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Abstract

ANDRADE, H. C. Enriched formulations based on the Boundary Element
Method for fracture analysis of homogeneous domains and bimaterial inter-
faces. 2021. 219p. Thesis (Doctorate) - São Carlos School of Engineering at the Univer-
sity of São Paulo, São Carlos, 2021.

The main objective of this doctoral thesis is the development of enriched numerical
formulations based on the Boundary Element Method (BEM) for the fracture analysis
of homogeneous materials and the investigation of cracks lying on bimaterial interfaces.
Initially, an eXtended Boundary Element Method (XBEM) formulation is proposed for
simulating the linear elastic crack growth in isotropic and anisotropic domains. A dis-
placement approximation enrichment based on the first-order asymptotic expansions is
used to represent the near-tip square root behaviour predicted by the linear elastic fracture
mechanics. This strategy also enables the direct evaluation of the Stress Intensity Factors
(SIFs) after a crack tip tying constraint is enforced at the crack tip to accommodate the
additional enrichment parameters. Additionally, discontinuous functions are embedded
into the displacement approximation of elements intercepted by cracks to avoid remesh-
ing of these elements. For the discontinuous enrichment, new equations are provided
by imposing displacement continuity conditions at the crack mouth. Shifted enrichment
functions are used to preserve the physical meaning of the nodal parameters and reduce
the singularity order of the integral kernels containing the enrichment terms in the XBEM
formulation. Furthermore, an enriched traction approximation is proposed to apply con-
centrated forces and support points along the boundary.

Then, a new extended isogeometric boundary element method (XIGABEM) is de-
veloped for simulating multiple fatigue crack propagation in two-dimensional domains.
The classical use of NURBS in isogeometric formulations is further extended by repeated
knot insertion to introduce C−1 continuity within the approximation space as an elegant
approach to representing geometrical discontinuities where cracks intersect other bound-
aries. This strategy is also used to restrict the enrichment term to portions of the NURBS
defining the crack tip, where it is necessary. At this near-tip zone, the linear elastic fracture
mechanics solutions are embedded into the displacement approximation to represent the
theoretical square root behaviour. Like in the XBEM approach, the enrichment procedure
introduces just two degrees of freedom per crack tip, and a crack tip tying constraint is
used to yield a square linear system. This scheme also allows the SIFs to be computed
directly since they appear in the solution vector.

Finally, an XIGABEM approach is introduced for the analysis of interface cracks.
Considering the two-term asymptotic expansion to define the enrichment functions, the
SIFs and T-stress are recovered directly from the system of equations provided by the



numerical method. For this purpose, the same tying constraint adopted in the previous
enriched formulations is used to accommodate the SIFs, while a new relationship based
on the NURBS derivatives at the tip is defined to solve for the T-stress parameter. The
XIGABEM is also successfully applied for the direct evaluation of the tip parameters for
curved cracks.

Several examples are presented to illustrate the application of the enriched direct
methods for evaluating the crack parameters and for modelling the crack propagation.
The accuracy of the results compares favourably against those from the literature and also
against solutions obtained from unenriched and enriched indirect methods that employ
the J-integral for SIF extraction.

Keywords : Boundary element method. Enriched formulations. Isogeometric analysis.
Discontinuous NURBS. Crack growth. Interface cracks.



Resumo

ANDRADE, H. C. Formulações enriquecidas baseadas no Método dos Ele-
mentos de Contorno para a análise de fratura em domínios homogêneos e
interfaces de bimateriais. 2021. 219p. Tese (Doutorado) - Escola de Engenharia de
São Carlos, Universidade de São Paulo, São Carlos, 2021.

O objetivo principal desta tese de doutorado é o desenvolvimento de formulações
numéricas enriquecidas baseadas no método dos elementos de contorno (MEC) para a
análise de fratura em materiais homogêneos e investigação de trincas em interfaces de
bimateriais. Inicialmente, uma formulação estendida do MEC (XBEM) é proposta para
simular o crescimento de trincas em regime elástico-linear em domínios isotrópicos e aniso-
trópicos. Um enriquecimento para a aproximação de deslocamento baseado nas expansões
de primeira ordem é usado para representar o comportamento próximo da ponta prev-
isto pela mecânica da fratura elástico-linear. Essa estratégia também permite a avaliação
direta dos Fatores de Intensidade de Tensão (FITs) após a aplicação de uma restrição de
amarração na ponta para acomodar os parâmetros adicionais de enriquecimento. Além
disso, funções descontínuas são incorporadas à aproximação de deslocamento de elementos
interceptados por trincas para evitar o remalhamento desses elementos. Para o enrique-
cimento descontínuo, novas equações são obtidas pela imposição de condições de continu-
idade de deslocamento no ponto de interseção. Funções de enriquecimento shifted são
utilizadas para preservar o significado físico dos parâmetros nodais e reduzir a ordem de
singularidade dos núcleos integrais contendo os termos de enriquecimento. Ademais, uma
aproximação enriquecida de força de superfície é proposta para aplicar forças concentradas
e pontos de apoio ao longo do contorno.

Em seguida, é desenvolvido um novo método dos elementos de contorno isogeométrico
estendido (XIGABEM) para simular a propagação de múltiplas trincas por fadiga em
domínios bidimensionais. O uso clássico das NURBS em formulações isogeométricas é
ampliado pela inserção sucessiva de knots para introduzir a continuidade C−1 dentro do
espaço de aproximação, sendo uma elegante abordagem para representar descontinuidades
geométricas onde as trincas interceptam o contorno. Essa estratégia também é utilizada
para restringir o termo enriquecimento a porções das NURBS que definem a ponta da
trinca, onde ele é necessário. Nessa zona próxima à ponta, as soluções da mecânica de
fratura elástico-linear são incorporadas à aproximação de deslocamento para representar
o comportamento analítico. Como na abordagem XBEM, a estratégia de enriquecimento
introduz apenas dois graus de liberdade por ponta de trinca e uma restrição de amarração
da ponta é utilizada para produzir um sistema linear quadrado. Esse esquema também
permite que os FITs sejam calculados diretamente, uma vez que eles aparecem no vetor
de solução.



Finalmente, uma abordagem XIGABEM é introduzida para a análise de trincas de
interface. Considerando os dois primeiros termos da expansão assintótica para definir
as funções de enriquecimento, os FITs e a tensão T são recuperados diretamente do
sistema de equações fornecido pelo método numérico. Para este fim, a mesma restrição
de amarração adotada nas formulações enriquecidas anteriores é usada para acomodar os
FITs, enquanto uma nova relação baseada nas derivadas das NURBS avaliadas na ponta
é definida para obter para o parâmetro da tensão T. O XIGABEM também é aplicado
com sucesso para a avaliação direta dos parâmetros da ponta para trincas curvas.

Diversos exemplos são apresentados para ilustrar a aplicação dos métodos enriquecidos
diretos na determinação dos parâmetros de trinca e na modelagem de propagação. A
precisão dos resultados se compara de forma satisfatória às respostas da literatura e
também às soluções obtidas a partir de métodos enriquecidos e não enriquecidos indiretos
que empregam a integral J para a extração dos FITs.

Palavras-chave: Método dos elementos de contorno. Formulações enriquecidas. Análise
isogeométrica. NURBS descontínuas. Propagação de trincas. Trincas de
interface.
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1 Introduction

The development of reliable models for the analysis of engineering problems and the
collapse prediction of deformable bodies is a major research area within the international
scientific community. In particular, the search for robust methodologies is stimulated
by the increasingly complex structures used in industries such as the mechanical, naval,
aerospace and automotive, in which both high mechanical performance and low weight
are desired. Therefore, the proposition of accurate models for failure prediction is crucial
to obtain safer structures and belongs to the scope of the present investigation.

Among the usual failure mechanisms of the solids is the fracture phenomenon. The
materials contain inherent flaws throughout their microstructure that, when loaded, may
grow and form cracks, which leads to material degradation. The fracture mechanics, in
particular, is a field of study that describes the mechanical behaviour of deformable bodies
containing material discontinuities. Moreover, this field provides a set of appropriate
theories that allow the consistent analysis of the crack growth process when a cracked
body is loaded.

Since the seminal work of Griffith (GRIFFITH, 1921) and the rapid development of
the area during the 1960s and 1970s, the fracture mechanics became one of the main
tools to access material failure. One of the principal branches of this theory is the linear
elastic fracture mechanics (LEFM), in which the material is admitted with linear elastic
behaviour. The LEFM formulation is applicable when the fracture process zone positioned
in front of the crack tip is small compared to the crack dimensions, such as in brittle
materials. Besides, this formulation provides a fundamental basis for high-cycle fatigue
analyses and non-linear fracture approaches. According to the LEFM, the singular stress
state occurring near the crack tips is governed by the stress intensity factors (SIFs),
which can thus be used to verify the crack tip stability. Several existing books (ROOKE;
CARTWRIGHT, 1976; MURAKAMI et al., 1987; TADA; PARIS; IRWIN, 2000) include a
compendium for the SIFs and the stress and displacement components at the region near
the crack tip. However, these closed-form solutions are restricted to a limited number
of problems, with simplified geometry, boundary conditions and constitutive material
relations. Consequently, the response to complex applications involving cracked bodies
can only be achieved by numerical techniques.

The finite element method (FEM), in particular, has been widely applied to simulate
fracture problems due to its facility of implementation and popularity in the scientific
community. Applications of FEM to simulate crack propagation can be found in (BIT-
TENCOURT et al., 1996; BOUCHARD; BAY; CHASTEL, 2003; AZADI; KHOEI, 2010).
Moreover, several computer programs based on FEM have been developed to analyse this



34 Chapter 1. Introduction

kind of problem, e.g. Franc2D (WAWRZYNEK; INGRAFFEA, 1994). As a consequence
of the existing domain mesh in FEM, some difficulties emerge from the remeshing process
when crack propagation is addressed. Furthermore, the approximation of the mechanical
fields throughout the domain introduces inaccuracies in the responses for singular regions
near the crack tips.

A suitable alternative for modelling cracked bodies is the Boundary Element Method
(BEM). Straightforward application of the BEM in fracture problems presents some diffi-
culties since the existence of coincident source points on overlapping crack surfaces leads
to degeneracy in the algebraic system of equations (CRUSE, 1972). Some strategies have
been developed to overcome this issue, such as the use of especial fundamental solutions
(Green’s functions) containing the effect of cracks (SNYDER; CRUSE, 1975), or the
multi-domain technique (BLANDFORD; INGRAFFEA; LIGGETT, 1981), which intro-
duces artificial boundaries to model the crack surfaces and the eventual crack propagation
path. However, these strategies also face some challenges for fracture modelling, particu-
larly when dealing with multiple cracks or considering crack growth.

The most successful BEM approach for dealing with fracture problems is based on
the dual formulation developed by Portela, Aliabadi, and Rooke (1992) and is denoted
as Dual Boundary Element Method (DBEM). In this method, two independent bound-
ary integral equations are separately applied for the source points on each crack surface,
which results in a non-singular system of equations. In DBEM, only the boundary of
the analysed body is discretised, and this mesh dimensionality reduction facilitates the
meshing process during crack growth. The absence of a domain mesh also allows the
accurate description of the internal mechanical fields, even for the singular zones sur-
rounding the tips. These features make the DBEM an efficient numerical approach for
simulating several fracture problems, including linear-elastic (PORTELA; ALIABADI;
ROOKE, 1992; MI; ALIABADI, 1992), non-linear (SALEH; ALIABADI, 1995), dynamic
(FEDELINSKI; ALIABADI; ROOKE, 1993; ALBUQUERQUE; SOLLERO; ALIABADI,
2004), contact (LEITÃO; ALIABADI; ROOKE, 1995; LEONEL; VENTURINI, 2011),
thermoelastic (PASTERNAK, 2012; PRASAD; ALIABADI; ROOKE, 1994) and mul-
tiple crack propagation (CARPINTERI; MONETTO, 1999; LEONEL; VENTURINI,
2010; PRICE; TREVELYAN, 2014). To reduce the computational cost of the BEM
in large-scale problems, particularly those involving 3D applications in which the pro-
cessing time may be prohibitive, acceleration techniques can be used, such as the Fast
Multipole Method (FMM) (NISHIMURA; YOSHIDA; KOBAYASHI, 1999; LIU, 2009;
LIU; LI; XIE, 2017) and the Adaptative Cross Approximation (ACA) (BENEDETTI;
ALIABADI; DAVÌ, 2008; BENEDETTI; MILAZZO; ALIABADI, 2009; BENEDETTI;
ALIABADI, 2010).

In conventional formulations of FEM and BEM, piecewise Lagrange polynomials are
used to interpolate both the unknown quantities and geometry over discrete elements.
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This strategy is widely known as the isoparametric approach. However, errors may be
introduced in the analysis if the physical fields show a highly non-polynomial behaviour
at the element’s domain, such as near crack tips. Consequently, the accuracy of the
responses for the Stress Intensity Factors (SIFs) may be compromised since they depend
on the mechanical response at these singular regions. Since the SIFs play a major role in
verifying the crack stability considering the LEFM, the development of numerical models
that mitigate approximation errors is crucial for the fracture analysis.

Several strategies have been proposed over the years to overcome the deficiency in
describing unknown quantities, among which the enriched formulations stand out. This
approach consists of augmenting the conventional polynomial approximation with addi-
tional functions based on a priori knowledge about the solution space. Early enrichment
strategies to incorporate singular properties within the finite element formulation are
found in Tracey (1971), Fix, Gulati, and Wakoff (1973) and Benzley (1974). In particu-
lar, the latter used this approach for crack problems to compute the SIFs directly as part
of the solution of the system of linear equations, without the need for a post-processing
stage. In these early enrichment strategies, the enrichment functions have global support;
consequently, the finite element stiffness matrix loses its local structure (BABUŠKA;
BANERJEE, 2012).

Over the past two decades, the concept of the partition of unity (PU) method (MELENK;
BABUSKA, 1996; BABUSKA; MELENK, 1997) has been established within the FEM
framework. Using the PU enrichment, Belytschko and Black (1999) obtained accurate
responses for the elastic fields at the vicinity of the crack tips with coarse discretisa-
tion, while Moës, Dolbow, and Belytschko (1999) modelled the displacement discontinu-
ity over the crack faces without the need of a conforming finite element mesh. This
numerical strategy is known as the eXtended Finite Element Method (XFEM) and is
widely applied to several fracture problems (BUDYN et al., 2004; ASADPOURE; MO-
HAMMADI, 2007; YU; WU; GUO, et al., 2009; KUMAR; SINGH; MISHRA, 2015;
KHOEI; VAHAB; HIRMAND, 2018). Nevertheless, the large amount of degrees of free-
dom (DOF) introduced by the enrichment degrades the conditioning of the system of
equation. Besides, the existence of blending elements decreases the convergence rate of
the method. Several strategies can be adopted to overcome these drawbacks as, e.g., the
use of pre-conditioners (BÉCHET et al., 2005; MENK; BORDAS, 2010) and the applica-
tion of special types of enrichment functions to the blending elements (CHESSA; WANG;
BELYTSCHKO, 2003; LEGAY; WANG; BELYTSCHKO, 2005; FRIES, 2008; GRACIE;
WANG; BELYTSCHKO, 2008). Conditioning issues for 3D crack problems have also been
treated in (AGATHOS et al., 2015, 2017; AGATHOS; CHATZI; BORDAS, 2016, 2018;
AGATHOS; BORDAS; CHATZI, 2019; TIAN; WEN; WANG, 2019), and many error
estimation approaches have been proposed to improve the accuracy of XFEM (BOR-
DAS; DUFLOT; LE, 2007; DUFLOT; BORDAS, 2008; RÓDENAS et al., 2010; CHEN et
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al., 2012; LOEHNERT; PRANGE; WRIGGERS, 2012; PRANGE; LOEHNERT; WRIG-
GERS, 2012; LINS et al., 2015; JIN et al., 2017; PENG et al., 2017).

Since the pioneer works of Belytschko et al. (1996) and Fleming et al. (1997), the PU-
based enrichment functions have also been adopted within meshfree methods to solve frac-
ture mechanics problems (VENTURA; XU; BELYTSCHKO, 2002; DUFLOT; NGUYEN-
DANG, 2004; RABCZUK; BELYTSCHKO, 2004; LI; LI; CHENG, 2005; ZHUANG;
AUGARDE; MATHISEN, 2012; KHOSRAVIFARD et al., 2017; FALLAH; NIKRAFTAR,
2018), including three-dimensional analyses (RABCZUK; BORDAS; ZI, 2007; BORDAS;
RABCZUK; ZI, 2008; RABCZUK et al., 2010). In these methods, the approximation
is constructed from nodes only and does not rely on a structured mesh as the mesh-
based XFEM. This feature also eliminates the difficulties arising from the mesh genera-
tion, especially when considering crack growth. Concerning a meshless boundary integral
formulation, Liew, Cheng, and Kitipornchai (2007) proposed an enriched approach for
two-dimensional fracture problems.

Despite the developments regarding other numerical techniques, the use of the PU
concept in BEM is still incipient. Early applications of this formulation can be traced back
to a series of papers in the early 2000s (PERREY-DEBAIN; TREVELYAN; BETTESS,
2002, 2003a,b; PERREY-DEBAIN et al., 2004), which were focused on Helmholtz prob-
lems and elastic waves. Later, the accuracy of the numerical integration of oscillatory
functions (HONNOR; TREVELYAN; HUYBRECHS, 2010) and the definition of an ad-
aptative enrichment strategy based on an error indicator (TREVELYAN; COATES, 2010)
were also investigated. Regarding fracture problems, Simpson and Trevelyan (2011a) pro-
posed an enriched formulation of BEM to improve the accuracy of the computed SIFs.
In their work, the standard approximation space for the displacements was expanded by
enrichment functions based on the PU and the LEFM formulation. Because of the sim-
ilarities with XFEM, the method was termed the eXtended Boundary Element Method
(XBEM). The large number of DOF introduced by the enriched formulation poses some
drawbacks for this version of XBEM, such as ill-conditioning and the need for additional
collocation points to yield a square system of equations.

Noting that the additional DOF in the PU-based enrichment for XBEM are all proxies
for the SIFs, an alternative was proposed by Simpson and Trevelyan (2011b), in which the
displacement approximation was augmented similarly to the early work of Benzley (1974).
In this strategy, the number of parameters introduced by the enrichment is limited to two
per tip for planar problems. Besides, an independent boundary integral equation derived
from the LEFM crack tip fields was used to solve for the new DOF. In this approach,
the SIFs were obtained indirectly with the J-integral technique (RICE, 1968), which is
computational costly in the BEM framework since the integral kernels related to the
internal points defining the integration path must be evaluated.

Including a crack tip tying constraint in the XBEM approach, Alatawi and Trevelyan
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(2015) were able to accommodate the additional degrees of freedom without additional
collocation points and also showed how the SIFs could be obtained directly from the sys-
tem of equations with sufficient accuracy. Later, Hattori, Alatawi, and Trevelyan (2016)
extended this method for directly assessing the SIFs in anisotropic materials. The dir-
ect approach is particularly beneficial in boundary element formulations since indirect
techniques that require the evaluation of internal fields, such as the J-integral, could be
avoided. Notwithstanding this additional cost, the enrichment strategy can also be com-
bined with post-processing techniques to markedly improve the accuracy of computed SIF
values for cases in which highly accurate solutions are required. Despite the advantages
of handling fracture problems, particularly when addressing crack growth in which the
SIF evaluation is needed for each new configuration, the XBEM has not yet been used
for crack propagation modelling, which will be a topic of investigation of this thesis.

The aforementioned enriched formulations aim to improve the physical fields approx-
imation by the expansion of the solution space with special functions determined from
a priori knowledge of the problem’s behaviour. However, errors are also introduced into
the analysis when polynomials shape functions are used to describe complex geomet-
ries. To overcome this deficiency, the same functions applied in computer-aided design
(CAD) packages, such as the non-uniform rational B-splines (NURBS), can be used for
an accurate geometry description. These functions can also be adopted into the unknown
quantities approximation, giving rise to the isogeometric analysis (IGA). Since the seminal
paper of Hughes, Cottrell, and Bazilevs (2005), the IGA concepts have been extensively
embedded in different numerical methods for applications in several fields. One of the
advantages of this approach over the conventional polynomial-based formulations is the
remarkable reduction of effort for the mesh generation process since the discretisation is
provided directly by the CAD model. This is particularly beneficial for industrial applica-
tions, in which the mesh generation can take up to 80% of overall analysis time (HUGHES;
COTTRELL; BAZILEVS, 2005; BAZILEVS et al., 2010). Moreover, the basis functions
adopted by IGA facilitate the refinement process using knot insertion or degree elevation
without changing the geometry or its parametrisation.

Over the years, particular attention has been devoted to the application of the IGA in
the finite element method (FEM) framework. Non-uniform rational B-splines (NURBS)
have been widely applied in IGA-FEM approximations since they are standard techno-
logy in computational design (COTTRELL et al., 2006; CHO; HA, 2008; COTTRELL;
HUGHES; BAZILEVS, 2009; BENSON et al., 2010; VERHOOSEL et al., 2010; TEM-
IZER; WRIGGERS; HUGHES, 2011; AKHRAS et al., 2017). Nonetheless, the use of
NURBS exhibits some shortcomings in numerical modellings, such as the difficulties in-
volved in local refinement and in obtaining geometries with no gaps and overlaps (water-
tight). Several alternatives to the NURBS have been adopted in the IGA-FEM context
to overcome these deficiencies, such as T-splines (BAZILEVS et al., 2010), PHT-splines
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(DENG et al., 2008) and LR-Splines (DOKKEN; LYCHE; PETTERSEN, 2013). Addi-
tionally, complex topologies have been efficiently modelled by multiply-connected NURBS
using trimming techniques (KIM; SEO; YOUN, 2009, 2010; SCHMIDT; WÜCHNER;
BLETZINGER, 2012). To facilitate the incorporation of NURBS and T-splines into
existing FEM codes, the Bézier extraction process may be employed (BORDEN et al.,
2010; SCOTT et al., 2011), in which the extracted Bézier elements are expressed using
Bernstein polynomials and therefore resemble the standard polynomial approximation.
However, the application of Bézier extraction comes at the cost of an increase in the
number of degrees of freedom in the final system of equations.

Engineering components are commonly expressed in CAD systems in the form of
surface models or boundary representations. Therefore, the coupling between IGA and
domain-based methods, such as FEM, requires the definition of an additional paramet-
risation direction to define the domain discretisation, which can be a quite complex task
(AKHRAS et al., 2017). Alternatively, boundary-based numerical techniques provide a
more natural and direct link between CAD models and numerical analysis since both
formulations deal with quantities solely on the boundary. Early application of IGA into
BEM was made by Politis et al. (2009), in which an exterior planar Neumann problem was
analysed. Later, Simpson et al. (2012; 2013) introduced the fundamentals and implement-
ation aspects of IGA for elastostatic BEM. In these works, the term IGABEM was coined
for the numerical approach. The use of the IGABEM has since expanded, and the method
has been applied to several problems involving geomechanics (BEER; MARUSSIG; DU-
ENSER, 2013; BEER; DUENSER, 2018), acoustics (SIMPSON et al., 2014; COOX et al.,
2017; SUN et al., 2019), shape optimisation (LIAN; KERFRIDEN; BORDAS, 2017; SUN
et al., 2018; OLIVEIRA; ANDRADE; LEONEL, 2020), potential flow (GONG; DONG;
QIN, 2017; CAMPOS; ALBUQUERQUE; WROBEL, 2017), heat transfer (AN et al.,
2018) and fracture (NGUYEN et al., 2016; PENG et al., 2017; CORDEIRO; LEONEL,
2018; SUN; DONG; YANG, 2019). Additionally, studies concerning the accurate eval-
uation of the singular and near-singular integrals arising in IGABEM can be found in
(TAUS; RODIN; HUGHES, 2016; TAUS et al., 2019; GONG et al., 2019).

When dealing with linear-elastic crack problems, the IGA basis functions, as the Lag-
range polynomials, are not themselves capable of accurately representing the mechanical
behaviour in the singular zone near the crack tips. Then, an enriched strategy can also
be applied in IGA to overcome this drawback. The development of numerical meth-
ods combining the benefits of extended and isogeometric analysis (XIGA) has received
much attention, especially in the FEM framework (BENSON et al., 2010; LUYCKER et
al., 2011; GHORASHI; VALIZADEH; MOHAMMADI, 2011; GHORASHI et al., 2015;
NGUYEN et al., 2015; SINGH et al., 2017). Meanwhile, the use of XIGA in the BEM
context - resulting in the XIGABEM, also denoted as XIBEM in the literature - is still
incipient. The first applications of XIGABEM were reported by Peake, Trevelyan, and
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Coates (2013, 2015), in which 2D and 3D Helmholtz problems were investigated. Con-
cerning crack analysis, Peng et al. (2016) adopted a crack tip enrichment based on the PU
similar to the XBEM approach used by Simpson and Trevelyan (2011a). As previously
mentioned, some shortcomings of PU-based enrichments are the number of additional
DOF and the ill-conditioning of the resulting system of equations. Also, new collocation
points are required to retrieve a square system of equations, and the optimal location
of these points is not clear. Therefore, a direct XIGABEM formulation based on the
XBEM strategy used by Alatawi and Trevelyan (2015) and Hattori, Alatawi, and Trev-
elyan (2016) appears as an appealing alternative for the analysis of crack problems and
will be considered in the developments of this thesis.

In the present investigation, the analysis of interface cracks is also considered. Applic-
ations of composite materials have been received increasing interest in several industries
over the past years. Due to their practical importance, the verification of structural in-
tegrity in these types of materials involves the investigation of fracture and delamination
processes that occur at the interface between dissimilar media. Considering the linear
elastic fracture mechanics (LEFM), early studies on interface cracks revealed that the
stress and displacement fields near the crack tip present an oscillatory behaviour (WILLI-
AMS, 1959; ENGLAND, 1965; ERDOGAN, 1965; RICE; SIH, 1965). As a result of this
oscillatory nature, it was shown the existence of a zone of interpenetration in regions close
to the tip. According to Banks-Sills (2018), this anomalous behaviour was responsible for
a hiatus of more than a decade in research on the subject. Nevertheless, since the order
of magnitude of the contact zone in practical applications is small in comparison to the
crack length (COMNINOU, 1990), many investigations were later conducted considering
the oscillatory characteristic of the near-tip fields (HUTCHINSON; MEAR; RICE, 1987;
RICE, 1988; RICE; SUO; WANG, 1990; HUTCHINSON; SUO, 1991; BANKS-SILLS,
2018).

The interface integrity can be assessed through the complex stress intensity factor,
which defines the singular term in the asymptotic stress expansion. Closed-form solutions
for the SIFs of interface cracks are only available for a limit number of configurations and
the solutions for complex applications can be determined only by numerical formulations.
Examples of papers evaluating the SIFs with numerical methods can be found in Ryoji
and Sang-Bong (1989), Sukumar et al. (2004) and Gu and Zhang (2020). Additionally,
some effort has been made for the direct evaluation crack parameters in the context of
the XFEM (LIU; XIAO; KARIHALOO, 2004; WANG et al., 2017) and scaled boundary
finite element method (SBFEM) (SONG, 2005; NATARAJAN; SONG; BELOUETTAR,
2014). Furthermore, He et al. (1991) and Kang (1994) showed that the T-stress, which
is related to the second term of the asymptotic expansion for elastic stress field, plays an
important role in the stability of the crack path. Several approaches have been proposed
to compute this parameter, in which interaction integrals have been mainly applied (KIM;
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MOON; EARMME, 2001; MUTHU et al., 2016; SLADEK; SLADEK, 1997; YU; WU;
LI, 2012). Here, an XIGABEM formulation is developed to directly evaluate not only the
SIFs but also the T-stress parameter for interface cracks.

1.1 Objectives and novel aspects

The main objective of this thesis is the development of enriched formulations based
on the boundary element method for the fracture and fatigue analyses of two-dimensional
multi-cracked structural systems. Cracks on bimaterial interfaces are also investigated
with the extended approach.

Initially, an XBEM formulation is developed to simulate the linear elastic crack growth
in isotropic and anisotropic domains. The main features of the proposed method are:

• Use of crack tip enrichment that allows the direct evaluation of the SIFs from the
solution of the system of equations. Differently from previous XBEM investigations
available in the literature, the enrichment term is based on shifted functions.

• Proposition of a novel displacement-discontinuity enrichment into the BEM frame-
work to avoid the remeshing of existing boundary elements intercepted by cracks.

• Introduction of a traction enrichment composed of a Dirac delta term to model point
boundary conditions within BEM, such as concentrated forces and support points.

Then, an XIGABEM approach is presented for the analysis of high-cycle fatigue crack
growth in two-dimensional bodies. The novel aspects of the novel formulation are:

• Definition of a crack tip enrichment strategy for direct evaluation of the SIFs on
homogeneous materials considering the isogeometric formulation.

• Development of a scheme to model the crack propagation, in which the new crack
surfaces are created from the extension of existing NURBS. The strategy is based
on the definition of a C−1 continuity for the rational basis between the new and old
surfaces to facilitate the crack propagation modelling.

• Use of the C−1-continuous NURBS basis to facilitate the isogeometric representation
of discontinuities such as the intersection of cracks with other boundaries.

Finally, a new XIGABEM formulation is introduced for the analysis of interface cracks.
Among the novelties of this numerical method are:

• Definition of enrichment functions based on the two-term asymptotic expansions for
displacements and stresses of interface cracks. The proposed extended formulation
allows the evaluation of the SIFs and T-stress parameter directly from the system
of equations.
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• Extension of the direct method to extract the crack parameters for curved cracks.

Several numerical applications are presented to demonstrate the accuracy of all enriched
formulations herein proposed. The results are compared with analytical, experimental and
numerical solutions available in the literature. Besides, the direct approach is contrasted
against unenriched and enriched indirect methods that employ the J-integral for SIF
extraction.

1.2 Methodology

This doctoral thesis is inserted in the developments of the research group on fracture
problems using BEM of the Department of Structural Engineering from the São Carlos
School of Engineering at the University of São Paulo, under supervision of Prof. Edson
Denner Leonel. The main goal of this research team is the proposition of numerical
formulations for the analysis of the mechanical behaviour of cracked solids, and the work
presented here provides further contributions to these investigations.

The first part of this thesis can be seen as a continuation of the author’s Master’s
degree (ANDRADE, 2017), in which the DBEM was applied for the analysis of multiple
crack propagation. The proposed XBEM approach used the DBEM code as basis for the
inclusion of crack tip, discontinuous and concentrated force enrichments for the analysis
of crack growth in isotropic and anisotropic materials.

Then, an IGABEM code was implemented for the analysis of linear elastostatic prob-
lems. The numerical formulation was then coupled to the level set method to perform
topology optimisation, which yielded the work reported in Oliveira, Andrade, and Le-
onel (2020). The IGABEM code was later considered for the definition of the extended
isogeometric approach with the introduction of the crack tip enrichment. The resulting
XIGABEM was allied to the C−1-continuity of NURBS to define the numerical model for
the analysis of high-cycle fatigue.

Finally, the isogeometric formulation was expanded to include new enrichment func-
tions for the analysis of cracks along bimaterial interfaces. The BEM sub-region technique
was adopted to analyse each sub-domain separately, while the interfaces were admitted
with perfectly bonded conditions. In the proposed XIGABEM, the two-term asymptotic
expansions near the interface tip were used for enrichment of elements in the discretisation
of both crack surfaces and interfaces, which allowed the SIFs and T-stress parameter to
be obtained directly from the solution vector given by the numerical method.

All BEM formulations were implemented in the FORTRAN 90 language. Addition-
ally, the pre-processing for model generation and post-processing for data analysis were
carried out in Python. For isogeometric applications, the NURBS-Python library geomdl
(BINGOL; KRISHNAMURTHY, 2019) was adopted for defining the initial geometries.
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1.3 Organisation of the text

The remainder of this thesis is structured as follows: Chapter 2 briefly describes the
dual BEM formulation, which forms the basis for the enriched approaches. Chapter 3
presents the LEFM fundamentals that are used for the definition of the crack tip enrich-
ments for homogeneous and interface cracks. The novel XBEM formulation developed
in this study to simulate linear crack propagation is described in Chapter 4. Chapter 5
brings the main concepts of IGABEM and presents the new XIGABEM approach applied
for fatigue simulation. In Chapter 6, the XIGABEM formulation is extended to the ana-
lysis of interface cracks. Finally, Chapter 7 draws some conclusions obtained from the
present research and offers some recommendations for future work.
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2 Boundary element formulation

2.1 Fundamentals of Elasticity

In this study, the BEM is applied to the solution of linear elastostatic problems. In
what follows, the main concepts of the Theory of Elasticity used for the development of
the BEM formulation are briefly presented.

Let Ω denotes an elastic domain with enclosing boundary Γ , as illustrated in Fig. 2.1.
The static equilibrium equations for each point x belonging to Ω are stated as follows:

σij,j + bi = 0 (2.1)

where σij = σji represents the Cauchy stress tensor and bi denotes the body-force com-
ponents. The index notation and Einstein summation convention are adopted herein.

Figure 2.1: Representation of the elastostatic boundary value problem.
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The linear strain tensor is defined as:

εij =
ui,j + uj,i

2
(2.2)

where εij = εji are the strain components and ui stands for the displacements.
The stress and strain components can be related through generalized Hooke’s law.

Considering a fully anisotropic media, this relation is given by:

σij = aijklεkl (2.3)

in which the components aijkl define the fourth-order elastic stiffness tensor A and satisfy
the following symmetry relations:
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aijkl = ajikl = aijlk = aklij (2.4)

Alternatively, the strain components can be defined from the stress components using
the inverse of Eq. (2.3). This constitutive relation is expressed in Voigt notation by:
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The components cijkl on the right-hand side of Eq. (2.5) represent the fourth-order
elastic compliance tensor C, given by the inverse of the stiffness tensor, i.e., C = A−1.
The compliance tensor can be determined from the material constants as follows:
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(2.6)

in which the following index transformation is adopted:

1↔ 11 2↔ 22 3↔ 33 4↔ 23 ≡ 32 5↔ 13 ≡ 31 6↔ 12 ≡ 21 (2.7)

In a fully anisotropic material, the compliance tensor is defined by 21 independent
elastic constants: Young’s moduli Ei, Poisson’s ratios νij, shear moduli µi, coefficients
of mutual influence ηij, and Chentsov’s coefficients χij. For isotropic materials, only two
elastic constants are independent: the Young’s modulus E and the Poisson’s ratio ν. In
this case, a compact relation between the strains and stresses can be written:

εij =
σij
2µ
− ν

E
σkkδij (2.8)

in which µ is the shear modulus, given by:

µ =
E

2 (1 + ν)
(2.9)
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and δij is the Kronecker delta, defined as:

δij =

 1,

0,

i = j

i 6= j
(2.10)

Let the displacement and traction boundary conditions at Γ be defined as:

ui = ūi on Γu

pi = p̄i on Γp
(2.11)

in which Γ = Γu ∪ Γp and Γu ∩ Γp = ∅. The traction components at the boundary are
defined from Cauchy’s formula:

pi = σijnj (2.12)

where nj are the components of the outward unit normal vector at the boundary.
Equations (2.1), (2.2) and (2.6) (or Eq. (2.8) for isotropic materials), along with the Di-

richlet and Neumann boundary conditions expressed in Eq. (2.11), constitute the bound-
ary value problem in linear elasticity.

The above relations are valid for the three-dimensional space, with i, j, k = 1, 2, 3.
However, plane problems are considered in the present study. For plane stress conditions,
in which σ13 = σ23 = σ33 = 0, the same equations hold with i, j, k = 1, 2. Additionally,
considering the plane of analysis as a plane of elastic symmetry, Eq. (2.6) is reduced to:

ε1
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2ε6

 =

 c11 c12 c16

c21 c22 c26

c61 c26 c66
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 (2.13)

For plane strain states, in which ε13 = ε23 = ε33 = 0, these expressions are also valid
for i, j, k = 1, 2. Nonetheless, the following modified components of the compliance tensor
should be used in Eq. (2.13):

c∗ij = cij −
ci3cj3
c33

, i, j = 1, 2, 6 (2.14)

When considering isotropic materials in plane strain problems, the out-of-plane normal
stress component is given by:

σ33 = ν (σ11 + σ22) (2.15)

and the following corrected Poisson’s ratio should be used in Eq. (2.8):

ν∗ = ν (1− ν) (2.16)

In some situations, the coordinate system must be rotated to perform the mechanical
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analysis. When an anisotropic material is considered, the compliance matrix must also be
rotated since it depends on the frame of reference. For a new orientation, rotated by an
angle of ϕ about the original x1 axis as depicted in Fig. 2.2, Eq. (2.13) can be rewritten
in a compact form as:

{ε′} = [C ′] {σ′} (2.17)

where the tensors are now expressed in the new coordinate system and are obtained as
follows:

{ε′} = [R]−T {ε} (2.18)

{σ′} = [R] {σ} (2.19)

[C ′] = [R]−T [C] [R]−1 (2.20)

in which [R] denotes the rotation matrix given by:

[R] =

 c2 s2 2cs

s2 c2 −2cs

−cs cs c2 − s2

 (2.21)

where c = cosϕ and s = sinϕ.

Figure 2.2: Rotation from the global to the local coordinate system.

Source: Own author.

2.2 Boundary integral equations

From the equilibrium conditions shown in Eq. (2.1) and by means of the weighted
residual method, the following expression can be written ∀x ∈ Ω:



Chapter 2. Boundary element formulation 47

∫
Ω

(σij,j + bi)u
∗
i dΩ = 0 (2.22)

where u∗i is used as a weighting function and corresponds to a displacement field from a
self-equilibrated auxiliary state.

Applying the divergence theorem, strain-displacement relation (2.2) and Cauchy’s for-
mula (2.12) in Eq. (2.22) results in:∫

Ω

σijε
∗
ijdΩ =

∫
Γ

piu
∗
i dΓ +

∫
Ω

biu
∗
i dΩ (2.23)

From Hooke’s law (2.3), the integral on the left-hand side of Eq. (2.23) can be rewritten
as: ∫

Ω

σijε
∗
ijdΩ =

∫
Ω

aijklεklε
∗
ijdΩ =

∫
Ω

σ∗ijεijdΩ (2.24)

where the last equality is obtained after using the symmetry relations from Eq. (2.4) and
applying an index change.

Observing the similarity with the first member of Eq. (2.23), the last member of
Eq. (2.24) can be expressed by:∫

Ω

σ∗ijεijdΩ =

∫
Γ

p∗iuidΓ +

∫
Ω

b∗iuidΩ (2.25)

Therefore, substituting Eqs. (2.25) and (2.24) into Eq. (2.23) leads to:∫
Γ

p∗iuidΓ +

∫
Ω

b∗iuidΩ =

∫
Γ

piu
∗
i dΓ +

∫
Ω

biu
∗
i dΩ (2.26)

Equation (2.26) corresponds to Betti’s reciprocal work theorem for two self-equilibrated
elastic states. An integral representation for the elastostatic problem can be obtained from
this relation by choosing the auxiliary state as a point-load problem in an infinite domain.
In this case, the corresponding body force is given by:

b∗i = ∆(x′,x)ei (2.27)

where ∆(x′,x) is the Dirac delta function, x′ corresponds to the point of applied force (or
source point) and ei represents the components of a unit vector in the xi direction. The
displacement and traction fields of the point-load problem can be expressed by:

u∗i = U∗ij(x
′,x)ej

p∗i = P ∗ij(x
′,x)ej

(2.28)

in which U∗ij and P ∗ij are, respectively, the displacement and traction fundamental solu-
tions. AppendixB presents their expressions for two-dimensional problems considering
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both isotropic and anisotropic materials.

Substituting Eqs. (2.27) and (2.28) into Eq. (2.26), and then using the Dirac delta
sifting property, the Somigliana’s identity is obtained:

ui(x
′) +

∫
Γ

P ∗ij(x
′,x)uj(x)dΓ =

∫
Γ

U∗ij(x
′,x)pj(x)dΓ +

∫
Ω

U∗ij(x
′,x)bj(x)dΩ (2.29)

With Eq. (2.29), the displacement at internal points x′ ∈ Ω\Γ can be computed once
the displacements and tractions at the boundary points x ∈ Γ are known.

Differentiating Eq. (2.29) with respect to the source point x′, then using the strain-
displacement relation (2.2) and finally applying Hooke’s law (2.8), the integral equation
that defines the internal stress components is obtained:

σij(x
′) +

∫
Γ

S∗kij(x
′,x)uk(x)dΓ =

∫
Γ

D∗kij(x
′,x)pk(x)dΓ +

∫
Ω

D∗kij(x
′,x)bk(x)dΩ (2.30)

where D∗kij and S∗kij are obtained from the U∗ij and P ∗ij derivatives, respectively. Their
expressions are also presented in Appendix B.

Equations (2.29) and (2.30) are only valid for evaluation of the mechanical fields at
internal points. Therefore, to compute the boundary values, x′ must be placed at Γ.
This can be achieved by performing a limiting process and analysing the behaviour of the
integral kernels since they are singular as x′ → x (see expressions of fundamental solutions
in Appendix B). Details about this process can be obtained in Brebbia and Dominguez
(1994) and Aliabadi (2002). Applying this procedure to Eq. (2.29) and assuming that
the displacement field is continuous at x′, the displacement boundary integral equation
(DBIE) is determined as:

cij(x
′)uj(x

′) + cij(x̄
′)uj(x̄

′) +−
∫

Γ

P ∗ij(x
′,x)uj(x)dΓ =

∫
Γ

U∗ij(x
′,x)pj(x)dΓ (2.31)

in which the body forces are disregarded, as usual in the BEM, and −
∫
denotes an integral

to be evaluated in the Cauchy principal value sense. cij(x
′) represents the jump term

arising from the integration of the strongly singular kernel P ∗ij. The explicit expressions
to compute cij can be found in Guiggiani and Casalini (1987) and, for x′ at smooth
boundaries, cij = δij/2. The additional jump term cij(x̄

′) only exists if another source
point x̄′ is at the same position of x′, but is placed on a different surface. Such a condition
occurs for corresponding source points at opposite crack surfaces (see Fig. 2.1). When x′

is placed at the non-crack boundaries, the term cij(x̄
′)uj(x̄′) vanishes.

Analogously, the limiting process may also be applied for Eq. (2.30) to determine
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the second integral equation required by the DBEM. After this procedure, the traction
boundary integral equation (TBIE) is obtained by applying Cauchy’s formula (2.12). The
order of singularity of the integral kernel in the TBIE is increased in comparison to the
DBIE. Hence, for the existence of the resulting finite part integrals, the TBIE must be
applied to locations at which the displacement derivatives are continuous, which constrains
the collocation of x′ at a smooth boundary. Then, considering x′ at a smooth surface, the
TBIE becomes:

1

2
[pj(x

′)− pj(x̄′)] + ni(x
′) =

∫
Γ

S∗kij(x
′,x)uk(x)dΓ = ni(x

′)−
∫

Γ

D∗kij(x
′,x)pk(x)dΓ (2.32)

where =
∫

stands for the Hadamard principal value integral.

2.3 Dual boundary element method

When analysing bodies containing cracks, as illustrated in Fig. 2.1, the application
of the same boundary integral equation at coincident source points x′ and x̄′ on the
opposing crack surfaces leads to degeneracy in the resulting system of algebraic equations.
One approach to overcome this deficiency is to use the DBEM (HONG; CHEN, 1988;
PORTELA; ALIABADI; ROOKE, 1992), which employs the two independent boundary
integral equations shown in Eqs. (2.31) and (2.32). The DBIE is applied to x′ on the
upper crack surface ΓC+ and external boundary, while the TBIE is adopted to x′ located
on the lower crack surface ΓC−. In what follows, the numerical approximations used in
the DBEM are defined by Lagrange polynomials. In Chapters 5 and 6, an isogeometric
analysis is considered. In this approach, the following formulation remains valid, requiring
only the replacement of the Lagrange polynomials by the NURBS basis functions.

To define the discrete forms of the boundary integral equations, Γ is firstly subdivided
into boundary elements Γe, with Γ = ∪Γe, as illustrated in Fig. 2.3a. Each element is
defined by ne nodes, with ne−1 representing the degree of the polynomial approximation.
Considering the conventional Lagrange polynomials, the Cartesian coordinates along the
element e are interpolated from the nodal values by:

x̃ej(ξ) =
ne∑
m=1

φem(ξ)xemj (2.33)

where xemj represents the nodal coordinates and:

φem(ξ) =
ne∏

l=1,l 6=m

(
ξ − ξl

)
(ξm − ξl) (2.34)

is the Lagrange polynomial associated with them-th node from the e-th element. A global
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node n is related to a local node through a connectivity relation, i.e, n = conn (e,m).
Besides, ξ ∈ [−1, 1] denotes the parametric space defined over the element, and the
Jacobian of the transformation to the Cartesian coordinate system is given by:

Je(ξ) =
dΓ

dξ
=

√(
dx1

dξ
(ξ)

)2

+

(
dx2

dξ
(ξ)

)2

(2.35)

Figure 2.3: (a) Boundary discretisation with quadratic elements. The interpolation of
the coordinates, tractions and displacements along three elements is also illustrated. (b)
Representation of a boundary mesh for a inhomogeneous crack problem. Continuous,
semi-discontinuous and discontinuous elements are depicted in different colours with their
respective nodes and collocation points. The external boundary (ΓB), the interface (ΓI)
and the upper (ΓC+) and lower (ΓC−) crack surfaces are indicated with the corresponding
BIE applied for their collocation points.

(a) (b)

Source: Own author.

With the boundary discretisation, the DBIE (2.31) becomes:

cij(x
′)uj(x

′) + cij(x̄
′)uj(x̄

′) +
Ne∑
e=1

−
∫ 1

−1

P ∗ij(x
′,x(ξ))uej(ξ)J

e(ξ)dξ = (2.36)

=
Ne∑
e=1

∫ 1

−1

U∗ij(x
′,x(ξ))pej(ξ)J

e(ξ)dξ

where Ne is the total number of elements.
Using the isoparametric approach, the mechanical fields along the elements are also

interpolated with the polynomials shape functions and the nodal values as:

ũej(ξ) =
ne∑
m=1

φem(ξ)uemj (2.37)
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p̃ej(ξ) =
ne∑
m=1

φem(ξ)pemj (2.38)

Substituting Eqs. (2.37) and (2.38) into Eq. (2.36) results in:

cij(x
′)uj(x

′) + cij(x̄
′)uj(x̄

′) +
Ne∑
e=1

ne∑
m=1

P em
ij u

em
j =

Ne∑
e=1

ne∑
m=1

U em
ij p

em
j (2.39)

where:

P em
ij = −

∫ 1

−1

P ∗ij(x
′,x(ξ))φem(ξ)Je(ξ)dξ (2.40)

U em
ij =

∫ 1

−1

U∗ij(x
′,x(ξ))φem(ξ)Je(ξ)dξ (2.41)

Similarly, the discrete TBIE (2.32) is determined as:

1

2
[pj(x

′)− pj(x̄′)] + ni(x
′)

Ne∑
e=1

ne∑
m=1

Semkiju
em
k = ni(x

′)
Ne∑
e=1

ne∑
m=1

Dem
kijp

em
k (2.42)

where:

Semkij = =

∫ 1

−1

S∗kij(x
′,x(ξ))φem(ξ)Je(ξ)dξ (2.43)

Dem
kij = −

∫ 1

−1

D∗kij(x
′,x(ξ))φem(ξ)Je(ξ)dξ (2.44)

With the discrete forms of the DBIE and TBIE, given by Eqs. (2.39) and (2.42),
respectively, the algebraic system of equations provided by DBEM can be assembled by
applying the collocation method. Here, the DBIE is used for collocation on nodes at the
external boundary and one of the crack surfaces, while the TBIE is used for collocation on
the other surface to obtain a non-singular system of equations (see Fig. 2.3b). Therefore,
these nodes become the source point x′ of their respective BIE.

The existence of the Hadamard principal value in the TBIE requires the continuity of
the displacement derivatives, given by Eq. (2.37), at the collocation points. This condition
is automatically satisfied by the use of discontinuous elements, in which the collocation
points do not coincide with the end nodes but are positioned inside the element. Hence,
this type of element is used in the crack surfaces mesh (see Fig. 2.3b). Moreover, in
the present work, discontinuous or semi-discontinuous elements are also used to ensure a
smooth boundary at the collocations points, as depicted in Fig. 2.3b.

Due to the singularities of the fundamental solutions when x′ → x, the integral kernels
in Eqs. (2.40), (2.41), (2.43) and (2.44) must be assessed with different strategies depend-
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ing on the distance of the source point to the integrated element. Appendix C presents
the different approaches applied to evaluate the integrands for each case.

After the integration process, the resulting algebraic system of equation is determined,
and it can be summarised into matrix form as:

Hu = Gp (2.45)

in which H is a 2N × 2N matrix containing the influence coefficients obtained from the
kernels P em

ij and Semkij and from the jump terms of the DBIE. G is also a 2N × 2N matrix
with the coefficients determined from U em

ij and Dem
kij and from the jump terms of the

TBIE. u and p are 2N vectors with the displacements and tractions on the boundary,
respectively, and N is the total number of collocation points on the boundary mesh.
Imposing the prescribed boundary conditions to the system (2.45), the final linear system
of equations is obtained:

Ax = f (2.46)

where A is a 2N × 2N matrix composed by the coefficients from H and G related to the
unknown boundary values, x is a 2N vector containing the unknown nodal parameters and
f is a 2N vector obtained from the multiplication of the prescribed boundary values and
their respective influence coefficients from matrices H and G. The solution of Eq. (2.46)
provides a response to the elastostatic boundary value problem determined by DBEM.

2.4 Internal points

If the mechanical fields at an internal point are desired, the discrete forms of Eqs.(2.29)
and (2.30) can be used once the boundary values are determined from the solution of
Eq. (2.46). Thus, the displacement and stress components at an internal point x′ are
given as follows:

ui(x
′) =

Ne∑
e=1

ne∑
m=1

U em
ij p

em
j −

Ne∑
e=1

ne∑
m=1

P em
ij u

em
j (2.47)

σij(x
′) =

Ne∑
e=1

ne∑
m=1

Dem
kijp

em
k −

Ne∑
e=1

ne∑
m=1

Semkiju
em
k (2.48)

Note that the integral kernels on the right-hand side of Eqs. (2.47) and (2.48) are non-
singular and can be evaluated without numerical difficulties. Nonetheless, the third-degree
polynomial transformation (see Appendix C.2) can be considered when x′ approaches the
boundary to improve the accuracy of the quasi-singular integration.
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2.5 Stress on the boundary

In many application, the state of stress at a particular point on the boundary is
required. One possibility to define the stress components on a boundary point is to use
the equation determined from Eq. (2.30) after the limiting process is considered to take
the source point to the boundary. This process gives an expression similar to the TBIE
(2.32) - in fact, the TBIE is obtained after Cauchy’s formula is applied over the equation
obtained from the limiting process. However, the use of this relation is computationally
costly since the integral kernels must be evaluated.

Alternatively, the stresses on the boundary can be determined from the tractions and
displacements approximations used in the boundary discretisation. Figure 2.4a illustrates
the traction components related to a global frame of reference that are determined after
the BEM analysis. These components can be rotated to a local coordinate system, as
depicted in Fig. 2.4b, by the following:{

p′1
p′2

}
=

[
n1 n2

−n2 n1

]{
p1

p2

}
(2.49)

where the matrix:

RT =

[
n1 n2

−n2 n1

]
(2.50)

is the transpose of the rotation matrix R.

Figure 2.4: Traction components at a boundary point related to a (a) global and (b) local
coordinate system.

(a) (b)

Source: Own author.

With the traction components referred to the local coordinate system, the local stress
components σ′11 and σ′12 can be determined with Cauchy’s formula (2.12) and are given
as follows:

σ′11 = p′1 (2.51)
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σ′12 = p′2 (2.52)

The stress component σ′22 can be obtained using the approximations applied in the
boundary discretisation and presented in Section 2.3. Firstly, Eq. (2.13) is rewritten
considering the strain-displacement relation (2.2) and the local coordinate system as:

u′1,1
u′2,2

u′1,2 + u′2,1

 =

 c′11 c′12 c′16

c′21 c′22 c′26

c′61 c′26 c′66




σ′11

σ′22

σ′12

 (2.53)

Then, the derivatives of the displacement components can be obtained from the ap-
proximation in Eq. (2.37) by:

du′i
dξ

=
ne∑
m=1

dφem

dξ
u′emi = Ai (2.54)

in which the nodal displacement components can be rotated as the traction components
in Eq. (2.49).

The displacement derivatives in Eq. (2.54) can also be determined by the chain rule
as follows:

du′i
dξ

=
du′i
dx′l

dx′l
dξ

= u′i,lTl (2.55)

where dx′l
dξ

=
∑ne

m=1
dφem

dξ
(ξ)x′eml = Tl.

From Eqs. (2.54) and (2.55), the following expressions can be written:

u′1,1 =
A1 − u′1,2T2

T1

(2.56)

u′2,2 =
A2 − u′2,1T1

T2

(2.57)

Using Eqs. (2.53), (2.56) and (2.57), the expression that gives σ′22 is obtained as follows:

σ′22 =
A1T1 + A2T2 − T 2

1 (c′11σ
′
11 + c′16σ

′
12)− T 2

2 (c′21σ
′
11 + c′26σ

′
12)− T1T2 (c′61σ

′
11 + c′66σ

′
12)

T 2
1 c
′
12 + T 2

2 c
′
22 + T1T2c′62

(2.58)

Equation (2.58) is valid for anisotropic materials in plane problems. It can also be
applied to isotropic materials, with the particularity that c′16 = c′61 = c′26 = c′62 = 0 and
the other components of the compliance matrix are constant with the material orientation.

Finally, the state of stress in the global coordinate system can be obtained by the
inverse of Eq. (2.19).
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2.6 Sub-region technique

In this study, the BEM sub-region technique (BANERJEE, 1976; BLANDFORD;
INGRAFFEA; LIGGETT, 1981) is applied for the solution of inhomogeneous structural
systems composed of piecewise homogeneous materials interconnected by interfaces. In
this strategy, the DBIE (2.31) can be applied independently for each subdomain Ωs -
which is composed exclusively of one material - to define a set of linear equations. Hence,
the resulting system of equation assumes the following form:

[
HB
s HI

s

]{ uBs

uIs

}
=
[

GB
s GI

s

]{ pBs

pIs

}
(2.59)

where the subscript s indicates the s-th subdomain and the superscripts I and B denote
the sub-matrices and sub-vectors related to the degrees of freedom on the interface and
external boundary, respectively.

The system in Eq. (2.59) is, in principle, under-determined since both displacements
and tractions are unknown along the interfaces. Therefore, additional equations regarding
the compatibility and equilibrium conditions at the interface must be considered. Here,
the interaction between two adjacent sub-regions Ω1 and Ω2 is assumed perfectly bonded
at the interface boundaries ΓI1 and ΓI2. Hence, the following conditions hold:

uI1 = uI2

pI1 = −pI2
(2.60)

Thus, applying the relations of Eq. (2.60), the system of equations is coupled as follows:

[
HB

1 HI
1 0

0 HI
2 HB

2

]
uB1

uI1

uB2

 =

[
GB

1 GI
1 0

0 −GI
2 GB

2

]
pB1

pI1

pB2

 (2.61)

After considering all the subdomains and imposing the boundary conditions of the
problem, the final system of equations in the form of Eq. (2.46) is obtained. The solution of
the resulting system provides the unknown values at the external boundary and interface.
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3 Fracture mechanics

3.1 LEFM fundamentals

One of the goals of the LEFM is the description of the singular stress fields around the
crack tip. Since the body is assumed with linear elastic mechanical behaviour, these fields
can be obtained through the stress function approach of the Theory of Elasticity. Using
this strategy, Williams (1957) determined the asymptotic expansion for the stress com-
ponents near a crack tip for the Griffith problems considering homogeneous and isotropic
materials. For plane problems, the first-order Williams solution for the stress components
referred to the local Cartesian coordinate system (Fig. 3.1) is given by:


σ11

σ22

σ12

 =
1√
2πρ

 cos
(
θ
2

) [
1− sin

(
θ
2

)
sin
(

3θ
2

)]
− sin

(
θ
2

) [
2 + cos

(
θ
2

)
cos
(

3θ
2

)]
cos
(
θ
2

) [
1 + sin

(
θ
2

)
sin
(

3θ
2

)]
sin
(
θ
2

)
cos
(
θ
2

)
cos
(

3θ
2

)
sin
(
θ
2

)
cos
(
θ
2

)
cos
(

3θ
2

)
cos
(
θ
2

) [
1− sin

(
θ
2

)
sin
(

3θ
2

)]
{ KI

KII

}
(3.1)

in which ρ and θ are polar coordinates represented in Fig. 3.1. Note from Eq. (3.1) that the
stress fields near the tip present a singularity order O(ρ−1/2). Moreover, the SIFs values
KI and KII completely define all stress components near the crack tip. Consequently, the
SIFs can be applied to verify the crack tip stability, which is the basis of the LEFM for
homogeneous materials.

Figure 3.1: Stress components in the vicinity of the crack tip.
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x

2
x

Source: Own author.

The SIFs values are associated with the basic fracture modes, characterised by the
relative displacements between the crack surfaces. KI is related to the opening mode, or
mode I (Fig. 3.2a), while KII is related to the sliding mode, or mode II (Fig. 3.2b). Every
crack tip loading in plane problems can be decoupled into these basic fracture modes.

The displacements components near the crack tip can also be determined from the
SIFs values, being expressed by:
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Figure 3.2: Basic modes of fracture for two-dimensional problems: (a) opening mode and
(b) sliding mode.

(a)
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(b)

 

I II

III

Source: Own author.

{
u1

u2

}
=

1

2µ

√
ρ

2π

[
cos
(
θ
2

)
(κ− cos θ) sin

(
θ
2

)
(κ+ 2 + cos θ)

sin
(
θ
2

)
(κ− cos θ) − cos

(
θ
2

)
(κ− 2 + cos θ)

]{
KI

KII

}
(3.2)

where µ = E/2(1 + ν) is the shear modulus and κ represents the Kolosov constant
defined as κ = (3 − ν)/(1 + ν) for plane stress and κ = 3 − 4ν for plane strain. E and
ν are, respectively, the Young’s modulus and the Poisson’s ratio of the material. The
displacement derivatives are often required (see Section 3.2.2), and they can be computed
as follows:


u1,1

u1,2

u2,1

u2,2

 =
1

8µ
√

2πρ


(2κ− 3) cos

(
θ
2

)
+ cos

(
5θ
2

)
− (2κ+ 1) sin

(
θ
2

)
− sin

(
5θ
2

)
(2κ+ 1) sin

(
θ
2

)
+ sin

(
5θ
2

)
(2κ+ 5) cos

(
θ
2

)
+ cos

(
5θ
2

)
− (2κ+ 3) sin

(
θ
2

)
+ sin

(
5θ
2

)
− (2κ− 1) cos

(
θ
2

)
+ cos

(
5θ
2

)
(2κ− 1) cos

(
θ
2

)
− cos

(
5θ
2

)
− (2κ− 5) sin

(
θ
2

)
+ sin

(
5θ
2

)


{

KI

KII

}
(3.3)

Regarding anisotropic materials, Sih, Paris, and Irwin (1965) developed the mechanical
fields near the crack tip for the Griffith crack problems through the Lekhnitskii formalism
(LEKHNITSKII, 1968). As the isotropic case, it was found that the stress singularity
components present a singularity of the order O(ρ−1/2) and they are fully defined by the
SIFs. For plane problems, the stress components are given as follows:


σ11

σ22

σ12

 =
1√
2πρ


<
[(

µ1µ2

µ1−µ2

)(
µ2

H2
− µ1

H1

)]
<
[(

1
µ1−µ2

)(
µ2
2

H2
− µ2

1

H1

)]
<
[(

1
µ1−µ2

)(
µ1

H2
− µ2

H1

)]
<
[(

1
µ1−µ2

)(
1
H2
− 1

H1

)]
<
[(

µ1µ2

µ1−µ2

)(
1
H1
− 1

H2

)]
<
[(

1
µ1−µ2

)(
µ1

H2
− µ2

H1

)]

{

KI

KII

}
(3.4)

where < denotes the real part operator, µi are the material complex parameters with
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positive imaginary part (see Appendix B for more details) and Hi is obtained from:

Hi =
√

cos θ + µi sin θ (3.5)

The displacement components near the crack tip for anisotropic materials are also
defined by the SIFs as follows:

{
u1

u2

}
=

√
2ρ

π

 < [µ1p2H2−µ2p1H1

µ1−µ2

]
<
[
p2H2−p1H1

µ1−µ2

]
<
[
µ1q2H2−µ2q1H1

µ1−µ2

]
<
[
q2H2−q1H1

µ1−µ2

] { KI

KII

}
(3.6)

in which:

pi = c11µ
2
i + c12 − c16µi (3.7)

qi = c12µi + c22µi − c16 (3.8)

The displacement derivatives for anisotropic materials are expressed by:


u1,1

u1,2

u2,1

u2,2

 =
1√
2πρ


<
[(

1
µ1−µ2

)(
µ1p2
H2
− µ2p1

H1

)]
<
[(

1
µ1−µ2

)(
p2
H2
− p1

H1

)]
<
[(

µ1µ2

µ1−µ2

)(
p2
H2
− p1

H1

)]
<
[(

1
µ1−µ2

)(
µ2p2
H2
− µ1p1

H1

)]
<
[(

1
µ1−µ2

)(
µ1q2
H2
− µ2q1

H1

)]
<
[(

1
µ1−µ2

)(
q2
H2
− q1

H1

)]
<
[(

µ1µ2

µ1−µ2

)(
q2
H2
− q1

H1

)]
<
[(

1
µ1−µ2

)(
µ2q2
H2
− µ1q1

H1

)]


{

KI

KII

}
(3.9)

As shown by first-order asymptotic expansions for the stress and displacements com-
ponents, the SIFs represent the local behaviour of the elastic fields at the vicinity of the
crack tip. However, for linear elastic materials, they can be related to the energy release
rate of the body, which is a global parameter. For plane problems, the total energy release
rate G is given by the superposition of the energy release rate of each mode, resulting in:

G = GI +GII (3.10)

For isotropic materials, the energy release rate of each mode M = I, II can be related
to the SIFs as follows (IRWIN, 1957):

GM =
K2
M

E∗
(3.11)

in which E∗ = E for plane stress and E∗ = E/ (1− ν2) for plane strain. Substituting
Eq. (3.11) into Eq. (3.10) leads to the following expression that relates G and the SIFs
for isotropic materials:

G =
K2
I +K2

II

E∗
(3.12)
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Regarding the anisotropic case, Sih, Paris, and Irwin (1965) showed that the relations
between the energy release rate for each mode and the SIFs are expressed as follows:

GI = −c22

2
=
[
K2
I (µ1 + µ2) +KIKII

µ1µ2

]
(3.13)

GII =
c11

2
=
[
K2
II (µ1 + µ2) +KIKIIµ1µ2

]
(3.14)

where = denotes the imaginary part operator. Substituting Eqs. (3.13) and (3.14) into
Eq. (3.10) results in:

G = β11K
2
I + β12KIKII + β22K

2
II (3.15)

in which:

β11 = −c22

2
=
[
µ1 + µ2

µ1µ2

]
(3.16)

β22 =
c11

2
= [µ1 + µ2] (3.17)

β12 = −c22

2
=
[

1

µ1µ2

]
+
c11

2
= [µ1µ2] (3.18)

3.2 Stress intensity factor evaluation

As mentioned in the previous section, the crack tip stability can be assessed through
the SIFs values when considering LEFM. Thus, when dealing with fracture problems, the
accurate evaluation of these factors is of great importance. For a limited number of simple
applications, the SIFs can be determined analytically. However, for problems involving
complex geometry and boundary conditions, the SIFs can only be computed by numerical
techniques.

In general, the numerical strategies to evaluate the SIFs can be subdivided into two
classes: the indirect and the direct methods. In the indirect methods, the mechanical
response for the cracked body is obtained and then, in a post-processing phase, the SIFs
are computed. Examples of indirect methods are the correlation displacement technique
(PARIS; SIH, 1965), the crack closure integral (RYBICKI; KANNINEN, 1977) and the
energy approach based on the conservative J-integral (RICE, 1968), being the latter widely
applied in the literature. In the J-integral technique, the use of the energy balance over
a region is able to mitigate errors in the mechanical fields that may occur at particular
points, leading to accurate values for the SIFs.

In the direct methods, the SIFs are obtained directly from the solution vector of the
system of equations determined by the numerical technique. In this approach, the approx-
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imation space is extended to include enrichment functions, which contains the features of
the analytical solution to the problem. An advantage of the direct methods over the in-
direct approaches is that no post-processing is required for the SIF evaluation, which can
represent a reduction in computational cost. Also, since in the direct approach the solu-
tion space is augmented to capture the theoretical near-tip behaviour, the values obtained
for the FITs present good accuracy. In this case, the errors in the crack parameters are
in the same order of magnitude as those determined by energy-based indirect approaches
that employ unenriched numerical methods to compute the mechanical fields. The ap-
plication of the direct methods to extract the SIFs in the XBEM framework, including
comparisons with indirect approaches, is reported in (ALATAWI; TREVELYAN, 2015;
HATTORI; ALATAWI; TREVELYAN, 2016; ANDRADE; LEONEL, 2020).

In this study, both indirect and direct approaches are applied to compute the SIFs. In
what follows, the indirect method based on the J-integral is presented for both isotropic
and anisotropic materials. The proposed direct formulations are detailed in Chapters 4,
5 and 6.

3.2.1 J-integral

The path-independent J-integral proposed by Rice (1968), also known as the first
component of the vector Jk (i.e. J1), is evaluated along a path ΓJ enclosing the crack tip
and is expressed by:

J =

∫
ΓJ

Wn1 − pjuj,1dΓ (3.19)

where W = σijui,j/2 is the strain energy density, pj = σijni are the tractions along the
integration path, uj are the displacements along ΓJ and ni are the components of the
outward unit normal vector to the path.

In the proposed model, the path ΓJ is assumed as circular and centred at the crack
tip. Such path starts in the collocation point of the BEM mesh at one crack surface
and finishes at the symmetric collocation point at the opposite surface, as illustrated in
Fig. 3.3. Moreover, the integration path must be contained within the domain. To satisfy
this condition, a simple scheme that accounts for intersection distances is used to adjust
the length of the path radius.

To evaluate the J-integral, a set of internal points is positioned over ΓJ to define
the discretisation of the integration path. The internal fields are computed in a post-
processing phase by Eqs. (2.47) and (2.48), respectively. Then, the displacement vector
and the state of stress for each internal point are rotated accounting for the crack tip
orientation.

For linear elastic materials, it is possible to show that the J-integral value, J , is equal
to the energy release rate. In this case, J can be related to the SIFs by Eq. (3.12) or
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Figure 3.3: Path used for evaluating the J-integral.

Source: Own author.

Eq. (3.15), depending on whether the material is isotropic or anisotropic, respectively.
However, solely with the J-integral value given by Eq. (3.19), it is not possible to obtain
the SIFs for mixed-mode problems due to the coupling of the SIFs in the energy release
rate expression. Therefore, a mode decoupling strategy should be used to define KI and
KII separately. Here, the interaction integral strategy is adopted, which is described in
the following section.

3.2.2 Mode decoupling strategy

In the present investigation, the interaction integral technique (CHEN; SHIELD, 1977;
WANG; YAU; CORTEN, 1980) is used to achieve mode decoupling. This approach is
based on the definition of a conservative integral for two equilibrium states of a linear-
elastic body. In what follows, the formulation applied for anisotropic materials will be
presented. Then, the isotropic case is recovered as a particular condition of the anisotropic
problem.

By defining a state (0) obtained from the superposition of two equilibrium states,
denoted as (1) and (2), the following relations between the mechanical fields can be
written:

σ
(0)
ij = σ

(1)
ij + σ

(2)
ij (3.20)

u
(0)
i = u

(1)
i + u

(2)
i (3.21)

K
(0)
M = K

(1)
M +K

(2)
M (3.22)

The substitution of Eqs. (3.20) and (3.21) into the J-integral expression (3.19) written
for the problem (0) leads to:
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J (0) = J (1) + J (2) +M (1,2) (3.23)

in which J (k) corresponds to the J-integral expression assessed with the mechanical fields
of problem (k). Additionally, M (1,2) is defined as the M-integral, which represents an
interaction integral between the equilibrium states (1) and (2) and is given by:

M (1,2) =

∫
ΓJ

[
σ

(1)
ij u

(2)
i,j + σ

(2)
ij u

(1)
i,j

2
n1 −

(
σ

(1)
ij u

(2)
j,1 + σ

(2)
ij u

(1)
j,1

)
ni

]
dΓ (3.24)

Since the equality J = G holds for linear-elastic materials, the J-integral of state (0)

can be related to the SIFs of states (1) and (2) by combining Eqs. (3.15) and (3.22):

J (0) = β11

(
K

(1)
I +K

(2)
I

)2

+β12

(
K

(1)
I +K

(2)
I

)(
K

(1)
II +K

(2)
II

)
+β22

(
K

(1)
II +K

(2)
II

)2

(3.25)

Equation (3.25) can be reorganised as follows:

J (0) = J (1) + J (2) + 2β11K
(1)
I K

(2)
I + β12

(
K

(1)
I K

(2)
II +K

(2)
I K

(1)
II

)
+ 2β22K

(1)
II K

(2)
II (3.26)

where:

J (k) = β11

(
K

(k)
I

)2

+ β12K
(k)
I K

(k)
II + β22

(
K

(k)
II

)2

(3.27)

represents the J −K relation for problem (k).

Comparing Eqs. (3.23) and (3.26), the M-integral can also be written in terms of the
interaction between the SIFs of the states (1) and (2) as follows:

M (1,2) = 2β11K
(1)
I K

(2)
I + β12

(
K

(1)
I K

(2)
II +K

(2)
I K

(1)
II

)
+ 2β22K

(1)
II K

(2)
II (3.28)

Equation (3.24) together with Eq. (3.28) allow the determination of the SIFs values
of a mixed-mode fracture problem when the problems (1) and (2) are properly chosen.
For this purpose, the state (1) is taken as the investigated problem, for which the values
of KI and KII are desired. The state (2) is chosen as an auxiliary solution, with known
mechanical fields. The first auxiliary solution, denoted here by the superscript (I), is
taken as a cracked body subjected to a pure mode I loading. Therefore:

K
(I)
I = 1 K

(I)
II = 0 (3.29)

Combining Eqs. (3.24) and (3.28) and applying the conditions of Eq. (3.29), the fol-
lowing relation is obtained:
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2β11KI + β12KII =

∫
ΓJ

[
σiju

(I)
i,j + σ

(I)
ij ui,j

2
n1 −

(
σiju

(I)
j,1 + σ

(I)
ij uj,1

)
ni

]
dΓ (3.30)

in which the fields without the superscript are related to the investigated problem and are
obtained from the numerical analysis. The components σ(I)

ij and u
(I)
i correspond to the

asymptotic stress and displacement fields determined, respectively, from Eqs. (3.4) and
(3.6) after the conditions of Eq. (3.29) are imposed.

Similarly, the second auxiliary solution, denoted here by the superscript (II), is chosen
as the problem of a cracked body subjected to a pure mode II loading. This case is
represented by the following conditions:

K
(II)
I = 0 K

(II)
II = 1 (3.31)

For this situation, the combination of Eqs. (3.24) and (3.28) after the conditions of
Eq. (3.31) are imposed leads to:

β12KI + 2β22KII =

∫
ΓJ

[
σiju

(II)
i,j + σ

(II)
ij ui,j

2
n1 −

(
σiju

(II)
j,1 + σ

(II)
ij uj,1

)
ni

]
dΓ (3.32)

where σ(II)
ij and u(II)

i are the components of stress and displacement obtained, respectively,
from Eqs. (3.4) and (3.6) after the conditions of Eq. (3.31) are prescribed.

After the numerical integration of the right-hand sides of Eqs. (3.30) and (3.32), which
results, respectively, in M (1,I) and M (1,II), the following system of equations is obtained:[

2β11 β12

β12 2β22

]{
KI

KII

}
=

{
M (1,I)

M (1,II)

}
(3.33)

The solution of Eq. (3.33) gives the SIFs values for the investigated mixed-mode an-
isotropic fracture problem.

A similar approach can be applied to derive the expressions to determine the SIFs
for isotropic materials. Alternatively, Eq. (3.33) can be particularised for the isotropic
case by noting that β11 = β22 = 1/E∗ and β12 = 0 in this situation. Hence, the SIFs for
isotropic materials are simply given by:

KI =
E∗

2

∫
ΓJ

[
σiju

(I)
i,j + σ

(I)
ij ui,j

2
n1 −

(
σiju

(I)
j,1 + σ

(I)
ij uj,1

)
ni

]
dΓ (3.34)

KII =
E∗

2

∫
ΓJ

[
σiju

(II)
i,j + σ

(II)
ij ui,j

2
n1 −

(
σiju

(II)
j,1 + σ

(II)
ij uj,1

)
ni

]
dΓ (3.35)
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where the components of stress and displacement for the auxiliary states (I) and (II)

are now given, respectively, by Eqs. (3.1) and (3.2) after the conditions of Eq. (3.29) or
Eq. (3.31) are prescribed.

3.3 Propagation criterion

For mixed-mode problems, it is necessary to define an equivalent loading that results
from the combination of the SIFs to establish a propagation criterion. Several approaches
have been introduced in the literature to this end, and they are commonly based on
either stress or energy methods. In the present study, the maximum circumferential
stress criterion is applied for both isotropic and anisotropic materials and its formulation
is presented in what follows.

3.3.1 Isotropic materials

The maximum circumferential stress criterion, proposed originally by Erdogan and Sih
(1963), is related to the critical value of the tangential stress σθθ. This stress component
is obtained from the rotation of the stress tensor to the θ direction, being expressed as
follows:

σθθ(θ) = σ11 sin2 θ + σ11 cos2 θ − 2σ12 sin θ cos θ (3.36)

From the value of σθθ, an equivalent SIF Keq is defined as:

Keq(θ) = σθθ(θ)
√

2πρ (3.37)

Substituting Eq. (3.1) into Eq. (3.36) and then Eq. (3.36) into Eq. (3.37), the equivalent
SIF is written in terms of KI and KII as follows:

Keq(θ) = cos

(
θ

2

)[
KI cos2

(
θ

2

)
− 3

2
KII sin θ

]
(3.38)

In the case of isotropic materials, the fracture toughness KIc is the same for every
angle θ. Therefore, if the propagation occurs, the crack will grow along the direction θp
that maximises Keq. This propagation angle is given by:

θp = sin−1

(
KIKII − 3KII

√
8K2

II +K2
I

9K2
II +K2

I

)
(3.39)

The value of Keq evaluated by Eq. (3.38) along the direction computed from Eq. (3.39)
can be compared to the fracture toughness to verify the crack tip stability. Then, the
crack will grow if the following inequality is satisfied:
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KIc −Keq(θp) ≤ 0 (3.40)

3.3.2 Anisotropic materials

Based on the isotropic case, Saouma, Ayari, and Leavell (1987) proposed a modified
maximum circumferential stress criterion to anisotropic media. An equivalent SIF can be
readily obtained by substituting Eq. (3.4) into Eq. (3.37), which leads to:

Keq(θ) = KI<
[
µ1H

3
2 (θ)− µ2H

3
1 (θ)

µ1 − µ2

]
+KII<

[
H3

2 (θ)−H3
1 (θ)

µ1 − µ2

]
(3.41)

Due to the directional dependence of the mechanical properties in anisotropic mater-
ials, the propagation criterion can now be written as:

KIc(θ)−Keq(θ) ≤ 0 (3.42)

in which the fracture toughness also vary with the direction θ. Therefore, propagation is
considered to occur if the inequality is verified for any angle θ.

Saouma, Ayari, and Leavell (1987) characterised the variation of the fracture toughness
in anisotropic materials with a two-parameter relationship. In their work, the fracture
toughness is assumed as a second-order tensor and is evaluated from:

KIc(θ) = K
(1)
Ic cos2 (θ − γ) +K

(2)
Ic sin2 (θ − γ) (3.43)

in which K(1)
Ic and K(2)

Ic represent the fracture toughness along two orthogonally material
directions and γ is the material orientation referenced to the local Cartesian coordinate
system, as depicted in Fig. 3.4. Essentially, Eq. (3.43) admits the resistance to fracture
as orthotropic.

According to Saouma, Ayari, and Leavell (1987), when only one of the fracture tough-
ness parameters in Eq. (3.43) is known, the other can be estimated from the ratio between
the elastic moduli as follows:

K
(2)
Ic ≈ K

(1)
Ic

E1

E2

(3.44)

Finally, the crack is assumed to grow if the condition in Eq. (3.42) is verified along
the propagation direction determined by:

θp = arg max

[
Keq(θ)

KIc(θ)

]
(3.45)

where arg max defines the argument θ that maximise the ratio betweenKeq(θ) andKIc(θ).
Naturally, the propagation only occurs if the ratio is greater than or equal to one.
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Figure 3.4: Representation of the material directions near the crack tip.

 
1

x 

2
x 





(1)
(2)



2
E1

E

Source: Own author.

3.4 Interface fracture mechanics

The LEFM theory establishes that the stress field near the crack tip inside a homo-
geneous material develops the singularity of order O

(
ρ−1/2

)
, ρ being the distance from

the tip. Moreover, as the crack grows, the behaviour of the stress singularity at the crack
front remains the same, and the magnitude of the stress field continues to be defined by
the SIFs. Therefore, instead of using the stress state, which is singular at the tip, the
crack stability analysis is appropriately performed with the SIFs values.

On the other hand, in inhomogeneous domains, different orders of singularity may
appear if a crack tip is positioned at a bimaterial interface. In Chapter 6, the problem of a
crack lying along the interface is investigated. This configuration is of significant practical
relevance since it allows the assessment of delamination between dissimilar media. In what
follows, the interface fracture theory considering piecewise isotropic materials is briefly
discussed. This formulation is explored in Chapter 6 to develop an enriched approach for
the analysis of interface cracks.

Let Ω be a 2D-domain consisting of two dissimilar isotropic and elastic materials. The
material above the interface is denoted as material 1, while the material below is defined
as material 2. Consider a crack lying along the interface, as illustrated in Fig. 3.5, with ΓC1

and ΓC2 representing the upper and lower crack surfaces, respectively. Moreover, assume
that the interface boundary ΓI1 from material 1 is perfectly bonded with the interface
boundary ΓI2 from material 2. In this situation, the complete expansion for the crack-tip
stress field is given by Deng (1993) and expressed as follows:

σij(ρ, θ, s) =
∞∑
n=1

ρ
n−2

2√
2π

{
<
[
Knρ

iεn
]

Σn
ij(θ, s) + =

[
Knρ

iεn
]

Υn
ij(θ, s)

}
(3.46)

where i, j = 1, 2 denote the direction in the crack-tip coordinate system x1x2, (ρ, θ) are
the crack-tip polar coordinates shown in Fig. 3.5, s = 1, 2 indicates the material 1 and 2,
respectively, Kn ∈ C represents the n-th crack parameter, and Σn

ij(θ, s) and Υn
ij(θ, s) are

the stress functions given in Appendix A. The symbols < and = denote, respectively, the
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real and imaginary parts of the quantity in brackets [•] and i =
√
−1 is the imaginary

unit. Besides, εn is given as follows:

εn =

ε = 1
2π

log µ2κ1+µ1

µ1κ2+µ2
, if n = 1, 3, 5, ...

0, if n = 2, 4, 6, ...
(3.47)

where ε is known as oscillatory parameter since it is related to the oscillatory behaviour
of the odd terms, µs = Es/[2(1 + νs)] is the shear modulus and κs is the Kolosov constant
defined as κs = 3 − 4νs for plane strain and κs = (3− νs) / (1 + νs) for plane stress. Es
and νs represent, respectively, the Young’s modulus and the Poisson’s ratio of material
s = 1, 2.

The general form of the crack-tip displacement field is also provided by Deng (1993)
and is expressed by:

uj(ρ, θ, s) =
∞∑
n=1

ρn/2√
2π

{
<
[
Knρ

iεn
]

∆n
j (θ, s) + =

[
Knρ

iεn
]

Θn
j (θ, s)

}
(3.48)

where ∆n
j (θ, s) and Θn

j (θ, s) are the displacement functions given in Appendix A.

Figure 3.5: Interface crack between two dissimilar materials.

Source: Own author.

The numerical approach presented in Chapter 6 aims at the evaluation of the SIFs and
T-stress for interface cracks. The SIFs are related to the leading term of the expansions
in Eqs. (3.46) and (3.48), whereas the T-stress is associated to the second term in these
expressions. Therefore, in the XIGABEM formulation for interface cracks, the expansion
given in Eqs. (3.46) and (3.48) are truncated at n = 1, 2. For n = 1, the corresponding
Kn is acknowledged as complex SIF and is given by:

K1 = K1 + iK2 (3.49)

where K1 and K2 ∈ R are the modes 1 and 2 SIFs. For an interface crack of length 2a in
an infinite body, subjected to remote stresses σ∞ (normal to the crack surfaces) and τ∞

(in-plane shear), the complex SIF is given by (RICE, 1988):
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K1 + iK2 = (σ∞ + iτ∞)
√
πa (1 + 2iε) (2a)−iε (3.50)

Note from Eq. (3.50) that, unlike the homogeneous case, the SIFs cannot be unam-
biguously associated with the normal tension and the in-plane shear stresses. Therefore,
the Arabic subscripts 1, 2 are adopted to denote these factors instead of the classical Ro-
man numerals I, II. Additionally, a dimensional analysis of Eq. (3.50) reveals that the
physical units of the complex SIF are FL−1.5−iε, where F denotes force and L length. To
recover the same units from the homogeneous case (FL−1.5), the complex SIF must be
multiplied by a factor liε, where l is an arbitrary length. Also, note that homogeneous
relationships are recovered from the above solutions if the oscillatory parameter is taken
as ε = 0.

Using Eq. (3.49) and Euler’s formula, the term in brackets that appears in Eqs. (3.46)
and (3.48) can be rewritten as:

K1ρ
iε = [K1 cos (ε log ρ)−K2 sin (ε log ρ)] + i [K1 sin (ε log ρ) +K2 cos (ε log ρ)] (3.51)

For n = 2, after examination of the stress functions given in Appendix A, it can be
observed that Υ2

ij(θ, s) = 0 for i, j = 1, 2. Consequently, only the real part of K2 is related
to the T-stress term in the stress expansion. Therefore, without loss of generality, the
crack parameter K2 is adopted as:

K2 = KT (3.52)

where KT ∈ R and the subscript T indicates that this factor is related to the T-stress.

Using Eq. (3.46), the stress functions given in Appendix A and Eq. (3.51), the two-term
asymptotic expansion for stresses can be written as follows:

σij(ρ, θ, s) =
1√
2πρ

{
Σ1
ij(θ, s) Υ1

ij(θ, s)
}[ cos (ε log ρ) − sin (ε log ρ)

sin (ε log ρ) cos (ε log ρ)

]{
K1

K2

}
+

(3.53)

+ CsTδi1δj1

where Σ1
ij(θ, s) and Υ1

ij(θ, s) are the stress functions for n = 1, δij is the Kronecker delta
and:

Cs =


(κ2+1)µ1

(κ1+1)µ2
, if s = 1

1, if s = 2
(3.54)
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T =
4√
2π

(κ1 + 1)µ2

[(κ1 + 1)µ2 + (κ2 + 1)µ1]
KT (3.55)

where T denotes the T-stress.
By examination of Eq. (3.53), it can be noted that the SIFs K1 and K2 characterise

the singular and oscillatory stress field related to the distance ρ. On the other hand, the
T-stress defines the homogeneous term in the expansion, with T1 = C1T and T2 = T

representing the contribution on the normal stress parallel to the crack surfaces at the tip
in materials 1 and 2, respectively.

Analogously, the two-term asymptotic expansion for displacements can be defined from
Eq. (3.48) and is given by:

uj(ρ, θ, s) =

√
ρ

2π

{
∆1
j(θ, s) Θ1

j(θ, s)
}[ cos (ε log ρ) − sin (ε log ρ)

sin (ε log ρ) cos (ε log ρ)

]{
K1

K2

}
+

(3.56)

+
ρ√
2π

∆2
j(θ, s)KT

where ∆1
j(θ, s), ∆2

j(θ, s) and Θ1
j(θ, s) are displacement functions for n = 1, 2 that can be

computed from Appendix A.
In the expansion shown in Eq. (3.56), the SIFs K1 and K2 are related to the square-

root and oscillatory behaviour of the displacement field near the tip, while the T-stress
parameter KT is associated with a linear contribution related to the distance ρ.
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4 Extended boundary element method

4.1 Initial considerations

In the DBEM formulation presented in Section 2.3, the polynomial functions used for
the approximations are not suitable to capture the near-tip solutions defined by the LEFM
shown in Section 3.1. This is clearly illustrated in Fig. 4.1, which presents the differences
in the displacement field between the LEFM solution and the DBEM approximation
using a discontinuous quadratic element adjacent to the tip. As the tip is approached, the
square root behaviour in the analytical solution becomes dominant and cannot be properly
represented by the polynomial function. Additionally, even the displacement continuity at
the crack tip is not ensured in DBEM, with the crack tip opening displacement δ generally
being non-zero.

Some approaches have been proposed to overcome the difficulties arising when model-
ling the near tip region, such as the use of quarter-point element (ALIABADI; ROOKE,
1991; BARSOUM, 1976; HENSHELL; SHAW, 1975) or the application of special singular
shape functions for elements close to the tip (AKIN, 1976; TANAKA; ITOH, 1987; YA-
MADA et al., 1979). These strategies are simple to implement, but they are restricted to
crack-tip elements while, in reality, the singular region may extend beyond their domain.
Besides, the optimum choice for the size of the special elements is not clear (HARROP,
1982; INGRAFFEA; MANU, 1980; MARTÍNEZ; DOMÍNGUEZ, 1984; YEHIA; SHEP-
HARD, 1985).

A general strategy to include the analytical response into the approximations is the
extended approach. Particularly, the enriched formulation based on Benzley (1974) allows
the extension of the singular zone over several elements while the number of degrees of
freedom remains fixed. Hence, the conditioning of the resulting system of equations is not
significantly degraded as observed in PU-based enrichments.

In this chapter, an extended boundary element method (XBEM) formulation to model
the crack growth in two-dimensional bodies is presented. Differently from previous in-
vestigations within XBEM, shifted enrichment functions are used to preserve the physical
meaning of the nodal parameters. This strategy also prevents the distribution of the jump
term from the boundary integral equations and reduces the singularity order from the
integral kernels containing the enrichment functions. In addition, a novel displacement-
discontinuity enrichment is introduced into the BEM framework to avoid the remeshing of
existing boundary elements intercepted by cracks. The continuity conditions at the crack
mouth are imposed to accommodate the additional DOF included by this enrichment.
A traction enrichment composed of a Dirac delta term is also developed. This enriched
approximation is able to model point boundary conditions within BEM, such as concen-
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Figure 4.1: Crack tip displacements determined analytically by LEFM and the DBEM
response defined with a quadratic approximation.

Source: Adapted from Simpson (2010).

trated forces and support points. Five numerical examples are presented to demonstrate
the efficiency of the proposed XBEM formulation for the crack analysis of isotropic and
anisotropic domains. The results are compared with the responses provided by unenriched
DBEM and other solutions available in the literature. The main findings of this chapter
are reproduced from Andrade and Leonel (2020).

4.2 Crack tip enrichment

4.2.1 Displacement approximation enrichment

According to the LEFM, the displacement field near a crack tip referred to a global
coordinate system (Fig. 4.2) can be determined from the first-order expansions as:

uλj (ρ, θ) =
∑

M=I,II

Kλ
MR

λ
jkψkM(ρ, θ) (4.1)

where Kλ
I and Kλ

II are, respectively, the mode I and mode II stress intensity factors (SIFs)
related to the crack tip λ. Rλ

jk represents the components of the rotation matrix referred
to the crack tip orientation, which is given by:[

R11 R12

R21 R22

]
=

[
cosω − sinω

sinω cosω

]
(4.2)

where ω is the angle between the local and global coordinates systems (see Fig. 4.2).

For isotropic materials, the terms ψkM are obtained from the Williams solution (WIL-
LIAMS, 1957). These functions are determined from Eq. (3.2) and are expressed in matrix
notation as:
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[
ψ1I ψ1II

ψ2I ψ2II

]
=

1

2µ

√
ρ

2π

[
cos
(
θ
2

)
(κ− cos θ) sin

(
θ
2

)
(κ+ 2 + cos θ)

sin
(
θ
2

)
(κ− cos θ) − cos

(
θ
2

)
(κ− 2 + cos θ)

]
(4.3)

Analogously, for anisotropic materials, ψkM are obtained from the solutions represen-
ted by Eq. (3.6) and are expressed in matrix notation as:

[
ψ1I ψ1II

ψ2I ψ2II

]
=

√
2ρ

π

 < [µ1p2H2−µ2p1H1

µ1−µ2

]
<
[
p2H2−p1H1

µ1−µ2

]
<
[
µ1q2H2−µ2q1H1

µ1−µ2

]
<
[
q2H2−q1H1

µ1−µ2

]  (4.4)

Figure 4.2: Representation of the global displacement components near a crack tip.
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The polynomial approximation for the displacements given by Eq. (2.37) is not capable
of accurately describing the √ρ behaviour near the crack tip from the LEFM solution
(Eq. (4.1)), as illustrated in Fig. 4.1. To confer the expected behaviour to this region
and, consequently, improve the numerical responses, an enrichment strategy can be used.
Here, the displacement approximation for an element e near a crack tip λ is augmented
with functions based on ψkM as follows:

ũeλj (ξ) =
ne∑
m=1

φem(ξ)uemj +
∑

M=I,II

K̃λ
MR

λ
jk

ne∑
m=1

φem(ξ)
[
ψkM

(
xλ,x(ξ)

)
− ψkM

(
xλ,x(ξm)

)]
(4.5)

where xλ is the crack tip coordinates, ξm is the parametric coordinate at them-th node and
K̃λ
M , for now, does not denote the SIFs but represents additional parameters introduced

by the enrichment. The physical meaning of SIFs for these parameters will be recovered by
imposition of the supplementary conditions, as will be further explained in Section 4.2.2.

The first term of the right-hand side of Eq. (4.5) is the same piecewise polynomial
approximation used in conventional BEM, and it is capable of capturing rigid-body mo-
tions for the element. The second term is a shifted enrichment function that contains the
√
ρ behaviour for the displacement approximation. Since this enrichment function is zero
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at the nodes of enriched elements, the physical meaning of displacements is preserved for
the nodal parameters uemj , i.e., ũeλj (ξm) = uemj . Consequently, the displacement compon-
ents related to the jump term of the DBIE are not modified by this shifted enrichment.
These conditions are not observed in the enrichment functions adopted in (SIMPSON;
TREVELYAN, 2011b; ALATAWI; TREVELYAN, 2015; HATTORI; ALATAWI; TREV-
ELYAN, 2016), in which the analytical expansion given in Eq. (4.1) is embedded directly
into the approximation.

Introducing the displacement approximation presented by Eq. (4.5) in Eq. (2.36), the
discrete form of the DBIE becomes:

cij(x
′)uj(x

′) + cij(x̄
′)uj(x̄

′) +
Ne∑
e=1

ne∑
m=1

P em
ij u

em
j +

Nt∑
λ=1

∑
M=I,II

K̃λ
M

Nλ
e∑

e=1

P̃ eλ
iM =

Ne∑
e=1

ne∑
m=1

U em
ij p

em
j

(4.6)
where Nt is the number of tips in the analysis, Nλ

e is the number of elements enriched by
tip λ and:

P̃ eλ
iM = −

∫ 1

−1

P ∗ij(x
′,x(ξ))Je(ξ)Rλ

jk

ne∑
m=1

φem(ξ)
[
ψkM

(
xλ,x(ξ)

)
− ψkM

(
xλ,x(ξm)

)]
dξ (4.7)

From Eq. (4.6), it can be noted that the crack tip enrichment only introduces two
additional degrees of freedom per crack tip, as in (SIMPSON; TREVELYAN, 2011b; AL-
ATAWI; TREVELYAN, 2015; HATTORI; ALATAWI; TREVELYAN, 2016), regardless
of the number of enriched elements. This feature is not observed in PU-based enrich-
ment methods (SIMPSON; TREVELYAN, 2011a), in which extra parameters are created
per enriched node. Consequently, the adopted approximation has no significant effect
on the conditioning of the final system of equations when compared to other enrichment
strategies.

Analogously, the discrete form of the TBIE considering the crack tip enrichment is
obtained as:

1

2
[pj(x

′)− pj(x̄′)] + ni(x
′)

 Ne∑
e=1

ne∑
m=1

Semkiju
em
k +

Nt∑
λ=1

∑
M=I,II

K̃λ
M

Nλ
e∑

m=1

S̃eλijM

 = (4.8)

= ni(x
′)

Ne∑
e=1

ne∑
m=1

Dem
kijp

em
k

where:
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S̃eλijM ==

∫ 1

−1

S∗kij(x
′,x(ξ))Je(ξ)Rλ

kp

ne∑
m=1

φem(ξ)
[
ψpM

(
xλ,x(ξ)

)
− ψpM

(
xλ,x(ξm)

)]
dξ (4.9)

The numerical evaluation of the new kernels P̃ eλ
iM and S̃eλijM follows the same approach

used for P em
ij and Semkij , respectively. To integrate singular elements, the SSM is applied

and the corresponding formulation is presented in Appendix D. As shown in the referred
appendix, the use of shifted enrichment functions reduces the singularity order of P̃ eλ

iM and
S̃eλijM . The former kernel becomes regular and can be assessed with the Gauss-Legendre
rule, while the latter becomes strongly singular and can be evaluated semi-analytically by
the SSM.

4.2.2 Crack tip tying constraint

To accommodate the degrees of freedom introduced by the enrichment and, con-
sequently, recover a square system of equations, additional conditions are necessary. Here,
a crack tip tying constraint similar to the one proposed by Alatawi and Trevelyan (2015)
is applied. This condition enforces the continuity of the displacements between the upper
and lower crack surfaces at the tip, which is not guaranteed in conventional DBEM since
discontinuous elements are used to model the crack surfaces (see Fig. 4.1). In this strategy,
a macro element is defined over the upper and lower surfaces, as shown in Fig. 4.3. Then,
the displacements are extrapolated to the crack tip. For the upper surface, the expression
for the displacement components at the crack tip, where the non-dimensional coordinate
is ξU = +1, is given by:

ũUj (+1) =
nc∑
m=1

φUm(+1)uUmj +
∑

M=I,II

K̃λ
MR

λ
jk

nc∑
m=1

φUm(+1)
[
−ψUkM

(
xλ,x(ξm)

)]
(4.10)

where nc is the number of nodes used to define the extrapolation and the superscript
U in the function ψMk indicates that it is assessed in the upper surface, i.e. θ = π.
Better results are obtained when the extrapolation is carried out over more than one
element. However, nc should not exceed much more than ten nodes since the polynomial
approximation will suffer from Runge’s phenomenon.

Similarly, the extrapolation over the macro element on the lower surface at the local
coordinate ξL = −1, which represents the tip, gives:

ũLj (−1) =
nc∑
m=1

φLm(−1)uLmj +
∑

M=I,II

K̃λ
MR

λ
jk

nc∑
m=1

φLm(−1)
[
−ψLkM

(
xλ,x(ξm)

)]
(4.11)
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where the superscript L in the function ψMk indicates that it is assessed in the lower
surface, i.e. θ = −π.

Enforcing the continuity of the displacements at the tip by making ũUj (+1)−ũLj (−1) =

0, leads to:

nc∑
m=1

[
φUm(+1)uUmj − φLm(−1)uLmj

]
+ (4.12)

+
∑

M=I,II

K̃λ
MR

λ
jk

nc∑
m=1

[
φLm(−1)ψLkM

(
xλ,x(ξm)

)
− φUm(+1)ψUkM

(
xλ,x(ξm)

)]
= 0

Equation (4.12) provides two supplementary relations per crack tip that yield a square
system of equations. Since the continuity condition is the same as observed in the asymp-
totic expansions (Eq. (4.1)), the enrichment parameters represent a good approximation
for the SIFs. Hence, the XBEM formulation introduces the crack parameters as additional
DOF for the problem and allows KI and KII to be computed directly from the solution
of the resulting system of equations.

Figure 4.3: Auxiliary elements used to extrapolate the displacements for the crack tip. Gu

Gp

W

x1

x2 u
p

G

n̂

Upper surface

Lower surface

x  = -1U

x  = -1L

x  = +1U

x  = +1L C
ra

ck
 t
ip

 l

Elements enriched and used for tip extrapolation

Enriched elements

Source: Own author.

4.2.3 Resulting system of equations

With the presented crack tip enrichment, the resulting system of equations determined
by the XBEM takes the following form:[

H HK
C

HT
R HK

R

]{
u

K̃

}
=

[
G

0

]
{p} (4.13)

Comparing Eqs. (2.45) and (4.13), it can be noted that the coefficients associated with
the extra parameters introduce additional columns in the system given by the 2N × 4Nt

sub-matrix HK
C . Moreover, the crack tip tying constraint given by Eq. (4.12) is responsible

for introducing the 2Nt × 2N sub-matrix HT
R and the 2Nt × 2Nt sub-matrix HK

R that
accommodate the additional degrees of freedom stored in the 2Nt sub-vector K̃.

After imposing the boundary conditions over Eq. (4.13), the following linear system is
obtained:
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[
A HK

C

HT
R HK

R

]{
x

K̃

}
=

{
f

0

}
(4.14)

The solution of Eq. (4.14) provides the unknown mechanical responses for the body,
given by x, as well as the enrichment parameters in K̃, which are an approximation for
the SIFs. Comparing Eqs. (4.14) and (2.46), it can be noted that the ordinary BEM
system of equations is preserved, with the enrichment only introducing new sub-matrices
associated with the additional parameters.

4.3 Heaviside enrichment

4.3.1 Discontinuous displacement enrichment

If an element ē is crossed by a crack, a displacement discontinuity occurs at the
intersection point. When using the ordinary DBEM approach, a local remeshing of the
intersected element is necessary, in which discontinuous elements are adopted. This is
followed by the reconstruction of the DBEM matrices in the positions related to the DOF
from the original element, and by the addition of new rows and columns associated with
the newly created nodes (see Andrade and Leonel (2019) for more details). To avoid these
laborious procedures, the following discontinuous enrichment is introduced to capture the
displacement discontinuity at element ē:

ũēj(ξ) =
nē∑
m=1

φēm(ξ)uēmj +
∑
l=a,b

gl(ξēP , ξ)α
ēl
j

nē∑
m=1

φēm(ξ) [H(ξēP , ξ)−H(ξēP , ξ
m)] (4.15)

Figure 4.4: Representation of the discontinuous approximation for a quadratic element.
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The approximation given by Eq. (4.15) is illustrated in Fig. 4.4 for a quadratic element.
The first term of the right-hand side of Eq. (4.15) corresponds to the standard polynomial
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displacement approximation used in the DBEM (Eq. (2.37)) and can represent rigid-body
motions. The second term is a shifted enrichment function that has a discontinuity at the
intersection point, represented by the non-dimensional coordinate ξēP . The discontinuous
feature of the approximation is provided by the Heaviside sign step function, given by:

H(ξēP , ξ) =

 −1,

1,

ξ < ξēP

ξ ≥ ξēP

(4.16)

The function gl(ξēP , ξ) is used to separate the approximation over the portion before the
intersection, in which l = b, from the approximation over the portion after the intersection,
where l = a. This function is defined by:

ga(ξēP , ξ) =

 0,

1,

ξ < ξēP

ξ ≥ ξēP

gb(ξēP , ξ) =

 1,

0,

ξ < ξēP

ξ ≥ ξēP

(4.17)

Each discontinuous enrichment introduces four new DOF into the analysis, represented
by αēlj in Eq. (4.15). These additional parameters are responsible for giving the magnitude
of the displacement jump at ξēP , as illustrated in Fig. 4.4. Furthermore, αēaj and αēbj sep-
arately control the behaviour of the displacements along the portions after and before the
intersection point, respectively. This independence between the enrichment parameters
has a beneficial effect on the conditioning of the system of equations.

Introducing Eq. (4.15) in the DBIE (Eq. (2.36)), the following discrete equation is
obtained:

cij(x
′)uj(x

′) + cij(x̄
′)uj(x̄

′) +
Ne∑
e=1

ne∑
m=1

P em
ij u

em
j +

Nh∑
ē=1

∑
l=a,b

αēlj P̂
ēl
ij =

Ne∑
e=1

ne∑
m=1

U em
ij p

em
j (4.18)

where Nh is the number of Heaviside enrichments in the analysis and:

P̂ ēl
ij = −

∫ 1

−1

P ∗ij(x
′,x(ξ))J ē(ξ)gl(ξēP , ξ)

nē∑
m=1

φēm(ξ) [H(ξēP , ξ)−H(ξēP , ξ
m)] dξ (4.19)

Analogously to the crack tip enrichment, the shifted discontinuous enrichment adopted
here removes the singularity from kernel P̂ ēl

ij . However, special attention is required to
integration since the integrand is now discontinuous at ξēP ∈ [−1, 1]. For this purpose, a
sub-element strategy can be applied. In this approach, the integrals over each portion of
the element are computed separately, resulting in the following expressions:

P̂ ēa
ij = −

∫ 1

−1

P ∗ij(x
′,x(η))J ē(η)Ja(η)

nē∑
m=1

φēm(η) [1−H(ξēP , ξ
m)] dη (4.20)
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P̂ ēb
ij = −

∫ 1

−1

P ∗ij(x
′,x(η))J ē(η)J b(η)

nē∑
m=1

φēm(η) [−1−H(ξēP , ξ
m)] dη (4.21)

where Ja(η) = (1− ξēP ) /2 and J b(η) = (ξēP + 1) /2 represent the Jacobian of the linear
transformation from η to ξ, in which η defines the local coordinate in each sub-element.
The integrals in Eqs. (4.20) and (4.21) can be computed with the standard Gauss-Legendre
quadrature to give the contributions over αēaj and αēbj , respectively.

Substituting the discontinuous approximation into the TBIE gives:

1

2
[pj(x

′)− pj(x̄′)] + ni(x
′)

(
Ne∑
e=1

ne∑
m=1

Semkiju
em
k +

Nh∑
ē=1

∑
l=a,b

αēlk Ŝ
ēl
kij

)
= ni(x

′)
Ne∑
e=1

ne∑
m=1

Dem
kijp

em
k

(4.22)
in which:

Ŝ ēlkij = =

∫ 1

−1

S∗kij(x
′,x(ξ))J ē(ξ)gl(ξēP , ξ)

nē∑
m=1

φēm(ξ) [H(ξēP , ξ)−H(ξēP , ξ
m)] dξ (4.23)

Again, the integrand in Eq. (4.23) is discontinuous due to the enrichment function.
Therefore, the same sub-element approach used for P̂ ēl

ij should be applied to evaluate Ŝ ēlkij,
yielding:

Ŝ ēakij = =

∫ 1

−1

S∗kij(x
′,x(η))J ē(η)Ja(η)

nē∑
m=1

φēm(η) [1−H(ξēP , ξ
m)] dη (4.24)

Ŝ ēbkij = =

∫ 1

−1

S∗kij(x
′,x(η))J ē(η)J b(η)

nē∑
m=1

φēm(η) [−1−H(ξēP , ξ
m)] dη (4.25)

These kernels are regular for elements far from the source points. However, the SSM
is applied for integrating elements containing the source point. The resulting expressions
to be used in this case are shown in Appendix D.

It is worth mentioning that when the boundary integral equations were derived in
Section 2.2, it was assumed continuity of displacements at the source points. Therefore,
the intersection point must not coincide with a collocation point and, consequently, the
inequality x′ 6= x(ξP ) must always be verified. Otherwise, new jump terms associated with
the additional parameters should be considered. In the proposed model, if this situation
occurs, the node’s position is modified according to the strategy presented in Section 4.7.
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4.3.2 Continuity conditions at the crack mouth

To accommodate the additional parameters introduced by the Heaviside enrichment
and recover square XBEMmatrices, the continuity conditions at the crack mouth are used.
For this purpose, macro elements are defined over the upper and lower crack surfaces, as
illustrated in Fig. 4.5. Over each macro element, the displacements are extrapolated to
the crack mouth. Then, the continuity between the displacements determined for the
upper surface and the point immediately after ξēP at the enriched element is enforced as:

ũUj (+1) = ũēj(ξ
ēa
P ) (4.26)

where ξēaP denotes the point immediately after ξēP .

An equivalent condition can be defined for the lower crack surface:

ũLj (−1) = ũēj(ξ
ēb
P ) (4.27)

where ξēbP represents the point immediately before ξēP .

Figure 4.5: Auxiliary elements used to extrapolate the displacements for the crack mouth.

Source: Own author.

Substituting the discontinuous displacement approximation from Eq. (4.15) in Eqs. (4.26)
and (4.27) and expanding the expressions for the displacement extrapolation over the
macro elements on the crack surfaces leads to:

nc∑
m=1

φUm(+1)uUmj −
nē∑
m=1

φēm(ξēP )uēmj + αēaj

nē∑
m=1

φēm(ξēP ) [−1 +H(ξēP , ξ
m)] = 0 (4.28)

nc∑
m=1

φLm(−1)uLmj −
nē∑
m=1

φēm(ξēP )uēmj + αēbj

nē∑
m=1

φēm(ξēP ) [1 +H(ξēP , ξ
m)] = 0 (4.29)

Equations (4.28) and (4.29) produce four supplementary relations required to accom-
modate the additional parameters introduced by the discontinuous enrichment.
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4.3.3 Resulting system of equations

The use of the Heaviside enrichment results in the following system of algebraic equa-
tions: [

H Hα
C

HH
R Hα

R

]{
u

α

}
=

[
G

0

]
{p} (4.30)

where HH
C is a 2N×4Nh sub-matrix representing additional columns obtained from kernels

P̂ ēl
ij and Ŝ ēlkij, HH

R and Hα
R are, respectively, 4Nh×2N and 4Nh×4Nh sub-matrices defined

by the supplementary conditions and α is a 4Nh sub-vector containing the parameters
introduced by the discontinuous enrichment.

The imposition of the boundary condition in Eq. (4.30) results in:[
A Hα

C

HH
R Hα

R

]{
x

α

}
=

{
f

0

}
(4.31)

Comparing Eqs. (4.31) and (2.46), it can be noted that the proposed discontinuous
enrichment only introduces new sub-matrices associated with the enrichment parameters,
keeping the other components of the Eq. (4.31) the same as they would be in conventional
DBEM.

4.4 Concentrated force enrichment

4.4.1 Traction approximation enrichment

In the conventional DBEM, the boundary conditions imposed over small areas, usually
idealised as a point in the mechanical analyses, can become quite a cumbersome task. One
of the alternatives to model such a case is to reduce the size of the element with prescribed
conditions. This may result in short vicinity between source points, which has a negative
effect on the conditioning of the system of equations. To overcome this drawback, for
situations with concentrated forces, the following enrichment is proposed for the element
ē that contains the loading point xēF :

p̃ēj(ξ) =
nē∑
m=1

φēm(ξ)pēmj + F ē
j ∆(xēF ,x(ξ)) (4.32)

The first term of the right-hand side of Eq. (4.32) is the same piecewise polynomial
approximation used in classical DBEM. The second corresponds to the enrichment part,
which is composed of the force component F ē

j multiplied by the Dirac delta function at
the point xēF . This enrichment term makes p̃ēj →∞ at the loading point, representing the
effect of an idealised concentrated force. Evidently, the integration of the enrichment term
over a region containing xēF results in F ē

j . The approximation given by Eq. (4.32) is in
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accordance with a recent paper from Zhou et al. (2019). Nevertheless, Zhou et al. (2019)
considered elements with a singular approximation for the displacements, with singularity
at the point of application of the force, whereas, in the present study, the displacements
are kept finite and given by the polynomial approximation in Eq. (2.37). The purpose to
assume finite displacements is to be able to use the support point enrichment presented
in Section (4.5).

Introducing the approximation from Eq. (4.32) in Eq. (2.36) and using the Dirac delta
sifting property results in:

cij(x
′)uj(x

′)+cij(x̄
′)uj(x̄

′)+
Ne∑
e=1

ne∑
m=1

P em
ij u

em
j =

Ne∑
e=1

ne∑
m=1

U em
ij p

em
j +

Nf∑
ē=1

U∗ij(x
′,xēF )F ē

j (4.33)

where Nf is the number of concentrated force enrichments.

Proceeding in a similar fashion to the TBIE yields:

1

2
[pj(x

′)− pj(x̄′)] + ni(x
′)

Ne∑
e=1

ne∑
m=1

Semkiju
em
k = ni(x

′)
Ne∑
e=1

ne∑
m=1

Dem
kijp

em
k + (4.34)

+ ni(x
′)

Nf∑
ē=1

D∗kij(x
′,xēF )F ē

k

It can be noted from Eqs. (4.33) and (4.34) that the concentrated enrichment intro-
duces new terms given by the product between the force components and the fundamental
solutions assessed at the loading point. Since F ē

j , U∗ij(x′,xēF ) and D∗kij(x′,xēF ) are known,
the resulting term will be an additional constant for each equation that will contribute to
the constant vector of the algebraic system. It is worth mentioning that, since the fun-
damental solutions are singular at x′, the loading point must not coincide with a source
point. Here, the position of a collocation point is modified if a concentrated force is
prescribed at the same location, following the strategy presented in Section 4.7.

4.4.2 Resulting system of equations

The resulting system of linear equations considering the concentrated force enrichment
is assembled as follows:

[H] {u} =
[

G GF
C

]{ p

F

}
(4.35)

where GF
C denotes additional columns obtained from the fundamental solutions U∗ij and

D∗kij assessed at the loading point, and F represents the components of the applied forces.
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The boundary conditions can be applied over Eq. (4.35) to define the final system of
equations as follows:

Ax = f + f̄ (4.36)

where f̄ is a 2N constant vector given by the product between GF
C and F that is added to

the vector f in the final system of equations (Eq. (2.46)). Thus, the vector f̄ is the only
change in the conventional DBEM approach when the concentrated force enrichment is
considered.

4.5 Support point enrichment

4.5.1 Displacement boundary condition

To enforce a displacement restriction at one boundary point, the same traction en-
richment presented in Eq. (4.32) can be used. However, the force components F ē

j are
unknowns in this case, and correspond to the support reactions Rē

j . The amount of addi-
tional parameters introduced by the enrichment depends on the number of directions with
prescribed displacement. Consequently, new equations are necessary to recover a square
system of equations. For this purpose, the boundary conditions at the support point are
imposed using the displacement approximation for the element as follows:

nē∑
m=1

φēm(ξēS)uēmj = ūēj (4.37)

where ξēS is the non-dimensional coordinate of the support point and ūēj denotes the
prescribed displacement values.

4.5.2 Resulting system of equations

Regarding the support enrichment, the following system of linear equations is determ-
ined:

[
H

HS
R

]
{u} =

[
G GF

C 0

0 0 I

]
p

R

ū

 (4.38)

where I corresponds to the identity matrix and R contains the unknown support reactions.
The supplementary conditions expressed by Eq. (4.37) give the additional rows HS

R and
the sub-vector with the prescribed displacement values ū.

After the boundary conditions are imposed in Eq. (4.38), the following system is
determined:
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[
A −GF

C

HS
R 0

]{
x

R

}
=

{
f

ū

}
(4.39)

Again, when comparing the system of Eq. (4.39) with the system obtained with the
unenriched DBEM approach (Eq. (2.46)), note that the proposed enrichment only intro-
duces new sub-matrices related to the additional DOF, while the coefficients from the
conventional formulation are preserved.

4.6 Flowchart for XBEM

The integration process considering the enriched boundary element formulation presen-
ted in this chapter is summarised in the flowchart shown in Fig. 4.6. The module con-
taining the enrichment routines is highlighted. It can be noted that the changes in a
conventional BEM code are minimal and, consequently, the extended formulation can be
easily coupled to existing BEM codes.

4.7 Crack propagation analysis

In the numerical applications presented in Section 4.8, three different approaches are
adopted for the crack analyses and the solutions provided by each one are compared.
The first approach is the unenriched DBEM formulation, in which the SIFs are computed
indirectly with the J-integral strategy (see Section 3.2). The second is the direct XBEM,
which is able to determine the SIFs from the solution vector of the system given in
Eq. (4.14). The third approach is the indirect XBEM, in which the crack enrichment is
employed, but the SIFs are defined in a post-processing stage with the J-integral. It is
worth mentioning that in the latter approach, the enrichment terms should be included
in Eqs. (2.47) and (2.48) for computing the internal fields.

After evaluation of the SIFs, the crack stability is verified with the maximum cir-
cumferential stress criterion (ERDOGAN; SIH, 1963) (see Section 3.3). To perform the
propagation analysis, a simple crack length control scheme is applied. In this strategy,
only the critical crack tip is allowed to grow, as in (CARPINTERI; MONETTO, 1999;
BUDYN et al., 2004). To achieve this condition, a load factor χ is defined as:

χ =

(
KIc

Keq

)
cr

(4.40)

which corresponds to the minimum ratio KIc/Keq in the analysis related to the critical
tip.

Since the problem is linear elastic, the mechanical response determined by the numer-
ical method can be weighted by χ to define a new state in which only the critical tip
satisfies the propagation criterion Keq > KIc. This tip is then extended by a prescribed
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Figure 4.6: Integration process for XBEM.
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crack length increment ∆a, which is defined as a straight segment. Another tip can only
grow simultaneously if its ratio KIc/Keq is equal to the lowest value in the analysis. After
a new crack configuration is obtained following the propagation phase, the same process
is repeated until there is no remaining active tip.

Inasmuch as the crack length of the critical tip is a monotonically increasing function
during the propagation phase, the crack length control scheme allows the representation
of the snap-back instability branch that may exist in the structural response. Despite
simple, this strategy is able to provide good solutions for the applications considered in
this study. It is worth mentioning that in problems involving competing cracks, a stability
analysis may be performed to define the growing crack tip, as shown in the three-part
paper of Sutula et al. (SUTULA et al., 2018a,c,b) within the FEM framework. However,
this analysis is beyond the scope of the present investigation.

Therefore, the crack propagation scheme used in this study can be summarised in the
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following steps:

1. Define the system of linear equations and solve it to obtain the nodal and enrichment
parameters.

2. After solving the algebraic system, take the SIFs values directly from the solution
vector or compute them indirectly through the J-integral technique.

3. Determine the equivalent SIF for each tip in the analysis with the maximum cir-
cumferential stress criterion (Section 3.3).

4. Take the minimum ratio KIc/Keq in the analysis and compute the scaling factor χ
from Eq. (4.40). Then, scale the mechanical solution (displacements, tractions and
enrichment parameters) obtained in Step 1.

5. Extend the crack(s) with minimum ratio KIc/Keq in the direction defined by the
propagation criterion (Section 3.3).

6. Define the boundary element mesh for the new configuration and return to Step 1.

During the propagation phase, for problems in which the Heaviside enrichment is not
considered, the modifications into the boundary element mesh and system of equations
follow the same approach reported in previous work (ANDRADE; LEONEL, 2019). In-
stead, if a pre-existing element is crossed by a crack when the discontinuous enrichment
is considered, the strategy proposed in Section 4.3 is used to represent the intersection.
Furthermore, to handle the contact between the crack surfaces, the same node-to-node
scheme also applied in (ANDRADE; LEONEL, 2019) is adopted here.

As pointed out in Section 4.3, the discontinuous enrichment is not applicable when an
intersection coincides with a collocation point. Moreover, if a crack intersects an element
close to a node, the accuracy of the integration over the tip elements when the node is
taken as the source point can be compromised due to the quasi-singularity of the integral
kernels. To overcome both issues, the node near the intersection is moved away from
the crossing point, as depicted in Fig. 4.7. Evidently, the rows and columns in the BEM
matrices associated with the node’s DOF should also be modified to consider the new
position. A similar approach is applied for the force and support enrichments to avoid
the singularity occurring at the components of the sub-matrix GF

C .
The event involving the crack intersection of a discontinuous element in the discon-

tinuity region requires special attention in the Heaviside enrichment. In this case, both
columns related to the parameters αēlj are zero, in which l = a or l = b if the intersection
point is at the discontinuous region at the beginning or end of the element, respectively.
This issue occurs since the shifted enrichment function is nil in the respective scenarios.
Therefore, a special solution strategy should be used to deal with the resulting singular
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Figure 4.7: Modification of the node position for a near intersection.
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matrix as, e.g., the iterative scheme proposed in (STROUBOULIS; BABUŠKA; COPPS,
2000).

The XBEM approach proposed here also adaptively handle the changes of enriched
elements during the crack growth. When a tip propagates, the new elements enriched by
the tip and used for displacement extrapolation are restricted to the crack length incre-
ment ∆a, whereas the crack tip enrichment is removed from elements enriched by the tip
when it was in the former position. Hence, the tip functions are always included in the
approximation of elements near the crack tip, where the square root behaviour for dis-
placements is dominant. Besides, when a tip intercepts another element, the tip becomes
inactive, and the parameters related to the crack tip enrichment are eliminated from the
system of equations. The intercepted element is then enriched with the discontinuous
displacement function, and the new elements defined for the growing crack are used to
write the compatibility conditions at the crack mouth.

4.8 Numerical applications

In this section, five numerical examples are presented to validate the proposed XBEM
formulation for isotropic and anisotropic materials. In the first and second, the accuracy
of the responses obtained by the enriched formulation is analysed. The use of the XBEM
approach in crack growth problems is addressed in the third and fourth examples. Finally,
the last application demonstrates the applicability of the proposed method to simulate
crack propagation in multi-cracked bodies.

In the examples, the enriched models are identified by the type of enrichment used,
whether the crack tip enrichment (Tip) and/or the Heaviside enrichment (H) and by
the approach used to define the SIFs, whether the direct method (Dir) or the indirect
method based on the J-integral (J). The responses obtained by unenriched DBEM are
simply denoted by ‘DBEM’. In the results of deformed shapes, the elements are depicted
in different colours and denoted by the type of enrichment applied to them: Tip, H,
Support or Force. When an element is used for displacement extrapolation to provide
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the supplementary constraints, it is identified as Ext.(Tip) or Ext.(H) if associated with a
crack tip enrichment or to a Heaviside enrichment, respectively. For comparison purposes,
all deformed shapes obtained by the XBEM formulation overlay the solutions determined
by the conventional DBEM, which are depicted in grey.

4.8.1 Square plate with an edge crack

Consider a plate containing an edge crack and tensioned by a uniform loading p̄, as
shown in Fig. 4.8a. The dimensions of the structure are such that 2h = w and the crack
length is defined as a. The material is assumed with Poisson’s ratio ν = 0. The top
corner of the right edge is fixed along the x1 direction, while the bottom corner is fixed in
both directions. These restrictions are imposed in the models by the support enrichment
developed in Section 4.5 to avoid rigid body motions.

Figure 4.8: (a) Tensioned plate containing an edge crack. (b) Boundary element mesh for
a/w = 0.5 (Example 4.8.1).

(a) (b)

Source: Own author.

Initially, the accuracy of the crack tip enrichment is assessed considering the direct
and indirect approaches for the evaluation of KI at the right tip. The following values
for ratio a/w are considered: 0.2, 0.3, 0.4 and 0.5. For the XBEM analyses, each edge
of the plate and each crack surface is discretised with six quadratic elements, as depicted
in Fig. 4.8b for a/w = 0.5. The crack tip enrichment is applied to elements on the entire
right half of the crack (three elements per crack surface) to capture the near tip behaviour
at the right tip. The same three elements at each crack surface are also used to define the
crack tip tying constraint, which provides the required additional equations to XBEM.

Table 4.1 presents the results determined directly and indirectly by the proposed
XBEM formulation. Good accuracy is observed when the responses are compared to



Chapter 4. Extended boundary element method 89

the reference values (Ref.) provided by Civelek and Erdogan (1982). The relative er-
rors obtained by the direct method are inferior to 0.6%, while the combination of the
enriched scheme with J-integral results in relative errors below 0.3%. Nevertheless, the
indirect method requires the evaluation of internal fields along the J-integral path in a
post-processing stage, increasing computational cost. The table also shows the numer-
ical solutions determined by Portela, Aliabadi, and Rooke (1992) using the dual BEM
(DBEM), by Oliveira and Portela (2019) using the Integrated Local Mesh Free (ILMF)
model and by Belinha et al. (2016) using the Natural Neighbor Radial Point Interpola-
tion Method (NNRPIM). For the analysed problem, the solutions obtained by the XBEM
are, in general, more accurate than other numerical solutions available in the literature
when compared with the reference values given by Civelek and Erdogan (1982). However,
it is worth mentioning that the accuracy also depends on the intrinsic features of each
numerical method and the technique used for SIF extraction.

Table 4.1: Normalised mode I stress intensity factor for the edge crack in a square plate
(Example 4.8.1).

a/w
KI/

(
p̄
√
πa

)
Error (%)

XBEM(Dir) XBEM(J) DBEM ILMF NNRPIM Ref. XBEM(Dir) XBEM(J) DBEM ILMF NNRPIM

0.2 1.493 1.492 1.495 1.520 1.524 1.488 0.322 0.256 0.470 2.151 2.419

0.3 1.848 1.850 1.858 1.967 1.986 1.848 0.018 0.116 0.541 6.439 7.468

0.4 2.317 2.325 2.338 2.413 2.479 2.324 0.281 0.029 0.602 3.830 6.670

0.5 2.992 3.009 3.028 2.973 3.032 3.010 0.598 0.039 0.598 1.229 0.731

Source: Own author.

To verify the convergence of the proposed extended formulation, the same plate illus-
trated in Fig. 4.8a is considered with a fixed ratio a/w = 0.5. The number of quadratic
elements used in the discretisation of each edge of the plate and each crack surface is
varied from six to twenty in steps of two elements. Again, the displacement approxima-
tion of elements positioned at the right half of the crack are augmented with the crack
tip enrichment to represent the near tip behaviour at the right tip, and three elements
at each crack surface are used to define the crack tip tying constraint. The Heaviside
enrichment is also applied to represent the intersection between the left crack tip with the
structural boundary, with three elements used for defining the displacement extrapolation
that provides the required supplementary equations.

Figure 4.10a presents the convergence of KI , normalised by p̄
√
πa, as a function of

the number of DOF in the boundary element mesh for different enrichment scenarios.
The results are compared with those obtained by the conventional DBEM approach - in
which neither the crack tip enrichment nor the Heaviside enrichment is used - and the
solution provided by Civelek and Erdogan (1982). Figure 4.10a shows that the responses
obtained by the different approaches converge towards the reference solution available
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in the literature. The models with crack tip enrichment present better accuracy when
compared to the unenriched J-integral approach, as shown by the relative error plot
depicted in Fig. 4.10b, which demonstrates the effectiveness of the proposed enriched
formulation. The enrichment remarkably improves the accuracy of the indirect method,
with the enriched J-integral approach giving the lowest relative error, around 0.05%. The
solutions obtained by Alatawi and Trevelyan (2015) considering an XBEM formulation
are also presented in Figs. 4.10a and 4.10b. From the results obtained in the present study
and by Alatawi and Trevelyan (2015), it can be noted that the use of shifted enrichment
functions can reduce the errors in the XBEM responses.

Figure 4.9: Variations of (a) the mode-I SIF (normalised by p̄
√
πa) and (b) the relative

error with the number of degrees of freedom in the boundary element model. The error
is measured considering the result given by Civelek and Erdogan (1982) as reference
(Example 4.8.1).
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Regarding the Heaviside enrichment, when coarser meshes are considered, the values
given by scenarios with this enrichment are slightly lower than similar cases in which it is
disregarded, as shown in Fig. 4.10a. These differences occur especially due to the size of
the element enriched with the step function, ranging up to 0.14% for the coarsest mesh.
Moreover, it is worth mentioning that in models without the Heaviside enrichment, a local
refinement is performed by adding a node at the intersection point, which contributes to
the differences in the solutions. However, as the mesh density increases, the responses
obtained considering the Heaviside enrichment converge towards the solutions from similar
models.

The ability of the Heaviside enrichment to represent the crack mouth opening dis-
placement (CMOD) is illustrated in Fig. 4.10. The convergence between the responses of
similar models with and without the discontinuous enrichment is also observed for nor-
malised CMOD values. Besides, the differences between the solutions for coarser meshes
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are also noted for this parameter. For models considering the crack tip enrichment, the
normalised values of CMOD stabilise around 12.27, whereas the results keep varying with
mesh refinement for models not considering this type of enrichment.

Figure 4.10: Variation of the CMOD (normalised by p̄w/E) with the number of degrees
of freedom in the analysis (Example 4.8.1).
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Figure 4.11: Deformed shape for the coarsest boundary element mesh used in the analysis.
The XBEM result overlays the DBEM solution for comparison, and details of the crack
tip and crack mouth are provided for better visualisation of these regions. Elements
with enriched approximation and/or used for displacement extrapolation are depicted in
different colours (Example 4.8.1).

Source: Own author.

Figure 4.11 presents the deformed shape considering the coarsest mesh (six elements
on each edge and each crack surface) obtained by the fully enriched model and the con-
ventional DBEM approach. The XBEM result, in which enriched elements and elements
used for displacement are depicted in different colours, overlays the DBEM solution, which
is represented in grey. The details of the crack tip and the crack mouth show that the
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differences between results from the enriched and unenriched formulations are more pro-
nounced in these regions. These differences occur due to the features introduced by the
enrichment terms and the imposition of the displacement constraints to define the addi-
tional equations needed in XBEM, whereas no restriction is made to guarantee continuity
in the unenriched case. In particular, the details of the crack tip show that the tip en-
richment can represent the square root behaviour expected for displacements. Besides,
the crack tip is closed in this situation due to the imposition of the tying constraint. On
the other hand, the polynomial approximation used in the conventional formulation is not
capable of recovering the analytical displacement behaviour in this region; also, the crack
tip remains opened in this case.

4.8.2 Anisotropic plate with a slanted crack

Figure 4.12a shows an anisotropic plate containing a centre crack submitted to a uni-
form tension p̄. The dimensions of the structure are such that h/w = 2 and the crack
length is defined as a = 0.2w. The slope of the crack is assumed constant and equal to
θ = 45°. The material is a glass-epoxy composite with the following elastic properties:
E1 = 48.26 GPa, E2 = 17.24 GPa, µ12 = 6.89 GPa and ν12 = 0.29. Besides, plane stress
condition is assumed. In this example, different values for material orientation γ are
considered, and the SIFs are computed for each configuration considering the unenriched
DBEM and the direct and indirect XBEM approaches. The solutions are compared with
the responses provided by Sollero and Aliabadi (1995) and García, Sáez, and Domínguez
(2004) using BEM and by Hattori, Alatawi, and Trevelyan (2016) using an XBEM for-
mulation based on Stroh formalism.

The external boundary and each crack surface are discretised, respectively, with thirty-
six and six quadratic elements, as illustrated in Fig. 4.12b. In the enriched models, each
crack tip enriches the closest three elements on each crack surface, and the same elements
are used to define the crack tip tying constraint.

Figures 4.14a and 4.14b show the results for KI and KII - normalised by p̄
√
πa - de-

termined directly by XBEM and indirectly through the J-integral approach by unenriched
DBEM and XBEM. The numerical solutions found in the literature are also provided. The
shaded region in the figures represents the envelope defined by a 1% deviation from the
average of the reference values. Good agreement is found between the results determined
here and the reference solutions. The direct approach provides slightly greater values
than the other two indirect methods applied in the present study, whereas the solutions
obtained with the J-integral are quite similar. Nonetheless, all responses determined by
the XBEM formulation are comprised within the 1% error envelope defined from the ref-
erence results. This demonstrates that the proposed direct method can provide accurate
SIFs solutions for cracks in anisotropic domains.
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Figure 4.12: (a) Tensioned anisotropic plate with centre slanted crack. (b) Boundary
element mesh (Example 4.8.2).
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Figure 4.13: Variations of (a) mode-I and (b) mode-II SIF with the material orientation.
The SIFs values are normalised by p̄

√
πa. The shaded area corresponds to the 1% error

envelope defined from the average of the reference solutions (Example 4.8.2).
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4.8.3 Cracked three-point bending specimen

To illustrate the application of the proposed XBEM approach in the simulation of
crack growth phenomenon, the experimental test conducted by Ingraffea and Grigoriu
(1990) using the structure shown in Fig. 4.14a is numerically reproduced. The specimen
is a 20d × 8d rectangle, with thickness 0.5d, made from acrylic glass with the following
mechanical properties: E = 3.10 GPa (450 ksi), ν = 0.37 and KIc = 32.8 Mpa

√
mm

(944 psi
√
in). The plate contains an edge crack of length a = 2.5d and three holes

positioned as indicated by Fig. 4.14a. The characteristic length d is 25.4 mm (1 in). A
three-point bending test is performed, and the point boundary conditions are enforced
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following the traction enrichment strategy presented in Sections 4.4 and 4.5. Besides,
plane stress state is assumed.

Figure 4.14: (a) Three-point bending specimen containing an edge crack and three holes.
(b) Boundary discretisation (Example 4.8.3).
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The boundary discretisation considered in the XBEM analysis consists of elements
with quadratic approximation. Fifty-six elements are used for the external boundary,
eight elements are adopted for each hole and eight elements are employed for each crack
surface (Fig. 4.14b). Initially, four elements on each crack surface are enriched with
the crack tip enrichment, while two elements are used for displacement extrapolation, as
depicted in Fig. 4.15a. The Heaviside enrichment is utilised to represent the discontinuity
occurring at the intersection between the crack and the bottom edge of the structure, with
three crack elements used to define the displacement continuity constraint (see Fig. 4.15a).

During the propagation phase, the crack length increment is taken as 0.2d, and two
elements are used for the discretisation of each new crack surface. As the crack grows,
the elements added to the new surfaces are enriched with the tip functions and used to
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Figure 4.15: Evolution of the crack for three-point bending specimen obtained by XBEM
considering the direct method for SIF computation. The XBEM results overlay the DBEM
solutions for comparison. Elements with enriched approximation and/or used for dis-
placement extrapolation are depicted in different colours and the solutions defined by the
DBEM are represented in grey (Example 4.8.3).
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Figure 4.16: Comparison between the crack paths determined by different numerical
approaches and the experimental response reported by Ingraffea and Grigoriu (1990)
(Example 4.8.2).

Source: Own author.
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defined the crack tip tying constraint, whereas the crack tip enrichment is removed from
the elements enriched by the former tip. The crack growth process determined by the
XBEM formulation using the direct method for SIF extraction is illustrated in Fig. 4.15a
to Fig. 4.15d. For comparison, the XBEM solutions overlay the responses defined by
the unenriched DBEM approach, for which the J-integral is used to compute the SIFs.
Good correspondence is observed between the deformed shapes determined by the two
strategies, with the direct method having the advantage of avoiding the computationally
expensive post-processing step for SIF definition. Furthermore, the Heaviside enrichment
adopted in the XBEM formulation is capable of successfully representing the opening of
the crack mouth at the bottom of the specimen and at the intersection of the crack with
a curved element representing the edge of the top hole.

The final crack paths obtained by the enriched formulation considering both the dir-
ect and indirect methods for SIF evaluation are shown in Fig. 4.16. Figure 4.16 also
presents the experimental results obtained by Ingraffea and Grigoriu (1990) and the nu-
merical solutions determined by conventional DBEM, by Peng et al. (2017) and Sutula
et al. (2018b) using XFEM and by the FEM-based software Franc2D (WAWRZYNEK;
INGRAFFEA, 1994). Good agreement is observed between the paths determined by the
XBEM approach and the experimental results reported by Ingraffea and Grigoriu (1990).
The results also agree well with the XFEM solutions obtained by Peng et al. (2017) and
Sutula et al. (2018b) and the responses provided by the unenriched DBEM and Franc2D.
The main differences between the crack paths are observed at the end of the analysis,
when the singular stress field is disturbed as the tip approaches the top hole. In this situ-
ation, the differences in the numerical solutions become more evident due to the selection
of different propagation criteria and/or crack length increments.

Figure 4.17 shows the variation of the SIFs with the crack length for an applied force
F = 4.45 kN (1000 lbf). Initially, the mode II SIF values are high and the crack develops
a mixed-mode growth. After the initial increments, mode I propagation prevails until the
crack approaches the holes. At these moments, the mode II SIF varies significantly, leading
to changes in the crack direction, as shown by Fig. 4.16. The SIF values determined
directly by the XBEM formulation are in excellent agreement with the results obtained
through the J-integral approach by conventional DBEM, enriched DBEM and Franc2D.
This demonstrates the efficiency of the direct method for computing the SIFs during the
crack growth process with associated reduction of computational cost.

The variation of the vertical support reactions with the crack length is presented in
Fig. 4.18. The values are related to the equilibrium state recovered by the crack length
strategy, in which the applied force induces an equivalent SIF (Keq) at the tip that is equal
to the fracture toughness (KIc). Since the structure is an isostatic beam with symmet-
ric boundary conditions, the numerical values of both vertical reactions are practically
the same. Besides, the sum of the vertical components matches the magnitude of the
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Figure 4.17: Variation of (a) mode I and (b) mode II SIFs with the crack length determined
by enriched and unenriched DBEM and by Franc2D (Example 4.8.3).
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applied force, as expected by equilibrium consideration. Therefore, good correspondence
is observed between the responses provided by the force and support enrichments herein
proposed.

Figure 4.18: Vertical reactions (R2) acting at the left and right supports. The total
vertical reaction is also shown and is compared to the magnitude of the applied force (F )
(Example 4.8.3).

60 80 100 120 140 160 180

Crack length (mm)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

F
or

ce
m

ag
n

it
u

d
e

(k
N

)

F

R2(left)

R2(right)

R2(left+right)

Source: Own author.

Finally, Fig. 4.19 illustrates the force-displacement curves considering the point of
application of the force F obtained by the enriched and conventional DBEM formulations.
The crack length strategy adopted here allows the representation of the snap-back branch
of the global mechanical response. The good agreement between the SIFs determined by
the unenriched and enriched DBEM approaches, shown in Figs. 4.17, leads to the good
correspondence between the force-displacement curves since the crack length control relies
on the equivalent SIF to define the structural behaviour.
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Figure 4.19: Force-displacement curves for the cracked three-point bending specimen
considering the enriched and unenriched DBEM approaches. The displacements are the
vertical components taken at the point of application of the force.
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4.8.4 Crack propagation in anisotropic CSTBD specimens

In this example, three experimental tests on anisotropic materials conducted by Chen,
Pan, and Amadei (1998) are numerically reproduced with the proposed enriched formu-
lation. The tests were carried out on CSTDB (cracked straight-through Brazilian disc)
specimens of shale of thickness t, with general geometry depicted in Fig. 4.20. The
shale is considered transversely isotropic with the following elastic properties: E1 =

E3 = 20.326 GPa, E2 = 16.605 GPa, µ12 = µ23 = 6.683 GPa, µ13 = 7.590 GPa,
ν12 = ν23 = 0.462 and ν13 = 0.339. Table 4.2 presents the characteristics of each specimen
analysed, being the material orientation γ the main difference between them. Here, the
numerical analyses are performed using the conventional DBEM and direct XBEM to
simulate the crack propagation in the anisotropic domain. Twenty discontinuous quad-
ratic elements are used to discretise each crack surface, while thirty-two discontinuous
elements are applied to the external boundary - being two linear in the region of applica-
tion of boundary conditions and the others quadratic (see Figure 4.21 for mesh detail). In
the unenriched model, the boundary conditions are considered distributed over the linear
elements, while in the enriched formulation the concentrated force and support points are
simulated with the traction enrichments shown in Sections 4.4 and 4.5, respectively. Plane
strain is assumed. The maximum circumferential stress criterion is adopted to define the
crack growth direction (see Section 3.3.2) and the crack length increment during propaga-
tion is taken as ∆a = 1.0 mm.

Chen, Pan, and Amadei (1998) determined the crack orientation β as the angle that
caused only mode II loading at the tips in their numerical simulations using DBEM. Then,
the same β values defined numerically were used to fabricate the testing specimens. In
the present work, the values of β for pure mode II are also computed using the DBEM
and XBEM, and the results are presented in Table 4.3. Only for specimen S1, the crack
orientation defined here is slightly lower than in Chen, Pan, and Amadei (1998). Table 4.3
also presents the numerical results determined for KII considering the application of the
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Figure 4.20: CSTBD specimen of shale rock (Example 4.8.4).

Source: Own author.

Table 4.2: Characterisation of CSTBD specimens (Example 4.8.4).

Specimen D(mm) t (mm) 2a (mm) γ (°)

S1 70.10 9.50 19.61 0

S2 70.10 9.50 19.20 -45

S3 70.10 9.42 20.19 -90
Source: Own author.

failure load F obtained experimentally. Good agreement is attained between the numerical
responses.

Table 4.3: Numerical values obtained for β and KII . Mode II SIF corresponds to the
application of the failure load F obtained from the experimental results determined by
Chen, Pan, and Amadei (1998) (Example 4.8.4).

Specimen F (kN)
β (°) KII (Mpa×mm0.5)

DBEM XBEM (Dir) Ref. DBEM XBEM (Dir) Ref.

S1 2.95 27.8 27.8 28.2 -28.44 -28.79 -28.01

S2 2.23 27.6 27.6 27.6 -21.27 -21.55 -20.87

S3 2.68 25.9 25.9 25.9 -25.84 -26.06 -26.06
Source: Own author.

The crack initiation angle θ0 is also compared with the reference. Table 4.4 shows the
results obtained in the present work using DBEM and direct XBEM and those determined
numerically and experimentally by Chen, Pan, and Amadei (1998). Again, good agree-
ment is found between the numerical results. Moreover, when compared to experimental
results, the solutions provided by the extended approach are near to the responses defined
for at least one of the tips.
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Table 4.4: Numerical and experimental crack initiation angles θ0 (°) (Example 4.8.4)

Specimen
Numerical Experimental

DBEM XBEM (Dir) Ref. Tip A Tip B Average

S1 70.48 70.50 71.87 78.6 70.5 74.6

S2 70.41 70.43 70.46 67.8 73.5 70.7

S3 69.48 69.50 69.44 67.5 63.3 65.4
Source: Own author.

Finally, Figure 4.21 provides the propagation paths determined in the present in-
vestigation using DBEM and XBEM. An excellent agreement is observed between the
responses, demonstrating that the direct approach can be successfully applied to simulate
the crack growth in anisotropic materials with the advantage of dismissing the post-
processing strategy to compute the SIFs. The experimental results reported by Chen,
Pan, and Amadei (1998) are also presented. Again, the XBEM solutions are capable of
representing the crack path in all three testing specimens until the tips reach the com-
pression zone near the applied force and support point. After this stage, the numerical
solution becomes unstable and the propagation path starts to zigzag. Nevertheless, most
of the XBEM solutions agrees well with the experimental results, which demonstrates the
efficiency of the proposed model to simulate real problems.

4.8.5 Multi-cracked square plate

The final example of this chapter presents the application of the XBEM for the crack
propagation modelling of a multi-cracked domain, represented by the square plate de-
picted in Fig. 4.22a. The plate contains ten randomly distributed cracks and is ten-
sioned by a uniform loading p̄. The dimension w is equal to 50.8 mm (2 in) and
Table 4.5 presents the initial coordinates for the crack tips. The material has Young’s
modulus E = 689.5 MPa (100 ksi), Poisson’s ratio ν = 0.3 and material toughness
KIc = 27.8 Mpa

√
mm (800 psi

√
in). Besides, the plate is considered with unit thickness

and plane strain condition is assumed for the analyses. This problem was also investigated
by Budyn et al. (2004) using the XFEM and by Azadi and Khoei (2010) using the FEM,
and their solutions are used as references.

The initial boundary element discretisation contains forty-eight elements distributed
along the plate’s edges and six elements placed at each crack surface, as illustrated by
Fig. 4.22b. A quadratic approximation is used for all elements. During the propagation
phase, the crack length increment is ∆a = 1.778 mm (0.07 in) and two elements are used
for each newly created crack surface.
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Figure 4.21: Comparison between the propagation paths obtained experimentally and the
numerical solutions determined by DBEM and XBEM for the CSTBD specimens (a) S1,
(b) S2 and (c) S3 (Example 4.8.4).
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(c)

Source: Own author.
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Figure 4.22: (a) Tensioned square plate containing ten randomly distributed cracks. (b)
Boundary discretisation (Example 4.8.5).
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Table 4.5: Crack tip coordinates for the multi-cracked square plate (Example 4.8.5).

Crack
t1 t2

x1 (mm) x2 (mm) x1 (mm) x2 (mm)

1 7.666 38.583 12.699 43.607
2 18.240 33.500 15.244 38.562
3 28.607 38.419 34.661 43.020
4 42.649 30.991 38.331 36.009
5 6.607 20.343 10.752 25.063
6 20.748 22.878 28.069 24.312
7 36.792 25.399 40.664 20.667
8 8.195 9.112 12.425 13.426
9 22.911 11.930 27.889 8.628
10 36.349 9.112 41.107 12.414

Source: Own author.

Initially, the extended formulation is applied considering the crack tip enrichment and
the support point enrichment, the latter being used to avoid rigid body motion. Each
half of the cracks is enriched by the corresponding tip, and the displacement constraint is
defined over three elements. As the cracks grow, the two elements introduced per crack
surface are enriched with the tip functions and used for displacement extrapolation. When
a crack intersection occurs during the propagation, the Heaviside enrichment is included
in the analysis to reproduce the discontinuity in the crossed elements. In this case, the
new crack elements are considered to define the displacement continuity constraint. Both
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Figure 4.23: Evolution of the fracture through the plate determined by the unenriched
DBEM formulation and XBEM considering the direct approach. The XBEM results over-
lay the DBEM solutions for comparison. Elements with enriched approximation and/or
used for displacement extrapolation are depicted in different colours, and the solutions
defined by DBEM are represented in grey (Example 4.8.5).
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direct and the indirect J-integral approaches are used to compute the SIFs, which are
later used to define the propagation path. An ordinary DBEM analysis is also carried out
to provide additional reference solutions for the XBEM responses.

The sequence shown in Fig. 4.23 represents the fracture process through the plate
determined by XBEM considering the direct approach to evaluate the SIFs. Initially, tip
t1 of crack 6 grows to the left and crosses crack 5 (Fig. 4.23a). Then, tip t1 of crack
5 becomes critical and moves towards the left edge of the plate (Fig. 4.23b). After the
edge is intersected, tip t2 of crack 6 starts to propagate and crosses crack 7 (Fig. 4.23c).
Finally, tip t2 of crack 7 runs to the right (Fig. 4.23d), dividing the plate into two parts.
The sequence shown in Fig. 4.23 demonstrates that the developed model is capable of
automatically handling new enrichments during the crack growth. Besides, the discon-
tinuous enrichment can successfully represent the discontinuity over elements crossed by
cracks. Fig. 4.23 also presents the responses obtained by the conventional DBEM, and
good correspondence with the deformed shapes determined by the direct method is ob-
served.

The ability of the XBEM to represent the fracture process can also be noted from
Fig. 4.24, in which the crack paths defined by the enriched approach are compared with
the responses determined by DBEM and other numerical solutions available in the literat-
ure. The results obtained by XBEM present the same behaviour of the references, demon-
strating the efficiency of the proposed enriched formulation for predicting the propagation
direction in multi-cracked structures.

Figure 4.24: Comparison between the crack path determined by the enriched and unen-
riched DBEM formulations and the numerical responses provided by Budyn et al. (2004)
and Azadi and Khoei (2010) (Example 4.8.5).
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Source: Own author.
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The global mechanical response of the cracked plate is represented in Fig. 4.25 by
the nominal stress-strain curves. The nominal stress corresponds to the applied uniform
loading p̄, while the nominal strain is defined by the average vertical displacement of the
nodes at the top edge divided by the dimension w. Excellent correspondence is observed
between the responses determined by the enriched and unenriched DBEM formulations.
Besides, good agreement is found with the solutions available in the literature, especially
with the one reported by Azadi and Khoei (2010). Again, the crack length strategy used
here leads to a stable representation of the snap-back branch of the structural response.
This set of results demonstrates that the proposed XBEM formulation is capable of suc-
cessfully describing the behaviour of structures containing multiple cracks. In particular,
good solutions are achieved by the direct approach without requiring a post-processing
technique to compute the SIFs.

Figure 4.25: Nominal stress-strain curves for the multi-cracked plate considering the en-
riched and unenriched DBEM and the reference results provided by Budyn et al. (2004)
and Azadi and Khoei (2010) (Example 4.8.5).
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5 Extended isogeometric boundary element method

5.1 Initial considerations

In Chapter 4, an XBEM formulation is proposed for the analysis of linear crack growth.
The enriched approximations used there are defined from the conventional Lagrange poly-
nomials and the enrichment terms that are responsible for introducing a particular be-
haviour to the solutions space. In this chapter, an extended isogeometric formulation
is developed. The Lagrange polynomials are thus replaced by the non-uniform rational
B-splines (NURBS) basis functions, which are commonly applied in CAD packages to
describe geometries. The use of the isogeometric approach within the BEM framework
provides a direct link between CAD models and the numerical analysis since both deal
with quantities solely on the boundary. Besides, the higher-order continuity provided
by NURBS facilitates the definition of collocation points on the crack with the required
continuity for the existence of the finite part integrals presented in the dual boundary
element formulation (HONG; CHEN, 1988; PORTELA; ALIABADI; ROOKE, 1992)
adopted here (see Section 2.3).

In this chapter, the parametric functions B-splines and NURBS are briefly described.
The unenriched isogeometric boundary element method (IGABEM) is then presented,
including implementation aspects that differ from conventional DBEM. In the sequence,
an extended approximation is introduced to develop an XIGABEM formulation for the
direct evaluation of the SIFs. A propagation scheme considering the enriched approach is
also proposed for the analysis of multiple fatigue crack growth in two-dimensional isotropic
bodies.

For the crack propagation analysis, the new crack surfaces are created from the ex-
tension of existing NURBS. A C−1 continuity for the rational basis is enforced between
the new and old surfaces to limit the enrichment term to the portion near the crack tip,
where it is necessary. The availability of C−1 continuity is also elegantly exploited to
represent the geometrical discontinuity in elements intersected by cracks simply by in-
serting the required knots, maintaining a NURBS description throughout. Therefore, the
discontinuous enrichment presented in the last chapter is not applied in the isogeometric
formulation.

Two sets of examples are presented to demonstrate the accuracy of the proposed
XIGABEM formulation. The first set is concerned with the evaluation of SIFs, whereas the
second deals with fatigue crack propagation problems, including the prediction of fatigue
life. The results are compared against analytical, experimental and numerical solutions
available in the literature. Besides, the direct XIGABEM approach is contrasted with
unenriched and enriched indirect methods that employ the J-integral for SIF extraction.
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A comparison between run times of the direct and indirect strategies is also illustrated in
the last example of the chapter.

5.2 B-splines

5.2.1 Initial definitions

B-splines are parametric functions that are able to map a curve in the geometrical
space (Rd). In the two-dimensional space (R2), as the one considered for the applications
in this study, this function is described by one independent non-dimensional coordinate
ξ defined in the parametric space. In this case, a B-spline is completely defined by the
following three properties:

• The curve degree (or order) p, that is equivalent to the degree of the polynomial
used in the isoparametric formulation.

• A set of n control points pi = (xi1, x
i
2) defined in R2, that is similar to the nodes in

conventional BEM.

• A knot vector Ξ = {ξ1, ξ2, ..., ξq} containing q values of parameter ξ (or knots) that
are used to define the basis functions for the B-spline. Moreover, the entries in Ξ

are positioned in non-decreasing order. The knots resemble the non-dimensional
nodal coordinates that are used to define the Lagrange polynomials (see Eq. (2.34))
in isoparametric BEM; however, the knot vector components are not indistinctively
associated with the control points.

When the knots are repeated p + 1 times at the start and end of Ξ, the knot vector is
termed as open knot vector. A consequence of the use of an open knot vector is that
the corresponding B-spline is interpolatory at the first and last control points, which is
usually not observed for interior control points. Besides, the total number of entries in
the knot vector of this type is q = n + p + 1. The use of open knot vectors is recurrent
in the CAD packages, and it will be also considered in the applications of the present
investigation.

5.2.2 Basis functions

In a B-spline, the number of basis functions is equal to the number of control points
that define the curve. These functions are determined over the parametric space ξ ∈
[ξ1, ξn+p+1] and are denoted by Ni,p, with i = 1, ..., n and p indicating the order of the
spline. For a constant B-spline (p = 0), the basis functions are obtained by:

Ni,0(ξ) =

1, ξi ≤ ξ < ξi+1

0, otherwise
, (5.1)
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and for p ≥ 1, they are given recursively by Cox-de Boor formula (COX, 1972; DE BOOR,
1972):

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (5.2)

Note from Eqs. (5.1) and (5.2) that the B-spline basis functions constitute a partition
of unity, i.e.

∑n
i=1Ni,p(ξ) = 1, ∀ξ. Besides, they are non-negative at every point.

To illustrate the recursive nature of the basis functions, a B-spline with p = 2, n = 5

and Ξ = {0, 0, 0, 1, 1, 2, 2, 2} is taken as an example. The following diagram shows how
the functions Ni,p are constructed, in which the arrows denote the dependence of higher
order basis functions with respect to lower order basis.

N1,2 N2,2 N3,2 N4,2 N5,2

↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘
N1,1 N2,1 N3,1 N4,1 N5,1 N6,1

↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘
N1,0 N2,0 N3,0 N4,0 N5,0 N6,0 N7,0

Suppose we want to define the basis functions for this B-spline at the point ξ = 1.2.
Due to the definition of the constant terms shown in Eq. (5.1), only N5,0 is different from
zero. Consequently, from the recursive relation of Eq. (5.2), only N3,2, N4,2 and N5,2 will
be non-zero for p = 2. In the above diagram, the non-zero basis functions that should be
evaluated are highlighted, whereas the others are identically zero. In general, for a point
ξ ∈ [ξa, ξa+1[, the terms that will assume non-zero values are Na−p,p, Na−p+1,p, ..., Na,p.
This property is useful during definition of the basis functions in order to reduce the
computational effort since not all terms must be evaluated.

The derivatives of the B-spline basis functions are also given recursively, and they can
be obtained as follows:

N
(k)
i,p (ξ) =

dk

dξk
Ni,p(ξ) = p

(
N

(k−1)
i,p−1 (ξ)

ξi+p − ξi
−

N
(k−1)
i+1,p−1(ξ)

ξi+p+1 − ξi+1

)
(5.3)

where k indicates the order of the derivative.

5.2.3 B-splines curves

A B-spline curve is defined by a linear combination of the basis functions with the
control points positions. This approach is analogous to the polynomial approximation
shown in Eq. (2.33). Then, the positions over a B-spline are given by:

x̃bi(ξ) =
n∑

m=1

Nm,p(ξ)x
m
i (5.4)

where xmi represents the coordinates of the m-th control point.
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In general, a B-spline curve is Cp−1 continuous over [ξ1, ξn+p+1]. However, the order of
continuity can be reduced at a particular point if the knot value at that point is repeated
in the knot vector. If an interior knot value is repeated k times (i.e. has multiplicity equals
to k), the continuity of the B-spline at that knot becomes Cp−k. Therefore, if an interior
knot has multiplicity p, the curve is C0 continuous, i.e. the B-spline is interpolatory at
the point.

5.3 NURBS

Non-Uniform Rational B-Splines (NURBS) have been extensively applied in CAD
software for geometry modelling. Among their advantages are the exact representation
of conic sections and quadric surfaces and the ability to describe complex forms, such as
industrial components. In the present investigation, NURBS basis functions are adopted
in the isogeometric formulation, and a brief description is given in what follows. Further
details about NURBS can be obtained in Piegl and Tiller (1995).

NURBS are constructed from B-splines and an additional coordinate denoted as
weight. NURBS curves in the Euclidean space Rd can be interpreted as a projection
of B-splines curves from the space Rd+1 (see Hughes, Cottrell, and Bazilevs (2005)). Con-
sidering a set of positive weights Υ = {w1, w2, ..., wn}, in which each value wi is associated
with Ni,p, the rational basis functions Ri,p are given from the B-splines basis functions as
follows:

Ri,p(ξ) =
Ni,p(ξ)wi∑n
j=1Nj,p(ξ)wj

(5.5)

The NURBS basis functions given in Eq. (5.5) are also non-negative and form a parti-
tion of unity. Moreover, it can be noted that the B-spline approximation is recovered if all
weights are equal. Like the B-splines, NURBS functions are, in general, Cp−1 continuous
over [ξ1, ξn+p+1]; additionally, the continuity of the NURBS can be reduced at a particular
point by increasing the multiplicity of the corresponding knot value.

The first order derivative of NURBS basis functions are often required when dealing
with isogeometric approaches, and they can be obtained by the following:

R
(1)
i,p (ξ) =

d

dξ
Ri,p(ξ) = wi

N
(1)
i,p (ξ)

∑n
j=1 Nj,p(ξ)wj −Ni,p(ξ)

∑n
j=1 N

(1)
j,p (ξ)wj(∑n

j=1 Nj,p(ξ)wj

)2 (5.6)

where N (1)
i,p (ξ) is the first order derivative of the B-spline given by Eq. (5.3). In addition,

higher order NURBS derivatives can be computed from:
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Figure 5.1: (a) NURBS basis functions and (b) NURBS curve representing a unit circle.
The order of the NURBS is p = 2.
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Figure 5.2: (a) NURBS basis functions after p + 1 knot insertions at ξ̄ = 1.5. (b)
Representation of the NURBS curve and new control points positions. Control points
5 and 6 end up in the same position after the successive knot insertions; however, the
NURBS curve may be discontinuous at this point if the coincident control points are
moved to different locations.
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R
(k)
i,p (ξ) =

wiN
(k)
i,p (ξ)−∑k

l=1

[(
k

l

)∑n
j=1 N

(l)
j,p(ξ)wjR

(k−l)
i,p (ξ)

]
∑n

j=1 Nj,p(ξ)wj
(5.7)

where: (
k

l

)
=

k!

l! (k − l)! (5.8)

Similarly to the B-spline, the NURBS curve can be defined from Eq. (5.4) by switching
the shape function Nm,p(ξ) to Rm,p(ξ).

To illustrate the NURBS concepts, Fig. 5.1a shows the distribution of the rational
basis functions obtained with the knot vector and weights presented in the figure and
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considering p = 2. It can be observed that the functions are C0 continuous in knots
with multiplicity k = p, whereas they are smooth elsewhere (C1 continuous). Figure 5.1b
shows how the rational functions from Fig. 5.1a can be associated with a set of control
points to describe a unit circle exactly.

5.3.1 H-refinement of NURBS: knot insertion

When adopting the isogeometric approach in a numerical method, the refinement
of NURBS is often required to increase the mesh density for the analysis. Here, the
refinement is performed with the knot insertion strategy, which is analogous to the h-
refinement of conventional isoparametric elements. There are some other alternatives for
NURBS refinement, such as order elevation or k-refinement (HUGHES; COTTRELL;
BAZILEVS, 2005), but they are not considered in the present investigation.

In the knot insertion strategy, knots are introduced into the knot vector and the control
point locations and weights are modified to preserve the exact geometry of the resulting
spline. Given an open knot vector Ξ = {ξ1, ξ2, ..., ξn+p+1}, let ξ̄ ∈ [ξa, ξa+1[ be a desired
new knot. The new n+1 rational basis functions are constructed in the standard way from
Eq. (5.5) considering the new knot vector Ξ̄ =

{
ξ1, ξ2, ..., ξa, ξ̄, ξa+1, ...ξn+p+1

}
. To define

the new control points positions and weights for the 2-D NURBS, firstly the coordinate
qi = (xi1, x

i
2, w

i) can be defined. The components of qi are obtained from the coordinates
pi = (xi1, x

i
2) and weight wi of the i-th original control point. Then, the NURBS curve in

R2 is converted to a B-spline curve in R3 by considering the following control points:

Qi =
(
xi1w

i, xi2w
i, wi

)
(5.9)

The knot insertion can be performed to this 3-D B-spline with the following relation
(PIEGL; TILLER, 1995):

Q̄i = αiQi +
(
1− αi

)
Qi−1 (5.10)

where Q̄i denotes the new control points for the B-spline and:

αi =


1, 1 ≤ i ≤ a− p
ξ̄−ξi

ξi+p−ξi , a− p+ 1 ≤ i ≤ a

0, a+ 1 ≤ i ≤ n+ p+ 2

(5.11)

After application of Eq. (5.10), the new control points positions are obtained:

Q̄i =
(
x̄i1w̄

i, x̄i2w̄
i, w̄i

)
(5.12)

This new set of control points in R3 related to the 3-D B-spline can be projected back
to R2 to recover the new set of control points and weights for the given NURBS after
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the knot insertion. Hence, the new control points positions for the NURBS are given by
p̄i = (x̄i1, x̄

i
2), with corresponding weight equals to w̄i.

Successive knot insertions can also be applied to introduce discontinuities into a
NURBS when necessary. This is achieved by performing multiple knot insertions un-
til a knot value reaches multiplicity k = p + 1. In other words, using the knot insertion
strategy shown above so that a given knot ξ̄ has multiplicity p+ 1, the rational basis be-
comes C−1 continuous (i.e. discontinuous) at ξ̄. In this study, the C−1 continuity is used
to facilitate the remeshing process during crack propagation. Details about this strategy
are given in Section 5.6.2.

Considering the illustrative example shown in Fig. 5.1a, the NURBS basis functions
presented in Fig. 5.2a are obtained after three successive knot insertions at ξ̄ = 1.5.
Note that the knot insertions modify the rational functions defined over the knot span
[1.0, 2.0[, which contains the considered ξ̄. Three new basis functions are created - each
one introduced by a knot insertion - while the former three rational functions defined
over the interval are altered. Essentially, the knot spans on the left and right of ξ̄ = 1.5

behave as two independent NURBS due to the C−1 continuity that has been introduced.
Figure 5.2b presents the new control point positions generated after the knot insertions for
the unit circle geometry. At the end of the process, control points 5 and 6 are coincident.
Since the NURBS basis functions are discontinuous at this point, a geometric discontinuity
may be represented if the coincident control points are moved to different locations.

5.4 IGABEM

For an accurate numerical computation of the DBIE (2.31) and TBIE (2.32), the
NURBS describing the geometry may be subdivided into boundary elements, following a
concept similar to the conventional isoparametric BEM presented in Section 2.3. For the
isogeometric analysis, a boundary element (or cell) is defined in the parametric space as
the span between two distinct knots of a NURBS, or formally ξ ∈ [ξa, ξa+1[ : ξa 6= ξa+1.
From the recursive nature of the rational basis functions presented in Section 5.3, the only
non-zero functions over an element are Ra−p,p, Ra−p+1,p, ..., Ra,p (see Figs. 5.1a and 5.2a
for graphical examples). It is interesting to note that the number of non-zero functions is
equal to p+ 1, as observed when adopting Lagrange elements in DBEM. In addition, the
connectivity of an isogeometric element is defined by the control points associated with
the non-zero basis functions. Hence, the coordinates along an element e can be evaluated
from:

x̃ej(ξ) =

p+1∑
m=1

φem(ξ)xemj ξ ∈ [ξa, ξa+1[ : ξa 6= ξa+1 (5.13)
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where the terms φem(ξ) = Ri,p(ξ) represent the m-th shape function of order p from
element e, with i = m+ a− p− 1. Additionally, xemj denotes the coordinates of the m-th
local control point from the element.

Figure 5.3 highlights an element along a NURBS curve defined from the parametric
space. However, it is suitable to define the boundary elements over the parent space
ξ̂ ∈ [−1, 1] (see Fig. 5.3) to apply Gauss-Legendre quadrature for numerical integration.
The linear transformation that maps the parameter ξ from ξ̂ is given by:

ξ =
(ξa+1 − ξa) ξ̂ + (ξa+1 + ξa)

2
(5.14)

Thus, the Jacobian of the transformation from the parent space ξ̂ to the Cartesian
coordinate system is evaluated by the chain rule as:

Je(ξ̂) =
dΓe

dξ

dξ

dξ̂
(5.15)

in which dΓe/dξ is obtained from:

dΓe

dξ
(ξ) =

√(
dx̃e1
dξ

(ξ)

)2

+

(
dx̃e2
dξ

(ξ)

)2

(5.16)

and dξ/dξ̂ is determined from Eq. (5.14) as follows:

dξ

dξ̂
=

(ξa+1 − ξa)
2

(5.17)

Figure 5.3: Mapping between the Cartesian, parametric and the parent spaces.

ξ1 ξn+ p+ 1ξa ξa+ 1

ξ(ξ̂)

−1 +1
ξ̂

x̃ej(ξ)

Ξ =
{
ξ1, . . . , ξa, ξa+ 1, . . . ξn+ p+ 1

}
Source: Own author.

Following the isogeometric approach, the mechanical fields along the elements are also
interpolated with the rational basis functions and the control points parameters as:

ũej(ξ) =

p+1∑
m=1

φem(ξ)demj (5.18)
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p̃ej(ξ) =

p+1∑
m=1

φem(ξ)temj (5.19)

in which demj and temj are, respectively, displacement and traction parameters associated
with the m-th local control point from element e. Since the NURBS basis functions
are usually not interpolatory - i.e. do not exhibit the Kronecker delta property at the
control points (see NURBS curve in Fig. 5.3) - these parameters do not directly represent
displacements or tractions on the boundary of the body.

The approximations in Eqs. (5.13), (5.18) and (5.19) can be used in the dual BEM
formulation to define the discrete forms of the DBIE (2.31) and TBIE (2.32). The strategy
is analogous to conventional Lagrange BEM (see Section 2.3), with the main difference
being the substitution of the Lagrange polynomials by the rational bases. Hence, the
discrete DBIE considering the isogeometric approximation is given by:

cij(x
′)uj(x

′) + cij(x̄
′)uj(x̄

′) +
Ne∑
e=1

p+1∑
m=1

P em
ij d

em
j =

Ne∑
e=1

p+1∑
m=1

U em
ij t

em
j (5.20)

where Ne is the total number of elements and:

P em
ij = −

∫ 1

−1

P ∗ij(x
′,x(ξ̂))φem(ξ̂)Je(ξ̂)dξ̂ (5.21)

U em
ij =

∫ 1

−1

U∗ij(x
′,x(ξ̂))φem(ξ̂)Je(ξ̂)dξ̂ (5.22)

are the integral kernels defined in the parent space ξ̂ ∈ [−1, 1].

Similarly, the discrete TBIE is determined as:

1

2
[pj(x

′)− pj(x̄′)] + ni(x
′)

Ne∑
e=1

p+1∑
m=1

Semkijd
em
k = ni(x

′)
Ne∑
e=1

p+1∑
m=1

Dem
kij t

em
k (5.23)

where:

Semkij = =

∫ 1

−1

S∗kij(x
′,x(ξ̂))φem(ξ̂)Je(ξ̂)dξ̂ (5.24)

Dem
kij = −

∫ 1

−1

D∗kij(x
′,x(ξ̂))φem(ξ̂)Je(ξ̂)dξ̂ (5.25)

The collocation method can also be applied to define the algebraic system of equations
given by IGABEM. However, collocation at the control points is not possible since some
of the source points would be placed outside the boundary. In the present investigation,
the collocation is carried out at Greville abscissae (GREVILLE, 1964; JOHNSON, 2005)
define as:
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ξ′i =

∑p
j=1 ξi+j

p
(5.26)

in which ξ′i is the knot corresponding to the i-th collocation point. The Cartesian co-
ordinates for this point can be determined with Eq. (5.13).

For the analysis of fracture problems, the discrete DBIE (5.20) is used for the col-
location points at the external boundary and one of the crack surfaces, whereas the
discrete TBIE (5.23) is applied for the collocation points on the other surface to obtain a
non-singular system of equations. During the collocation process, the collocation points
become the source point x′(ξ′) of their respective boundary integral equations.

The existence of the Hadamard principal value in the TBIE places certain requirements
on the continuity of the displacement derivatives at the collocation points. To satisfy this
condition, the collocation points at the start and end of the NURBS at crack surfaces are
placed inside the NURBS. For the first, the coordinate in the parametric space is updated
to ξ′1 = ξ′1 + 0.2 (ξ′2 − ξ′1), and for the last, it is altered to ξ′n = ξ′n − 0.2

(
ξ′n − ξ′n−1

)
.

Special attention should be taken to the jump terms in the boundary integral equa-
tions. These terms should be distributed over the element e′ that contains a particular
source point x′(ξ′) using the basis functions φem(ξ′). This process is necessary since the
displacement and the traction components at the collocation point is defined, respectively,
with the application of Eqs. (5.18) and (5.19) assessed at ξ′. Therefore, the jump terms
in the DBIE and TBIE are rewritten as:

cij(x
′)uj(x

′) + cij(x̄
′)uj(x̄

′) =

p+1∑
m=1

cij(x
′)φe

′m(ξ′)de
′m
j +

p+1∑
m=1

cij(x̄
′)φē

′m(ξ̄′)dē
′m
j (5.27)

1

2
[pj(x

′)− pj(x̄′)] =
1

2

[
p+1∑
m=1

φe
′m(ξ′)te

′m
j −

p+1∑
m=1

φē
′m(ξ̄′)tē

′m
j

]
(5.28)

where ē′ denotes the element containing the source x̄′ that is at the same position of
x′ but in the opposite crack surface. If x′ does not belong to a crack surface, then
cij(x̄

′) = pj(x̄
′) = 0.

The integral kernels involved in the IGABEM are similar to the traditional DBEM
approach, and they can be evaluated in the same manner as presented in Appendix C.
After the integration process, the resulting algebraic system of equation is determined as
follows:

Hd = Gt (5.29)

where H, like conventional DBEM, is a 2N × 2N matrix determined from the boundary
integrals P em

ij and Semkij and from the distribution of the jump terms in the DBIE and
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G is a 2N × 2N matrix obtained from the boundary integrals U em
ij and Dem

kij and from
the distribution of the jump terms in the TBIE. d and t are 2N vectors containing,
respectively, the displacement and traction control parameters and N is the total number
of collocation points in the model.

Imposing the prescribed boundary conditions to the system (5.29) leads to the the
final system of equations defined by IGABEM:

Ax = f (5.30)

which has the same form of the system determined by traditional DBEM (Eq. (2.46)).

After the solution of Eq. (5.30), the unknown control variables stored in x are defined.
Then, the mechanical response for any point ξ at the boundary, including the colloca-
tion points, can be evaluated from Eqs. (5.18) and (5.19) considering the element e that
contains the point.

5.5 Extended formulation

5.5.1 Approximations

When considering the isogeometric approach, the unknown boundary fields along the
elements are also approximated through the rational bases. However, the NURBS func-
tions, as the Lagrange polynomials in conventional BEM, fail to accurately represent the
square root behaviour near crack tips predicted by the LEFM theory (Section 3.1). To
capture the analytical behaviour and, consequently, improve the near-tip numerical solu-
tion, an extended formulation may be employed. Unlike the XBEM formulation presented
in Chapter 4, the displacement enrichment terms used for the XIGABEM approach is not
composed of shifted functions but is introduced directly in the approximation as in Ben-
zley (1974) and Simpson and Trevelyan (2011b). The option of not considering shifted
functions in the isogeometric approach is because the control parameters do not repres-
ent physical displacements on the boundary of the body - as is the case of the nodal
parameters in conventional BEM - and, therefore, there is no reason in preserving their
meaning. Nonetheless, it is possible to develop a shifted formulation taking as reference
the enrichment functions assessed at the collocation points to reduce the singularity order
of the resulting enriched integral kernels, as in the XBEM formulation presented in the
previous chapter.

From the previous discussion, the displacement approximation for an element e near
a crack tip λ in the proposed XIGABEM approach is written as:

ũeλj (ξ) =

p+1∑
m=1

φem(ξ)demj +
∑

M=I,II

K̃λ
MR

λ
jkψkM(xλ,x(ξ)) (5.31)
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The first term on the right-hand side of Eq. (5.31) is the standard IGABEM expansion
of the displacement (Eq. (5.18)) into products of the NURBS basis functions φem and the
displacement control variables demi associated with the m-th local control point. This
term is responsible for capturing rigid-body motions. The second term of the right-hand
side of Eq. (5.31) exactly represents the leading-order term from Williams expansion for
displacements (WILLIAMS, 1957) (see Eq. (3.2)), and it is introduced in the approxim-
ation to capture the near-tip behaviour. This term contains the additional parameters
K̃λ
M = K̃λ

I , K̃
λ
II included by the enrichment, and these become unknowns that, when

found as part of the BEM solution vector, provide the stress intensity factors. As in
XBEM, the enrichment parameters become accurate approximations of the SIFs only if
the continuity of displacement at the crack tip is enforced (see Section 5.5.2). The crack
tip functions ψkM are extracted directly from the asymptotic solution given by Williams
(1957). Assuming isotropic materials, they are expressed in matrix notation as:

[
ψ1I ψ1II

ψ2I ψ2II

]
=

1

2µ

√
ρ

2π

[
cos
(
θ
2

)
(κ− cos θ) sin

(
θ
2

)
(κ+ 2 + cos θ)

sin
(
θ
2

)
(κ− cos θ) − cos

(
θ
2

)
(κ− 2 + cos θ)

]
(5.32)

where ρ is the distance to the tip and θ is the angular variation according to the local
coordinate system positioned at the crack tip xλ, as shown in Fig. 5.4. κ represents the
Kolosov constant defined as κ = 3−4ν for plane strain and κ = (3− ν) / (1 + ν) for plane
stress.

To transform the contribution of the enrichment functions from the local to the global
coordinate system, the components Rλ

jk of the rotation matrix are also included in the
enrichment term of Eq. (5.31), in which:

[
R11 R12

R21 R22

]
=

[
cosω − sinω

sinω cosω

]
(5.33)

where ω is the angle between the local and global coordinates systems (see Fig. 5.4).

The displacement approximation expressed in Eq. (5.31) is used only for boundary ele-
ments on NURBS defining the crack tips. Then, the√ρ behaviour observed in the near-tip
solution can be captured through the enrichment term. For the other elements, only the
rational basis contribution is considered in the displacement approximation (Eq. (5.18)).
For the traction field, the approximation used for elements at NURBS defining both the
external boundaries and cracks is expressed solely through the NURBS basis functions as
in Eq. (5.19).

Considering the XIGABEM approximations, the discrete form of the DBIE (2.31)
becomes:
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Figure 5.4: Local coordinate system at an enriched crack tip.
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p+1∑
m=1

cij(x
′)φe

′m(ξ′)de
′m
j +

p+1∑
m=1

cij(x̄
′)φē

′m(ξ̄′)dē
′m
j + (5.34)

+
Ne∑
e=1

p+1∑
m=1

P em
ij d

em
j +

Nt∑
λ=1

∑
M=I,II

K̃λ
M

Nλ
e∑

e=1

P̃ eλ
iM =

Ne∑
e=1

p+1∑
m=1

U em
ij t

em
j

where Ne is the total number of elements, Nt is the number of crack tips and Nλ
e is

the number of elements enriched in the vicinity of the tip λ. It is worth mentioning
that the enrichment functions do not modify the jump terms in the DBIE since the
crack tip functions ψkM for coincident source points x′ and x̄′ cancel each other out
during implementation. The kernel related to the enrichment parameter in Eq. (5.34) is
computed from:

P̃ eλ
iM = −

∫ 1

−1

P ∗ij(x
′,x(ξ̂))Rλ

jkψkM(xλ,x(ξ̂))Je(ξ̂)dξ̂ (5.35)

Analogously, the discrete TBIE (2.32) is determined as:

ni(x
′)

 Ne∑
e=1

p+1∑
m=1

Semkijd
em
k +

Nt∑
λ=1

∑
M=I,II

K̃λ
M

Nλ
e∑

m=1

S̃eλijM

 = (5.36)

= −1

2

[
p+1∑
m=1

φe
′m(ξ′)te

′m
j −

p+1∑
m=1

φē
′m(ξ̄′)tē

′m
j

]
+ ni(x

′)
Ne∑
e=1

p+1∑
m=1

Dem
kij t

em
k

where:

S̃eλijM = =

∫ 1

−1

S∗kij(x
′,x(ξ̂))Rλ

kpψpM(xλ,x(ξ̂))Je(ξ̂)dξ̂ (5.37)
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The use of the enriched displacement approximation in Eq. (5.31) only introduces the
terms related to the enrichment parameters K̃λ

I and K̃λ
I in Eqs. (5.34) and (5.36), while

the other terms are exactly the same as they would be in an unenriched formulation (see
Section 5.4). The enriched kernels shown in Eqs. (5.35) and (5.37) can be computed with
standard Gauss-Legendre quadrature when the integrated element does not contain the
source point. Otherwise, they can be evaluated with the SSM shown in Appendix D.1.

The number of degrees of freedom introduced by the enrichment is limited to two per
crack tip, regardless of the number of enriched elements, which is an advantage of the
applied strategy over PU-based enrichments (SIMPSON; TREVELYAN, 2011a; PENG
et al., 2016). This reduced number of enrichment parameters is also beneficial for the
conditioning of the system of equations. The next section presents the additional rela-
tions adopted in the proposed XIGABEM formulation that accommodate the additional
enrichment parameters and allow the direct evaluation of the SIFs.

5.5.2 Crack tip tying constraint

To accommodate the degrees of freedom introduced by the enrichment and, con-
sequently, recover a square system of equations, the crack tip tying constraint proposed by
Alatawi and Trevelyan (2015) is extended to the XIGABEM framework. This condition
aims to enforce the continuity of the displacements between the upper and lower crack
surfaces at the tip, which is not guaranteed in the unenriched approach as independent
NURBS are used to model each crack surface (see Fig. 5.4). When compared to XBEM,
the definition of the constraint is simplified by the use of NURBS functions to replace the
conventional Lagrangian basis.

Using the displacement approximation shown in Eq. (5.31), and since open knot vectors
are employed in the definition of the basis functions, the displacement at the crack tip
considering the NURBS at the upper surface (θ = π) is ũUj (ξn+p+1) = d

Utip
j , where dUtipj

is the displacement parameter of the control point positioned at the end of the upper
NURBS (crack tip). Similarly, the displacement at the crack tip considering the NURBS
at the lower surface (θ = −π) is ũLj (ξ1) = d

Ltip
j , where dLtipj is the displacement parameter

of the control point positioned at the start of the lower NURBS (crack tip). Thus, the
displacement continuity condition at the tip is simply expressed as:

d
Utip
j − dLtipj = 0 (5.38)

Equation (5.38) provides two supplementary equations per crack tip and this is exactly
sufficient to yield a square system of equations. Since the continuity condition at the tip is
the same as observed in the Williams expansions, the additional parameters K̃λ

I and K̃λ
II

represent a good approximation for mode I (Kλ
I ) and mode II (Kλ

II) SIFs. Therefore, the
proposed XIGABEM strategy allows the SIFs to be computed directly from the system of
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equations, eliminating the need for computationally expensive post-processing techniques,
such as the J-integral.

5.5.3 Assembly of the system of equations

Using the collocation method to assembly the system of equations as in conventional
IGABEM (Section 5.4), and including the crack tip tying constraint given by Eq. (5.38),
the resulting algebraic system of equations defined by XIGABEM is assembled as:[

H Hλ
C

Hλ
R 0

]{
d

K̃

}
=

[
G

0

]
{t} (5.39)

in which K̃ is 2Nt vector storing the additional enrichment parameters K̃λ
I and K̃λ

II for
each crack tip λ. The sub-matrix related to the enriched parameters Hλ

C is composed of
the enriched integrals P̃ eλ

iM (Eq. (5.35)) and ŜeλijM (Eq. (5.37)), while Hλ
R is defined from

the crack tip tying constraints.
Imposing the prescribed boundary conditions to the system in Eq. (5.39), the final

system of linear equations is determined as follows:[
A Hλ

C

Hλ
R 0

]{
x

K̃

}
=

{
f

0

}
(5.40)

Note that the crack tip enrichment given by Eq. (5.31) only introduces the sub-matrices
Hλ
C and Hλ

R into the system of equations. The other components of the system are the
same as they would be in an unenriched IGABEM formulation (Section 5.4).

The solution of the linear system of equations defined by XIGABEM, Eq. (5.40),
yields values for the unknown control parameters and also for the SIFs, which appear in
the solution vector.

5.6 XIGABEM for fatigue crack growth

For the XIGABEM analyses described in this study, the structural boundary is im-
ported directly from CAD software. Flat cracks are then inserted in the model, with each
surface defining one crack tip given by a NURBS, as illustrated by Fig. 5.5a. The knot
vector for the NURBS at the upper surface is defined over ξU ∈ [0, 1], whereas at the
lower surface it is described over ξL ∈ [−1, 0]. Therefore, the parameters ξ for corres-
ponding points at each crack surface satisfy ξU = −ξL. As also illustrated in Fig. 5.5a,
the whole NURBS containing a crack tip in the initial configuration is enriched with the
tip functions.

Then, the NURBS are refined by splitting the knot vector in uniform knot spans
corresponding to the boundary elements. Furthermore, if a crack is defined such that it
intersects a geometric boundary, a knot refinement at the intersection point is performed
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until a C−1 continuity is reached for the crossed NURBS. Hence, this scheme utilises the
intrinsic properties of NURBS and is an elegant way to represent the discontinuity at the
crack mouth.

After defining the boundary element mesh, the linear system of equations can be
assembled following the formulation described in Section 5.5. The solution of the sys-
tem given by XIGABEM leads to direct evaluation of the SIFs for the crack tips. The
XIGABEM can also be employed in conjunction with post-processing techniques, such as
the J-integral (see Section 3.2), to improve the accuracy of the indirect method, as will
be discussed in the examples in Section 5.7.

5.6.1 Fatigue model and structural life prediction

In the present investigation, the structures are subjected to oscillatory loadings that
induce fatigue crack growth. High-cycle fatigue is assumed, in which the stress levels
introduced by the oscillatory loading are well below the material’s yield strength. Con-
sequently, the strains observed within the structure are predominantly elastic and the
inelastic process zone surrounding the crack tip is small in comparison with the crack
length and other dimensions of the cracked body. Because of the resemblance with brittle
fracture, the LEFM can also be applied for modelling high-cycle fatigue crack propagation.

The crack growth rates are defined from the Paris law (PARIS, 1961) as follows:

da

dN lc
= C (∆Kef )

m (5.41)

where C and m are material constants and da/dN lc represents the crack extension per
load cycle, in which a is the crack length and N lc is the number of load cycles. The
range of effective stress intensity factors for mixed-mode can be computed, according to
Tanaka (1974), as ∆Kef = 4

√
∆K4

I + 8∆K4
II , in which ∆KM = Kmax

M −Kmin
M , with Kmax

M

and Kmin
M representing, respectively, the maximum and minimum values of the considered

SIF within a load cycle. For simplicity, it is assumed that the crack propagation follows
the power law in Eq. (5.41) throughout the analyses. Alternatively, any other growth law
could be coupled to the XIGABEM formulation developed herein.

For applications involving multiple cracks, each crack tip grows proportionally to its
growth rate following the relationship:

∆a = ∆L
C (∆Kef )

m

[da/dN lc]λd
(5.42)

where ∆a is the crack length increment, ∆L is the standard crack length increment defined
in the analysis and

[
da/dN lc

]λd is the highest crack growth rate observed during one load
cycle and related to the dominant tip λd.

It is worth emphasising that in mechanical problems involving multiple cracks, some
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of them may grow faster than others. Different crack growth rates may lead to very small
crack length increments and, consequently, collocation points may be positioned very
close to their neighbours. This situation introduces numerical instabilities into the final
system of algebraic equations given by the DBEM because of the singular nature of the
fundamental solutions. To avoid such issue, the virtual crack extension scheme proposed
by Price and Trevelyan (2014) is adopted in the numerical approach. In this strategy, the
crack tip only propagates if the crack length increment is higher than a prescribed ratio of
∆L, assumed here as 0.1∆L. If this condition is not satisfied, then ∆a is accumulated as
a virtual length. During the course of the analysis, if the total virtual extension attends
the growth condition, the crack is extended by the accumulated length.

The number of load cycles ∆N lc
i+1 to extend a crack by ∆a = ai+1−ai can be computed

by integration of the Paris law (5.41). Assuming a linear variation of ∆Kef between ai
and ai+1, the following discrete expression is defined (ANDRADE; LEONEL, 2019):

∆N lc
i+1 =

∆a

C (m− 1)

[
(∆Ki)

1−m − (∆Ki+1)1−m]
(∆Ki+1 −∆Ki)

(5.43)

where ∆Ki and ∆Ki+1 are the values of ∆Kef at the crack lengths ai and ai+1, respectively.

5.6.2 Propagation and remeshing

To define the direction of the discrete length increment given by Eq. (5.42), the
predictor-corrector scheme proposed by Portela, Aliabadi, and Rooke (1993) is applied,
with the maximum circumferential stress criterion (see Section 3.3) used for the prediction
of each iteration. This strategy aims to take into account the variation of the SIFs during
the stable fatigue crack growth to obtain the same crack path independently of the crack
length increment considered. The steps of the predictor-corrector scheme can then be
listed as follows:

1. For the current crack configuration η, compute the propagation direction θip(η) for
the first iteration considering Eq. (3.39).

2. Extend the crack tip by ∆a, computed from Eq. (5.42), along the direction determ-
ined in the previous step.

3. Compute the SIFs for the new crack configuration η + 1.

4. Evaluate a new propagation direction θip(η+1) from Eq. (3.39) considering the new
SIFs obtained from step 3.

5. Define the correction angle βi = θip(η+1)/2.

6. Correct the crack tip increment defined in the second step to the new growth direc-
tion given by θi+1

p(η) = θip(η) + βi.
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7. Return to step 2 while |βi| < |βi−1| and
∣∣∣βi/θip(η)

∣∣∣ > δ, where δ = 10−3 in the present
study.

After evaluating the propagation direction, the NURBS defining the growing tip are ex-
tended to the new tip position, as shown by Fig. 5.5b. This is achieved by expanding
the corresponding knot vectors by a unit and defining new control points along the new
crack surfaces. In the example given in Fig. 5.5b, after the propagation of tip λ = 1, the
NURBS at the upper and lower surfaces become defined over ξU ∈ [0, 2] and ξL ∈ [−2, 0],
respectively. Additionally, the multiplicity of the knot corresponding to the former tip is
kept equal to p + 1, so that a C−1 continuity occurs between the new and old crack sur-
faces. This discontinuity is adopted in the present work to make the approximations over
the newly created crack surfaces completely independent from the quantities in the exist-
ing surfaces. As illustrated in Fig. 5.5b, the enrichment is applied only to the elements
over the new crack surfaces, where the dominant square root behaviour is captured by
the enriched displacement approximation given in Eq. 5.31. For the elements defining the
old crack surfaces, the unenriched approximation is adopted, which is able to represent
the displacement fields since there is no singular behaviour along this region.

The changes in the geometry during the crack propagation are accompanied by modi-
fications to the system of equations given by Eq. (5.40). After a crack increment, as
illustrated in Fig. 5.5b, most of the system remains unaltered since a C−1 continuity is
enforced between the old and new crack surfaces. As represented by the graphical rep-
resentation of the algebraic system in Fig. 5.6a, only the enrichment sub-matrices related
to the growing tip need to be reconstructed in this case, whereas the other terms are
expanded to include the degrees of freedom associated with the new crack surfaces.

If a crack tip intersects a boundary during propagation, as shown by Fig. 5.5c, suc-
cessive knot insertions are considered for the crossed NURBS until a C−1 continuity is
obtained at the intersection point so that a displacement discontinuity may be represen-
ted. The additional columns and rows associated with the enrichment parameters of the
intersecting tip are removed from the system of equations (Fig. 5.6b) as the tip becomes
inactive and no longer benefits from enrichment. Moreover, the positions related to the
modified control and collocation points in the intersected NURBS are also reconstructed
in the original system.

As a final remark before moving on to study some numerical applications, it is stressed
that the implementation of knot insertion to achieve C−1 continuity along the growing
crack and at crack intersections appears a particularly elegant use of the properties of
NURBS and is restricted to IGABEM. This simple expedient removes the need for the
definition of discontinuous and semi-discontinuous elements in Lagrangian formulations,
and therefore saves a considerable amount of careful data management and the use of
different sets of shape functions.
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Figure 5.5: (a) Representation of enriched NURBS for an interior crack. (b) NURBS
and their enriched parts after a crack tip propagation. The multiplicity for the knot
at the former tip is kept equal to p + 1. (c) Intersection between the crack tip λ = 1
with another NURBS. In this case, the respective crack NURBS no longer benefit from
enrichment. Besides, the crossed NURBS is made discontinuous at the intersection by
increasing the multiplicity of the intersection knot ξ̄ to p + 1 through successive knot
insertions.
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5.7 Numerical applications

Two sets of examples are presented to illustrate the application of the proposed direct
XIGABEM formulation to simulate crack problems. In the first group, composed of the
first three examples, it is analysed the effect of the enrichment in the accuracy and the
convergence rate of the SIFs values for different crack configurations. The first example
of this set shows how the enrichment strategy performs when simulating a problem with
an exact solution. In the second, the finite plate effect is analysed. In the final example
of the first set, the accuracy of XIGABEM for interior and inclined cracks is assessed.

In the second group of problems, the numerical approach is applied for fatigue crack
propagation modelling. The first example of this part shows the application of XIGABEM
for simulating a fatigue test. The second presents the analysis of an edge crack emanating
from a curved boundary. The third deals with the intersection between cracks and the
boundary of the structure. Finally, the last example shows the use of XIGABEM for sim-
ulating multiple crack fatigue propagation. The results obtained by the enriched approach
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Figure 5.6: Graphical representation of the changes in the sub-matrices from the system
of equations resulting from (a) the crack propagation illustrated in Fig. 5.5b and (b) the
crack propagation followed by the intersection of a NURBS depicted in Fig. 5.5c. Note
that most of the sub-matrices remain unaltered (represented by solid lines). The changes
in the system (represented by dashed lines) are related to the enrichment parameters
associated with the growing tip and the new control/collocation points defined along the
new crack surfaces and intersected NURBS.
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are compared with those determined using unenriched IGABEM and other solutions avail-
able in the literature. Additionally, the reduction in computational cost provided by the
direct method is illustrated in the last example.

As illustrated by the numerical examples, the enrichment term in the extended for-
mulation is responsible for representing the near-tip behaviour, while the NURBS basis
captures the difference between the analytical solution and the real response. For the
numerical analyses, the order of these NURBS functions is selected as p = 2. Moreover,
a 30-point Gaussian quadrature rule is considered for the evaluation of the integral ker-
nels, the same amount used by Peng et al. (2016). The use of this high order scheme is
motivated by a desire to present errors as those resulting from the formulation and its
discretisation, i.e. with negligible pollution of the results from integration errors.

It is worth emphasising that in the proposed direct approach the stress intensity factors
are found directly in the solution vector (see terms K̃λ

I and K̃λ
II at the bottom of the

solution vector in Fig. 5.6a, for example). The applications show how these direct eval-
uations of the SIFs are of appropriate engineering accuracy without the requirement for
further post-processing, e.g. a J-integral, which can save a significant amount of com-
putational time as will be demonstrated in the last example of the chapter. However,
the further enhancement of the accuracy of the SIFs that can be realised by including
such a post-processing stage is also investigated, and it is for this purpose that the crack
parameters are also computed indirectly using the interaction integral strategy based on
the J-integral. When considering the unenriched formulation, the SIFs are also computed
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using this scheme. For this post-processing strategy, the integration path is considered
circular, centred at the crack tip and starting at the third collocation point counting from
the tip. Consistent with the isogeometric philosophy, the integration path is defined as a
NURBS discretised into sixteen elements.

5.7.1 Square plate with an edge crack

In this first example, the square plate containing an edge crack shown in Fig. 5.7 is
analysed. Pure mode loadings are considered by prescribing the analytical displacements
given by Eq. (3.2) as Dirichlet boundary conditions along the plate’s edges, while the
crack surfaces are treated as traction-free. For the analyses, it is assumed a = 1, L = 2,
E = 1, ν = 0.3 and plane strain state. The numerical solutions are compared with the
exact solutions and also with the results provided by Peng et al. (2016), in which the
IGABEM and an XIGABEM formulation based on PU-enrichment were applied.

Figure 5.7: Square plate with an edge crack (Example 5.7.1).
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Source: Own author.

Initially, the accuracy and convergence rate of the proposed XIGABEM formulation
are assessed with respect to the displacements in a pure mode I problem (KI = 1 and
KII = 0). A fixed number of eight elements is used in the discretisation of each edge
of the plate, while the number of elements along the crack surfaces is varied. Figure 5.8
shows the deformed shape for the upper crack surface determined by the unenriched and
enriched formulations considering five elements along the crack. It can be noted that
the result obtained by IGABEM differs from the analytical solution particularly near the
crack tip since the NURBS basis functions are not capable of capturing the √ρ behaviour
in this region. On the other hand, the enriched approximation can approximate the exact
response with remarkable precision. Figure 5.9 shows the convergence of the errors in the
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relative L2 displacement error norm eL2, which is defined as:

eL2 =
‖unum − uana‖L2(Γc)

‖uana‖L2(Γc)

(5.44)

in which unum and uana are the displacement solutions given numerically and analytically,
respectively, and Γc denotes the crack surfaces. The L2 norm of a vector quantity g =

(gx, gy)
T is evaluated using ‖g‖L2(Γc)

=
√∫

Γc
gTgdΓ.

Figure 5.8: Deformed shape for the upper crack surface determined by IGABEM and
XIGABEM (Example 5.7.1).
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The results in Fig. 5.9 show that the accuracy and convergence rate obtained by the
unenriched IGABEMmodel are similar to those determined by Peng et al. (2016). Regard-
ing the enriched formulations, the PU-enrichment approach used by Peng et al. (2016)
is capable of improving the convergence rate to 1.53 for a sufficiently fine mesh. This
strategy includes the √ρ behaviour of the displacements near the tip, which improves
the accuracy when compared to the unenriched approach, but continuity at the crack tip
is not guaranteed. In the proposed XIGABEM formulation, the crack tip function em-
bedded into the displacement approximation can markedly improve the accuracy of the
results, giving errors around 2.0 × 10−5 even for coarse crack meshes. The errors in this
case depend fundamentally on how well the analytical displacement can be represented
by the basis functions along the external boundary. This can be observed by the curve
presented in Fig. 5.9 for an enriched model considering just four elements along each edge
of the plate, in which the errors are increased to approximately 2.0× 10−4.

The reason for the errors in displacements to be practically constant in the XIGABEM
model is that the displacements along the crack surfaces are fundamentally given by
the enrichment term in the displacement approximation (see Eq. (5.18)), whereas the
contribution from the NURBS basis functions is negligible. Consequently, the crack mesh
refinement has little effect on the error convergence. The contribution of each term in the
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Figure 5.9: Relative L2 displacement error norm eL2 (Eq. (5.44)) along the crack surfaces.
The reference results are taken from Peng et al. (2016) (Example 5.7.1).
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Figure 5.10: Deformed shapes considering the contribution from (a) the NURBS basis
functions and (b) the enrichment term. (c) Final deformed shape for pure mode I problem,
given by the superposition of solutions (a) and (b). The enriched NURBS are depicted
in blue (please refer to the coloured version). A scale factor of 0.01 is adopted for the
displacements (Example 5.7.1).
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Source: Own author.
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displacements is illustrated in the sequence depicted in Fig. 5.10. Figures 5.10a and 5.10b
present the deformed shape considering the contribution from the NURBS basis functions
and the enrichment term, respectively, while the superposition of both responses gives the
deformed shape in Fig. 5.10c. From the sequence, it can be noted that the displacements
along the crack are indeed controlled by the enrichment term, while the deformed shape of
the external boundary is exclusively given by the basis functions since the corresponding
NURBS are not enriched.

Considering now a mixed-mode problem in which KI = 1 and KII = 1, the accuracy of
the SIF values determined by the numerical models is investigated. The SIFs are computed
directly from the system of equations provided by the XIGABEM formulation and also
indirectly with the J-integral approach. Figure 5.11 shows the convergence forKI andKII

with the number of DOF in the numerical model. As in the displacement analysis, the
accuracy and convergence rate for IGABEM are similar to the solutions obtained by Peng
et al. (2016). Moreover, the direct approach is capable of giving very accurate solutions,
with errors in the order of 0.011% for both SIFs even for coarse meshes. Furthermore,
the combination of the enriched formulation and the J-integral approach can significantly
improve the accuracy, giving errors as low as 0.0004%, but at the expense of computing
internal points fields. Again, the mesh refinement has little effect in the convergence of
the SIFs values since the near-tip behaviour is mainly controlled by the enrichment term.

Figure 5.11: Convergence of (a) mode I and (b) mode II SIF (Example 5.7.1).
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It is, of course, expected that for these pure mode problems the enriched formulation
should give excellent results because the solution is contained in the approximation space.
In what follows, examples in which this is not the case are explored.
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5.7.2 Finite rectangular plate with an edge crack under bending

The rectangular plate containing an edge crack shown in Fig. 5.12 is considered in this
second example. The structure is submitted to pure bending applied through linearly
varying distributed loads ranging from -σ̄ to σ̄, as depicted in Fig. 5.12. The dimensions
of the plate and crack are related by h = 2.5w and a = 0.5w, and the values σ̄ = 1,
w = 2, E = 1 and v = 0 are taken to perform the analyses. Alatawi and Trevelyan
(2015) also simulated this problem considering an XBEM formulation similar to the one
adopted in this chapter, but instead of the NURBS basis functions, they applied the
conventional Lagrange polynomials in the displacement approximation. The reference
solution provided by Fett (2008) is used to assess the accuracy of the numerical models.

Figure 5.12: Rectangular plate with an edge crack under uniform loading (Example 5.7.2).
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Figure 5.13a presents the evolution of KI (normalised by σ̄
√
πa) with mesh refine-

ment. It can be noted that the solutions obtained by the present study and by Alatawi
and Trevelyan (2015) tend to converge towards the reference value given by Fett (2008),
plotted as a horizontal dashed line. Figure 5.13b shows the convergence pattern in each
scenario. Concerning the unenriched formulations, the IGABEM is able to increase both
the accuracy and the convergence rate when compared to conventional BEM. Besides, the
enriched formulations increase the accuracy and convergence rate over their unenriched
counterparts. Regarding the direct method for SIF extraction, XIGABEM solutions are
more accurate than those determined using XBEM. However, the convergence rates ob-
tained by these formulations are similar. For both XBEM and XIGABEM, the lowest
errors and highest convergence rate are given by associating the enriched formulation
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Figure 5.13: Variation of (a) mode I SIF (normalised by σ̄
√
πa) and (b) relative error

with the mesh refinement obtained by the present work and by Alatawi and Trevelyan
(2015). The reference value for normalised KI is taken from Fett (2008) (Example 5.7.2).
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Figure 5.14: Deformed shapes considering the contribution from (a) the NURBS basis
functions and (b) the enrichment term. (c) Final deformed shape for pure mode I problem,
given by the superposition of solutions (a) and (b). The enriched NURBS are depicted
in blue (please refer to the coloured version). A scale factor of 0.05 is adopted for the
displacements (Example 5.7.2).
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Source: Own author.
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with the J-integral technique. When the XIGABEM is considered in this case, the er-
ror in KI is around 0.25% for the coarsest mesh used, reducing to 0.0016% with mesh
refinement.

The contribution of each term in the displacement approximation to the deformed
shape of the structure is illustrated in Fig. 5.14. Unlike the previous example, there
is now a non-zero contribution from the NURBS basis functions to the crack response
since the enrichment functions are unable to describe the behaviour over the entire crack.
However, the near tip behaviour continues to be strongly influenced by the enrichment
term.

5.7.3 Inclined crack in an infinite domain

Figure 5.15 shows an inclined crack immersed in an infinite domain that is subjected to
a far-field vertical loading p̄. Mode I and mode II SIFs are computed with IGABEM and
XIGABEM for different crack orientations θ. The infinite domain formulation proposed
by Telles, Mansur, and Wrobel (1984) is applied, so only the crack surfaces are discretised.
The following parameters are assumed: 2a = 1, p̄ = 1, E = 1, v = 0.3 and plane strain
conditions. The results for the SIFs are compared with the analytical solutions expressed
by:

KI = p̄
√
πa cos2 θ (5.45)

KII = p̄
√
πa cos θ sin θ

Figure 5.15: Inclined crack in an infinite domain submitted to far-field vertical loading
(Example 5.7.3).
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The variations of KI and KII with the crack angle θ are presented in Fig. 5.16a.
The numerical results were obtained considering ten elements along each crack surface.
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The responses provided by Liu, Xiao, and Karihaloo (2004) using an XFEM formulation
to extract the SIFs directly are also shown in the figure. Good agreement is observed
between the solutions determined by IGABEM and XIGABEM and the analytical re-
sponses. Furthermore, it can be noted that, in general, the results determined here better
approximate the analytical results when compared to the XFEM approach. This occurs
especially because the boundary integral formulation allows the simulation of the infinite
domain, whereas a finite plate was considered in Liu, Xiao, and Karihaloo (2004), which
introduced errors due to the mesh truncation.

Figure 5.16: (a) Results for normalised SIFs considering ten elements in each crack surface.
(b) Relative error evolution with crack mesh refinement (Example 5.7.3).
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In the IGABEM and XIGABEM models, the errors in the SIF values are independent
of the crack angle. Figure 5.16b shows typical curves for the error variation with crack
mesh refinement. As in the previous examples, the combination of the enriched formu-
lation with the J-integral significantly improves the convergence rate and the accuracy
of the SIFs recovered. On the other hand, the direct method is less accurate than the
unenriched IGABEM due to the interaction between the crack tips. However, the errors
obtained by the direct approach remain low, with the same order of magnitude observed
in the previous example, ranging from 1% down to 0.2%.

Figure 5.17 illustrates the interaction between displacement solutions for the two crack
tips considering the XIGABEM formulation. The enrichment term provides a deformed
shape for each tip considering both tips in isolation, as shown in Fig. 5.17b. The addition
of the contribution from the NURBS basis functions, depicted in Fig. 5.17a, allows the
scheme to recover the ellipse-like deformed shape in Fig. 5.17c. This is a good illustration
of the role that the NURBS basis functions are required to play over enriched portions of
the boundary; this role can be viewed as the capturing of the difference between the pure
mode behaviour (expressed in the enrichment terms) and the true solution we seek.
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Figure 5.17: Deformed shapes for θ = 30◦ considering the contribution from (a) the
NURBS basis functions and (b) the enrichment term. (c) Final deformed shape for slanted
crack, given by the superposition of solutions from (a) and (b). Enriched NURBS are
depicted in blue (please refer to the coloured version). A scale factor of 0.1 is adopted for
the displacements (Example 5.7.3).

(a) (b) (c)

Source: Own author.

5.7.4 Titanium plate with a central inclined crack

Figure 5.18 shows a rectangular titanium plate containing a central crack of length
2a = 13.462 mm inclined of an angle θ = 47◦ with respect to the horizontal direction.
The dimensions of the structure are w = 76.2 mm and h = 304.8 mm. A fatigue test
of such a plate was conducted by Pustejovsky (1979) considering a loading amplitude σ̄
ranging from 17.24 to 172.37MPa. This experiment is reproduced numerically with the
XIGABEM model considering the following Paris law parameters : C = 3.781×10−15 and
m = 3.81, with da/dN lc given in mm/cycles and ∆Kef in MPa×mm0.5. To perform the
numerical analysis, each crack surface is discretised in fifteen elements, while fifty elements
are adopted along the external boundary. A crack length increment ∆a = 0.5 mm is used
for the fatigue growth, with two elements inserted along each new crack surface.

Figure 5.18: Specimen of a titanium plate with a central inclined crack (Example 5.7.4).
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Figure 5.19 shows the propagation path determined by the XIGABEM model consid-
ering the direct method for evaluating the SIFs. The experimental result obtained by
Pustejovsky (1979) and the numerical response provided by Pereira, Duarte, and Jiao
(2010) using generalised FEM (GFEM) are also depicted in the figure. Good agreement
is attained between the solution determined by the proposed enriched formulation and
the experimental and numerical results found in the literature.

Figure 5.19: Comparison between the propagation path obtained by the XIGABEMmodel
considering the direct approach for SIFs extraction and the experimental results determ-
ined by Pustejovsky (1979). The numerical solution obtained by Pereira, Duarte, and
Jiao (2010) using GFEM is also provided (Example 5.7.4).
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The crack length evolution with the number of loading cycles is presented in Fig. 5.20.
There is a good correspondence between the unenriched and enriched formulations adop-
ted in the present study. At the end of 14 increments, the fatigue life determined by the
numerical approaches is approximately 16 thousand cycles, which agrees particularly well
with the experimental results for the right tip given by Pustejovsky (1979).

5.7.5 Open spanner

In this example, the advantage of using the isogeometric formulation to deal with
geometries taken directly from CAD is explored. For this purpose, consider the open
spanner subjected to a cyclic loading p̄ with range 0 ∼ 10, as illustrated in Fig. 5.21.
The knot-vector and the positions of the main control points for the definition of the
B-spline representing the external boundary are also presented in the figure. An initial
edge flaw with length a = 0.15 is located in a region of high stress concentration given
by an elastostatic analysis (SIMPSON et al., 2012). The geometry of this problem was
originally proposed by Simpson et al. (2012), and a crack propagation analysis was later
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Figure 5.20: Crack length evolution with number of load cycles. The solutions obtained
experimentally by Pustejovsky (1979) are also provided (Example 5.7.4).
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conducted by Peng et al. (2016). Here, a fatigue analysis is carried out with the proposed
XIGABEM formulation considering the following parameters: C = 10−13, m = 2.6 and
∆a = 0.1. Each crack surface is initially discretised in three elements, and two elements
are added to each surface after the crack extension.

Figure 5.21: Open spanner with an edge crack. The repeated knot 5.478 in the knot
vector defining the external boundary indicates the position of the crack mouth. Besides,
the weights associated with the control points are taken as a unit (Example 5.7.5).
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Figure 5.22 illustrates the deformed shape after 10 crack increments determined by
the direct XIGABEM model. Good agreement is noted between the crack paths obtained
here and the reference solution given by Peng et al. (2016). The variation of the SIF values
with crack length is presented in Fig. 5.23a. At the initial configuration, the magnitude
of KII is significant; however, as the crack grows, the magnitude of KII remains low,
and the propagation becomes mode I dominant. A small difference can be observed
between the values obtained by IGABEM and XIGABEM, a difference also reflected
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in the results for the evolution of the crack length with the number of load cycles, as
shown in Fig. 5.23b. For the XIGABEM models, the final configuration is achieved after
approximately 3.74 million load cycles, whereas this number is around 3.68 million cycles
considering IGABEM.

Figure 5.22: Deformed shape after 10 crack increments obtained with the XIGABEM
model considering the direct method for SIF extraction. The segments near the crack tip
containing the enrichment term for the displacement approximation are depicted in blue
(please refer to the coloured version). The solution provided by Peng et al. (2016) is also
shown for comparison (Example 5.7.5).
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Peng et al.(2016)

Source: Own author.

Figure 5.23: Variation of (a) SIFs and (b) the number of load cycles with crack evolution
(Example 5.7.5).
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5.7.6 Perforated plate with an edge crack

Figure 5.24 shows a rectangular plate containing two holes of diameter φ = 0.4 and
subjected to an uniform cyclic loading p̄ with magnitude 0 ∼ 10. The length and height
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of the structure are 2L and L, respectively, with L = 1. A vertical crack emanates
from the bottom edge and has initial length a = 0.05. In this example, different values
are considered for l, the parameter defining the initial position of the defect, to assess
its effect on the crack path and fatigue life. The following values are adopted: l =

{0.95, 1.025, 1.1, 1.175, 1.25}. Furthermore, the parameter values C = 10−10, m = 3.0 and
∆a = 0.025 are taken for the fatigue analysis.

Figure 5.24: Tensioned rectangular plate with two holes and an edge crack (Ex-
ample 5.7.6).
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Figure 5.25: Deformed shape for configuration considering (a) l = 0.95, (b) l = 1.025,
(c) l = 1.1, (d) l = 1.175 and (e) l = 1.25. The scale factor λ used in each figure is also
indicated. The NURBS segments near the crack tip containing the enrichment term for
the displacement approximation are depicted in blue (please refer to the coloured version).
(f) Crack paths determined for each initial crack position (Example 5.7.6).
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Source: Own author.

Figures 5.25a to 5.25e show the deformed shapes for different values of l obtained with
XIGABEM considering the direct approach for SIF extraction. Figures 5.25a, 5.25d and
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5.25e present, respectively, the cases where l = 0.95, l = 1.175 and l = 1.25, in which the
crack is attracted to, and ends up intersecting one of the openings. The successive knot
insertion to achieve C−1 continuity at the intersection point in the NURBS representing
the hole is capable of modelling the displacement discontinuity at the crack mouth. In the
cases represented by Figures 5.25b and 5.25c, where l = 1.025 and l = 1.1, respectively, the
crack path tends to deviate toward the holes, but then moves away following a direction
perpendicular to the applied load. The final crack paths determined in each one of these
scenarios are grouped in Fig. 5.25f.

Finally, Fig. 5.26 illustrates the evolution of the crack length with load cycles, for
each initial crack position, comparing the IGABEM and XIGABEM formulations. The
stress concentration caused by the left hole increases the crack growth rate as the initial
crack position is moved to the left (lower values of l), decreasing the fatigue life. The
responses determined with the different formulations are very similar, with differences less
than 1.0%. The final number of load cycles for each case, given in ascending order of l, is
approximately: 0.65, 1.27, 2.07, 3.52 and 5.93 million cycles.

Figure 5.26: Crack length evolution determined by the unenriched and enriched formula-
tions considering the different values of l (Example 5.7.6).
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5.7.7 Perforated panel with multiple cracks

In this example, the perforated panel shown in Fig. 5.27 is analysed. The structure
contains three holes of diameter φ = 10 mm, with cracks of length a = 3 mm emanating
from the top and bottom of each hole. The length in Fig. 5.27 is taken as L = 100 mm.
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A cyclic load with components p̄x = 9 MPa and p̄y = 1 MPa is applied to the right
edge of the panel, with a stress ratio of zero, while the left edge remains fixed. For the
fatigue analysis, the Paris law constants are taken as C = 10−13 and m = 2.6, assuming
da/dN lc given in mm/cycles and ∆Kef in MPa × mm0.5. During the crack growth, the
crack length increment for the fastest growing tip is ∆a = 1 mm, with the others growing
proportionally to their respective growth rates. For the initial geometry, each crack surface
is discretised with four elements, with a minimum of two elements being added to the
new surfaces after propagation.

Figure 5.27: Perforated panel (Example 5.7.7).
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Figure 5.28a presents the evolution of ∆Kef for the tips after each crack increment.
The results are obtained by XIGABEM considering the direct approach for SIF com-
putation. The curves in the figure can be interpreted in conjunction with the sequence
illustrating the crack propagation in Fig. 5.29. For initial geometries (Fig. 5.29a), tip 1
has the greatest ∆Kef , and consequently the highest growth rate, due to the bending
effect in the plate. However, as the cracks start to grow, the stress concentration caused
by the interaction between tips 2 and 3 (Fig. 5.29b) soon makes them surpass tip 1 as the
most dominant, with both developing similar growth rates. However, the growth at tips
2 and 3 becomes retarded as they start to overlap each other in the classical fashion for
opposing cracks (Fig. 5.29c), and tip 1 regains its dominance. At later crack increments,
tips 2 and 3 develop small growth rates, whereas tips 4 and 5 move towards each other at
faster rates (Fig. 5.29d). As happened for tips 2 and 3, the pair 4 and 5 also experience
retardation in their crack growth rates as they overlap (Fig. 5.29d). Tip 1 continues to
be the fastest growing tip and moves towards the bottom edge of the panel (Fig. 5.29e),
finally intersecting the external boundary. Figure 5.29f shows the final deformed shape
for the structure, in which the discontinuities in the NURBS representing the perforations
and the bottom edge are clearly visible.

The history of ∆Kef with crack length is shown in Fig. 5.28b. Since tip 1 is dominant
for most of the analysis, it develops the largest length. For the interacting cracks - tips 2-3
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and tips 4-5 - it can be noted that, as they approach each other, the behaviour for the pair
is very similar, with the crack positioned towards the bottom of the plate having larger
lengths due to the bending effect. The results obtained by Price and Trevelyan (2014)
using BEM are also given in Fig. 5.28b. The reference considered fewer crack increments
than the present study, but the solutions provided are in good agreement with the results
obtained by XIGABEM.

Figure 5.28: Variation of ∆Kef with (a) crack increment and (b) crack length (Ex-
ample 5.7.7).
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Figure 5.29: (a)-(e) Evolution of the crack paths and (f) final deformed shape obtained
by the direct XIGABEM formulation. The enriched NURBS segments are depicted in
blue (please refer to the coloured version) (Example 5.7.7).

(a) (b) (c) (d) (e) (f)

Source: Own author.

The incremental evolution of the fatigue crack growth in the perforated panel is shown
in Fig. 5.30. Since this problem contains multiple cracks, with different tips dominating
as the analysis progresses, the number of load cycles is related to the number of the crack
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increment. The dominant tip in each geometry is also indicated. A sudden decrease
in the crack growth rate can be seen between increments 6 and 7, after tip 1 regains
its dominance. This occurs because the value of ∆Kef in increment 6 (related to tip
2) is greater than the value of ∆Kef in increment 7 (related to tip 1). The solutions
obtained by IGABEM and XIGABEM considering the J-integral for SIF evaluation are
also shown in Fig. 5.30 for comparison. Good agreement is observed between these results,
demonstrating the accuracy of the direct method in solving problems of multiple fatigue
crack propagation.

Figure 5.30: Incremental fatigue process for the perforated panel determined by the un-
enriched and enriched formulations (Example 5.7.7).
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Finally, Fig. 5.31a presents the accumulated run time for the analysis of each configur-
ation during crack growth. The results obtained by the proposed XIGABEM formulation,
considering both the direct and indirect methods for SIF extraction, are compared against
those determined by the conventional IGABEM. The execution time values t are norm-
alised by t0, which is the time for the analysis of the initial configuration considering the
direct XIGABEM approach. Note that when the direct approach is considered, the run
times are considerably lower than when the indirect method based on the J-integral is
used for evaluation of the SIFs. Besides, the indirect XIGABEM solutions take slightly
longer to obtain compared to the unenriched IGABEM due to the consideration of the
enriched integral kernels in the isogeometric formulation. Nonetheless, this small increase
in computational cost is accompanied by a large improvement in the accuracy of the SIF
solutions, as demonstrated in previous examples.

The relative differences in execution times determined by XIGABEM (direct and in-
direct) compared to IGABEM are shown in Fig. 5.31b. In the case of indirect XIGABEM,
the run times are 30% to 40% higher than for conventional IGABEM at the start of the



144 Chapter 5. Extended isogeometric boundary element method

analysis; however, the absolute values of time are small, in the order of seconds. As the
propagation progresses, these differences diminish and stabilise around 15% towards the
end of the analysis. For direct XIGABEM, the time saving compared to the unenriched
method is substantial: at the beginning of the analysis, it is around 60% and, at the
end, the reduction in computational cost is approximately 50%. This demonstrates the
advantage of the proposed direct XIGABEM for the crack analysis, particularly those
involving large-scale problems requiring several computations for the SIFs. Such method
is able to significantly decrease the computational cost while the accuracy of the results
is ensured.

Figure 5.31: (a) Accumulated run time to obtain the solution for each crack configuration.
The values are normalised by t0, which is the smallest time observed for the analysis of
the initial configuration and corresponds to the run time of the direct XIGABEM. (b)
Relative differences between accumulated run times considering the indirect IGABEM
results as reference (Example 5.7.7).
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6 XIGABEM for interface cracks

6.1 Initial considerations

In the previous chapter, an XIGABEM approach is developed for simulating crack
problems in homogeneous and isotropic materials. In this chapter, a novel XIGABEM
formulation is proposed for the analysis of cracks between two piecewise isotropic subdo-
mains. Therefore, the enriched approach is extended to investigate the interface fracture
of bimaterial structures.

Differently from the XIGABEM strategy for homogeneous materials presented in
Chapter 5, not only the crack elements are enriched, but also the elements lying on
the interface between materials. Besides, in this chapter the two-term asymptotic expan-
sion is used to define the enrichment function: the first, as in the previous chapters, is
the leading order term that is related to the SIFs, while the second is the term related
to the T-stress. As will be demonstrated, the SIFs and T-stress parameter can be com-
puted directly from the system of equations when considering the proposed formulation.
It is worth mentioning that the two-term enrichment can also be applied to homogeneous
materials so that the T-stress can also be obtained from the solution vector.

This chapter also shows that the enrichment functions based on the straight crack
solution can be applied for the direct evaluation of the crack parameters for curved cracks.
In this case, the effect of the curvature can be disregarded for portions close to the tip
and, consequently, the asymptotic expansion defined for a straight crack - as well as the
corresponding crack parameters - are able to represent the analytical behaviour in these
regions.

Several numerical applications are presented and the solutions provided by the dir-
ect XIGABEM approach are compared against analytical, semi-analytical and numerical
results available in the literature.

6.2 Extended formulation

For the crack analysis of domains containing different materials, the sub-region BEM
technique is adopted (see Section 2.6). Consider the inhomogeneous domain Ω = Ω1 ∪
Ω2 shown in Fig. 6.1. Each subdomain Ωs is assumed as homogeneous, isotropic and
linear elastic. Besides, each subregion is enclosed by its respective boundary Γs = ∂Ωs,
which is given by the union of the external boundary ΓBs , the crack surface ΓCs and the
interface boundary ΓIs, i.e., Γs = ΓBs ∪ΓCs ∪ΓIs. Disregarding body forces, the displacement
components at each point x′ ∈ Γs can be computed from the DBIE (2.31), which is
rewritten in terms of the subdomain boundary Γs as follows:
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cij(x
′)uj(x

′) +−
∫

Γs

P ∗ij(x
′,x)uj(x)dΓs =

∫
Γs

U∗ij(x
′,x)pj(x)dΓs x′,x ∈ Γs (6.1)

Figure 6.1: Interface crack between two dissimilar materials.

Source: Own author.

Note that, unlike Eq. (2.31), there is no jump term related to a corresponding colloc-
ation point x̄′ in Eq. (6.1) since this point belongs to a subregion different than that of
x′.

Following conventional IGABEM presented in Section 5.4, the same approximation
used in the description of the geometry (Eq. (5.13)) is applied to interpolate the displace-
ments and tractions over the element. In this case, the mechanical fields are expressed
solely by the NURBS functions as follows:

ũej(ξ) = u
(N)
j (ξ) =

p+1∑
m=1

φem(ξ)demj (6.2)

p̃ej(ξ) = p
(N)
j (ξ) =

p+1∑
m=1

φem(ξ)temj (6.3)

where the superscript (N) specifies the NURBS contribution and demj and temj represent,
respectively, the m-th local displacement and traction control parameter from element e.

As for homogeneous problems, the NURBS basis functions fail to accurately represent
the near-tip solutions for interface cracks expressed in Eqs. (3.46) and (3.48), especially the
leading-order terms. Then, to improve the numerical responses, an extended formulation
is proposed, in which the two-term asymptotic expansion for stresses (Eq. (3.53)) and
displacements (Eq. (3.56)) are used to augment the approximations of elements defining
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the interface and crack surfaces. Hence, the displacement approximation for an element
e near a crack tip λ becomes:

ũeλj (ξ) = u
(N)
j (ξ) +Rλ

jku
(1)
k (xλ,x(ξ)) +Rλ

jku
(2)
k (xλ,x(ξ)) (6.4)

where xλ denotes the position of crack tip λ and u(1)
k and u(2)

k are, respectively, the first
and second term of the enrichment expressed by:

{
u

(1)
1

u
(1)
2

}
=

√
ρ

2π
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1(θ, s) Θ1
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∆1
2(θ, s) Θ1

2(θ, s)

][
cos (ε log ρ) − sin (ε log ρ)

sin (ε log ρ) cos (ε log ρ)
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K̃λ
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}
(6.5)

{
u

(2)
1

u
(2)
2

}
=

ρ√
2π

{
∆2

1(θ, s)

∆2
2(θ, s)

}
K̃λ
T (6.6)

where ρ :=
∥∥x− xλ

∥∥ and K̃λ
1 , K̃λ

2 and K̃λ
T represent the additional degrees of freedom

included by the enrichment that are found as part of the BEM solution vector. It is worth
mentioning that, as in the XIGABEM formulation for homogeneous materials presented
in Chapter 5, the enrichment parameters become accurate approximations for the SIFs
and T-stress parameter only if the additional constraints to be presented in Section 6.2.5
are enforced at the crack tip.

The components given in Eqs. (6.5) and (6.6) are related to the local crack tip co-
ordinate system x′1x

′
2, as represented in Fig. 6.2a. Therefore, to express the contributions

of the enrichment terms in the global coordinate system x1x2, the components Rjk from
the rotation matrix are included in Eq. (6.4), in which:

[
R11 R12

R21 R22

]
=

[
cosω − sinω

sinω cosω

]
(6.7)

where ω is the angle between x′1x′2 and x1x2 (see Fig. 6.2a).

To represent the near-tip singularity, the traction approximation of interface elements
is also enriched with functions based on the analytical stress expansion. The enrichment
terms are obtained through Cauchy’s formula pi = σijnj, where the stresses σij are defined
from Eq. (3.53) and nj represents the outward normal vector at the surface. Considering
a straight crack, as depicted in Fig. 6.2a, the enrichment traction components - oriented
according to the local crack tip coordinate system x′1x

′
2 - are: p1 = −σ12 and p2 = −σ22

for the upper interface surface (s = 1) and p1 = σ12 and p2 = σ22 for the lower interface
surface (s = 2). Note that the second term of the stress component in Eq. (3.53) is related
to the component σ11, so there is no influence of the T-stress on the tractions along the
interface. Hence, the enriched traction approximation is written as:
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p̃eλj (ξ) = p
(N)
j (ξ) +Rλ

jkp
(1)
k (xλ,x(ξ)) (6.8)

where the enrichment components p(1)
k are computed by:
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1
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][
cos (ε log ρ) − sin (ε log ρ)
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K̃λ

1

K̃λ
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}
(6.9)

in which the expression (δs2 − δs1) is include to result in −1 for s = 1 and +1 for s = 2.

In the XIGABEM approximations shown in Eqs. (6.4) and (6.8), the enrichment terms
are able to represent the near-tip solutions, while the NURBS bases capture the responses
that deviate from the analytical fields. When analysing straight cracks, as illustrated in
Fig. 6.2a, the enrichment components in Eqs. (6.5), (6.6) and (6.9) can be particularised
for the crack and interface surfaces by setting θ = ±π and θ = 0, respectively.

In cases where curved cracks are considered, as depicted in Fig. 6.2b, the enrichment
terms are still able to represent the near-tip solution at portions close to the crack tip since
the curvature at this region can be disregarded. In this situation, the polar coordinate
θ can be defined similarly than in Wang, Waisman, and Harari (2017), so that its value
along the crack and interface surfaces are the same as for the straight crack, as represented
in Fig. 6.2b. Consequently, the same enriched approximations presented above can be
applied to allow the direct extraction of the tip parameters for curved cracks. While the
enrichment terms capture the near-tip behaviour, the NURBS terms are responsible for
representing the response that deviates from the analytical solution at portions further
from the tip. The use of the direct method is particularly beneficial in this case since
the application of the interaction integral (see Section 3.2.2) requires the definition of
auxiliary solutions considering the curvilinear nature of cracks, which is not an easy task
(GONZÁLEZ-ALBUIXECH et al., 2013; CHIARAMONTE et al., 2015).

In what follows, the displacement and traction approximations used for elements on
the external boundary

(
ΓBs
)
, crack surface

(
ΓCs
)
and interface

(
ΓIs
)
are presented. Then,

these approximations are included in Eq. (6.1) to define the discrete DBIE for the analysis
of interface crack problems.

6.2.1 Approximations over the external boundary (ΓBs )

The NURBS defining the external boundary ΓBs are not considered enriched in the pro-
posed XIGABEM formulation. Therefore, the displacement and tractions approximations
of elements at these regions are the same used in conventional IGABEM and presented,
respectively, in Eqs. (6.2) and (6.3).
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Figure 6.2: Representation of (a) a straight crack and (b) a curved crack. The polar
coordinates θ used in the definition of the enrichment functions over the crack and interface
surfaces are equivalent in both geometries and their values are also indicated.

(a) (b)

Source: Own author.

6.2.2 Approximations over the crack boundary (ΓCs )

For elements along the crack surfaces ΓCs , the enriched displacement approximation
can be written as:

ũeλj (ξ) =

p+1∑
m=1

φem(ξ)demj +
2∑

M=1

K̃λ
MR

λ
jkψ

C
kM(xλ,x(ξ)) + K̃λ

TR
λ
j1ϕ

C(xλ,x(ξ)) (6.10)

where the enrichment functions ψCkM and ϕC are determined from Eqs. (6.5) and (6.6)
considering θ = ±π. They are expressed as follows:

[
ψC11 ψC12

ψC21 ψC22

]
(ρ, s) =

√
ρ

2π

(δs1 − δs2) (κs + 1)

[2µs (1 + 4ε2) cosh (πε)]

[
−2ε 1

1 2ε

][
cos (ε log ρ) − sin (ε log ρ)

sin (ε log ρ) cos (ε log ρ)

]
(6.11)

ϕC(ρ, s) =
ρ

2
√

2π

(δs1 − δs2) (1 + κ1) (1 + κ2)

[(1 + κ2)µ1 + (1 + κ1)µ2]
(6.12)

where s = 1 for the upper surface and s = 2 for the lower surface.
In the approximation shown in Eq. (6.10), the first enrichment term represents the ana-

lytical oscillatory square-root behaviour for displacements near the tip, while the second
describes the linear contribution related to the T-stress. Although the NURBS bases are
able to capture a linearly varying function, the second term of the displacement expansion
is included to extract the T-stress parameter directly from the solution vector. Never-
theless, the additional constraint to accommodate K̃λ

T should be defined in such a way
to indistinguishably specify the T-stress and NURBS contributions so that the resulting
system of equations does not result singular. In other words, the definition of general
supplementary equations as, e.g., by insertion of additional collocation points, is not suf-
ficient to yield a determined algebraic system. Section 6.2.5.2 presents a constraint that
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can be applied to accommodate K̃λ
T that leads to a non-singular system. Besides, such

condition allows the direct evaluation of the T-stress parameter from the solution vector.
At the crack boundary, the enrichment traction components p(1)

k in Eq. (6.9) are null
since traction-free surfaces are assumed in the near-tip solution. Therefore, the unenriched
traction approximation given in Eq. (6.3) is considered for elements on crack surfaces.

6.2.3 Approximations for interface boundary (ΓIs)

For elements on the interface boundary ΓIs, the displacement approximation is similar
to the one adopted the for crack elements, being expressed by:

ũeλj (ξ) =

p+1∑
m=1

φem(ξ)demj +
2∑

M=1

K̃λ
MR

λ
jkψ

I
kM(xλ,x(ξ)) + K̃λ

TR
λ
j1ϕ

I(xλ,x(ξ)) (6.13)

where the enrichment functions ψIlM and ϕI are determined from Eqs. (6.5) and (6.6)
considering θ = 0. They are defined by:

[
ψI11 ψI12

ψI21 ψI22

]
(ρ) =

√
ρ

2π

κ1κ2 − 1

[(κ1µ2 + µ1) (κ2µ1 + µ2)]
1/2

[
1 2ε

2ε −1

][
cos (ε log ρ) − sin (ε log ρ)

sin (ε log ρ) cos (ε log ρ)

]
(6.14)

ϕI(ρ) =
ρ

2
√

2π

(1 + κ1) (1 + κ2)

[(1 + κ2)µ1 + (1 + κ1)µ2]
(6.15)

Note that the displacement enrichment functions are the same regardless of whether
the upper or lower material is considered, which results from the assumption of a perfectly
bonded interface. Besides, the functions ψIkM and ϕI introduce the same behaviour of the
analogous enrichment functions for crack surfaces.

To represent the singular stress field at the crack tip, the enriched traction approxim-
ation over the interface elements is defined as:

p̃eλj (ξ) =

p+1∑
m=1

φem(ξ)temj +
2∑

M=1

K̃λ
MR

λ
jk$

I
kM(xλ,x(ξ)) (6.16)

where the traction enrichment functions $I
kM are defined from Eq. (6.9) considering θ = 0,

being expressed by:[
$I

11 $I
12

$I
21 $I

22

]
(ρ, s) =

(δs2 − δs1)√
2πρ

[
sin (ε log ρ) cos (ε log ρ)

cos (ε log ρ) − sin (ε log ρ)

]
(6.17)

Differently from the previous enrichments, the traction enrichment functions $I
kM are

singular as ρ → 0. Therefore, the singular analytical behaviour is introduced in the
numerical model when considering the enriched approximation given in Eq. (6.16) for
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interface elements.

6.2.4 Discrete DBIE

To introduce the approximations into the DBIE, the integral over Γs can be subdivided
into integrals over the external ΓBs , crack ΓCs and interface ΓIs boundaries, resulting in:

cij(x
′)uj(x

′) +−
∫

ΓBs

P ∗ij(x
′,x)ũj(x)dΓBs +−

∫
ΓCs

P ∗ij(x
′,x)ũj(x)dΓCs +−

∫
ΓIs

P ∗ij(x
′,x)ũj(x)dΓIs = (6.18)

=

∫
ΓBs

U∗ij(x
′,x)p̃j(x)dΓBs +

∫
ΓCs

U∗ij(x
′,x)p̃j(x)dΓCs +

∫
ΓIs

U∗ij(x
′,x)p̃j(x)dΓIs

Then, introducing the displacement and tractions approximations presented in Sec-
tions 6.2.1 to 6.2.3, the discrete DBIE is obtained as:

cij(x
′)ũe

′

j (ξ′) +

Ne∑
e=1

p+1∑
m=1

P emij demj +

Nt∑
λ=1

2∑
M=1

K̃λ
M

NλCe∑
e=1

P̃ eλCiM +

NλIe∑
e=1

P̃ eλIiM

+

(6.19)

+

Nt∑
λ=1

K̃λ
T

NλCe∑
e=1

P̄ eλCi +

NλIe∑
e=1

P̄ eλIi

 =

Ne∑
e=1

p+1∑
m=1

Uemij temj +

Nt∑
λ=1

2∑
M=1

K̃λ
M

NλIe∑
e=1

ŨeλIiM

where Ne is the number of isogeometric elements in the discretisation of Γs, Nt is the
number of interface crack tips and NλC

e and NλI
e are, respectively, the number of crack

and interface elements enriched by tip λ.
The integral kernels P em

ij and U em
ij in Eq. (6.19) are exactly the same ones determined

in unenriched IGABEM and expressed in Eqs. (5.21) and (5.22), respectively. Then, they
can be computed with the same strategies shown in Appendix C. The kernels P̃ eλC

iM and
P̃ eλI
iM contain the first-order displacement enrichment functions for crack and interface ele-

ments, respectively, and are similar to the enriched kernel in XIGABEM for homogeneous
materials (Eq. (5.35)). They can be expressed in a general form as:

P̃ eλa
iM = −

∫ 1

−1

P ∗ij(x
′,x(ξ̂))Rλ

jkψ
a
kM(xλ,x(ξ̂))Je(ξ̂)dξ̂ (6.20)

where a = C, I indicates if ψakM is accessed at the crack or interface boundary, respect-
ively. Despite the enrichment functions possess an oscillatory nature, this behaviour is
restricted to portions very close to the crack tip. Elsewhere, these functions are well
behaved, which allows the use of the same integration strategies applied for the enriched
integrands in XIGABEM for homogeneous domains that are shown in Appendix D.1.
Nonetheless, the precision of the Gauss-Legendre quadrature is affected when integrating
the oscillatory functions, particularly over the elements containing the crack tip. The
influence of the accuracy of the integration over these elements on the final numerical
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solution is investigated in Example 6.3.1.
The second-order displacement enrichment functions considered in the approximations

of crack and interface elements introduce the integral kernels P̄ eλC
i and P̄ eλI

i in Eq. (6.19),
which are related to the T-stress parameter K̃λ

T . They can be expressed as:

P̄ eλa
i = −

∫ 1

−1

P ∗ij(x
′,x(ξ̂))Rλ

j1ϕ
a(xλ,x(ξ̂))Je(ξ̂)dξ̂ (6.21)

where a = C, I indicates if ϕa is accessed at the crack or interface boundary, respectively.
The enrichment term ϕa is a linear function, so the integral in Eq. (6.21) can be evaluated
without further difficulty with the same strategies used for other enriched kernels.

Finally, the extended traction approximation adopted for interface elements (Eq. (6.16))
introduces the integral kernel Ũ eλI

iM in the discrete DBIE. This integral is given by:

Ũ eλI
iM =

∫ 1

−1

U∗ij(x
′,x(ξ̂))Rλ

jk$
I
kM(xλ,x(ξ̂))Je(ξ̂)dξ̂ (6.22)

Differently from the previous enrichment functions, $I
lM is singular at the ρ = 0.

Therefore, to compute the integral in Eq. (6.22) over elements containing the crack tip
using Gauss-Legendre quadrature, the singularity O(ρ−0.5) must be regularised. For this
purpose, the transformation of the parent coordinate ξ̂ presented in Appendix E is applied.
It is worth mentioning that discontinuous NURBS are adopted to model the crack and
interface surfaces so that no collocation point is positioned at the crack tip. Then, the
singularity arising from fundamental solution U∗ij when the tip element contains the source
point x′ does not occur at the same singular point of $I

kM .
A final remark about Eq. (6.19) is regarding the jump term. The displacement com-

ponents at the source point ũe′j (ξ′) must be written considering the approximation for
the element e′ that contains x′, i.e., uj(x′) = ũe

′
j (ξ′). Therefore, when assembling the

system of equations (Section 6.2.6), the jump term coefficients cij must be distributed
over the degrees of freedom defining ũe′j (ξ′), which include the enrichment parameters if
e′ is enriched.

6.2.5 Additional constraints

The enriched approximations used in the XIGABEM formulation contain the para-
meters K̃λ

1 , K̃λ
2 and K̃λ

T that become additional degrees of freedom in the final system of
equations. However, adopting only the enriched approximation in the BEM formulation
is not sufficient for these additional parameters to represent the SIFs and T-stress pre-
cisely. This can only be achieved if the same analytical conditions at the crack tip are
enforced in the numerical solution. In what follows, the additional constraints required
to accommodate the DOF included by the enrichment are presented, which also allow the
direct evaluation of the crack parameters from the solution of the algebraic system.
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6.2.5.1 Crack tip tying constraint

To accommodate the additional parameters related to the SIFs, the same displacement
continuity at the crack tip used for homogeneous media and shown in Section 5.5.2 is
adopted for interface cracks. As in the XIGABEM approach presented in Chapter 5,
distinct NURBS curves are used to describe each one of the crack surfaces (Fig. 5.4).
Moreover, all elements on two NURBS defining a crack tip λ are considered enriched by
the corresponding tip. Consequently, the displacement approximation over each crack
element is given according to Eq. (6.10).

Note that when the tip element is considered for assessing the displacement values
at the crack tip (ρ = 0), both enrichment terms vanish since limρ→0

√
ρ cos (ε log ρ) =

limρ→0
√
ρ sin (ε log ρ) = limρ→0 ρ = 0. In addition, as open knot vectors are employed,

the NURBS contribution is reduced to the displacement control parameter at the tip.
Then, the displacement components at the crack tip considering the approximations over
the upper and lower crack surfaces are obtained as follows:

ũUj (ξn+p+1) = d
Utip
j (6.23)

ũLj (ξ1) = d
Ltip
j (6.24)

where dUtipj and dLtipj are the displacement parameters related to the control points at the
crack tip of the upper and lower NURBS, respectively.

Therefore, the displacement continuity at the tip observed in the analytical solution is
only satisfied in the XIGABEM responses if the equality between Eqs. (6.23) and (6.24)
is met, which leads to the following relation:

d
Utip
j − dLtipj = 0 (6.25)

Equation (6.25) provides a set of two equations per crack tip that accommodate the
additional enrichment parameters K̃λ

1 and K̃λ
2 .

6.2.5.2 Constraint on the normal stress parallel to the crack surface at the tip

To accommodate the enrichment T-stress parameter, a novel constraint is proposed,
which is based on the relation between the normal stress components parallel to the crack
surfaces that is verified at the tip in the two-term asymptotic expansion.

Similarly to displacements and tractions, the stress components over an element can
also be approximated considering the NURBS and enrichment terms. Hence, the nor-
mal stress σ11 oriented according to the local crack tip coordinate system x′1x

′
2 can be

approximated by:
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σ̃eλ11(ξ) = σ
(N)
11 (ξ) + σ

(1)
11 (xλ,x(ξ)) + σ

(2)
11 (xλ,x(ξ)) (6.26)

where σ(N)
11 is contribution obtained from the NURBS functions and σ

(1)
11 and σ

(2)
11 are,

respectively, the enrichment components obtained from the first and second terms of the
near-tip stress expansion shown in Eq. (3.53). For elements along the crack surfaces, the
enrichment terms are expressed by:

σ
(1)
11 (ρ, s) =

2 (δs2 − δs1)√
2πρ cosh(πε)

[
K̃λ

1 sin (ε log ρ) + K̃λ
2 cos (ε log ρ)

]
(6.27)

σ
(2)
11 (ρ, s) = CsT =

4√
2π

(κ1 + 1)µ2Cs
[(κ1 + 1)µ2 + (κ2 + 1)µ1]

K̃T (6.28)

where Eq. (3.55) was used to obtain the last equality in Eq. (6.28).

Note that along the crack, the sum of the analytical stress components of two corres-
ponding points (same ρ) on the upper and lower surfaces results in (C1 + C2)T . However,
this relation between the stress components is not ensured in the XIGABEM approxim-
ation due to the presence of the NURBS contribution. Thus, to satisfy the analytical
condition at the crack tip, the sum of the NURBS terms at this point should vanish, i.e.:

σ
(U)
11 (ξn+p+1) + σ

(L)
11 (ξ1) = 0 (6.29)

where σ(U)
11 and σ

(L)
11 are defined considering the approximation of the tip element on

the upper and lower surfaces, respectively. These components can be obtained with the
strategy shown in Section 2.5 and are related to the NURBS derivatives and displacements
control parameters by:

σ
(N)
11 (ξtip, s) =

(δs1 − δs2)E∗s
Je(ξtip)

p+1∑
m=1

dφNm

dξ
(ξtip)

(
dNm1 cosω + dNm2 sinω

)
(6.30)

whereN = U,L indicates whether e is the tip element on the upper (s = 1) or lower (s = 2)
surface, respectively, ξtip denotes the corresponding knot at the crack tip, E∗s = Es for
plane stress and E∗s = Es/ (1− ν2

s ) for plane strain.

Substituting Eq. (6.30) in Eq. (6.29) leads to:

E∗1
JU(ξn+p+1)

p+1∑
m=1

dφUm

dξ
(ξn+p+1)

(
dUm1 cosω + dUm2 sinω

)
+ (6.31)

− E∗2
JL(ξ1)

p+1∑
m=1

dφLm

dξ
(ξ1)

(
dLm1 cosω + dLm2 sinω

)
= 0
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Equation (6.31) provides an additional relation for each crack tip that accommodates
the T-stress parameter K̃λ

T . This expression defines a constraint on the NURBS derivatives
at the tip that is sufficient to make the linear displacement enrichment related to the T-
stress independent from the NURBS contribution. Therefore, the final algebraic system
becomes determined. Additionally, it is noted that normalising the terms in Eq. (6.31) by
the coefficient of maximum magnitude has a beneficial effect on the conditioning of the
resulting system of equations.

6.2.6 Assembly of the system of equations

Again, the collocation method is used to assemble the system of equations for interface
cracks problems. The collocation points are also defined at the Greville abscissae, which
are computed from Eq. (5.26). After considering each collocation point in the isogeometric
boundary element mesh as the source point of the DBIE (Eq. (6.19)) and carrying out
the integration over the corresponding boundary Γs = ΓBs ∪ΓCs ∪ΓIs, the following system
of linear equation is determined:

[
HB

1 HC
1 HI

1 0 0 0 H̃C
1 + H̃I

1 H̄C
1 + H̄I

1

0 0 0 HB
2 HC

2 HI
2 H̃C

2 + H̃I
2 H̄C

2 + H̄I
2

]


dB1

dC1

dI1

dB2

dC2

dI2

K̃

K̃T



= (6.32)

=

[
GB

1 GC
1 GI

1 0 0 0 G̃I
1

0 0 0 GB
2 GC

2 GI
2 G̃I

2

]


tB1

tC1

tI1

tB2

tC2

tI2

K̃


In Eq. (6.32), the subscript s = 1, 2 denotes the subdomain, while the superscript

a = B,C, I represents the external, crack and interface boundaries, respectively. The
sub-matrices Ha

s , H̃a
s and H̄a

s are defined, respectively, from the kernels P em
ij , P̃ eλa

iM and
P̄ eλa
i of the DBIE (6.19). These sub-matrices also contain the distribution of the jump

terms cij over the degrees of freedom defining the displacement components at the source
points. Additionally, the sub-matrices Ga

s and G̃I
s collect the coefficients determined from
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the integral kernels U em
ij and Ũ eλI

iM , respectively. Finally, the vectors das and tas include the
displacement and traction parameters at the control points, while the vectors K̃ and K̃T

store the enrichment unknowns related to the SIFs and T-stress for all crack tips. Note
that if traction-free cracks are considered, then tC1 = tC2 = 0.

In the applications considered here, the NURBS used to describe the upper and lower
interface surfaces are defined by the same knot and weight vectors and by control points
located at the same position. Therefore, to satisfy the conditions of a perfectly bonded
interface expressed by Eq. (2.60), it is sufficient to impose the following compatibility
constraints for corresponding control points:

dI1 = dI2 and tI1 = −tI2 (6.33)

After imposing the external boundary conditions and the relations of Eq. (6.33) in
Eq. (6.32), and then inserting the additional constraints given in Eqs. (6.25) and (6.31),
the final the system of equations defined by XIGABEM is expressed as:

 AB
1 HC

1 HI
1 −GI

1 0 0 H̃C
1 + H̃I

1 − G̃I
1 H̄C

1 + H̄I
1

0 0 HI
2 GI

2 AB
2 HC

2 H̃C
2 + H̃I

2 − G̃I
2 H̄C

2 + H̄I
2

0 ĤC
1 0 0 0 ĤC

2 0 0





xB1

dC1

dI1

tI1

xB2

dC2

K̃

K̃T



=


f1

f2

0



(6.34)
where AB

s contains the coefficients from HB
s and GB

s that are related to the unknown con-
trol values xBs at the external boundary ΓBs . The vectors of constant terms f1 and f2 are
given from the multiplication of the known control parameters and their corresponding
influence coefficients from HB

s and GB
s . Besides, the sub-matrices ĤC

s represent the ad-
ditional equations introduced to accommodate the enrichment parameters, being defined
by the coefficients associated with the displacement control parameters at the crack tip
elements.

The solution of the linear system in Eq. (6.34) provides not only the unknown control
variables but also the crack tip parameters introduced by the enriched formulation. Thus,
the SIFs and T-stress parameter are defined directly from the solution vector, without the
requirement of a post-processing technique.



Chapter 6. XIGABEM for interface cracks 157

6.3 Numerical applications

In this section, six examples are presented to illustrate the application of the proposed
XIGABEM to directly evaluate the crack parameters for interface cracks. In the first
two, the accuracy of the solutions is compared against the available exact responses. In
addition, the convergence of the proposed numerical formulation with mesh refinement is
verified. In the last four applications, the XIGABEM are compared with other numer-
ical methods to demonstrate the efficiency of the proposed formulation against different
approaches available in the literature.

For the XIGABEM modelling, all elements on the crack and interface surfaces are
considered enriched by the tip that they define. Moreover, the order of the NURBS basis
functions is selected as p = 2 for all analyses. Uniform isogeometric boundary element
meshes are considered - a mesh grading scheme towards the tip or especial tip elements
are not required since the enrichment terms are able to capture the analytical behaviour
at this region.

In the reference solutions available in the literature, the values for the SIFs and T-
stress are normalised by different terms. Where applicable, the expressions used to define
the normalised values are provided.

6.3.1 Edge crack in a bimaterial plate

In this first example, consider a bimaterial plate with dimensions L × L containing
an edge interface crack of length a = 0.5L, as depicted in Fig. 6.3a. For the analysis,
the analytical two-term expansion for displacements and tractions are applied along the
external boundary. The prescribed displacement components are obtained directly from
Eq. (3.56), while the traction values are determined from Cauchy’s formula pi = σijnj,
with the stresses σij given by Eq. (3.53). Pure mode loadings are assumed to compute
the analytical boundary conditions; thus, one factor among K1, K2 or KT is considered
to be different from zero and equal to unity, while the other two are identically null.
The prescribed values for the crack parameters are the exact solution for the problem,
which are used to verify the accuracy of the XIGABEM results. The application of both
displacement and traction boundary conditions, although unusual, is possible with the
boundary integral formulation (Eq. (6.18)), where the integration of the kernels along the
outer boundary considering the analytical fields results in contributions in the vector of
constant terms. This strategy leads to a precise description of the boundary conditions
and allows a better assessment of the accuracy of XIGABEM in the solution of this
problem with exact response.

The analyses are carried out considering the enrichment of crack and interface elements
with the two-term expansion. Different Young’s modulus ratios β = E1/E2 are considered,
while the Poisson’s ratios for both materials are ν1 = ν2 = 0.3 and plane strain condition
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is assumed. The relative errors in the crack parameters obtained directly via XIGABEM
for the pure mode problems are computed from:

eK =
‖Kana −Knum‖
‖Kana‖ = ‖1−Knum‖ (6.35)

where Kana = 1 is the crack parameter considered in the pure mode and Knum is the
corresponding numerical solution determined by XIGABEM.

Figure 6.3: (a) Bimaterial plate containing an edge interface crack. (b) Representation of
the isogeometric boundary element mesh. The red and blue lines indicate the elements
enriched with the crack or interface functions, respectively (Example 6.3.1).

(a) (b)

Element Collocation Point

Source: Own author.

6.3.1.1 Accuracy of integration

As the enrichment terms contain the expected solution for this problem and the bound-
ary conditions are represented with a high degree of precision, the errors in XIGABEM
responses are closely related to the accuracy of the numerical integrations. Thus, the
influence of the number of integration points used in the Gauss-Legendre quadrature on
the results is investigated. Four material combinations are assumed: β = 1, 2, 10 and 100,
corresponding to the oscillatory parameters ε = 0,−0.030, −0.075 and −0.092, respect-
ively. Pure mode problems involving only K1 (K1 = 1, K2 = 0, KT = 0), K2 (K1 = 0,
K2 = 1, KT = 0) or KT (K1 = 0, K2 = 0, KT = 1) are addressed. The XIGABEM ana-
lyses are carried out considering a uniform boundary element mesh containing forty-eight
isogeometric elements and twenty-four collocation points, as illustrated in Fig. 6.3b.

Figure 6.4a presents the relative errors for the crack parameters - obtained directly
by XIGABEM for the respective pure mode problems - with the number of integration
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points used for the evaluation of the integrals over each element. Regarding the SIFs, the
variation recovered for K1 and K2 are similar for every material combination since the
corresponding enrichment functions and boundary conditions present the same behaviour
for both parameters. As for the T-stress factor, the integrals involved in the particular
pure mode problem can be computed with great accuracy when using more than 20
integration points. After this threshold, the values obtained for KT oscillate near the
computational precision, with errors remaining below 10−13.

The precision of the results obtained for the SIFs shown in Fig. 6.4a is directly related
to the accuracy of the numerical integration of elements containing the tip. This aspect is
underlined in Figure 6.4b, which shows the relative errors for the crack parameters with
the number of integration points adopted for the tip elements, while a 30-point Gaussian
quadrature rule is applied for elements far from the crack tip. Comparing the results from
Figs. 6.4a and 6.4b, when considering the homogeneous case (β = 1), the solutions are
similar up to 30 integration points, indicating that the errors in the SIFs are defined by
the accuracy of the numerical integrals over the tip elements. After that, the improvement
of the SIFs responses in Fig. 6.4b becomes progressively smaller until a plateau is reached.
In this situation, the reduction of the errors is only possible by increasing the quadrature
points in the whole mesh, as demonstrated by the solutions shown in Fig. 6.4a.

In the inhomogeneous scenarios, practically the same SIF results are recovered by
the XIGABEM for a particular β, as shown in Figs. 6.4a and 6.4b. This indicates that
the errors in the numerical integration of the tip elements are dominant and control the
accuracy of the solutions over the entire range of integration points. When considering
material dissimilarity, the enrichment functions related to the SIFs become oscillatory. In
this case, the precision of the results is strictly related to the accuracy of the quadrature
used for evaluation of the integrals that contain these oscillatory terms, particularly over
the tip elements. To demonstrate this, consider the integral I =

∫ 1

0
cos(ε log z)dz, which

resembles the oscillatory enrichment terms over the elements containing the crack tip.
The error in the numerical evaluation of this integral can be computed from:

eint =

∥∥∥∥1− Inum

Iana

∥∥∥∥ (6.36)

where Inum and Iana represent, respectively, the numerical and analytical solutions for
I. The error eint is also presented in Fig. 6.4b when considering ε = −0.030, −0.075

and −0.092. Note that the convergence patterns obtained for the SIFs solutions and eint
are very similar, indicating that the errors in the XIGABEM are indeed determined by
the accuracy of the numerical evaluation of the enriched kernels over the tip elements.
Additionally, eint increases with the magnitude of the oscillatory parameter ε, which is
also observed in the XIGABEM responses. However, since the magnitude of ε is limited
to an asymptotic value, the differences between solutions tend to reduce for increasing
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values of β.
Regarding the results for the T-stress parameter presented in Figs. 6.4a and 6.4b,

it is observed that the influence of the number of integration points adopted for the tip
element is minimal. The enrichment functions related to KT present linear behaviour and,
therefore, the enriched integral kernels can be computed without great difficulty. Thus,
when a sufficient number of quadrature points is used for assessing all other integrals over
the elements on the mesh, the errors recovered for KT remain close to the computational
precision. The results show that a 30-point quadrature rule is adequate to ensure the
accurate evaluation of these integrals and, therefore, this amount of integration points is
adopted in the remaining examples.

Figure 6.4: Error variation of the crack parameters with the (a) number of integration
points for all elements on the mesh and (b) number of integration points in the tip element
while a 30-point Gaussian quadrature rule is applied for the others (Example 6.3.1).

(a)

10 100
Number of integration points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

R
el

at
iv

e 
er

ro
r

β= 1

β= 2

β= 10

β= 100

K1

K2

KT

(b)

10 100
Number of integration points in tip element

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

R
el

at
iv

e 
er

ro
r

ε= − 0.030 (β= 2)
ε= − 0.075 (β= 10)

ε= − 0.092 (β= 100)

β= 1

β= 2

β= 10

β= 100

K1

K2

KT

eint

Source: Own author.

6.3.1.2 Convergence study

The convergence of XIGABEM in the analysis of this problem with exact solution is
now addressed. For this purpose, the number of isogeometric elements in the uniform
boundary element mesh is varied from 48 (4 elements on the crack) to 600 (50 elements
on the crack), while the parameter β assumes the following values: 1, 2, 10, 100, 1000 and
10000. Table 6.1 shows the convergence of the relative errors in the crack parameters,
computed from Eq. (6.36), considering the respective pure mode problems. Comparing
the SIFs results from different material combinations, note that the errors tend to increase
with the magnitude of the oscillatory parameter due to the same reasons pointed in the
previous analysis. For β = 1000 and β = 10000, the solutions are practically the same
as a result of the similarity between the ε values. Regarding KT , the accuracy fluctuates
close to computational precision.
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Table 6.1: Errors for crack parameters in pure mode problems considering different bound-
ary element meshes (Example 6.3.1).

β ε (×10−2) nelem eK1
eK2

eKT β ε (×10−2) nelem eK1
eK2

eKT

1 0.000

48 3.7E-9 3.8E-9 9.5E-15

100 -9.159

48 1.9E-4 1.8E-4 6.0E-15

96 3.8E-9 3.9E-9 2.3E-14 96 1.8E-4 1.6E-4 2.6E-14

192 3.9E-9 4.0E-9 7.2E-14 192 1.6E-4 1.5E-4 1.4E-13

360 4.0E-9 4.0E-9 1.9E-13 360 1.5E-4 1.4E-4 2.4E-13

600 4.0E-9 4.0E-9 5.3E-13 600 1.4E-4 1.3E-4 4.3E-14

2 -3.041

48 2.5E-5 2.3E-5 6.7E-15

1000 -9.335

48 1.9E-4 1.8E-4 9.5E-15

96 2.4E-5 2.1E-5 3.8E-14 96 1.8E-4 1.7E-4 6.3E-14

192 2.2E-5 2.0E-5 4.9E-14 192 1.7E-4 1.6E-4 1.1E-13

360 2.0E-5 1.8E-5 1.1E-13 360 1.6E-4 1.5E-4 2.5E-14

600 1.9E-5 1.7E-5 4.6E-13 600 1.5E-4 1.4E-4 9.9E-14

10 -7.581

48 1.4E-4 1.3E-4 6.2E-15

10000 -9.353

48 1.9E-4 1.8E-4 7.8E-15

96 1.3E-4 1.2E-4 7.7E-14 96 1.8E-4 1.7E-4 1.5E-14

192 1.2E-4 1.1E-4 1.4E-13 192 1.7E-4 1.6E-4 8.2E-14

360 1.1E-4 1.0E-4 3.5E-13 360 1.6E-4 1.5E-4 3.0E-13

600 1.0E-4 9.6E-5 3.0E-13 600 1.5E-4 1.4E-4 2.2E-13

Source: Own author.

Figure 6.5: (a) Deformed shape prescribed along the edges as boundary conditions and the
solutions defined by the NURBS term along the crack and interface. (b) Deformed shape
considering the contribution from enrichment terms for pure K1 problem with β = 10. (c)
Final deformed shape obtained by superposition of solutions (a) and (b) (Example 6.3.1).

(a) (b) (c)

Source: Own author.
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Since the enrichment functions are able to capture the response to the analytical
problem, the contribution of the NURBS term to the final solution is minimal. Thus, the
mesh refinement has little effect on the error improvement, except by slightly increasing
the accuracy of the integration of oscillatory functions close to the tip, which ultimately
leads to the small convergence verified for the SIFs in non-homogeneous scenarios. The
contribution of each term of the XIGABEM approximation in the final displacement
solution considering a pure K1 problem and β = 10 is illustrated in Fig. 6.5. A 48-
element mesh is used for the analysis. Figure 6.5a shows the deformed shape prescribed
along the edges as boundary conditions and the solutions defined by the NURBS term
along the crack and interface, while Fig. 6.5b present the deformed response recovered by
the enrichment terms. When these contributions are superposed, they provide the final
displacement response given in Fig. 6.5c. Note that the crack solution is defined by the
enrichment term, whereas the NURBS term plays a minor role in the response. Finally,
Figure 6.6 present the von Mises stress distribution determined by XIGABEM, which
clearly shows the stress concentration at the crack tip and the discontinuity in the stress
field occurring at the bimaterial interface.

Figure 6.6: Von Mises stress distribution determined by the XIGABEM for pure K1

problem and β = 10 (Example 6.3.1).
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6.3.2 Curved interface crack between an inclusion and an infinite matrix

Differently from the previous example, an application in which the solution is not
contained in the approximation space is now analysed. Thus, the final response is
not captured solely by the enrichment terms but also by the NURBS basis functions.
Consequently, the discretisation error plays an important role in the accuracy of the
XIGABEM results for this problem.
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Consider an infinite matrix containing a circular inclusion of radius R and subjected
to a biaxial tensile loading σ0, as illustrated in Fig. 6.7a. Besides, a curved crack with
a half-crack angle θ0 is positioned along the matrix-inclusion interface. To represent the
infinite matrix, it is assumed L = 100R. For the numerical analysis, different Young’s
modulus ratios β = E2/E1 are considered, while the Poisson’s ratios for both materials
are taken as ν1 = ν2 = 0.3. Additionally, plane strain condition is considered.

Figure 6.7: (a) Infinite matrix containing an inclusion subjected to biaxial traction. (b)
Detail of the isogeometric boundary element mesh around the inclusion. The red and
blue lines indicate the elements enriched with the crack or interface functions, respectively
(Example 6.3.2).
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Source: Own author.

Initially, the convergence of the crack parameters at tip B is studied considering
θ0 = 90° and taking β = 1, 2, 10, 100 and 1000, which correspond to ε = 0, 0.030, 0.075,
0.092 and 0.093, respectively. The number of elements in the discretisation of the interface
and crack surfaces is varied from 96 to 360, while the outer boundary mesh is fixed at 40
elements. Figure 6.7b shows the detail of the discretisation around the inclusion for the
coarsest mesh. The SIFs are normalised by K∗1 + iK∗2 = (K1 + iK2) /

(
σ0

√
πR0.5−iε), and

Table 6.2 provides the analytical solutions (PERLMAN; SIH, 1967; CHEN; NAKAMI-
CHI, 1996) used to verify the accuracy of the XIGABEM results. The convergence curves
of the SIFs values are shown in Fig. 6.8. The errors in K∗1 decrease for increasing values
of β (and ε), whereas the opposite behaviour is observed for K∗2 . Nevertheless, similarly
to the previous example, the variations in the SIFs errors with β reduce as the oscillatory
parameter ε tends to its asymptotic value. Figure 6.8 also shows the error convergence
in the T-stress value at the inclusion (material 2) considering β = 1, in which the nor-
malised reference solution is T2/σ0 = 0.6667 (CHEN, 2000). To the best of the author’s
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knowledge, no analytical response is available for the T-stress in the non-homogeneous
case. Accurate solutions are obtained by the direct XIGABEM formulation for both SIFs
and T-stress, with errors below 0.8% even for a coarse mesh. Besides, the convergence
pattern of the solutions demonstrates the stability of the proposed method.

Table 6.2: Analytical values for the crack parameters at tip B (Example 6.3.2).

β: 1 2 10 100 1000

K∗1 : 0.4714 0.6288 0.8705 0.9566 0.9663

K∗2 : -0.4714 -0.5808 -0.7147 -0.7543 -0.7586

Source: Own author.

Figure 6.8: Error convergence of the crack parameters solutions defined directly by
XIGABEM (Example 6.3.2).
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Figures 6.9a and 6.9b show, respectively, the displacement contributions of the NURBS
and enrichment terms, while the superposition of these two responses provides the final
solution given in Fig. 6.9c. Discontinuous NURBS are used to define each quarter of the
inclusion, with those on the upper half enriched by tip A and those on the lower half
enriched by tip B. Note that very close to the crack tips, the solution is mainly captured
by the enrichment term. However, for points away from the tip, the NURBS have a
significant contribution to the response, being responsible for correcting the enriched
solution to obtain the final response. With mesh refinement, the responses from the
NURBS term become more accurate, leading to the convergence of the crack parameters
results shown in Fig. 6.8.
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Figure 6.9: Deformed shape considering the contribution from (a) NURBS basis functions
and (b) enrichment terms. (c) Final deformed shape obtained by superposition of solutions
(a) and (b) (Example 6.3.2).
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Source: Own author.

The influence of the half-crack angle on the SIFs and T-stress values is now verified.
For this purpose, the parameter θ0 is varied from 5° to 175° in steps of 5°. The ana-
lyses are carried out considering a total of 232 isogeometric elements in the boundary
discretisation. Figure 6.10a present the discrete results for the SIFs determined directly
by XIGABEM. The analytical solutions for K∗1 and K∗2 are also given and are represen-
ted in solid or dashed lines, respectively. Excellent agreement is observed between the
numerical and reference results in the whole range of θ0. The responses for the T-stress
are also determined and are shown in Fig. 6.10b. Note that both the SIFs and T-stresses
tend to be limited as ε approaches its asymptotic value. Figure 6.10b also present the
analytical solutions of the T-stress for the homogeneous case, which, again, have excellent
correspondence with the XIGABEM results.

6.3.3 Edge interface crack in a bimaterial strip

Consider a bimaterial strip composed of two layers of thickness h and containing an
edge crack of length a. The strip is constrained at the right end, while a load of magnitude
σ0 is applied at the left end of the layers, as indicated in Fig. 6.11. The dimensions are
taken as L = 10h, a = 0.5L and plane strain condition is assumed in the analyses. Four
different material combinations are considered for the strip, and the parameters adopted
for each case are shown in Table 6.3.

Initially, it is investigated the convergence of the SIFs and T-stress obtained by the
proposed XIGABEM formulation for each material combination. Figures 6.12a and 6.12b
show, respectively, the variation of the normalised SIFs K∗1 and K∗2 with the number of
boundary elements (knot spans) considered in the discretisation. The normalised SIFs



166 Chapter 6. XIGABEM for interface cracks

Figure 6.10: Variation of normalised (a) SIFs and (b) T-stress with the half-crack angle
(Example 6.3.2).
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Figure 6.11: Bimaterial strip with an edge interface crack (Example 6.3.3).

Source: Own author.

values are determined by K∗1 + iK∗2 = (K1 + iK2) /
(
σ0

√
πh0.5−iε). Additionally, Fig. 6.12c

presents the variation of the T-stress in material 1 (T1) normalised by the magnitude
of the load σ0. The number of elements in the numerical simulations ranges from 44
(5 elements on each crack surface) to 264 (30 elements on each crack surface). At the
finest mesh, the variations in the normalised SIFs and T-stress values with respect to the
previous discretisation are below 0.5% for all cases. At this point, convergence of the
XIGABEM results is assumed and the solutions are compared with reference responses.

Table 6.3 shows the SIFs and T-stress values computed directly by XIGABEM. Other
solutions available in the literature are also presented. The results given by Suo and
Hutchinson (1990) for SIFs and Kim and Vlassak (2007) for T-Stress are determined from
semi-analytical (S-Analy) expressions considering a bimaterial strip with infinite length.
On the other hand, the numerical solutions for the T-stress obtained by Yu, Wu, and
Li (2012) (XFEM) and Muthu et al. (2016) (EFG) are also obtained considering a finite
strip of length L = 10h. Excellent agreement is found between the solution determined
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Figure 6.12: Convergence of (a) K∗1 , (b) K∗2 and (c) T1/σ0 with the number of elements
(knot spans) in the isogeometric boundary mesh (Example 6.3.3).

(a)

50 100 150 200 250
Number of elements

0.12

0.10

0.08

0.06

0.04

0.02

K
∗ 1

Case 1
Case 2

Case 3
Case 4

(b)

50 100 150 200 250
Number of elements

0.29

0.30

0.31

0.32

0.33

K
∗ 2

Case 1
Case 2

Case 3
Case 4

(c)

50 100 150 200 250
Number of elements

0.04

0.06

0.08

0.10

0.12

0.14

T
1
/σ

0

Case 1
Case 2

Case 3
Case 4

Source: Own author.

by the proposed direct method and the reference results. Particularly, when compared
to the semi-analytical responses provided by Suo and Hutchinson (1990) and Kim and
Vlassak (2007), the errors obtained by the XIGABEM are inferior to 1%, demonstrating
the accuracy of the proposed direct method in evaluating the crack parameters.

Table 6.3: Normalised SIFs and T-stress in material 1 for bimaterial strip with edge crack
(Example 6.3.3).

Case E1
E2

ν1 ν2

K∗1 K∗2 T1/σ0

S-Analy Present S-Analy Present S-Analy XFEM EFG Present

1 7/3 1/3 1/3 -0.0528 -0.0526 0.2976 0.2963 0.0709 0.0702 0.0709 0.0706

2 20/9 1/4 1/8 -0.0282 -0.0285 0.3056 0.3038 0.0784 0.0773 0.0778 0.0792

3 4 2/5 2/5 -0.1033 -0.1032 0.3153 0.3142 0.1310 0.1317 0.1301 0.1301

4 4 1/4 1/4 -0.0783 -0.0781 0.3277 0.3259 0.1424 0.1410 0.1419 0.1432

Source: Own author.
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6.3.4 Curved interface crack between the inclusion and matrix

In this example, consider a square plate of unit length (L = 1) composed of a matrix
of material 1 and an inclusion of material 2. In the interface between the inclusion and
the matrix, there is a circular crack with a half-crack angle θ0, as illustrated in Fig. 6.13.
The volume fraction of the inclusion is 20%, so its radius is given by R =

√
0.2/π. The

displacements in the x1 direction are constrained along the left edge, while a constant
displacement u1 = δ = 0.01 is prescribed at the right edge. Two cases are analysed: in
the first one (6.3.4.1), the SIFs determined by the XIGABEM are compared with reference
results, while in the second (6.3.4.2), the accuracy of the T-stress solutions is assessed.
For all analyses, plane strain condition is considered. Additionally, 184 elements are used
in the boundary element discretisation (10 at each side of the plate and 72 along the
perimeter of the inclusion).

Figure 6.13: Circular crack around an inclusion in a square plate (Example 6.3.4).
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6.3.4.1 Stress intensity factors

In this scenario, the following material properties are considered for the numerical
analysis: E1 = 72.4 × 103, ν1 = 0.22, E2 = 3.45 × 103 and ν2 = 0.35. Additionally, the
half-crack length θ0 varies from 10° to 60°.

Figure 6.14 shows the results obtained for the SIFs normalised by σave

√
πRθ0, where

σave is the average normal stress on the right edge of the plate. The solutions determined
by Liu and Xu (2000) using BEM and by Wu et al. (2011) using XFEM are also provided
for comparison. Good correspondence is observed between the XIGABEM responses and
the reference results, especially with those given by Wu et al. (2011). Similarly to the
XFEM solutions, the curves determined by XIGABEM vary more smoothly than those
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obtained by conventional BEM, which indicates that the enriched formulation contributes
to the stability of the results.

Figure 6.14: Variation of the normalised SIFs at tip A with the half-crack angle θ0 (Ex-
ample 6.3.4).
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6.3.4.2 T-stress

For the T-stress analysis of the problem illustrated in Fig. 6.13, different ratios between
the Young’s modulus of the inclusion and matrix, defined as β = E2/E1, are considered.
The ratio β is taken as 0.25 (soft inclusion), 1.0 (homogeneous) and 4.0 (hard inclusion),
while the Poisson’s ratios for the materials are ν1 = ν2 = 0.3. Additionally, the half-crack
angle range is θ0 = 10°− 90°.

The results for the normalised T-stress in material 1 obtained directly by XIGABEM
are presented in Fig. 6.15. Due to symmetry, the T-stress values in the matrix for both
tips are the same. For small cracks, T1 tends to be a compressive stress, but as the
crack length increases, T1 becomes a tensile stress. Moreover, apart from the values of
θ0 around 40° where T1 switch from compressive to tensile stress, the magnitude of T1 is
greater the stiffer the matrix is to the inclusion. Yu, Wu, and Li (2012) also analysed this
problem using the XFEM, and their solutions are shown in Fig. 6.15. Good agreement is
attained between the XIGABEM and XFEM results for different material combinations.
The difference between the solutions is in the same order of magnitude as in the previous
example, in which the solutions given by Yu, Wu, and Li (2012) were also taken for
comparison.
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Figure 6.15: Variation of the normalised T-stress in material 1 with the half-crack angle
θ0(Example 6.3.4).
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6.3.5 Bimaterial plate with a centre interface crack

Consider the bimaterial plate containing a centre crack lying along a slanted interface,
as illustrated in Fig. 6.16. The plate has dimensions 2w × 2h and is tensioned by a
uniform load σ0. Besides, the crack length is such that a/w = 0.5. In this example,
two analyses are undertaken: firstly, it is assumed a horizontal interface (α = 0°) and
the variation of the SIFs and T-stress is investigated for different material properties.
Secondly, the influence of the interface slope α and the ratio E1/E2 in the values of the
crack parameters is assessed. The SIFs solutions are given in normalised form given by
K∗1 + iK∗2 = (K1 + iK2) /

[
(2a)−iεσ0

√
πa
]
, while the normalised T-stress is obtained by

T ∗ = T
√
πa/K0, with K0 =

√
K2

1 +K2
2 . All analyses are carried out considering 200

isogeometric elements in the boundary discretisation, with 20 elements on each crack
surface.

6.3.5.1 Horizontal interface (α = 0°)

For the configuration of a horizontal interface (α = 0°), the SIFs and T-stress are
computed for the ratio between Young’s moduli E1/E2 = 1, 2, 5 and 10. The Poisson’s
ratios for both materials are ν1 = ν2 = 0.3 and plane strain condition is assumed.

Table 6.4 presents the normalised valued obtained for the SIFs and T-stress in material
2. The XIGABEM solutions are compared with the results determined with SBFEM
(SONG, 2005) and with xSBFEM (NATARAJAN; SONG; BELOUETTAR, 2014), which
are also presented in Table 6.4. Excellent agreement is observed between the responses for
all considered combinations of material properties. This demonstrates the accuracy of the
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Figure 6.16: Tensioned bimaterial plate containing a centre interface crack (Ex-
ample 6.3.5).
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proposed direct approach for computing the interface crack parameters, especially as it
performs well in face of the SBFEM formulation, which is acknowledged to be efficient in
the analysis of fracture problems due to the feature of naturally capturing the asymptotic
fields near the tip.

Table 6.4: Normalised SIFs and T-stress in material 2 for bimaterial plate with a horizontal
centre crack (Example 6.3.5).

E1
E2

K∗1 K∗2 T ∗2

SBFEM xSBFEM Present SBFEM xSBFEM Present SBFEM xSBFEM Present

1 1.1890 1.1893 1.1901 0.0000 0.0000 0.0000 -1.0600 -1.0552 -1.0531

2 1.1790 1.1798 1.1807 -0.0550 -0.0566 -0.0543 -0.7180 -0.7144 -0.7131

5 1.1480 1.1483 1.1494 -0.1040 -0.1053 -0.1041 -0.3790 -0.3770 -0.3760

10 1.1230 1.1237 1.1249 -0.1230 -0.1240 -0.1234 -0.2160 -0.2147 -0.2139

Source: Own author.

6.3.5.2 Slanted interface (α = 0°− 60°)

The inclination angle α of the interface in the bimaterial plate shown in Fig. 6.16
is now varied from 0° to 60°, while the ratio between Young’s modulus is considered
fixed, with E1/E2 = 10. Again, the Poisson’s ratios are assumed constant and given by
ν1 = ν2 = 0.3. The analyses are carried out considering plane stress condition.
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Figures 6.17a and 6.17b show the results for the normalised SIFs and T-stress in mater-
ial 2 determined for the right and left tips, respectively. Differently from the homogeneous
case (see Portela, Aliabadi, and Rooke (1992)) the crack parameters computed for both
tips are distinct because of the material dissimilarity. The figures also present the vari-
ation of the SIFs obtained by Wang et al. (2017) using XFEM and the BEM solutions
provided by Miyazaki et al. (1993) and Gu and Zhang (2020) considering α = 15°, 30°, 45°
and 60°. To compute the SIFs, Wang et al. (2017) used Irwin’s crack closure integral,
Gu and Zhang (2020) adopted the displacement extrapolation method combined with a
crack-tip element strategy and Miyazaki et al. (1993) applied a conservation integral. In
these references, the K∗2 responses appear with the opposite sign than shown here due to
the convention adopted in the definition of this factor. Again, the XIGABEM results are
in good agreement with the solutions found in the literature, demonstrating the accuracy
of the proposed direct method. Particularly, when compared to the XFEM (WANG et
al., 2017), the SIFs values obtained here better approximate the BEM solutions given by
Miyazaki et al. (1993) and Gu and Zhang (2020). Regarding the T-stress, it can be noted
that for both tips this stress term changes from compression to tension as the inclination
of the interface increases.

Figure 6.17: Variation of the normalised SIFs and T-stress in material 2 with the interface
orientation α for the (a) right tip and (b) left tip. The XIGABEM results are compared
against the numerical solutions provided by Miyazaki et al. (1993), Wang et al. (2017)
and Gu and Zhang (2020) (Example 6.3.5).
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Considering the inclination angle of the interface as α = 15°, 30°, 45° and 60°, the
scenarios in which E1/E2 = 100 and E1/E2 = 1000 are also addressed. Table 6.5 shows
the results obtained by the XIGABEM model and the BEM responses provided by Gu
and Zhang (2020), including the case E1/E2 = 10 plotted in Figs. 6.17a and 6.17b. Again,
the XIGABEM solutions are in excellent agreement with those provided by the reference,
with average difference between the solutions around 0.4%. Notwithstanding, the results
shown here are obtained with a coarser mesh than in Gu and Zhang (2020). While
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272 quadratic Lagrange elements were used in the reference, including 40 discontinuous
elements along each crack surface, 200 quadratic isogeometric elements are applied here,
which represents a substantial reduction in the number of degrees of freedom. The results
for the T-stress in material 2 are also shown in Table 6.5 for completeness. It can be
observed that the magnitude of T ∗2 reduces as material 1 becomes relatively stiffer.

Table 6.5: Normalised SIFs and T-stress in material 1 for bimaterial plate with a horizontal
centre crack (Example 6.3.5).

E1
E2

α (°)

Right tip Left tip

Gu and Zhang (2020) Present Gu and Zhang (2020) Present

K∗1 K∗2 K∗1 K∗2 T∗2 K∗1 K∗2 K∗1 K∗2 T∗2

10

15 1.1269 0.0852 1.1280 0.0860 -0.1775 1.0096 0.4440 1.0123 0.4458 -0.1991

30 0.9924 0.2949 0.9928 0.2955 -0.1205 0.7843 0.6246 0.7871 0.6260 -0.1300

45 0.7656 0.4061 0.7671 0.4068 -0.0257 0.5217 0.6730 0.5222 0.6739 0.0136

60 0.4919 0.4059 0.4928 0.4060 0.1647 0.2772 0.5810 0.2779 0.5808 0.2636

100

15 1.1155 0.0590 1.1189 0.0611 -0.0198 0.9680 0.4768 0.9672 0.4799 -0.0233

30 1.0048 0.2619 1.0079 0.2635 -0.0131 0.7543 0.6540 0.7542 0.6563 -0.0146

45 0.8029 0.3556 0.8051 0.3563 -0.0020 0.5389 0.6957 0.5399 0.6967 0.0058

60 0.5284 0.3290 0.5312 0.3304 0.0255 0.3498 0.5879 0.3520 0.5898 0.0483

1000

15 1.1164 0.0574 1.1176 0.0590 -0.0020 0.9597 0.4811 0.9610 0.4836 -0.0024

30 1.0075 0.2596 1.0095 0.2601 -0.0013 0.7493 0.6583 0.7502 0.6596 -0.0015

45 0.8065 0.3471 0.8090 0.3480 -0.0002 0.5454 0.6965 0.5466 0.6976 0.0007

60 0.5221 0.3055 0.5271 0.3086 0.0029 0.3691 0.5749 0.3727 0.5792 0.0056

Source: Own author.

6.3.6 Asymmetric interface cracks between a circular inclusion and the matrix

For this last example, consider the problem of two asymmetrical circular cracks along
the matrix-inclusion interface under uniform traction σ0 at infinity, as depicted in Fig. 6.18.
The half-crack angle of the right and left cracks are β1 and β2, respectively. It is assumed
a fixed β2 = 30°, while β1 varies in the range 5° − 55°. To simulate the infinite mat-
rix condition and reduce the finite length effect in the numerical solutions, it is adopted
L = 40R. For each crack geometry, two material combinations are considered: the first
contains a hard inclusion (E2 = 10E1, ν1 = 0.3 and ν2 = 0.2), while the second has a soft
inclusion (E1 = 10E2, ν1 = 0.3 and ν2 = 0.2). Le, Brisard, and Pouya (2019) derived
semi-analytical expressions of the SIFs for this problem, which are used for comparison
against the direct XIGABEM solutions. The isogeometric boundary element mesh con-
sidered in the numerical analysis is composed of 184 elements: 10 at each side of the plate
and 72 along the perimeter of the inclusion.
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Figure 6.18: Asymmetrical cracks around a circular inclusion (Example 6.3.6).
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The results obtained by XIGABEM for the normalised SIFs of tips A and C with the
variation of β1 are shown in Figs 6.19a and 6.19b for the cases of hard inclusion and soft in-
clusion, respectively. For comparisons with the solutions given by Le, Brisard, and Pouya
(2019), the normalised SIFs are computed by K∗1 + iK∗2 = (K1 + iK2) /

(
σ0

√
2R0.5+iε

)
.

For tip A, in both material combinations, the value of K∗1 increases for small values of β1,
reaches a maximum and then decreases with the growth of the right crack. On the other
hand, K∗2 monotonically grows with increments in β1. For tip C, located in the crack that
remains with a fixed length, the values of the SIFs are reduced as the right crack increases
and becomes dominant. Additionally, when β1 = 30°, both cracks have the same size and,
due to the symmetry of the problem, the SIFs recovered for tips A and C are the same.
Apart from the signal of K∗2 , the solutions for tips B and D (not shown) are equivalent to
tips A and C, respectively.

Figures 6.19a and 6.19b also present the semi-analytical and numerical SIFs solutions
provided by Le, Brisard, and Pouya (2019). In general, when compared to the FEM
solutions given by the reference, the present results better approximate the semi-analytical
responses, which demonstrates the efficiency of the proposed direct XIGABEM model to
determine the SIFs for interface cracks.

Finally, for sake of completeness, the T-stress results in the inclusion determined by
the direct XIGABEM are also provided for the cases of hard inclusion (Fig. 6.21a) and
soft inclusion (Fig. 6.21b). Like the SIFs, the T-stress magnitude also reduces for the soft
inclusion case since the stress level near the interface cracks decreases when the matrix
is stiffer. Moreover, for hard and soft inclusion scenarios, the T-stress in material 2 for
the right crack passes from compressive to tension as β1 increases. For the fixed-length
crack, the T-stress varies less than for the right crack and remains as a compressive stress
throughout the range considered for β1. Again, due to the symmetry at β1 = β2 = 30°,
the results of the T-stress parameter for both cracks are the same at this point.
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Figure 6.19: Variation of the normalised SIFs with β1 considering the cases of (a)
hard inclusion and (b) soft inclusion. The normalised SIF values are evaluated by
K∗1 + iK∗2 = (K1 + iK2) /

(
σ0

√
2R0.5+iε

)
. The solutions for tip A are compared with

the semi-analytical (Ana) and numerical (Num) responses provided by Le, Brisard, and
Pouya (2019) (Example 6.3.6).

(a)

10 20 30 40 50
β1 (deg)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

K
∗ 1
,K

∗ 2

Ref.(Ana) - K ∗
1

Ref.(Num) - K ∗
1

Present - K ∗
1 (A)

Present - K ∗
1 (C)

Ref.(Ana) - K ∗
2

Ref.(Num) - K ∗
2

Present - K ∗
2 (A)

Present - K ∗
2 (C)

(b)

10 20 30 40 50
β1 (deg)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

K
∗ 1
,K

∗ 2

Ref.(Ana) - K ∗
1

Ref.(Num) - K ∗
1

Present - K ∗
1 (A)

Present - K ∗
1 (C)

Ref.(Ana) - K ∗
2

Ref.(Num) - K ∗
2

Present - K ∗
2 (A)

Present - K ∗
2 (C)

Source: Own author.

Figure 6.20: Variation of the normalised T-stress in material 2 for right crack (tips A and
B) and left crack (tips C and D) considering a (a) hard inclusion and a (b) soft inclusion
(Example 6.3.6).
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7 Concluding remarks

In this thesis, several enriched BEM formulations have been developed for the ana-
lysis of fracture problems in two-dimensional domains. Emphasis was given to the direct
approach, in which the crack parameters are found as part of the solution of the system
of equations. The proposed extended formulations allow the computation of accurate
solutions with reduced computational effort and using coarse meshes. These accurate
results are found without the further expense of post-processing techniques such as the
ones based on the J-integral. Additionally, it was shown that if we choose to incur the
extra cost of such post-processing when employing the enriched formulations, results of
very high accuracy can be recovered.

The extended approaches presented here introduces few modifications to the unen-
riched formulation, which facilitates their implementation into existing codes. The com-
ponents of the original BEM/IGABEM matrices are kept unaltered, while just new coef-
ficients related to the enrichment parameters are introduced in the system. Besides, the
enriched integral kernels are very similar to the unenriched ones, the only difference being
the replacement of the shape functions by the enrichment functions. Therefore, since
the singularity order is not modified - or can even be reduced when considering shifted
enrichment functions -, the usual BEM numerical integration schemes can be applied to
assess the enriched integrals.

In Chapter 4, a fully enriched boundary element formulation for modelling the linear
crack growth in isotropic and anisotropic domains has been proposed. Two displacement
enrichments were presented: the crack tip enrichment, based on the first-order asymptotic
expansion, and the discontinuous enrichment, based on the Heaviside sign step function.
The first, associated with the crack tip tying constraint to accommodate the additional
DOF, improves the near-tip response and enables the direct computation of the SIFs.
Thus, the extended formulation has the advantage of saving computational cost by dis-
missing the use of post-processing techniques to compute these factors. However, where
high accuracy is required in the SIFs evaluation, it was shown that the combination of
the XBEM scheme with the J-integral is highly effective. The second displacement en-
richment is capable of representing the discontinuity occurring at elements intercepted
by cracks. This enrichment prevents the remeshing and, consequently, the correspond-
ing modifications that would occur in the BEM matrices. The continuity conditions
between the crossed element and the crack surfaces at the intersection point are applied
to contemplate the four additional parameters introduced by the Heaviside enrichment.
Both displacement enrichments are composed of shifted functions, preserving the physical
meaning of the nodal parameters. This strategy also kept the jump term unaltered and
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reduced the singularity orders from the enriched kernels in the XBEM formulation.

Additionally, an enriched traction approximation has also been shown in Chapter 4,
which allows the application of concentrated forces or support points along the bound-
ary. In the latter case, additional parameters corresponding to the support reactions are
introduced in the analysis. To accommodate them, the essential boundary conditions at
the point are used as supplementary equations.

The numerical examples presented in Chapter 4 demonstrated the accuracy and sta-
bility of the proposed XBEM formulation to simulate crack growth problems in isotropic
and anisotropic domains. Good agreement was achieved between the results obtained by
the enriched method and the solutions found in the literature.

In Chapter 5, the enriched formulation was combined with an isogeometric BEM
formulation, which allowed a straightforward integration between CAD and numerical
analysis. The resulting XIGABEM approach was then applied for simulating fatigue
crack growth in isotropic materials. In the extended approach, the leading-order term
from Williams expansion was embedded directly in the displacement approximation. As
in XBEM, the crack tip tying constraint was used to accommodate the additional degrees
of freedom introduced by the enrichment, and the SIFs could be defined directly from
the solution vector. In most of the applications considered in Chapter 5, the direct
approach was able to provide SIF values with errors lower than those from an unenriched
IGABEM formulation, in which the J-integral was applied for SIF extraction. Even
when the unenriched IGABEM outperformed the direct XIGABEM approach (internal
crack problem), the errors obtained by the direct method were satisfactory, being less
than 1%. Alternatively, for cases in which very high accuracy is required, a J-integral
calculation based on the XIGABEM results was able to improve considerably the accuracy
and convergence rate for SIF calculations.

The first set of examples presented in Chapter 5 clearly demonstrate the accuracy and
convergence benefits of the XIGABEM formulation. Regarding fatigue crack propagation
applications, the direct method provided propagation paths, SIF history and fatigue lives
in good agreement with experimental and numerical results available in the literature. In
general, the solutions given by the direct approach better approximated those found by
combining the enriched XIGABEM formulation and the J-integral - which is the most
accurate model - when compared to unenriched IGABEM. Furthermore, as demonstrated
by the last example of the Chapter, the run times when the direct approach is considered
are significantly lower than those determined when using the indirect J-integral for SIF
extraction.

The continuity properties of NURBS, related to the multiplicity of repeated knots in
the knot vector, was also exploited Chapter 5 for the development of a C−1 continuity
strategy that was able to model discontinuities at boundaries intersected by cracks with a
trivial modification of the NURBS definition. This strategy was also employed to ensure
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independence between the basis functions over the new and existing crack surfaces during
crack propagation, thus restricting the enriched elements to the NURBS portion defining
the crack tip. The independence along the newly created surfaces also facilitated the
remeshing process and the corresponding modifications in the system of equations during
crack growth.

In Chapter 6, a novel XIGABEM formulation was developed for the direct evaluation
of the SIFs and T-stress of interface cracks. For this purpose, the two-term asymptotic
expansion was used to augment the displacement and traction approximations of boundary
elements on the crack surfaces and interfaces. As in the previous enrichment strategies,
the crack tip tying constraint was used to directly evaluate the SIFs. Furthermore, an
expression involving the NURBS derivatives at the crack tip was proposed to obtain the
T-stress parameter directly from the solution vector.

Additionally, in Chapter 6, the direct XIGABEM formulation, which is based on the
analytical responses of a straight crack, was also successfully employed for the analysis of
curved cracks for the first time. The use of the direct method is particularly beneficial in
this case since the application of interaction integrals for the definition of the crack para-
meters requires auxiliary solutions accounting for the curvilinear nature of cracks, which
is not straightforward. Besides, the use of NURBS approximations in the XIGABEM
formulation allows the proper description of curved geometries, including cracks and in-
terfaces.

The numerical applications presented in Chapter 6 demonstrates the stability and ac-
curacy of the direct XIGABEM for the analysis of interface cracks. A careful study of the
influence of the oscillatory enrichment functions on the precision of numerical integration
was also considered. Besides, the convergence of the method was investigated for differ-
ent material combinations. Excellent agreement was attained between the XIGABEM
responses and the reference results available in the literature. When compared to other
numerical methods - in which different techniques were used for extraction of the crack
parameters - the XIGABEM proved to be an efficient approach. Moreover, the pro-
posed method has the advantage of defining accurate solutions without the requirement
of post-processing strategies, which can be computationally expensive within the BEM
framework.

7.1 Recommendations for future work

Perhaps the most appealing extension of the work reported in this thesis is the applic-
ation of the enriched formulations to three-dimensional domains. In this case, each crack
possesses several fronts, for which the tip parameters must be assessed to verify stability.
Therefore, the prospect of accurate SIF predictions in 3D without the expense of multiple
J-integral evaluations is highly attractive. In addition, the isogeometric approach is also
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recommended for these applications since the direct link between CAD and analysis is
especially useful when dealing with 3D models, where a considerable amount of time can
be saved from the mesh generation process.

Still regarding three-dimensional applications, the discontinuous enrichment strategy
presented in Chapter 4 can also be employed to model the intersection between the crack
and the boundary when considering propagation problems. Such an approach would be
similar to the XFEM formulations for plane problems. Alternatively, the use of discon-
tinuous and/or trimmed NURBS could also be appraised for this purpose.

Concerning studies in two-dimensional media, the fracture process of inhomogeneous
materials could be further investigated. For these types of materials, the degradation
process involving simultaneously the matrix and the interface can be analysed by a gen-
eral extended formulation. To this end, besides enrichment functions presented here for
cracks on the interface and homogeneous materials, new enrichment functions related
to a crack tip terminating at a bimaterial interface could be considered (CHANG; XU,
2007). Hence, cracks emanating and arriving at the interface could be modelled, allowing
the proper simulation of the crack percolation throughout the inhomogeneous medium.
Additionally, fracture in anisotropic bimaterial, which application has been intensified
with the increasing use of composites, could also be studied. In this case, the analytical
solutions provided by Gao, Abbudi, and Barnett (1992), for example, could be applied
for the enrichment of crack and interface elements.
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A Stress and displacement functions for interface cracks

When n is odd, the stress functions Σn
ij(θ, s) and Υn

ij(θ, s) in Eq. (3.46) can be written
as follows:

Σn11(θ, s) =
1

coshπε

{
−
[
sinh (ε(Πs − θ))− e−ε(Πs−θ)

]
cos

n− 2

2
θ − 1

2
e−ε(Πs−θ) sin θ
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(n− 2) sin
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2
θ − 2ε cos
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2
θ

]}
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coshπε
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1

coshπε
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sinh (ε(Πs − θ)) + e−ε(Πs−θ)
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cos
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2
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1

2
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2
θ

]}

Υn11(θ, s) =
1

coshπε
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cosh (ε(Πs − θ)) + e−ε(Πs−θ)
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2
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1
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[
(n− 2) cos

n− 4

2
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2
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Υn12(θ, s) =
1

coshπε
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cosh (ε(Πs − θ)) cos
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e−ε(Πs−θ) sin θ
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(n− 2) sin
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2
θ − 2ε cos
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Υn22(θ, s) =
1

coshπε
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−
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2
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where s = 1, 2 indicates the upper and lower materials, respectively, and Π1 = π and
Π2 = −π :

When n is even, the stress functions are obtained by:

Σn11(θ, s) =
1
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θ − (n− 2) sin θ sin
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where ω1 = [(κ1 + 1)µ2] / [(κ2 + 1)µ1] and ω2 = [(κ2 + 1)µ1] / [(κ1 + 1)µ2].
When n is odd, the displacement functions ∆n

j (θ, s) and Θn
j (θ, s) in Eq. (3.48) are

given by:

∆n
1 (θ, s) = − 1

µs (n2 + 4ε2) cosh (πε)

{
n
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For n even, the displacement functions are expressed by:
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B Fundamental solutions

B.1 Isotropic

Equations (2.1), (2.2) and (2.8) can be grouped to obtain Navier’s equation as follows:

1

1− 2ν
uj,ji + ui,jj +

bi
µ

= 0 (B.1)

For a point-force problem (b∗i = ∆(x′,x)ei), a displacement solution field that satisfies
Eq. (B.1) is u∗i = U∗ij(x

′,x)ei, in which:

U∗ij(x
′,x) =

1

8πµ (1− ν)

[
(3− 4ν) ln

(
1

r

)
δij + r,ir,j

]
(B.2)

represents the displacement fundamental solution, with r := ‖x− x′‖ being the distance
between the field point and the source point. Besides, the distance derivatives in Eq. B.2
are evaluated as:

r,i =
∂r

∂xi
=
xi − x′i
r

(B.3)

The traction fundamental solution is determined from the U∗ij derivatives by means of
Eqs. (2.2), (2.8) and (2.12):

P ∗ij(x
′,x) = − 1

4π (1− ν) r
{(1− 2ν) (r,jni − r,inj) + r,n [(1− 2ν) δij + 2r,ir,j]} (B.4)

where:

r,n =
∂r

∂n
= r,mnm (B.5)

Finally, the fundamental solutions presented in the TBIE are obtained from the de-
rivatives of U∗ij and P ∗ij, and they are given by:

D∗kij(x
′,x) =

1

4π (1− ν) r
[(1− 2ν) (r,iδjk + r,jδik − r,kδij) + 2r,ir,jr,k] (B.6)

S∗kij(x
′,x) =

µ

2π (1− ν) r2

{
2
∂r

∂n
[(1− 2ν) r,kδij + ν (r,iδjk + r,jδik)− 4r,ir,jr,k] + (B.7)

+2ν (nir,jr,k + njr,ir,k) + (1− 2ν) (2nkr,ir,j + niδjk + njδik)− (1− 4ν)nkδij}
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The above fundamental solutions are valid for plane strain conditions. For plane stress
problems, these solutions may be used with the modified Young’s modulus and Poisson’s
ratio:

Ē = E

[
1−

(
ν

1 + ν

)2
]

(B.8)

ν̄ =
ν

1 + ν
(B.9)

B.2 Anisotropic

For anisotropic materials, the fundamental solutions are expressed in terms of the
difference between the positions of source point and the field point in a complex plane,
which are defined as:

zi = x1 + µix2 (B.10)

where µi represents the material complex parameters with positive imaginary part given
by the roots of the following characteristic equation:

c11µ
4 − 2c16µ

3 + (2c12 + c66)µ2 − 2c26µ+ c22 = 0 (B.11)

The coefficients cij in Eq. (B.11) are the values of the elastic compliance tensor presen-
ted in Eq. (2.13).

Based on the Lekhnitskii formalism (LEKHNITSKII, 1968), Cruse and Swedlow (1971)
obtained the fundamental solutions for the point force problem considering anisotropic
materials. These solutions are expressed by:

U∗ij(x
′,x) = 2< [qjlbil ln r̂] (B.12)

P ∗ij(x
′,x) = 2<

[
gjlbil

µln1 − n2

r̂

]
(B.13)

where:

r̂ := zl − z′l, (B.14)

< denotes the real part operator, qjl and gjl are defined as:

qjl = cj1µ
3−j
l − cj6µ2−j

l + cj2µ
1−j
l (B.15)

gjl = δ1jµl − δ2j (B.16)
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and bil are given by the solution of the following system of linear equations with complex
coefficients: 

1 −1 1 −1

µ1 −µ̄1 µ2 −µ̄2

q11 −q̄11 q12 −q̄12

q21 −q̄21 q22 −q̄22




bi1

b̄i1

bi2

b̄i2

 =


δi2
2πi

− δi1
2πi

0

0

 (B.17)

in which the over-bar indicates the complex conjugate and i =
√
−1 is the imaginary unit.

Regarding the TBIE, the components of fundamental solution D∗kij for anisotropic
materials are defined by:

D∗k1

D∗k2

D∗k6

 =

 a11 a12 a16

a21 a22 a26

a61 a62 a66




ε∗k1

ε∗k2

ε∗k6

 (B.18)

where the index transformation α ↔ ij (2.7) was used, with α = 1, 2, 6. The coefficients
aij represent the components of the elastic stiffness tensor, and ε∗kα is obtained from the
derivatives of U∗ij as:

εkα = εkij = −<
{qkl
r̂

[bil (δ1j + µlδ2j) + bjl (δ1i + µlδ2i)]
}

(B.19)

Analogously, the fundamental solution S∗kij can be determined. In this case, the de-
rivatives of P ∗ij are used, resulting in:

S∗k1

S∗k2

S∗k6

 =

 a11 a12 a16

a21 a22 a26

a61 a62 a66




ρ∗k1

ρ∗k2

ρ∗k6

 (B.20)

with:

ρkα = ρkij = −<
{
gkl
µln1 − n2

r̂2
[bil (δ1j + µlδ2j) + bjl (δ1i + µlδ2i)]

}
(B.21)
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C Evaluation of BEM integrals

The strategy used to evaluate the integrals in the DBEM and IGABEM formulations
depends on the distance between the source point and the integrated element since the
fundamental solutions become singular as this distance approaches zero. Three different
procedures are adopted in this work and their fundamentals, as well as their scope of
application, are presented in what follows.

Before proceeding, the expressions presented in integral kernels can be rewritten in a
general form as follows:

Iem =

∫ 1

−1

F em(x′,x(ξ))dξ (C.1)

in which F em contains the product between the respective fundamental solution, the shape
functions and the Jacobian of transformation.

Note that for the isogeometric approach, the parameter ξ in the following equations
is simply substituted by ξ̂.

C.1 Regular integrands

When the source point is far from the integrated element, the integrands represented
by Eq. (C.1) are regular. In this case, the standard Gauss-Legendre quadrature is applied
for numerical integration as follows:

Iem ≈
Ng∑
n=1

F em(x′,x(ξn))ωn (C.2)

where ξn and ωn are, respectively, the non-dimensional coordinate and weight associated
with the n-th integration point, and Ng is the number of integration points.

C.2 Quasi-singular integrands

When the integrated element is near the source point, the kernels represented by
Eq. (C.1) become quasi-singular because of the dominant effect of the fundamental solu-
tions. In this situation, the accuracy of the numerical integration is compromised when
the standard Gauss-Legendre quadrature is applied. To overcome this deficiency, Telles
(1987) and Telles and Oliveira (1994) proposed a third-degree polynomial transformation
for the integration points coordinates. In this transformation, the integration points along
the element are lumped toward the source point, improving the accuracy of the numerical
evaluation of quasi-singular integrals. The new integration points coordinates ς are ob-
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tained from the non-dimensional coordinates ξ of the integration points by the following
expression:

ς(ξ) = a0 + a1ξ + a2ξ
2 + a3ξ

3 (C.3)

with ai representing the transformation coefficients. To obtain the values of ai, the min-
imum distance Rmin between the source point and the integrated element is first determ-
ined. The non-dimensional coordinate associated to the point of minimum distance along
the element is defined as ς̄. Then, a non-dimensional distance D is computed as follows:

D =
2Rmin

L
(C.4)

where L is the length of the integrated element. WithD, the parameter r̄ that is associated
with the Jacobian of the transformation of Eq. (C.3) at ς̄ is obtained from the following
relations:

r̄ =



2.620D, 0 < D ≤ 0.05

0.85 + 0.24 lnD, 0.05 < D ≤ 1.3

0.893 + 0.0832 lnD, 1.3 < D ≤ 3.618

1, D > 3.618

(C.5)

Finally, the coefficients ai are given by the solution of the following system of equations:


1 1 1 1

1 −1 1 −1

0 1 2ξ̄ 3ξ̄2

0 0 2 6ξ̄




a0

a1

a2

a3

 =


1

−1

r̄

0

 (C.6)

in which ξ̄ is the non-dimension coordinate corresponding to ς̄ in the third-degree trans-
formation. This coordinate can be computed by:

ξ̄ =
3

√
−q +

√
(q2 + p3) +

3

√
−q −

√
(q2 + p3) +

ς̄

1 + 2r̄
(C.7)

where:

q =
ς̄

2 (1 + 2r̄)

{
1

1 + 2r̄

[
(3− 2r̄)− 2ς̄2

1 + 2r̄

]
− 1

}
(C.8)

p =
1

3 (1 + 2r̄)2

[
4r̄ (1− r̄) + 3

(
1− ς̄2

)]
(C.9)

The solution of Eq. (C.6) gives:
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a0 = 3k (1− r̄) ξ̄
a1 = k

(
r̄ + 3ξ̄2

)
(C.10)

a2 = −a0

a3 = k (1− r̄)

where k = 1/
(
1 + 3ξ̄2

)
:

Hence, the integrals expressed by Eq. (C.1) can be evaluated as follows:

Iem ≈
Ng∑
n=1

F em(x′,x(ς(ξn))J t(ξn)ωn (C.11)

in which J t is the Jacobian of the third-degree polynomial transformation given by:

J t(ξ) = a1 + 2a2ξ + 3a3ξ
2 (C.12)

From the above expressions, it can be noted that if r̄ = 1 the third-degree polynomial
transformation degenerates into ς = ξ with J t(ξ) = 1, i.e., the standard Gauss-Legendre
quadrature is recovered. This values of r̄ is obtained for D > 3.618, as shown by Eq. (C.5).
Therefore, D = 3.618 can be defined as a threshold value to state if an element is far or
near the source point, for which the standard Gauss-Legendre quadrature or the third-
degree transformation are used, respectively.

C.3 Singular integrands

When integrating an element that contains the source point, the integrand in Eq. (C.1)
must be firstly regularised. For the weakly singular kernel U em

ij , Telles’ transformation can
be used for regularisation. For the strongly singular and hypersingular integrals, a special
integration scheme should be considered. For this purpose, the singularity subtraction
method (SSM) may be used. In what follows, the expressions implemented for isotropic
materials are presented. For anisotropic materials, it is only necessary to substitute r by
r̂ in the expressions (see Appendix B for more details).

To proceed with the SSM, the following auxiliary coordinate is defined:

η(ξ′, ξ) = Je(ξ′) (ξ − ξ′) (C.13)

where ξ′ and Je(ξ′) are, respectively, the parametric coordinate and the Jacobian at the
source point. The value of η can be interpreted as a signed distance along a supporting
line tangent to the boundary at the source point.

The kernel P em
ij (2.40) from the DBIE can be rewritten as:
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P em
ij = −

∫ 1

−1

P̄ ∗ij(ξ
′, ξ)

r(ξ′, ξ)
φem(ξ)Je(ξ)dξ (C.14)

where P̄ ∗ij = rP ∗ij is the regular part of the traction fundamental solution.

The SSM can be applied in Eq. (C.14) to remove the singularity from P em
ij . For this

purpose, a kernel with the same order of singularity, now expressed in terms of the aux-
iliary coordinate η, is added and subtracted from the integrand as follows:

P em
ij =

∫ 1

−1

P̄ ∗ij(ξ
′, ξ)

r(ξ′, ξ)
φem(ξ)Je(ξ)− P̄ ∗ij(ξ

′)

η(ξ′, ξ)
φem(ξ′)Je(ξ′)dξ +−

∫ 1

−1

P̄ ∗ij(ξ
′)

η(ξ′, ξ)
φem(ξ′)Je(ξ′)dξ

(C.15)
where P̄ ∗ij(ξ′) is determined from P̄ ∗ij(ξ

′, ξ) when ξ → ξ′ and expressed by:

P̄ ∗ij(ξ
′) = − 1− 2ν

4π(1− ν)

(
n′ir
′
,j − n′jr′,i

)
(C.16)

in which n′i and r′,i denote, respectively, the components of outward normal vector and
the distance derivatives at the source point, with r′,1 = −n′2 and r′,2 = n′1.

Substituting the definition of η (Eq. (C.13)) in Eq. (C.15) leads to:

P em
ij =

∫ 1

−1

P̄ ∗ij(ξ
′, ξ)

r(ξ′, ξ)
φem(ξ)Je(ξ)− P̄ ∗ij(ξ

′)

ξ − ξ′ φ
em(ξ′)dξ + P̄ ∗ij(ξ

′)φem(ξ′)−
∫ 1

−1

1

ξ − ξ′dξ (C.17)

The first integral on the right-hand side of Eq. (C.15) is regular and can be com-
puted with standard Gauss-Legendre quadrature. The second integral can be evaluated
analytically to give the Cauchy principal value, CPV , as follows:

CPV = −
∫ 1

−1

1

ξ − ξ′dξ = ln

∣∣∣∣1− ξ′1 + ξ′

∣∣∣∣ (C.18)

The expression in Eq. (C.18) is valid for |ξ′| 6= 1, i.e., when the source point is not
between continuous elements. Otherwise, the Cauchy principal value is given by (GUIG-
GIANI; CASALINI, 1987):

CPV = −sign(ξ′) ln (2Je(ξ′)) (C.19)

Regarding the TBIE, the kernel Dem
kij (2.44) can be evaluated in a similarly to P em

ij

since both have the same order of singularity O(r−1). For Semkij (2.43), it can be firstly
rewritten as:

Semkij = =

∫ 1

−1

S̄∗kij(ξ
′, ξ)

r2(ξ′, ξ)
φem(ξ)Je(ξ)dξ (C.20)
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where S̄∗kij = r2S∗kij is the regular part of the fundamental solution.
The integrand in Eq. (C.20) can be regularised by the SSM considering the first-order

Taylor expansion around ξ′ for the shape functions, resulting in:

Semkij =

∫ 1

−1

S̄∗kij(ξ
′, ξ)

r2(ξ′, ξ)
φem(ξ)Je(ξ)−

S̄∗kij(ξ
′)

η2(ξ′, ξ)

[
φem(ξ′) +

dφem

dξ
(ξ′) (ξ − ξ′)

]
Je(ξ′)dξ+

(C.21)

+ =

∫ 1

−1

S̄∗kij(ξ
′)

η2(ξ′, ξ)

[
φem(ξ′) +

dφem

dξ
(ξ′) (ξ − ξ′)

]
Je(ξ′)dξ

where S̄∗kij(ξ′) is obtained from S̄∗kij(ξ
′, ξ) when ξ → ξ′ as:

S̄∗kij(ξ
′) =

µ

2π (1− ν) r2
[2ν (nir,jr,k + njr,ir,k) + (1− 2ν) (2nkr,ir,j + niδjk + njδik) +

(C.22)

− (1− 4ν)nkδij]

Substituting Eq. (C.13) in Eq. (C.21) results in:

Semkij =

∫ 1

−1

S̄∗kij(ξ
′, ξ)

r2(ξ′, ξ)
φem(ξ)Je(ξ)−

S̄∗kij(ξ
′)

Je(ξ′) (ξ − ξ′)

[
φem(ξ′)

(ξ − ξ′) +
dφem

dξ
(ξ′)

]
dξ+ (C.23)

+
S̄∗kij(ξ

′)

Je(ξ′)

[
φem(ξ′) =

∫ 1

−1

1

(ξ − ξ′)2dξ +
dφem

dξ
(ξ′)−
∫ 1

−1

1

ξ − ξ′dξ
]

Again, the first integral on the right-hand side of Eq. (C.23) can be evaluated nu-
merically with Gauss-Legendre quadrature. The last integral corresponds to the Cauchy
principal value presented in Eq. (C.18), while the second represents the Hadamard finite-
part given by:

HFP = =

∫ 1

−1

1

(ξ − ξ′)2dξ = − 1

1− ξ′ −
1

1 + ξ′
(C.24)
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D Evaluation of enriched singular integrands

D.1 Crack tip enrichment

The SSM can also be used to evaluate the kernels P̃ eλ
iM and S̃emijM to singular elements.

In this case, the equations obtained are similar to Eqs. (C.17) and (C.23), in which the
shape functions φem are replaced by the shifted enrichment functions Zeλ

jM given by:

Zeλ
jM

(
xλ,x(ξ)

)
= Rλ

jk

ne∑
m=1

φem(ξ)
[
ψkM

(
xλ,x(ξ)

)
− ψkM

(
xλ,x(ξm)

)]
(D.1)

when considering the shifted enrichment function in Eq. (4.5), or by

Zeλ
jM

(
xλ,x(ξ)

)
= Rλ

jkψkM
(
xλ,x(ξ)

)
(D.2)

when considering the enriched approximation in Eq. (5.31).

Therefore, P̃ eλ
iM becomes:

P̃ eλ
iM =

∫ 1

−1

P̄ ∗ij(ξ
′, ξ)

r(ξ′, ξ)
Zeλ
jM

(
xλ,x(ξ)

)
Je(ξ)− P̄ ∗ij(ξ

′)

ξ − ξ′ Z
eλ
jM

(
xλ,x(ξ′)

)
dξ+ (D.3)

+ P̄ ∗ij(ξ
′)Zeλ

jM

(
xλ,x(ξ′)

)
CPV

Equation (D.3) can be used to evaluate the strongly singular kernel when the enrich-
ments used in the XIGABEM are considered. On the other hand, when considering the
shifted enrichment functions in the proposed XBEM formulations, Zeλ

jM

(
xλ,x(ξ′)

)
= 0

since the enrichment function is null at the source points. Hence, P̃ eλ
iM is simplified to:

P̃ eλ
iM = −

∫ 1

−1

P̄ ∗ij(ξ
′, ξ)

r(ξ′, ξ)
Zeλ
jM

(
xλ,x(ξ)

)
Je(ξ)dξ (D.4)

The adopted shifted enrichment in XBEM makes P̃ eλ
iM regular and, therefore, this

kernel can be evaluated with the Gauss-Legendre quadrature even for elements containing
the source point.

Proceeding in a similar fashion to obtain S̃emijM , the following expression is derived:
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ŜeλijM =

∫ 1

−1

S̄∗kij(ξ
′, ξ)

r2(ξ′, ξ)
ZeλkM

(
xλ,x(ξ)

)
Je(ξ)−

S̄∗kij(ξ
′)

Je(ξ′) (ξ − ξ′)

[
ZeλkM

(
xλ,x(ξ′)

)
(ξ − ξ′) + ZeλkM,ξ

(
xλ,x(ξ′)

)]
dξ̂+

(D.5)

+
S̄∗kij(ξ̂

′)

Je(ξ̂′)

[
ZeλkM

(
xλ,x(ξ′)

)
HFP + ZeλkM,ξ

(
xλ,x(ξ′)

)
CPV

]
which can be used for evaluation of the enriched hypersingular kernel in XIGABEM. The
derivatives Zeλ

kM,ξ in this case are computed from:

Zeλ
jM,ξ =

dZeλ
jM

dξ
= Rλ

jk

(
∂ψkM
∂ρ

dρ

dξ
+
∂ψkM
∂θ

dθ

dξ

)
(D.6)

When the shifted enrichment is considered, Eq. (D.5) reduces to:

S̃eλijM =

∫ 1

−1

S̄∗kij(ξ
′, ξ)

r2(ξ′, ξ)
Zeλ
kM

(
xλ,x(ξ)

)
Je(ξ)−

S̄∗kij(ξ
′)

Je(ξ′) (ξ − ξ′)Z
eλ
kM,ξ

(
xλ,x(ξ′)

)
dξ+ (D.7)

+
S̄∗kij(ξ

′)

Je(ξ′)
Zeλ
kM,ξ

(
xλ,x(ξ′)

)
−
∫ 1

−1

1

ξ − ξ′dξ

in which the derivative Zeλ
kM,ξ can be determined by using the chain rule as follows:

Zeλ
jM,ξ =

dZeλ
jM

dξ
= Rλ

jk

ne∑
m=1

[
dφem

dξ

(
ψλMk − ψλmMk

)
+ φem

(
∂ψλMk

∂ρ

dρ

dξ
+
∂ψλMk

∂θ

dθ

dξ

)]
(D.8)

Note that if the parameter θ does not vary along the elements, as considered in the
present study even for curved cracks, Eqs. (D.6) and (D.8) are simplified since dθ

dξ
= 0.

D.2 Heaviside enrichment

To apply the SSM to evaluate Ŝ ēlkij, we first rewrite the kernel as:

Ŝ ēlkij = =

∫ 1

−1

S∗kij(ξ
′, ξ)J ē(ξ)Y ēl (ξēP , ξ) dξ (D.9)

where Y ēl(ξēP , ξ) is the discontinuous enrichment function given by:

Y ēl(ξēP , ξ) = gl(ξēP , ξ)
nē∑
m=1

φēm(ξ) [H(ξēP , ξ)−H(ξēP , ξ
m)] (D.10)

If the source point does not belong to the portion l, the integrand in Eq. (D.9) is
regular and can be assessed with Eq. (4.24) or Eq. (4.25) if ξ′ /∈ [ξēP , 1] or ξ′ /∈ [−1, ξēP ],
respectively. Otherwise, the integration over the portion l is singular and singularity-
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subtraction must be performed over Eq. (D.9) to give:

Ŝ ēlkij =

∫ 1

−1

S̄∗kij(ξ
′, ξ)

r2(ξ′, ξ)
Y ēl(ξēP , ξ)J

ē(ξ)−
S̄∗kij(ξ

′)

J ē(ξ′) (ξ − ξ′)Y
ēl
,ξ (ξēP , ξ

′)dξ+ (D.11)

+
S̄∗kij(ξ

′)

J ē(ξ′)
Y ēl
,ξ (ξēP , ξ

′)−
∫ 1

−1

1

ξ − ξ′dξ

in which the enrichment function derivative is determined as follows:

Y ēl
,ξ (ξēP , ξ

′) =
dY ēl

dξ
(ξēP , ξ

′) = gl(ξēP , ξ
′)

nē∑
m=1

dφēm

dξ
[H(ξēP , ξ

′)−H(ξēP , ξ
m)] (D.12)

Using the definition of gl(ξēP , ξ) (Eq. (4.17)) and observing that gl(ξēP , ξ′) = 1 for the
singular portion, from Eq. (D.11) we obtain:

Ŝ ēlkij =

∫ 1

−1

[
S̄∗kij(ξ

′, ξ(η))

r2(ξ′, ξ(η))
Y ēl(ξēP , ξ(η))J ē(ξ(η))−

S̄∗kij(ξ
′)

J ē(ξ′) (ξ(η)− ξ′)Y
ēl
,ξ (ξēP , ξ

′)

]
J l(η)dη+

(D.13)

+
S̄∗kij(ξ

′)

J ē(ξ′)
Y ēl
,ξ (ξēP , ξ

′)

[
−
∫ 1

−1

1

ξ − ξ′dξ −−
∫ 1

−1

J l̄(η)

ξ(η)− ξ′dη
]

where l̄ represents the complementary non-singular part of the element, i.e., l̄ = a if l = b

or l̄ = b if l = a.
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E Regularisation of kernel with singular traction enrichment

The integral kernels containing only non-singular terms can be computed using Gauss-
Legendre quadrature, with the accuracy of the integration depending on the number of
gauss points used in the quadrature. However, the integral over tip elements on the inter-
face, which contains the traction enrichment in Eq. (6.16), must be firstly regularised since
the enrichment function is singular at the ρ = 0. Without loss of generality, considering
a tip element at the upper material, the integral is written as:

Ũ eλI
iM =

∫ 1

−1

U∗ij(x
′,x(ξ̂))Rλ

jk$
I
kM(xλ,x(ξ̂))Je(ξ̂)dξ̂ (E.1)

To remove the singularity at the crack tip (ξ̂ = −1), the following variable η ∈ [−1, 1]

can be defined:

ξ̂(η) =
1

2

(
η2 + 2η − 1

)
(E.2)

Then, the integral kernel in Eq. (E.1) can be rewritten as:

Ũ eλI
iM =

∫ +1

−1

U∗ij(x
′,x(η)Rλ

jk$
I
kM(xλ,x(η))Je(η) (η + 1) dη (E.3)

The above expression can be computed following the steps below:

1. Take an integration point to be η

2. Compute the coordinate ξ̂ with Eq. (E.2)

3. Define the coordinates x(ξ̂), the Jacobian Je(ξ̂) and the fundamental solution U∗ij(x′,x(ξ̂))

at the coordinate ξ̂

4. Compute the distance from the tip ρ :=
∥∥∥x(ξ̂)− xλ

∥∥∥ and determine the enrichment

function $I
kM(xλ,x(ξ̂))

5. Evaluate the integrand of Eq. (E.3) and multiply it by the weight corresponding to
the integration point. Increment the value of the integral

6. Take the next integration point η and return to 2

If the tip element contains the source point, Telles’ transformation (Section (C.2)) can be
used to regularise the weakly singular integrand that appears due to the singularity of the
fundamental solution U∗ij. Note that since discontinuous NURBS are adopted to model
the crack and interface surfaces, there is no collocation point at the crack tip (ρ = 0).
Therefore, the singularity arising from U∗ij when the tip element contains the source point
x′ does not occur at the same singular point of $I

kM .


	Introduction
	Objectives and novel aspects
	Methodology
	Organisation of the text

	Boundary element formulation
	Fundamentals of Elasticity 
	Boundary integral equations
	Dual boundary element method
	Internal points
	Stress on the boundary
	Sub-region technique

	Fracture mechanics
	LEFM fundamentals
	Stress intensity factor evaluation
	J-integral
	Mode decoupling strategy

	Propagation criterion
	Isotropic materials
	Anisotropic materials

	Interface fracture mechanics

	Extended boundary element method
	Initial considerations
	Crack tip enrichment
	Displacement approximation enrichment
	Crack tip tying constraint
	Resulting system of equations

	Heaviside enrichment
	Discontinuous displacement enrichment
	Continuity conditions at the crack mouth
	Resulting system of equations

	Concentrated force enrichment
	Traction approximation enrichment
	Resulting system of equations

	Support point enrichment
	Displacement boundary condition
	Resulting system of equations

	Flowchart for XBEM
	Crack propagation analysis
	Numerical applications
	Square plate with an edge crack
	Anisotropic plate with a slanted crack
	Cracked three-point bending specimen 
	Crack propagation in anisotropic CSTBD specimens
	Multi-cracked square plate


	Extended isogeometric boundary element method
	Initial considerations
	B-splines
	Initial definitions
	Basis functions
	B-splines curves

	NURBS
	H-refinement of NURBS: knot insertion

	IGABEM
	Extended formulation
	Approximations
	Crack tip tying constraint
	Assembly of the system of equations

	XIGABEM for fatigue crack growth
	Fatigue model and structural life prediction
	Propagation and remeshing

	Numerical applications
	Square plate with an edge crack 
	Finite rectangular plate with an edge crack under bending
	Inclined crack in an infinite domain
	Titanium plate with a central inclined crack
	Open spanner
	Perforated plate with an edge crack
	Perforated panel with multiple cracks


	XIGABEM for interface cracks
	Initial considerations
	Extended formulation
	Approximations over the external boundary (sB)
	Approximations over the crack boundary (sC)
	Approximations for interface boundary (sI)
	Discrete DBIE
	Additional constraints
	Assembly of the system of equations

	Numerical applications
	Edge crack in a bimaterial plate
	Curved interface crack between an inclusion and an infinite matrix
	Edge interface crack in a bimaterial strip
	Curved interface crack between the inclusion and matrix
	Bimaterial plate with a centre interface crack
	Asymmetric interface cracks between a circular inclusion and the matrix


	Concluding remarks
	Recommendations for future work 

	Bibliography
	Stress and displacement functions for interface cracks
	Fundamental solutions
	Isotropic
	Anisotropic

	Evaluation of BEM integrals
	Regular integrands
	Quasi-singular integrands
	Singular integrands

	Evaluation of enriched singular integrands
	Crack tip enrichment
	Heaviside enrichment

	Regularisation of kernel with singular traction enrichment 

