tends to the elastic response at the
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time analysis end. This behaviour is expected in the rheological models because the
dashpot element influence tends to zero along time and all scenarios have equal global
stiffness. On the other hand, one observes the difference between Boltzmann and Kelvin
scenarios, consisting of the immediate response, as expected (54). Besides, the increase in
Boltzmann modulus from be1 to be2 results in more pronounced immediate displacements.
Regarding Kelvin scenarios, one observes the initial displacements velocity following the
order ke > kv1 > kv2, as a result of the reinforcements time dependency, which follows
an inverse order (kv2 > kv1 > ke). Thus, the initial displacements velocity is inversely
proportional to the time dependent mechanical behaviour of reinforcements.

The internal point p3 and the long fibre centre point p5 illustrate the stress results.
These points enable the analysis of stress transfer between fibre and matrix along time.
Stress results at p5 account for von Mises stress (σVM) in its total (tot), elastic (el) and
viscous (v) portions. Normal force (N) results at p3 also present elastic (el) and viscous (v)
portions when viscoelastic behaviour is accounted in the fibres. Figura 82 exhibits these
results considering ke scenario, whereas Figura 83 illustrates the kv1 scenario results and
Figura 84 accounts for kv2 scenario.

Figure 82 – von Mises stress σV M at the internal point p5 (a) and normal forces N at p3 along
time, considering ke scenario. (el) refers to the elastic portion, (v) refers to the
viscous portion, (tot) is the total value and “Elastic” is the result obtained by the
linear time-independent model.
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One observes the domain total stress results (σVM (tot)) decreasing along time
in Figura 82 whereas the total fibre normal force N (tot) increases in modulus. Thus,
the stress transfer occurs from domain to fibres, which is a characteristic of Kelvin-Voigt
domains reinforced by elastic fibres, as well as ke scenario. This behaviour can be explained
by the lack of viscous response in the reinforcements, in which the N (tot) follows the
evolution of the Kelvin-Voigt elastic portion. This situation leads to the relaxation in the
domain (matrix) regions near the fibres, which is usually observed in many reinforced



150 5. Reinforced time Dependent Formulations

materials.

Figure 83 – von Mises stress σV M at p5 (a) and normal forces N at p3 along time, considering
kv1 scenario. (el) refers to the elastic portion, (v) refers to the viscous portion, (tot)
is the total value and “Elastic” is the result obtained by the linear time-independent
model.
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Figure 84 – von Mises stress σV M at p5 (a) and normal forces N in p3 along time, considering
kv2 scenario. (el) refers to the elastic portion, (v) refers to the viscous portion, (tot)
is the total value and “Elastic” is the result obtained by the linear time-independent
model.
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The relaxation behaviour is not observed in Figura 83 because both materials (do-
main and fibres) present the same time dependent behaviour in kv1 scenario. This scenario
results in constant total stresses in both domain and fibres. Besides, the reinforcements
results are also divided into elastic and viscous portions as well as the domain stress.

One observes the opposite behaviour of Fig. 82 in Fig. 84. The relaxation occurs in
the fibre and stiffening is observed in the domain. The higher fibres viscoelastic parameter
(γf = 2γ) in kv2 scenario explain this behaviour. Then, one observes higher contribution of
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the viscous portion in the fibres response and stress transfer from fibre to domain (opposite
of ke scenario).

Besides, Figs. 82, 83 and 84 demonstrated that all mechanical time dependent
results tend to the elastic response along time, as expected. These figures demonstrate
the robustness of the proposed time dependent formulations, which allow for represent-
ing several mechanical behaviours and different constitutive laws for both matrix and
reinforcements.

Figures 85, 86 and 87 illustrate the colour map of displacement over the boundary
obtained after 300 days in x, y and z directions, respectively. These results are equal at the
analysis end for all scenarios, as above-mentioned. The structure deformed shape considers
a magnification factor equals 5.

Figure 85 – Colour map of displacements (in cm) along x direction (ux) over the boundary
obtained at the end of the viscoelastic analysis.

Source: The author.

Figure 86 – Colour map of displacements (in cm) along y direction (uy) over the boundary
obtained at the end of the viscoelastic analysis.

Source: The author.

One observes the coherence of the obtained results in Figs. 85, 86 and 87, considering
the applied loads over the structure (Figura 77). All obtained displacements are nil over
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Figure 87 – Colour map of displacements (in cm) along z direction (uz) over the boundary
obtained at the end of the viscoelastic analysis.

Source: The author.

the fixed surface. The circumferential surface in which qx and qz are applied exhibited
the ux and uz maximum values. Besides, these values follow the correct orientation of the
applied loads.

Figures 88 and 89 illustrate the colour maps of fibres displacements magnitudes
and normal forces obtained after 300 days, respectively. The structure deformed shape
considers a magnification factor of 5.

Figure 88 – Colour map of displacements magnitude (in cm) over the fibres obtained at the end
of the viscoelastic analysis.

Source: The author.

Figures 88 and 89 also exhibit coherent results. Fibre displacements are in agreement
with the boundary displacements over material I, in which the fibres are embedded.
Furthermore, the upper layer of fibres shows compression, whereas the lower layer shows
tension. The predominant bending stress in the fibres region explains this behaviour, which
is consistent with the applied load (Fig. 77).

The above-presented discussions indicate that all performed mechanical analyses
led to coherent results and in agreement with the expected behaviours. Besides, it is worth
mentioning that the computational time consuming was approximately 13 minutes in
the elastic scenario and 20 minutes in the time dependent scenarios. These performances
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demonstrate the computational efficiency of the proposed formulations.

Figure 89 – Colour map of normal force (in kN) over the fibres obtained at the end of the
viscoelastic analysis.

Source: The author.
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6

NONLINEAR FRACTURE MECHANICS VIA

THE IGABEM

In this study, cracked 3D solids are represented by the nonlinear fracture mechanics
via the IGABEM. Nonlinear cracked are modelled at sub-regions interfaces of the IGABEM
as cohesive fractures, via different cohesive laws. Additionally, the viscous behaviour of
the cohesive crack according to different loading rates is studied. This chapter presents
the literature review on the topic, the developed formulations and numerical applications.

6.1 Fracture mechanics for quasi-brittle materials

]The mechanical failure of quasi-brittle materials has been characterised by the
nonlinear dissipation phenomena at the so-called fracture process zone (FPZ). This zone
is small in comparison with the crack length in purely brittle materials, which lead to the
linear elastic fracture mechanics (LEFM). Therefore, in LEFM, these nonlinear phenomena
can be disregarded. However, the FPZ is not small enough in quasi-brittle materials, which
triggers nonlinear effects that must be accounted for the accurate mechanical modelling
(148).

In this context, there are two mechanics of energy dissipation at the FPZ: the energy
necessary to form new crack faces (analogous to LEFM) and the energy necessary to beat
the material’s residual resistance. Two different approaches may model such phenomenon:
the equivalent elastic crack and the fictitious crack.

The equivalent elastic crack applies Griffith energy criteria and the entire crack
energy is used to form new crack faces. Therefore, the second dissipation mechanics is
neglected and the crack propagation may follow LEFM models. The equivalent elastic
crack’s length is defined by material parameters (149, 150). On the other hand, the fictitious
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crack approach considers a major role of the energy portion related to the material’s
residual resistance (151, 152).

This study applies a fictitious crack approach based on the model proposed by
Hillerborg, Modéer and Petersson (2). In this approach, the FPZ is represented by a
fictitious crack ahead of the real crack, under the influence of cohesive forces, as illustrated
in Fig. 90. Such forces as represented as a function of the Crack Opening Displacement
(COD) and material’s parameters, such as fracture energy Gσ and traction strength fT .
The relation between these physical quantities is called cohesive law. The fictitious crack
growth initiates at the critical COD point (CODc) and goes on until the observed cohesive
force matches the fT .

Figure 90 – Illustration of the fictitious crack model proposed by (2).

Source: The author.

It is worth mentioning that the fictitious crack model leads to non-singularities at
the crack tip (as opposed to the LEFM). The energy responsible for removing cohesive
forces from the fictitious crack can be calculated as follows:

Gσ =
∫ CODc

0
pη(COD)dCOD (6.1)

in which pη(COD) is the cohesive law. This function may be written in different forms to
represent different mechanical behaviours observed in real-life materials. This study deals
with three cohesive laws: linear, bilinear and exponential.

It is worth mentioning that the adherence force’s axial component is preponderant
in the crack growth process, since the required energy to propagate in mode II is proven
to be 20 - 25 times higher in comparison to the mode I (153). Then, the variation of
tangential cohesive forces can be neglected. Hence, this work considers the tangential crack
forces to be constant until the COD achieves the critical value CODc.
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6.1.1 The linear cohesive law

The linear cohesive law is the simplest model. It considers a linear variation of the
cohesive forces along the COD, achieving zero at the CODc as illus ted in Fig. 91. The
area bellow the curve matches Gσ and the cohesive law can be written as:

pη(COD) =


fT (1 − COD

CODc

) for 0 ≤ COD ≤ CODc

0 for COD > CODc

(6.2)

Figure 91 – Cohesive linear law

Source: Rocha, 2020 (63)

The critical value CODc can be determined from the area bellow the curve and it
is as follows:

CODc = 2Gσ

fT

(6.3)

6.1.2 The bilinear cohesive law

The bilinear cohesive law can be understood as a piecewise linear function, which
has a change in inclination at the crack opening value COD∗, f ∗

T as illustrated in Fig. 92.

Considering the area bellow the curve as equal Gσ, one can easily find the parameter
values:

f ∗
T = fT

3
COD∗ = 0.8Gσ

fT

CODc = 3.6Gσ

fT

(6.4)

Then, the expression for the bilinear law is as follows:
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Figure 92 – Cohesive bilinear law

Source: Rocha, 2020 (63)

pη(COD) =


fT −

(
fT −f∗

T

COD∗

)
COD for 0 ≤ COD ≤ COD∗

f∗
T COD

COD∗−CODc
+ f ∗

T

(
1 − COD∗

COD∗−CODc

)
for COD∗ ≤ COD ≤ CODc

0 for COD > CODc

(6.5)

6.1.3 The exponential cohesive law

The exponential cohesive law can considers a nonlinear exponential relation between
COD and adherence force (as illustrated in Fig. 93) and can be written as follows:

pη(COD) = fT e− fT
Gσ

COD (6.6)

Figure 93 – Exponential bilinear law

Source: Rocha, 2020 (63)

It is worth pointing that the simplification applied for tangential cohesive forces
above-mentioned cannot be adequately considered with the tangential law, since it does
not presents a value of CODc. In such case, the tangential forces are assumed to be null
when pη(COD) achieves 1% of fT .
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6.2 IGABEM formulation for the nonlinear crack growth

The fictitious crack approach of Hillerborg, Modéer and Petersson (2) is applied
herein in the context of the 3D IGABEM coupled with the sub-region technique. In such
case, the crack propagation patch follows the sub-region interface NURBS surfaces. Then,
the propagation patch must be previously known in order to correctly build the geometrical
model, which is relatively common in the context of laboratory tests.

As presented in Sec. 2.7, the IGABEM algebraic equation must be splitted into
the sub-regions k1 and k2:

HB
k1 HI

k1 0
0 HI

k2 HB
k2




ûB
k1

ûI
k1

ûB
k2

 =
GB

k1 GI
k1 0

0 GI
k2 GB

k2




t̂B
k1

t̂I
k1

t̂B
k2

+ bk1 + bk2 (6.7)

As long as k1 and k2 have the same mechanical properties, the matrices from Eq.
6.7 can be grouped into: external boundary terms (B) and crack faces terms (+ and − for
each face, respectively). Then:

[
HB H+ H−

]
ûB

û+

û−

 =
[
GB G+ G−

]
t̂B

t̂+

t̂−

 (6.8)

which represents the cracked problem formulation.

6.2.1 Nonlinear problem solving: the constant operator

In order to solve the nonlinear problem, a Newthon-Raphson technique is applied
herein. The total external load is divided into load steps and each load step starts with
the consideration of a linear behaviour (elastic prediction). This is the first iteration, in
which the following is valid:

û+ = û−

t̂+ = −t̂−
(6.9)

Besides, the prescribed displacements and tractions of the load step are considered
as ∆ûB

APP and ∆t̂B
APP in the vectors ûB and t̂B. Then, the elastic prediction is as follows:

[
HB −GB (H+ + H−) −(G+ − G−)

]


ûB

t̂B

û+

t̂+


=
[
−H̄B ḠB

]∆ûB
APP

∆t̂B
APP

 (6.10)



160 6. Nonlinear fracture mechanics via the IGABEM

With that, displacements and tractions at the collocation points in the crack faces
can be calculated. Then, the values are rotated to a local coordinate system (η,l1,l2) as
follows: 

u+
η

u+
l1

u+
l2

 = R+u+ and


u−

η

u−
l1

u−
l2

 = R−u−


t+
η

t+
l1

t+
l2

 = R+t+ and


t−
η

t−
l1

t−
l2

 = R−t−

(6.11)

In the local coordinate system, the Crack opening displacement (COD) can be
calculated as follows:

COD = −u−
η − u+

η (6.12)

At each collocation point, the unbalanced texc is found as follows:

texc = pη − pη(COD) (6.13)

in which tη(COD) is obtained from Eq. 6.2, Eq. 6.5 or Eq. 6.6, depending on the cohesive
law adopted (linear, bilinear or exponential, respectively).

The k collocation points in which ||tk
exc|| ≥ 0 are identified. These unbalanced forces

must be reapplied in the system in the form of traction parameters at the control points.
For that, the inverse mapping of displacements is applied:

t̂e
inc(i,j,e) =

(
Re

ij,pq(ξk,ηk)
)−1

(R)−1


tk
exc

0
0

 (6.14)

where e is the NURBS surface that contains the collocation point k, which has the
parametric coordinates ξk,ηk. Rij,pq are the NURBS Rational Basis functions from Eq.
2.57. It is important to note that the number of unbalanced collocation points is not
equal to the number of unbalanced control points, since a single value ||tk

exc|| ≥ 0 leads
to several t̂e

inc(i,j,e) ̸= 0. In fact, it is possible to obtain local-support NURBS, in which
each collocation points is mapped only by the control points parameters respective of its
own knot span. That is obtained by using knot vectors with multiplicity equals p + 1,
being p the NURBS degree. Hence, the reapplication process is performed by knot span,
as illustrated in Fig. 94.

The control points with calculated t̂e
inc(i,j,e) from Eq. 6.14 are then identified by

t̂k
exc, whereas the remaining control points at the crack faces are represented by the index
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Figure 94 – Illustration of the reapplication process of a single tk
exc to the control points of a

selected knot span.

Source: The author.

j. The compatibility relations from Eq. 6.9 remain valid only for j control points. At the
control points k, both û+

k and û−
k are unknown and t̂+

k = −t̂−
k = t̂k

exc.

Then, the reapplication of forces considers the following algebraic system:

[
HB −GB (H+

j + H−
j ) −(G+

j − G−
j ) H+

k H−
k

]


ûB

t̂B

û+
j

t̂+
j

û+
k

û−
k


=
[
(G+

k − G−
k )
] {

t̂k
exc

}

(6.15)

After the reapplication, Eq. 6.11 to Eq. 6.14 are applied once again. The tolerance
for convergence is verified with the Euclidean norm of the vector texc, which contains the
unbalanced tractions (Eq. 6.13) at all collocation points of the crack surface. This approach,
called Constant operator, is considered a modified Newthon-Raphson formulation, since is
does not update the matrices contribution due to the linear degradation. As previously-
mentioned for the nonlinear reinforced formulations, such technique may be advantageous
for BEM since the integration process to update BEM’s matrices is highly computationally
demanding.
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6.2.2 Numerical application of the cohesive formulation: Cube under tension

This first application of the cohesive approach aims to validate the implementations.
For that, a simple parallelepiped structure under tension is analysed, as illustrated in Fig.
95. Such structure is clamped at its left end and subjected to a prescribed displacement
at its right end. The notch is symmetrically positioned at the half span, as illustrated by
the shaded area in this figure. The material properties are as follows: Young modulus of
30 MPa, null Poisson ratio , fracture energy Gf = 0.015 kNm, tensile material strength
fT = 3 MPa, applied displacement ūAPP = 0.015 m. The geometric parameters illustrated
in Fig. 95 are as follows: a = 2 cm, b = c = 1 cm.

Figure 95 – Structure analysed in the first application of the cohesive fracture modelling.
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Source: The author.

The nonlinear problem has been solved through 100 load steps and tolerance for
convergence equal to 10−3. Moreover, 12 regular NURBS of linear order (p = q = 1)
discretise the solid, resulting in a model with 48 collocation points.

Figure 96 illustrates the results obtained for tractions at the crack interface versus
the applied displacement. It is possible to observe that such results replicate the behaviour
of the cohesive laws (Figs. 91, 92 and 93). Such similarity is expected due to the problem’s
simplicity of geometry and load (uniaxial traction with nill Poisson ratio). Therefore, the
observed results validate the correct implementation of the proposed cohesive laws.

Furthermore, Fig. 97 illustrates the number of iterations necessary to achieve
convergence along the load steps process. One observes the expected behaviour for a
Constant Operator approach: the regions in which the inclination of the cohesive curve is
higher require more iterations to achieve convergence for the same tolerance. Besides, the
linear and bilinear laws achieve a point in which only 1 iteration is necessary, since such
laws have fully horizontal curves after COD > CODc. Such behaviour is not observed for
the exponential law, because it doesn’t have a defined CODc point.
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Figure 96 – Tractions at the cohesive interface as a function of the applied displacements
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Figure 97 – Number of iterations to achieve convergence per load step
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6.2.3 Numerical application of the cohesive formulation 2: Three-point bend-
ing of concrete specimen

This application handles the nonlinear fracture modelling of a concrete specimen
tested at three-point bending. Reference results and parameters can be found in the
literature (154). Fig. 98 illustrates the structure considered for the numerical model. The
geometrical parameters are as follows: a = b = 20 cm, l = 40 cm, sup = 1.0 cm and a
notch height nh = 5 cm. The material properties are as follows: Young modulus of 30
MPa, Poisson ratio ν = 0.15, fracture energy Gf = 75 N/m, tensile material strength
fT = 3 MPa.
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Figure 98 – Structure analysed in the second application of the viscous-cohesive model.
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Source: The author.

The nonlinear problem has been solved through 24 load steps and tolerance for
convergence equal to 10−3. Moreover, 12 regular NURBS of linear order (p = q = 1)
discretise the solid, resulting in a model with 48 collocation points.

The structure analysed in this application is discretised into 18 NURBS surfaces of
second-order (p = q = 2). Knot insertion process has been applied to refine the surfaces by
adding control points, resulting in a model with 5311 collocation points, as illustrated in
Fig. 99. Mesh convergence has been verified using the reference solution’s linear portion.

Figure 99 – Mesh of collocation points applied in the mechanical analysis of the second application
of the cohesive model.

Source: The author.

Fig. 100 illustrates the results obtained via the three different cohesive laws (linear,
bilinear and exponential) in comparison with the reference results. It is worth mentioning
that the tractions are normalised by the beam’s thickness in this graph, in order to make
the comparison with the 2D reference (154) valid. One observes a good fit of the numerical
results of the proposed models. In fact, both the peak load and the post-peak behaviours
were successfully represented by the models, specially with the linear law, which presents
the best fit.
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Figure 100 – Normalised tractions at the cohesive interface as a function of the applied displace-
ments

0 0.5 1 1.5 20

20

40

60

80

uAPP (10−2 cm)

P̄
(k

Pa
/m

) Bilinear (IGABEM)
Linear (IGABEM)
Exponential (IGABEM)
Reference

Source: The author.

Furthermore, Fig. 101 shows the number of iterations necessary to achieve conver-
gence per load step, using the three different cohesive laws. Differently from Fig. 97, this
example does not achieve a point in which load steps can converge in only one load step.
This happens because this cohesive propagation is not constant along the crack face, thus
there is always some point of the crack face in a different region of the cohesive law.

Figure 101 – Number of iterations to achieve convergence per load step

0 6 12 18 240

5.5

11

16.5

22

Increment

N
um

be
r

of
ite

ra
tio

ns

Bilinear (IGABEM)
Linear (IGABEM)
Exponential (IGABEM)

Source: The author.



166 6. Nonlinear fracture mechanics via the IGABEM

6.3 Cohesive Crack Propagation Accounting for Loading Rates

The fracture mechanics formulations above-presented consider that the FPZ’s
resistance material behaviour is constant. However, several materials show that such
behaviour is considerable dependent on the loading rate (155, 156). Experimental results can
be seen in Fig. 102, which shows how the resistant load (peak load) and the apparent fracture
energy monotonically increase with the loading rate increase whereas the displacement
value associated to the peak load remains virtually the same.

Figure 102 – Load vs displacement curves for High-Strength Concrete at different load rates

Source: (156)

The physical micro-mechanisms governing the cohesive fracture under loading rate
and/or load duration processes have not been fully understood. Nevertheless, experimental
evidences suggest that the micro cracking delay at high strain rates characterises such
failure (157), which has been named as the first stage. Afterwards, the second stage starts,
which is composed by multiple micro crack propagation at the FPZ (158). It is worth
mentioning that the discrete crack propagation in quasi-brittle materials is the result of
micro voids connection and micro crack propagation at the FPZ. Thus, the reduction of
micro cracking with the strain rate increase leads to the reduction of the macro nonlinear
behaviour and the increase of the material tensile strength. Because the micro cracks do
not have sufficient time for searching the minimum energy path, they have been forced
to propagate along the shortest path with higher resistance. Therefore, it suggests that
fracture energy and the peak load increase as a function of the loading rate (156).

6.3.1 Viscous cohesive model

(159) proposed modifications in the classical cohesive laws (linear, bilinear and
exponential) to properly represent the viscous behaviours, which is dependent on the load
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rates. Such modifications have been motivated by the experimental relations provided by
the references (160, 155). The present study is pioneer to apply such modified viscous-
cohesive laws for fracture mechanics problems within a IGABEM framework. In order to
do that, the Constant Operator above-presented can be maintained, whereas the cohesive
law relations (Eqs. 6.2, 6.5 and 6.6) are replaced by the viscous-cohesive laws.

The cohesive law account for loading rates influence is proposed as follows:

pη(COD) = Ψ( ˙COD) f(COD,G( ˙COD)) (6.16)

where ˙COD is the time-derivative of the crack opening displacement. G( ˙COD) represents
the fracture energy influenced by the time variance of the COD. Ψ( ˙COD) refers to the
cohesive law modified by the rate dependent fracture energy and f(COD,G( ˙COD)) is the
time dependent function, which can be written as:

Ψ( ˙COD) = 1 +
( ˙COD

˙COD0

)n

(6.17)

in which COD0 indicates a normalisation parameter for COD and n is the exponent of
rate dependence.

Besides, the function G( ˙COD) is written as:

G( ˙COD) =


1 +

( ˙COD
˙CODw

)nw

for ˙COD ≤ ˙CODw

0 for ˙COD > ˙CODw

(6.18)

in which CODw is the fracture opening rate at which the material tends to the brittle
behaviour and nw is a dimensionless index for governing the evolution from quasi-brittle
to brittle behaviour. Both these parameters represent the mechanical behaviour and can
be obtained experimentally.

It is worth stressing that Eq. 6.16 addresses the failure mechanisms during crack
propagation. (161) presents an extensive experimental analysis of macro and micro-cracking
propagation at different loading rates. From the microscopic analysis at the FPZ, they
observed that cracks propagate at the weakest part of the cement past, i.e., the inter-facial
transition zone, under static and quasi-static loading conditions. Then, the major crack
appears because the interconnection of small cracks at the FPZ. However, at high loading
rates, cracks have less time for searching the weakest parts. Consequently, fails through
the aggregate have been observed. Moreover, a large amount of micro-cracks around the
major crack is observed. The observations of (161) can be correlated to Eq. 6.16. The
distribution of small cracks at the inter-facial transition zone provides a reduced value of
fT and an extended cohesive behaviour, with a higher value of CODc, under static and
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quasi-static loading rate. On the other hand, under higher loading rate, the major crack
path through the aggregate provides a higher value of fT and a smaller value of CODc

because of the reduction of neighbouring cracks.

6.3.2 Updated linear, bilinear and exponential laws

In order to obtain the updated cohesive laws accounting for the viscous behaviour,
the time dependent expression for crack energy Eq. 6.18 must be considered in the
formulation of the law (Sections 6.1.1, 6.1.2 and 6.1.2).

Then, the linear viscous-cohesive law can be written as:

pη(COD) =


fT

(
1 − COD

CODup
c

)
for 0 ≤ COD ≤ CODup

c

0 for COD > CODup
c

(6.19)

in which CODup
c = G( ˙COD) COD.

The bilinear viscous-cohesive law is written as follows:

pη(COD) =


fT −

(
fT −f∗

T

COD∗

)
COD

G( ˙COD) for 0 ≤ COD ≤ COD∗
up

fT

COD∗−CODup
c

COD
G( ˙COD) + f ∗

T

(
1 − COD∗

up

COD∗
up−CODup

c

)
for COD∗

up ≤ COD ≤ CODup
c

0 for COD > CODup
c

(6.20)

where COD∗
up = COD∗ G( ˙COD).

Finally, the updated exponential law is as follows:

pη(COD) = fT exp
{

−fT
COD

G( ˙COD)

}
(6.21)

6.3.3 Numerical application of rate dependent cohesive behaviour: Cube
under tension

The first application for the improved nonlinear load rate dependent formulation is
the fracture analysis of a parallelepiped structure under tension, as illustrated in Fig. 95.
Such structure is clamped at its left end and subjected to a prescribed displacement at its
right end. The notch is symmetrically positioned at the half span, as illustrated by the
shaded area in this figure.

The material properties are as follows: Young modulus of 30 MPa, null Poisson
ratio , fracture energy Gf = 0.015 kNm, tensile material strength fT = 3 MPa, applied dis-
placement ūAPP = 0.015 m, normalisation parameter tensile ˙COD0 = 0.284 m/s, exponent
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of rate dependency n = 0.27, normalisation parameter threshold opening ˙CODw = 0.1
m/s and exponent of rate dependency for threshold opening nw = 0.25. Such material
parameters have been adopted from literature reference (156). The geometric parameters
illustrated in Fig. 95 are as follows: a = 40 cm, b = c = 20 cm. The nonlinear problem has
been solved through 60 load steps and tolerance for convergence equal to 10−3. Moreover,
12 regular NURBS of linear order (p = q = 1) discretise the solid, resulting in a model
with 48 collocation points.

Three different loading rates have been applied in this analysis, which are equal to:
10−3, 10−5 and 10−7 m/s. In addition, the linear, bi-linear and exponential cohesive laws
represent the nonlinear fracture behaviour in the problem.

Fig. 103 illustrates the tractions vs applied displacement curves for the three
cohesive laws. As expected, the loading rate increase leads to the apparent increase on the
material tensile strength. Similar behaviour has been observed for the apparent fracture
energy. Thus, the higher values of external loads trigger the fracture process when high
loading rates are applied. Moreover, the threshold opening displacement reduce as the
load rate increase. This is a major feature of this approach, which represent the physical
phenomenon experimentally observed. Then, the material tends to the brittle behaviour
as the loading rate increase.

It is worth mentioning that the resulting curves of tractions vs COD are analogous
to the behaviour observed in Fig. 103, due to the simple geometry of the problem.

Finally, one can also observe that the critical load value is the same for all the
three laws, once the loading rate is the same in Fig. 103. Moreover, the differences among
the mechanical behaviour are attributed to the cohesive law description. Nevertheless, the
mechanical behaviour for each curve follows the assumption of each cohesive law, which
indicates the implementation accuracy.

6.3.4 Numerical application of rate dependent cohesive behaviour 2: Three-
point bending of concrete specimen with different loading rates

This application deals with the viscous-cohesive fracture of a concrete specimen
tested at three-point bending. Experimental reference results and parameters can be found
in the literature (159). Fig. 98 illustrates the structure considered for the numerical model.
The geometrical parameters are as follows: a = b = 100 mm, l = 182.5 mm, sup = 2.5 cm
and a notch height nh = 23 mm. The material properties are as follows: Young modulus
of 18.666 MPa, Poisson ratio ν = 0.15, fracture energy Gf = 219.6 J/m2, tensile material
strength fT = 1.904 MPa, normalisation parameter tensile ˙COD0 = 1.119 mm/s, exponent
of rate dependency n = 0.429, normalisation parameter threshold opening ˙CODw = 0.529
mm/s and exponent of rate dependency for threshold opening nw = 0.322. Such parameters
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Figure 103 – Reactive tractions at crack face versus applied displacement obtained by different
viscous-cohesive laws.
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(a) Linear viscous-cohesive law
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(b) Bilinear viscous-cohesive law
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(c) Exponential viscous-cohesive law

were obtained via inverse analysis considering the viscous-cohesive law and the laboratory
results (159).

The applied displacement is ūAPP = 0.35 mm into 30 load steps in the nonlinear
analysis. The tolerance for convergence is 10−3. Three different loading rates have been
applied in this analysis, which are equal to: 8.33 · 10−4, 8.33 · 10−3 and 8.33 · 10−2 mm/s.
In addition, the linear, bi-linear and exponential cohesive laws represent the nonlinear
fracture behaviour in the problem.

The structure analysed in this application is discretised into 18 NURBS surfaces of
second-order (p = q = 2). Knot insertion process has been applied to refine the surfaces by
adding control points, resulting in a model with 4303 collocation points, as illustrated in
Fig. 104. Mesh convergence has been verified using the reference solution’s linear portion.

Firstly, the results obtained via the three different viscous-cohesive laws are com-
pared with the experimental envelope in Fig. 105. A loading rate of 8.33 ·10−4 is considered
herein. One observes that the bilinear law provides a better fit with the experimental
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Figure 104 – Mesh of collocation points applied in the mechanical analysis of the second applica-
tion of the viscous-cohesive model.

Source: The author.

results. It is worth mentioning that such results for different loading rates show similar
behaviour and lead to the same conclusion. Therefore, the bilinear law will be considered
for the further analyses.

Figure 105 – Applied force versus CMOD obtained using different cohesive laws with the same
parameters.
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Fig. 106 shows the comparison between the experimental envelope and the fitted
numerical curves at the simulated loading rates using the bilinear viscous-cohesive law.
One observes a good fit between then numerical results and the experimental data. Fig
106(d) exhibits a comparison between the numerical curves with different load rates, which
shows an initial stiffness increase and an increase in the peak load curve with the load
rate. Beyond the peak, curves show close adherence between load values.

Fig. 107 illustrates the behaviour of the adjusted viscous-cohesive law chosen
for conventional concrete (bilinear) in comparison with the trilinear curve fitted in the
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Figure 106 – Applied force versus CMOD for comparing the obtained numerical results with the
conventional concrete experimental envelope.
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Source: The author.

reference (159). One observes that, as the loading rate increases, the tensile strength also
increases and the critical crack opening decreases for both models. There is a good fit
between the proposed model and the reference model. However, the proposed model has
showed (in Fig. 106) a fit with the experimental values as good as the reference model,
but having a lower number of parameters (since the curve presents only two piecewise
regions, against three).

The results presented herein conclude that the proposed viscous-cohesive model is
adequate for modelling conventional concrete at low loading rates.



6.3. Cohesive Crack Propagation Accounting for Loading Rates 173

Figure 107 – Viscous cohesive curve applied for conventional concrete.
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7

ADAPTIVITY

Mesh Adaptive strategies are proposed in this work for either the 3D IGABEM
and the reinforced formulation 1DBEM/IGABEM. The mesh Adaptive analysis may
provide the adequate refinement necessary to accurately represent the displacements and
tractions fields (within a stipulated error tolerance) in a mechanical analysis based on
the isogeometric models provided from CAD. Although these models are geometrically
exact, more refinement is usually necessary for the mechanical analysis. Therefore, the
Adaptivity analyses favours the straightforward process connection between the mechanical
analysis and the geometry design. This chapter presents the formulation developed for
the Adaptivity strategies proposed herein, as well as numerical examples comparing the
convergence achieved via the Adaptivity against the homogeneous refinement of all NURBS
surfaces.

7.1 Literature review

It is well-known that Adaptive mesh strategies are composed by three phases: the
error estimator, the Adaptive tactics and the mesh refinement process (162). In most cases
the critical part is the error estimation, specially when the analysis must not rely on exact
solutions for all problems. In that case, a posteriori error estimators stand out, since they
provide reliable estimates for the exact error without having reference or exact solutions.
This concept is already well-developed in the context of the FEM (163). However, the
particularities of the BEM, such as the lack of domain discretization, presents further
challenges for the development of accurate and robust a posteriori error estimators. In
this context, it is usual for the error estimator to rely on exact solutions or more refined
meshes (164, 165) and modified collocation strategies (166, 167).

An elegant approach for a posteriori point-wise error estimation in the BEM is
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based on the hypersingular integral equation (TBIE), which allows for the error evaluation
solely at the boundary without the need for domain discretization. Such approach is known
as the hypersingular residual (18) and relies on evaluating the residual of the BEM DBIE
equation considering the hypersingular integral equation (TBIE). This approach has been
further studied in the literature (168, 169, 170) and Liang et al. (171) demonstrated that
a error estimator calculated from the absolute difference between the DBIE and the TBIE
solutions is equivalent to the hypersingular residual demonstrated by Paulino (18). This
error estimator is adopted herein as a basis for the mesh Adaptive strategies.

In the context of the Adaptive tactics, Zienkiewicz’s work (17) has become a
classical reference and its strategy has been the basis for several applications among
FEM and BEM formulations (170). Effective Adaptive schemes are usually based on mesh
optimality criteria of equal distribution of global error and equal distribution of specific
error over the approximation elements (172). In this work, the Adaptive tactic is based on
the above-presented studies.

The mesh refinement process is the last step for developing a complete mesh
Adaptive scheme. The refinement process for polynomial elements in BEM formulations
is well-developed in the literature (171, 173, 165). Nevertheless, in the context of IGA
frameworks, the oriented locally refinement of NURBS requires several specific solutions.
Most of them are based on the use of different B-splines formulations (such as hierarchical
or T-constructions) or splitting the NURBS surfaces or even modifying the tensor-product
that defines a NURBS surface (174, 175, 176). This work applies the knot insertion process
(16) to produce refined knot vectors for regular NURBS surfaces that leads to both more
refined approximation spaces and the increase of the amount of collocation points. For
2D IGABEM problems, the knot insertion may easily produce locally refined NURBS
lines (177), however it does not allow for the local refinement of surfaces (175) in the 3D
IGABEM. Therefore, this work proposes the uniform refinement of each NURBS surfaces
in a process similar to the strategy proposed by Nguyen et al. (178) for 2D isogeometric
approaches of the FEM and XFEM.

Finally, it is worth mentioning that mesh Adaptivity schemes for coupled BEM
formulations for fibre-reinforced problems are not found in the literature yet. In fact,
Adaptive FEM-BEM coupling formulations have been presented for transmission and
interface problems (179, 180) and electromagnetism (181). Thus, this work proposes a
innovative error estimator for the coupling 1DBEM/BEM, which allows the development
of a mesh Adaptive scheme for Reinforced IGABEM formulations.
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7.2 Hypersingular Error estimator

This study presents two types of Hypersingular error estimator applied to the
IGABEM. This first approach is called the Displacements based error estimator and
follows what exists in the literature (18, 171). Then, a derived approach based on strains
is developed and presented in Sec. 7.2.2.

7.2.1 Displacements based error estimator

The hypersingular error in based on solving the same model with two different
linear systems of equations (18). These two systems consist of applying, respectively,
the DIE or the TIE for all of the collocation points of the model. Equation 2.74 can
algebraically represent both systems, therefore:

HûS = Gt̂S + bS (7.1)
H′ûH = G′t̂H + bH (7.2)

in which the indexes S e H represent the values related to the DIE (singular) and the
TIE (hypersingular) systems, respectively. Applying the boundary conditions in those
expressions, one writes:

Ax̂S = Bp̂ + bS (7.3)
A′x̂H = B′p̂ + bH (7.4)

where p̂ are the prescribed boundary conditions. These expressions result in the unknown
values at the boundary x̂S and x̂H.

The traditional hypersingular error estimator can be represented by the difference
between the DIE and the TIE solutions, as demonstrated in (171). This error estimator is
named herein as displacements based error estimator, which is as follows:

e = xS − xH (7.5)

in which e is the error estimator.

7.2.2 Strains based error estimator

This work proposes a alternative hypersingular error estimator, which is based on
the difference between the strains at the boundary (εij), obtained from xS and xS.

In order to calculate the strains at the boundary from a given boundary solution
x̂, one applies the indirect approach demonstrated by Aliabadi (58) for 3D problems. In
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this approach, the strains εij and tractions σij at a given point are calculated from the
global displacements ui and tractions ti values at this point.

A local coordinates system is defined, considering the NURBS parametric coordi-
nates directions (η1, η2) as the local directions (x̃1, x̃2) in the plane of the NURBS surface.
The third direction x̂3 is defined along the outward normal vector to the surface. The
rotation matrix from the global xi to the local x̃i system is Rij.

There are two vectors hi(η1,η2) and gi(η1,η2) that are tangent to the NURBS
surfaces at the current point. These vectors are defined along the parametric directions
(η1, η2) respectively, and are calculated as follows:

hi(η1,η2) = ∂xi

∂η1
(η1,η2) =

m∑
α=1

∂Nα(η1,η2)
∂η1

X̂α
i

gi(η1,η2) = ∂xi

∂η2
(η1,η2) =

m∑
α=1

∂Nα(η1,η2)
∂η2

X̂α
i

(7.6)

in which m is the number of control points in the current NURBS surface. X̂α
i is the global

coordinate in the xi direction of the control point α. Nα are the interpolation functions
related to the control point α. The outward normal vector is then defined as the cross
product di(η1,η2) = hi(η1,η2) × gi(η1,η2).

The tangent vectors from Eq. 7.6 and the outward normal vector determine the
rotation matrix components Rij as follows:

R1i = hi

h
i = 1, 2, 3

R2i = gi

g
i = 1, 2, 3

R3i = 1
d

[
h gi − hi gi

hi

h

]
i = 1, 2, 3

(7.7)

where d =
√

didi, h =
√

hihi and g = √
gigi.

The parametric directions η1 and η2 may not be orthogonal in the real space. Hence,
the angle θ between this directions must be taken into account, as:

θ = cos−1 (R1i R2i) (7.8)

Then, the stresses in the normal plane x̃3 are directly calculated from the traction
values, as follows:

σ̃3j = t̃i i = 1, 2, 3 (7.9)

in which t̃i = Rij tj.
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The strains in the plane (x̃1, x̃2) are calculated from the global displacements and
the rotation matrix.

ε̃11 =
m∑

α=1
ûα

j E11α
j (η1,η2) j = 1, 2, 3

ε̃22 =
m∑

α=1
ûα

j E22α
j (η1,η2) j = 1, 2, 3

ε̃12 =
m∑

α=1
ûα

j E12α
j (η1,η2) j = 1, 2, 3

(7.10)

where ûα
j is the displacement parameter along the direction j at the control point α. E11α

j ,
E22α

j and E12α
j are as follows:

E11α
j (η1,η2) = ∂Nα(η1,η2)

∂η1

R1j

h

E22α
j (η1,η2) = R2j

[
∂Nα(η1,η2)

∂η1

− cot θ

h
+ ∂Nα(η1,η2)

∂η2

1
g sin θ

]

E12α
j (η1,η2) = R2j

[
∂Nα(η1,η2)

∂η1

1
h

]
+ R1j

[
−∂Nα(η1,η2)

∂η1

cot θ

h
+ ∂Nα(η1,η2)

∂η2

1
g sin θ

]
(7.11)

Hooke’s law (Eq. A.10) applied in the local system allows finding all of the remaining
stress and strain components from the values obtained in Eq. 7.9 and Eq. 7.10. Thus, the
global strain components εij are obtained from the following systems transformation:

εij = Rki Rnj ε̃kn (7.12)

Therefore, the strains based error estimator e is writen as follows:

e = εS
ij − εH

ij =



εS
11 − εH

11

εS
22 − εH

22

εS
33 − εH

33

εS
12 − εH

12

εS
13 − εH

13

εS
23 − εH

23


(7.13)

where εS
ij and εH

ij are the global values of strains obtained from the above-presented
procedure applied respectively for the singular and the hypersingular solutions.

7.3 Adaptive scheme

In order to obtain a more stable adaptive scheme, it is worth splitting the total error
e into two portions: eu and et. eu is the error present at surfaces in which displacements
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are approximated and tractions are prescribed, whereas et is present at surfaces in which
tractions are approximated and displacements are prescribed. This separation is important
because the solution of the BEM systems are composed by two different mechanical fields
(displacements and tractions), which might have very distinct orders of magnitude. Then,
one writes:

e =
eu

et

 (7.14)

Thus, the L2 norms of the error at each NURBS surface i are as follows:

||eu||2i =
∫

Si

(eu)2dS and ||et||2i =
∫

Si

(et)2dS (7.15)

in which Si is the area of the NURBS surface i. The total error norms are given by
considering all of the NURBS surfaces nsurf in the model, as follows:

||eu||2 =
nsurf∑
i=1

||eu||2i e ||et||2 =
nsurf∑
i=1

||et||2i (7.16)

The definition of average error in the Adaptivity context is based on imposing a
global condition together with a local condition for the error norms. The global condition
is as follows:

||eu|| ≤ η̄u||u|| e ||et|| ≤ η̄t||t|| (7.17)

in which η̄u and η̄t are, respectively, the desired error percentages for displacements and
tractions, which are pre-established for the convergence analysis.

The local condition is as follows:

||eu||i ≤ ||eu||req
i e ||et||i ≤ ||et||req

i (7.18)

where the index req refers to the required local error values that attend the prescribed η̄u

and η̄t. The L2 norms ||u|| and ||t|| refer to the “theoretically exact” results of displacements
and tractions respectively, which can be represented by:

||u|| =
(
||û||2 + ||eu||2

)1/2
e ||t|| =

(
||t̂||2 + ||et||2

)1/2
(7.19)

in which ||û||2 e ||t̂||2 are the L2 norms of the approximated solutions û and t̂.

The req error portions from Eq. 7.18 are defined by the mesh optimality criterion
based on the equal distribution of the error (172). This criterion is mathematically
represented by the following:



7.3. Adaptive scheme 181

||eu||req
i = ||eu||

√
mu

e ||et||req
i = ||et||√

mt

(7.20)

in which mu and mt are the number of elements composing the errors eu and et, respectively.

The refinement parameters ξ proposed by Zienkiewicz (17) is defined for both the
global and local conditions (Eq. 7.17 and 7.18). For this, those expressions are written as
a ratio considering the current and the desired error values, as follows:

ξu
glob = ||eu||

η̄u||u||
and ξt

glob = ||et||
η̄t||t||

(7.21a)

ξu
loc = ||eu||i

||eu||req
i

and ξt
loc = ||et||i

||et||req
i

(7.21b)

Then, one defines a single parameter that simultaneously attend the global and
the local conditions, by ξ = ξglob · ξloc. Hence, applying Eq. 7.21a, 7.21b, 7.20 and 7.19,
one writes:

ξu
i = ||eu||i

η̄u

√
||û||2 + ||eu||2

mu

(7.22a)

ξt
i = ||et||i

η̄t

√
||t̂||2 + ||et||2

mt

(7.22b)

It is worth mentioning that the denominator in Eq. 7.22 coincide with ēm from (17),
but Eq. 7.22 specifically splits the error into the portions calculated from displacements
and from tractions. This splitting is also important in of obtaining the relative errors,
since each one should be divided only by the tractions or the displacements approximated.

Therefore, ξi > 1 defines the required refinement in each NURBS surfaces. The new
refinement is based on the parameter hi, which represents the average size of an element.
Hence, hi has a dimension of length (cm, for instance) and is calculated as follows:

hi =
√

Ai

ni
elem

(7.23)

where Ai is the total area of the surface i. ni
elem is the number of knot spans in the surface

i, which is given by ni
elem = (m − p)(n − q). Thus, the updated hup

i is as follows:

hup
i = hi

(ξi)1/p
, se ξi > 1 (7.24)

in which p is a convergence parameter, which can be adopted as the mesh order of
approximation (17). For IGA models, p is adopted as the higher value between p and q.
The ξi considered herein is the higher value between ξu

i and ξt
i from Eq. 7.22.
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The resulting hup
i determines the number of knots to be inserted on each NURBS

surface. This number is chosen so that the resulting knot spans have a real dimension as
close to hup

i as possible.

7.4 NURBS refinement process: knot insertion

The knot insertion process allows increasing the NURBS mesh density in a pro-
cedure analogous to the h-refinement of the isoparametric approaches. With that, the
approximation is improved by having more knot spans and control points, without modi-
fying the NURBS geometry. Therefore, one achieves a more refined mesh with a geometry
model as exact as the original one. More details about this formulation can be found in
the literature (16).

Let Ξ = {ξ1,...,ξn+p+1} and N = {η1,...,ηm+q+1} be the knot vectors of a NURBS
surface in the parametric directions u and v, respectively. One may insert an addition
knot in any of u or v in a analogous procedure. Let ξ̄ ∈ [ξ1, ξn+p+1[ be the knot inserted
into the u direction. One defines the coordinate Qi = {xi

1wi, xi
2wi, xi

3wi, wi} based on the
current control points positions xi

j and weights wi.

Inserting ξ̄ generates an updated Q̄i as follows:

Q̄i = αiQi + (1 − αi)Qi−1 (7.25)

in which:

αi =



1 i ≤ k − p

ξ̄ − ξi

ξi+p − ξi

k − p + 1 ≤ i ≤ k

0 i ≥ k + 1

(7.26)

where k denotes the knot span in which ξ̄ is inserted, i.e., the smallest interval ξ̄ ∈ [ξk, ξk+1[.
p is the NURBS order in the u direction.

Q̄i from Eq. 7.25 determines the new control points positions x̄i
j and weights w̄i by

the following:

Q̄i =
{
x̄i

1w̄i, x̄i
2w̄i, x̄i

3w̄i, w̄i

}
(7.27)

One may insert a knot η̄ into the other NURBS parametric direction v by simply
reapplying this procedure considering the knot vector N. Figure 108 illustrates the knot
insertion in a given NURBS surface (a) on both directions u (b) and v (c).
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Figure 108 – Example of NURBS refinement by knot insertion on both directions u and v.

(a) Original surface

(b) Knot insertion in u direction (c) Knot insertion in v direction

The knot insertion process is adequate to produce NURBS surfaces uniformly
refined. Figure 108 demonstrates that inserting a knot in one parametric direction creates
not only a new cell but a new row of cells in the respective new knot span. Therefore, the
NURBS is not refined by region but by rows and columns of cells. With that, it is not
possible to create a NURBS surface locally refined by this process only.

The literature presents some alternatives to produce locally refined NURBS surfaces,
which often use different B-splines formulations (such as hierarchical or T-constructions)
or propose splitting the NURBS surfaces or the tensor-product between Ξ and N (174,
175, 176). In order to maintain the regular NURBS surfaces formulation of this study, the
NURBS refinement is performed uniformly by the knot insertion process. The inserted
knots ξ̄ and η̄ are calculated to obtain a uniform subdivision of the exiting knot spans in
Ξ and N. In the adaptive scheme, Eq. 7.24 defines the required number of knots inserted
into each NURBS surfaces.

7.5 Adaptive scheme for reinforced cracked solids

In order to properly access a adaptive scheme for reinforced cracked solids, the Dual
BEM strategy must be coupled with the 1DBEM/IGABEM technique. The Dual BEM
strategy (14) enables the representation of physical discontinuities (cracks) by discretising
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both faces (denoted by Γ∗
f and Γ−

f ) with coincident NURBS surfaces, as presented in Sec.
2.8. Then, Eq. 2.84 replaces Eq. 3.5 into the 1DBEM/IGABEM coupling formulation, as
follows:

HCCuC = GCCpC + GCFfD (7.28)

which is applied to the 1DBEM/IGABEM formulation, by defining the following vector
and matrices grouping:

HCC =


H

H+

H−

 , uC =


û

û+

û−

 , GCC =


G

G+

G−

 , pC =


t̂

t̂+

t̂−

 (7.29)

Thus, the Dual BEM can be adequately represented in the 1DBEM/IGABEM
traditional system of algebraic equations, as follows:

HCC 0 −GCF

HFC I −GFF

0 KF GF




ûC

uF

pF

 =


GCC

GFC

0

{t̂C
}

(7.30)

The application of the displacements and strains based error estimators for this
formulation requires some careful considerations. Such error estimators provide point-wise
error values at the boundary Then, the TBIE can be applied for boundary points in Eq.
7.30 by replacing its first line. It is worth mentioning that, for the crack face, this procedure
means exchange the crack face that receives the TBIE and the one that receives the DBIE.

However, the same technique cannot be applied to assess the errors at the rein-
forcements, since the equivalent TBIE (or hypersingular form) for the 1DBEM is simply
an equilibrium relation. Thus, such expression cannot be coupled in the algebraic system
of equations (Eq. 7.30), since it does not address properly the fibres’ displacements.

Therefore, the present study proposes the use of FEM/IGABEM coupling technique
to provide an adequate point-wise a posteriori error estimate at the reinforcements. Then,
FEM truss elements model the reinforcements in the FEM/IGABEM approach, which
replaces the use of the hypersingular form in the error estimates along the reinforcements.
Thus, Eq. 7.1 may be replaced by the following:

HCC 0 −GCF

HFC I −GFF

0 K1DBEM G1DBEM




ûS

(uF)S

(fF)S

 =


GCC

GFC

0

 {t̂S

}
(7.31)


H′

CC 0 −G′
CF

HFC I −GFF

0 KFEM GFEM




ûH

(uF)H

(fF)H

 =


G′

CC

GFC

0

{t̂H

}
(7.32)
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where K1DBEM and G1DBEM are the 1DBEM influence matrices (182). KFEM and GFEM

are the classical stiffness matrix and lumping matrix, respectively, from the truss FEM
formulation. The subscripts S and H indicate the singular and hypersingular solutions,
which have been used to evaluate the error estimator. The FEM matrices are as follows:

(KFEM)ij =
∫ L

0
EA ϕi,x̄(x̄)ϕj,x̄(x̄)dx̄ (7.33a)

(GFEM)ij =
∫ L

0
ϕi(x̄)ϕj(x̄)dx̄ (7.33b)

It is worth mentioning that the second expression of the linear system (Eq. 7.31
and Eq. 7.32) remains unmodified for both the singular and the hypersingular systems.
This expression is a displacements integral equation for internal nodes, for which the
equivalent hypersingular form would provide stresses instead of displacements. Besides,
this equation handles the displacements compatibility between the domain points and
fibres points. Therefore, it can be kept unmodified.

The above-presented procedures for the adaptive strategy can be applied taking into
account the reinforcement elements. Particularly, the adaptive scheme for the reinforcements
leads to a resulting hup

i (from Eq. 7.24) value for each reinforcement element i. Then, the
subdivision process of these elements is trivial, since each 1D element is sub-divided into
integer number of sub-elements, which result elements size as close to hup

i as possible.

7.5.1 Numerical Applications for convergence analysis

This section presents the analysis of five different numerical applications. Such
examples validate the proposed error estimators and adaptive strategies by comparing the
mechanical results with reference models and analysing the convergence versus globally
refinement process.

7.5.2 Application 1: Homogeneous fixed beam

This application handles the mesh convergence analysis of the structure illustrated
in Fig. 109. The solid is under a continuous distribuited load of 1 kN/cm2, as illustrated
in Fig. 109(a). The material and geometrical properties are: Young’s modulus of 500
kN/cm2, nil Poisson’s ratio, solid’s length in the axial direction equals 5 cm and squared
cross-section of 1x1 cm. The exact geometric model is composed by 6 bi-quadratic regular
NURBS surfaces and a total of 54 collocation points, as illustrated in Fig. 109(b).

A tolerance η̄u = 10−2 is considered for the faces in which tractions are prescribed,
otherwise the tolerance is η̄t = 3 · 10−2. The adopted ratio η̄t/η̄u is determined by the
initial normalised errors ||eu|| and ||et|| obtained in the geometrical model illustrated in
Fig. 109(a).
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Figure 109 – Structure analysed in Application 1.

(a) Mechanical model (b) Geometric model
Source: The author.

Figure 110 illustrates the comparison between the proposed Adaptive refinement
and a homogeneous refinement, concerning the total global errors ||eG||. The homogeneous
refinement establishes that all NURBS surfaces are equally refined in both directions at
all iterations, regardless of the obtained error values.

Figure 110 – Convergence of Application 1.
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Source: The author.

The final meshes obtained by the Adaptive refinement and by the homogeneous
refinement are illustrated in Fig. 111(b) and Fig. 111(a). The final meshes contain,
respectively, 536 and 1176 collocation points.

Figure 111 – Final control points meshes obtained in Application 1

(a) Homogeneous refinement (b) Adaptive refinement
Source: The author.

One observes that the Adaptive refinement achieved a final mesh with less than half
collocation points in relation to the homogeneous’ final mesh. In addition, the obtained
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final error is slightly smaller (0.0084 against 0.0105, respectively). Therefore, the proposed
Adaptive scheme was significantly more efficient than a homogeneous refinement, leading
to a more accurate model with fewer degrees of freedom.

A pure FEM model was constructed in Ansys to attest the accuracy of the obtained
results, since this application handles a simple geometry. The FEM model is composed
by 27152 nodes and considers the geometry’s symmetry property along the transverse
direction (orthogonal to the applied load orientation). Mesh convergence has been verified,
regarding displacements and strains at the boundary.

Figure 112 illustrates the comparison between the displacement modulus obtained
by the final mesh from the Adaptive scheme, the reference Ansys model and the initial
mesh. Figure 113 illustrates similar comparison, considering the strains L2 norm.

One observes good agreement between the results obtained by the final mesh
from the Adaptive scheme (Fig. 112(a), Fig. 113(a)) and the reference (Fig. 112(b), Fig.
113(b)). In addition to the accuracy in the mechanical fields distribution, one also notices
a maximum difference between these results equal to 0.38% and 4% in displacements
and strains, respectively. On the other hand, the initial mesh results (Fig. 112(c), Fig.
113(c)) were less precise, with a significant 34% difference in displacements regarding the
reference. Besides, its strains distribution field is clearly poor and inaccurate. In spite of
being geometrically exact, it is evident that the initial mesh is not adequate to be used in
the mechanical analysis.
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Figure 112 – Displacement modulus obtained by the final mesh of the Adaptive scheme (a), by
the reference Ansys model (b) and by the initial mesh (c).
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The final ||eG|| obtained via the Adaptive scheme is 0.84%, as above-mentioned.
Whereas the maximum difference observed between the displacement results in Fig. 112
is 0.38%. Despite these values not being coincident, the error estimator accomplished its
objective. The most important aspect of the error estimator is not its accuracy in value,
but its ability to foresee the required refinement on each surface. Thus, the adopted error
estimator efficiently led to the accurate results observed in Fig. 112 and Fig. 113, with a
more efficient mesh than the one obtained through the homogeneous refinement.
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Figure 113 – Strains L2 norm obtained by the final mesh of the Adaptive scheme (a), by the
reference Ansys model (b) and by the initial mesh (c).
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7.5.3 Application 2: Nonhomogeneous 3D structure

This application handles the Adaptivity analysis of the nonhomogeneous structure
illustrated in Fig. 114(a). The domain II of the solid model represents a thick-walled
tube and domain I represents a support, which is fixed in its bottom face. The material
properties of I are: Young’s modulus EI = 200 GPa and Poisson’s ratio νI = 0.2. The
material properties of II are: Young’s modulus EII = 220 GPa and Poisson’s ratio
νII = 0.3. The applied load is q = 10 kN/cm2.

Figure 114(b) illustrates the exact geometric model, which is composed by 32 6
bi-quadratic regular NURBS surfaces and a total of 140 collocation points. This model
considers the symmetry property of the structure in the direction x.

Figure 115 illustrates the convergence analysis of this example. A tolerance of
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Figure 114 – Structure analysed in Application 2.
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Source: The author.

η̄u = 0.05 is considered for the faces in which displacements are unknown, otherwise
one considers η̄t = 0.03. The adopted ratio η̄t/η̄u is determined by the ratio between the
initial normalised errors ||eu|| and ||et||. Figure 115(a) illustrates the results obtained by
considering the proposed error estimator based on strains. Figure 115(b) illustrates the
results obtained by considering the hypersingular error estimator based on displacements.

Figure 115 – Convergence graphs of Application 2 considering two different error estimators.
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(b) Error estimator based on displacements
Source: The author.

A point p1 and a line L1 are selected at the boundary of the structure to illustrated
the obtained mechanical fields results. Figure 116 exhibits the position of those. Figure 117
shows the modulus of the displacements at p1 throughout the Adaptive and homogeneous
refinement processes. One observes that the Adaptive refinement with the strains error
estimator results follow the homogeneous refinement results, however it presents fewer
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collocation points in all iterations. The Adaptive refinement with the displacements error
estimator, on the other hand, produces results that does not agree with the homogeneous
refinement nor converge with it in all iterations.

Figure 116 – Position of L1 and p1 at the boundary of the structure.

Source: The author.

Figure 117 – Displacement modulus at p1 throughout the Adaptive and homogeneous refinement
processes.
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Figure 118 – Final control points meshes obtained in Application 2.

(a) Homogeneous refinement (b) Adaptive refinement with the error esti-
mator based on strains

(c) Adaptive refinement with the error es-
timator based on displacements

Source: The author.

For the next results analyses, the final homogeneous mesh (illustrated in Fig. 118(a))
is considered as a reference, since it is the most refined available and shows the minimum
error values (Fig. 115(a)). In addition, the following three meshes M0, M1 and M2 are
further analysed:

• M0: initial mesh, illustrated in Fig. 114(b);

• M1: Final mesh obtained in the Adaptive refinement with the error estimator based
on strains, illustrated in Fig. 118(b);

• M2: Final mesh obtained in the Adaptive refinement with the error estimator based
on displacements, illustrated in Fig. 118(c).

Figure 119 illustrates the displacement modulus difference observed between each
one of M0, M1 and M2 meshes in relation to the above-mentioned reference mesh. This
graph is a function of the line L1 length Sl, which is illustrated in Fig. 114(a). The colour
map of these differences over the external boundaries is also illustrated in Fig. 120.
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Figure 119 – Difference in displacement modulus along L1 obtained by meshes M0, M1 and M2
in relation to the homogeneous reference mesh.
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One observes in Fig. 119 and 120 that M1 definitely produces the results closer to
the reference results among the three analysed meshes.

Figure 121 illustrates the colour map of the displacement modulus obtained by M1
and the final homogeneous mesh. These figures illustrates the deformed structure with a
scale factor equals 10. One observes a excellent agreement between these results, although
M1 is composed by significantly fewer collocation points.

Figure 121 – Colour map of displacement modulus obtained by M1 (a) and the final homogeneous
mesh (b).

(a) (b)
Source: The author.

7.5.4 Application 3: Reinforced Quarter Cylinder

This application handles the mesh convergence analysis of the reinforced structure
illustrated in Fig. 122, which exhibits the mechanical model and its dimensions. The
prescribed displacements are ūy = ūx = 0.5 cm. The solid presents a Young’s modulus of
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Figure 120 – Colour map of displacement modulus difference obtained by meshes M0, M1 and
M2 in relation to the homogeneous reference mesh.

(a) M0 (b) M1

(c) M2
Source: The author.

100 kN/cm2 and nill Poisson ratio. The reinforcements have a Young’s modulus of 200
kN/cm2 and a circular transverse section with radius equal 0.2 cm.

Figure 123 illustrates the initial mesh. The boundary isogeometric mesh (Fig. 123(a))
is composed by 6 bi-quadratic regular NURBS surfaces and a total of 54 collocation points.
4 quadratic elements discretize each one of the long reinforcing fibres, which leads to a
total of 54 nodes as illustrated in Fig. 123(b).

The Adaptive refinement analysis of this example applies both the proposed strains
based error estimator and the displacements based error estimator. For the first case, a
tolerance of η̄u = 0.015 is considered for the surfaces in which tractions are prescribed
(nill or not), otherwise the tolerance is η̄t = 0.025. For the second case, the tolerances are
η̄u = 0.015 and η̄t = 0.075. In both cases, the tolerance for the reinforcements error is
η̄R = 0.015. The adopted ratios η̄t/η̄u are determined by the observed error values ||eu||
and ||et|| obtained with the homogeneous refinement process.

Figure 124 illustrates the comparison between the proposed Adaptive refinement
and a homogeneous refinement, regarding the convergence of the total global errors ||eG||.
The analyses considering the error estimator based on strains and based on displacements
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Figure 122 – Reinforced structure analysed in Application 3.
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Source: The author.

Figure 123 – Geometric initial models of Application 3.

(a) Boundary model (b) Fibres model
Source: The author.

are illustrated in (a) and (b), respectively. As previously mentioned in the firs application,
the homogeneous refinement establishes that all NURBS surfaces are equally refined at all
iterations and consequently does not depend on the error estimator considered.

Figure 124(a) shows the convergence of the processes considering the strains
based error estimator. The final mesh obtained by the Adaptive refinement contains 150
reinforcements nodes and 546 collocation points at the boundary, with a total of 696
collocation points. The final mesh obtained by the homogeneous refinement is composed
by 1176 collocation points at the boundary and 390 reinforcements nodes, which leads to a
total of 1566 collocation points. The final values of ||eG|| are 0.027 and 0.0268, respectively.

Figure 124(b) shows the convergence of the processes considering the displacements
based error estimator. In this case, the Adaptive refinement does not achieve convergence, in
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Figure 124 – Convergence graphs of Application 3 considering two different error estimators.
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Source: The author.

fact the total error value increases in some iterations. Therefore, the iterative process stops
at the eighth iteration due to computational limitations, even though the the prescribed
tolerances are not achieved. The homogeneous refinement produces the same 4 iterations
illustrated in Fig. 124(a), which is also not enough to get the prescribed tolerances (only
η̄t was achieved).

It is worth comparing the homogeneous refinement processes illustrated in Fig.
124(a) and Fig. 124(b). Despite the homogeneous meshes be the same regardless of the
chosen error estimator, Fig. 124(a) exhibits a smaller final ||eG|| value after the four
iterations (2.682% against 5.68%). Since the strains based error estimator has already been
evaluated by the previous applications, there is a chance that the displacements based
error estimator is over-estimating the error values at some surfaces. This fact could also
explain why the Adaptive process does not find convergence when this error estimator is
considered.

In this regard, Fig. 125 illustrates each one of the portions of the error (||et|| in
tractions, ||eu|| in displacements and ||eR|| at the reinforcements). Whereas Fig. 125(a)
demonstrates a balance between the error portions when the strains based error estimator
is used, Fig. 125(b) shows that the ||et|| portion is preponderant when the displacements
based error estimator is considered.
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Figure 125 – Convergence of each portion of the error in the Adaptive refinement, considering
the two different error estimators.
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To illustrate the results of the refinement processes, the following meshes are
considered for the next analyses:

• M0: initial mesh, illustrated in Fig. 123;

• M1: Final mesh obtained in the Adaptive refinement with the error estimator based
on strains;

• M2: Final mesh obtained in the Adaptive refinement with the error estimator based
on displacements;

• M3: Final mesh obtained in the homogeneous refinement after 4 iterations, which
does not depend on the error estimator considered.

Figure 126 illustrates the final reinforcement meshes obtained with the homogeneous
refinement (a), the Adaptive refinement with the strains based error estimator (b) and the
Adaptive refinement with the displacements based error estimator (c). Figure 127 exhibits
the final boundary meshes considering the same three cases.

Regarding the reinforcements, Fig. 126(b) demonstrates that M1 was able to produce
more refinement near the long fibres ends. This behaviour is explained by the oscillation
results observed at these regions, as previously mentioned in this study. This oscillations
decrease in most refined meshes, which was properly identified by the Adaptive refinement
considering the strains based error estimator. On the other hand, the displacements based
error estimator was not able to identify this necessity, which led to the homogeneously
refined reinforcement mesh M2 observed in Fig. 126(c). As showed by Fig. 125, M2 did
not produce error values as good as M1.
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Figure 126 – Final reinforcements meshes obtained in Application 3.

(a) Homogeneous refinement (M3)

(b) Adaptive refinement with the
strains based error estimator
(M1)

(c) Adaptive refinement with the dis-
placements based error estimator
(M2)

Source: The author.

Figures 127(b) and 127(a) demonstrate that the Adaptive process with the strains
based error led to more efficient refinement. Especially considering that the final error
values ||eG|| are basically the same in M1 and M3. In addition, Fig. 127(c) shows the
difficulties of the Adaptive refinement based on the displacements error estimator. Even
though a significantly higher tolerance was set to tractions, the higher estimated values of
||et|| observed in Fig. 125(b) led to a extremely thin and unnecessary refinement of the
fixed surfaces. In fact, more refinement was necessary at the other surfaces, as illustrated
by the meshes M1 and M3, which have lower values of error. Therefore, it is clear that ||et||
is overestimated in relation to ||eu|| and ||eR|| by the displacements based error, which
have disturbed the Adaptive refinement process.

Figure 128 illustrates the axial stress distribution throughout fibre F1 (illustrated
in Fig. 122) as a function of its length Sf , obtained with M0, M1, M2 and M3. Only half
of the fibre’s length is illustrated in this graph, since the mechanical results are symmetric.
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Figure 127 – Final boundary meshes obtained in Application 3.

(a) Homogeneous refinement (M3)

(b) Adaptive refinement with the
strains based error estimator (M1)

(c) Adaptive refinement with the dis-
placements based error estimator
(M2)

Source: The author.

One observes a good agreement between the results of M1 and M3, in which the oscillations
are limited to a very small region near the long fibre ends. The M2 results were slightly
better than the initial mesh M0, but the oscillations still cover a significant length of the
fibre.

Figure 129 exhibits the tractions modulus distribution over the surface S1, which
is the surface that ūy is applied over (illustrated in Fig. 122). The results obtained by
the four meshes M0, M1, M2 and M3 are illustrated. Once again, one observes a good
agreement between the responses obtained by M1 and M3, wheres the initial mesh results
(M0) are considerably different. This analysis consolidate the conclusions above-mentioned
for Fig. 128. On the other hand, M2 shows traction results in disagreement with M1 and
M3, despite having the surface S1 much more refined in relation to the other meshes.
Considering the good agreement between M1 and M3 in spite of their different number of
collocation points, one can conclude that M2 results are not accurate.
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Figure 128 – Axial stress along fibre F1 obtained by initial mesh and the final meshes from the
Adaptive and homogeneous reinforcements.

0 1.31 2.62 3.93 5.24
−20

−15

−10

−5

0

5

10

15

Sf (cm)

A
x
ia
l
st
re
ss

(k
N
/c
m

2
)

M0
M1
M2
M3

Source: The author.

7.5.5 Application 4: Reinforced Cylinder with hole

This application handles the mesh convergence analysis of the reinforced structure
illustrated in Fig. 130, which exhibits the mechanical model and its dimensions. This
structure consists of a solid cylinder with a central squared hole and reinforced by four long
fibers positioned in the plane z = 0. The applied loads are qx = 5 kN/cm2 and qy = 0.5
kN/cm2. The solid presents a Young’s modulus of 3000 kN/cm2 and Poisson ratio ν = 0.2.
The reinforcements have a Young’s modulus of 22000 kN/cm2 and a circular transverse
section with radius equal 0.3 cm.

Figure 131 illustrates the initial mesh. The boundary isogeometric mesh (Fig. 131(a))
is composed by 18 bi-quadratic regular NURBS surfaces and a total of 88 collocation
points. 3 quadratic elements discretize each one of the long reinforcing fibres, which leads
to a total of 28 nodes as illustrated in Fig. 131(b).

The Adaptive refinement analysis of this example applies the proposed strains
based error estimator with a tolerance of η̄u = 0.01 for the surfaces in which tractions are
prescribed (nill or not), otherwise η̄t = 0.06. The tolerance for the reinforcement errors is
η̄R = 0.01. The adopted ratio η̄t/η̄u is determined by the observed error values ||eu|| and
||et|| in the the homogeneous refinement process.

Figure 132 illustrates the comparison between the proposed Adaptive refinement
and a homogeneous refinement, regarding the convergence of the total global error values
||eG||. As previously mentioned in the first application, the homogeneous refinement
establishes that all NURBS surfaces are equally refined at all iterations and consequently
does not depend on the error estimator considered. This figure demonstrates that the
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Figure 129 – Distribution of the tractions modulus over surface S1 obtained by initial mesh and
the final meshes from the Adaptive and homogeneous reinforcements.

(a) M0 (b) M1

(c) M2 (d) M3
Source: The author.

Adaptive refinement is able to find a more efficient mesh for error values below 5%. In fact,
the final error value in the Adaptive process is 3,77% with a total of 1761 collocation points,
whereas the final error in the homogeneous refinement is 5,12% with 3528 collocation
points.

Figure 133 illustrates the final reinforced meshes obtained in the homogeneous
refinement process (a) and the Adaptive process (b). Firstly, one observes that the
homogeneous process requires a much higher number of fibre’s collocation points in order
to achieve the prescribed tolerance. In addition, the Adaptive refinement of the fibres is
a result of the applied loads, which produces a bending and tension behavior, together
with the central hole’s influence. So, the external fibres are more refined near the fixed
surface, as a result of the bending behavior. Whereas the internal fibres are more refined
near the central region, which is close to the squared hole present in the solid. Therefore,
one concludes that the reinforcements were more significantly refined at the regions in
which more stress is concentrated. At these regions, the fibres results tend to show the
oscillation behavior, which truly explains a more required refinement.
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Figure 130 – Reinforced structure analysed in Application 4.
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Figure 131 – Geometric initial models of Application 4.

(a) Boundary model

(b) Fibres model
Source: The author.

Figure 134 illustrates the final boundary meshes obtained in the homogeneous
refinement process (a) and the Adaptive process (b). As previously mentioned, the Adaptive
process has achieved a mesh with half of the collocation points of the homogeneous mesh
and a lower error value. This figure illustrates the efficiency of the Adaptive refinement,
which was able to produce thinner refinement near the squared hole. This region presents
stresses concentration that explains the required more refinement.

The final meshes produced by the homogeneous refinement and the Adaptive
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Figure 132 – Convergence graph of Application 4
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Figure 133 – Final reinforcements meshes obtained in Application 4.

(a) Homogeneous refinement

(b) Adaptive refinement
Source: The author.

refinement are considered in the following figures by the names “Homog.” and “Adap.”,
respectively. Figure 135 illustrates the final axial stress results along the fibres F1 and
F2 lengths (Sf), obtained by the two mentioned meshes in addition to the initial mesh.
One observes a good agreement between the refined meshes, although the Adaptive one
has much less collocation points. On the other hand, the initial mesh presents significant
oscillations throughout its entire length and was not able to accurately represents the
expected mechanical behaviour. Furthermore, Fig. 135(b) exhibits a peak of axial stress
in the central region, which is close to the solid’s squared hole. It is worth stressing that
the Adaptive refinement was able to correctly represents this peak and minimise the
oscillations related to it without need a mesh as refined as the homogeneous one.
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Figure 134 – Final boundary meshes obtained in Application 4.

(a) Homogeneous refinement

(b) Adaptive refinement
Source: The author.

Figure 135 – Axial stress along fibres obtained by initial mesh and the final meshes from the
Adaptive and homogeneous reinforcements.
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Figure 136 shows the displacement modulus along the fibres F1 and F2 lengths
(Sf ), obtained by the three meshes. In this case, all of the three results are in agreement,
even though the initial mesh results were definitely not precise in Fig. 135. Therefore, one
concludes that the analysis of only displacements is not enough to truly evaluates the
accuracy of the results obtained by a given mesh.
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Figure 136 – Displacements modulus along fibres obtained by initial mesh and the final meshes
from the Adaptive and homogeneous reinforcements.
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Figure 137 illustrates the colour map of displacements modulus obtained by the final
meshes from the Adaptive and the homogeneous refinement processes. A scale factor equals
10 is considered for the structure’s deformed shape. This figure exhibits excellent agreement
between the results obtained by these meshes. Thus, one demonstrates the accuracy of the
Adaptive final mesh, even with less collocation points than the homogeneous final mesh.

7.5.5.1 Exemple 5: Convergence analysis of reinforced single-edge notched
body

This application presents the adaptivity analysis of a single-edge notched body,
which is reinforced by four long fibres, as illustrated in Fig. 138. The Dual BEM technique
(14) has been utilised herein for the mechanical fields representation in the 3D IGABEM
formulation. Two long fibres cross the crack surfaces, which can be represented by the
fibre connection element technique, as previously proposed by the authors in the literature
(132). The physical properties of the solid are: h = 10 cm, b = 5 cm, a = 2.5 cm, σ = 1
kN/cm2, Young’s modulus of 1000 kN/cm2 and Poisson ratio of 0.2. The fibres have
circular cross-section with radius of 0.2 cm and Young’s modulus of 500 kN/cm2.

This application considers two initial meshes A and B, which represent the exact
structure geometry. Both models represent the external boundary through 14 bi-quadratic
NURBS surfaces, whereas 2 bi-quadratic NURBS represent the crack faces in A and 2
NURBS of p = q = 4 in B. Then, A results in 80 collocation points and B results in 116.
Figures 139(a) and 139(b) illustrate the meshes A and B, respectively. Both models account
for the same initial reinforcements mesh with 4 quadratic 1DBEM element representing
each long fibre, as illustrated in Fig. 139(c).
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Figure 137 – Colour map of displacement modulus obtained with the final meshes from the
following refinement schemes.

(a) Homogeneous refinement

(b) Adaptive refinement

Source: The author.

The tolerance for convergence is η̄u = η̄t = η̄R = 0.01 for all surfaces. The adaptivity
analysis applies only the proposed strains based error estimator because this estimator
has demonstrated superior efficiency in previous applications. Figure 140 illustrates the
performance comparison between the proposed refinement strategy and the globally homo-
geneous refinement regarding the convergence of the total global errors ||eG||, obtained by
models A and B, respectively. The proposed strategy led to significantly better convergence
rates in both models A and B.

Figure 141 illustrates the final boundary collocation points positions obtained in the
globally homogeneous and in the adaptive mesh refinement for models A and B. It is worth
mentioning that the collocation points illustrated in Fig. 141(c) and 141(d) only differ at
the crack faces. Besides, the adaptive refinement identified the critical regions in the body,
i.e., with high mechanical fields gradients. Particularly, the lateral boundaries surrounding
the supports and the crack, which exhibit the highest error values. Consequently, such
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Figure 138 – Reinforced cracked solid analysed in Application 5.
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Figure 139 – Geometric initial models of Application 5.

(a) Boundary model A (b) Boundary model B (c) Reinforcements mesh
Source: The author.

boundaries require finer mesh refinement because of the stress concentration, which makes
the globally homogeneous refinement less effective.
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Figure 140 – Convergence graphs obtained in Application 5 considering two initial boundary
meshes.
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Figure 141 – Final boundary meshes obtained in Application 5.

(a) Model A: Adaptive
refinement

(b) Model B: Adaptive
refinement

(c) Model A: Homoge-
neous refinement

(d) Model B: Adaptive
refinement

Source: The author.

Figure 142 illustrates the final reinforcements meshes. It is worth stressing that
the final meshes achieved by the homogeneous process are identical in scenarios A and
B, as observed in Fig. 142(c). Besides, both A and B models led to similar evolution
behaviour with the adaptive refinement. Firstly, the bottom region of all fibres are more
refined because of the presence of a clamped surface at the solid’s bottom. Secondly, the
fibres crossing the crack faces have the intersection regions represented by finer meshes,
since that region presents a huge stress concentration. Therefore, this refinement type is
required for accurately representing the stress gradient.

Figure 143 illustrates the z displacement at the crack surfaces obtained by the
models considered herein. Because of the circular fibre’s cross-section, the displacements
around the fibre position behave axisymmetrically, similarly to Fig. 143(d). However, both
the homogeneous and the proposed refinement results obtained by model A do not lead to
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Figure 142 – Final reinforcements meshes obtained in Application 5.

(a) Model A: Adaptive re-
finement

(b) Model B: Adaptive re-
finement

(c) Homogeneous refine-
ment (A and B)

Source: The author.

such expected behaviour. On the other hand, the proposed process with model B (Fig.
143(b)) achieved the expected mechanical behaviour with fewer collocation points than
the globally homogeneous process. In this regard, the complex distribution of mechanical
fields at the crack faces has been properly represented by fourth-degree NURBS functions,
whereas the h-refinement of bi-quadratic functions does not adequately represent the same
evolution of the mechanical fields description neither with adaptive nor homogeneous mesh
refinement.

Figure 143 – Colour map of z displacements obtained at the crack faces in Application 5. Scale
factor equals 50.

(a) Model A: Adaptive refinement results (b) Model B: Adaptive refinement results

(c) Model A: Homogeneous refinement re-
sults

(d) Model B: Homogeneous refinement re-
sults

Source: The author.

Figure 144 illustrates the displacements responses obtained at the boundary by
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model B. The adaptive and the homogeneous refinement results are in (a) and (b),
respectively. The results presented in this figure show the good agreement between the
predictions of models A and B. Besides, such results fills the expected mechanical behaviour
in this application.

Figure 144 – Colour map of displacements modulus obtained with model B in Application 5.

(a) Adaptive refinement results (b) Homogeneous refinement re-
sults

Source: The author.
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8

CONCLUDING REMARKS

In this thesis, several innovative IGABEM formulations have been developed for the
mechanical analysis of a wide variety of engineering problems in three-dimensional domains
reinforced by fibres. Linear and non-linear problems have been treated by accounting
for the reinforcement’s nonlinearities (elastoplasticity and bond-slip). Time dependent
problems have also been addressed by the viscoelastic modelling of both domain and
crack cohesive interfaces. Besides, fracture mechanics problems have been assessed by a
innovative Cohesive reinforced IGABEM. Finally, studies of adaptive mesh convergence
have expanded the fully integration between CAD pre-processors and IGABEM sofrware.

In Chapter 3, the innovative reinforced coupling formulation 1DBEM/IGABEM
for three-dimensional fibre-reinforced bodies have been presented. Different from the 2D
coupling, in 3D domains the load line integration requires a special integration scheme over
a cylindrical shell. It is worth mentioning the extension of the coupling formulation for 3D
domains enables the proper representation of complex reinforced structural systems, which
are intrinsically 3D. In this chapter, the authors dealt with crossing between fibres and 3D
boundaries by developing the connection element. This approach resulted in continuous
stress and displacements fields, which effectively overcomes a limitation in usual coupling
approaches without the need for remeshing the NURBS surfaces or modifying the IGABEM
formulation. The connection element also originally allowed the modelling of fibres crossing
crack faces, as presented in the Reinforced single-edge notched body application example.

Chapter 4 presented the nonlinear reinforced formulations, accounting for the
elastoplasticity and bond-slip behaviour of the reinforcements. The bi linear isotropic
hardening approach has been utilised into the elastoplastic formulation. The secant Newton-
Raphson scheme solves the nonlinear problem, which avoids updating the involved matrices.
Because the matrices involved in the formulation are non-symmetric and fully-populated,
this procedure is advantageous. This formulation enables the representation of yielding
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phenomenon along the reinforcements, which has major importance in structural problems.
The bond-slip formulation enables the numerical representation of slip behaviour between
fibre and matrix. The pull-out test Application demonstrates the robustness and accuracy
of the proposed formulation. The proper representation of this application by a 3D BEM or
IGABEM formulations is another improvement in the current state of art made in this thesis.
Additionally, the performance when both nonlinearities evolve simultaneously have been
proven, which lead to an original nonlinear IGABEM formulation. The application in Sec.
4.6.1 demonstrated that the IGABEM formulation enables accurate results and requires
less collocation points than the conventional Lagrangian formulation when modelling
such type of problem. Besides, isogeometric models lead to minor geometric errors for a
vast number of complex shapes, which make it appropriate for representing complex 3D
problems.

In Chapter 5, the time dependent section presented viscoelastic approaches ac-
counting for different fibre and matrix constitutive laws with Kelvin-Voigt and Boltzmann
rheological models, which is another contribution in the context of 3D IGABEM. The nu-
merical applications of this chapter demonstrate the accuracy of the proposed formulation
for linear or elastoplastic fibres embedded into viscoelastic 3D domains, in which significant
reduction over the number of degrees of freedom can be observed when comparing the
BEM or IGABEM formulations to the equivalent pure FEM models used as reference.
Additionally, the proposed formulation has proven to be able to represent different me-
chanical behaviours, such as relaxation or stiffening. Those can be properly represented by
the correct choice of the sub-structures time dependent behaviour between matrix and
reinforcement. Besides, this chapter illustrates the robustness of the proposed formulations
for complex nontrivial 3D geometry modelling. In these applications, the computational
analysis time was presented and it shows excellent performance.

Chapter 6 expanded the existing cohesive fracture mechanics approach for three-
dimensional IGABEM formulations. The constant operator technique has been utilised
herein, since it does not require the re-evaluation of IGABEM matrices between iterations.
Previous experience with the nonlinear reinforced IGABEM formulations showed that
this type of approach is advantageous regarding performance. An innovative IGABEM
cohesive approach to account for load rate influence has been presented by the viscous
cohesive model at crack interfaces. Numerical applications demonstrated the accuracy of
the proposed cohesive formulations, including to represent experimental results.

Chapter 7 presented a deep study about the reinforced IGABEM formulation
conversion, which led to contributions to the state of art of mesh adaptivity strategies
for IGABEM. A modified hypersingular error estimator was proposed without the need
to analytical solutions or domain discretization to evaluate approximation errors. The
proposed error estimator based on strains favours the adequate assessment of the mesh
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refinement required among the NURBS surfaces because it is not affected by the different
magnitude orders of the boundary solutions and allows for the adequate error evaluation
at all boundaries (including clamped surfaces). Additionally, an adaptivity strategy was
proposed for reinforced IGABEM formulations by estimating the error at the fibres via the
comparison between FEM and 1DBEM. Such approach was able to identify the refinement
required at the most critical fibre’s regions (near stress concentrations and endpoints),
minimising the mechanical fields oscillations usually observed at these regions with fewer
degrees of freedom than the globally homogeneous mesh refinement. The simplicity and
effectiveness of the NURBS surfaces refinement strategy is an important advantage of
the proposed approach because it does not require changing the regular NURBS surfaces
formulation. Besides, all numerical applications had good convergence rates within the
proposed strain based error estimator, being better than the globally homogeneous mesh
refinement. The proposed formulation is effective and contributes to the straightforward
connection between IGABEM and CAD software.

Finally, several contributions in the field of three-dimensional IGABEM formulations
have been made, highlighting the non-homogeneous reinforced domains modelling, fracture
mechanics, nonlinear formulations and adaptive mesh refinement. Besides, three papers
were published (132, 182, 183) with the advances made in this thesis.

8.1 Recommendations for future work

The reinforced formulations presented herein have been quite comprehensive, how-
ever there are still some opportunities to advance in this field. One possible way is to
improve the reinforcement modelling, accounting for different mechanical solicitations
besides the axial force. With that, the formulation could be more suitable to represent
reinforcements with a higher ratio between cross-section area and matrix. Additionally, it
is possible to develop the tangent approach to solve the linear problems involving elasto-
plasticity and bond-slip. This advance would require updating the coupling formulation
between iterations to represent the mechanical degradation, which would lead to fewer
iterations to achieve convergence. However, this is still a challenge for performance, since
updating the IGABEM matrices is quite time consuming.

In the field of fracture mechanics of reinforced domains, there are several opportu-
nities of future studies based on the work presented herein. The coupling of the nonlinear
behaviour of both reinforcements and viscous-cohesive crack in the 3D body may lead to
a extremely complete model in terms of fracture mechanics for reinforced bodies. Both
formulations were presented herein, which makes this work an excellent reference for this
field. Additionally, an outstanding contribution this field would be the proposition of crack
propagation schemes in the IGABEM framework. It is noticeable that the global aspect of
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NURBS interpolation jeopardises the remeshing. Therefore, special approaches, such as
enrichment strategies or trimmed curves, are a promising manner to tackle this limitation
of IGABEM.

The adaptive strategy formulation presented also has an appealing possible exten-
sion. That would be the consideration of locally refinement at NURBS surfaces. With that,
one could achieve even better convergence rates, since it would take better advantage of
the error estimator information. Nonetheless, the locally refinement of NURBS surfaces
requires alternative Isogeometric formulations, such as hierarchical or T-construction B-
splines. Furthermore, adaptive strategies with different refinement approaches besides the
h-refinement applied herein could lead to good results. In this field, it is worth mentioning
the importance of the proposed error estimators presented herein for future works reference.
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APPENDIX A

FUNDAMENTALS OF ELASTICITY

This appendix presents the most relevant concepts of the theory of elasticity for
the development of the BEM formulations handled in this study. References are provided
as a source for more detailed explanations, such as the following classical works: (184),
(185) and (186).

A.1 Cauchy stress

The classical theory of elasticity considers as a hypothesis the solid homogeneity,
in which internal restoring interactions are present in all points of the solid (theory of
continuity). These internal interactions result from body forces and surface forces. It is
worth remarking that dynamic effects are neglected in this study.

Let Ω denotes an elastic domain in equilibrium condition, as illustrated in Figura 145.
External forces Fi are applied at the boundary of Ω, which results in internal restoring
forces at all body’s points. One can divide Ω into two portions A and B by a cross section
that contains the P point and has a normal vector pointed in the xj direction. Considering
A, there is a resulting force at the cross section that balances all external forces Fi applied
over A. Let ∆Fi be the resulting force over a small area ∆Aj in the cross section, then
the Cauchy stress σij can be defined as follows:

σij = lim
∆A→0

∆Fi

∆Aj

= ∂Fi

∂Aj

(A.1)

In three-dimensional problems, one can perform three perpendicular cuts as il-
lustrated in Figura 145, whereas each one results in σij for i = 1,2,3. Thus, one writes
the Cauchy stress tensor composed by 9 components for each point P , as illustrated in
Figura 146.

Nevertheless, the Cauchy theorem can be demonstrated by writing the local equi-
librium relations over the orthogonal axis of a infinitesimal element (Figura 146). Thus:

σij = σji (A.2)
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Figure 145 – Representation of a continuous body.

Source: (186), adapted.

Figure 146 – Stress state at a given point

Source: (186), adapted.

in which the stresses σij where i ̸= j are named as the shear stresses.

The tractions at any point of Ω can be defined from the Cauchy stress tensor. For
this, For that, one must write the local equilibrium of the infinitesimal element (Figura 147)
considering cuts in the orthogonal directions. Thus:

ti = σijηj (A.3)

in which ηj is the vector normal to the cut plan.

When body forces bi are considered in the infinitesimal element (Figura 146), the
stresses σij must be in static equilibrium with the applied bi. Thus, one writes:

σij,j + bi = 0 (A.4)
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Figure 147 – Representation of cut in infinitesimal

𝑥1

𝑥2

𝑑𝑥2

𝑑𝑥1

𝑝⃗

𝜂⃗

𝜎11

𝜎12

𝜎12

𝜎22

Source: The author.

It is worth remarking that Eq. A.4 represents the longitudinal equilibrium (of
forces) and Eq. A.3 represents the rotational equilibrium (of moments). Equation A.4 is
also the governing equation of the elastic boundary value problem (BVP).

A.2 Strains

When external loads are applied into a solid, the energy is transferred to the
material and dissipated through its shape change. This is the origin of the strains, which
represent the measure of the body’s shape change at each material point. The strains are
energetic conjugates of the stresses, which means that they depend on the adopted stress
measure. For the Cauchy stress, linear strains must be considered. The linear strain is
based on the body’s initial configuration, therefore the hypothesis of small displacements
and deformations must be taken into account. With that, the difference between initial
and final (deformed) shapes can be neglected.

The longitudinal strain can be defined from the length variation in a infinitesimal
element (Figura 148) subjected to a displacements field ui, as follows:

ε11 = ∆L

L
= dx1 + u1 + ∂u1/∂x1dx1 − u1 − dx1

dx1
= ∂u1

∂x1
= u1,1 (A.5)

The shear strain is defined by the angular variation of the infinitesimal element
vertices:

γ12 = π

2 − θ = α1 + α2 ∼=
∂u1/∂x2dx2

dx2
+

∂u2/∂x1dx1

dx1
= ∂u1

∂x2
+ ∂u2

∂x1
= u1,2 + u2,1 (A.6)

Strains from different directions can be obtained in an analogous process, which
results in 9 components. As well as the the shear stresses, the shear strains are also
symmetric. The cartesian components of the strain tensor for linear and small deformations
are given as follows:
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Figure 148 – Strains in infinitesimal element. 2D representation

Source: The author.

εij = 1
2 (ui,j + uj,i) (A.7)

A.3 Stress-strain relation

As previously mentioned, stress and strain are material responses resulting from
the load application over Ω. Therefore, they are related by a constitutive connection, which
depends on the material behavior. For isotropic linear elastic materials, this relation is
known as Hooke’s law. In this scenario, the material is considered perfectly elastic (no
residual deformations after unloading) and isotropic, which means that physical properties
are the same regardless of direction.

The generalized Hooke’s law is written as:

σij = Dijklεkl (A.8)

where Dijkl is the fourth order constitutive tensor. This relation can also be expressed in a
inverse form:

εij = Cijklσkl (A.9)

For a generic situation, the tensors Dijkl and Cijkl have 81 components each.
However, symmetry can demonstrate that only 21 are indeed independent. In addition, for
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isotropic materials, all components can be written in term of only two properties: Young’s
modulus (E) and Poisson Ratio (ν). Then, Eq. A.8 can be rewritten as follows:

σij = 2µεij + λεkkδij (A.10)

in which δij is the Kronecker delta function, µ is the shear modulus and λ is the Lamé
parameter. Those variables can be written as:

µ = E

2(1 + v) (A.11)

λ = vE

(1 + v)(1 − 2v) (A.12)

Equation A.9 can also be written in an inverse form:

εij = 1
2µ

σij − v

E
σkkδij (A.13)

A.4 Elasticity problems solution techniques

One can represent the elasticity problems by mathematical models described by the
equilibrium equation (Eq: A.4), compatibity of displacements (Eq. A.7) and constitutive
relation (Eq. A.8). The result is a system of differential equations, which represents the
BVP in static elastic problems. Figure 149 illustrates a two-dimensional BVP.

Figure 149 – Boundary conditions for a general BVP

Source: The author.

Boundary conditions are necessary to solve the BVP, in addition to the equations
above-mentioned. Dirichlet boundary conditions represent the application of prescribed
displacement, whereas Neumann boundary conditions consider applied tractions. The
BVPs usually have both conditions.

There are at least two approaches to solve the BVP, which consider the introduction
of new function that satisfies the governing differential equations. One of them is named
as displacements technique and is usually applied for predominantly Dirichlet problems or
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infinite domains. This approach leads to the fundamental solution of Kelvin, which is used
in BEM isotropic formulations.

The displacements technique is based on rearrange the differential equations in
order to obtain a single displacements function as a solution. Hooke’s law (Eq. A.10), the
Cauchy formula for tractions (Eq. A.3) and the strains relation (Eq. A.7) are applied into
Eq. A.4, which leads to the Navier-Cauchy equation:

µ (ui,ij + uj,ii) + λui,ij + bj = 0 (A.14)

The Navier-Cauchy solution can be obtained by applying displacements functions
that satisfy Eq. A.14 in a process similar to the Airy functions. An adequate function is
achieved from the Galerkin vector:

ui = Gi,mm − 1
2(1 − ν)Gm,im (A.15)

One can demonstrate that the Galerkin vector is a solution for Eq. A.14 if G

satisfies the following:

Gi,mmjj + bi

µ
= 0 (A.16)

The second approach to solve the BVP is the stress technique, which is usually
applied for predominantly Neumann problems. In this technique, all equations must be
written in terms of a single stress solution. This process results in the following relation,
which is known as Beltrami-Michell equation.

σjk,ii + 1
1 + ν

σzz,jk = −ν

1 − ν
δjkbl,l − (bj,k + bj,k) (A.17)

This relation, together with the equilibrium equations result in the necessary
equation to apply the stress technique. This study deals only with the displacements
technique, therefore no further details are presented about Eq. A.17.

A.5 Kelvin’s fundamental solutions

The BEM formulation requires the fundamental problem, which is based on a
hypothetical BVP with known responses. This BVP is composed by a infinite domain
in which a unitary concentrated force is applied. Its solution can be determined by the
above-presented displacements technique, therefore the displacement and traction fields
are known as fundamental solutions. For a isotropic elastic case, the fundamental solutions
were presented by Lord Kelvin in 1882 (23) and have been known as Kelvin’ fundamental
solutions.
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The unitary concentrated force is applied at a given point called “source point”
and denoted by s. This force can be applied following the 3 orthogonal directions xi, as
illustrated in Fig. 150. Hence, the fundamental problem is the result of the superposition
of the (a), (b) and (c) problems. The applied force is mathematically described by the
Dirac Delta function (∆(xf − xs)). The fundamental solutions are calculated at a given
point called “field point” and denoted by f .

Figure 150 – Illustration of fundamental problem 3D

(a) (b)

Ω→∞

(c)

Source: The author.

The equilibrium relation (Eq. A.4) can be evaluated for the three problems (a), (b)
and (c). A single relation can describe the equilibrium of all problems as follows:

σ∗
kij,j + b∗

ki = 0 (A.18)

in which k is the orientation of the applied force in the fundamental problem. The symbol
∗ identifies the fields of the fundamental problem.
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The body forces are described by the Dirac delta function, as follows:

b∗
ki = ∆(xf − xs)δki (A.19)

where δki is the Kronecker delta function.

Applying Eq. A.19 into Eq. A.18, the following equilibrium equation is obtained
for the fundamental problem:

σ∗
kij,j = −∆(xf − xs)δki (A.20)

It is worth remarking that all fundamental fields have an additional index k, which
represents the orientation ek of the applied force ∆(xf −xs). Considering the superposition
principle, the value of displacements and tractions at any domain point are given by:

u∗
i =

3∑
k=1

u∗
ki and t∗

i =
3∑

k=1
t∗
ki (A.21)

which can be written in the indicial notation as follows:

u∗
i = u∗

kiek

p∗
i = p∗

kiek

(A.22)

The most relevant relations from the theory of elasticity can also be applied to the
fundamental problem. The Cauchy formula, the stress-strain relation and the displacements
compatibility equation can be written, respectively, as follows:

σ∗
kijηj = t∗

ki (A.23)

σ∗
kij = Dijlmε∗

klm (A.24)

ε∗
kij =

u∗
ki,j + u∗

kj,i

2 (A.25)

The stress-strain relation (Eq. A.24) can incorporate the linear isotropic constitutive
tensor, which leads to:

σ∗
kij = 2µ

(
ε∗

kij + ν

1 − 2ν
ε∗

kmmδij

)
(A.26)

The fundamental problem solution considers the above-mentioned displacements
technique. Then, Eq. A.20 is applied into the Galerkin vector (Eq. A.16), which can be
rewritten as:

Gki,mmjj + ∆(xf − xs)δki

µ
= 0 (A.27)
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Equation A.27 can be further simplified as follows:

∇2Fki + 1
µ

∆(xf − xs)δki = 0 (A.28)

in which Fki = ∇2Gki and ∇2 is the Laplace operator.

Therefore, Equation A.28 solution can be easily found and is given by:

Fki = 1
4πµr

δki (A.29)

consequently:

Gki = r

8πµ
δki (A.30)

Equation A.15 must be rewritten in order to satisfy the superposition principle of
the fundamental problem, as follows:

u∗
ki = G∗

ki,mm − 1
2(1 − ν)G∗

km,im (A.31)

Equation A.30 can now be applied into Eq. A.31, which results in the following
displacements fundamental solution U∗

ki. More details about this passage can be found in
(58).

U∗
ki = 1

16πµ(1 − ν)r [(3 − 4ν)δki + r,kr,i] (A.32)

which represents the displacements at the field point xf along the direction i, referent to
the unitary fundamental force applied at the source point xs along the direction k. r is
the modulus of the distance vector between the source and field points. Besides, r,i are
the directional derivatives of this vector in relation to the field point coordinates. This
vector is mathematically described as follows:

ri = xf
i − xs

i (A.33)

r =

√√√√ 3∑
k=1

[(
xf

k − xs
k

)2
]

(A.34)

r,i = xf
i − xs

i

r
(A.35)

Furthermore, the fundamental solutions of stresses, strains and tractions can be
obtained. The first derivatives of the fundamental displacements (Eq. (A.32)) are calculated
and applied into Eq. A.25, which results in the fundamental strains E∗

kij:
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E∗
kij = − 1

16πµ(1 − ν)r2 [(1 − 2ν) (r,jδki + r,kδji) + 3r,kr,ir,j − r,iδkj] (A.36)

Equation A.26 is applied into Eq. A.36 to obtain the fundamental solution of
stresses P ∗

kij:

P ∗
kij = − 1

8π(1 − ν)r2 [(1 − 2ν) (r,jδki + r,kδji − r,iδkj) + 3r,kr,ir,j] (A.37)

From Eq. A.37 and Eq. A.23, one can obtain the fundamental solution of tractions
T ∗

ki:

T ∗
ki = − 1

8π(1 − ν)r2

[
∂r

∂η
[(1 − 2ν)δki + 3r,kr,i] − (1 − 2ν) (ηir,k − ηkr,i)

]
(A.38)

where η is the boundary normal vector pointing to the external region in relation to the
domain.

In addition, the r derivatives in relation to η are written as follows:

∂r

∂η
= r,mη,m (A.39)

Equations A.32 and A.38 are the fundamental solutions applied into the BEM
singular formulation. These expressions must be integrated over the boundary and, conse-
quently, are usually called integral kernels. Moreover, the BEM hypersingular formulation
presents two additional fundamental solutions D∗

kij and S∗
kij, which can be calculated from

the above-mentioned singular solutions. This process is presented in the Chapter 2.
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