UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA DE ESTRUTURAS

LORENZO LUBE DOS SANTOS

Estabelecimento de Classes de Resistência para a Madeira Serrada de *Pinus* spp.

SÃO CARLOS, 2019.

Estabelecimento de Classes de Resistência para a Madeira Serrada de *Pinus* spp.

Tese apresentada ao Departamento de Engenharia de Estruturas da Escola de Engenharia de São Carlos, Universidade de São Paulo, como parte dos quesitos necessários para obtenção do título de Doutor em Engenharia Civil (Estruturas).

Orientador: Prof. Dr. Antônio Alves Dias

Versão corrigida

A versão original encontra-se na Escola de Engenharia de São Carlos

SÃO CARLOS, 2019.

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da EESC/USP com os dados inseridos pelo(a) autor(a).

L237e Lube-dos-Santos, Lorenzo Estabelecimento de Classes de Resistência para a Madeira Serrada de pinus spp. / Lorenzo Lube-dos-Santos; orientador Antônio Alves-Dias; coorientador Carlito Calil-Jr. São Carlos, 2019. Tese (Doutorado) - Programa de Pós-Graduação em Engenharia Civil (Engenharia de Estruturas) e Área de Concentração em Estruturas -- Escola de Engenharia de São Carlos da Universidade de São Paulo, 2019. 1. Classificação visual. 2. parâmetros não-destrutivos. 3. ensaios destrutivos. 4. análise experimental. 5. scanner industrial. I. Título.

FOLHA DE JULGAMENTO

Condidate: Bacharel LORENZO LUBE DOS SANTOS.

Título da tese: "Estabelecimento de classes de resistência para a madeira serrada de pinus spp".

Data da defesa: 25/06/2019.

Comissão Julgadora:

Prof. Associado Antonio Alves Dias (Orientador) (Escola de Engenharia de São Carlos/EESC)

Prof. Titular Carlito Calil Junior (Escola de Engenharia de São Carlos/EESC)

Prof. Dr. Adriano Wagner Ballarin (Universidade Estadual Paulista "Júlio de Mesquita Filho"/UNESP-Botucatu)

Prof. Dr. Sergio Augusto Rodrigues (Universidade Estadual Paulista "Júlio de Mesquita Filho"/UNESP-Botucatu)

Prof. Dr. Marcelo Rodrigo Carreira (Universidade Tecnológica Federal do Paraná/UTFPR)

Coordenador do Programa de Pós-Graduação em Engenharia Civil (Engenharia de Estruturas): Prof. Associado Vladimir Guilherme Haach

Presidente da Comissão de Pós-Graduação: Prof. Titular Murilo Araujo Romero

Resultado:

APROVA DO

APROVADO

DONOVADO

À minha família, afetuosamente dedico.

AGRADECIMENTOS

Este trabalho foi em equipe.

Agradeço ao meu orientador, Prof. Antônio Alves Dias, pelo convite para cursar o doutorado pela EESC-USP. Por toda a paciência, convívio e pelos ensinamentos durante a execução dos experimentos. Pela total disponibilidade quando solicitado e pela sensatez durante o processo de finalização desta pesquisa.

Ao Prof. Carlito Calil Junior, pela confiança e apoio no projeto desenvolvido. Pelas dicas e sugestões no desenvolvimento desta pesquisa.

Ao pândego Prof. Francisco Antonio Rocco Lahr, pela frugal amizade e sumidade irrefutável. Pelos concelhos acachapantes e por todo arroubo quando em minha presença.

Aos professores da UNESP-Botucatu, Adriano Wagner Ballarin e Sérgio Augusto Rodrigues, pelo auxílio nas análises estatísticas e no desenvolvimento das tabelas de classes de resistência.

Aos professores Humberto Breves Coda, Rodrigo Ribeiro Pacolla e Maximiliano Malite, pelas disciplinas lecionadas e pelo aprendizado durante a formação teórica no doutorado em Engenharia de Estruturas.

Aos técnicos e amigos do Laboratório de Estruturas de Madeira: Arnaldo Floro de Souza e Jaime Galindo pelo auxílio na instrumentação dos ensaios; Samuel Inácio de Sá e Silvio Antônio Ferro pelos trabalhos em confecção de corpos de prova na marcenaria; Roberto Galindo, pelos serviços de informática prestados. Sou grato em especial pelo convívio fraterno com o amigo Aparecido Galindo (*in memorian*) fonte de positividade, obrigado pelos belos versos cantados enquanto trabalhava durante meses à frente de sua sala.

Aos técnicos do Laboratório de Estruturas Romeu Bressan Neto e Luiz Vicente Vareda, pelo auxílio no desenvolvimento de aparatos de medição para execução dos trabalhos experimentais desta pesquisa. Aos amigos Dorival Neto, Masaki Neto, Mário Botelho e Jorge Luis R. Brabo, pela excêntrica positividade durante o período de convívio.

Aos amigos do secretariado do Departamento de Estruturas e do LaMEM, Daniane Vitte, Marcela Bassoli, Rosi Rodrigues, Clayton Silva, Maria Nadir Minatel, Melina Ostini Penetra, Sylvia Helena de Castro, Luis Eduardo Bragatto e Tânia Maria Ferreira, por todo suporte e auxílio departamental, pela amizade e pelos anos de convívio. A Escola de Engenharia de São Carlos da Universidade de São Paulo, representada pelo Departamento de Engenharia de Estruturas – SET-EESC-USP, por disponibilizar estrutura e tecnologia de ponta no desenvolvimento desta pesquisa.

A Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES, por disponibilizar um ano de bolsa de estudos.

A BERNECK S.A., representada pelos senhores Fernando Gnoatto e Daniel Berneck, pelo suporte material e financeiro, sem o qual seria impossível a realização desta pesquisa.

A MICROTEC S.A, representada pelo senhor Martin Bacher, por disponibilizar explicações e suporte sobre o scanner industrial *Golden Eye 706*.

Ao professor e amigo Pedro Gutemberg de Alcantara Segundinho, a quem devo boa parte do meu crescimento profissional. Obrigado pelos conselhos e pelo apoio durante os experimentos e a escrita.

Ao professor e amigo Juarez Benigno Paes, pelas orientações que se iniciaram na graduação e que continuam até hoje.

À amiga Maria de Fátima Nascimento, pela amizade e pelo apoio espiritual durante os momentos mais difíceis. Pelo conforto das suas orações, que me ajudaram a seguir firme no propósito e a vencer os meus obstáculos.

Aos amigos veteranos de sala DO02, David Leonarno Amorim, Ellen Kellen, Gisele Martins e Winston Zumaeta, pelo convívio inicial e por toda experiência trocada no doutorado. Aos demais colegas discentes do departamento, em especial a Arthur Alax, Matheus Fernandes, Thais Pedrosa, Pablo Krahl, Geovani Nogueira; Vanessa Felício; Lisiane Prado, Tulio Raunyr, Heider Castro, Sergio Cordeiro e Leonardo Borges, a amizade de vocês foi fundamental para que os tensores de tensão não deformassem os neurônios além dos limites da elasticidade.

Aos amigos e companheiros do LaMEM: Caio Fernandes dos Santos, companheiro de sala do LaMEM, pela contribuição no desenvolvimento dos ensaios de cisalhamento e compressão normal; Felipe Hideyoshi Icimoto e Rodrigo Nogueira pelas longas noites viradas ao meu lado no laboratório no desenvolver das pesquisas; Marcos Cesar de Moraes Pereira pelo auxílio nas questões burocráticas de prestação de serviços junto à pesquisa; Tiago Hendrigo, Fabiane Ferro, Lauren Macedo, Leonardo Marcolin, Raquel Cavalheiro, Fabiana Moritani e Vitor Uemura pela contribuição cotidiana nos anos de convívio e pesquisa no LaMEM. À amiga Perla de Carli Lima, pelo auxílio nas pesquisas e pelo apoio durante uma das etapas mais complicadas do meu doutorado.

Aos colegas de trabalho do Centro Universitário FAESA, em especial aos meus coordenadores Heloísa Mesquita, Warley Teixeira, José Tasso de Alencar e Cláudia Câmara, pelo apoio na reta final; a todos os professores e amigos, em especial ao Prof. José Alves Rodrigues, fonte inesgotável de positividade; e a todos os meus alunos e orientados, pelo incentivo e motivação oferecidos durante o nosso convívio.

Aos amigos da primeira turma de Engenharia Industrial Madeireira da UFES. Aonde quer que eu for, lembrarei de vocês com carinho e irmandade. Em especial ao amigo e irmão Walter Torezani Boschetti, pelo apoio incondicional em todas as etapas deste trabalho.

Aos amigos Pablo Altoé Amorim, Brunna Vila C. F. Amorim e Vanessa Delfino Moraes. Vocês fazem parte da minha família! Obrigado pelo carinho, pelos momentos e pelo apoio incomensurável na reta final do desenvolvimento deste trabalho.

Aos meus primos, primas, tios tias e avós, pelas orações e pelos momentos de descontração. Em especial, à minha avó Izaltina Marchesi dos Santos, pelas orações, pela torcida e pelo carinho infinito.

À minha mãe, Catarina Márcia Lube dos Santos, que me educou com carinho e me ensinou a ter sonhos grandes. Este sonho teve início com você, e tenho muito orgulho de poder retribuir à altura de toda dedicação e amor que tive no cerne da minha família. Ao meu pai, Marcos Antônio dos Santos, pela hombridade, confiança e companheirismo. Ao meu irmão, Otávio Lube dos Santos, por estar sempre ao meu lado. Vocês são a base do meu tudo!

... e no final você ainda vai olhar para trás e agradecer cada tropeço. Acredite, Deus não falha!

RESUMO

SANTOS, L. L Estabelecimento de Classes de Resistência para a Madeira Serrada de *pinus* spp. 2019. 212 p. Tese (Doutorado em Engenharia Civil – Estruturas) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Paulo, 2019.

A norma brasileira NBR 7190 passa por reformulação e adequação na forma de classificação mecânica das madeiras, principalmente para a utilização estrutural das espécies exóticas mais cultivadas no país: o eucalipto e o pinus. A crescente demanda por estas madeiras para composição estrutural evidencia a necessidade de métodos de classificação eficientes e seguros. A versão normativa atual, do ano de 1997, não dispõe de um método de classificação visual e mecânica para peças estruturais com defeitos. Por isto, esta pesquisa tem por objetivo principal estabelecer uma tabela de classes de resistência para a madeira serrada de *pinus* spp., a partir de análises realizadas com um lote de 1489 peças em dimensões estruturais. Foram utilizadas normas internacionais como base, as quais já vem sido discutidas no escopo do PN-02-126.10-001-1- Madeiras - Critérios de classificação visual e mecânica de peças estruturais de madeira. Além disso, foram avaliados parâmetros industriais não destrutivos, comparados e correlacionados com testes laboratoriais, a fim de avaliar o scanner Golden Eye 706 e propor um algoritmo de classificação por métodos não destrutivos. Para tanto, foram criados modelos estatísticos e um protocolo de classificação a partir destes resultados. Os resultados obtidos revelam que a madeira de pinus spp. avaliada possui baixa a média densidade e classes de resistência modestas quando comparada com outras tabelas de classes disponíveis em normas internacionais. Dentre os parâmetros não destrutivos avaliados, o módulo de elasticidade obtido pelo método de vibrações longitudinais foi a propriedade que melhor se ajustou para a classificação, embora a dimensão dos nós e a classificação visual também influenciem diretamente na resistência das peças.

Palavras-chave: Classificação visual; parâmetros não-destrutivos; ensaios destrutivos; análise experimental; scanner industrial.

ABSTRACT

SANTOS, L. L. **Strength class establishment for lumber of** *pinus* **spp.** 212 p. Thesis (Doctorate in Civil Engineering - Structures) –São Carlos Engineering School, University of São Paulo, São Paulo, 2019.

The Brazilian standard NBR 7190 goes through reformulation and adaptation in the mechanical grading of wood, mainly for the structural use of the most cultivated exotic species in the country: eucalyptus and pines. The growing demand for these woods for structural composition evidences the need for efficient and safe grading methods. The current normative version, for the year 1997, does not have a method of visual and mechanical grading for structural parts with defects. Therefore, this research has as main objective to establish a table of strength classes for the lumber of *pinus* spp. From analyses carried out with a batch of 1489 pieces in structural dimensions. International standards were used as basis, which have already been discussed in the scope of PN-02-126.10-001-1- Woods - Criteria for visual and mechanical grading of structural wood pieces. In addition, non-destructive industrial parameters were evaluated, compared and correlated with laboratory tests, in order to evaluate the Golden Eye 706 scanner and to propose a non-destructive grading algorithm. For that, statistical models and a grading protocol were created from these results. The results obtained show that pine wood evaluated has low to medium density and modest resistance classes when compared to other tables of classes available in international standards. Among the non-destructive parameters evaluated, the modulus of elasticity obtained by the longitudinal vibration method was the property that best fit the grading, although the knot size and visual grading also directly influence the strength of the parts.

Keywords: Visual grading; non-destructive parameters; destructive tests; experimental analysis; Industrial scanner.

LISTA DE FIGURAS

Figura 2.1 – Anéis de crescimento típicos de uma gimnosperma (A) e visão	38
anatômica por microscopia (B)	
Figura 2.2 – Escola de vela Ilhabela – Cobertura em MLC curva de pinus.	40
Figura 2.3 – Casa Tiradentes – Estrutura em MLCC	40
Figura 2.4 - Avaliação de defeitos na madeira de pinus - A: Nó na face larga;	43
B:Nó na face estreita; C: Fenda; D: Racha anelar; E: Inclinação das fibras.	
Figura 2.5 – Projeção dos nós na seção da peça de madeira.	44
Figura 2.6 – Exemplos de KAR's e respectivas classificações segundo a BS 4978.	45
Figura 2.7 - Posições de aplicação de cargas no ensaio de flexão estática -	49
A:edgewise; B: flatwise.	
Figura 2.8 – Esquema ilustrativo do equipamento scanner industrial GoldenEye	52
706 – Scanner de raios x (1) e de análise de densidade e elasticidade (2).	
Figura 2.9 – Análise da peça para contabilização do valor de "KAR".	53
Figura 2.10 – Classes de resistência adotadas pela EN 338 (2009).	57
Figura 2.11– Classes de resistência exemplificadas pela ISO 16598.	57
Figura 2.12 – Peças de madeira com elevada densidade avaliadas por Carreira	60
(2003).	
Figura 3.1 - Lotes de tábuas de pinus armazenadas no LaMEM.	61
Figura 3.2 - Imagem da peça no laboratório – A; e imagem gerada pelo scanner	62
– B.	
Figura 3.3 - Esquema de corte das tábuas e preparo de corpos de prova.	64
Figura 3.4 – Gabarito utilizado na classificação visual dos nós.	65
Figura 3.5 – Esquema de ensaio de vibração longitudinal.	66
Figura 3.6 – Ensaio de vibração longitudinal.	66
Figura 3.7 – Esquema de ensaio de flexão estática proposto pela ISO 13910.	67
Figura 3.8 – Diagrama de Força x Deslocamento de um ensaio de flexão estática.	68
Figura 3.9 – Aparato e dimensionamento (cm) do ensaio de flexão estática.	69
Figura 3.10 – Ensaio de flexão estática.	70
Figura 3.11 – Esquema de ensaio de compressão paralela às fibras.	71
Figura 3.12- Aparato de ensaio de compressão paralela às fibras e detalhe de	72
ruptura.	

Figura 3.13 – Aparato e dimensionamento (cm) do ensaio de compressão paralela	73
às fibras.	
Figura 3.14 – Esquema de ensaio de tração paralela às fibras.	74
Figura 3.15 – Aparato de execução do ensaio de tração paralela às fibras.	74
Figura 3.16 – Dimensionamento (cm) do ensaio de tração paralela às fibras.	75
Figura 3.17 – Esquema de ensaio de compressão perpendicular às fibras.	76
Figura 3.18 – Aparato e dimensionamento do ensaio de compressão	77
perpendicular às fibras.	
Figura 3.19 – Esquema de ensaio de tração perpendicular às fibras.	78
Figura 3.20- Aparato e dimensionamento do ensaio de tração perpendicular às	79
fibras.	
Figura 3.21 – Esquema de ensaio de cisalhamento paralelo às fibras.	80
Figura 3.22 - Aparato e dimensionamento do ensaio de cisalhamento paralelo às	81
fibras.	
Figura 3.23 – Limites superior (A) e inferior (B) do 5-percentil de resistência da	83
amostra.	
Figura 4.1 – Dispersão dos resultados obtidos para densidade aparente e umidade.	87
Figura 4.2 – Correlações entre: densidade aferida em laboratório e a aferida pelo	88
scanner; e do módulo de elasticidade dinâmico obtido em laboratório e a	
analisada pelo scanner.	
Figura 4.3 – Comparação entre fotografia (A) e imagem de uma peça gerada por	88
raio x (B).	
Figura 4.4 – Imagem da peça (A) e do scanner (B) referente ao valor máximo do	89
parâmetro <i>Knot_18</i> encontrado no lote trabalhado.	
Figura 4.5 – Média, intervalo de confiança e análise de variância do valor de	91
Knot_18 em cada classe visual.	
Figura 4.6 – Dispersão normal dos valores de Knot_18 por classes visuais de	91
todas as peças estudadas.	
Figura 4.7 – Dispersão dos valores de f_m e <i>Knot_18</i> por classe visual.	92
Figura 4.8 – Distribuição normal dos resultados de módulo de ruptura por classe	94
visual.	
Figura 4.9 – Comportamento da ruptura na flexão estática por classe visual.	95

Figura 4.10 – Correlação entre o módulo de elasticidade obtido pelo scanner 96 (peças com 4 metros) e o módulo de elasticidade por vibrações longitudinais obtido em laboratório (peças com 2 metros).

Figura 4.11 – Correlação entre os valores de módulo de elasticidade obtidos por 98 flexão estática (peças com 2 metros) e por vibrações longitudinais (peças com 2 metros).

Figura 4.12 – Dispersão dos valores de f_{t0} e *Knot_18* por classe visual. 99

Figura 4.13 – Distribuição normal dos resultados de resistência à compressão 100 paralela às fibras por classe visual.

Figura 4.14 – Comportamento da ruptura na tração paralela às fibras estática por 101 classe visual.

Figura 4.15 – Dispersão dos valores de f_{c0} e *Knot_18* por classe visual. 102

Figura 4.16 – Distribuição dos resultados de resistência à compressão paralela às 102 fibras por classe visual.

Figura 4.17 - Comportamento da ruptura na compressão paralela às fibras estática 103 por classe visual.

Figura 4.18 – Modos de ruptura dos corpos de prova de cisalhamento: A- 104 Cisalhamento; B- Tração; C- Ruptura mista.

Figura 4.19 – Modos de ruptura em corpos de prova de tração perpendicular às 106 fibras

Figura 4.20 – Dispersão dos valores do modelo de calibração entre módulo de 108 elasticidade estático e módulo de elasticidade dinâmico – Valores em GPa.

Figura 4.21 – Dispersão dos valores do modelo de calibração entre módulo de 109 ruptura na flexão estática e parâmetro *Knot_18*.

Figura 4.22 – Dispersão dos valores do modelo de calibração entre a resistência 110 a compressão paralela às fibras e o parâmetro *Knot_18*.

Figura 4.23 – Dispersão dos valores do modelo de calibração entre a resistência 111 a tração paralela às fibras e o parâmetro *Knot_18*.

LISTA DE TABELAS

Tabela 2.1 – Especificações europeias para os defeitos em peças de madeira	46
serrada	
Tabela 2.2 – Especificações brasileiras para os defeitos em peças de madeira	46
serrada	
Tabela 2.3 – Critérios de classes de resistência propostos por Moritani (2018)	58
para a madeira serrada de pinus.	
Tabela 2.4 – Proposta de tabela de classes de resistência do PN-02-126.10-001-	58
1	
Tabela 2.5 – Resultados (em MPa) encontrado por Carreira (2003) e	59
comparação com os estabelecidos pelo SPIB (1994).	
Tabela 4.1 – Dispersão das peças ensaio e por classe visual.	87
Tabela 4.2 – Distribuição das peças por ensaio e por classe visual.	89
Tabela 4.3 – Dados estatísticos referentes a análise das classes visuais com os	90
valores de <i>Knot_18</i> .	
Tabela 4.4 – Resultados obtidos na flexão estática por classes visuais – Valores	93
em MPa.	
Tabela 4.5 – Resultados obtidos de módulo de elasticidade (MOE) por classes	97
visuais – [GPa].	
Tabela 4.6 – Resultados obtidos na tração paralela às fibras por classes visuais –	99
Valores em MPa.	
Tabela 4.7- Resultados obtidos na compressão paralela às fibras por classes	102
visuais – Valores em MPa.	
Tabela 4.8 – Resultados obtidos no cisalhamento paralelo às fibras por classes	105
visuais – Valores em MPa.	
Tabela 4.9 – Resultados obtidos na compressão perpendicular às fibras por	106
classes visuais – Valores em MPa.	
Tabela 4.10 – Resultados obtidos na tração perpendicular às fibras por classes	107
visuais – Valores em MPa.	
Tabela 4.11 – Resultados do modelo de calibração entre E_m e E_{din}	108
Tabela 4.12 – Resultados do modelo de calibração entre $f_m e Knot_{18}$	109
Tabela 4.13 – Resultados do modelo de calibração entre f_{c0} e <i>Knot_18</i>	110
Tabela 4.14 – Resultados do modelo de calibração entre f_{t0} e <i>Knot_18</i>	111

Tabela 4.15 – Quantidade e porcentagem de peças classificadas classes de 112 resistência pelos modelos criados e verificação para todos os ensaios

Tabela 4.16 – Quantidade de peça avaliadas com erro e respectivas percentagens. 113

Tabela 5.1 – Classes de resistência para a madeira de *pinus* spp. associadas às 114 classes visuais do SPIB.

Tabela 5.2 – Proposta de tabela de classes de resistência da madeira de pinus para 116 a NBR 7190.

Tabela 5.3 – Parâmetros visuais para a classes de resistência para a madeira de 116 *pinus* spp.

LISTA DE QUADROS

Quadro 2.1 – Dimensões dos defeitos para a classificação visual.	42
Quadro 2.2 – Classificação visual atribuída à densidade.	43
Quadro 2.3 – Limites de dimensão dos nós para classificação visual pela BS 4978.	44
Quadro 2.4 – Alguns métodos não destrutivos, equipamentos e marcas utilizadas na classificação industrial.	55

LISTA DE ABREVIAÇÕES

- ABNT Associação Brasileira de Normas Técnicas;
- PN Projeto de Norma;
- NBR Norma Brasileira Regulamentadora;

ASTM – American Standartization Testing Methods;

CIRSOC – Centro de Investigación de los Reglamentos Nacionales de Securidad para las Obras Civiles;

- NCh Norma Chilena;
- ISO International Organization for Standardization;

SPIB - Southern Pine Inspection Bureau;

MLC – Madeira Laminada Colada;

MLCC - Madeira Laminada Colada Cruzada;

IPEF – Instituto de Pesquisa Florestal Brasileiro;

Knot_18 – Parâmetro de medida do scanner de raios x;

KAR – Knot Area Ratio;

LISTA DE NOTAÇÕES

Kmod - Coeficiente de modificação da resistência da madeira da NBR 7190

- k índice atribuído aos valores característicos
- fm resistência à flexão estática [MPa]

f_{c0} - resistência à compressão paralela às fibras [MPa]

- f_{t0} resistência á tração paralela às fibras [MPa]
- fv0 resistência ao cisalhamento paralelo às fibras [MPa]

fc90 - resistência à compressão perpendicular ás fibras [MPa]

- f_{t90} resistência à tração perpendicular às fibras [MPa]
- E_m módulo de elasticidade na flexão estática [GPa]

Edin,GE - módulo de elastidicade dinâmico obtido pelo scanner Golden Eye 706 [GPa]

 $E_{din,lab}$ - módulo de elasticidade dinâmico obtido pelo método de vibrações longitudinais realizado em laboratório [GPa]

D_{lab} - densidade aferida em laboratório [kg/m³]

- D_{GE} densidade aferida pelo scanner $[kg/m^3]$
- *a* = Distância do apoio até o ponto de aplicação de carga;
- b = Base da seção;
- F_{ult} = Força última de ruptura;
- f = Frequência de vibração natural;
- h = Altura da seção;
- L = Vão livre da peça ensaiada;
- l = Comprimento do corpo de prova

m = Massa;

- ΔF = Variação da força aplicada;
- $\Delta e =$ Variação da flecha diferida;

SUMÁRIO

1	INT	IRODUÇÃO E JUSTIFICATIVA		
	1.1	OBJETIVOS		
2	REV	VISÃO BIBLIOGRÁFICA		
	2.1	O gênero pinus no Brasil		
	2.2	Características e utilização estrutural do pinus		
	2.3	Avaliação das propriedades das madeiras	41	
	2.3.	.1 Classificação visual da madeira por graduadores humanos	41	
	2.3.	.1.1 Classificação visual pelo SPIB e pela ASTM D-245		
	2.3.	.1.2 Classificação visual pela norma britânica BS 4978		
	2.3.	1.3 Classificação visual pela norma europeia EN 14081-1		
	2.3.	.1.4 Classificação visual pela ABNT PN 02:126.10-0001-1: 2018		
	2.3.	2 Ensaios destrutivos em corpos de prova isentos de defeitos	47	
	2.3.	.3 Ensaios destrutivos em corpos de prova de dimensões estruturais		
	2.3.	4 Ensaios não destrutivos	50	
	2.4	Classificação estrutural por meio de scanners e equipamentos industriais	51	
	2.5	Tabelas de classes de resistência para coníferas	56	
	2.6	Considerações sobre a revisão bibliográfica	60	
3	. MA	MATERIAIS E MÉTODOS		
	3.1	Material experimental	61	
	3.1.	1 Características gerais	61	
	3.1.	2 Classificação industrial por scanner		
	3.1.	.3 Equipamentos de ensaio	63	
	3.1.	.4 Produção de corpos de prova	63	
	3.2	Métodos de inspeção e ensaio	64	
	3.2.	1 Classificação visual pelo SPIB (2014)	64	
	3.2.	2 Classificação não destrutiva pelo método de vibrações longitudinais	65	
	3.2.	.3 Ensaio de flexão estática	67	
	3.2.	4 Ensaio de compressão paralela às fibras	70	
	3.2.	5 Ensaio de tração paralela às fibras	73	
	3.2.	.6 Ensaio de compressão normal às fibras	75	
	3.2.	.7 Ensaio de tração normal às fibras	77	
	3.2.	8 Ensaio de cisalhamento paralelo às fibras		
	3.2.	9 Obtenção da densidade aparente das peças		
	3.2.	10 Obtenção do teor de umidade		
	3.3	Análises estatísticas		
	3.3.	1 Análise estatística geral	83	

3.3.2		2	Análise dos valores característicos segundo a ISO 13910	83	
3.3.3		3	Análise de modelos de validação cruzada	84	
3.3.4		4	Classificação por valores não destrutivos	85	
4	RES	SULT	ADOS OBTIDOS E ANÁLISE DE DADOS	86	
4	.1	Con	nparação dos parâmetros apresentados pelo scanner com os avaliados em		
la	laboratório				
4.2		Qua	nto à classificação visual por graduadores humanos	89	
4	.3	Ensa	aios de flexão estática	92	
	4.3.1	1	Módulo de elasticidade por vibrações longitudinais e por flexão estática	96	
4	.4	Ensa	aios de tração paralela às fibras	98	
4	.5	Ensa	aios de compressão paralela às fibras	101	
4	.6	Ensa	aios de cisalhamento paralelo às fibras	104	
4	.7	Ensa	aios de compressão perpendicular às fibras	105	
4	.8	Ensa	aios de tração perpendicular às fibras	106	
4	4.9 4.9.1 4.9.2 4.9.3		lelos estatísticos de validação cruzada	107	
			Módulo de elasticidade estático x Módulo de elasticidade dinâmico	107	
			Módulo de ruptura na flexão estática x Knot_18	108	
			Resistência à compressão paralela às fibras x Knot_18	109	
4.9.4		4	Resistência à tração paralela às fibras x Knot_18	110	
4	.10	Clas	sificação das peças com a EN 338	111	
5	PRC	POS	TA DE TABELA DE CLASSES DE RESISTÊNCIA	114	
6	CON	NCLU	JSÕES	117	
7	REF	FERÊ	NCIAS BIBLIOGRÁFICAS	119	
APÍ	ÊNDI	CES		124	
A	pênd	ice A	– Resultados dos ensaios de flexão estática	125	
A	Apêndice B – Resultados dos ensaios de compressão paralela às fibras				
A	Apêndice C – Resultados dos ensaios de tração paralela às fibras14				
A	Apêndice D – Protocolo de classificação por métodos não destrutivos para flexão estática 159				
A p	Apêndice E – Protocolo de classificação por métodos não destrutivos para compressão paralela às fibras				
A fi	Apêndice F – Protocolo de classificação por métodos não destrutivos para tração paralela às fibras				

1 INTRODUÇÃO E JUSTIFICATIVA

A madeira é um dos materiais mais utilizados e estudados pela sociedade. Dentre centenas de produtos dos quais é matéria prima, podem ser citados desde pequenos artefatos até mesmo grandes estruturas de casas, prédios e pontes. Apesar de ser oriunda de fontes renováveis, o aumento do seu consumo nas últimas décadas provocou mudanças radicais no uso deste material, uma vez que existe um grande impacto ambiental gerado pela sua exploração desordenada e consequente necessidade de longos prazos para recuperação de florestas nativas. Por este motivo, a utilização de espécies de madeira exóticas provenientes de reflorestamento, tais como as dos gêneros pinus e eucalipto, vem sendo incrementada.

Essas espécies exóticas possuem rápido crescimento, sendo usualmente absorvidas para suprir a necessidade de indústrias como as de celulose e papel, cujos produtos minimizam alguns aspectos negativos associados à idade de corte. De fato, todos os grupos arbóreos apresentam uma anatomia complexa; no entanto, aqueles que perduram durante tempos maiores de cultivo podem apresentar relação de defeitos inferiores aos mais jovens. Isto se dá devido a necessidades fisiológicas iniciais, tais como a presença de galhos, que se sobrepõem à necessidade de aumento de diâmetro, o que explica a presença excessiva de nós nestes grupos de árvores mais jovens.

Quando se trata de madeiras para utilização estrutural, é desejável que apresentem o mínimo de defeitos possível. Embora não se descarte o emprego de peças com nós, evidencia-se a necessidade de sua classificação para possibilitar a sua utilização com a segurança. Atualmente, existem diversos procedimentos para classificar as madeiras, tanto de forma visual quanto mecânica. Entretanto, algumas preconizam uma classificação simplificada, como é o caso da Norma Brasileira da Associação Brasileira de Normas Técnicas - ABNT:NBR-7190:97 (ABNT, 1997), que considera apenas madeira de primeira ou segunda classe por meio do valor de K_{mod3} . No projeto de norma ABNT: PN-02-126.10-001-1 - Madeiras –Critérios de classificação visual e mecânica de peças estruturais de madeira (ABNT, 2018) estão sendo propostas tabelas de classificação visual e mecânica para as madeiras de *pinus* spp. de forma generalizada, sendo importante fazer uma avaliação mais detalhada.

A norma internacional ISO 13910:2013 recomenda que a classificação deve ser realizada considerando os defeitos nas piores solicitações de carga. A realização da

classificação visual pode ser feita por vários métodos, como os descritos pelo SPIB (2014), ASTM D-245 (1993), EN 14081 (2013) e BS 4978(2007).

Outros métodos de ensaios e obtenção de propriedades físicas e mecânicas devem ser considerados, tais como a aplicação de scanners pela indústria de beneficiamento da madeira. Tais equipamentos podem aferir diversas características das madeiras de forma rápida e não destrutiva, a fim de gerar dados importantes para a classificação geral, substituindo a classificação visual por graduadores humanos. O scanner funciona como um aparelho de raio-X que realiza uma varredura de imperfeições na madeira, tendo a capacidade de mensurar as propriedades e qualidade das mesmas.

Quando a madeira é utilizada para a produção de elementos estruturais de Madeira Laminada Colada – MLC, existe a possibilidade de montagem das peças, colocando as melhores tábuas nas bordas externas e utilizando as piores no centro. Existe um limite para quantidade e dimensões de nós, que podem ser eliminados para e substituídos por emendas dentadas coladas, o que pode garantir uma resistência superior do que o próprio nó, com o viés do custo produtivo. Geralmente é realizada uma classificação visual para determinar a posição das peças na viga, podendo empregar peças de menor qualidade.

Considerando a reformulação da atual NBR 7190:1997 e que as estimativas por métodos não destrutivos são uma alternativa na previsão das características mecânicas da madeira, o alvo desta pesquisa é propor uma tabela de classificação mecânica para a madeira serrada de *pinus* spp., a fim de contribuir para a atualização da norma brasileira a partir de classes visuais pré-estabelecidas. Além disso, analisar as correlações entre métodos não destrutivos industriais e os preconizados pelas normas (classificação visual e ensaios destrutivos), a fim de propor um algoritmo de classificação para a indústria baseado em modelos estatísticos, introduzindo as propriedades dinâmicas e de imagem geradas por scanners de alta precisão.

1.1 **OBJETIVOS**

 O objetivo principal deste trabalho é o estabelecimento de classes de resistência para madeira serrada de *Pinus* spp., associando os resultados obtidos à classificação visual e mecânica a fim de criar uma tabela de classes de resistência e um protocolo de classificação para a indústria, utilizando parâmetros oriundos de scanners de alta precisão correlacionados aos métodos normativos convencionais.

Para tanto, devem ser atendidos os seguintes objetivos específicos:

- Estudar os principais parâmetros gerados pelo scanner Golden Eye 706, tais como: Módulo de elasticidade dinâmico (E_{din,GE}), densidade (D_{GE}) e dimensão dos nós (*Knot_18*);
- Avaliar as seguintes propriedades físicas e mecânicas da madeira serrada de *pinus* spp., a partir de ensaios recomendados pela ISO 13910 (2013):
 - o Densidade (D_{lab});
 - Módulo de elasticidade estático (E_m) e Módulo de Ruptura (f_m) pelo ensaio de flexão estática;
 - Resistência à compressão paralela às fibras (f_{c,0}) e resistência à tração paralela às fibras (f_{t,0}) por ensaios de solicitações axiais simples;
 - Resistência à compressão perpendicular às fibras $(f_{c,90})$, resistência à tração perpendicular às fibras $(f_{t,90})$ e resistência ao cisalhamento paralelo às fibras $(f_{v,0})$ a partir de ensaios específicos.
- Obter as classes de resistência da madeira de *pinus* spp. pelos métodos preconizados pelas normas ISO 16598:2015 e ISO 13910:2013;
- Associar as classes de resistência encontradas com a classificação visual por graduador humano, realizada conforme o método desenvolvido pelo SPIB (Southern Pine Inspection Bureau);
- Obter o módulo de elasticidade dinâmico (E_{din,lab}) pelo método de vibração longitudinal utilizado pela literatura e correlacionar com os valores de módulo de elasticidade dinâmico (E_{din,GE}) gerados pelo scanner;

- Correlacionar as classes visuais com os parâmetros de dimensões de defeitos da classificação promovida pelo scanner, levando em conta a posição dos defeitos na peça, a partir de análise de variância e teste de médias;
- Correlacionar os resultados de módulo de elasticidade estático (E_m) com módulo de elasticidade dinâmico gerado pelo scanner (E_{din,GE}) e pelo ensaio de vibração longitudinal (E_{din,lab});
- Correlacionar os valores de resistência das peças ensaiadas na flexão longitudinal (f_m), tração (f_{t,0}) e compressão paralela às fibras (f_{c,0}) com o parâmetro de dimensão do nó (Knot_18) gerado pelo scanner;
- Criar modelos estatísticos com validação cruzada para a proposta do algoritmo de classificação industrial, com a finalidade de gerar equações que possam inferir a resistência mecânica das peças a partir das informações geradas pelo scanner.
2 REVISÃO BIBLIOGRÁFICA

2.1 O gênero pinus no Brasil

O gênero *pinus*, pertencente à família *Pinacea*, teve origem predominante no hemisfério norte, tendo sido introduzido e cultivado no Brasil há mais de um século, através de pesquisas do Serviço Florestal do Estado de São Paulo. Shimizu (2008) relata que o gênero ficou conhecido nacionalmente a partir da década de 1960, quando extensas áreas das regiões sul e sudeste foram utilizadas no cultivo de *Pinus Elliotti* e *Pinus Taeda*. Por este motivo, estas duas espécies se tornaram as mais conhecidas para o público em geral, assim como suas características foram amplamente estudadas.

Segundo documentos recentes publicados pelo Instituto de Pesquisas Florestais – IPEF, existem mais de 1,5 milhões de hectares de florestas de *pinus* no Brasil, aproximadamente 22% de todas as florestas plantadas no país, com predominância na região sul, que detém 88% das florestas (ABRAF, 2013). As terras brasileiras garantem a maior produtividade do gênero em metros cúbicos por hectare ano (superior a 30m³/ha.ano) associada ao menor tempo de rotação média de árvores (inferior a 10 anos), índices melhores que países como China, Estado Unidos e Canadá (IBA, 2016).

A partir de indicadores industriais é possível inferir que o produto de maior destinação da madeira de pinus no ano de 2018 foi a fabricação de celulose, com destinação de 35% da produção nacional. Cerca de 30% dos produtores brasileiros comercializam a madeira cultivada de forma independente, podendo ser destinada à serraria e utilização da madeira *in natura*, na qual se enquadra a madeira utilizada em estruturas em geral. O restante da produção se divide nas indústrias de painéis de madeira reconstituída, carvão vegetal e siderurgia, dentre outros (IBA, 2019).

O rápido crescimento em terras brasileiras é fundamental para o cultivo do pinus. No entanto, os ciclos mais curtos provocam um decréscimo de oferta de madeiras com diâmetros e densidades maiores e, consequentemente, aumentam a porcentagem de defeitos, tais como os nós, que apresentam correlação direta com o desempenho físico mecânico e a qualidade da madeira de pinus (BALLARIN e LARA PALMA, 2003; CARREIRA, 2003). Ainda assim, boa parte das florestas do gênero no Brasil são utilizadas para a produção de serrados de pequenas dimensões, geralmente destinados à produção de embalagens, fôrmas, móveis e, recentemente, na confecção de peças de Madeira Lamelada Colada – MLC para emprego na construção civil (SANTOS et al, 2017).

2.2 Características e utilização estrutural do pinus

Além do grande potencial de cultivo e crescimento no país, a madeira de pinus possui características importantes para destinação adequada em estruturas e produtos estruturais. O gênero faz parte do grupo das gimnospermas, tendo em suas principais características anatômicas a presença de anéis de crescimento bem definidos e estrutura microscópica simplificada, como observado na Figura 2.1.

Figura 2.1 – Anéis de crescimento típicos de uma gimnosperma (A) e visão anatômica por microscopia (B)

Fonte: (A) Arquivo pessoal; (B) Adaptado de Siegloch e Marchiori (2015)

Os anéis de crescimento são definidos por diferenças climáticas evidenciadas durante o ano, ocasionadas pela disponibilidade de recursos naturais para a árvore, como luz solar e água. Na medida que o vegetal dispõe de recursos em fartura, o crescimento é favorecido, formando células maiores e consequentemente faixas claras. Quando os recursos são escassos, a planta trabalha menos, as células ficam menores e a parede celular mais espessa, formando faixas escuras, como ilustrado na Figura 2.1. A quantidade de anéis de crescimento é um indicativo direto da idade e da densidade das madeiras do gênero (MARCHIORI, 2005).

Marchiori (2005) ainda destaca que as gimnospermas se caracterizam pela simplicidade anatômica, tendo predominância de traqueoides longitudinais no lenho, conferindo maior homogeneidade à madeira quando comparada às dicotiledôneas. Esses elementos são responsáveis tanto pela transmissão de seiva quanto pela sustentação mecânica das árvores, estão entre as maiores células da natureza e são os responsáveis pela denotação "fibra longa" atribuída às madeiras coníferas. Essa característica está associada a boa porosidade, diretamente relacionada à fácil secagem e impregnação de produtos químicos, tais como adesivos e preservantes.

Jeong (2013) afirma que a anatomia das coníferas influencia diretamente no Módulo de Elasticidade e na resistência das madeiras de *Pinus taeda*. O autor concluiu que a quantidade de anéis de crescimento é mais determinante do que a própria massa específica para o gênero estudado. Árvores de florestas naturais, que possuem menor incremento de lenho e até menores densidades, apresentaram melhor desempenho mecânico do que as madeiras proveniente de reflorestamento, embora com densidades maiores. Este fator pode ser associado à variações de lenho juvenil e adulto, constatados por Ballarin e Lara Palma (2003).

A madeira de pinus é de fácil trabalhabilidade, desdobro e acabamento, apresenta densidade média a baixa, tendo uso aconselhado em situações estruturais internas e leves (IPT, 1989). Há mais de duas décadas atrás Zenid (1997) já destacava grande emprego do gênero na construção civil paulista. A literatura evidencia o crescimento de construções com esse material, potencializado pela sua facilidade da colagem, que favorece na fabricação de MLC para diversas funções, seja para confecção de vigas retas destinadas a estruturas convencionais (SANTOS, 2014), produção de dormentes reforçados para composição de ferrovias (ICIMOTO, 2013) ou até mesmo painéis de Madeira Laminada Colada Cruzada- MLCC para composição de placas estruturais de alto padrão (PEREIRA, 2014).

Embora não existam dados estatísticos oficiais, é possível afirmar que a madeira de *pinus* brasileira vem sendo empregada na produção de MLC e MLCC, compondo estruturas de alto padrão. Isto deve-se à existência de algumas indústrias nacionais que produzem e executam projetos sob medida, atendendo à demanda de um mercado crescente. Exemplo de construção utilizando a utilização de MLC de *pinus* pode ser observado na Figura 2.2: A cobertura da Escola de Vela Ilhabela-SP, arquitetada pela PPMS Arquitetos Associados, foi construída utilizando estruturas de MLC de *pinus* produzidas pela empresa REWOOD[®].

Figura 2.2 – Escola de vela Ilhabela – Cobertura em MLC curva de pinus.

Fonte: REWOOD (2019)

Outro exemplo da utilização da madeira de *pinus* colada, no entanto formando painéis de MLCC, pode ser observado na Figura 2.3. Trata-se de uma residência projetada pelo arquiteto Alexandre Veneziano, confeccionada e executada pela empresa CROSSLAM[®]. A técnica de colagem das tábuas de forma cruzada proporciona a elaboração de painéis estruturais de dimensões adequadas para paredes e lajes, reduzindo a necessidade de vigas e pilares.

Figura 2.3 - Casa Tiradentes - Estrutura em MLCC

Fonte: CROSSLAM (2019)

Para estes projetos, é fundamental que os projetistas e produtores tenham em mãos uma referência de classificação visual, mecânica e estrutural, de forma a assegurar que o material seja aplicado nos devidos padrões de segurança. A norma ABNT:NBR 7190 passa por atualizações a fim de propor critérios de caracterização mais eficientes, incluindo madeiras exóticas de rápido crescimento, seguindo padrões internacionais da *International Standart Organization - ISO*.

2.3 Avaliação das propriedades das madeiras

Apesar de ser um material heterogêneo, geralmente são encontradas boas correlações entre as principais propriedades físicas e mecânicas das madeiras. A avaliação destas propriedades é fundamental para a classificação das peças de madeira, tendo que atender parâmetros mínimos para serem aplicadas com finalidade estrutural. Por se tratar de um material anisotrópico, a madeira possui resistência e rigidez diferentes de acordo com a direção analisada; geralmente, as propriedades são definidas utilizando um modelo ortótropo, de acordo com a orientação de suas fibras. Para tanto, deve-se seguir métodos normativos, que dependem diretamente do tipo de material e da finalidade do projeto.

2.3.1 Classificação visual da madeira por graduadores humanos

A inspeção visual é o primeiro parâmetro de qualidade dos materiais, ainda mais se tratando da madeira, que contém defeitos naturais que podem ser identificados, na maioria das vezes, na percepção do olhar. Como a madeira de *pinus* possui coloração clara, algumas características como presença de nó, canais de resina e desvio de grã são facilmente discernidas pela inspeção visual.

Segundo Carreira (2003), este método de classificação é baseado na premissa básica de que as características mecânicas das peças isentas de defeitos são distintas daquelas com a presença destes. Sendo assim, é possível separar a madeira por regras específicas, selecionando então classes de qualidade e característica mecânicas distintas. Entretanto, por mais simples que o método seja ele depende do fator humano, podendo ter variabilidade na classificação.

Existem alguns critérios normativos específicos para a classificação visual das madeiras, tais como o preconizado pelo SPIB (*Southern Pine Inspection Bureau*), a *American Standart Test Methods* ASTM D-245, a Norma Europeia - EN 14801 e a *British Standart* - BS 4978. Cada uma das regulamentações foi baseada nas madeiras de pinus cultivadas em seus respectivos países, como por exemplo, o SPIB utilizou como base o grupo denominado "Southern Pine", que abrange as espécies *Pinus palustris, Pinus echinata, Pinus taeda* e *Pinus elliottii*.

2.3.1.1 Classificação visual pelo SPIB e pela ASTM D-245

O método preconizado pelo SPIB (2014) dispõe de 4 classes visuais, SS, S1, S2 e S3. A classe SS é a que possui menor incidência e dimensão de defeitos, aumentando progressivamente para as classes subsequentes. No Quadro 2.1 podem ser observados os critérios e dimensões para determinação de cada uma destas classes visuais, sendo que, quando os defeitos excedem os limites propostos, as peças devem ser descartadas para o uso estrutural.

	Nó	İs		Rachadura		
Classe Visual	Face	Face	Inclinação das fibras	Passante	Superficial	Fendas
v isuai	estreita	Targa	uas 1101 as			
SS	1/5	1/3	1:12	1 vez largura	Até 600mm	1 vez largura
S1	1/4	7/16	1:10	1 vez largura	Até 600 mm	1 vez largura
S2	1/3	1/2	1:8	1,5 vez largura	Até 1/4 comp.	1,5 vez largura
S3	1/2	3/4	1:4	1/6 comp. da peça	Sem limites	1/6 comp. peça

Quadro 2.1 – Dimensões dos defeitos para a classificação visual.

Fonte: Adaptado de Carreira (2003)

Como no Brasil boa parte das madeiras de *pinus* cultivados são das espécies *P*. *taeda* e *P. elliottii*, Carreira (2003) realizou a sua classificação utilizando as regras preconizadas pelo SPIB, analisando então a eficiência do método para a madeira cultivada nacionalmente. Além das regras dispostas pelo SPIB, foram utilizados os critérios de classificação da ASTM D 245, tendo sido determinada a classificação por densidade a partir do percentual de anéis de crescimento na sessão das peças. Em outro trabalho, Carreira e Dias (2005) concluíram que os métodos de classificação visual proposto pelo SPIB são válidos para as madeiras de pinus produzidas no Brasil.

A dimensão dos defeitos é verificada de acordo com as medidas das peças avaliadas. Os principais defeitos analisados para o *pinus* são a presença e dimensão dos nós, inclinação das fibras, rachaduras e fendas na madeira, observados na Figura 2.4. O dimensionamento dos defeitos é realizado por graduadores humanos, sendo que o tamanho dos nós é analisado de acordo com as dimensões da seção transversal da peça. Esta análise pode ser feita com auxílio de gabaritos com dimensões padronizadas, tal como realizado por Carreira (2003).

White e Ross (2014) ainda destacam a possível presença de madeira de compressão/reação, podridão, medula e canais resiníferos.

Fonte: Adaptado de SPIB (2014) e ASTM D-245(1993)

Como os anéis de crescimento estão diretamente relacionados à densidade das madeiras coníferas, também é possível classifica-las visualmente como madeiras por esta característica. A ASTM D-245 considera como "densas" e "não densas" pela quantidade de anéis de crescimento por polegada (aproximadamente 25mm), em uma direção radial, como apresentado no Quadro 2.2.

Quadro 2.2 – Classificação visual atribuída à densidade.

Classe	Anéis	Área dos anéis
Densa	≥6 e	>1/3
	≥4 e	>1/2
Média	≥4 e	<1/2
Baixa	<4 ou	<1/2

Fonte: Adaptado da ASTM D-245(1993)

2.3.1.2 Classificação visual pela norma britânica BS 4978

A norma britânica BS 4978:2007 trata de dois agrupamentos visuais para as madeiras *gminospermas*: GS – *General Structural* e SS – *Special Structural*. O principal parâmetro para a classificação é a dimensão dos nós e suas respectivas posições. É necessária a utilização de conceitos de área útil da seção para a classificação visual, a partir do *knot área measurement* – *KAR*. Para essa observação, é realizada uma projeção da dimensão do nó nas faces, como pode ser observado na Figura 2.5.

Fonte: Adaptado de BS 4978 (2007)

A projeção do KAR é analisada pela norma britânica de forma simplificada, seguindo as premissas dispostas no Quadro 2.3. Este valor é descrito hora como "TKAR – *total knot área ratio*", hora como "MKAR – *marginal knot área ratio*", associando área dos nós às partes marginais das peças, propondo que nesta regiões a análise do nó reduz a classificação.

Características	Classe GS	Classe SS
Nós	Se MKAR for menor ou igual a 1/2, então	Se MKAR for menor ou igual a ¹ /2, então
	TKAR deve ser menor ou igual a 1/2.	TKAR será menor ou igual a 1/3.
	Ou:	Ou:
	Se MKAR dor maior do que 1/2, então	Se MKAR for maior que 1/2, então TKAR
	TKAR deve ser maior ou igual a 1/3.	deve ser menor ou igual a 1/5
Desvio de grã	Não maior do que 1 em 6.	TKAR deve ser menor ou igual a 1/5
Anéis de	Largura média ou anéis anuais não	Largura média ou anéis anuais não
crescimento	maior que 10 mm.	maior que 6 mm.

Quadro 2.3 – Limites de dimensão dos nós para classificação visual pela BS 4978.

Fonte: Adaptado da BS 4978 (2007).

Além das características definidas no Quadro 2.3, a norma faz referência a fissuras, presença de medula, distorções de secagem, bolsas de resina e ataque de insetos e fungos. Na Figura 2.6 são ilustradas algumas situações de exemplo, com diferentes tipos de nós.

Figura 2.6 – Exemplos de KAR's e respectivas classificações segundo a BS 4978.

Fonte: BS 4978 (2007)

2.3.1.3 Classificação visual pela norma europeia EN 14081-1

A EN14081-1 (2006) estipula apenas dois grupos de classes visuais, a Classe A e a Classe B, cujas características podem ser verificadas na Tabela 2.1.

Tabela 2.1 – Especificações europeias para os defeitos em peças de madeira serrada

Defeito	Classe A	Classe B
Nós de Face	$\leq 1/_4$	$\leq \frac{1}{2}$
Nós de borda	$\leq 1/2$	$\leq \frac{3}{4}$
Inclinação das Fibras	$\leq 1/10$	$\leq 1/6$
Fissuras não passantes	Comprimento menor que 1m ou ¼ do comprimento da peça	Comprimento menor que 1,5m ou ½ do comprimento da peça
Fissuras passantes	São permitidas somente nas extremidades da peça com comprimento menor que 2 vezes a largura da peça	Comprimento menor que 1m ou ¼ do comprimento da peça

Fonte: EN14081-1(2006)

2.3.1.4 Classificação visual pela ABNT PN 02:126.10-0001-1: 2018

O projeto de norma ABNT PN 02:126.10-0001-1: 2018 estipula 3 classes visuais, Classe 1, Classe 2 e Classe 3, diferenciadas na Tabela 2.2.

Tabela 2.2 - Especificações brasileiras para os defeitos em peças de madeira serrada

Defeito	Classe 1	Classe 2	Classe 3				
Medula		Não se admite					
Nós	1/5	1/3	1/2				
Inclinação das fibras (mm/mm)	1:9	1:6	1:3				
Fissuras não passantes (m)O comprimento das fissuras não deve ser maior que 1,0 m comprimento da peça							
Fissuras passantes (m)	Somente se permitem as fissuras passantes nos extremos e o comprimento não deve ser maior do que a largura da peça						
Encurvamento /arqueamento (mm)	Menor que 8 mm para	cada 1 m de comprimento	,				
Torcimento (mm/m)	Menor que 1 mm para	cada 25 mm de comprime	ento				
Encanoamento (mm)	Sem restrições						
Esmoado (mm/mm)	Transversalmente men	or que ¼ da espessura ou	largura da peça				
	Sem restrições para o c	comprimento					

Ataques biológicos	Não se admitem zonas atacadas por fungos causadores de podridão
	Admitem-se zonas atacadas por fungos cromógenos
	Admitem-se orifícios causados por insetos de diâmetro inferior a 2 mm.
Outros	Danos mecânicos, presença de bolsa de resina e outros defeitos são limitados por analogia com alguma característica similar

Tabela 2.2 - Especificações brasileiras para os defeitos em peças de madeira serrada (Continuação)

Fonte: ABNT PN 02:126.10-0001-1:2018

2.3.2 Ensaios destrutivos em corpos de prova isentos de defeitos

Estes ensaios são os mais usuais na determinação das propriedades mecânicas das madeiras, por utilizar corpos de prova de pequenas dimensões e gerar pequeno desperdício de material. Os equipamentos de ensaio geralmente são menores e mais práticos, com baixa necessidade de suportar grandes carregamentos. Geralmente, recomenda-se que os corpos de prova sejam retirados de posições estratégicas do tronco da árvore, garantindo alto nível de padronização das amostras.

A ABNT NBR 7190:1997 recomenda a caracterização por métodos de ensaios utilizando corpos de prova isentos de defeitos, retirados da parte "limpa" da madeira. Os métodos são bastante eficientes para a classificação das madeiras nativas brasileiras, uma vez que boa parte destas espécies produzem madeira com menor incidência de defeitos quando comparadas com exóticas de rápido crescimento. A norma admite o coeficiente de modificação K_{mod3} para duas situações: Madeira de primeira categoria, quando classificada mecânica e visualmente; ou madeira de segunda categoria, quando não há classificação. A ASTM D-143:2009 também estabelece a realização de ensaios em corpos de prova sem defeitos e é amplamente utilizada na classificação de madeiras destinadas ao uso estrutural.

Moya et al (2013) realizaram caracterização de um lote misto de madeiras de *pinus taeda* e *pinus elliotti* utilizando a norma americana. Além de caracterizar a madeira, os autores realizaram comparações entre árvores de diferentes idades e correlações das propriedades físicas com as mecânicas de lenho juvenil e adulto. Além de eficientes para a determinação das propriedades da madeira, observa-se que a boa padronização dos corpos de prova isentos de defeito são fundamentais para a tomada de parâmetros comparativos das suas propriedades. No entanto, os autores salientam que é necessária a realização de ensaios em corpos de prova com dimensões estruturais para tomar conclusões definitivas acerca da espécies, que possuem grande incidência de defeitos.

Moya e Baño (2017) utilizaram métodos de ensaio em corpos de prova isentos de defeitos para a obtenção das propriedades elásticas nas direções radial, tangencial e longitudinal das madeiras de Pinus taeda e Pinus elliotti. Esse estudo é necessário para a determinação dos elementos das matrizes de rigidez tridimensionais, incluindo os coeficientes de Poisson, utilizadas no cálculo e na calibração de modelos computacionais. Esse procedimento também foi utilizada por Qiu et al (2014) com a madeira de Larch (*Larix lyallii*), a fim de calibrar modelo numérico de fratura em peças estruturais de MLC curva. Os autores realizaram ensaios em corpos de prova de compressão paralela às fibras isentas de defeitos.

Os ensaios em corpos de prova isento de defeitos são válidos para estimar a resistência da madeira com baixa incidência de defeitos, mas não são os melhores procedimentos para espécies com grande incidência de defeitos.

2.3.3 Ensaios destrutivos em corpos de prova de dimensões estruturais

Os ensaios destrutivos em peças com dimensões estruturais têm por objetivo gerar os valores reais de resistência das peças, incluindo as com defeitos. A presença dos defeitos traduzem melhor a realidade das estruturas de madeira, uma vez sua aplicação em dimensões e quantidade aceitáveis é comum na execução das estruturas. Sendo assim, a principal vantagem deste método é a garantia de valores precisos de resistência.

No entanto, o maior desperdício de material, a necessidade de equipamentos mais robustos e a variação nos resultados devida à heterogeneidade dos defeitos são desvantagens da opção por este método, que deve ser escolhido em espécies com grande incidência de defeitos.

A caracterização completa de um lote de madeiras por meio de ensaios estáticos em dimensões estruturais pode ser realizada pela ISO 16598 (2014), que preconiza a obtenção de valores de resistência à flexão estática (f_{mk}), compressão perpendicular ($f_{c,90k}$) e paralela ($f_{c,0k}$) às fibras, tração perpendicular ($f_{t,90k}$) e paralela ($f_{t,0k}$) às fibras, cisalhamento paralelo (f_{vk}) às fibras, módulo de elasticidade na flexão estática (E_m) e densidade (D_{lab}). Uma metodologia adequada para estimar estas propriedades é proposta pela ISO 13910 (2013), que especifica ensaios em peças estruturais, não descartando a existência de defeitos, fundamentais para uma classificação estrutural realista. Existe uma tendência de padronização dos métodos de ensaio para a obtenção das propriedades físicas e mecânicas das madeiras, uma vez evidenciado que seguindo normas diferenciadas existe a possibilidade de obter dados diferentes. A ISO 16598 (2014) compara a obtenção de algumas propriedades utilizando as normas americana, como a ASTM D198, e as europeias, como a EN 384. Estes métodos de ensaio consideram ensaios com dimensões estruturais, que podem ser efetuados tomando uma série de particularidades que podem afetar o resultado final do conjunto de dados.

Comparando os métodos de ensaios estruturais propostos pelas principais normatizações, a norma americana recomenda que os defeitos sejam posicionados de forma aleatória nos ensaios de flexão, enquanto a norma europeia preconiza que estes devam ser posicionados na extensão central da peça fletida, procurando forçar a ruptura nos pontos de fragilizados pelos defeitos. Segundo a ISO 16598 (2014), essa distinção pode resultar em 5% de diferença para madeira mais resistentes, e até 15% de variação para aquela que tem menor resistência. Sendo assim, é possível afirmar que a posição dos defeitos no método utilizado está atrelada à resistência da madeira.

O posicionamento da seção transversal em relação à aplicação da carga pode influenciar diretamente nos resultados do módulo de elasticidade e da tensão de ruptura para ensaios de flexão estática de peças estruturais. Steffen et al (1997) ressaltam que, na maioria das estruturas, a peça de madeira é solicitada em relação ao eixo de maior inércia, situação denominada pela literatura estrangeira como *edgewise* (Figura 2.7A). No entanto, os autores ressaltam a importância da obtenção da correlação da posição de menor inércia, chamada de *flatwise* (Figura 2.7B). Hanhijärvi et al (2008) explicam que, por ser a situação predominante, a *edgewise* comumente é utilizada no desenvolvimento de tabelas de classes estruturais, como pode ser observado nas recomendações da ISO 13910.

Figura 2.7 – Posições de aplicação de forças no ensaio de flexão estática – A:*edgewise*; B: *flatwise*.

Fonte: Adaptado de Hanhijärvi et al (2005)

Quanto ao módulo de elasticidade obtido no ensaio de flexão estática, as normas americana e europeia tendem a gerar valores com cerca de 5% de diferença. Essa variação pode estar atrelada ao teores de umidades padrão assumidas pelas normas, uma vez que a ASTM e a EN recomendam umidades de 12 e 15%, respectivamente. Existem evidencias técnicas de que tanto a elasticidade quanto a resistência da madeira são afetadas pela umidade, tanto que é necessário realizar correção de valores quando a umidade trabalhado for diferente da padrão.

2.3.4 Ensaios não destrutivos

É possível obter algumas características mecânicas a partir de ensaios não destrutivos, dos quis destacam-se os ensaios dinâmicos por vibrações, ondas de tensão e ultrassom. A obtenção de características elásticas a partir de vibrações naturais é estudada há mais de 150 anos. Uma das técnicas mais consolidadas na literatura é a de obtenção do módulo de elasticidade a partir das vibrações naturais. Bodig e Jayne (1993) ressaltam que os resultados obtidos por esta técnica podem majorar em até 10% o valor obtido pela flexão estática, tendo contudo excelentes correlações, comprovada por trabalhos como o de Calil e Miná (2003), que obtiveram coeficiente de correlação igual a 98% entre o módulo de elasticidade estático e o dinâmico, para peças ensaiadas do gênero *pinus*. Os autores realizaram um breve histórico da utilização destes métodos e destacam a contribuição de Pellerin (1965), primeiro pesquisador a utilizar este método para obter as propriedades elásticas, o coeficiente de Poisson e as características de amortecimento oferecidas pelo material.

Os métodos mais simples de obtenção das propriedades vibracionais são realizados por meio de impactos externos e captação sonora por microfones de precisão, como obtido por Santos (2014). Calil e Miná (2003) utilizaram um equipamento específico que realiza a captação das vibrações por meio de uma célula de carga. As pesquisas reforçam que essas técnicas, quando utilizadas da forma correta, geram dados confiáveis e compatíveis com o que Jayne (1959) sugere em seu trabalho, com pequena majoração das propriedades dinâmicas frente às estáticas.

As peças podem ser vibradas nas direções longitudinal ou transversal ao seu eixo. Para cada direção de vibração existe um modelo teórico associado ao cálculo das constantes elásticas desejadas. Segundinho et al (2012) recomendam a escolha do método tendo em vista a conveniência e a praticidade para cada caso. Além disso, os autores afirmam que o método de ensaio de vibração longitudinal pode ser mais prático em relação ao demais ensaios não destrutivos, reduzindo significativamente o tempo de ensaio, evitando calibração de equipamentos e podendo ser aplicado para classificações em larga escala. Os ensaios seguem alguns padrões normativos, como o disposto nas normas ASTM E-1876:2007 e ASTM C-215:2002.

Bartolomeu (2001) estudou a utilização da tecnologia de ultrassom, que na ocasião apresentou bons resultados de correlação com as propriedades elásticas da madeira. Por outro lado, Santos (2014) correlacionou o módulo de elasticidade obtido por ultrassom pela constante elástica obtida em corpos de prova de compressão paralela às fibras, obtendo resultados menos promissores do que os encontrados por Bartolomeu (2001). A técnica é utilizada com menor frequência na obtenção das propriedades elásticas da madeira.

2.4 Classificação estrutural por meio de scanners e equipamentos industriais

A madeira é um material heterogêneo, possui anatomia complexa e estrutura anisotrópica. Está associada a defeitos comuns, sendo alguns intrínsecos do processo de beneficiamento e outros oriundos da própria fisiologia do material. Esses defeitos, embora possam ser evitados, são muito comuns em espécies provenientes de manejo florestal e de rápido crescimento, tais como as do gênero pinus. A escolha pelos métodos de ensaio adequados para a sua classificação estrutural é fundamental para promover segurança e confiabilidade aos projetos estruturais em madeiras.

Com a evolução dos meios tecnológicos, o desenvolvimento de equipamentos e sensores possibilitaram formas mais rápidas e confiáveis de gerar informações relacionadas à classificação visual, elástica e geométrica das peças. Os dados gerados por estes equipamentos podem ser associados a resultados de ensaios destrutivos convencionais e de inspeção visual, tais como aqueles preconizados pelas normas EN 336, EN 14081-1, ISO 13910, ASTM D198, dentre outras. Sendo assim, podem ser utilizados em projetos estruturais.

Bacher (2008) realizou uma extensa pesquisa descritiva a respeito de equipamentos de classificação não destrutiva de peças estruturais de madeira. Trata-se de um estudo evidenciando as possibilidades e potencialidades de processos industriais que

isentam o contato humano com as peças classificadas. Este tipo de classificação gera resultados boa correlação de resultados quando comparado com ensaios convencionais destrutivos, apresentando um grande diferencial: é possível obter todas as características das peças individualmente a partir dos equipamentos, enquanto a classificação humanizada estima resultados de uma amostragem para gerar valores médios ou provenientes de análises estatísticas, o que subestima suas propriedades.

Os equipamentos utilizados pela indústria citados por Bacher (2008) tem capacidade de mensurar, a partir de sensores de raio-X, e as propriedades físicas de densidade e umidade. Além disso, é possível ainda mapear, quantificar e mensurar os nós, estimar o módulo de elasticidade dinâmico a partir de testes vibracionais nas peças. O autor ressalta a possibilidade de combinação entre as técnicas, que associados podem gerar várias informações preponderantes para a classificação da madeira, como é o caso do equipamento GoldenEye 706, ilustrado na Figura 2.8.

Embora os valores de densidade, umidade e elasticidade sejam extremamente necessários, uma das informações mais importantes geradas pelo scanner é a imagem de raio-X. Giudiceandrea (2005) explica em seu trabalho que a radiação emitida pelo equipamento é parcialmente absorvida pela peça de madeira, variando com as propriedades físicas do material, que possibilita um mapeamento dos nós e dos anéis de crescimento. Bacher (2008) complementa que o equipamento possui uma série de câmeras e sensores, possibilitando gerar imagens que possam substituir a classificação visual que normalmente é realizada seguindo padrões normativos com a avaliação humana.

Figura 2.8 – Esquema ilustrativo do equipamento scanner industrial GoldenEye 706 – Scanner de raios x (1) e de análise de densidade e elasticidade (2).

Fonte: Bacher (2008).

Um dos dados de saída mais importantes do scanner estudado por Bacher (2008) é o parâmetro "*Knot_18*". Esse parâmetro é calculado a partir de um algoritmo que combina a área do nó projetado sobre um determinado comprimento das peças analisadas. Teoricamente, quanto maior for o tamanho do parâmetro Knot-18, maior é o tamanho do nó (Giudiceandrea, 2005; Bacher, 2008; Noceti et al, 2013).

O algoritmo utilizado na determinação do parâmetro *Knot_18* segue padrões de dimensionamento dos valores do "KAR", que foi descrito por Tredwell (1973). O autor explica que o cálculo da área dos nós é realizado a partir de uma "janela" deslizante, de comprimento de 150mm, tal como observado na Figura 2.9. Tendo as áreas dos nós dentro desta janela sido contabilizadas, elas são somadas e posteriormente a soma é dividida pela área total da seção transversal, obtendo então o valor de "KAR", que também é descrito pela BS 4978:2007. Outros estudos, como o de Fonselius et al (1997), evidenciam o enfraquecimento da seção transversal analisando a área relativa dos nós em suas respectivas seções transversais, sendo constatado pelos autores que a dimensão dos nós pode explicar a resistência do *pinus* em 57%.

Figura 2.9 - Análise da peça para contabilização do valor de "KAR".

Fonte: Tredwell (1973).

Roblot et al (2010) apresentaram um método baseado na teoria de cálculo da dimensão dos nós de Tredwell, a fim de otimizar e calcular um parâmetro automatizado de aplicação industrial por meio de sensores ópticos. Os autores fizeram a análise deste parâmetro e o correlacionaram com o valor de KAR obtido manualmente, assim como com os valores de resistência de 451 peças das madeiras de Douglas fir e Spruce. Os coeficientes de determinação (R²) obtidos entre os valores do KAR manual e do parâmetro aferido pelo scanner foram de 75% para o Spruce e 82% para Douglas fir.

Também foram encontradas boas correlações entre o KAR obtido manualmente e o valor da resistência, chegando a $R^2 = 70\%$.

Brännströn & Westin (2009) realizaram uma pesquisa avaliando a madeira de Norway Spruce (*Picea Abies* (L. Karsten)) em 6 dimensões diferentes, totalizando uma amostragem próxima de 1440 peças. O objetivo do trabalho foi a realização de uma tabela de classificação estrutural da madeira com base nas informações obtidas pelo scanner Golden Eye 706 e em ensaios destrutivos preconizados pela norma europeia EN 14081 (Timber Structures – Strength graded structural timber with rectangular cross section). A partir da junção dos métodos destrutivo com os não destrutivos, foi possível otimizar o método de classificação e reduzir a percentagem de erro residual do método normativo estudado.

Nocetti et al (2013) procederam com uma comparação entre o módulo de elasticidade dinâmico local aferido pelo GoldenEye 706 com o módulo de elasticidade estático global, estimado pelo método de ensaio de flexão a quatro pontos preconizado pela EN 408. Os principais defeitos (nós) da madeira foram analisados por classificação visual e posicionados ao centro do vão livre ensaiado, a fim de testar a pior situação possível. Foram utilizadas 1939 peças de madeira, de quatro espécies utilizadas na Itália: fir (*Abies alba* Mill. - ABAL); Douglas-fir (*Pseudotsuga menziesii* Franco—PSMN); Corsican pine (*Pinus nigra* Arnold subsp. Laricio (Poir.) Maire—PNNL) e chestnut (*Castanea sativa* Mill. - CTST). Foram avaliadas cinco seções diferentes, de acordo com a disponibilidade do material. Os autores concluíram que o módulo de elasticidade local foi cerca de 8,6% maior do que o global.

Moya et al (2015) realizaram uma classificação estrutural de um lote misto de madeira serrada de *Pinus elliotti* (90%) e *Pinus taeda* (10%). Foram testadas cerca de 960 peças, em grupo amostral com dois períodos de cultivo: 15 e 25 anos. As madeiras foram agrupadas em 3 classes visuais de acordo com a Norma Chilena NCh 1207 (2005) e foram obtidos o módulo de elasticidade e a resistência f_{mk} em ensaios de flexão estática seguindo as recomendações da ASTM D198 (2009), e ensaios de tração e de compressão paralelas às fibras em peças com dimensões estruturais como recomenda a NCh 3028/01 (2006). Os autores concluíram que as madeiras provenientes de lotes com maior tempo de cultivo obtiveram classificação estrutural C14 segundo a norma europeia EN 338 (2009), enquanto as madeiras mais jovens foram desclassificadas estruturalmente.

Em trabalho publicado posteriormente, Moya et al (2017) propuseram uma tabela simplificada de regras para classificação visual, denominada "EC7". Esta foi destinada a

madeiras de *Pinus elliotti* e *Pinus taeda* produzidas no Uruguay. Isso mostra a importância de estabelecer critérios apropriados para as madeiras locais, uma vez que fatores climáticos e de manejo podem influenciar nas características físicas e mecânicas da madeira.

Bussoni e Cabris (2010) salientam a importância de podas e desbastes planejados para evitar eventuais perdas econômicas no cultivo de Pinus, evitando a ocorrência de possíveis defeitos que inviabilizam a comercialização de determinados lotes de madeiras para o setor estrutural.

Hanhijärvi et al (2005) realizaram extensa contribuição para a classificação das madeiras europeias combinando métodos de ensaio destrutivos com não destrutivos industriais. Foi feita uma vasta amostragem em toras das espécies Spruce (*Picea abies*) e Pinus (*Pinus sylvestris*) que, posteriormente, foram devidamente serradas e secas. A classificação industrial foi realizada por 15 indústrias diferentes, que utilizaram técnicas e equipamentos de medição distintos, como apresentado no Quadro 2.4. Esse estudo foi a primeira parte de um projeto de classificação estrutural das coníferas utilizando a combinação de métodos não destrutivos industriais com os destrutivos convencionais.

Quadro 2.4 – Alguns métodos não destrutivos, equipamentos e marcas utilizadas na classificação industrial.

Scanner de raios-x das toras	Bintec Oy
Medidor de frequências naturais das toras	Rion SA77
Tomografia acústica das toras	SLU Fakopp 2D
Scanner de raios-x de tábuas	FinScan Oy.
Medição da frequência natural das tábuas por meio de vibração	Microtec S.r.1;
longitudinal	Brookhuis Microeletronics
Scanner de raios-x das tábuas	Golden Eye Microtec S.r.1
Medição por respostas acústicas/ultrassônicas	Sylvamatic SGM
Medição de desvio de grã	Metriguard
Medições por raios gama e micro-ondas	Finnograder Innotec Oy

Fonte: Hanhijärvi et al (2005)

Posteriormente, Hanhijärvi e Ranta-Maunus (2008) prosseguiram com o estudo, o que auxiliou no desenvolvimento de práticas de classificação industrial da Finlândia. Os autores observaram que os métodos de verificação foram mais eficientes para a madeira de pinus do que para a madeira de spruce, tendo melhores correlações de valores para aquela. Esse fator pode estar relacionado com a maior variabilidade de densidade e tamanho de nós, o que gera maior amplitude nos valores de resistência.

Pošta et al (2016) também realizaram estudo comparativo de diversos métodos não destrutivos industriais na avaliação do módulo de elasticidade dinâmico correlacionado com o estático. Em sua pesquisa, testaram a eficiência de equipamentos industriais como Golden Eye, Metriguard HCLT 7200, Sylvatest, Fakopp microsecond timber e Timber grading MTG da Brookhuis. Os autores evidenciaram boas correlações do módulo de elasticidade dinâmico, com destaque para o MTG brookhuis, que gerou valores de módulo de elasticidade dinâmico com R²=97% de correlação direta com os valores estáticos.

Andrade Junior (2016) também utilizou o MTG brookhuis em análise realizada com a madeira de pinus sp. brasileira. No entanto, encontrou correlações inferiores às apresentadas por Pošta et al (2016). Esta constatação pode estar relacionada à qualidade da madeira brasileira, que possui grande incidência de defeitos e lenho juvenil.

2.5 Tabelas de classes de resistência para coníferas

A norma europeia (EN) é adotada pelos principais países do Comitê Europeu de Normatização (CEN), que atende 33 países do continente. A EN 338 (2009) estabelece doze classes de resistência mecânica, que podem ser observadas na Figura 2.10. Estas classes consideram a resistência à flexão como principal fator de classificação, seguido do módulo de elasticidade e da densidade das peças. O critério de classificação deve ser aplicado peça a peça.

A ISO 16598 (2014) preconiza a forma na qual as tabelas de classes devem ser confeccionadas, considerando fatores específicos dos lotes trabalhados, a fim de produzir tabelas de classes de resistência estruturais para o controle de resistência de lotes de madeiras comercializados na Europa. Esta recomendação é realizada por conta da ocorrência de madeiras com características e defeitos específicos em determinada localidade. Ainda são definidas pela norma equações lineares e quadráticas que correlacionam as propriedades principais.

A ISO 16598:2014 apresenta exemplo de tabela com oito classes de resistência, também considerando os valores de resistência à flexão para referência das classes. Na Figura 2.11 são mostradas as classes exemplificadas na norma.

		Softw	ood spe	cies										Hard	Hardwood species						
		C14	C16	C18	C20	C22	C24	C27	C30	C35	C40	C45	C50	D18	D24	D30	D35	D40	D50	D60	D70
Strength properties (in N/mm ²)																					
Bending	fea	14	16	18	20	22	24	27	30	35	40	45	50	18	24	30	35	40	50	60	70
Tension parallel	frax	8	10	11	12	13	14	16	18	21	24	27	30	11	14	18	21	24	30	36	42
Tension perpendicular	f.100.x	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6
Compression parallel	feax	16	17	18	19	20	21	22	23	25	26	27	29	18	21	23	25	26	29	32	34
Compression perpendicular	fema	2,0	2,2	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9	3,1	3,2	7,5	7,8	8,0	8,1	8,3	9,3	10,5	13,5
Shear	fex	3,0	3,2	3,4	3,6	3,8	4,0	4,0	4,0	4,0	4,0	4,0	4,0	3,4	4,0	4,0	4,0	4,0	4,0	4,5	5,0
Stiffness properties (in kN/mm ²)																					
Mean modulus	E _{0,mean}	7	8	9	9,5	10	11	11,5	12	13	14	15	16	9,5	10	11	12	13	14	17	20
of elasticity parallel					I 1																
5 % modulus of	E _{0.05}	4,7	5,4	6,0	6,4	6,7	7,4	7,7	8,0	8,7	9,4	10,0	10,7	8	8,5	9,2	10,1	10,9	11,8	14,3	16,8
elasticity parallel																					
Mean modulus	E _{KLmeen}	0,23	0,27	0,30	0,32	0,33	0,37	0,38	0,40	0,43	0,47	0,50	0,53	0,63	0,67	0,73	0,80	0,86	0,93	1,13	1,33
of elasticity perpendicular					I 1																
Mean shear modulus	Gnean	0,44	0,5	0,56	0,59	0,63	0,69	0,72	0,75	0,81	0,88	0,94	1,00	0,59	0,62	0,69	0,75	0,81	88,0	1,06	1,25
Density (in kg/m ³)				_																	
Density	Px .	290	310	320	330	340	350	370	380	400	420	440	460	475	485	530	540	550	620	700	900
Mean density	pnaa	350	370	380	390	410	420	450	460	480	500	520	550	570	580	640	650	660	750	840	1080
NOTE 1 Values given perpendicular to grain and NOTE 2 The tabulated 65 %. NOTE 3 Timber conform NOTE 4 Characteristics design codes.	above fo mean she propertie ning to cli values fo	r tensi earmo s are o asses (r shear	ion str dulus, compat C45 an streng	ength, have b ible wi d C50 th are	compresence th timb may n given	ression liculate er at a ot be re for timb	d using d using moist adily a ber with	gth, sh g the en ure co availabl hout fis	near st quation ntent c le. sures,	accorr	, 5 % n in An ent wit Sing to	modul nex A. h a ter EN 40	us of o mperat 8. The	elastici ure of effect	ty, me 20 °C i of fissi	and a r ures sh	dulus relative ould b	of ela humic e cove	sticity lity of red in		

Figura 2.10 – Classes de resistência adotadas pela EN 338

Fonte: EN 338 (2009)

	S10	S16	S20	S24	S28	\$ 32	S36	S4 0
Bending (MPa) F _{m,k}	10	16	20	24	28	32	36	40
Tension Parallel (MPa) F _{t.o.k}	5	8	11	13	15	17	19	21
Tension Perp. (MPa) F _{t.90.k}	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Compression Parallel (MPa) F _{c,0,k}	13	17	19	21	22	22	23	24
Compression Perp. (MPa) F _{c,90,k}	2	2.5	3	3.5	3.5	4	4.5	5
Shear Parallel (MPa) F _{v,k}	1.5	2.5	2.5	3	3	3.5	3.5	3.5
Mean MOE Parallel (GPa) E _{0,mean}	7	8.5	9.5	10.5	11.5	12.5	13.5	14.5
Density (g/cm ³) ρ mean, oven-dry	0.33	0.36	0.39	0.41	0.44	0.46	0.49	0.51

Figura 2.11- Classes de resistência apresentadas pela ISO 16598

Fonte: ISO 16598 (2014)

Em pesquisa recente, Moritani (2018) utilizou as regras recomendadas pela ISO 16598 (2014) para determinar classes de resistência para três madeiras, incluído o gênero *Pinus* cultivado no Brasil, cuja tabela pode ser observada na Tabela 2.3. A autora utilizou o agrupamento entre resultados na delimitação de dois grupos de classes. Como o número de corpos de prova foi pequeno, a autora utilizou as regras da atual NBR 7190:1997 para a determinação dos valores característicos. Percebe-se que a amplitude dos resultados foi baixa. Dentre os valores analisados, vale ressaltar que o ensaio de compressão paralela às fibras realizados pela autora possuíam dimensões pequenas, e possivelmente não considerava os piores defeitos das peças.

Tabela 2.3 – Critérios de classes de resistência propostos por Moritani (2018) para a madeira serrada de pinus.

Propriedade	Classe 1	Classe 2	
MOR [MPa]	9	9	
ft0k [MPa]	2	1	
ft90k [MPa]	0,1	0,1	
fc0k [MPa]	28	22	
fc90k [MPa]	7	5	
fv0k [MPa]	3	2	
MOE [Mpa]	4200	3900	
D [kg/m³]	700	550	

Fonte: Adaptado de Moritani (2018)

As classes propostas por Moritani (2018) destoam do proposto pelo projeto de norma PN-02-126.10-001-1 (2018), que pode ser observado na Tabela 2.4.

Tabela 2.4 - Proposta de tabela de classes de resistência do PN-02-126.10-001-1

Propriedade	Classe 1	Classe 2	Classe 3
Densidade (kg/m ³)	600	500	400
MOE (MPa)	14000	10000	6000
MOR (MPa)	35	30	25
$f_{c0,k}$	30	25	20
f _{v,k}	6	5	4

Fonte: PN-02-126.10-001-1 (2018)

Os valores característicos encontrados por Moritani (2018) para a madeira de *Pinus* apresentam pouca diferença entre as classes. O valor característico da resistência à flexão é igual para as duas classes e significativamente inferior aos propostos no projeto de norma brasileira, tal como os valores de módulo de elasticidade, disponíveis na Tabela 2.5. Quanto aos valores propostos para o ensaio de tração paralela às fibras, os resultados encontrados propostos pela autora são muito baixos quando comparados com os de compressão paralela às fibras, quando deveriam ser superiores.

Carreira (2003) verificou a resistência de lotes mistos das espécies de Pinus Taeda e Pinus Elliotti, classificadas visualmente seguindo o método recomendado pelo SPIB. Foram tomados quatro lotes de classes visuais: SS-ND; SS-D; N°2-ND; e N°2-D. As resistências à flexão e o módulo de elasticidade encontrados foram significativamente maiores do que os avaliados por Moritani (2018), apresentados na Tabela 2.5.

Tabela 2.5 – Resultados (em MPa) encontrado por Carreira (2003) e comparação com os estabelecidos pelo SPIB (1994).

Propriedade	Carreira	a (2003)	SPIB (1994)			
	MOR _k	MOE _m	MOR _k	MOE _m		
N°2-ND	21,9	7608	19,9	9520		
N°2-D	28,7	9182	25	11560		
SS-ND	79,5	9899	40,6	11560		
SS-D	107,6	14303	46,6	12920		

Fonte: Carreira (2003)

Os resultados característicos da resistência à flexão encontrados por Carreira (2003) foram bastante promissores e relativamente superiores aos preconizados pelo SPIB na época avaliado. No entanto, os valores médios do módulo de elasticidade foram um pouco abaixo do esperado em três classes, e superior para a classe SS-D. Segundo o autor, a explicação para estas constatações pode estar relacionada ao lote SS-D estudado, que possuía poucos defeitos e alta densidade, principalmente quanto à quantidade de anéis de crescimento e de madeira de inverno, que ocupava mais da metade da seção transversal das peças de pinus, como mostrado na Figura 2.12.

Figura 2.12 – Peças de madeira com elevada densidade avaliadas por Carreira (2003).

Fonte: Carreira (2003)

2.6 Considerações sobre a revisão bibliográfica

É evidente a potencialidade do Brasil no cultivo de espécies de rápido crescimento, tal como o gênero pinus, que apresenta boas características para produtos estruturais. Pesquisas recentes evidenciaram que a necessidade da classificação das madeiras, principalmente espécies exóticas, uma vez que apresentam grande quantidade de defeitos. Para a correta aplicação destas madeiras em estruturas de alto padrão, é necessário promover a classificação estrutural de forma segura. As tabelas de classes de resistência das madeiras coníferas avaliadas nas normas internacionais apresentam grande dispersão de valores e superestimam as propriedades das madeiras de pinus, inadequado à realidade brasileira.

Com o auxílio da tecnologia e da aplicação de métodos não destrutivos, sejam os simplificados (para pequenos produtores) ou os industriais (para produção em larga escala), é possível estimar as principais características analisadas nas tabelas de classes de resistência. Sendo assim, a tecnologia pode substituir a graduação humana, conferindo maior confiabilidade e segurança nesse processo.

Os métodos de classificação visual são de suma importância para madeiras provenientes de florestas de rápido crescimento, uma vez que a quantidade de defeitos pode inviabilizar o uso estrutural das madeiras. Com a crescente demanda da utilização destas madeiras na construção civil brasileira, faz-se necessário normatizar estes métodos, de forma que produtores e projetistas se familiarizem com essa realidade.

3. MATERIAIS E MÉTODOS

Neste capítulo são apresentados os materiais e descritos os procedimentos experimentais realizados para a obtenção da tabela de classes de resistência de um lote misto de madeiras de *Pinus taeda* e *Pinus elliotti*, a partir dos métodos de caracterização por meio de ensaios não destrutivos industriais e de ensaios destrutivos convencionais. Os ensaios não destrutivos iniciaram-se na indústria, utilizando-se um scanner de alta precisão. Foram complementados por ensaios vibracionais e inspeções visuais em laboratório para correlacionar os resultados gerados pelo scanner industrial. Os ensaios destrutivos para de determinar os valores de resistência mecânica para classificação completa da madeira. Os dados foram analisados estatisticamente visando a proposição das tabelas de classes de resistência.

3.1 Material experimental

3.1.1 Características gerais

A madeira utilizada foi fornecida pela Indústria Berneck S.A. Painéis e Serrados. Foram fornecidas cerca de 2200 tábuas, alocadas no laboratório conforme observado na Figura 3.1. As peças possuíam dimensões de 38 x 89 x 3.960 mm. Por fatores de padronização, apenas 1500 foram selecionadas para a pesquisa. O lote misto possuía as espécies *pinus* plantadas e processadas na região de Curitibanos-SC.

Figura 3.1 - Lotes de tábuas de pinus armazenadas no LaMEM.

Fonte: Autor.

A madeira foi fornecida com teor de umidade entre 9% e 12% e apresentava pequena incidência de defeitos de processamento. Algumas peças foram danificadas no processo de transporte, no armazenamento ou no manuseio, o que ocasionou pequenas perdas. As tábuas possuíam excelente acabamento e o processo de usinagem da indústria é de excelente qualidade, apresentando superfícies bem acabadas, esquadrejamento, e variações milimétricas nas dimensões da seção . A presença de nós foi constatada na maioria das tábuas, enquanto a presença de medula e bolsas de resina foram constatadas esporadicamente. Não foram encontradas peças atacadas por organismos xilófagos. Podese considerar que o lote era bastante heterogêneo no que diz respeito aos nós.

3.1.2 Classificação industrial por scanner

A madeira foi classificada na indústria por meio do scanner *Golden Eye* 706 da MiCROTEC[®]. Dentre as características de aquisição de dados, o equipamento tem capacidade de: identificar as peças; aferir as dimensões e a massa das peças; gerar imagens de raio-X coloridas das tábuas, identificar os nós, presença de medula, resinas e desvios de grã presentes na madeira; mapear o posicionamento e quantificar o tamanho dos nós; obter o módulo de elasticidade dinâmico a partir de frequências naturais de vibração longitudinal.

Estes dados foram cedidos pela indústria em forma de planilha, assim como as imagens de raio-X geradas pelo scanner. A partir destas é possível identificar claramente a posição e o tamanho dos nós, tendo ainda uma grande vantagem: por conta dos raios-x, os defeitos internos podem ser identificados com maior clareza, o que seria impossível a partir de uma observação externa. Além disso, o scanner mensura o tamanho do nó, gerando um valor específico quantitativo que permite identificar quais são os maiores defeitos presentes na peça. Para ilustrar as condições de saída de dados do scanner observa-se na Figura 3.2 a imagem de uma peça no laboratório (A) e do scanner (B).

Figura 3.2 - Imagem da peça no laboratório – A; e imagem gerada pelo scanner – B.

Fonte: Autor.

Com o auxílio de uma régua virtual, abaixo da peça ilustrada na Figura 3.2-B, é possível comparar os dados do scanner com a inspeção visual, vinculando as dimensões

aferidas por graduadores humanos com as impressões de raio-x. Este parâmetro também foi utilizado na definição dos esquemas de corte, de forma a priorizar que os principais defeitos fossem posicionados nas zonas de maior influência nos ensaios realizados.

3.1.3 Equipamentos de ensaio

Para a produção dos corpos de prova e posterior execução dos ensaios, foram utilizados os seguintes equipamentos:

- Equipamentos de corte e usinagem: serra circular; serra fita; desengrosso; lixadeira de bancada; furadeira de bancada e plaina.
- o Laje de reação com pórticos metálicos.
- Aparato metálico para ensaios de compressão paralela às fibras em dimensões estruturais, com um atuador hidráulico acionador por uma bomba automática.
- Máquina de ensaios de tração paralela às fibras da Metriguard, modelo 422.
- o Máquina de ensaios universais AMSLER.
- o Máquina de ensaios universais EMIC.
- Células de carga de 5 e 20 toneladas;
- Transdutores de deslocamento digitais Mitutoyo[®] e Vishay[®];
- Equipamentos de aquisição de dados System 5000;
- Instrumentos de medição: paquímetros e transdutores de deslocamento Mitutoyo[®]; balança de precisão Marconi[®]; e medidor de umidade Marrari[®] M52;

3.1.4 Produção de corpos de prova

O esquema de corte para a confecção dos corpos de prova foi realizado conforme as dimensões preconizadas pela ISO 13910 (2013), tomando como base um lote de tábuas de seção pré-fixada de 38x89 milímetro. As dimensões para cada ensaio foram:

- Flexão estática: (3,8 x 8,9) x 200 cm
- Compressão paralela às fibras: (3,8 x 8,9) x 205 cm
- Tração paralela às fibras: (3,8 x 8,9) x 245 cm
- Cisalhamento paralelo às fibras: (3,8 x 8,9) x 62,3 cm

- Compressão perpendicular às fibras: (3,8 x 8,9) x 54 cm
- Tração perpendicular às fibras: (3,8 x 8,9) x 3 cm

O esquema de corte é apresentado na Figura 3.3. As marcações foram feitas de forma a posicionar os piores nós nas regiões de carregamentos máximos, tendo cada peça sido analisada separadamente, e a posição dos corpos de prova maiores variava de acordo com a posição do nó. Devido ao posicionamento dos piores nós estar nas extremidades das tábuas, buscavam-se sucessivamente os nós de maior magnitude para compor o principal ensaio.

Figura 3.3 - Esquema de corte das tábuas e preparo de corpos de prova.

Fonte: Autor.

3.2 Métodos de inspeção e ensaio

3.2.1 Classificação visual pelo SPIB (2014)

O método preconizado pelo SPIB (2014) foi escolhido por se tratar de uma alternativa mais criteriosa para separação de classes visuais. Para esta classificação o principal defeito considerado foram os nós, que tem por natureza ocorrência na face mais estreita, ou na face larga. Como a dimensão das seções das peças analisadas era constante (38 x 89 mm), foi criado um gabarito em acrílico para facilitar no processo de graduação

65

visual, que pode ser observada na Figura 3.4. Todas as peças passaram pelo mesmo graduador humano, evitando interferência externa sobre a classificação.

Figura 3.4 - Gabarito utilizado na classificação visual dos nós.

Fonte: Autor.

3.2.2 Classificação não destrutiva pelo método de vibrações longitudinais

Foram realizados ensaios de vibração na direção longitudinal para obtenção do módulo de elasticidade dinâmico. Antes de cortar as peças para confeccionar os corpos de prova, foram verificadas 100 peças para calibração do scanner. Após o corte, todas as 900 peças destinadas ao ensaio de flexão estática foram submetidas ao teste. Nessa etapa, as dimensões e a massa de todas as peças analisadas foram previamente obtidas.

Para realizar o ensaio é necessário um computador, um microfone e um software para aquisição de frequências naturais. A empresa *Fakopp Enterprise Bt.* disponibiliza gratuitamente o programa *FFT Analyser*, que capta a frequência de vibração por meio de transformada de Fourrier. O método consiste em apoiar o corpo de prova em apoios elásticos, posicionar um microfone acoplado ao sistema de aquisição em uma das extremidades e realizar um impacto na zona desejada. Se a zona de impacto estiver na direção longitudinal às fibras da madeira, conforme pode ser observado na Figura 3.5, deve-se utilizar a Equação 3.1 para a obtenção do módulo de elasticidade MOE_{din}.

$$MOE_{din} = 4 * \left(\frac{m * f^2}{b}\right) * \left(\frac{l}{h}\right)$$
(3.1)

Sendo:

MOE_{din}: Módulo de elasticidade dinâmico [GPa];

m: Massa [Kg];

- f: Frequência de vibração [Hz];
- l: Comprimento da peça [m];
- b: Base da seção [cm];
- h: Altura da seção [cm].

Figura 3.5 – Esquema de ensaio de vibração longitudinal.

Fonte: Autor.

Para que a vibração seja transmitida de forma adequada, é recomendado que sejam seguidas as premissas descritas pela ASTM E-1876(2007). Além disso, deve ser realizada uma análise das frequências captadas, de forma a frequência esteja relacionada ao primeiro modo de vibração. Parâmetros de medida devem ser tomados, tais como dimensões e massa dos corpos de prova, que podem ser cilíndricos ou prismáticos.

O ensaio, que pode ser observado na Figura 3.6, é de fácil execução e demanda pouco tempo para análise, sendo uma alternativa de baixo custo para a estimativa do módulo de elasticidade dinâmico da peça.

Figura 3.6 – Ensaio de vibração longitudinal.

Fonte: Autor.

3.2.3 Ensaio de flexão estática

As propriedades relacionadas à flexão estática da madeira são consideradas referências das classes de resistência da norma europeia ISO 16598 (2015), devido ao fato de ocorrerem múltiplas tensões solicitantes (tração e compressão paralela às fibras e cisalhamento tangencial). Os casos mais usuais de ensaios de flexão estática são em peças bi apoiadas e com a aplicação direta de cargas em um ou dois pontos.

A partir do ensaio de flexão estática, podem ser obtidos os valores de resistência à flexão (f_m) e o valor de Módulo de Elasticidade (E_m). Estes ensaios são especificados pela ISO 13910 (2013), semelhante à ASTM D-198 (2009), de forma que os dois valores são obtidos a partir do esquema de ensaio ilustrado na Figura 3.7.

1 – Chapas móveis de aço;

2 – Chapa fixa de aço.

Fonte: ISO 13910(2013)

No ensaio de flexão a quatro pontos ilustrado na Figura 3.7, a força é aplicada em quatro pontos, dois ativos e dois reativos. O vão "L" deve ser, no mínimo, 18 vezes a altura "h" da seção, enquanto os pontos de aplicação da força devem ser dispostos simetricamente e distantes de 4,5 a 7 vezes a altura "h".

O trecho entre a aplicação das duas forças ativas está solicitado por flexão pura (momento fletor máximo e constante, com força cortante nula). É recomendado que os piores defeitos da peça ensaiada estejam localizados no ponto de maior solicitação, logo, este esquema de ensaio é o mais apropriado, pois propicia a maior solicitação por flexão em um trecho. O módulo de resistência à flexão (f_m) é calculado pela Equação 3.2, obtida a partir a teoria clássica da flexão para material elástico e linear.

Na Figura 3.8 observa-se a relação entre a força aplicada e o deslocamento vertical na posição central da peça. O módulo de elasticidade (E_m) é obtido pela Equação 3.3, considerando a variação do deslocamento para a variação de força entre 10% e 40% do valor da força última.

Fonte: Adaptado de ISO 13910 (2013)

$$f_m = \frac{3 F_{ult}a}{bh^2} \tag{3.2}$$

$$E_m = \frac{a}{4bh^3} \left(\frac{\Delta F}{\Delta e} \right) (3L^2 - 4a^2) \tag{3.3}$$

Sendo:

f_m: Módulo de Ruptura na flexão estática [MPa];

E_m: Módulo de elasticidade estático [GPa];

Fult: Força última [kN]

 ΔF : Variação da força [kN]

Δe: Variação do deslocamento [mm];

a: Distância entre apoio e ponto de aplicação da força [cm]

b: Base da seção [cm];

h: Altura da seção [cm];

L: Vão livre da peça [cm].

A ISO 13910 (2013) não especifica a forma de aquisição dos dados, seja por sistema automatizado (célula de carga, transdutores de deslocamento e sistema de aquisição de dados) ou por equipamentos manuais de leitura de forças e deslocamentos. Para este ensaio, as peças de 200 x 8,9 x 3,8 cm (1) foram bi apoiadas (7) com um vão livre de 160,2cm, 19,9cm além dos apoios, sendo o vão de ensaio uma relação de 18 vezes a altura da seção. A aplicação de força foi realizada com auxílio de uma barra metálica (5) sobreposta em roletes (6) posicionados nos terços médios da tábua, tal como se observa na Figura 3.9.

O aparato de ensaio conta com um pórtico de reação (9) com dimensões compatíveis com a do ensaio. Um cilindro hidráulico (8) tem função de aplicar a força, que é medida com um anel dinamométrico (3) de capacidade de 5 toneladas, acoplado ao cilindro e a uma rótula plástica (4). Os deslocamentos verticais foram medidos utilizando um medidor de deslocamentos digital da marca Mitutoyo (2), com capacidade de leitura de 2,54 cm. Tal esquema de ensaio, com as dimensões do corpo de prova de flexão, pode ser observado na Figura 3.9.

Figura 3.9 - Aparato e dimensionamento (cm) do ensaio de flexão estática.

Fonte: Autor.

Todos os ensaios foram fotografados, de forma a verificar e comparar as imagens geradas pelo scanner. Na Figura 3.10 é mostrado que nos apoios foram utilizados vínculos tipo garfo, que também impedem a rotação. Observa-se a disposição do pior nó no trecho de momento fletor máximo. A câmera foi posicionada para tomar as fotos antes e depois da ruptura.

Fonte: Autor.

3.2.4 Ensaio de compressão paralela às fibras

A resistência à compressão paralela às fibras é uma das propriedades mecânicas mais importantes para a classificação das madeiras. Algumas normas, como a ABNT: NBR-7190:97, consideram as classes de resistência diretamente vinculadas a esta solicitação, que está relacionada com a direção de maior resistência da madeira. A norma brasileira define que a tensão resistente deve ser calculada em corpos de prova isentos de defeitos.

Quando comparada com a ISO 13910 (2013), que considera a realização do ensaio utilizando os piores defeitos na solicitação direta, a norma brasileira se torna obsoleta no caso de caracterização de madeira de coníferas. Na norma europeia, o ensaio de compressão paralela deve ser realizado com dimensões reais, expondo toda a peça e seus respectivos defeitos a uma tensão semelhante. A ruptura normalmente é condicionada ao pior defeito, o que gera grande variabilidade dos dados, mas propõe um método compatível com a heterogeneidade da madeira. Novamente, a norma americana ASTM D-198 (2009) assemelha-se à europeia, especificando ensaios semelhantes.

Para a realização do ensaio é necessário um aparato robusto, capaz de resistir o esmagamento das peças de madeira em seu interior. A norma recomenda que sejam realizados contraventamentos laterais capazes de impedir o efeito de instabilidade, como pode ser observado no esquema da Figura 3.11. Estes aparatos não podem oferecer resistência no sentido da aplicação de força e devem tomar distanciamento máximo em cada direção. A resistência à compressão paralela às fibras é calculada pela Equação 3.4.

$$f_{c,0} = \frac{F_{ult}}{b*h} \tag{3.4}$$

Sendo:

fc0: Módulo de Ruptura na flexão estática [MPa];

Fult: Força última [kN]

b: Base da seção [cm];

h: Altura da seção [cm];

Figura 3.11 – Esquema de ensaio de compressão paralela às fibras.

1 – Contraventamentos laterais. Fonte: ISO 13910 (2013)

O ensaio de compressão paralela às fibras foi realizado em um aparato robusto, formado por perfis metálicos soldados e solidarizados com peças de contraventamento, como pode ser observado na Figura 3.12-A, sendo apresentado um esquema de ruptura padrão na Figura 3.12-B. Um sistema de aquisição de dados da Kyowa foi utilizado para as leituras de uma célula de carga acoplada a um cilindro hidráulico.

Figura 3.12– Aparato de ensaio de compressão paralela às fibras e detalhe de ruptura.

Fonte: Autor.

O detalhamento do aparato e do ensaio pode ser observado na Figura 3.13, sendo que o comprimento das peças ensaiadas (1) foi de 205 cm por conta do barramento admissível. O corte das tábuas foi realizado de forma que neste trecho de 205 cm estivessem presentes os maiores nós, tendo sido a peça solicitada na pior situação à compressão. Os contraventamentos (2) e (3) foram distanciados com dimensões máximas de 45 cm e 28 cm. Para a aplicação da força, foi acoplado ao aparato (6) um cilindro hidráulico (4), que por sua vez possui encaixado uma célula de carga (5) com capacidade de 25 toneladas para a medida das forças aplicadas.

As dimensões de contraventamento estão de acordo com a ISO 13910:2005, que preconizava distancias máximas de 89 cm e 38 cm para a seção estudada. No entanto, para a versão mais recente da ISO 13910:2013, os valores foram revistos e reduzidos pela metade, sendo de 44,5 cm e 19 cm. A partir desta consideração, verificou-se que o contraventamento relacionado à espessura das peças é superior ao que a norma preconiza.

Foram realizados ensaios piloto para verificar as formas de ruptura, que evidenciaram início de ruptura por instabilidade em algumas peças, principalmente quando não possuíam nós. Sendo assim, na ocorrência de instabilidade em alguma das peças ensaiadas, é possível excluir o valor de ensaio, pelo fato do número de corpos de prova ser superior ao delimitado pela norma, ou utiliza-los como valores de segurança, uma vez que a força de ruptura por instabilidade é menor do que na mesma peça sem este efeito.

Figura 3.13 - Aparato e dimensionamento (cm) do ensaio de compressão paralela às fibras

3.2.5 Ensaio de tração paralela às fibras

Quando uma peça é solicitada à tração paralela, a tendência é que ela resista mais do que na compressão paralela às fibras, desde que não haja defeitos. A obtenção da resistência à tração paralela às fibras pelo método descrito na ISO 13910 (2013) estipula que seja utilizada uma peça com dimensões estruturais, de forma muito semelhante com o descrito pela ASTM D-198 (2009). Para esse ensaio, deve existir um equipamento robusto, com duas garras de dimensões não definidas, mas que sejam capazes de promover o alinhamento do ensaio. Caso exista alinhamento, o corpo de prova deve apresentar comprimento mínimo de nove vezes a sua altura, para que sua ruptura seja apresentada entre os pontos de fixação nas garras. O esquema de ensaio é mostrado na Figura 3.14. Para obtenção da resistência à tração paralela às fibras utiliza-se a relação dada pela Equação 3.5.

$$f_{t,0} = \frac{F_{ult}}{b*h}$$
Sendo:
$$f_{c}: Módulo de ruptura na flexão estática [MPa]:$$

f_{t0}: Módulo de ruptura na flexão estática [MPa];
F_{ult}: Força última [KN]
b: Base da seção [cm];
h: Altura da seção [cm];

Figura 3.14 – Esquema de ensaio de tração paralela às fibras.

1 – Garra de fixação

Fonte: Adaptado de ISO 13910(2013)

Para a realização do ensaio de tração paralela às fibras foi necessária uma máquina de ensaios específica e que tivesse capacidade de alinhamento, travamento e elevada capacidade para aplicação de força. O LaMEM conta com a Metriguard 422, com capacidade de carga de 890KN e auto alinhamento. Trata-se de um equipamento robusto e de alta precisão, que pode ser observado na Figura 3.15.

Figura 3.15 – Aparato de execução do ensaio de tração paralela às fibras.

Fonte: Autor.

Na Figura 3.16 é possível observar o esquema de ensaio de tração paralela. O corpo de prova (1) possuía 245 cm. As garras da máquina (2) possuem comprimento de 75 cm, que foram preenchidos pela madeira para que não ocorresse um esmagamento excessivo, o que poderia ocasionar ruptura por compressão normal na zona da garra. Entre as garras, a seção sofre tração perpendicular às fibras de forma simples, em um comprimento de 95 cm, onde foram posicionados os piores nós da tábua.

Figura 3.16 - Dimensionamento (cm) do ensaio de tração paralela às fibras

Fonte: Desenvolvido pelo autor.

3.2.6 Ensaio de compressão normal às fibras

A configuração e o detalhamento do ensaio, e o diagrama a ser obtido são apresentados na Figura 3.17. Para a obtenção da resistência $f_{c,90}$ é necessário obter o encurtamento da altura do corpo de prova no ponto de aplicação da força, que é na direção perpendicular às fibras. A resistência é obtida pela Equação 3.6, utilizando o menor valor entre a força última ou a força correspondente a um encurtamento igual a 10% da altura da peça. Não será calculado o coeficiente de rigidez neste trabalho.

$$f_{c90} = \frac{F_{ult}}{90b} \quad ou \quad \frac{F_{0,1h}}{90b} \tag{3.6}$$

Sendo:

f_{c90}: Módulo de ruptura na compressão perpendicular às fibras [MPa];

Fult: Força última aplicada[KN]

F_{0,1h}: Força aplicada para deformação de 10% da peça [KN]

b: Base da seção [cm];

Figura 3.17 – Esquema de ensaio de compressão perpendicular às fibras.

Fonte: Adaptado de ISO 13910 (2013)

Bodig e Jayne (1993) estimam que o valor de $f_{c,90}$ seja 25% do valor de $f_{c,0}$, relação também considerada pela ABNT:NBR-7190:97. Vale lembrar que essa relação foi obtida em testes com corpos de prova isentos de defeitos.

Para o ensaio de compressão perpendicular às fibras teve de ser desenvolvido um aparato de ensaio específico, como pode ser observado na Figura 3.18B. Houve a necessidade de obter as curvas características de força x deslocamento, de forma que a ISO 13910 (2013) fosse atendida. Os detalhes do ensaio são verificados na Figura 3.18A, de forma que o corpo de prova (1) possuía 54 cm, dos quais apenas 9 cm centralizados sofreram compressão normal por meios de chapas metálicas (4) rígidas. O esquema de ensaio contou ainda com uma célula de carga (3) com capacidade de 5 toneladas, dois transdutores de deslocamentos (2) digitais e um sistema de aquisição de dados.

O ensaio foi realizado em uma máquina universal EMIC, sendo que o carregamento foi aplicado até atingir os limites de deslocamentos especificados pela norma. Vários ensaios pilotos foram realizados até que o esquema fosse calibrado da forma correta.

Figura 3.18 – Aparato e dimensionamento do ensaio de compressão perpendicular às fibras.

3.2.7 Ensaio de tração normal às fibras

A solicitação à tração perpendicular às fibras ocorre quando alguma solicitação gera tensões de tração na direção perpendicular as fibras, o que pode afetar a sua integridade estrutural, mesmo com pequenos valores e provocando pequenas deformações. A resistência na tração perpendicular é muito menor que a obtida na direção paralela às fibras (Calil et al, 2003).

A ABNT:NBR-7190:97 estima que, para efeitos de projeto, f_{t90} seja nula. O valor de f_{t90} pode ser estimado sendo 5% do valor de f_{t0} . A norma brasileira, tal como a americana ASTM D-143 (2000), consideram um corpo de prova de difícil confecção que podem apresentar rupturas em áreas diferentes das medidas, devido à heterogeneidade da madeira e dos desvios de fibras.

A ISO 13910 (2013) define a realização deste ensaio com um corpo de prova prismático submetido à flexão estática. A direção da grã da madeira deve ser paralela à direção de aplicação da força, como pode ser observado na Figura 3.19. Para o cálculo da resistência à tração normal deve ser utilizada uma relação da tensão interna de tração provocada pela flexão, dada pela Equação 3.7. O segundo termo da Equaçã é um

fator de correção adimensional que normaliza a tensão de tração para um valor equivalente à um cubo de madeira com comprimento de 800 mm.

$$f_{t90} = \left(\frac{3.75 * F_{ult}}{b * h}\right) \left(\frac{0.03 * b * L_h^2}{800^3}\right)^{0,2}$$
(3.7)

Sendo:

f_{t90}: Módulo de ruptura na tração perpendicular às fibras [MPa];

Fult: Força última aplicada[KN] N;

b: Base da seção [cm]; mm

h: Altura da seção cortada [cm]; mm

Lh: Altura da seção transversal cortada (mm)

Figura 3.19 – Esquema de ensaio de tração perpendicular às fibras.

- 1 Placa de apoio móvel.
- 2 Placa de apoio fixo.

Fonte: ISO 13910 (2013).

Neste ensaio, pelo fato do corpo de prova possuir dimensões relativamente pequenas, não é possível considerar defeitos no corpo de prova. Dependendo da seção na qual a madeira for cortada, a altura L_h determinada pode ser inferior ao tamanho dos nós presentes na peça.

Para a realização do ensaio de tração perpendicular às fibras foi utilizada uma máquina universal de ensaios da marca EMIC (ver Figura 3.20-A), com controle de

aplicação de carga e capacidade de 30 kN. Como se trata de um ensaio com corpo de prova pequeno e com força de ruptura pequena, alguns parâmetros foram trabalhados de forma mais minuciosa. Todos os corpos de prova foram devidamente marcados e suas medidas foram tomadas com paquímetro digital. Para este ensaio, todas as amostras foram retiradas com completa isenção de defeitos, o que também serviu de parâmetro para a obtenção da densidade *clean;* para tanto, foram pesadas em uma balança digital com precisão de 0,01 gramas.

Como a área de apoio era muito pequena, não foi possível realizar distinção entre apoios fixo e móvel. O corpo de prova foi posicionado sobre um barramento metálico rígido (3), como ilustra a Figura 3.20B. O vão livre para este ensaio foi de 75 mm, com um corpo de prova (1) de altura aproximada de 30 mm, sendo estas medidas detalhadas na Figura 3.20-C.

Figura 3.20 – Aparato e dimensionamento do ensaio de tração perpendicular às fibras.

3.2.8 Ensaio de cisalhamento paralelo às fibras

A resistência ao cisalhamento na madeira também pode apresentar diferenças se analisada na direção paralela ou perpendicular às fibras. No entanto, não é muito estudado no segundo sentido pelo fato de, em sua ocorrência, a forma de ruptura observada seria por compressão normal às fibras. A ocorrência do cisalhamento paralelo é, principalmente, em ligações por encaixes, muito comum em projetos de estruturas de telhados, e também pode ocorrer em vigas com pequena relação vão/altura. Para obter a propriedade de resistência ao cisalhamento paralelo, a ABNT:NBR-7190:97 e a ASTM D-143 (2000) definem corpos de prova em tamanhos reduzidos e bastante semelhantes, aconselhados unicamente para amostras isentas de defeitos.

A ISO 13910 (2013) recomenda que o ensaio seja realizado na flexão, com peças com pequena relação vão/altura, como ilustrado na Figura 3.21, de maneira a induzir a ruptura por cisalhamento. A norma recomenda um vão igual a seis vezes a altura da peça. A resistência ao cisalhamento deve ser calculada utilizando a Equação 3.8, obtida pela teoria clássica de flexão.

$$f_{\nu} = \frac{0.75 * F_{ult}}{b * h}$$
(3.8)

Sendo:

f_v: Resistência ao cisalhamento [MPa]
F_{ult}: Força última aplicada (N);
b: Base da seção do corpo de prova [mm]
h: Altura da seção do corpo de prova [mm]

Figura 3.21 – Esquema de ensaio de cisalhamento paralelo às fibras.

1 – Apoio de placa móvel. 2– Apoio de placa fixo. Fonte: ISO 13910 (2013)

No vão ensaiado devem estar presentes os defeitos naturais da madeira, que podem ocasionar ruptura por outras formas, tais como tração ou compressão. Caso isso ocorra, considera-se, a favor da segurança, o valor definido pela Equação 3.8.

No caso desta pesquisa, uma peça (1) de 62,3 cm foi posicionada sobre chapas metálicas rígidas, que por sua vez devem ser centralizadas nos apoios e propor um vão de 58,8cm, como pode ser observado na Figura 3.22-A. Outra chapa metálica (2) de igual dimensão foi centralizada na região de aplicação de carga, que ajuda a dissipar o carregamento e evitar o embutimento do aparato no corpo de prova. O ensaio foi executado na máquina universal de ensaios EMIC, com escala de 10 toneladas. Na Figura 3.22-B é ilustrada uma ruptura típica por cisalhamento na flexão.

Figura 3.22 - Aparato e dimensionamento do ensaio de cisalhamento paralelo às fibras.

Fonte: Autor.

3.2.9 Obtenção da densidade aparente das peças

A densidade aparente de todas as peças foi determinada utilizando duas porções de cada tábua: um valor foi estimado a partir dos corpos de prova de tração perpendicular às fibras, sendo este valor relativo à "densidade limpa" preconizada pela ISO 13910 (2013), uma vez que estas amostras tinham que ser isentas de quaisquer defeitos, dadas as suas dimensões pequenas; o segundo valor de densidade foi obtido a partir das amostras referentes aos ensaios de flexão estática, compressão e tração paralelas às fibras, tendo sido considerados os defeitos. Os valores de densidade foram obtidos a partir da Equação 3.9.

$$D_{lab} = \frac{m}{V} \tag{3.9}$$

Sendo:

D_{lab}: Densidade [kg/m³]; m: massa da peça [kg]; V: Volume [m³].

3.2.10 Obtenção do teor de umidade

A madeira As peças de madeira foram passaram por processo de secagem na indústria, o que concedeu estabilidade higroscópica para o lote em estudo. O transporte da indústria até o laboratório foi realizado em caminhão coberto e não sofreu com intemperismos no trajeto. Por este motivo, foi realizada uma amostragem para conferência dos teores de umidade. Tendo essa consideração sido feita, foram utilizadas dois métodos: Obtenção do teor de umidade pelo aparelho M52 da Marrari[®]; e pelo método convencional de secagem em estufa.

O equipamento M52 é um equipamento portátil que funciona por emissão de frequências na madeira, a partir do contato direto do equipamento com a seção serrada. Este equipamento é preciso, mas depende de uma perfeita aferição da densidade da madeira. A análise é feita com resolução de 0,1%, profundidade de até 50mm em uma área de 50x70mm². Sua leitura é direta e pode ser armazenada, facilitando a verificação de lotes volumosos de madeira.

O método convencional de secagem em estufa demanda de um tempo maior. Foi realizada uma amostragem pós ruptura dos corpos de prova de tração perpendicular às fibras. Uma amostra de 200 corpos de prova foram manejados para a estufa até completa secagem, verificada com a estabilidade da massa seca. Sendo assim, o teor de umidade foi obtido a partir da Equação 3.10.

$$u\% = \frac{m_u - m_s}{m_u} \tag{3.10}$$

Sendo: u%: Teor de umidade [%]; m_u: Massa úmida; m_s: Massa seca.

3.3 Análises estatísticas

Para analisar os dados foram utilizadas as ferramentas gráficas do Excel e o pacote estatístico "R", o primeiro por se tratar de um programa de fácil aquisição de dados e o segundo por disponibilidade gratuita.

3.3.1 Análise estatística geral

Com a finalidade de promover avaliação geral dos dados de caracterização da resistência, foram calculados parâmetros básicos da estatística descritiva, tais como média, desvio padrão, coeficiente de variação, mediana, percentis e dispersões gerais. Os dados são apresentados em forma de tabela e diagramas. Foram também utilizadas as ferramentas de análise de variância entre médias – ANOVA, teste de Tukey de médias, análise de correlação R² de Pearson e testes de normalidade.

3.3.2 Análise dos valores característicos segundo a ISO 13910

A norma ISO 13910 (2005) estipula que os valores característicos de um grupo amostral devem ser calculados a partir do quinto percentil inferior da curva normal de distribuição dos resultados. Os limites inferior e superior do 5-percentil apresentados na Figura 3.23 são atribuídos à probabilidade de 25% de chance do valor ser maior ou menor do que 5% da amostra e são calculados de acordo com as Equações 3.11, 3.12 e 3.13.

Figura 3.23 – Limites inferior (A) e superior (B) do 5-percentil de resistência da amostra.

Fonte: ISO 13910 (2005).

A Equação 3.11 trata do valor do percentil " p_i " do "*i-ésimo*" corpo de prova. Para realizar este procedimento, os valores devem estar ordenados de forma crescente. A Equação 3.12 trata do valor referente ao coeficiente de variação caudal ajustado para a curva de Weibull, em que o valor "s" é o coeficiente de inclinação da reta formada no traçado do gráfico de correlação entre $\ln(f_i) \propto \ln(-\ln(1-p_i))$. A correlação é formada pelos 15 menores resultados do grupo estudado. Assim, o valor característico é calculado pela Equação 3.13.

$$p_i = \frac{(i-0,5)}{N} \tag{11}$$

$$CV_{tail} = s^{-0.92}$$
 (12)

$$f_k = \left(1 - \frac{2,7 * CV_{tail}}{\sqrt{N}}\right) * f_{0,05,data}$$
(13)

Sendo:

p_i: percentil analisado;

i: i-ésimo elemento, em ordem crescente;

N: tamanho da amostra;

s: inclinação da curva logarítmica analisada;

CV_{tail}: coeficiente de variação caudal da distribuição de Weibull;

fk: valor característico;

f_{0,05, data}: valor do quinto percentil analisado na distribuição.

3.3.3 Análise de modelos de validação cruzada

A criação de modelos estatísticos necessita de uma validação. Quando uma equação de correlação é verificada a partir do conjunto total dos dados analisados, a equação gerada pela regressão pode não ser válida para outros conjunto de dados. Sendo assim a técnica de validação cruzada tem por objetivo generalizar um modelo, de forma que ele seja confiável para aplicação em variáveis externas ao conjunto analisado.

O modelo de treinamento foi obtido com 80% das amostras, gerando um equação que foi testada posteriormente com os 20% de dados restantes. Esta análise foi realizada cinco vezes, variando então todos os dados de teste, que foram selecionados ao acaso por meio do software estatístico "R". O erro do modelo é calculado a partir da técnica de "RMSE – *Root mean square error*", ou erro médio quadrático. A partir deste fator podese verificar o poder preditivo do modelo, sendo que, quanto menor o erro, melhor é a equação gerada. Sendo assim, os modelos foram obtidos observando o menor valor de RMSE.

Foram realizados quatro modelos:

- Módulo de elasticidade estático x Módulo de elasticidade dinâmico;
- Módulo de ruptura na flexão estática x *Knot_18*;
- Resistência à compressão paralela às fibras x *Knot_18*;
- Resistência à tração paralela às fibras x *Knot_18*.

Considerando que a densidade definida pelo scanner possui o mesmo valor medido em laboratório, não foi necessário traçar um modelo para esta propriedade.

3.3.4 Classificação por valores não destrutivos

Foi realizado um protocolo de classificação com a análise das propriedades encontradas por métodos não destrutivos a partir do scanner Golden Eye 706 e as classes de resistência definidas pela EN 338 (2009). O algoritmo teve por objetivo classificar as peças de acordo com as propriedades estimadas pelos modelos criados utilizando as propriedades obtidas pelo scanner: a densidade, o módulo de elasticidade dinâmico e o valor de *Knot_18*. A classe mecânica atribuída foi a menor encontrada entre as variáveis analisadas.

Os parâmetros de densidade e módulo de elasticidade foram os primeiros a ser verificados. A EN338(2009) trata de valores médios e característicos para as duas propriedades, sendo assim, foi realizada uma verificação para cada caso. Após analisar essas propriedades, as peças foram classificadas de acordo com o valor obtido pelos modelos que estimam f_m , f_{t0} e f_{c0} pelo valor de *Knot_18*. Como a classificação, neste caso, é realizada por peça, é possível inferir a classe de resistência a partir dos valores exatos, gerando então os valores característicos. Depois da classificação pelo algoritmo, foram verificados os valores reais de módulo de elasticidade e das propriedades de resistência avaliadas, o que permitiu concluir se a destinação das peças pôde ser eficaz e segura.

As resistências ao cisalhamento paralelo, compressão e tração perpendiculares não foram atribuídas nestas classificação, pelo fato de não possuírem dependência direta dos valores de *Knot_18*. Além disso, os valores encontrados poderiam desclassificar todas as peças. Esta análise será discutida a seguir.

4 **RESULTADOS OBTIDOS E ANÁLISE DE DADOS**

Neste capítulo são analisados os resultados dos ensaios que deram origem à proposta de tabela de classes de resistência, que é apresentada no Capítulo 5. Os resultados estão disponíveis em forma de tabelas nos Apêndices. Para melhor organização, cada propriedade foi apresentada separadamente, e posteriormente agrupadas na proposta de tabela de classes. Os resultados apresentados estão separados nos seguintes grupos: Flexão Estática – Apêndice A; Compressão Paralela às Fibras – Apêndice B; Tração Paralela às Fibras – Apêndice C.

O Protocolo de classificação pelos modelos estatísticos com parâmetros do scanner associados aos ensaios destrutivos pode ser analisado criteriosamente pelos resultados apresentados, por grupos, em: Apêndice D – Modelo de Flexão Estática x Knot_18; Apêndice E – Modelo de Compressão Paralela às Fibras x Knot_18; e Apêndice F – Modelo de Tração Paralela às Fibras.

4.1 Comparação dos parâmetros apresentados pelo scanner com os avaliados em laboratório.

Atualmente, o scanner industrial utilizado neste trabalho é um dos equipamentos mais modernos para classificação industrial não destrutiva de madeira serrada. Para aferir os parâmetros gerados pelo equipamento, foram selecionadas 100 peças antes da realização dos cortes. Estas peças passaram por verificação do teor de umidade, das dimensões, da massa, das frequências de vibração longitudinal às fibras e por uma comparação visual das imagens geradas pelo scanner com a análise de um graduador humano.

O teor de umidade das peças foi medido em laboratório com o equipamento Marrari[®] M52, mas não foi considerado conveniente correlacionar os resultados obtidos com os valores gerados pelo scanner, visto que as peças foram classificadas industrialmente 12 meses antes. A dispersão dos valores de densidade obtidos pelo scanner para todas as peças analisadas pode ser observada no diagrama ilustrado da Figura 4.1. Como a madeira é um material higroscópico, é natural que as peças apresentassem variação de teor de umidade com o tempo, assim como com a modificação do ambiente de armazenamento. Sendo assim, essa verificação só foi realizada para constatar a umidade média das peças, com mediana entre 12 e 13%. Os valores máximos e mínimos

podem ser observados na Tabela 4.1. Embora estes valores tenham destoado da umidade padrão de 12%, o desvio padrão baixo indica que estes valores podem ser considerados pontos fora da curva.

Quanto à densidade das peças, os valores obtidos em laboratório (D_{lab}) apresentaram correlação de 99% com os do scanner (D_{GE}). Uma pequena variação no valor da densidade pode estar atribuída tanto à aproximação de valores, quanto pela modificação do teor de umidade em função de condições do ambiente. A dispersão dos valores de densidade para todo o lote disponibilizado pode ser observado na Figura 4.1, tendo mediana próximo a 450Kg/m³.

Figura 4.1 – Dispersão dos resultados obtidos para densidade aparente e umidade.

Fonte: Autor.

Tabela 4.1 – Estatística descritiva dos valores de densidade aparente e umidade das peças.

Característica	Mínimo	Máximo	Média	Desvio Padrão
Densidade Aparente [Kg/m ³]	337	711	455	50
Umidade [%]	8,2	16,5	12,3	1,1

Fonte: Autor.

A precisão de resultados também foi constatada para o módulo de elasticidade dinâmico, com correlação de 99% entre os valores do scanner ($E_{din,GE}$) e do ensaio realizado em laboratório ($E_{din,lab}$). Estes resultados podem ser observados na Figura 4.2. É importante discutir que o método utilizado em laboratório é de alta simplicidade, utiliza um software gratuito disponibilizado pela Fakkop[®] e equipamento de baixo custo. A

grande vantagem do scanner, neste caso, é a alta produtividade industrial. No entanto, é completamente viável para os produtores e consumidores de menor porte utilizem o método de vibração longitudinal realizado em laboratório para estimativa dos parâmetros de módulo de elasticidade dinâmico.

Figura 4.2 – Correlações entre: densidade aferida em laboratório e a aferida pelo scanner; e do módulo de elasticidade dinâmico obtido em laboratório e a analisada pelo scanner.

Fonte: Autor.

Quanto às imagens de raios-x geradas pelo scanner, apresentaram perfeição tanto na identificação dos defeitos quanto na sua disposição ao longo da peça, constatadas por observação visual, como exemplificado na Figura 4.3. Uma grande vantagem do scanner é que, pelo princípio de raios x, é possível identificar defeitos internos invisíveis aos graduadores humanos.

Além disso, o scanner recorre a um método de dimensionamento do defeito semelhante ao preconizado pela norma britânica BS 4978 na obtenção do *"knot area ratio"* (KAR), gerando o parâmetro *Knot_18*. Este parâmetro é verificado para todos os nós de uma peça, sendo que os cinco maiores defeitos são identificados e mapeados.

O valor do parâmetro *Knot_18* variou de 0 (zero) até 12171, considerando todo o lote de peças disponibilizadas. Quando o valor era nulo, significava que a peça não possuía defeito algum. Para o valor máximo observado, a peça possuía um conjunto de nós que tomava a extensão completa da seção, tanto em largura, quando em espessura, como pode ser verificado na Figura 4.4. Embora o scanner tenha exatidão na definição do tamanho e da posição do nó, não existe distinção entre os nós de borda e de face, que fazem diferença na classificação visual pelo método preconizado pelo SPIB.

Figura 4.4 – Imagem da peça (A) e do scanner (B) referente ao valor máximo do parâmetro *Knot_18* encontrado no lote completo.

Fonte: Autor.

4.2 Quanto à classificação visual por graduadores humanos

Foram classificadas 1489 peças, segundo as recomendações do SPIB (2014). Os defeitos considerados para a classificação visual foram os nós, sendo que as peças com outro tipo de defeitos (rachaduras, empenamentos e esmoados) não foram incluídas. Além disto, esta classificação foi realizada pelo mesmo graduador humano, evitando dispersão de resultados por erro humano. As peças classificadas visualmente foram distribuídas aleatoriamente entre os principais experimentos realizados, como mostrado na Tabela 4.2.

	SS	S1	S2	S 3	F	Total
Flexão estática (fm)	205 (30%)	89 (13%)	68 (10%)	152 (22%)	175 (25%)	689
Tração paralela (ft0)	51 (13%)	50 (13%)	48 (13%)	100 (26%)	134 (35%)	383
Compressão paralela (fc0)	68 (16%)	54 (13%)	66 (16%)	104 (25%)	125 (30%)	417
Total	324 (22%)	193 (13%)	182 (12%)	356 (24%)	434 (29%)	1489

Tabela 4.2 – Distribuição das peças por ensaio e por classe visual.

Durante o processo de classificação visual, as peças foram alocadas estrategicamente nos três grupos de ensaios principais. Como a resistência à flexão é a mais importante para a classificação estrutural das peças, procurou-se alocar um número maior de peças "SS" nesta situação, além da quantidade de amostras. A maior parte das peças classificadas visualmente tiveram classe "F", ou seja, seriam usualmente descartadas para o uso estrutural. Os grupos com classes visuais "S1" e "S2" foram os menos volumosos. Durante a classificação, observou-se que a distinção entre estas classes era mínima, muitas vezes definida por diferenças milimétricas entre os nós.

Para as 1489 peças classificadas visualmente foram considerados os respectivos valores do parâmetro *Knot_18* gerados pelo scanner. É importante frisar que a classes visuais foram então atribuídas ao pior nó visual, não significando que este era o maior valor de *Knot_18*. Isto se deve à particularidades do processo de classificação, que incluem a deficiência do olho humano na percepção global da dimensão dos defeitos, além das considerações de nós de borda e de face. Quando a peça possuía mais de um nó com a pior classe visual atribuída a ela, era então escolhido o maior defeito segundo a percepção do graduador humano.

A estatística descritiva dos valores de Knot_18 pelas classes de resistência podem ser observadas na Tabela 4.3. Com as respectivas classes visuais e valores de *Knot_18*, foi realizada análise de variância (ANOVA) para grupos independentes, complementada pelo teste de comparações múltiplas de Tukey ao nível de 5% de significância, apresentada no diagrama disposto na Figura 4.5. A dispersão dos valores de *Knot_18* pode ser observada na Figura 4.6, cujo teste de normalidade foi positivo para todas as classes visuais.

	Médias	Desvio Padrão	Mínimo	Máximo	P5	P25	P50	P75	P95
F	5800	1848	1153	12171	3230	4531	5551	6894	9129
S 3	3909	1284	396	9031	1849	3131	3786	4738	5813
S2	3194	1172	168	5979	1289	2371	3151	3939	5159
S1	2304	1103	113	6788	535	1461	2286	3177	3872
SS	1062	954	0	4799	0	180	907	1600	2941
_									

Tabela 4.3 – Dados estatísticos dos valores de Knot_18 considerando a classificação visual.

Figura 4.5 – Média, intervalo de confiança e análise de variância do valor de *Knot_18* em cada classe visual.

Figura 4.6 – Dispersão normal dos valores de *Knot_18* por classes visuais de todas as peças estudadas.

Fonte: Autor.

É possível inferir pela análise de variância, para o lote analisado, que todas as classes visuais diferiram entre si quanto à dimensão média do parâmetro *Knot_18*, tendo os grupos F, S3, S2, S1 e SS tendo sido representados por letras diferentes na Figura 4.5. Sendo assim, o scanner possui sensibilidade para definir a classe visual pelo teste de médias, embora a dispersão dos resultados tenha sido consideravelmente grande para todas as classes visuais.

4.3 Ensaios de flexão estática

O ensaio de flexão estática foi realizado considerando sempre o pior nó identificado na classificação visual posicionado na pior solicitação de momento fletor. Os defeitos analisados nem sempre eram referentes ao maior valor de *Knot_18* da peça, por conta da natureza da identificação visual. Usualmente, peças com valores baixos de Knot foram mal classificadas visualmente, devido aos nós de borda. De forma geral, as peças com nó de borda posicionados na região de maior solicitação resistiam menos que as peças com nós de face, embora o valor de *Knot_18* fosse superior para o segundo caso. A dispersão dos valores do módulo de ruptura f_m e do tamanho do nó podem ser observadas na Figura 4.7.

Figura 4.7 – Dispersão dos valores de f_m e *Knot_18* por classe visual.

Fonte: Autor.

A curva que melhor representou os valores foi uma expressão quadrática, com 64% de correlação. Essa curva poderia ter sido melhor ajustada caso fossem excluídos valores discrepantes, ou agrupados conjuntos específicos de nós (borda x face). Este agrupamento não foi realizado pois considera-se que a madeira, por natureza, possui grande heterogeneidade, sendo necessário mesclar estes efeitos.

Outro fator que deve ser observado foi a condição do nó quanto à sua fixação. Geralmente os nós fixos apresentavam maiores resistências do que aqueles soltos, mesmo que o valor do parâmetro *Knot_18* fosse inferior para o segundo caso. A ocorrência de nós soltos pode estar relacionada à forma que a árvore foi desbastada e ao tempo de recuperação pós desbaste. Quando o desbaste é realizado de forma inadequada, a região do corte do nó fica impregnada por uma resina, que quando seca, possui comportamento frágil na tração.

São apresentados na Tabela 4.4 os resultados gerais obtidos no ensaio de flexão estática. Nota-se que a resistência oscilou de valores próximos a zero até 100 MPa. Isto ocorreu pela não exclusão das peças desclassificadas estruturalmente (F), tendo então uma maior amplitude de resultados, a fim de observar a relação entre o parâmetro *Knot_18* e o Módulo de Ruptura, que é disposto graficamente na Figura 4.6.

	fm	Desvio Padrão	fm,mínimo	fm,máximo	f _{m,k}
F	16,18	8,06	0,74	54,55	7,1
S1	31,79	12,18	11,9	73,15	16,1
S2	30,07	11,99	11,16	71,41	14,1
S 3	24,44	9,15	8,43	55,79	10,7
SS	50,2	17,99	14,13	94,97	24,3
Sem F	36,73	18,02	8,43	94,97	13,7
Total	31,51	18,04	0,73	94,97	9,67

Tabela 4.4 – Estatísticas descritivas para a resistência na flexão - f_m (Mpa) – Valores em MPa.

Fonte: Autor.

Embora a densidade da madeira seja um fator importante para a estimativa da sua resistência, o tamanho e a posição dos nós influenciaram de forma mais expressiva. As peças de menor densidade e com isenção de defeitos resistem mais do que aquelas de maior densidade com pequenos defeitos, principalmente se o nó for de borda e posicionado na pior condição de solicitação. Esta observação possui grande impacto nos resultados analisados, sendo válida a distinção entre madeiras densas e não-densas.

Quando observados os resultados dispostos na Figura 4.8, nota-se que as classes visuais S1 e S2 tiveram distribuição normal semelhantes, indício forte do agrupamento destes grupos quanto à resistência à flexão, que não ocorreu nas análises realizadas no item 4.2

Figura 4.8 – Distribuição normal dos resultados de módulo de ruptura por classe visual.

Na Figura 4.9 podem ser observados alguns comportamentos de ruptura na flexão estática de 5 peças, cada uma representa uma das classes visuais. Cada conjunto de imagens ilustra a peça de 2 metros antes do ensaio e após a ruptura. Logo abaixo a ilustração em escala de 4 metros gerada pelo scanner e a respectiva posição de corte com um gabarito vermelho. Para facilitar a identificação, foi posicionada uma régua abaixo da imagem gerada pelo scanner.

A ruptura das peças isentas de defeito ocorria na região de maior momento fletor, com fratura abrupta, como evidenciado na peça SS da Figura 4.9. Na medida que um nó de borda era posicionado ao centro do corpo de prova, a ruptura ocorria por etapas, como no caso da peça S1 ilustrada. As peças S2 e S3 possuem nós de face, com ruptura abruta, enquanto a peça F possuía um nó em toda a seção e pouco resistiu à força aplicada.

É importante ressaltar a riqueza de detalhes das imagens geradas por raios x, principalmente por identificar defeitos imperceptíveis ao olho humano.

Figura 4.9 – Comportamento da ruptura na flexão estática por classe visual.

4.3.1 Módulo de elasticidade por vibrações longitudinais e por flexão estática

O módulo de elasticidade por vibrações longitudinais obtido pelo scanner é proveniente de ensaios com as peças com comprimento de 4 metros. Quando as tábuas foram seccionadas ao meio para a realização dos ensaios de flexão estática, também foram tomados os valores de módulo de elasticidade por vibrações longitudinais, no entanto, em laboratório. Como a peça utilizada para o ensaio de flexão possuíam os maiores defeitos da peça inicialmente considerada, era natural que o módulo de elasticidade fosse diferente. É proposta uma dispersão entre os resultados do módulo de elasticidade realizados em laboratório (peças com 2 metros de comprimento) com a propriedade elástica obtida pelo mesmo teste realizado pelo scanner, a ser analisada na Figura 4.10.

Em algumas peças a diferença foi pequena, mas naquelas que apresentavam maior heterogeneidade de defeitos, este valor foi maior. É evidente que o fato da metade da peça com maiores defeitos a ter sido utilizada no ensaio de flexão estática o módulo de elasticidade das peças de 2 metros foi relativamente inferior ao de 4 metros.

Figura 4.10 – Correlação entre o módulo de elasticidade obtido pelo scanner (peças com 4 metros) e o módulo de elasticidade por vibrações longitudinais obtido em laboratório (peças com 2 metros).

Fonte: Autor.

Embora o valor da correlação entre as constantes elásticas obtidas nas peças com 2 e 4 metros seja considerado ótimo (R²=82,7%), optou-se por utilizar a constante elástica

obtida em laboratório, com as peças de menor dimensão. Constatou-se, pelo apresentado na Figura 4.2, que o teste de vibração longitudinal realizado em laboratório possui correlação de 99% com o do scanner, sendo assim, caso as peças de 2 metros utilizadas no ensaio de flexão estática passassem pelo scanner novamente, certamente elas teriam valores muito semelhantes aos encontrados em laboratório.

São apresentados na Tabela 4.5 os resultados de módulo de elasticidade estático e dinâmicos (valores obtidos por scanner – peças com 4 metros, e valores obtidos em laboratório – peças com 2 metros). A dispersão dos valores pode ser considerada muito alta, mesmo desconsiderando as peças com classe visual "F". O módulo de elasticidade está intimamente relacionado à densidade e à distribuição de anéis de crescimento.

	Ем	E _{M,máximo}	EM,mínimo	DP E _M	E _{M,k}	Edin,GE	DP E _{din,GE}	Edin,lab	DP E _{din,lab}
F	5,42	10,02	0,85	1,49	3,11	7,18	1,7	6,73	1,62
S1	7,61	13,72	3,69	2,14	4,8	8,55	2,55	8,53	2,44
S2	7,24	13,36	3,96	2,1	4,3	8,28	2,48	8,16	2,3
S 3	6,76	15,23	2,75	1,93	3,9	7,84	2,35	7,73	2,21
SS	7,77	15,86	3,61	2,1	4,8	8,52	2,48	8,57	2,37
Sem F	7,37	15,86	2,75	2,1	4,3	8,29	2,47	8,26	2,35
Total	6,88	15,86	0,85	2,13	3,8	8,01	2,35	7,87	2,29

Tabela 4.5 – Resultados obtidos de módulo de elasticidade (GPa) por classes visuais DP – Desvio Padrão.

Fonte: Autor.

A partir desta constatação, os valores de módulo de elasticidade vibracional considerados para análise foram os obtidos em laboratório, por apresentar resultados melhor correlação e por se ajustarem melhor à realidade do ensaio. A dispersão dos resultados entre os ensaios estáticos e os vibracionais, ambos realizados em laboratório com as peças na dimensão de 2 metros, pode ser observada na Figura 4.11.

O coeficiente de determinação obtido para a análise feita com o lote todo ($R^2 = 91\%$) pode ser considerada muito bom, sendo que a correlação aumenta quando desconsiderando as peças "F" ($R^2 = 95\%$). As peças com maior incidência de defeitos tendem a deformações maiores quando os defeitos são posicionados na pior solicitação. Isto pode acontecer pelo fato da parte fragilizada pelo nó provocar uma tensão superior na parte são da madeira.

Figura 4.11 – Correlação entre os valores de módulo de elasticidade obtidos por flexão estática (peças com 2 metros) e por vibrações longitudinais (peças com 2 metros).

Quando analisado o lote isento de peças "F", verifica-se que a majoração dos resultados da constante elástica dinâmica em 10% é semelhante à preconizada por Bodig e Jayne (1993). As boas correlações entre os valores estáticos e dinâmicos também foram verificadas em outras literaturas, tais como Segundinho (2012), Calil e Miná (2003) e Andrade Junior (2016).

A Resistência à ruptura na flexão estática, tal como os valores de módulo de elasticidade estático e dinâmico podem ser observados no Apêndice A.

4.4 Ensaios de tração paralela às fibras

Para esta solicitação pode-se observar com maior clareza que quanto maior o tamanho do parâmetro *Knot_18* menor era a resistência da peça. As resistências das peças com nós de borda ou de face não foram muito diferentes, ao contrário do ocorrido na flexão estática. Isso ocorre pelo fato da tensão ser aplicada de forma uniforme na peça.

A dispersão dos valores de f_{t0} e Knot pode ser observada na Figura 4.12, enquanto os resultados gerais por classe visual estão dispostos na Tabela 4.6.

	ft0,m	Desvio Padrão	ft0,mínimo	ft0,máximo	ft0,k
F	11,05	4,75	3,55	26,52	4,7
S1	26,34	13,1	11,53	81,31	12,1
S2	16,42	6,7	5,03	45,83	9,5
S3	13,88	4,81	4,73	23,61	8
SS	40,11	16,8	13,9	90,49	19,3
Sem F	22,16	14,5	4,73	90,49	8,3
Total	18,27	13,16	3,55	90,49	6,1

Tabela 4.6 – Resultados obtidos na tração paralela às fibras por classes visuais – Valores em MPa.

Figura 4.12 – Dispersão dos valores de f_{t0} e *Knot_18*.

Fonte: Autor.

A curva que apresentou melhor correlação entre os valores de resistência *Knot_18* foi a exponencial. Para isto ser possível, quando os valores referentes a *Knot_18* eram zero, estes eram substituídos por 1. As peças com classificação visual SS foram as que possuíram melhores resultados, embora com alta variabilidade, associada à incidência de defeitos e à densidade. Esta variabilidade está associada hora a pequena incidência de defeitos, hora à variação de densidade.

Figura 4.13 – Distribuição normal dos resultados de resistência à compressão paralela às fibras por classe visual.

Percebe-se pelo diagrama da Figura 4.13 que as curvas normais das classes S2 e S3, embora tenham comportamentos diferentes, possuem o quinto percentil gráfico muito próximo, evidenciado na Tabela 4.4. Esse comportamento também pode ser observado com as classes SS e S1. Já a classe F, como era esperado, possuiu os piores resultado.

Analisando as rupturas dos corpos de prova, ilustradas na Figura 4.14, observa-se que o ensaio de tração tem a tendência de ruptura mais frágil por conta do nó. O desvio de grã no entorno do defeito tende a uma separação abrupta das peças, não ocorrendo efeito de estilhaçamento entre as fibras.

Na grande parte dos ensaios, a ruptura ocorria no maior nó posicionado no centro da peça. Algumas vezes essa ruptura ocorria na garra da máquina, principalmente quando a densidade era muito baixa ou quando havia a presença de defeitos nesta região. Neste caso, os resultados foram desconsiderados das análises.

Todos os resultados de resistência à tração paralela às fibras e os resultados individualizados podem ser observados no Apêndice C.

Figura 4.14 – Comportamento da ruptura na tração paralela às fibras estática por classe visual.

4.5 Ensaios de compressão paralela às fibras

Dentre os ensaios principais, o de compressão paralela às fibras foi o que apresentou piores relações de correlação entre as classes visuais, a dimensão do parâmetro *Knot_18* e as resistências. A correlação dos resultados foi melhor ajustada em uma curva polinomial de segunda ordem de R^2 =40%, como mostrado na Figura 4.15.

Na Tabela 4.7 são apresentadas estatísticas descritivas dos resultados obtidos, observando-se que as classes S1, S2 e S3 possuem valores característicos próximos, sendo que na Figura 4.16 é perceptível que as classes S1 e S2 possuem quinto percentil inferior próximos. A classe F apresentou os menores valores, não sendo tão inferiores, por conta da forma na qual o ensaio é realizado, comprimindo os defeitos.

	f _{c0,m}	Desvio Padrão	fc0,mínimo	fc0,máximo	f _{c0,k}
F	18,11	4,75	6,4	29,24	10,1
S1	24,16	6,22	13,89	47,51	15,3
S2	22,03	4,45	13,42	31,98	14,8
S3	20,93	5,17	10,96	35,64	13,7
SS	29,76	6,64	16,45	43,86	17,8
Sem F	23,83	6,56	10,96	47,51	14,6
Total	22,12	6,61	6,4	47,51	13,2

Tabela 4.7– Resultados obtidos na compressão paralela às fibras por classes visuais - Valores em MPa.

14000 $y = 3,0338x^2 - 340,96x + 9848,2$ $R^2 = 0,4006$ 12000 Parâmetro Knot_18 10000 • F 8000 • S1 6000 S2 4000 **▲** S3 2000 • SS 0 0,00 10,00 20,00 30,00 40,00 50,00 Resistência à compressão Paralela às fibras f_{c0} [Mpa]

Figura 4.15 – Dispersão dos valores de f_{c0} e *Knot_18* por classe visual.

Fonte: Autor.

Figura 4.16 – Distribuição normal dos resultados de resistência à compressão paralela às fibras por classe visual.

Fonte: Autor.

Quanto à análise da ruptura das peças, observa-se na Figura 4.17 que o padrão de esmagamento dos nós foi seguido em todas as classes visuais analisadas. Ainda assim, as peças rompiam usualmente no maior nó evidenciado pelo scanner. Quando o esmagamento era evidenciado em outro nó de menor dimensão, a partir das imagens do scanner, analisava-se qual era a referência do valor de *Knot_18* para verificação da resistência pelo nó de ruptura. Uma questão a ser analisada é: a ruptura em um nó de menor dimensão implicava que outro nó, com valor de Knot_18 maior, resistia mais do que aquele analisado. Isso implica que aquele nó resistiria ainda mais, o que poderiam modificar as relações de resistência pela dimensão do defeito. Sendo assim, é possível concluir, que para o ensaio estrutural de compressão paralela às fibras, a dimensão do nó não é um fator preponderante para determinação da resistência, considerando que um nós fixo possibilita a transmissão de tensões. Outros fatores já discutidos, como a ocorrência de nós soltos, presença de resina e posicionamento dos nós podem influenciar mais do que a própria dimensão do nó. Os resultados podem ser observados no Apêndice B.

Fonte: Autor.

4.6 Ensaios de cisalhamento paralelo às fibras

O ensaio de cisalhamento foi realizado em corpos de prova selecionados aleatoriamente da parte das peças que não foram utilizadas nos ensaios principais. Sendo assim, as amostras possuíam defeitos, que geralmente não eram os piores. Não houve controle sobre a posição dos defeitos presentes nas amostras. Durante a execução dos ensaios, sempre que possível os defeitos foram posicionados sempre na parte tracionada.

Por conta da natureza dos ensaios e da grande incidência de defeitos, poucas peças tiveram ruptura evidenciada por cisalhamento na flexão, como mostrado na Figura 4.18-A, cerca de 5% do total. Outras peças evidenciaram ruptura por tração na parte inferior do corpo de prova (Figura 4.18-B). Em alguns casos, a ruptura ocorreu de forma mista, tendo início por tração e se propagando por cisalhamento na (Figura 4.18-C). Para efeito de classificação, observa-se que a ruptura por tração gera resultados de resistência ao cisalhamento a favor da segurança.

Figura 4.18 – Modos de ruptura dos corpos de prova de cisalhamento: A- Cisalhamento; B-Tração; C- Ruptura mista.

Fonte: Autor.

Os resultados obtidos em cada classe visual, podem ser observados na Tabela 4.8. Percebe-se que os valores característicos das classes S1 e S2 são muito próximos, evidenciando novamente a possibilidade de agrupamento entre as duas classes.

	f _{v0,m}	Desvio Padrão	fv0,mínimo	fv0,máximo	f _{v0,k}
F	4,37	1,3	0,8	7,89	1,7
S1	5,1	1,33	1,75	9,61	3
S2	4,95	1,26	1,73	9,07	2,9
S3	4,65	1,3	1	7,87	2,5
SS	5,6	1,28	1,64	9,62	3,7
Sem F	5,07	1,33	1	9,62	2,8
Total	4,87	1,36	0,8	9,62	2,55

Tabela 4.8 – Resultados obtidos no cisalhamento paralelo às fibras por classes visuais – Valores em MPa.

Não é plausível correlacionar os resultados obtidos nesta etapa com os valores de *Knot_18*, uma vez que os corpos de prova foram confeccionados aleatoriamente com a porção que sobrava de cada uma das peças. Sendo assim, não foi determinado o tamanho do nó de referência na ruptura, quando este era presente. Os resultados para cada um dos corpos de prova pode ser observado nos Apêndices A, B e C.

4.7 Ensaios de compressão perpendicular às fibras

Assim como no ensaio de cisalhamento, a obtenção dos corpos de prova de compressão paralela ás fibras foi realizada de forma aleatória, sendo possível defeitos na região comprimida. Foi tomado cuidado para evitar que a superfície de contato entre as placas de aplicação de carga e a madeira não possuísse nós de borda, evitando grandes deslocamentos iniciais.

O fato de apresentar defeitos na região comprimida não implica diretamente em perda de resistência. A região do nó pode ser firme e ter densidade superior, o que eleva significativamente a resistência, pela boa transferência de tensões na região. Quando o nó é solto e resinoso, a região pode não apresenta boa resistência, reduzindo então a resistência da peça. De forma geral, a ruptura padrão foi por esmagamento, sendo que o limite de deslocamento foi atingido apenas em condição de plasticidade. Sendo assim, a carga de ruptura tomada foi a carga máxima resistida. Os resultados dos ensaios de compressão paralela às fibras podem ser observados na Tabela 4.9 de forma resumida por classe visual, ou nos Apêndices A, B e C para cada uma das peças observadas.

	f c90,m	Desvio Padrão	fc90,mínimo	fc90,máximo	f _{c90,k}
F	7,49	1,58	4,16	14,03	5,4
S1	8,24	1,91	4,51	13,97	5,7
S2	7,89	1,88	3,99	13,25	5,3
S3	7,65	1,78	4,14	12,67	5,2
SS	9,06	1,98	4,27	14,29	6,1
Sem F	8,23	1,97	3,99	14,29	5,5
Total	8,02	1,9	3,99	14,29	5,4

Tabela 4.9 – Resultados obtidos na compressão perpendicular às fibras por classes visuais – Valores em MPa.

4.8 Ensaios de tração perpendicular às fibras

Para o ensaio de tração perpendicular às fibras, os corpos de prova foram confeccionados com completa isenção de defeitos. A ruptura teve comportamento frágil em todos os corpos de prova e ocorria buscando os raios da madeira ou os anéis de crescimento. Dependendo da forma na qual os anéis de crescimento estavam posicionados na seção, a ruptura ocorria de forma inclinada, como pode ser observado na Figura 4.19-B. Em seções regularmente tangenciais, a ruptura ocorria reta, como observado na Figura 4.19-A, e em seções radiais, a ruptura acontecia na zona de transição dos anéis de crescimento, tal como observado na Figura 4.19-C.

Figura 4.19 – Modos de ruptura em corpos de prova de tração perpendicular às fibras.

Fonte: Autor.

Os resultados dos ensaios de tração perpendicular às fibras podem ser observados na Tabela 4.10 de forma resumida por classe visual, ou nos Apêndices A, B e C para cada uma das peças observadas.

	f _{t90,m}	Desvio Padrão	ft90,mínimo	f _{t90,máximo}	f _{t90,k}
F	0,23	0,07	0,05	0,49	0,12
S1	0,27	0,08	0,09	0,64	0,17
S2	0,25	0,08	0,10	0,59	0,16
S 3	0,23	0,07	0,07	0,53	0,14
SS	0,28	0,08	0,08	0,54	0,13
Sem F	0,26	0,08	0,05	0,64	0,15
Total	0,25	0,08	0,07	0,64	0,14

Tabela 4.10 – Resultados obtidos na tração perpendicular às fibras por classes visuais – Valores em MPa.

4.9 Modelos estatísticos de validação cruzada

Os modelos propostos nesta seção foram obtidos por meio de calibração e validação cruzada. Para tanto, foram separados aleatoriamente 80% dos resultados para calibrar o modelo, e os 20% restantes serviram para validar. Este processo foi realizado 5 vezes, e é representado nos diagramas dispostos nas Figuras 4.20, 4.21, 4.22 e 4.23 com cores diferentes. Vários modelos foram traçados para cada uma das análises, a fim de selecionar qual apresentava melhores correlações, sendo aqui apresentados aqueles que tiveram o menor erro quadrado médio (RMSE).

4.9.1 Módulo de elasticidade estático x Módulo de elasticidade dinâmico

A análise entre os valor do módulo de elasticidade estático e dinâmico foi aquela que gerou o melhor modelo de predição dos resultados. Este resultado já era esperado, visto que várias pesquisas evidenciam as boas relações entre estas variáveis. Na Figura 4.20 pode ser observada a dispersão dos valores do modelo de calibração para o módulo de elasticidade, e na Tabela 4.11 são apresentados os resultados do modelo e dos ajustes.

As boas correlações dos modelos de predição e observação são um indicativo direto de que o modelo apresentado possui excelente explicação do fenômeno estudado. O valor de R² poderia ter sido ainda melhor caso fossem excluídas as peças de classe visual "F", mas assim restringiria o modelo para todo o lote verificado pelo scanner. De forma geral, o resultado obtido propõe que o módulo de elasticidade dinâmico é cerca de 12% superior ao estático, próximo dos valores sugeridos por Bodig e Jayne (1993).

Figura 4.20 – Dispersão dos valores do modelo de calibração entre módulo de elasticidade estático e módulo de elasticidade dinâmico – Valores em GPa.

Fonte: Autor.

Tabela 4.11 – Resultados do modelo de calibração entre $E_m e E_{din}$

RMSE de calibração	0.6399
RMSE Relativo de calibração	0.0931
Erro Padrão residual	0.6403
R2 de calibração	0.9098
R Predição x Observação	0.9506
R2 de validação	0.9036
RMSE de validação (80%)	0.6635
RMSE relativo de validação (80%)	0.0976
RMSE validação cruzada	0.6408
Modelo	$E_{m} = 0.875 * E_{din}$

Fonte: Autor.

4.9.2 Módulo de ruptura na flexão estática x *Knot_18*

Como já comentado no item 4.3, o módulo de ruptura na flexão apresentou boa correlação com a dimensão do parâmetro *Knot_18*. Nesta etapa, a melhor alternativa para calibração e validação foi um modelo de curva exponencial. Essa característica já era observada no diagrama apresentado na Figura 4.6. Alguns resultados muito fora da curva de calibração podem ser observados na Figura 4.21, mas não foram retirados por não se tratar de erro de ensaio, mas sim de condições específicas de fragilidade dos nós. De forma geral, os valores de R e R² para o modelo, calibração e validação são satisfatórios. Os resultados podem ser verificados na Tabela 4.12.

Figura 4.21 – Dispersão dos valores do modelo de calibração entre módulo de ruptura na flexão estática e parâmetro *Knot_18*.

Fonte: Autor.

Tabela 4.12 – Resultados do modelo de calibração entre $f_m e Knot_{18}$

0.3763
0.1148
0.3768
0.6247
0.8086
0.6539
0.3580
0.1092
0.3769
$f_m = exp^{(3,967-2,3*Knot_{18}*10^{-4})}$

Fonte: Autor.

4.9.3 Resistência à compressão paralela às fibras x Knot_18

Dentre os quatro modelos aqui apresentado, o de compressão paralela às fibras é o que teve maior erro e menores correlações de resultados. Isso acontece pela natureza do ensaio. A compressão de um "nó" não é tão prejudicial quanto a tração, isto porque não há perda seção, mas sim uma perda da resistência devido à situação na qual a fibra no "nó" está posicionada. O afastamento dos valores da curva de calibração apresentada na Figura 4.22 coloca em evidência as baixas correlações entre resistência e dimensão do parâmetro Knot_18, que também são apresentadas de forma numérica na Tabela 4.13.

Fonte: Autor.

Tabela 4.13 – Resultados do modelo de calibração entre f_{c0} e *Knot_18*

5.1519
0.2329
5.1643
0.3911
0.6520
0.4251
5.7829
0.2439
5.1866
$f_{c0} = 30,06 - 0,002025 * Knot_{18}$

Fonte: Autor.

4.9.4 Resistência à tração paralela às fibras x Knot_18

Embora o modelo para tração paralela às fibras tenha apresentado bons valores de R e R² para calibração e validação, a equação gerada para o modelo teve de ser ajustada em uma exponencial com uma equação polinomial de segundo grau. Os valores dos erros encontrados são bem próximos dos verificados para a flexão estática, e bem menores do que os de compressão paralela, apresentados na Tabela 4.14. Aqui também podem ser observados pontos fora da curva, no diagrama de dispersão dos valores do modelo, apresentado na Figura 4.23.

Figura 4.23 – Dispersão dos valores do modelo de calibração entre a resistência a tração paralela às fibras e o parâmetro *Knot_18*.

Fonte: Autor.

Tabela 4.14 – Resultados do modelo de calibração entre f_{t0} e Knot_18

RMSE de calibração	0.3622
RMSE Relativo de calibração	0.1334
Erro Padrão residual	0.3636
R2 de calibração	0.6309
R Predição x Observação	0.7800
R2 de validação	0.6085
RMSE de validação (80%)	0.4037
RMSE relativo de validação (80%)	0.1501
RMSE da validação cruzada	0.3647
Modelo	$f_{t0} = exp^{(3,803-3,79*Knot_{18}*10^{-4}+2,1*Knot_{18}^{2}*10^{-8})}$

Fonte: Autor.

4.10 Classificação das peças com a EN 338

Os resultados encontrados no protocolo de classificação das peças pelos valores não destrutivos podem ser observados nos Apêndices D, E e F. São apresentadas na Tabela 4.15 a quantidade de peças classificadas nas respectivas classes de resistência, e a verificação destas em relação ao ensaio principal realizado, respectivamente de flexão estática, compressão paralela às fibras e tração paralela às fibras. A classificação realizada de acordo com os ensaios não destrutivos apresentou um erro maior para as considerações

de elasticidade e densidade características, quando comparado com as atribuições médias dadas pela EN 338. Este erro pode ser observado na Tabela 4.16.

O erro encontrado no processo de classificação de acordo com os parâmetros médios de densidade e elasticidade, inferior à 2%, é considerado baixo, no entanto, a quantidade de peças desclassificadas com esta consideração chega a 62,4%. Em contra partida, o erro encontrado considerando os valores característicos, de 11%, reduz significativamente a quantidade de peças desclassificadas para 24,8%. Levando em conta que a desclassificação, neste caso, é preponderante por conta dos valores de módulo de elasticidade.

Quando observadas a quantidade de peças desclassificadas pelo processo visual, verifica-se que o protocolo criado desclassificou menor quantidade de peças (24,8%) do que o processo visual (29%), como mostrado na Tabela 4.2. Projeta-se que além de eficiência no processo de classificação, o scanner pode reduzir a quantidade de peças desclassificadas, com um erro considerado pequeno para este autor.

0 (-) (1 1	0 (-) 689
-) ((-) 689
1 1	
	(46,3%)
,6) (1	.,6)
0	0
-) ((-) 417
	(28.0%)
1 :	2
03) (0,	,05)
0	0
-) ((-) 383
	(25.7%)
3.	4 (25,770)
,7) (1)
0	0
-) ((-) 1489
5 1	(100%)
1) (1	,1)
	(-1) (-1)

Tabela 4.15 – Quantidade e porcentagem de peças classificadas classes de resistência pelos modelos criados e verificação para todos os ensaios

Fonte: Autor.

Ensaio	Verificação	Quantidade do erro	Percentual do erro		
Flexão Estática	Valores médios	10	1,4%		
	Valores característicos	90	13,1%		
Compressão paralela	Valores médios	9	2,1%		
às fibras	Valores característicos	42	10,1%		
Tração paralela às	Valores médios	3	0,8%		
fibras	Valores característicos	36	9,4%		
Total	médio	22	1,5%		
Total car	acterístico	168	11,3%		

Tabela 4.16 – Quantidade de peça avaliadas com erro e respectivas percentagens.

Fonte: Autor.

5 PROPOSTA DE TABELA DE CLASSES DE RESISTÊNCIA

A partir das análises realizadas neste trabalho, apresenta-se a Tabela 5.1 de classes de resistência, seguindo as premissas de classificação visual apresentada pelo SPIB. Os valores característicos dos grupos SS, S1 e S2 apresentam similaridades com as classes C24, C16 e C14 da EN 338. A classe visual S3 é balizada pela resistência à flexão de 10MPa, valor considerado baixo, mas semelhante à classe S10 preconizada pela ISO 16598, que também apresenta similaridade entre as classes SS-S24 e S1-S16.

Tabela 5.1 – Classes de resistência para a madeira de *pinus* spp. associadas às classes visuais do SPIB.

	SS [S24/C24]	S1 [S16/C16]	S2 [C14]	S3 [S10]
f _{mk} [MPa]	24	16	14	10
f _{c0k} [MPa]	18	15	15	14
f _{t0k} [MPa]	19	12	10	8
f _{v0k} [MPa]	3,5	3	3	2,5
f _{c90k} [MPa]	6	5,5	5,5	5
f _{t90k} [MPa]	0,15	0,15	0,15	0,15
E _{mk} [MPa]	4800	4800	4300	3900
E _m [MPa]	7700	7600	7200	6700
Edin,lab_M [MPa]	8600	8500	8200	7700
D _m [kg/m ³]	475	455	445	440
$D_k[Kg/m^3]$	390	380	375	370

Fonte: Autor.

Quando comparada com a tabela de classes de resistência da EN 338(2009), observa-se que as classes atribuídas na Tabela 5.1 possuem algumas distinções. Os valores de resistência à tração perpendicular e compressão paralela obtidos são inferiores em todas as classes da madeira brasileira, enquanto os valores de compressão perpendicular e tração paralela são superiores em todos os casos. A resistência ao cisalhamento é inferior apenas para a classe SS, enquanto para as demais, é superior. A classe S3-S10 não é contemplada na norma europeia.

Analisando os valores propostos pela ISO 16598, é possível constatar que todos os valores de resistência à tração perpendicular propostos são inferiores, diferente dos valores de compressão perpendicular e cisalhamento paralelo, que são maiores. Quanto aos resultados de tração paralela às fibras, todos os considerados são maiores, e em relação à compressão paralela, apenas o apresentado para a classe S3 é maior.

As densidades média e característica das classes encontradas neste trabalho são superiores aos valores estipulados pela norma europeia. A ISO 16598 recomenda classificação apenas pela densidade média, cujos valores também são inferiores às encontradas neste trabalho. Embora as características de densidade apresentem valores maiores comparados com as normas internacionais, o valor do módulo de elasticidade para as classes trabalhadas foi inferior em quase todas as comparações. Esta característica pode ser explicada pela pequena quantidade de anéis de crescimento, atribuído ao rápido crescimento.

A variação da densidade dentro das classes visuais foi baixa, mas respeitou uma ordem decrescente de valores para as peças com maior incidência de defeitos. Isso pode acontecer pelo fato dos nós serem mais perceptíveis na parte superior do furte da árvore, onde a densidade é ligeiramente inferior à base. No entanto, a densidade não é um fator preponderante para a atribuição da classe, sendo que por hora, muitas peças de baixa densidade apresentavam características de isenção de defeitos, enquanto outras mais densas eram usualmente desclassificadas pela grande incidência de nós.

Observa-se que alguns fatores aproximam as classes S1 e S2, tanto em relação à resultados, quanto em relação a operação de classificação. A redução da quantidade de classes visuais é uma necessidade a simplificação dos processos de classificação. A fim de propor uma tabela de classificação nos moldes previstos pelo PN-02-126.10-001-1(2018), é proposta a Tabela 5.2, unindo as classes visuais S1 e S2, tendo os valores característicos e médios sido calculados juntos.

Para a Tabela 5.2 de classes de resistência, associa-se à Tabela 5.3 de classificação visual, com agrupamento das classes S1 e S2 do SPIB (2014), mantendo as características da classe S2. Nota-se que os resultados após o agrupamento tendem a respeitar os valores da classe "S2" da Tabela 5.1. Optou-se pela aproximação dos resultados sempre para os valores inferiores, tomando como base os valores obtidos pelo quinto percentil inferior dos resultados. Sendo assim, alguns valores são semelhantes à tabela anterior. A vantagem de reduzir a quantidade de classes de resistência está na simplificação do processo de classificação, mas é visível que, embora algumas propriedades não tenham variação significativa, o método proposto pelo SPIB é efetivo para a classificação visual das madeiras de *pinus* spp. brasileiras.

Para proceder a classificação estrutural das peças utilizando as Tabelas 5.2 e 5.3, deve-se proceder a classificação visual, a análise de densidade e posteriormente a estimativa do módulo de elasticidade pelo método de vibração longitudinal. A partir destas características, as peças são alocadas nas respectivas classes de resistência (Classe 1, Classe 2 e Classe 3).

	CLASSE 1 [S24/C24]	CLASSE 2 [C14]	CLASSE 3 [S10]
f _{mk} [MPa]	24	14	10
f _{c0k} [MPa]	18	15	14
ft0k [MPa]	19	10	8
fv0k [MPa]	3,5	3	2,5
f _{c90k} [MPa]	6	5,5	5
f _{t90k} [MPa]	0,15	0,15	0,15
E _{mk} [MPa]	4800	4350	3900
E _m [MPa]	7700	7450	6700
Edin,lab [MPa]	8600	8350	7700
D _m [kg/m ³]	475	450	440
D _k [Kg/m ³]	390	380	375
-			

Tabela 5.2 – Proposta de tabela de classes de resistência da madeira de pinus para a NBR 7190.

Fonte: Autor.

Tabela 5.3 – Parâmetros visuais para a classes de resistência para a madeira de *pinus* spp.

	Nó	s	Inclinação	Rachadura		
Classe Visual	Face	Face	Face das fibras Passante		Superficial	Fendas
	estreita	larga			L L	
CLASSE 1	1/5	1/3	1:12	1 vez largura	Até 600mm	1 vez largura
CLASSE 2	1/3	1/2	1:8	1,5 vez largura	Até 1/4 comp.	1,5 vez
						largura
CLASSE 3	1/2	3/4	1:4	1/6 comp. da	Sem limites	1/6 comp.
				peça		peça

Fonte: Adaptado de SPIB (2014).

6 CONCLUSÕES

As peças de madeira trabalhadas estavam secas $(12\% \pm 1\%)$, possuíam excelente qualidade de processamento e baixa incidência de defeitos provenientes do processo de desdobro. A densidade das peças variou de média a baixa, com algumas peças densas. O scanner industrial utilizado para estimar as propriedades físicas, visuais e elásticas da madeira de pinus mostrou-se eficiente em todos os aspectos. A densidade e o módulo de elasticidade avaliados pelo scanner apresentaram valores basicamente iguais aos tomados em laboratório. As imagens obtidas por meio de *raio-x* apresentam boa precisão e riqueza de detalhes na identificação e posicionamento dos nós, sendo o valor do parâmetro Knot_18 um excelente estimador da classificação visual.

O método de classificação visual preconizado pelo SPIB foi eficiente para a madeira cultivada no Brasil, com evidências que as classes visuais S1 e S2 podem ser agrupadas a nível de classes visual e mecânica, com a finalidade de simplificar a classificação por graduadores humanos. É possível dizer que o scanner possui sensibilidade suficiente para definir a classificação visual atribuída pelo SPIB, visto que, ao realizar teste de médias, os valores atribuídos ao *Knot_18* apresentaram diferença significativa entre si em todas as 5 classes visuais recomendadas.

O protocolo de classificação mesclando técnicas não destrutivas com ensaios destrutivos de laboratório apresentou resultados satisfatórios. Os modelos estatísticos criados geraram um erro de: 1,5% quando verificados os valores médios de módulo de elasticidade e densidade; e 11,3% do total de peças classificadas com as propriedades características. Quando analisados os valores médios, a quantidade de peças desclassificadas foi alta, de 62,4%, enquanto os valores característicos obtiveram 24,8% de peças desclassificadas.

As tabelas criadas para as madeiras de *pinus* spp. brasileiras possuem características diferentes quando comparadas com as principais tabelas de classificação internacionais, tendo algumas propriedades sido expressivamente inferiores dentro das classes, como à tração perpendicular às fibras e o módulo de elasticidade estático. De forma geral, a propriedade mais importante é a elástica, que influencia diretamente no cálculo estrutural. É possível afirmar que embora as madeiras de *pinus* spp. brasileiras possuam densidades superiores, o módulo de elasticidade é inferior ao estabelecido nas tabelas de classes de resistência ISO 16598 e EN 338.

A relação entre densidade e módulo de elasticidade das madeiras brasileiras está associada ao fato das florestas de rápido crescimento apresentarem algumas irregularidade quando ao lenho e à quantidade de anéis de crescimento. Por análise visual, constatou-se grande quantidade de peças com lenho juvenil, embora isto não tenha sido mensurado.

De forma geral, foram observadas boas correlações entre a resistência e o valor do parâmetro *Knot_18*, principalmente para os ensaios de flexão estática e tração paralela às fibras. A melhor relação entre os parâmetros não destrutivos foi a de módulo de elasticidade estático x módulo de elasticidade por vibrações longitudinais, que chegou a R²=95% quando excluídas peças desclassificadas visualmente. Sendo assim, considerase que esta técnica é imprescindível na estimativa do módulo de elasticidade em tabelas de classes de resistência normativas.

7 REFERÊNCIAS BIBLIOGRÁFICAS

American Society for Testing and Materials. ASTM C215: Standard test method for fundamental transverse, longitudinal and torsional frequencies of concrete specimens. Philadelphia: 2008.

American Society for Testing and Materials. ASTM D-143: **Standard test methods for small clear specimens of timber.** Philadelphia, PA, 2009.

American Society for Testing and Materials. ASTM D245: 1993 - **Standard practice for** establishing structural grades and related allowable properties for visually graded lumber. 1993.

American Society for Testing and Materials. ASTM D198: **Standard Test Methods of Static Tests of Lumber in Structural Sizes.** Philadelphia, PA, 2009.

American Society for Testing and Materials. ASTM E1876: Standard test method for dynamic Young's modulus, shear modulus and Poisson's ratio by Impulse Excitation of Vibration. Philadelphia: 2007.

Andrade Junior, J. R. Classificação estrutural de peças de madeira de Pinus elliottii usando o módulo de elasticidade obtido pelo método de ondas longitudinais de tensão. Dissertação (Mestrado em Engenharia Civil (Estruturas)). 126f - Escola de Engenharia de São Carlos, Universidade de São Paulo. São Carlos. 2016.

Associação Brasileira de Normas Técnicas - ABNT. NBR 7190: **Projeto de Estruturas de Madeira**, 1997.

Associação Brasileira de Produtores de Florestas Plantadas - ABRAF- Anuário Estatístico da ABRAF 2013: Ano Base 2012. Brasília, DF, 2013.

Bacher, M. Comparison of different machine strength grading principles. In: COST E53 Conference 29th-30th October, Delf – Netherlands, p.183-193, 2008. Ballarin, A.W.; Lara Palma, H. A. Propriedades de resistência e rigidez da madeira juvenil e adulta de Pinus taeda L. **Revista Árvore**, Viçosa-MG, v. 27, n. 3, p. 371-380, 2003.

Bartholomeu, A. Classificação de peças estruturais de madeira através do ultra-som. **Tese de doutorado**. Universidade de Campinas, Campinas. 2001. 105p.

Bodig, J.; Jayne, B. A. **Mechanics of wood and wood composites**. 2. Ed. Malabar: Krieger Publish Company, 1993. 712 p.

Bortoletto Junior, G. Indicações para utilização da madeira de seis espécies e variedades de pinus aplicada na construção civil. São Carlos, 1993. **Dissertação de Mestrado**. Escola de Engenharia de São Carlos, USP

Brännströn, M; Westin, J. Classification of a structural timber by decision trees – A comparison to the certified method. Forest Products Journal, v.59, n.3, p.53-61, 2009.

British Standard, BS4978 - Visual strength grading of softwood - Specification. 2007

Bussoni, A; Cabris, J. A financial evaluation of two contrasting silvicultural systems applicable to *Pinus taeda* grown in north-east Uruguay. Southern Forests: a Journal of Forest Science. v. 72(3/4), p. 163-171, 2010.

Calil Junior, C.; Lahr, F. A. R.; Dias, A. A. **Dimensionamento de elementos estruturais de madeira**. Barueri: Manole, 2003.

Calil Junior, C.; Miná, A. J. S. Vibração transversal: Um método eficiente para classificação de peças estruturais de madeira. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande-PB. v.7, n.2, p.335-338, 2003.

Carreira, M. R. Critérios para classificação visual de peças estruturais de Pinus Sp. São Carlos. **Dissertação de Mestrado**. Escola de Engenharia de São Carlos Universidade de São Paulo, 2013.

Carreira, M. R., Dias, A. A. Critérios para classificação visual de peças estruturais de pinus sp. **Cadernos de Engenharia de Estruturas**, São Carlos v. 8, n. 34, p.17-43, 2006.

CROSSLAM – Casa Disponível em: < http://crosslam.com.br/home/?q=content/casa-tiradentes> Acesso em Janeiro de 2019.

European Standart. EN 338. Structural timber - Strength classes. Brussels. 2009.

European Standart. **EN 14081**. Timber structures - Strength graded structural timber with rectangular cross section. Madrid. 2013.

Fonselius M., Lindgren C. & Makkonen O. Lujuuslajittelu nostaa jalostusarvoa. . Suomalaisen sahatavaran lujuus. **VTT Rakennustekniikka**, Espoo, Finlandia, 1997.

Giudiceandrea F. Stress grading lumber by a combination of vibration stress waves and X-ray scanning. *Proceedings of the 11th International conference on Scanning Technology and Process Optimization in the Wood Industry (ScanTech 2005)*, July 24th-26th 2005, Las Vegas, Nevada U.S.A., pp. 99-108

Hanhijärvi A., RantaMaunus A., Turk G., Potential of strength grading of timber with combined measurement techniques - phase1. **VTT Publications 568**, Espoo, Finlandia, 2005.

Hanhijärvi, A.; Ranta-Maunus, A.; Turk, G. Potential of strength grading os timber with combined measurement techniques – Report of the combigrade-projecto phase 2. **VVT Publications 686**, Espoo, Finlandia, 2008.

Icimoto, F. I. Dormentes em madeira laminada colada de pinus oocarpa. **Dissertação de mestrado**. Escola de Engenharia de São Carlos-SP, Universidade de São Paulo. 2013.

Indústria Brasileira de Árvores - IBA – Relatório anual de 2017. São Paulo, SP. 2017. Disponível em: https://iba.org/datafiles/publicacoes/pdf/iba-relatorioanual2017.pdf>. Acesso em Janeiro de 2019.

Indústria Brasileira de Árvores - IBA – Sumário executivo de 2018, São Paulo, SP. 2018. Disponível em: https://iba.org/datafiles/publicacoes/relatorios/digital-sumarioexecutivo-2018.pdf>. Acesso em Janeiro de 2019.

International Organization for Standardization - ISO 16598 – Structural classification for sawn lumber, 2015.

International Organization for Standardization - ISO 13910 – **Structural timber** – **Characteristic values of strength** – **graded timber** – **Sampling, full-size testing and evaluation**, 2013.

Instituto Argentino de Normalización y Certificación. IRAM -9662-3: Madera laminada encolada estructural: Clasificación visual de las tablas por resistência: Parte 3 - Tablas de pino taeda Y elliotti (*Pinus taeda* y elliottii). Buenos Aires, 2013.

Instituto de Pesquisas Tecnológicas do estado de São Paulo - IPT Sistema de Informações de Madeiras Brasileiras. São Paulo: IPT, 1989. 291p. (Relatório n.27 078).

Jayne, B.A. Vibrational properties of wood as indices of quality. **Forest Products Journal**, Madison, v.9, n.11, p.413-416, 1959

Jeong, G, Y. Relationship between anatomical and mechanical properties of loblolly pine (pinus taeda). Forest products joural. V.63. n.1/2. P. 47-53. 2013

Marchiori, J.N.C. Dendrologia das Gimnospermas. Santa Maria: Editora da UFSM, 2005. 191 p.

MICROTEC – **Scanning & Optimization**. Acesso em junho de 2017, disponível em: http://microtec.eu/en/catalogue/products/goldeneye/

Moya, L.; Baño, V. Elastic behavior of fast-growth Uruguayan pine determination from compression and bending tests. **BioResourses.** v.12 (3), p. 5896-5912. 2017.

Moya, L; Cardoso, A; Cogno, M; O'Neill, H. Caracterizacion structural de madera aserrada de pinos cultivados en Uruguay. **Maderas – Ciencia y tecnologia**. v.17. n.3 p. 597-612, 2015.

Moya, L; Domenech, L; Cardoso, A; O'Neill, H; Baño, V. Proposal of a visual strength grading rules for Uruguayan pine timber. **Europe Journal of Wood Products**. v. 75, p. 1017-1019, 2017.

Moya, L.; Laguarda, M. F.; Cagno, M.; Cardoso, A.; Gatto, F.; O'neill, H. Physical and mechanical propertiers of Loblolly and Slash pine from Uruguay plantations - **Forest Products Journal**. V.63(3/4). p.128-137. 2013.

Moritani, F, Y. Proposta de classes de resistência para peças estruturais de madeira: *Eucalyptus urograndis, Pinus taeda* e *Schizolobium amazonicum* (Paricá). **Dissertação de mestrado**. Escola de Engenharia de São Carlos-SP, Universidade de São Paulo. 2018.

Nocetti, M.; Brancheriau, L.; Bacher, M.; Brunetti, M.; Crivellaro, A. Relationship between local and global modulus of elasticity in bending and its consequence on structural timber grading. **Europe Journal of Wood and Products**, v.71, n., p.297-308, 2013.

Pellerin, R. F. A vibrational approach to non-destructive testing of structural lumber. **Forest Products Journal**, Madison, v.14, n.3, p.93-101, 1965.

Pereira, M, C, M. Metodologia para estudo da caracterização estrutural de painéis de madeira laminada cruzada. **Dissertação de mestrado**. Universidade de São Paulo. 2014.

Pošta, J. et al. Correlations and differences between methods for non-destructive evaluation of timber elements. **Wood Research**, v. 61, n. 1, p. 129-140, 2016.

Qiu, L.P; Zhu, E. C; van de Kuilen, J. W. G. Modeling crack propagation in wood by extended finite element method. **Europe Journal Wood Products**. v.72, p. 273-283, 2014.

REWOOD – Casa de Vela Ilhabela. Disponível em: https://rewood.com.br/cases/escola-de-vela> Acesso em Janeiro de 2019.

Roblot, G.; Bléron, L.; Mériaudeau, F.; Marchal, R. Automatic computation of the knot area ratio for machine strength grading of Douglas-fir and Spruce timber. **EJECE**. v. 14(10), p. 1317-1332, 2010.

Rocco Lahr, F. A. Sobre a determinação de propriedades de elasticidade da madeira. 227p. 1983. **Tese de doutorado**. Escola de Engenharia de São Carlos - Universidade de São Paulo.

Santos, L. L. Avaliação estrutural de vigas de madeira laminada colada. **Dissertação de mestrado**. Universidade Federal do Espírito Santo. 2014.

Santos, L. S.; Azevedo, M. S.; Segundinho, P. A. G. Madeira Laminada Colada (MLC): Prescrições técnicas de confecção e utilização. In: GONÇALVES, F. G. et al. (Orgs.). **Engenharia Madeireira: Pesquisa e Produção**. 1.ed. Seropédica: EDUR-UFRRJ, 2017. cap. 8, p.121-134.

Segundinho, P. G. A.; Cossolino, L. C.; Pereira, A. H. A.; Calil JR, C. Aplicação do método de ensaios das frequências naturais de vibração para obtenção do módulo de elasticidade de peças estruturais de madeira. **Revista Árvore**, Viçosa-MG, v.36, n.6, p.1155-1161, 2012.

Shimizu, J. Y. **Pinus na silvicultura brasileira.** Colombo: Embrapa Florestas, 2008, 223 p.

Siegloch; A, M. Marchiori, J, N, C. Anatomia da madeira de treze espécies de coníferas. **Ciência da Madeira**. V.6. n.3. p.149-165; 2015

Southern Pine Inspection Bureau - SPIB. **Standard grading rules for Southern Pine Lumber**. Pensacola, Fl: SPIB, 2014. 247 p.

Steffen, A.; Johansson, J. C.; Wormuth, E. W. Study of the relationship between flatwise and edgewise moduli of elasticity of sawn timber as a means to improve mechanical strength grading technology. **Holz Als Roh-Und Werkstoff.** v. 55(4). p. 245-253. 1997.

Tredwell T., "Visual stress grading of timber, explanation and practical interpretation of the visual grading elements of BS 4978:1973. **Timber grades for structural uses**, *Timber Research and Development Association*, 1973.

White, R. H.; Ross, R. J. (Ed.). Wood and timber condition assessment manual. 2nd ed. Madison: **United States Department of Agriculture**, 2014. 93 p. 2014

Zenid, G. J. Identificação e grupamento das madeiras serradas empregadas na construção civil habitacional na cidade de São Paulo. **Dissertação de Mestrado**. Piracicaba –SP. Universidade de São Paulo; 1997.

APÊNDICES

Simbologia

ID	adm	Identificação da amostra
CV	adm	Classificação visual - SPIB
D1	kg/m³	Densidade em umidade ambiente - Aferida em laboratório
D2	kg/m³	Densidade em umidade ambiente - Aferida pelo scanner GoldenEye
E1	GPa	Módulo de elasticidade estático - aferido em laboratório no ensaio de flexão em peças de 2 metros
E2	GPa	Módulo de elasticidade dinâmico - aferido em laboratório no ensaio de flexão em peças de 2 metros
E3	GPa	Módulo de elasticidade dinâmico - aferido pelo scanner GoldenEye em peças de 4 metros
Fc90	MPa	Resistência à compressão normal às fibras - Aferido em corpos de prova padrão ISO
Ft90	MPa	Resistência à tração perpendicular às fibra - Aferido em corpos de prova padrão ISO
Fv0	MPa	Resistência ao cisalhamento paralelo às fibras - Aferido em corpos de prova padrão ISO
KNT	adm	Dimensão do nó de ruptura.
Fm	MPa	Módulo de ruptura - aferido no ensaio de flexão em peças de 2 metros
Fc0	MPa	Resistência à compressão paralela às fibras - Aferido em peças de 2,05 metros - Padrão ISO
Ft0	MPa	Resistência à tração paralela às fibras - Aferido em peças de 2,45 metros - Padrão ISO

Tabela Apêndice A.1 – Dados referentes aos ensaios mecânicos											
ID	CV	D1	D2	E1	E2	E3	fm	fc90	ft90	Fv0	KNT
20	S 1	405	410	5,21	6,10	6,03	14,88	6,81	0,19	3,48	6788
28	SS	424	450	8,41	8,84	8,15	54,55	8,77	0,34	6,10	968
30	F	490	503	6,34	7,87	8,20	20,33	9,39	0,32	5,06	5058
44	F	410	420	4,85	8,13	8,22	10,41	5,91	0,19	4,83	6374
50	S 3	454	461	6,68	7,33	7,22	21,08	11,56	0,25	4,66	5599
52	SS	400	409	5,40	5,94	5,87	40,17	9,07	0,27	4,72	1765
64	SS	432	468	7,12	7,46	7,23	40,17	10,51	0,31	5,19	1400
100	S 3	448	459	6,62	7,36	9,53	25,79	8,56	0,25	6,61	1862
119	F	418	419	5,60	6,20	6,58	17,61	8,05	0,35	1,82	5642
124	SS	615	596	12,09	12,96	12,38	94,23	11,54	0,15	7,58	144
329	S 3	424	422	3,99	4,77	5,09	15,37	8,19	0,23	1,77	5709
416	F	438	448	5,90	6,67	7,23	25,79	7,91	0,23	5,23	5414
417	SS	467	508	7,93	8,57	8,30	32,73	9,33	0,45	7,36	1820
418	F	455	470	6,40	7,94	8,77	16,12	9,77	0,24	5,34	5048
419	SS	390	400	6,14	6,41	6,37	40,17	5,74	0,24	4,19	1424
420	F	471	492	6,74	7,49	9,56	28,52	11,01	0,24	5,30	4500
421	SS	416	432	6,56	7,80	6,26	24,30	6,48	0,37	4,95	2241
422	SS	493	509	7,54	8,48	6,64	45,13	11,02	0,41	5,83	16
423	S 2	473	501	6,54	6,98	5,98	38,19	11,59	0,34	4,63	3939
424	F	413	411	2,83	4,23	5,28	9,17	6,17	0,20	3,88	7781
425	F	395	400	3,56	4,63	4,42	18,35	7,14	0,23	2,97	2653
426	S 3	404	418	6,22	7,34	7,14	24,30	7,06	0,15	5,06	2295
428	F	462	454	4,96	5,93	5,95	9,92	6,56	0,21	4,72	5398
429	S 3	474	462	7,39	7,15	6,24	23,56	8,16	0,23	2,17	4552
430	F	515	486	5,01	5,10	6,20	30,25	7,11	0,21	5,19	2566
431	S 3	454	462	9,01	10,37	9,45	26,53	9,42	0,20	3,79	1075
432	S 1	447	451	6,29	6,53	5,13	26,78	6,82	0,25	4,72	2151
433	F	401	425	6,80	7,58	7,74	30,75	7,72	0,22	5,85	3295
434	F	438	432	5,01	6,45	6,99	11,65	6,11	0,21	3,88	7109
435	F	417	424	5,81	7,75	8,10	15,87	6,31	0,20	3,44	5434
436	S 3	378	393	3,89	4,55	4,45	24,55	7,13	0,25	4,92	2585
437	SS	449	464	7,46	8,71	8,69	53,31	9,21	0,30	6,12	961
438	S 1	493	502	8,46	8,87	9,03	50,83	8,86	0,32	4,95	1930
439	SS	484	483	8,01	8,16	8,39	54,06	9,12	0,36	5,83	197
440	S2	417	414	6,92	7,48	7,36	35,96	6,26	0,22	3,68	4587
441	S3	436	444	7,12	8,40	8,10	16,86	7,22	0,20	4,10	2898
442	F	401	403	5,16	7,30	6,56	20,83	5,66	0,17	4,90	6268
444	S3	411	412	7,18	7,75	7,53	31,49	9,65	0,18	3,39	3772
445	S 2	379	387	5,36	6,64	6,33	20,83	6,33	0,11	3,44	2400
446	F	415	417	5,09	6,58	7,43	13,64	6,67	0,23	2,66	8412
447	S2	412	422	7,05	7,64	7,88	31,24	6,00	0,20	3,61	5399
448	SS	462	469	5,97	6,17	4,98	47,11	9,33	0,49	5,10	781
449	SS	462	494	7,39	7,53	7,67	56,54	10,69	0,34	4,41	1449
450	\$3	424	453	5,14	5.47	4,64	18.35	8,89	0.23	5.32	2639

Apêndice A – Resultados dos ensaios de flexão estática

Tabela Apêndice A.2 – Dados referentes aos ensaios mecânicos

ID	CV	D1	D2	E1	E2	E3	Fm	Fc90	Ft90	Fv0	KNT
451	F	446	461	5,95	6,85	6,60	15,37	8,20	0,32	5,54	5581
452	F	452	453	3,73	4,14	5,22	34,22	8,88	0,29	5,54	2813
453	S2	436	452	4,18	4,86	4,87	25,54	10,29	0,11	5,21	3910
454	F	434	444	3,85	6,08	6,39	7,44	7,29	0,25	2,46	12171
455	F	419	421	6,68	8,12	8,30	22,81	7,55	0,23	5,43	1781
458	SS	430	427	9,40	9,94	12,19	53,31	9,44	0,19	2,31	0
459	F	366	362	3,23	4,49	4,95	7,93	5,49	0,15	2,99	5025
460	F	454	468	3,02	3,59	3,35	11,90	11,65	0,47	4,04	4172
461	F	432	435	5,90	6,78	8,72	18,10	7,98	0,10	5,72	3297
462	S2	429	461	5,75	6,28	6,75	25,29	9,57	0.35	5.01	2339
465	SS	377	379	6,07	6,50	6,37	43,39	7,13	0.21	4,72	2379
466	SS	441	457	8.96	10.18	9.69	32.24	8.44	0.27	6.28	3108
468	S 1	444	465	6.14	6.60	6.37	36.70	11.39	0.47	5.63	3387
469	F	412	427	3,38	3,79	3,82	15.37	6,37	0,24	4,81	6188
470	F	397	400	3.12	4.05	5.97	10.17	5.58	0.20	2.08	8451
471	SS	440	426	7.39	8.29	8.20	26.04	9.83	0.18	5.39	1491
473	SS	443	458	6,45	7,86	6,32	54,55	9,26	0,42	4,24	1098
474	SS	459	466	7.46	8.04	8.52	49.10	8.17	0.27	4.24	1690
475	F	423	426	7,18	8,29	8,45	13,64	8,84	0.23	4,66	4485
476	S 3	447	452	7,46	9,93	8,73	18,60	8,22	0,12	4,81	3876
477	SS	518	526	12,09	13,56	11,26	86,79	12,37	0,30	7.36	58
478	S 3	495	517	9.76	10,46	9,91	30,75	11,99	0,28	6,99	396
479	SS	526	526	8.96	9.87	9.28	69.93	10.19	0.26	6.01	120
480	S 3	469	487	7,39	8,29	7,77	28,02	11,48	0,31	6,14	4829
481	S 1	481	495	8,65	9,40	10,12	49,84	8,64	0,37	6,61	1140
482	F	396	400	6,56	7,98	8,01	10,91	8,34	0,18	2,59	4346
484	S 3	464	467	5,29	6,26	6,03	18,35	11,03	0,26	5,12	3809
485	F	413	418	0,93	7,20	6,76	2,98	8,83	0,20	4,12	6579
486	S 3	457	451	10,15	11,32	11,24	40,67	7,63	0,19	4,79	1795
488	F	493	500	6,74	7,75	9,44	8,43	10,57	0,27	5,72	2496
489	F	441	449	7,18	8,24	8,73	14,38	8,14	0,16	4,19	5063
490	S 1	468	457	5,64	5,99	6,83	39,18	7,56	0,37	4,70	1856
491	S 2	459	468	8,10	9,20	9,33	32,73	6,99	0,21	5,19	3034
492	F	454	454	6,80	7,36	7,59	12,40	8,53	0,23	4,48	3970
493	S2	462	475	4,45	5,79	5,84	18,35	10,90	0,30	5,43	3556
494	F	462	469	3,63	5,17	5,99	8,93	9,51	0,25	5,63	9774
495	SS	407	408	5,40	5,98	6,56	23,56	7,00	0,27	4,99	1161
496	F	506	520	3,45	5,57	5,85	11,90	10,89	0,24	2,11	4871
503	S 1	534	552	10,15	12,30	11,38	50,83	12,16	0,47	7,21	519
504	S 2	495	505	8,65	10,60	11,05	39,18	9,46	0,30	6,79	738
505	SS	519	500	7,25	8,14	9,84	60,75	9,50	0,17	5,46	86
506	S 1	491	500	7,77	9,07	7,54	34,22	9,12	0,48	5,10	1826
507	F	453	460	4,28	4,63	4,86	16,61	8,65	0,32	4,97	4952
508	SS	448	456	7,18	8,00	7,57	45,63	7,01	0,21	3,90	1460
510	F	429	439	4,59	4,53	4,70	30,50	7,29	0,20	4,19	3451
511	S 1	416	426	6,24	7,93	7,92	16,12	6,27	0,09	5,14	3650
512	S 1	394	401	5,90	7,13	7,08	16,12	7,19	0,18	4,35	3689

Tabela Apêndice A.3 – Dados referentes aos ensaios mecânicos

ID	CV	D1	D2	E1	E2	E3	Fm	Fc90	Ft90	Fv0	KNT
513	F	557	550	5,93	7,19	9,04	9,42	11,81	0,25	3,90	3226
514	S 2	410	418	6,99	7,56	7,83	38,68	6,45	0,14	4,30	1638
515	SS	385	387	7,18	7,58	6,89	28,27	8,61	0,20	4,12	2104
518	S 1	380	386	3,69	4,01	4,72	17,61	5,69	0,16	3,99	3845
520	SS	408	404	6,37	6,37	6,17	37,19	8,08	0,23	3,88	985
521	S 2	436	445	6,19	7.21	7,14	39,43	8,70	0.25	3.99	587
522	S 2	473	479	4,30	5,26	7,26	34,22	8,81	0.37	5.63	2539
523	SS	475	489	9.76	10.83	10.75	66.45	7.65	0.24	5.65	86
524	SS	521	539	8.46	8.66	8.62	78.11	12.99	0.38	7.67	0
525	S1	375	389	5.25	6.24	6.13	23.31	6.46	0.24	1.75	2001
526	F	503	502	4 51	5 49	5 74	11 16	8 72	0.31	5 63	10124
527	SS	502	533	11 71	12.88	10.46	72 41	9,96	0.37	6.21	95
529	F	409	413	8 28	9.18	7 73	23 31	7.05	0.16	3.86	5178
530	\$2	527	528	7 32	8.62	9.55	31 74	11 29	0,10	5,00 5,77	5211
530	S2 S3	300	320 417	5.93	7 37	7 20	12 15	9.08	0,37	<i>J</i> ,77	<i>J</i> <u>211</u> <i>J</i> <u>960</u>
532	22	136	417	<i>J</i> , <i>JJ</i>	7,37 A A1	5.03	34.06	9,08	0,25	5 37	4900
537	55	402	433	4,09	7 70	7.83	18.60	6,35	0,23	3,52	1090
525	ъ5 Б	402 511	41J 524	0,02 7,20	10.02	7,85	11,00	0,29	0,18	5,59	4707 5401
526	Г С2	527	544	1,39 0 16	10,05	1,72	25 71	10,15	0,45	5,01	2246
520	33 01	227	292	8,40 4 49	10,85	11,09	33,71	12,04	0,29	0,10	2340
531	51	5//	382	4,48	5,24	4,08	22,81	0,57	0,27	3,81	3372 2115
538	S2	454	458	9,06	10,79	10,23	19,84	/,82	0,21	3,33	3115
539	SS	445	472	8,28	8,61	/,31	62,74	11,40	0,40	5,39	270
540	SI	382	383	6,68	7,18	7,72	24,30	6,76	0,15	4,19	2060
541	S1	381	381	5,72	6,56	6,83	11,90	5,91	0,23	2,97	3590
543	S 3	435	441	7,85	8,87	8,63	24,05	7,78	0,26	4,88	1900
544	F	369	375	5,36	6,36	6,17	22,81	4,57	0,22	3,77	3930
545	SS	391	384	5,29	6,48	6,90	21,08	6,76	0,27	4,70	1468
546	S 1	394	412	6,29	6,96	6,70	46,62	7,64	0,27	5,37	1462
547	S 3	408	423	3,01	3,71	3,81	10,66	8,68	0,24	4,28	4458
561	F	367	379	4,28	5,30	5,14	10,41	4,94	0,17	1,29	6500
593	F	391	399	5,14	5,79	5,76	20,83	6,09	0,26	3,42	4158
600	F	395	403	4,61	4,70	5,23	8,68	7,42	0,19	2,40	5461
655	S 1	378	402	5,97	6,77	5,84	30,25	9,05	0,30	5,03	2300
687	S 1	487	488	9,52	10,92	11,20	44,63	7,95	0,23	5,77	2730
718	S 3	420	448	6,19	7,00	6,69	26,53	7,69	0,24	4,90	3898
743	SS	545	553	13,13	14,29	12,69	63,23	9,54	0,11	7,89	314
745	S 3	414	451	3,69	4,13	4,44	28,52	7,90	0,32	4,32	4184
786	S 2	375	384	4,59	5,71	5,99	14,13	5,29	0,20	1,73	3285
790	SS	474	492	8,46	8,99	10,11	60,75	8,67	0,13	6,50	30
806	SS	640	630	13,60	14,03	14,73	89,27	13,89	0,11	6,41	170
809	SS	592	581	10,88	11,61	12,26	81,08	11,66	0,14	6,87	181
820	SS	564	580	12,90	14,37	12,95	80,34	13,29	0,35	8,54	560
821	S 3	376	388	7,25	7,67	7,41	30,50	6,54	0,28	2,22	2854
822	SS	351	359	5,01	5,64	5,47	25,54	4,27	0,18	2,93	3704
823	S 2	456	460	7,25	7,68	7.01	20.33	7,54	0,34	4,28	3286
824	SS	583	602	11.71	13.76	14.11	92.24	11.37	0.38	8.09	142
825	F	425	434	2,99	3,72	3,51	3,47	8,07	0,20	4,90	10878

Tabela Apêndice A.4 - Dados referentes aos ensaios mecânicos

ID	CV	D1	D2	E1	E2	E3	Fm	Fc90	Ft90	Fv0	KNT
827	S 1	485	491	10,72	12,28	12,25	31,74	5,86	0,16	5,54	4456
829	SS	477	494	8,37	8,64	8,06	56,54	7,45	0,34	5,70	1703
830	F	399	420	4,85	6,46	6,16	13,89	8,68	0,24	5,61	5893
831	S 3	437	452	6,74	7,82	8,78	16,37	6,94	0,25	5,03	3224
832	S 3	476	492	7,05	7,28	8,61	12,40	11,89	0,27	5,26	3125
834	F	464	479	4,12	4,76	5.18	16,12	7.48	0,24	6.10	6160
836	S 1	442	446	8,23	9,46	10,22	40,91	7,50	0,22	2,84	1672
842	S 1	427	437	4.83	5.45	5.83	19.59	8.03	0.27	4.12	4237
843	F	501	513	6.09	8.17	7.82	13.39	9.55	0.13	6.28	5982
845	SS	514	521	10.72	12.52	11.99	55.79	8.73	0.22	5.19	1199
846	SS	388	410	5.81	6.38	5.66	37.19	6.21	0.32	7.94	243
847	SS	603	621	12.28	12.53	10.46	32.24	13 69	0.46	6 70	385
850	SS	411	403	6.00	7.08	7 37	33 97	7 26	0.22	4 63	1499
851	S3	470	473	7 25	7.86	7 94	14 88	7 45	0.25	1 33	3578
852	SS	461	468	10.15	11.00	10.10	64 47	9.22	0.25	6 68	0
854	22	515	509	8 55	8 59	7 84	44 63	10 74	0,27	5,00	1634
856	F	415	414	5 90	7 13	8 29	10.91	6 46	0.08	1 88	5420
857	53	415	460	6 5 1	7 3/	7 73	10,71 77 77	0,40 0 02	0,00	3 53	2440
858	22	421	413	4 17	4 50	4 86	34.96	8.62	0,29	1 64	1994
859	52	421	/30	9.06	9.46	4,00 8.03	76 12	9.48	0,10	1,04	11/15
862	52 E	416	410	7,00 4.61	5,40	5.03	10.41	5,40 6,25	0,21	7,55 3 55	11 4 5 4572
864	22	410	410	4,01 6 50	5,00 7 10	5,95 6 90	10,41 41.66	0,23 5.40	0.18	3,33 4 55	372
865	55 62	420	411	0,39 רר ר	0.26	0,90	25 20	7,40	0,10	4,JJ 6 42	2400
868	33 E	420	430	1,17	9,30 6.76	9,43 8 01	10.41	7,10	0,23	0,43 6 70	3400 8462
000 970	Г	402	462	4,12	0,70	0,01	10,41	7,00 6,01	0,08	0,70 5 2 2	0402 4716
870	г. Г.	441	430	7,32 רר ר	0,49 8 05	9,22	24 47	6.16	0,10	J,52	4/10
012	22	437 500	443 510	1,11	0,95 10.27	9,07	20.25	0,10	0,27	4,05	1200
013 770	33 62	300 449	519 455	0,03 7 25	10,27	7.00	50,25 22,49	10,08	0,20	7,19	1399
8//	52 01	448	455	7,25	ð,1ð 10.10	7,99	32,48 29,10	0,82	0,19	5,44	18/4
8/8	51	44 <i>2</i>	409	9,40 5.44	10,18	10,14	38,19	8,08 0,24	0,27	0,01 5.5.4	2425
8/9	Г Г	505	520	5,44	6,64	1,21	11,90	9,34	0,26	5,54	7268
880	F	404	405	3,70	4,62	5,07	10,91	7,55	0,16	4,24	5529 1079
881	53	406	404	5,60	5,68	5,38	22,81	/,60	0,17	2,79	18/8
883	53	453	456	7,89	9,81	9,85	17,85	8,80	0,24	4,15	4512
884	SS	485	482	8,80	10,36	10,43	40,17	8,76	0,25	4,79	1094
886	55	4//	4/9	4,83	5,54	5,09	18,85	7,93	0,54	5,54	2365
888	F	427	440	4,48	5,21	4,96	11,90	9,83	0,21	4,46	5515
889	SI	487	464	9,06	10,79	11,54	20,33	5,91	0,19	4,35	3583
890	S3	436	443	5,25	7,06	7,82	13,64	12,48	0,19	5,52	9031
893	S 2	417	434	4,28	4,44	6,20	19,84	9,21	0,28	2,93	3621
896	S 1	448	441	7,12	7,36	7,34	33,23	7,51	0,23	1,77	1515
901	SS	412	414	7,97	8,88	9,30	42,65	7,88	0,22	4,99	1329
903	SS	441	450	7,18	6,99	5,90	48,60	9,00	0,25	4,99	733
905	S 1	470	472	7,69	8,36	9,19	17,36	8,44	0,20	5,65	2067
907	SS	527	512	8,75	10,07	10,10	47,11	9,80	0,38	2,73	54
909	S 3	418	423	8,19	8,52	8,57	26,53	6,80	0,17	4,77	3758
911	S 3	402	405	5,56	6,99	6,91	13,39	6,01	0,20	4,28	3627
914	S 3	418	428	7,73	8,75	8,05	26,28	8,29	0,33	3,88	1909

Tabela Apêndice A.5 – Dados referentes aos ensaios mecânicos

ID	CV	D1	D2	E1	E2	E3	Fm	Fc90	Ft90	Fv0	KNT
915	SS	448	463	7,81	8,60	7,49	51,33	11,92	0,35	5,54	2696
917	S 1	433	444	6,37	7,34	7,38	22,32	7,68	0,19	5,52	2358
918	S 1	441	442	6,92	7,57	7,33	46,12	8,06	0,29	5,01	143
920	SS	440	441	7,25	8,89	8,60	39,67	8,64	0,22	4,28	1076
921	F	461	482	5,29	5,61	5,38	17,61	9,44	0,26	4,34	5176
923	S 3	410	417	4,60	5,94	5,95	10,66	9,47	0,29	5,52	2669
930	S 3	444	453	7,12	7,04	6,21	33,48	7,35	0,31	5,79	2892
931	S 2	403	392	6,51	7,19	6,71	25,04	4,86	0,19	3,97	2452
933	S 3	396	389	6,27	6,54	6,03	34,96	4,86	0,16	2,62	3080
938	S 1	410	413	7,69	8,79	8,34	29,01	7,41	0,19	2,04	1656
939	F	454	454	2,73	2,99	3,12	7,44	7,55	0,16	5,26	4334
941	S 3	394	415	6,71	7,19	7,58	17,85	6,10	0,22	2,57	3841
943	SS	440	458	8,55	9,50	9,10	49,59	6,08	0,22	6,45	1735
944	S 1	473	493	8,70	9,24	8,45	42,40	9,43	0,20	4,99	1999
945	S 3	367	374	5,68	6,71	6,09	20,83	4,47	0,16	2,62	3275
946	S 3	470	476	8,46	9,69	8,05	33,72	8,87	0,29	5,06	1906
949	F	370	372	5,52	6,27	6,41	23,31	5,89	0,19	2,44	5326
952	S2	450	459	6,51	7,29	7,92	29,26	9,04	0,29	6,30	2498
955	S2	435	441	7,39	8,11	8,78	15,13	6,44	0,18	4,88	5606
957	SS	418	416	6,65	7,67	7,27	29,26	6,47	0,23	4,90	2254
958	S 3	429	436	6,68	8,15	8,06	26,04	7,39	0,27	4,50	5107
959	S 3	471	491	7,81	8,63	7,98	29,01	8,45	0,24	5,43	2998
967	F	391	426	4,12	4,60	4,07	11,65	6,14	0,19	2,77	3616
968	SS	375	389	6,48	6,68	6,03	41,41	6,77	0,29	2,77	1035
969	S 1	440	436	8,06	8,73	8,06	35,46	6,09	0,24	4,46	1640
970	SS	448	463	7,05	8,14	7,13	39,67	7,86	0,30	4,92	1899
971	S 3	403	405	4,59	5,33	5,85	30,75	7,76	0,22	4,88	4749
972	S 1	420	460	6,56	7,28	7,60	24,05	8,01	0,35	4,55	3900
973	S 1	381	395	5,48	6,15	6,50	16,12	8,62	0,16	3,57	2286
979	F	433	452	5,08	6,26	6,30	29,01	7,66	0,07	4,50	4849
981	SS	475	482	8,46	9,99	9,22	42,90	7,78	0,34	4,99	1633
982	SS	376	386	6,27	6,86	6,38	35,96	5,85	0,25	4,01	1156
984	SS	404	428	6,92	7,03	7,15	37,69	6,35	0,29	4,99	1741
985	S 3	382	394	5,01	5,95	5,39	16,86	5,75	0,27	4,32	4577
990	S 1	389	395	7,05	7,56	6,71	39,18	6,13	0,31	4,86	2492
991	F	420	407	3,61	4,52	4,89	8,68	6,44	0,07	4,88	6894
992	SS	470	482	6,59	6,45	6,43	29,26	6,77	0,32	5,01	3018
997	S 3	418	428	6,59	7,65	6,98	19,09	6,45	0,24	4,35	2756
1002	S 3	386	406	6,04	6,42	6,53	19,34	5,99	0,16	3,77	3861
1004	S 1	477	483	8,32	9,66	9,13	27,28	8,64	0,23	4,68	3264
1005	SS	382	377	5,40	5,36	5,41	33,48	4,93	0,20	4,32	508
1006	F	481	484	6,45	9,50	9,23	9,67	7,69	0,08	6,32	5044
1007	SS	433	441	6,56	6,95	7,19	34,22	7,57	0,29	5,28	2213
1009	SS	411	443	4,19	4,74	4,04	49,10	7,65	0,37	4,59	27
1012	F	421	450	4,53	5,29	4,97	13,64	7,24	0,40	5,52	4755
1014	SS	441	431	5,29	5,34	6,78	27,77	6,84	0,28	4,81	1455
1015	SS	410	473	6,92	6,70	6,19	39,67	7,67	0,35	4,88	520

Tabela Apêndice A.6 - Dados referentes aos ensaios mecânicos

ID	CV	D1	D2	E1	E2	E3	Fm	Fc90	Ft90	Fv0	KNT
1017	S 2	492	504	7,25	8,79	10,92	14,88	7,24	0,24	4,97	4423
1019	F	424	445	5,25	7,45	8,47	10,91	7,27	0,25	6,12	4612
1022	F	474	497	8,10	10,67	9,84	17,85	7,18	0,22	5,32	6387
1026	SS	465	457	5,46	6,05	6,12	45,13	7,94	0,25	5,03	0
1027	SS	427	415	6,27	6,69	6,82	29,26	5,60	0,22	3,90	2033
1028	F	418	465	2,97	4,53	4,98	7,93	7,15	0,15	4,81	9058
1029	SS	396	411	5,18	5,49	4,37	34,72	7,41	0,29	4,01	1715
1030	SS	433	413	3,61	4,00	4,33	34,22	6,30	0,23	3,10	1742
1033	SS	405	403	5,14	5,81	6,80	24,05	6,85	0,18	4,75	3796
1038	F	460	476	5,44	6,84	7,55	15,87	8,67	0,09	5,97	6817
1039	SS	427	414	5,21	5,73	6,91	50,09	7,21	0,20	4,44	0
1041	SS	413	426	7,12	7,45	6,82	34,22	5,56	0,23	3,84	1463
1042	SS	520	521	8,41	8,58	7,67	66,45	8,37	0,38	6,05	348
1044	SS	389	404	5,70	6,30	4,79	20,33	6,51	0,35	2,59	2951
1045	SS	471	472	6,71	6,95	6,23	58,27	8,89	0,36	4,32	131
1058	SS	396	394	6,00	7,05	6,79	24,30	6,04	0,17	5,21	2651
1083	SS	434	434	5,75	5,87	6,87	47,86	7,37	0,20	5,06	700
1085	S 3	392	384	6,68	7,81	8,23	12,40	5,59	0,19	4,36	4686
1086	F	427	431	5,29	6,63	7,14	8,18	6,78	0,18	3,26	6561
1087	F	384	386	4,70	5,32	6,26	12,65	5,87	0,23	4,15	7535
1088	S 1	473	472	8,51	9,33	11,04	23,06	10,16	0,24	6,41	2784
1091	F	421	426	4,09	4,78	6,80	9,17	5,74	0,19	4,51	5264
1101	F	436	439	5,25	6,21	7,54	15,62	8,07	0,22	3,31	9465
1103	SS	466	460	8,46	9,67	9,57	43,39	8,30	0,25	4,79	504
1114	S 1	414	411	5,04	5,73	5,66	24,55	7,03	0,29	2,90	2980
1115	F	421	425	4,39	5,16	6,80	19,59	5,76	0,26	3,64	3197
1116	S 1	451	452	6,80	7,51	9,04	32,73	10,41	0,36	6,00	553
1117	F	436	432	4,91	5,28	6,94	13,14	7,12	0,17	4,72	7344
1120	F	421	423	5,48	6,02	5,05	19,34	6,52	0,25	4,77	3041
1121	SS	569	565	7,73	8,18	8,56	65,71	8,79	0,38	5,87	0
1135	S 3	442	458	5,72	5,39	5,90	30,50	8,65	0,28	4,41	4290
1137	S 2	407	404	6,86	7,55	8,63	24,80	6,01	0,23	3,67	3423
1138	S 3	377	378	4,06	4,78	4,06	13,64	5,67	0,16	4,10	3255
1139	F	451	448	5,18	6,42	7,17	16,61	8,20	0,22	4,64	7584
1140	F	429	426	5,18	5,86	5,64	20,83	7,47	0,28	3,08	2574
1141	S 2	436	429	7,05	8,35	8,47	21,57	7,65	0,24	5,43	3180
1142	S 2	517	513	4,23	4,82	5,25	34,22	9,18	0,59	6,28	2415
1143	F	436	425	5,64	6,30	7,35	14,63	10,06	0,22	4,67	4653
1154	SS	584	589	9,12	10,50	8,24	60,75	13,82	0,53	7,13	161
1155	SS	532	528	6,22	7,52	7,79	20,09	8,55	0,25	7,56	956
1156	S 1	480	465	4,36	5,17	4,93	25,79	9,42	0,52	5,23	3288
1157	F	444	445	5,40	6,24	6,06	16,86	9,14	0,29	4,92	5552
1158	S 3	325	340	6,19	7,28	7,41	20,33	4,14	0,19	4,72	3753
1159	S 1	473	455	6,68	7,33	7,50	27,28	7,32	0,23	4,10	3005
1160	S2	458	466	6,80	7,35	8,82	17,36	8,00	0,32	5,95	4754
1161	S 1	466	475	7,85	8,72	9,05	26,04	9,64	0,29	4,90	3556

Tabela Apêndice A.7 - Dados referentes aos ensaios mecânicos

ID	CV	D1	D2	E1	E2	E3	Fm	Fc90	Ft90	Fv0	KNT
1162	F	473	462	5,21	6,13	5,85	25,54	10,18	0,35	3,18	4275
1170	S 3	414	410	5,52	6,12	6,63	32,73	6,85	0,28	4,95	1784
1171	S 2	407	391	3,96	4,06	3,75	13,14	7,18	0,33	4,89	4915
1173	SS	466	453	6,17	7,16	4,89	38,93	9,22	0,15	6,43	1933
1175	S 3	421	412	6,68	7,36	8,92	17,61	5,99	0,15	4,77	2652
1176	F	392	412	5,83	7,18	5,45	21,57	9,47	0,24	4,49	4250
1177	F	429	420	3,46	4,71	6,94	9,67	7,20	0,05	6,15	5454
1178	F	554	537	6,74	7,59	11,31	12,65	10,61	0,29	6,15	5647
1179	SS	414	411	8,10	9,22	9,90	38,93	6,17	0,21	4,87	1435
1181	F	480	450	5,08	6,79	9,54	9,92	7,11	0,30	2,95	6569
1182	F	384	404	0,85	2,52	5,50	0,74	5,91	0,22	3,43	5305
1183	SS	429	428	7,12	8,60	8,72	14,13	5,75	0.20	5,25	2806
1184	F	525	522	10,02	11,99	13,61	37,69	10,11	0,27	7,00	3339
1185	S 1	554	549	11,28	13,03	13,39	50,83	12,36	0,35	8,41	113
1186	S2	584	573	13,36	14,37	14,94	71,41	9,80	0.10	6,56	168
1187	SS	562	552	11,45	12,62	12,64	66,95	9,94	0.37	8,74	357
1188	S 3	466	466	4,61	5,92	7,14	8,43	7,36	0,24	6,00	3972
1189	S 3	547	544	9.29	12.86	11.66	21.82	7.80	0.23	5.12	4756
1191	S 1	510	497	8.06	9.61	9.36	35.46	10.71	0.28	6.74	2294
1192	S2	495	492	12.90	13.50	13.11	55.79	6.59	0.22	5.84	1056
1193	S 1	547	542	13.72	15.37	15.19	33.48	7.61	0.24	6.05	1660
1194	SS	444	436	5.58	7.17	5.79	38.43	8.81	0.22	5.49	1054
1195	F	473	453	6.80	7.98	7.52	19.59	7.70	0.25	#N/D	3772
1196	F	436	421	9.46	10.30	9.84	52.82	6.36	0.22	4.77	1787
1197	S 3	392	370	4.48	5.05	6.36	8.43	5.20	0.19	4.82	4836
1198	S 1	444	436	6.86	7.68	7.84	27.28	7.56	0.21	6.28	1698
1199	S 3	466	471	4.91	5.38	7.12	14.13	9.59	0.33	5.77	3996
1200	S 1	429	426	3.74	4.28	6.97	12.40	7.32	0.23	5.79	3934
1202	S 2	399	393	5.38	6.23	6.22	13.14	5.58	0.16	4.43	4932
1204	F	370	367	4.79	5.45	6.15	17.85	7.99	0.11	4.23	4881
1206	SS	554	550	12.18	14.35	12.19	75.63	11.22	0.26	6.87	158
1207	S1	569	570	11.36	12.93	10.82	73.15	11.78	0.42	8.59	134
1208	S2	569	553	12.38	14.34	12.24	47.11	11.70	0.28	4.46	795
1209	SS	510	508	10.22	11.56	12.30	52.07	11.17	0.21	5.77	1680
1210	S3	407	402	6.59	6.90	7.55	28.52	8.39	0.26	5.15	3198
1211	S 1	458	448	7.97	8.63	9.77	13.64	5.72	0.64	5.66	4624
1212	S 2	577	570	10.72	11.88	14.66	35.46	7.87	0.32	6.95	2842
1213	F	370	364	4.82	5.23	5.72	14.38	6.02	0.09	4.02	5209
1214	S 3	429	417	3.51	4.99	3.74	19.84	8.67	0.33	4.08	3443
1215	F	451	453	9.82	10.65	10.44	40.67	7.43	0.40	6.95	1281
1216	F	495	481	5.01	6.35	7.95	13.64	6.36	0.31	6.07	7263
1217	S2	466	470	7.69	8.72	9.56	17.36	10.30	0.29	4.97	2425
1218	SS	370	366	4.64	5.06	5.21	18.35	6.58	0.29	4.41	3596
1219	S2	488	479	8.46	9.38	8.97	40.91	7,17	0.35	5.15	2147
1220	SS	674	711	15.86	17.40	19.74	45.87	14.29	0.46	9.42	1425
1221	F	429	432	5.16	5.56	7.80	12.65	6.56	0.19	4.36	7955
1222	F	473	462	5,86	6,90	6,68	14,38	7,95	0,31	6,00	3674

Tabela Apêndice A.8 - Dados referentes aos ensaios mecânicos

ID	CV	D1	D2	E1	E2	E3	Fm	Fc90	Ft90	Fv0	KNT
1224	SS	466	466	8,85	9,75	7,52	33,48	8,44	0,28	5,00	1140
1225	SS	480	471	8,19	9,68	8,12	26,04	10,70	0,27	6,69	1187
1226	S2	547	532	11,28	12,08	13,66	27,03	9,43	0,30	#N/D	2598
1228	S 1	562	562	12,09	13,38	13,70	35,96	7,81	0,29	6,10	1462
1229	F	414	416	4,12	5,38	7,36	11,65	6,00	0,24	3,56	7357
1230	F	495	487	7.32	7.85	8.92	16.37	9.72	#N/D	1.15	3558
1231	F	444	445	6.27	6.96	7.41	19.09	6.43	0.22	4.43	5863
1232	SS	416	429	5.68	5.36	4.48	38.43	9.55	0.36	2.99	1037
1233	S 1	614	597	12.58	14.02	15.60	28.52	8.50	0.33	6.66	1271
1234	F	414	422	6.54	8.09	7.90	17.61	6.80	0.19	3.67	6446
1235	F	389	393	5 81	7 57	7 14	13 64	5 52	0.20	1 91	4386
1236	S2	370	368	6 68	7.16	7.07	19.09	3 99	0.17	4 31	3275
1237	S1	392	384	5,60 5,64	6 32	6 4 5	17 36	5 67	0.27	4 28	3816
1238	F	429	420	5 75	6.40	6 97	10.41	8 35	0.23	4 43	4672
1230	S1	436	418	8.23	9 10	9.61	28 52	6.81	0.25	4 95	3254
1237	S1	384	380	6.00	6 72	6 59	16.12	8,01	0,20	4 15	2443
1242	F	/21	<i>J</i> 10	6 51	7.08	8 11	26.53	6.08	0,21	3.61	5109
1245	S1	+21 525	510	12.60	1/ 08	14 56	20,55	6,00	0,20	1 23	1061
1244	51	JZJ 413	J19 422	7 30	7 02	14,50 8 10	33,95	7.01	0,23	4,23	1460
1249	22	528	433 535	10.72	12.86	10.76	40 01	0.03	0,24	7.67	1400
1251	22 22	195	407	7.80	0.40	10,70	40,91	9,03	0,32	7,07 5,67	1313
1250	00 01	403	497	7,09	9,49	10,00 9 4 1	47,01	9,00	0,55	J,07	2120
1257	51	410	413	7,34	0,10 10,12	0,41	27,17	0,82	0,24	4,01	2150
1258	33	522	511	9,52	10,12	9,31	57,19	8,97	0,33	5,01	3278
1260	51	333	5/3	10,57	12,85	13,07	52,07	9,45	0,41	6,8/	138/
1262	SI	419	421	4,79	5,08	1,37	17,85	/,63	0,19	4,04	1038
1263	SI	614	618	12,28	12,91	13,06	62,74	10,92	0,39	8,55	1883
1266	S2	446	449	8,14	9,53	9,88	27,28	7,35	0,24	5,81	3456
1270	SS	553	549	7,73	8,75	11,69	88,77	11,52	0,36	7,03	69
1271	S 3	556	551	11,36	13,56	13,46	48,60	9,95	0,30	6,56	3103
1273	S 1	456	459	8,55	9,61	9,31	47,86	6,95	0,23	4,41	3442
1279	S 2	462	474	7,93	8,25	7,06	35,21	8,00	0,23	5,25	1839
1280	S 3	529	521	8,14	8,90	8,91	30,25	10,47	0,27	4,35	4599
1281	S 1	361	374	6,27	7,26	8,29	19,09	6,51	0,18	4,26	3143
1282	S2	374	383	5,21	5,26	6,38	27,28	6,01	0,21	2,44	2092
1283	SS	572	599	12,28	13,83	15,58	52,07	9,49	0,30	8,29	2035
1285	S 3	428	424	7,18	7,52	8,38	34,22	8,31	0,33	4,32	3802
1286	S2	424	423	4,36	4,57	4,66	26,28	6,75	0,23	3,99	2397
1287	S2	515	503	7,58	9,24	8,89	23,56	8,43	0,29	5,94	2845
1291	S 3	605	611	13,60	14,26	17,02	55,79	10,40	0,45	6,43	501
1293	F	455	449	7,69	8,23	7,90	38,93	7,56	0,13	4,04	4002
1295	S 3	456	478	7,18	8,20	8,81	26,04	10,32	0,30	4,56	3554
1296	SS	496	508	7,73	8,84	8,09	27,77	9,64	0,22	6,54	1721
1300	S 1	406	422	7,32	7,86	7,06	30,75	10,07	0,33	4,22	1956
1301	S 3	442	455	5,68	6,23	4,60	16,86	7,64	0,48	6,52	6762
1302	S 2	494	490	7,61	8,73	8,16	27,28	10,78	0,20	2,77	1831
1305	S 3	382	414	5,08	5,20	4,41	28,27	6,41	0,27	4,70	3655
1309	F	480	481	7,32	9,19	9,96	12,40	7,90	0,08	6,81	7372

Tabela Apêndice A.9 - Dados referentes aos ensaios mecânicos

ID	CV	D1	D2	E1	E2	E3	Fm	Fc90	Ft90	Fv0	KNT
1311	SS	434	423	3,66	4,04	6,29	29,26	10,58	0,29	2,84	615
1313	S 3	368	367	6,22	6,63	6,48	22,32	5,97	0,14	2,55	2873
1314	S 3	628	609	10,88	13,50	14,95	38,43	10,37	0,28	6,99	2343
1315	S 3	404	404	6,68	7,86	8,18	27,03	6,61	0,21	2,73	3801
1317	S2	396	416	6,19	7,07	6,63	29,01	7,76	0,35	4,44	2376
1321	S 3	413	427	5,86	7,15	7.58	13.64	8.30	0.20	5.26	3303
1323	SS	516	501	6,80	7,36	8,62	94,97	11,32	0,32	6,55	0
1325	S 3	377	381	4,12	4,63	4,04	9,67	5,49	0,14	4,48	4221
1326	S2	501	507	8.14	8.97	9.92	28.52	8.75	0.27	3.75	2545
1327	S 1	369	369	7.18	7.20	6.68	30.25	6.25	0.25	5.19	1450
1328	S 1	434	443	7.25	7.48	7.41	43.15	9.05	0.34	5.99	664
1329	SS	449	477	8.51	9.49	6.99	55.79	8.28	0.23	5.77	1363
1330	SS	426	450	8.32	9.27	10.03	44.88	7.34	0.25	5.88	62
1331	F	463	466	6.45	7.51	10,40	14.63	6.56	0.14	6.14	5194
1332	\$3	452	467	8 37	8 71	10.25	37 19	10.75	0.28	4 48	1053
1336	S3	427	442	7 32	8 10	6 41	29.01	7 16	0.21	5 88	1881
1337	S2	456	456	8 55	941	9.46	33.48	9.87	0.30	6.83	3066
1339	S2	419	417	6 19	7.66	7 53	11 16	6.18	0.13	3 66	3378
1340	S2	516	533	9.17	9.82	12 44	31.00	9.49	0,13	5,00 6.65	1850
1342	F	453	450	5 40	6.32	6 89	9.42	7.66	0.33	4 97	4799
1343	22	463	467	9.17	10.41	10.09	73 15	8 67	0,35	6.45	0
1345	53	383	382	3 40	3 90	3 76	16.12	7.05	0.20	3 77	4778
1346	22	450	453	5,40 6 71	7 39	7 52	45 13	10.03	0,24	5.01	1044
1347	53	505	-506	7 32	8 78	12 14	21.08	8 21	0,32	5,01	2181
1349	SS	<u> </u>	505	5 72	6 32	7 96	59 51	11.86	0.30	6.48	102
1350	22	463	<i>4</i> 79	4 30	4 56	6.25	86 79	11,00	0,30	6 5 2	93
1353	53	405	479	4,30 6.45	7.04	6.23	27 52	9.00	0,25	2.06	2815
1355	53	404	404	5 97	6.90	6 39	27,52	7.51	0,23	3.93	3687
1356	\$3	457	404	7.61	8 78	8 76	26,05	8 95	0,23	6.16	2879
1357	F	436	432	6 34	7 59	8 16	16 37	7.65	0,27	5 43	7489
1358	22	522	553	8 37	9.11	8.07	45 87	13 52	0.33	5, 4 5 6,63	1937
1360	53	368	378	5 25	6.11	5 87	73 56	5 70	0,55	1.86	3196
1366	F	436	<i>44</i> 0	6 27	7 79	5,67 7.68	9 17	5,70 7.67	0,17	3 10	6403
1367	53	403	391	4 67	5 36	7,00 5,50	31.99	8 38	0.22	3,10	1341
1370	F	405	718 718	7.69	3,30 8.28	3,30 8,00	28 52	7.26	0,22	5.28	1341
1370	F	407	403	3.81	0,20 4.60	0,00 1 76	12 89	7,20 8.17	0,20	5 36	6174
1371	\$2	503		5,01 7 77	4,00 8,68	9.64	12,07	7 32	0,43	6.23	1026
1372	52	705 705	785	6.62	7.69	5,04 5,87	+2,+0	10.76	0,27	5 99	1164
1375	53	530	4 05 529	0,02	10.51	10.67	18 60	9.57	0,37	6.23	2726
1373	SJ S1	788	J2J 101	7.07	8 0/	0.12	16,00 26.04	9,57 8.56	0,20	5 15	2720
1393	\$2	400	494	7 30	8 86	9,12	20,04	8,30 7 47	0,34	5,15	2032
1305	52	5 10	4 <i>32</i> 506	8 37	10.29	10,50	20,03	0.31	0,27	3,01 8 20	2752 45
1308	55 F	178	<i>J</i> 00 <i>/</i> 81	7.05	8.00	8.68	20.58	9,51 8,80	0,50	5,20	4851
1/01	г F	+/0 /05	-+01 30/	1,05	6,09	6.82	20,30 Q 17	5 00	0,20	2,27 2 21	6/21
1/02	E I	405 1/21	<u></u> ⊿22	с 17	6,54 6,60	0,02 7.66),42 17 85	5,50	0,22	2,51	5708
1412	83	455	$\frac{1}{4}$	7.60	8 13	9.73	30.25	8.05	0.21	3 03	5735
1417	S2	384	423	5 81	6.60	2,23 4 92	21.08	9.45	0,21 0.29	5,00	3401
1 T I /	24	507	140	2,01	0,00	1,74	<u>~</u> 1,00	2,75	0,41	5,00	2401

Tabela Apêndice A.10 - Dados referentes aos ensaios mecânicos

ID	CV	D1	D2	E 1	E2	E3	Fm	Fc90	Ft90	Fv0	KNT
1419	F	458	455	4,23	5,98	6,97	32,98	5,65	0,23	3,84	4810
1420	F	414	410	4,38	5,25	7,59	10,41	6,74	0,21	5,49	9245
1434	S 1	400	399	6,02	6,47	7,23	30,00	5,91	0,24	5,27	1297
1448	F	391	395	6,80	7,65	7,70	22,07	8,06	0,20	4,68	3851
1516	F	481	481	4,40	4,97	6,76	28,52	9,24	0,32	3,55	3683
1525	F	435	437	5,18	6,25	6,64	18,60	7,34	0,24	3,97	6895
1527	S 1	552	565	9,29	11,08	11,40	65,71	11,98	0,32	8,43	1840
1559	S 3	471	465	8,60	10,13	10,24	28,02	7,24	0,31	4,44	5236
1587	S 1	384	354	7,39	8,17	7,05	40,17	6,33	0,17	4,01	481
1598	S 3	495	507	8,10	10,49	10,11	18,60	11,55	0,29	7,81	1889
1606	S 1	478	494	10,57	11,58	11,25	38,43	10,46	0,31	7,47	1711
1626	S 2	424	444	7,46	7,53	6,29	43,15	8,82	0,42	2,95	1505
1718	F	462	468	6,45	8,58	9,62	17,85	8,92	0,28	4,61	3889
1801	SS	496	492	8,85	9,47	8,85	43,39	8,91	0,31	5,32	1032
1802	SS	563	546	9,40	10,04	11,18	78,85	11,10	0,28	7,32	91
1803	F	464	457	2,45	7,22	6,65	5,70	8,57	0,18	4,04	6541
1804	SS	435	430	7,46	7,86	7,62	46,62	8,29	0,28	5,10	863
1805	SS	560	558	9,40	9,71	10,99	72,90	13,11	0,37	7,56	114
1806	SS	429	451	6,45	6,72	5,49	55,54	9,53	0,37	5,32	550
1808	S 3	502	506	7,93	8,77	9,21	26,04	10,81	0,36	6,32	3039
1809	S 3	358	370	4,85	5,61	5,67	22,81	4,90	0,20	2,04	3600
1810	F	454	457	6,27	8,38	7,95	19,59	7,28	0,28	4,55	3432
1812	S 3	394	396	6,56	7,36	7,77	33,23	5,33	0,23	3,33	3994
1813	SS	488	488	7,61	8,38	8,95	35,96	7,79	0,36	5,39	1387
1814	S 1	481	492	7,32	7,53	6,58	21,08	10,78	0,17	4,21	2639
1815	SS	396	406	8,28	9,15	9,09	26,53	6,86	0,17	4,88	1165
1816	S 3	404	411	6,56	6,94	7,59	23,56	6,82	0,19	5,03	4799
1817	S 3	491	505	9,64	9,73	10,52	42,15	11,43	0,25	7,87	2376
1818	F	386	390	6,40	7,14	7,26	17,85	7,71	0,29	2,97	4793
1819	S 2	457	458	6,80	7,45	7,01	33,23	11,42	0,21	5,34	2248
1820	F	401	418	5,66	6,34	6,77	19,59	7,23	0,20	5,32	4147
1822	F	412	419	3,19	6,07	7,36	4,46	8,93	0,19	4,99	6129
1823	S 1	471	476	9,70	11,46	11,65	23,56	8,81	0,19	6,34	3226
1824	SS	455	453	8,75	10,51	10,83	46,62	9,21	0,20	6,68	959
1825	SS	527	512	5,01	5,19	6,31	63,23	11,83	0,30	7,07	547
1826	S 3	408	426	4,70	4,91	4,12	23,31	8,93	0,34	3,59	2521
1827	S 3	394	397	6,17	6,68	8,62	16,86	7,15	0,21	4,52	4722
1828	S 3	460	464	6,68	8,29	9,50	9,92	9,91	0,21	7,10	3742
1829	S 3	480	479	6,02	6,69	6,68	44,14	9,68	0,27	4,88	2735
1830	S 1	391	385	7,25	7,45	6,61	34,22	6,01	0,19	4,44	1065
1831	F	421	405	5,29	6,14	7,64	21,57	7,18	0,20	3,55	5345
1833	S 2	439	447	6,92	8,55	8,60	30,75	11,00	0,24	5,50	2206
1834	SS	474	496	7,18	8,36	7,76	45,63	12,27	0,37	6,10	1866
1835	F	498	487	3,81	4,35	4,54	18,85	7,69	0,30	3,17	1153
1836	F	415	432	4,34	5,44	5,43	9,42	12,89	0,35	2,99	6312
1839	F	421	433	5,75	6,28	6,33	19,34	7,34	0,27	3,61	4807
1841	S 3	433	456	5,08	6,55	4,79	8,68	10,75	0,28	4,59	3936

Tabela Apêndice A.11 - Dados referentes aos ensaios mecânicos

ID	CV	D1	D2	E1	E2	E3	Fm	Fc90	Ft90	Fv0	KNT
1842	F	408	429	6,29	7,94	7,52	27,52	7,57	0,19	3,90	5096
1843	S 1	440	461	8,37	9,12	9,16	35,46	12,02	0,17	4,95	1813
1844	F	373	379	3,17	4,40	4,16	6,70	6,71	0,14	1,73	3511
1845	F	411	416	7,12	8,41	8,43	23,31	6,63	0,19	4,32	2955
1846	S 3	383	376	2,75	3,44	4,57	10,41	5,89	0,23	3,55	5591
1847	S 3	417	416	7,32	8,49	7,94	29,26	5,84	0,16	5,52	3932
1848	F	422	440	3,84	5,71	5,52	8,68	9,10	0,19	2,99	6793
1849	SS	488	486	7,61	7,99	7,31	32,98	9,30	0,26	5,21	1853
1851	SS	414	422	6,74	7,93	8,45	21,08	7,78	0,23	5,77	2587
1852	S 3	472	485	10,29	11,44	10,63	47,61	8,29	0,31	6,59	2287
1853	F	438	448	5,95	5,84	6,14	17,11	10,26	0,20	3,73	4737
1854	SS	469	484	8.96	9.73	10.23	47.61	10.00	0.28	7.10	2571
1855	S 3	397	411	6.74	7.45	7.51	20.83	6.56	0.25	5.54	1643
1856	S 1	407	411	7.39	7.60	6.53	37.19	5.77	0.16	3.90	2560
1857	S 3	440	469	4.67	6.27	6.41	13.39	10.61	0.34	7.19	4550
1858	S3	508	504	9.06	9.82	10.10	25.79	12.20	0.34	5.32	4172
1859	F	423	432	6.17	7.58	7.62	13.39	7.37	0.21	3.95	4434
1860	F	449	440	8.51	9.57	6.33	54.55	7.71	0.31	4.44	1297
1861	S 3	432	444	4.98	6.29	5.22	13.14	10.15	0.39	4.21	3271
1864	S3	400	411	4.45	5.02	5.03	21.57	8.28	0.32	4.39	3279
1865	S3	468	475	6.92	8 56	8 48	21.57	8,07	0.19	5 46	3211
1866	S3	493	513	8 75	9 57	9 90	28 27	10.58	0.37	4 88	4816
1867	F	385	373	4 09	4 98	5 62	5 46	6 47	0.17	2.42	5934
1871	53	380	388	5 86	615	6.45	13 39	5 70	0.22	4 23	3843
1873	S3	437	449	3.89	4.11	7.50	20.83	9.25	0.17	5.72	1512
1874	S3	508	514	6 34	7 16	7 52	26.04	12.31	0.31	5 94	1444
1875	S3	451	459	6 65	7.60	7 19	13 39	10.25	0.25	4 72	3459
1877	SS	527	518	6,68	7 48	8.08	72,41	9.88	0.28	6 99	87
1878	F	375	379	5,00 5,79	6 50	6.42	13 39	5 67	0.12	4 17	3926
1879	53	399	403	5 32	5.92	677	20.83	6 84	0.12	4 92	3997
1880	S1	505	511	11 54	12.89	15 20	20,09 50.09	8 68	0.21	5.88	974
1881	S3	432	430	5 86	676	6 74	17.85	7.66	0.37	3 73	4356
1882	F	499	500	5 11	8.52	7 94	13.89	9 50	0.25	6.25	6145
1883	S 3	386	387	6 56	7 10	8 28	12,89	5 58	0.18	3 37	4262
1884	F	368	390	5 29	611	6, <u>2</u> 0	15.62	6 88	0.21	3 61	5213
1885	S2	522	528	9 29	11 76	12.34	24.05	7 55	0.21	3 86	2972
1886	S3	452	457	6 99	8 35	9 46	19.84	6 4 9	0.17	4 23	3198
1887	S1	507	516	8 65	9.00	10 31	36.45	9 77	0.28	6.21	1945
1888	SS	514	520	11 54	12.93	14 24	81 33	8 31	0.32	6 39	6
1889	S3	533	520	7 18	8 48	8 78	19 59	9.21	0.28	1.00	2940
1890	S3	506	518	6 14	0,40 7 79	7 78	20.58	10.55	0,20	2 82	5077
1891	F	416	417	4 88	6 56	6.61	11 16	6 09	0.23	3 77	6486
1892	\$2	522	531	10.88	11 78	13 17	66.95	8 11	0.23	7 10	2109
1893	F	415	410	5 44	6 94	693	16.86	12.47	0.16	3 39	6267
1894	53	480	482	5, 11 674	7 59	8 34	24 30	9 06	0.25	2,37 4 52	4973
1895	S1	401	405	5 90	7,37 7,77	7 13	17 36	7 38	0.21	4 44	3544
1896	S3	466	475	7.12	8.04	8.38	29.26	9,60	0.23	2.51	4899

Tabela Apêndice A.12 - Dados referentes aos ensaios mecânicos

ID	CV	D1	D2	E 1	E2	E3	Fm	Fc90	Ft90	Fv0	KNT
1897	F	456	457	6,56	7,24	7,07	12,40	8,37	0,26	3,26	5073
1898	S 3	394	396	6,14	7,14	7,69	32,73	8,15	0,11	2,33	5555
1900	S 3	415	420	6,00	6,86	6,82	30,25	7,66	0,27	4,97	4895
1901	F	410	423	7,65	9,00	10,42	18,10	7,04	0,27	5,03	3850
1902	F	452	449	3,94	6,59	7,08	8,18	7,49	0,09	2,40	5485
1903	F	431	426	4,94	6,85	7,42	11,16	7,83	0,19	5,14	5869
1904	S 3	489	490	10,57	11,41	11,61	40,17	7,96	0,27	3,57	2580
1905	S 3	500	487	8,70	9,79	8,91	27,28	8,95	0,26	6,16	3269
1906	S 2	470	476	6,00	7,45	7,79	17,85	11,00	0,25	6,50	3916
1907	F	457	467	6,00	7,57	8,15	6,94	8,75	0,08	3,73	7971
1909	S 3	536	546	5,88	6,69	5,66	20,33	12,67	0,25	6,65	3252
1911	S2	437	445	8,19	9,20	9,35	37,69	6,65	0,24	5,23	2185
1914	S 3	410	416	6,99	7,59	7,52	13,89	9,45	0,17	2,59	2878
1915	S 2	389	399	4,82	5,63	5,19	15,37	6,83	0,22	2,88	2792
1916	F	477	478	4,14	9,52	9,70	9,42	7,85	0,16	6,16	7412
1917	S 1	400	402	6,92	7,28	7,39	21,08	7,19	0,19	3,93	3352
1918	S 3	468	471	6,34	8,23	8,55	18,35	8,53	0,29	2,22	6577
1920	S 3	416	413	7,32	8,79	8,61	26,04	7,36	0,19	4,52	3084
1921	S 1	434	441	9,89	10,64	10,58	32,73	5,99	0,22	4,52	3205
1922	SS	418	430	7,32	7,27	7,73	33,48	7,31	0,23	5,39	2874
1923	F	433	443	7,61	8,86	9,04	19,59	7,52	0,20	3,73	5204
1924	F	497	509	6,74	9,63	9,67	13,89	8,98	0,27	5,14	4016
1925	SS	504	512	7,39	8,11	8,67	54,06	12,15	0,24	4,66	1330
1926	F	448	456	6,56	7,32	7,51	15,37	8,58	0,30	4,68	4552
1927	S 3	450	450	4,44	5,53	6,27	17,36	10,12	0,22	3,88	5472
1928	SS	440	475	9,06	9,17	9,64	41,91	7,79	0,32	4,35	2065
1929	S 3	421	435	4,61	5,07	5,05	15,62	8,75	0,37	4,95	3312
1930	F	432	438	6,80	8,47	8,25	21,57	9,79	0,22	5,70	3542
1931	S 1	490	491	9,64	11,63	11,55	47,11	6,53	0,21	4,15	2132
1932	F	400	416	5,56	6,72	7,07	22,07	7,18	0,19	4,32	5216
1933	S 3	439	452	8,41	9,50	10,55	18,35	7,89	0,22	5,43	4705
1935	S 3	403	415	7,54	7,77	7,80	23,80	6,65	0,22	4,08	3476
1936	F	416	422	5,56	7,05	7,31	15,87	6,00	0,06	3,84	5361
1937	SS	466	484	7,54	9,37	8,96	73,89	10,24	0,26	4,88	760
1938	S 3	410	426	6,40	6,50	6,94	26,53	8,03	0,17	2,00	4319
1939	S 3	514	533	8,55	9,68	9,65	38,43	12,14	0,33	6,76	3603
1940	SS	566	553	7,69	8,15	9,22	76,13	9,76	0,31	6,92	137
1942	SS	567	609	10,43	11,31	14,33	58,02	12,56	0,34	7,70	1598
1943	S 3	419	429	6,12	7,70	7,64	15,87	7,00	0,23	4,01	2905
1944	F	461	470	6,37	7,53	8,96	21,08	7,91	0,22	3,13	3559
1945	S 1	480	491	5,90	6,75	6,54	20,58	10,17	0,29	4,90	2597
1946	S 3	466	488	5,42	7,12	7,18	18,35	10,55	0,24	5,50	4248
1947	S 1	448	451	5,50	6,30	7,47	32,73	8,20	0,25	2,11	1581
1948	S 3	484	506	8,19	9,90	10,11	25,54	8,61	0,26	6,19	4355
1949	S 2	419	404	5,04	5,54	5,49	22,81	8,29	0,32	5,28	1856
1951	F	416	423	4,71	6,45	6,83	4,46	6,27	0,17	4,37	5027
1952	S 1	454	451	9,29	11,22	8,89	31,49	5,93	0,19	5,32	3232

Tabela Apêndice A.13 – Dados referentes aos ensaios mecânicos

ID	CV	D1	D2	E1	E2	E3	Fm	Fc90	Ft90	Fv0	KNT
1953	S 1	403	425	5,48	6,71	6,92	25,54	7,07	0,20	4,17	3143
1954	SS	550	562	9,89	11,21	13,14	81,33	10,51	0,37	8,21	99
1955	S 1	506	523	8,19	10,34	9,00	32,73	10,35	0,31	6,54	1195
1956	SS	511	529	7,61	8,65	10,18	72,65	10,72	0,36	6,65	133
1964	SS	479	503	8,32	9,51	9,38	48,35	9,57	0,16	6,65	1493
1977	SS	510	545	9,29	10,49	10,55	69,18	10.26	0.14	6.76	518
1978	SS	550	555	10,72	12,00	11,50	78,85	11,56	0,11	4,59	149
1998	SS	580	581	10.88	11.86	14.00	79.35	12.00	0.13	5.10	125
2020	SS	451	448	10.15	10.73	9.37	54.55	12.56	0.10	4.66	0
2030	SS	594	620	9.20	9.33	8,94	75.65	11.56	0.16	6.56	151
2035	SS	665	655	9.52	10.68	12.30	92.99	13.75	0.14	7.45	0
2046	SS	615	606	11 71	12,69	10.96	55 79	13.12	0.18	643	503
2047	SS	597	584	9.76	11.06	11 34	75 63	10,12	0.13	676	117
2017	S3	465	464	7 46	8 94	9.21	22 32	7.60	0.28	4 97	3818
2070	22	511	556	9.06	0,94	9,21 8.96	45 13	9.55	0.20	2 03	0
2000	22	518	552	10.29	11 20	9.65	73 15	9.23	0,29	2,73 5 79	100
2077	F	178 J	<i>J</i> 92 /97	6 29	8 36	9,05 8 20	15.62	9,23	0.28	5.54	3177
2150	20	470 541	5/3	6.10	674	0,20 7 22	61.00	9,49	0,20	J,J4 7 91	0
2100	33 92	502	J4J 490	5.64	0,74 6 11	6 97	54 55	9,07	0,13	7,01	0
2170	33 66	303 400	460	3,04 7.20	0,11	0,07	54,55 76 27	9,12	0,14	6,01	0
2103	22	490	4/9	1,52	0,10	9,03	10,57	0,54 0,54	0,10	6,52	0
2195	22	402	480	8,85	9,95	8,97	04,47	8,30 11 <i>55</i>	0,11	0,08 5,70	0
2195	22	516	492	/,//	8,55	9,43	84,31	11,55	0,13	5,79	8
2206	55	430	435	8,01	8,5/	8,90	45,13	/,/0	0,08	5,17	135
2210	SS	494	499	9,58	10,94	10,42	56,54	8,70	0,30	6,25	383
2226	SS	408	449	6,24	6,27	7,03	50,83	7,23	0,13	5,79	1015
2237	S 3	473	480	7,69	9,85	8,81	31,49	5,71	0,37	5,12	2920
2257	SS	425	434	6,56	7,11	5,60	29,76	7,23	0,14	4,70	2311
2262	SS	496	480	4,05	4,32	5,96	38,19	8,34	0,09	6,01	715
2271	SS	432	430	5,32	5,42	5,34	35,96	7,12	0,08	4,37	878
2275	SS	492	524	6,34	7,34	7,13	42,65	10,07	0,32	6,08	1057
2276	SS	531	459	10,72	13,24	13,41	48,85	8,74	0,28	1,82	1768
2277	F	393	396	4,74	6,13	6,54	9,92	5,89	0,15	3,10	5209
2278	S 3	485	477	4,31	4,56	7,33	31,74	7,38	0,22	5,28	3674
2279	F	416	433	4,88	6,07	6,86	9,92	5,85	0,21	3,77	5427
2280	F	504	507	7,85	10,76	10,36	21,33	10,04	0,12	5,50	5906
2281	F	460	494	6,86	7,25	10,08	21,57	7,54	0,27	5,99	5281
2282	SS	463	464	5,68	6,30	8,03	61,99	9,27	0,31	6,08	51
2283	SS	492	515	6,22	6,98	7,47	46,37	13,45	0,31	5,32	1318
2284	SS	522	550	11,03	12,39	13,38	71,91	8,77	0,31	6,65	247
2285	S 3	509	507	9,52	9,99	10,41	45,87	7,53	0,24	5,97	2668
2286	S 2	438	464	6,92	7,84	7,43	30,25	7,99	0,24	5,34	2863
2287	F	490	525	6,74	7,69	9,58	18,35	8,16	0,24	6,05	7745
2288	S 3	446	471	3,56	3,97	3,53	18,35	5,89	0,28	4,59	3593
2289	F	471	482	3,23	6,37	6,98	8,43	10,07	0,26	3,33	8905
2290	S 2	620	637	10,88	12,76	14,17	40,67	11,31	0,39	7,52	1581
2291	S 3	520	559	10,88	12,26	12,60	23,31	7,56	0,32	5,85	3150
2292	SS	438	454	7,05	9,29	9,17	31,00	8,49	0,19	5,39	3044

Tabela Apêndice A.14 - Dados referentes aos ensaios mecânicos

ID	CV	D1	D2	E1	E2	E3	Fm	Fc90	Ft90	Fv0	KNT
2293	F	436	459	4,23	4,92	5,08	20,58	7,99	0,25	5,90	5058
2294	SS	460	457	7,32	8,42	7,64	37,69	9,97	0,30	5,10	1556
2295	S 3	634	637	15,23	17,65	15,40	47,11	11,25	0,15	7,52	980
2296	SS	578	588	12,09	14,08	14,11	60,26	10,31	0,29	6,23	196
2297	S 1	421	426	7,32	8,07	7,87	34,22	5,53	0,27	4,79	2613
2300	S 3	511	547	6,32	6,85	5.37	32,24	10,65	0.39	3.81	4292
2301	SS	481	473	5,77	6,49	7,52	58,27	7,36	0.25	5,34	422
2302	S 1	448	470	4,82	5,67	4,48	27,77	9,37	0,46	4,48	1818
2305	S 3	541	526	8.85	10.55	11.39	37.69	9.77	0.27	4.66	2956
2306	SS	437	460	6.29	6.95	6.15	51.33	10.26	0.29	5.41	159
2307	F	454	457	5.04	6.12	6.84	10.91	9.18	0.25	0.80	6932
2308	S 3	507	524	8 28	10.12	9.88	30.75	8 65	0.22	6.08	3958
2309	SS	454	470	5 64	6.01	671	41 16	946	0.34	5 99	1626
2310	SS	467	482	8 65	9 50	8 15	69.43	10.29	0.34	4 35	0
2314	SS	386	415	6.43	7.03	6.17	35 71	8 4 5	0.27	4 37	2058
2314	22	492	501	8.01	9.48	7.86	56 29	9 47	0.32	-, <i>5</i> 7	1281
2310	22	555	561	4 94	5 69	7,00	81.83	10.85	0.29	5,10 6.65	95
2317	F	410	408	5.93	6.82	7,40	18.60	6.13	$0,2^{j}$	3 15	4769
2310	53	410	455	9.17	10.55	10.52	32 24	7 30	0,24	5,15 6 14	1281
2317	22	539		9.76	10,55	11,32	37.94	12.87	0,20	0,14 7.76	1556
2320	SD S1	455	775 777	5 97	6.80	6 35	28 52	10,70	0,20	3.26	3076
2321	22	433	4/7	1 90	5 56	5 30	20,52	10,70	0,27	5,20 5,57	2473
2322	22	522	44J 526	4,90 6 80	5,50 7 24	9,50 9.49	33,72 33,31	10,4J 8 04	0,38	<i>J</i> , <i>J</i> 7	2473
2323	22	JZZ 424	J20 452	7.02	7,24	6 80	25,51 46 37	0.43	0,27	4,19	185
2324	22	424	432	7,02	8.02	736	20.26	9,43 7.56	0,30	4,80 5.01	076
2320	22	405	427 540	6.02	8,02 8,10	7,50 8 80	29,20	7,50	0,33	5,01	160
2327	22 22	380	J40 405	0,92 5.25	0,19 5 84	0,09 5 30	70,92 38 /3	7,82	0,37	3,00	702
2329	ъъ Е	520	40 <i>3</i> 547	10.02	11.85	13.48	30,45	6.48	0,20	5,55 632	3706
2330	r c2	J29 401	512	0,02 0 2 2	10.17	10.04	28 10	0,40 7.64	0,34	6.02	1222
2331	33 E	491	J13 447	0,32 4 30	10,17	10,94	11 65	7,04	0,20	0,92 3 70	3705
2222	Г С2	430	447	4,50	4,97	4,31 5 74	19.60	1,23	0,20	5,70	4200
2000	33 82	444	408	5,50 4 1 2	0,09	3,74	16,00	6 60	0,10	3,14 2 82	4300
2334	55 66	410 512	423 520	4,12	4,70	3,93	10,57	0,00	0,24	2,02	2705
2335	ວວ ເວ	519	521	9,29 10.57	9,70	0.06	44,03	9,05	0,43	4,77	1045
2330	52 52	J10 192	520	5 49	5 72	9,90	40,12	12,04	0,52	0,85 5.04	1700
2331	33 82	405	328 422	5,48 5,96	5,12	4,82	44,14	5 50	0,35	3,94	4049 5702
200	55	433	452	3,80 10.15	0,40	0,33	23,00 57.02	5,50 0,16	0,18	5,90	3783
2339	<u>ээ</u>	300	532 502	10,15	10,77	7 15	57,05 22,21	9,10	0,28	0,08	840 5001
2340	Г сс	490	505	0,04	7,20 9.74	7,15	25,51	9,79	0,27	4,50	5001
2341	22	400	460	8,28	8,74	8,46	49,59	9,15	0,31	4,86	0
2342	33 E	405	422	6,22	7,34	6,50 7,09	23,31	9,02	0,32	3,15	2/13
2344	F	431	430	6,04 0,17	10.50	10.96	13,64	8,41	0,18	3,06	4979
2345	22	492	501	9,17	10,50	10,86	37,19	8,41	0,22	0,08	034 1705
2346	82 85	413	438	0,80	/,31	0,60	44,14	9,64	0,31	4,35	1/05
2347	22	54/ 455	552 477	4,58	4,98	0,27	50,83	12,81	0,54	0,39	300
2548	22	455	4//	8,46 5,40	9,58	10,43	00,/0	10,37	0,23	6,90 5.00	10
2349	82 E	416	424	5,48	6,/4	/,49	19,09	1,57	0,19	5,06	1/6/
2330	F	444	436	3,36	0,/9	8,49	13,39	14,03	0,24	3,31	42/6

Tabela Apêndice A.15 - Dados referentes aos ensaios mecânicos

	ID CV D1 D2 E1 E2 E2 Em Ec00 Et00 Er0 K										
ID	CV	D1	D2	E1	E2	E3	Fm	Fc90	Ft90	Fv0	KNT
2351	SS	495	508	6,77	7,61	8,02	55,79	7,84	0,35	6,85	850
2352	F	459	464	6,02	6,82	8,71	24,55	7,26	0,19	5,28	3608
2353	SS	448	466	7,54	7,51	7,64	53,31	6,95	0,26	5,54	609
2354	F	472	476	4,51	6,85	6,98	14,88	10,28	0,23	3,02	5841
2355	S 1	456	485	7,32	8,82	6,25	32,24	8,79	0,39	4,88	2188
2356	SS	496	531	7,61	8,28	9,04	61,50	13,45	0,24	6,08	153
2357	F	450	472	5,40	6,22	6,37	21,57	9,18	0,40	3,06	3681
2358	SS	558	536	7,85	8,53	9,04	49,59	8,17	0,23	6,36	139
2359	S 1	394	396	5,29	5,86	5,85	23,56	5,18	0,35	3,81	3794
2360	SS	414	417	9,52	10,82	9,91	54,55	5,57	0,21	4,70	1606
2361	F	440	454	5,70	6,60	7,01	18,10	10,81	0,21	2,31	6724
2362	F	424	426	6,40	8,13	8,45	13,64	7,21	0,18	4,72	4453
2363	SS	495	481	7,39	8,20	8,11	77,37	9,57	0,26	5,99	0
2364	SS	448	476	6,34	7,18	6,97	45,13	11,12	0,40	6,32	665
2365	SS	378	387	5,97	6,33	6,36	28,52	6,42	0,19	3,15	3024
2366	F	446	462	5,81	7,44	8,20	8,18	8,38	0,19	4,79	6621
2368	F	474	485	5,25	7,57	7,55	12,65	11,07	0,23	4,68	5782
2371	S 2	474	482	6,32	7,45	8,01	37,94	7,68	0,23	4,79	1886
2373	S 1	487	489	7,39	7,74	8,09	40,67	8,14	0,19	2,95	761
2374	S 3	442	454	7,18	9,36	8,80	30,50	6,81	0,21	3,19	4043
2375	SS	450	457	6,51	6,83	5,13	60,75	8,73	0,26	4,46	648
2376	SS	497	509	8,14	8,53	8,14	34,22	8,69	0,35	7,12	1788
2377	F	407	413	3,11	8,65	5,41	10,17	6,45	0,20	4,39	4254
2378	SS	498	487	8,60	9,60	10,29	68,19	7,42	0,32	5,74	0
2379	SS	444	444	8,65	9,30	9,43	47,61	6,83	0,23	5,99	763
2380	SS	351	367	4,33	4,89	4,84	45,38	5,56	0,15	4,59	1413
2381	S 2	396	398	6,86	7,28	7,13	30,50	5,02	0,21	4,28	2300
2383	S 2	538	554	7,54	8,44	6,85	40,17	11,26	0,49	6,01	2557
2384	SS	547	546	9,76	10,62	12,29	82,82	9,24	0,29	5,88	0
2385	SS	479	507	10,43	10,56	9,31	44,88	11,35	0,30	3,88	443
2386	SS	464	483	7,77	8,54	8,41	61,99	7,34	0,37	5,21	503
2387	SS	416	413	6,40	7,42	7,07	53,81	6,39	0,20	4,10	0
2403	SS	449	464	5,14	5,80	5,92	41,66	8,67	0,15	5,72	53
2551	S2	434	447	5,64	6,24	6,34	23,80	7,06	0,27	5,74	1251

	Tabela Apêndice B.1 – Dados referentes aos ensaios mecânicos									
ID	CV	D1	D2	E3	Fc0	Fc90	Ft90	Fv0	KNT	
1	SS	476	505	10,034	35,27	12,17	0,28	7,87	104	
14	S 3	395	388	7,177	21,02	5,88	0,15	3,28	6035	
18	SS	451	476	11,819	31,43	9,68	0,32	5,59	2035	
21	S 3	468	467	9,827	23,39	6,00	0,13	6,05	4261	
23	F	427	426	7,468	27,41	5,75	0,38	4,77	5311	
26	S 3	403	422	6,572	20,47	6,52	0,34	4,86	5720	
27	SS	517	558	10,272	35,64	8,83	0,42	8,32	1515	
29	S2	444	467	8,809	24,49	7,64	0,23	6,94	2665	
31	F	432	439	7,892	21,20	8,44	0,26	3,53	4470	
32	F	425	437	7,498	27,41	6,80	0,46	5,28	4187	
35	F	415	412	7,333	18,27	5,23	0,22	4,24	5550	
37	S 1	445	470	6,402	23,76	11,76	0,33	6,30	3444	
45	F	462	497	6,585	13,16	12,34	0,31	6,87	7933	
51	S 2	518	537	7,716	30,15	12,34	0,51	7,78	3582	
53	S 1	460	479	8,408	29,24	7,82	0,26	7,19	3569	
56	S 1	431	457	5,702	26,50	10,54	0,34	4,39	1736	
57	S 3	365	361	6,817	20,10	5,02	0,15	3,99	5053	
60	F	476	466	7,025	14,99	8,02	0,24	5,48	6684	
62	F	386	403	5,006	14,25	8,63	0,30	2,33	6782	
63	S 2	468	488	9,648	31,98	12,33	0,41	6,85	1595	
65	SS	482	495	8,536	31,43	10,88	0,27	5,32	1013	
66	SS	532	510	13,12	36,55	7,99	0,19	4,83	173	
67	SS	487	507	7,844	34,72	10,47	0,33	6,41	577	
69	F	415	411	6,794	21,02	5,55	0,23	4,68	6132	
72	S 3	419	432	5,27	22,66	9,10	0,43	5,48	3589	
75	S 2	405	411	5,455	25,58	7,53	0,33	4,81	2790	
76	S 3	417	418	4,527	15,35	8,55	0,25	3,97	4165	
79	SS	483	492	8,398	23,94	11,77	0,30	6,70	1011	
88	S 1	489	548	14,328	34,17	10,00	0,32	7,54	1919	
89	SS	427	441	6,294	28,33	7,46	0,26	5,08	661	
96	S2	352	357	7,39	20,83	4,61	0,18	3,86	2491	
98	SS	462	487	9,87	31,80	9,46	0,32	4,86	2611	
102	S 1	494	528	8,489	34,72	11,40	0,42	7,76	2460	
105	F	463	461	8,308	19,19	7,96	0,34	2,88	4963	
106	S 1	369	374	8,806	24,67	4,51	0,18	4,59	1064	
107	F	473	461	7,768	10,96	6,35	0,23	6,10	11834	
108	F	377	378	6,37	22,84	5,03	0,16	3,61	4525	
112	F	417	410	8,251	18,27	6,07	0,16	4,99	5122	
114	SS	484	519	11,701	37,83	9,58	0,27	6,43	1034	
118	S2	462	447	7,61	27,05	8,51	0,32	5,06	1243	
122	S2	429	424	10,29	29,24	6,08	0,22	4,90	1754	
123	S 3	407	401	6,466	18,09	6,79	0,23	3,61	4629	
127	S 1	449	483	7,274	27,41	8,57	0,25	5,19	1307	
730	S 1	502	510	9,843	22,66	8,73	0,23	5,54	3193	

Tabela Apêndice B.2 - Dados referentes aos ensaios mecânicos

ID	CV	D1	D2	$\mathbf{F3}$	Fc0	Fc90	Ft90	Fv0	KNT
731	S1	515	533	5 552	24.67	8 45	0.34	4 32	3384
733	53	460	<i>16</i> 9	8 285	24,07	5 15	0.18	-, <i>52</i> 5,57	3750
733	53	400	407	7.035	23,75	7.08	0,16	<i>3,31</i> <i>4</i> 50	3008
738	52 53	439	433	7,033	21,30	7,00 5,91	0,10	4,50	3090
730	53 52	427	430	J,100	20,10	5,01	0,21	4,39	J474 4047
739	33 81	447	402	7,070	21,02	0,54	0,19	2,13	4947
742	51	445 510	4/0	5,42	25,70	7,29	0,51	5,45	3//3
748	52 52	519	333	11,382	24,07	8,05	0,21	4,99	2914
151	22	412	441	5,312	19,37	8,00	0,23	4,66	4/99
/59	S2	482	495	11,987	29,24	8,06	0,23	5,88	3184
761	S 3	472	481	8,497	23,21	7,65	0,27	6,19	2762
763	S 3	478	473	6,492	15,90	6,23	0,20	4,32	3019
766	S 3	423	425	7,006	18,82	5,30	0,27	5,54	3148
767	S 2	517	536	11,039	28,69	7,37	0,29	6,76	5747
768	S 3	561	582	13,308	32,53	11,67	0,37	6,54	3546
770	S 1	394	417	8,039	15,53	6,20	0,21	5,28	3784
771	S 3	435	467	6,727	20,83	7,69	0,23	6,52	5043
772	S 3	438	450	5,691	10,96	6,42	0,26	4,70	5136
775	S 3	470	478	8,014	21,75	12,34	0,22	5,85	4270
776	SS	465	472	9,09	23,76	7,68	0,25	5,72	898
783	S2	476	485	10,347	23,94	6,00	0,21	6,23	3799
784	S 3	442	449	5,923	19,55	5,92	0,27	4,48	3897
785	S 3	509	521	11,011	28,87	8,99	0,26	6,65	4735
787	SS	397	420	4,336	20,83	6,06	0,22	4,55	1468
791	S 3	523	537	12,401	27,78	9,32	0.21	6,94	3305
795	F	427	426	8.682	17.18	6.85	0.17	4.44	7135
798	S 2	437	446	6.499	21.38	6.85	0.24	3.44	4524
802	S3	387	391	6.786	25.95	6.32	0.15	3.77	3641
807	F	421	432	8,149	21.20	5.80	0.28	3.35	5862
810	S 3	456	464	9 447	26 50	7.03	0.25	4 37	4244
812	S3	412	421	7,606	15 53	6 54	0.21	4 63	4100
816	S3	503	497	10 588	24 12	7 49	0.23	6 30	3429
818	S2	203 491	522	10,900	24,12	916	0.23	7.83	1132
810	S2 S3	485	520	8 /03	23,30	0.81	0,23	5.48	/370
878	S3	405	<i>J</i> 20 <i>J</i> 10	6,473	14.62	5,01 6,48	0,55	3 03	5266
820	55 F	365	367	6.847	19,02	5 53	0,10	3,75	5823
853	1 ⁷ 52	303 461	307 461	10 227	22.30	5,55	0,19	3,44	5207
0 <i>33</i> 055	55 E	401	401 206	10,257	22,50	0,40	0,21	3,90	7206
833 860	Г Б	572	590 494	14,013	21.02	0,33	0,55	3,42 2,10	2020
800 887	Г С2	447	404	8,050	21,95	8,03 5,01	0,25	5,19	2020
88/	3 3	395	403	7,546	11,33	5,81	0,10	3,99	3801
894	S3	448	451	8,087	15,53	8,05	0,19	2,73	3596
897	SI	425	429	8,439	24,31	1,13	0,20	5,83	35/8
906	F	415	411	6,045	14,07	6,81	0,18	4,86	6072
910	F	401	408	7,602	20,10	7,30	0,20	5,14	5055
913	S1	413	406	8,311	25,58	5,66	0,17	3,64	3441
924	SS	482	484	7,499	23,25	10,51	0,31	5,32	818
925	S 1	438	441	8,675	20,57	7,32	0,17	4,12	3027
926	F	428	450	5,012	26,50	8,50	0,30	5,06	4240

Tabela Apêndice B.3 – Dados referentes aos ensaios mecânicos

ID	CV	D1	D2	E3	Fc0	Fc90	Ft90	Fv0	KNT
927	S2	406	413	5,948	19,92	7,67	0,19	2,97	3898
934	S 2	481	481	11,337	26,50	7,70	0,21	5,32	3839
935	F	391	406	4,064	19,19	10,43	0,26	2,17	4686
936	S 3	416	421	7,642	19,74	6,17	0,13	4,72	5628
937	S 3	430	444	5,886	16,99	7,49	0,30	4,41	5398
947	F	371	376	7,088	15,90	6,83	0,18	3,95	4507
948	F	387	404	6,01	18,82	6,12	0,24	3,61	5185
950	F	476	482	8,6	15,35	7,23	0,24	5,19	6629
951	SS	360	391	4,6	18,46	7,47	0,23	3,97	2138
954	S 3	432	424	8,344	24,67	6,40	0,14	4,77	3125
961	S2	421	419	4,737	13,42	7,34	0,26	2,15	5548
962	S2	398	403	4,427	15,20	8,09	0,22	3,17	4570
963	S 1	401	408	6,849	26,83	6,62	0,22	4,06	1640
965	S 1	375	398	3,865	14,25	5,56	0,29	4,12	3345
975	S 3	402	398	6,089	23,25	8,60	0,32	4,83	4007
980	S 3	447	476	5,981	19,74	9,38	0,38	2,99	3134
986	SS	405	409	6,786	25,04	7,57	0,26	4,21	1642
987	S 2	540	538	10,943	21,47	10,27	0,34	6,68	1643
996	S 3	432	431	7,087	19,55	6,64	0,22	4,39	5687
999	SS	500	495	11,029	28,62	6,64	0,31	3,53	1755
1000	S 3	435	446	10,436	21,47	6,06	0,20	4,66	4087
1008	S 3	403	417	5,603	16,81	6,25	0,26	4,88	4997
1013	S2	400	402	3,64	15,20	6,89	0,21	3,86	3656
1018	S 3	460	435	10,264	13,71	7,06	0,16	4,66	2855
1024	S 3	440	446	4,727	21,47	9,15	0,35	3,17	4342
1025	S 1	488	495	10,119	31,30	8,11	0,31	4,72	2731
1031	F	430	428	8,192	13,31	6,15	0,18	4,48	5862
1035	SS	485	484	6,7	32,20	7,42	0,26	4,24	2866
1037	S 1	423	425	5,949	21,47	9,41	0,34	4,57	2661
1046	F	400	402	6,244	15,53	6,75	0,23	3,26	7732
1047	S 1	419	429	7,635	26,83	5,79	0,40	5,68	1841
1050	F	410	419	4,704	10,35	7,31	0,29	2,26	5054
1052	S 3	369	400	5,004	18,46	6,13	0,20	4,95	4587
1054	F	332	337	5,039	15,35	4,55	0,15	1,37	5037
1059	S 1	505	507	7,686	26,50	10,72	0,37	5,30	552
1060	SS	482	471	8,83	33,09	8,76	0,29	5,16	1118
1062	S 1	468	466	7,883	24,15	7,99	0,36	5,52	1151
1068	S 3	349	354	4,609	11,33	4,99	0,15	4,10	4040
1070	F	442	458	7,305	15,53	8,56	0,26	5,26	3431
1072	SS	501	492	9,52	30,41	10,26	0,33	6,23	1417
1073	S 2	419	427	4,747	13,42	7,01	0,20	4,37	5326
1074	S 3	512	510	6,615	21,47	8,10	0,23	6,68	3406
1077	SS	490	488	6,825	25,04	8,36	0,38	6,34	4256
1080	S2	414	431	9,725	22,48	7,17	0,21	3,77	3603
1089	F	340	343	5,129	13,71	7,19	0,18	2,57	2615
1092	S 3	403	406	8,522	18,27	6,11	0,18	4,12	4345
1093	S 2	426	425	8,675	23,76	6,16	0,14	4,59	3784

Tabela Apêndice B.4 - Dados referentes aos ensaios mecânicos

ID	CV	D1	D2	E3	Fc0	Fc90	Ft90	Fv0	KNT
1094	F	400	408	8.104	19.19	5.52	0.25	4.50	4349
1095	S 2	520	516	8,133	21.93	8.27	0.27	5.68	3123
1096	s2	440	442	6.303	23.76	5.96	0.32	5.19	2675
1097	SS	456	455	5.453	27.41	8.41	0.30	5.22	817
1098	F	445	448	4 263	15 53	5 76	0.23	5.08	9563
1099	\$3	406	408	7 716	20.10	6 65	0.19	5,00 5,46	3104
1100	S3	512	515	9 1 5 5	32.89	12 37	0.28	4 68	2515
1100	F	476	515 474	5 998	24.67	8 79	0,20	4,00 6.43	3387
1102	F	470	420	6 879	27,07	6.82	0,40	3 70	<i>AA</i> 7 1
1104	\$3	410	420	10,811	22,04	0,02 7.96	0,24	2 70	1560
1105	E SS	435	430	7 082	20,50 16.45	8 00	0,23	2,79	1307
1100	25	420	429	0.65	22.80	8.02	0,21	3,90 2 77	3620
1109	53 52	461	474	9,05	52,09 22,84	0,92 8.61	0,23	5,77	3029
1110	55 61	206	206	8,174	22,04	5,01	0,20	2.02	4670
1111	S1 S2	390 260	260	8,205 7 72	21,95	5,09	0,10	5,95 4 10	4070
1112	33 81	500 415	302 415	7,75	21,95	<i>3,33</i>	0,25	4,10	5204 2702
1115	51	415	415	0,958	20,10	0,48	0,19	5,01	3723
1118	22	504	508	7,281	24,67	11,54	0,28	5,85 2,70	296
1119	F	420	423	7,128	19,19	/,84	0,17	2,79	2584
1122	F	400	402	6,696	17,36	9,28	0,18	5,21	3432
1123	SS	441	447	5,53	29,24	8,70	0,34	6,12	1063
1124	F	520	518	10,226	20,10	6,71	0,22	5,43	4948
1125	S 3	470	463	5,208	13,71	9,70	0,42	5,12	3250
1127	SS	426	425	8,722	29,24	6,89	0,22	4,99	750
1128	F	455	452	6,194	20,10	8,85	0,35	5,39	6815
1129	SS	500	503	7,349	35,64	9,52	0,39	7,58	1849
1130	F	397	400	4,576	13,71	7,81	0,18	1,66	4397
1131	S 3	460	462	11,088	24,67	7,06	0,19	6,32	3151
1132	F	412	415	4,072	21,02	6,19	0,27	2,57	3555
1133	F	401	400	7,471	21,02	5,45	0,12	3,90	6541
1134	F	399	400	7,353	10,05	6,86	0,19	4,63	7909
1136	SS	510	509	12,256	40,20	8,24	0,34	7,70	81
1144	F	382	384	5,167	20,10	6,78	0,31	2,55	7166
1145	SS	566	563	9,524	31,07	11,63	0,45	5,14	1979
1146	S 3	380	379	8,038	20,10	4,68	0,15	3,44	3856
1147	S 3	431	429	6,304	25,58	6,13	0,20	5,28	4290
1148	S 3	565	570	7,665	35,64	10,75	0,35	6,28	4468
1149	S 3	350	355	6,51	24,67	4,71	0,15	3,99	2511
1150	SS	432	434	7,107	24,67	9,25	0,35	6,43	2423
1152	S 1	416	417	5,583	23,76	5,87	0,25	4,81	2426
1153	S 1	453	466	9,378	28,33	8,40	0,29	6,01	3018
1163	F	500	490	8,82	17,36	10,78	0,43	6,01	5908
1164	S 2	398	393	5,756	30,15	7.03	0,28	5,68	3927
1165	F	450	452	7.304	19.19	7.04	0.21	4,77	4080
1166	F	400	404	7.574	13.71	5.66	0.20	2.71	6359
1167	F	361	359	5.15	14.62	5.50	0.20	3.19	5608
1168	SS	445	444	8.437	43.86	7.96	0.28	5.65	1345
1169	F	502	499	9,971	25,58	10,51	0,26	7,70	7204

Tabela Apêndice B.5 – Dados referentes aos ensaios mecânicos

$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	ID	CV	D1	D2	E3	Fc0	Fc90	Ft90	Fv0	KNT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1180	SS	500	493	12,619	22,84	9,43	0,28	6,76	3005
$ 1241 F 519 528 9,151 21,02 8,94 0,33 7,89 5079 \\ 1319 S3 480 481 11,694 31,07 6,34 0,14 4,37 918 \\ 1344 S3 412 415 6,215 24,67 5,96 0,23 2,33 8419 \\ 1376 S3 490 489 6,322 21,93 6,70 0,21 3,93 45549 \\ 1376 S3 490 489 6,322 31,07 8,92 0,31 5,70 5133 \\ 1377 S2 447 448 6,292 26,50 12,43 0,25 4,12 3649 \\ 1378 SS 472 471 11,748 40,20 8,78 0,23 6,68 1646 \\ 1379 F 478 478 8,003 19,19 8,10 0,26 5,70 2165 \\ 1380 S3 420 432 9,17 31,98 6,61 0,22 6,21 2529 \\ 1381 F 403 415 7,111 17,36 8,77 0,16 4,17 5472 \\ 1383 S1 420 424 8,473 15,53 8,99 0,18 4,48 4210 \\ 1384 S3 419 420 6,887 19,19 6,40 0,21 5,43 5550 \\ 1385 S3 440 450 9,25 29,24 7,05 0,20 5,14 3229 \\ 1386 S2 390 396 7,199 26,50 7,07 0,23 4,55 2742 \\ 1388 F 401 406 7,667 17,36 6,99 0,18 5,30 3827 \\ 1389 F 450 451 7,251 21,02 5,99 0,27 6,05 6,676 \\ 1390 F 473 468 6,135 20,10 8,31 0,40 5,97 3923 \\ 1399 F 4424 433 6,564 23,76 9,25 0,21 5,28 6442 \\ 1400 F 506 501 9,153 27,41 8,53 0,20 5,14 4329 \\ 1397 F 477 465 6,603 13,71 8,64 0,37 6,23 7763 \\ 1390 F 473 468 6,135 20,10 8,31 0,40 5,97 3923 \\ 1399 F 4424 433 6,564 23,76 9,25 0,21 5,28 6442 \\ 1400 F 506 501 9,153 27,41 8,53 0,20 5,83 4596 \\ 1403 F 426 420 7,739 13,71 6,49 0,21 4,44 9946 \\ 1404 F 459 453 7,712 20,17 7,48 0,26 5,30 9034 \\ 1406 SS 484 484 11,965 34,72 6,99 0,31 5,68 234 \\ 1407 SS 433 433 4,61 16,45 7,94 0,26 4,28 2308 \\ 1408 F 430 420 7,356 13,71 6,49 0,21 4,44 9946 \\ 1404 F 459 433 4,61 16,45 7,94 0,26 4,28 2308 \\ 1406 SS 484 484 11,965 34,72 6,99 0,31 5,58 2356 \\ 1400 F $	1190	S 1	634	634	17,782	47.51	12,71	0,26	9,61	1409
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	1241	F	519	528	9.151	21.02	8.94	0.33	7.89	5079
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1319	S 3	480	481	11.694	31.07	6.34	0.14	4.37	918
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	1344	S 3	412	415	6.215	24.67	5.96	0.23	2.33	8419
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1374	F	413	413	5.825	21.93	6.70	0.21	3.93	4549
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1376	S 3	490	489	6.322	31.07	8.92	0.31	5.70	5133
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1377	S2	447	448	6 292	26 50	12.43	0.25	4 12	3649
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1378	SS	472	471	11 748	40.20	8 78	0.23	6.68	1646
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1379	F	478	478	8 003	19 19	8,10	0.26	5,00	2165
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1380	53	420	432	9.17	31.98	6.61	0.22	6.21	2529
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1381	F	345	350	4 862	10.05	6 57	0,22	3.15	5564
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1382	F	403	415	7 111	17,36	8 77	0,15	3,13 4 17	5472
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1383	S1	420	474	8 473	15 53	8 99	0.18	4 48	4210
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1384	S3	420	420	6 887	19,55	6 40	0,10	-,-10 5.43	5550
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1385	53	440	450	9.25	29.24	7.05	0,21	5, 1 5	3229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1386	S2	300	396	7 199	29,24	7,05	0.23	3,14 1 55	2742
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1387	52 F	370 AAA	/38	7,177	20,50 15 53	7,07	0,23	4,55 4,63	7160
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1388	F	401	406	7,007	17 36	6 99	0,20	-,05 5 30	3827
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1380	F	401	400	7,007	21.02	5 00	0,10	5,50 6.05	5027 6576
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1300	F	430	451	6 135	21,02	8 31	0,27	5.97	3073
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1306	52	470	400	4 725	10 10	6,51	0,40	<i>J</i> , <i>J</i> 7 <i>A</i> 21	1613
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1390	52 E	420	414	4,723 6,603	13,13	0,00 8.64	0,23	4,21 6.23	7633
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1300	F	4/7	405	6,003	23.76	0,0 4 0,55	0,37	5.28	6442
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/00	F	506		0,504	25,70 27 41	9,55 8 53	0,21	5.83	/596
140314204201,1313,116,476,414,449,461404F4594537,31229,247,880,255,4341061405SS5325349,06843,8610,830,405,1015351406SS48448411,96534,726,990,315,682341407SS4334334,6116,457,940,264,2823081408F4304207,32611,886,910,265,3090341409F4114017,05717,367,240,214,9948731410SS5295309,98640,2010,720,525,795691411S34354156,47220,107,440,233,3545871412F3953856,96419,196,370,243,3340621414S23803796,35422,846,170,173,8149961415S34474428,39924,677,370,244,3539751416S34524479,30814,626,270,245,5464841421SS47047210,51739,298,450,315,542651422F4234237,2215,538,060,135,327054	1400	F	126	<i>1</i> 20	7 730	13 71	6,55 6,49	0,20	5,85 1 11	4570 90/6
140414554551,51227,241,666,255,4541661405SS5325349,06843,8610,830,405,1015351406SS48448411,96534,726,990,315,682341407SS4334334,6116,457,940,264,2823081408F4304207,32611,886,910,265,3090341409F4114017,05717,367,240,214,9948731410SS5295309,98640,2010,720,525,795691411S34354156,47220,107,440,233,3545871412F3953856,96419,196,370,243,3340621414S23803796,35422,846,170,173,8149961415S34474428,39924,677,370,244,3539751416S34524479,30814,626,270,245,5464841421SS47047210,51739,298,450,315,542651422F4237,2215,538,060,135,3270541423F4204175,70918,276,790,184,124223<	1403	F	459	453	7 312	29.24	7.88	0.21	-, 5 43	4106
14033533543,00040,0010,030,405,1010,331406SS48448411,965 $34,72$ 6,990,315,682341407SS4334334,6116,457,940,264,2823081408F4304207,32611,886,910,265,3090341409F4114017,05717,367,240,214,9948731410SS5295309,98640,2010,720,525,795691411S34354156,47220,107,440,233,3545871412F3953856,96419,196,370,243,3340621414S23803796,35422,846,170,173,8149961415S34474428,39924,677,370,244,3539751416S34524479,30814,626,270,245,5464841421SS47047210,51739,298,450,315,542651422F4234237,2215,538,060,135,3270541423F4204175,70918,276,790,184,1242231424F4504487,15620,107,150,255,477621 </td <td>1404</td> <td>22</td> <td>532</td> <td></td> <td>9.068</td> <td>43.86</td> <td>10.83</td> <td>0,25</td> <td>5,45 5,10</td> <td>1535</td>	1404	22	532		9.068	43.86	10.83	0,25	5,45 5,10	1535
140035540411,905 $54,12$ $6,97$ $0,51$ $5,00$ 2.54 1407SS4334334,61 $16,45$ $7,94$ $0,26$ $4,28$ 2308 1408F430420 $7,326$ $11,88$ $6,91$ $0,26$ $5,30$ 9034 1409F411401 $7,057$ $17,36$ $7,24$ $0,21$ $4,99$ 4873 1410SS 529 530 $9,986$ $40,20$ $10,72$ $0,52$ $5,79$ 569 1411S3 435 415 $6,472$ $20,10$ $7,44$ $0,23$ $3,35$ 4587 1412F 395 385 $6,964$ $19,19$ $6,37$ $0,24$ $3,33$ 4062 1414S2 380 379 $6,354$ $22,84$ $6,17$ $0,17$ $3,81$ 4996 1415S3 447 442 $8,399$ $24,67$ $7,37$ $0,24$ $4,35$ 3975 1416S3 452 447 $9,308$ $14,62$ $6,27$ $0,24$ $5,54$ 6484 1421SS 470 472 $10,517$ $39,29$ $8,45$ $0,31$ $5,54$ 265 1422F 423 423 $7,22$ $15,53$ $8,06$ $0,13$ $5,32$ 7054 1423F 420 417 $5,709$ $18,27$ $6,79$ $0,18$ $4,12$ 4223 1424F 450 448 $7,156$ $20,10$ <td>1405</td> <td>22</td> <td>332 484</td> <td>234 484</td> <td>11 965</td> <td>34 72</td> <td>6 99</td> <td>0,40</td> <td>5,10</td> <td>234</td>	1405	22	332 484	234 484	11 965	34 72	6 99	0,40	5,10	234
1407554334354,0110,451,740,264,2325061408F4304207,32611,886,910,265,3090341409F4114017,05717,367,240,214,9948731410SS5295309,98640,2010,720,525,795691411S34354156,47220,107,440,233,3545871412F3953856,96419,196,370,243,3340621414S23803796,35422,846,170,173,8149961415S34474428,39924,677,370,244,3539751416S34524479,30814,626,270,245,5464841421SS47047210,51739,298,450,315,542651422F4234237,2215,538,060,135,3270541423F4204175,70918,276,790,184,1242231424F4504487,15620,107,150,255,4776211425S34714638,2326,508,230,336,7925311426F4324226,22217,367,360,195,548364 </td <td>1400 1407</td> <td>22</td> <td>433</td> <td>433</td> <td>4 61</td> <td>16.45</td> <td>7 94</td> <td>0.26</td> <td><i>4</i> 28</td> <td>2308</td>	1400 1407	22	433	433	4 61	16.45	7 94	0.26	<i>4</i> 28	2308
1400F4114017,05717,367,240,214,9948731410SS5295309,98640,2010,720,525,795691411S34354156,47220,107,440,233,3545871412F3953856,96419,196,370,243,3340621414S23803796,35422,846,170,173,8149961415S34474428,39924,677,370,244,3539751416S34524479,30814,626,270,245,5464841421SS47047210,51739,298,450,315,542651422F4234237,2215,538,060,135,3270541423F4204175,70918,276,790,184,1242231424F4504487,15620,107,150,255,4776211425S34714638,2326,508,230,336,7925311426F4324226,22217,367,360,195,5483641427SS4304318,98431,076,940,225,0314881428S156055510,12723,7613,440,227,7226	1407	F	430	420	7 326	11.88	6.91	0,20	-,20 5 30	9034
14051401 $1,057$ $11,56$ $1,24$ $0,21$ $1,57$ 1075 1410SS529530 $9,986$ $40,20$ $10,72$ $0,52$ $5,79$ 569 1411S3435415 $6,472$ $20,10$ $7,44$ $0,23$ $3,35$ 4587 1412F395385 $6,964$ $19,19$ $6,37$ $0,24$ $3,33$ 4062 1414S2380379 $6,354$ $22,84$ $6,17$ $0,17$ $3,81$ 4996 1415S3447442 $8,399$ $24,67$ $7,37$ $0,24$ $4,35$ 3975 1416S3452447 $9,308$ $14,62$ $6,27$ $0,24$ $5,54$ 6484 1421SS470472 $10,517$ $39,29$ $8,45$ $0,31$ $5,54$ 265 1422F423 $7,22$ $15,53$ $8,06$ $0,13$ $5,32$ 7054 1423F420417 $5,709$ $18,27$ $6,79$ $0,18$ $4,12$ 4223 1424F450448 $7,156$ $20,10$ $7,15$ $0,25$ $5,47$ 7621 1425S3471463 $8,23$ $26,50$ $8,23$ $0,33$ $6,79$ 2531 1426F432 422 $6,222$ $17,36$ $7,36$ $0,19$ $5,54$ 8364 1427SS430431 $8,984$ $31,07$ $6,94$ $0,22$ $5,03$ <	1400	F	430	401	7,020	17 36	7 24	0,20	2,50 2,99	4873
141035 329 330 $9,900$ $40,20$ $10,72$ $0,92$ $5,79$ 309 1411S3435415 $6,472$ $20,10$ $7,44$ $0,23$ $3,35$ 4587 1412F 395 385 $6,964$ $19,19$ $6,37$ $0,24$ $3,33$ 4062 1414S2 380 379 $6,354$ $22,84$ $6,17$ $0,17$ $3,81$ 4996 1415S3 447 442 $8,399$ $24,67$ $7,37$ $0,24$ $4,35$ 3975 1416S3 452 447 $9,308$ $14,62$ $6,27$ $0,24$ $5,54$ 6484 1421SS 470 472 $10,517$ $39,29$ $8,45$ $0,31$ $5,54$ 265 1422F 423 423 $7,22$ $15,53$ $8,06$ $0,13$ $5,32$ 7054 1423F 420 417 $5,709$ $18,27$ $6,79$ $0,18$ $4,12$ 4223 1424F 450 448 $7,156$ $20,10$ $7,15$ $0,25$ $5,47$ 7621 1425S3 471 463 $8,23$ $26,50$ $8,23$ $0,33$ $6,79$ 2531 1426F 432 422 $6,222$ $17,36$ $7,36$ $0,19$ $5,54$ 8364 1427SS 430 431 $8,984$ $31,07$ $6,94$ $0,22$ $5,03$ 1488 1428S1 560 555 <td< td=""><td>1410</td><td>22</td><td>529</td><td>530</td><td>9,986</td><td>40.20</td><td>10.72</td><td>0,21</td><td>5 79</td><td>569</td></td<>	1410	22	529	530	9,986	40.20	10.72	0,21	5 79	569
141155455415 $6,712$ $26,16$ $1,44$ $6,25$ $5,55$ 4567 1412F395385 $6,964$ $19,19$ $6,37$ $0,24$ $3,33$ 4062 1414S2380379 $6,354$ $22,84$ $6,17$ $0,17$ $3,81$ 4996 1415S3447442 $8,399$ $24,67$ $7,37$ $0,24$ $4,35$ 3975 1416S3452447 $9,308$ $14,62$ $6,27$ $0,24$ $5,54$ 6484 1421SS470472 $10,517$ $39,29$ $8,45$ $0,31$ $5,54$ 265 1422F423423 $7,22$ $15,53$ $8,06$ $0,13$ $5,32$ 7054 1423F420417 $5,709$ $18,27$ $6,79$ $0,18$ $4,12$ 4223 1424F450448 $7,156$ $20,10$ $7,15$ $0,25$ $5,47$ 7621 1425S3471463 $8,23$ $26,50$ $8,23$ $0,33$ $6,79$ 2531 1426F432422 $6,222$ $17,36$ $7,36$ $0,19$ $5,54$ 8364 1427SS430431 $8,984$ $31,07$ $6,94$ $0,22$ $5,03$ 1488 1428S1 560 555 $10,127$ $23,76$ $13,44$ $0,22$ $7,72$ 2650 1430F 420 410 $7,819$ $24,67$ $6,32$ <td>1410</td> <td>53</td> <td>435</td> <td>415</td> <td>6 472</td> <td>20 10</td> <td>7 44</td> <td>0.23</td> <td>3 35</td> <td>4587</td>	1410	53	435	415	6 472	20 10	7 44	0.23	3 35	4587
1112 1 550 560 $6,501$ $15,15$ $6,51$ $6,21$ $5,55$ 1602 1414 $S2$ 380 379 $6,354$ $22,84$ $6,17$ $0,17$ $3,81$ 4996 1415 $S3$ 447 442 $8,399$ $24,67$ $7,37$ $0,24$ $4,35$ 3975 1416 $S3$ 452 447 $9,308$ $14,62$ $6,27$ $0,24$ $5,54$ 6484 1421 SS 470 472 $10,517$ $39,29$ $8,45$ $0,31$ $5,54$ 265 1422 F 423 423 $7,22$ $15,53$ $8,06$ $0,13$ $5,32$ 7054 1423 F 420 417 $5,709$ $18,27$ $6,79$ $0,18$ $4,12$ 4223 1424 F 450 448 $7,156$ $20,10$ $7,15$ $0,25$ $5,47$ 7621 1425 $S3$ 471 463 $8,23$ $26,50$ $8,23$ $0,33$ $6,79$ 2531 1426 F 432 422 $6,222$ $17,36$ $7,36$ $0,19$ $5,54$ 8364 1427 SS 430 431 $8,984$ $31,07$ $6,94$ $0,22$ $5,03$ 1488 1428 $S1$ 560 555 $10,127$ $23,76$ $13,44$ $0,22$ $7,72$ 2650 1430 F 420 410 $7,819$ $24,67$ $6,32$ $0,17$ $3,06$ 5388 </td <td>1412</td> <td>F</td> <td>395</td> <td>385</td> <td>6 964</td> <td>19 19</td> <td>6 37</td> <td>0.23</td> <td>3 33</td> <td>4062</td>	1412	F	395	385	6 964	19 19	6 37	0.23	3 33	4062
1414 52 500 577 $6,534$ $22,64$ $6,17$ $6,17$ $5,61$ 4950 1415 $S3$ 447 442 $8,399$ $24,67$ $7,37$ $0,24$ $4,35$ 3975 1416 $S3$ 452 447 $9,308$ $14,62$ $6,27$ $0,24$ $5,54$ 6484 1421 SS 470 472 $10,517$ $39,29$ $8,45$ $0,31$ $5,54$ 265 1422 F 423 423 $7,22$ $15,53$ $8,06$ $0,13$ $5,32$ 7054 1423 F 420 417 $5,709$ $18,27$ $6,79$ $0,18$ $4,12$ 4223 1424 F 450 448 $7,156$ $20,10$ $7,15$ $0,25$ $5,47$ 7621 1425 $S3$ 471 463 $8,23$ $26,50$ $8,23$ $0,33$ $6,79$ 2531 1426 F 432 422 $6,222$ $17,36$ $7,36$ $0,19$ $5,54$ 8364 1427 SS 430 431 $8,984$ $31,07$ $6,94$ $0,22$ $5,03$ 1488 1428 $S1$ 560 555 $10,127$ $23,76$ $13,44$ $0,22$ $7,72$ 2650 1430 F 420 410 $7,819$ $24,67$ $6,32$ $0,17$ $3,06$ 5388	1412	S2	380	379	6 354	22 84	6.17	0,24 0.17	3,81	4002
1110112 $0,000$ $21,01$ $1,01$ $0,21$ $1,00$ $0,01$ 1416S3452447 $9,308$ $14,62$ $6,27$ $0,24$ $5,54$ 6484 1421SS470472 $10,517$ $39,29$ $8,45$ $0,31$ $5,54$ 265 1422F423423 $7,22$ $15,53$ $8,06$ $0,13$ $5,32$ 7054 1423F420417 $5,709$ $18,27$ $6,79$ $0,18$ $4,12$ 4223 1424F450448 $7,156$ $20,10$ $7,15$ $0,25$ $5,47$ 7621 1425S3471463 $8,23$ $26,50$ $8,23$ $0,33$ $6,79$ 2531 1426F432422 $6,222$ $17,36$ $7,36$ $0,19$ $5,54$ 8364 1427SS430431 $8,984$ $31,07$ $6,94$ $0,22$ $5,03$ 1488 1428S1 560 555 $10,127$ $23,76$ $13,44$ $0,22$ $7,72$ 2650 1430F 420 410 $7,819$ $24,67$ $6,32$ $0,17$ $3,06$ 5388	1415	S2	447	442	8 399	22,04 24 67	7 37	0.24	4 35	3975
1421SS 470 472 $10,517$ $39,29$ $8,45$ $0,31$ $5,54$ 265 1422 F 423 423 $7,22$ $15,53$ $8,06$ $0,13$ $5,32$ 7054 1423 F 420 417 $5,709$ $18,27$ $6,79$ $0,18$ $4,12$ 4223 1424 F 450 448 $7,156$ $20,10$ $7,15$ $0,25$ $5,47$ 7621 1425 S3 471 463 $8,23$ $26,50$ $8,23$ $0,33$ $6,79$ 2531 1426 F 432 422 $6,222$ $17,36$ $7,36$ $0,19$ $5,54$ 8364 1427 SS 430 431 $8,984$ $31,07$ $6,94$ $0,22$ $5,03$ 1488 1428 S1 560 555 $10,127$ $23,76$ $13,44$ $0,22$ $7,72$ 2650 1430 F 420 410 $7,819$ $24,67$ $6,32$ $0,17$ $3,06$ 5388	1416	S3	452	447	9 308	14 62	6.27	0.24	5 54	6484
1421 535 110 112 $10,511$ $53,25$ $5,15$ $5,51$ 235 1422 F 423 $7,22$ $15,53$ $8,06$ $0,13$ $5,32$ 7054 1423 F 420 417 $5,709$ $18,27$ $6,79$ $0,18$ $4,12$ 4223 1424 F 450 448 $7,156$ $20,10$ $7,15$ $0,25$ $5,47$ 7621 1425 S3 471 463 $8,23$ $26,50$ $8,23$ $0,33$ $6,79$ 2531 1426 F 432 422 $6,222$ $17,36$ $7,36$ $0,19$ $5,54$ 8364 1427 SS 430 431 $8,984$ $31,07$ $6,94$ $0,22$ $5,03$ 1488 1428 S1 560 555 $10,127$ $23,76$ $13,44$ $0,22$ $7,72$ 2650 1430 F 420 410 $7,819$ $24,67$ $6,32$ $0,17$ $3,06$ 5388	1421	SS	470	472	10 517	39.29	8 4 5	0.31	5 54	265
1422 1 125 125 125 $10,55$ $0,05$ $0,15$ $5,52$ 1051 1423 F 420 417 $5,709$ $18,27$ $6,79$ $0,18$ $4,12$ 4223 1424 F 450 448 $7,156$ $20,10$ $7,15$ $0,25$ $5,47$ 7621 1425 $S3$ 471 463 $8,23$ $26,50$ $8,23$ $0,33$ $6,79$ 2531 1426 F 432 422 $6,222$ $17,36$ $7,36$ $0,19$ $5,54$ 8364 1427 SS 430 431 $8,984$ $31,07$ $6,94$ $0,22$ $5,03$ 1488 1428 $S1$ 560 555 $10,127$ $23,76$ $13,44$ $0,22$ $7,72$ 2650 1430 F 420 410 $7,819$ $24,67$ $6,32$ $0,17$ $3,06$ 5388	1422	F	423	423	7 22	15 53	8.06	0.13	5 32	7054
1426 F 450 448 $7,156$ $20,10$ $7,15$ $0,25$ $5,47$ 7621 1425 $S3$ 471 463 $8,23$ $26,50$ $8,23$ $0,33$ $6,79$ 2531 1426 F 432 422 $6,222$ $17,36$ $7,36$ $0,19$ $5,54$ 8364 1427 SS 430 431 $8,984$ $31,07$ $6,94$ $0,22$ $5,03$ 1488 1428 $S1$ 560 555 $10,127$ $23,76$ $13,44$ $0,22$ $7,72$ 2650 1430 F 420 410 $7,819$ $24,67$ $6,32$ $0,17$ $3,06$ 5388	1423	F	420	417	5 709	18,27	6 79	0.18	4 12	4223
1421 1 150 110 $1,150$ $20,10$ $1,15$ $0,25$ $5,17$ 1021 1425 $S3$ 471 463 $8,23$ $26,50$ $8,23$ $0,33$ $6,79$ 2531 1426 F 432 422 $6,222$ $17,36$ $7,36$ $0,19$ $5,54$ 8364 1427 SS 430 431 $8,984$ $31,07$ $6,94$ $0,22$ $5,03$ 1488 1428 S1 560 555 $10,127$ $23,76$ $13,44$ $0,22$ $7,72$ 2650 1430 F 420 410 $7,819$ $24,67$ $6,32$ $0,17$ $3,06$ 5388	1424	F	450	448	7 156	20.10	7 15	0.25	5 47	7621
1426F 432 422 $6,222$ $17,36$ $7,36$ $0,19$ $5,54$ 8364 1427 SS 430 431 $8,984$ $31,07$ $6,94$ $0,22$ $5,03$ 1488 1428 S1 560 555 $10,127$ $23,76$ $13,44$ $0,22$ $7,72$ 2650 1430 F 420 410 $7,819$ $24,67$ $6,32$ $0,17$ $3,06$ 5388	1425	\$3	471	463	8 23	26,10	8 23	0.33	679	2531
1427 SS 430 431 8,984 31,07 6,94 0,22 5,03 1488 1428 S1 560 555 10,127 23,76 13,44 0,22 7,72 2650 1430 F 420 410 7,819 24,67 6,32 0,17 3,06 5388	1426	F	432	422	6.222	17.36	7.36	0.19	5.54	8364
1428 S1 560 555 10,127 23,76 13,44 0,22 7,72 2650 1430 F 420 410 7,819 24,67 6,32 0,17 3,06 5388	1427	SS	430	431	8 984	31.07	6 94	0.22	5.03	1488
1430 F 420 410 7 819 24.67 6.32 0.17 3.06 5388	1428	S1	560	555	10.127	23.76	13.44	0.22	7.72	2650
1700 1 740 710 $1,017$ $27,07$ $0,02$ $0,17$ $3,00$ 3300	1430	F	420	410	7,819	24.67	6,32	0,17	3,06	5388
Tabela Apêndice B.6 - Dados referentes aos ensaios mecânicos										
--	--									
--	--									

		1400	la Apellu	100 - Da				1003	_
ID	CV	D1	D2	E3	Fc0	Fc90	Ft90	Fv0	KNT
1431	F	392	382	7,715	20,10	6,02	0,29	4,50	4725
1432	SS	480	479	10,361	40,20	7,83	0,24	6,90	486
1433	F	370	366	5,512	17,36	6,17	0,15	3,66	4844
1435	F	544	533	4,479	6,40	10,50	0,33	4,39	9644
1436	SS	491	487	7,966	31,07	9,79	0,23	6,43	651
1437	SS	523	522	7,991	27,41	11,47	0,32	5,81	194
1438	S 3	433	431	8,868	25,58	7,87	0,25	5,26	1685
1439	S 3	444	444	7,492	19,19	11,24	0,25	5,65	4568
1440	F	410	396	8,61	25,58	6,73	0,22	5,08	3723
1837	SS	420	437	8,529	16,81	8,69	0,29	5,52	2259
1958	S 3	491	499	10,877	23,76	7,78	0,17	6,03	2502
1959	S 1	507	535	8,738	25,58	10,75	0,39	6,14	3607
1960	S 1	471	489	10,335	24,31	7,44	0,21	5,79	1340
1965	S 1	394	418	4,227	20,10	7,38	0,29	3,84	2246
1966	S 3	461	484	9,741	24,12	8,89	0,46	5,19	3660
1967	S 2	403	421	3,724	19,37	8,13	0,31	3,39	4395
1968	SS	543	539	8,804	29,97	9,12	0,29	6,59	138
1971	F	383	386	5,682	14,99	4,16	0,14	1,55	7408
1972	S 1	439	459	5,614	21,93	8,01	0,32	4,95	3162
1973	S 1	428	451	7,551	20,83	8,32	0,25	4,30	2146
1974	S 3	439	450	7,245	14,07	6,58	0,23	2,66	3562
1975	S 3	404	421	7,54	15,90	7,49	0,17	1,33	5611
1976	F	422	431	5,165	15,53	4,98	0,28	4,41	5972
1979	SS	573	581	6,431	34,72	11,34	0,26	6,61	381
1985	F	455	462	7,886	7,31	6,11	0,18	3,30	7010
1987	F	398	420	4,268	21,02	7,21	0,27	3,84	3809
1993	S2	409	427	5,068	17,91	7,42	0,29	3,55	4916
1994	S2	449	466	7,883	25,58	8,82	0,20	4,50	4762
2006	S 3	444	463	6,923	21,02	6,98	0,17	3,77	3999
2007	S2	368	377	5,531	14,80	5,86	0,22	3,44	4459
2008	F	452	454	9,737	24,67	5,88	0,20	4,72	5588
2010	F	469	496	9,912	21,93	7,62	0,22	5,90	5481
2012	F	462	466	8,845	17,91	6,92	0,23	5,28	5688
2014	S 1	492	547	6,754	22,48	10,08	0,34	5,88	1738
2015	F	376	404	4,819	18,82	6,78	0,28	4,01	7332
2018	F	467	474	7,094	24,85	6,97	0,26	4,46	6437
2019	SS	561	584	9,552	32,53	11,85	0,28	7,10	1758
2021	F	383	381	6,395	19,19	5,64	0,15	2,66	6421
2025	S 3	429	447	5,162	20,83	6,55	0,24	4,28	3622
2029	SS	537	564	8,677	26,32	7,91	0,26	6,21	906
2031	S 3	416	491	8,126	17,18	7,79	0,27	6,12	1242
2033	SS	430	436	5,651	17,91	7,64	0,23	4,44	1212
2037	S2	460	465	8,622	21,02	8,12	0,25	5,28	2346
2038	S 2	431	435	8,745	22,30	7,42	0,17	5,17	3115
2045	S 3	477	483	7,063	20,65	8,38	0,21	3,08	3844
2049	S 3	539	544	12,553	27,41	9,46	0,27	6,08	2839
2052	S 1	467	495	6,36	24,67	8,98	0,24	4,92	2128

Tabela Apêndice B.7 - Dados referentes aos ensaios mecânicos

ID	CV	D1	D2	E3	Fc0	Fc90	Ft90	Fv0	KNT
2054	F	403	417	4,748	14,99	5,78	0,25	4,24	4091
2059	SS	399	422	4,919	17,00	5,82	0,19	3,86	3766
2060	S 2	395	412	7,546	18,27	5,14	0,16	4,70	3961
2062	F	581	571	9,447	20,83	8,69	0,33	4,66	4389
2063	S 1	422	453	6,244	20,10	9,32	0,20	4,57	4405
2064	F	552	557	10,75	29,06	11,28	0,26	6,21	6565
2065	S 1	508	509	11,152	23,39	9,07	0,25	4,57	1539
2066	S 2	404	411	4,777	21,38	5,43	0,17	4,24	3939
2067	F	512	484	4,606	16,08	7,54	0,23	3,64	8874
2068	S 2	507	532	10,859	20,10	6,38	0,29	5,28	2356
2071	S 3	472	487	9,345	17,36	6,67	0,23	4,44	4695
2073	F	441	449	5,875	22,11	5,61	0,21	3,88	4398
2074	S 1	429	435	6,883	22,30	7,79	0,25	4,08	490
2075	S 1	437	445	9,308	25,58	6,67	0,17	4,19	3329
2079	S 1	495	509	11,001	20,83	7,64	0,26	2,99	4299
2080	S 3	457	478	4,749	22,84	7,37	0,24	4,88	2831
2081	SS	567	572	8,265	27,41	12,32	0,23	6,96	176
2083	S 3	492	492	5,798	19,19	7,18	0,27	4,32	4626
2086	S 3	435	444	7,745	18,64	6,43	0,21	3,88	5222
2088	F	418	429	4,838	17,54	4,93	0,19	3,81	5106
2091	S2	391	388	6,124	13,52	4,98	0,19	4,08	4112
2092	S 3	567	567	11,677	25,58	10,66	0,37	6,65	5068
2093	F	490	497	8,002	16,45	6,58	0,20	6,23	4941
2100	S 1	395	419	6,944	16,63	4,84	0,18	4,59	3761
2103	S 3	472	484	9,063	15,53	8,01	0,30	3,46	5086
2105	F	435	436	7,264	12,61	6,53	0,30	3,64	4120
2107	F	428	436	4,464	17,54	8,20	0,35	4,15	7946
2111	S 2	456	476	5,942	23,76	8,96	0,31	4,99	2233
2115	F	430	444	3,791	16,81	5,56	0,25	3,10	6487
2118	SS	480	490	7,581	25,77	8,50	0,24	5,70	1184
2123	SS	400	405	6,266	24,67	6,55	0,13	3,73	494
2126	S 1	498	532	7,27	23,76	11,76	0,30	1,86	2344
2128	S 3	466	489	4,042	15,17	7,88	0,33	3,93	4729
2129	S2	520	539	6,716	26,50	8,68	0,33	5,06	2233
2133	S2	431	438	6,095	17,18	6,13	0,27	5,21	3578
2134	F	443	467	8,841	19,55	9,11	0,23	5,83	5837
2137	F	432	429	5,247	17,54	4,64	0,28	4,21	8113
2139	S 3	519	518	6,567	31,07	7,83	0,23	4,12	2381
2143	S 2	431	445	9,899	18,64	5,84	0,19	5,19	4716
2146	S 1	451	479	5,453	13,89	9,30	0,21	6,21	2989
2150	S 2	429	439	8,96	20,10	5,84	0,21	4,88	4078
2151	F	552	548	10,703	23,39	6,92	0,27	6,65	3707
2153	F	394	414	7,359	10,96	5,68	0,20	5,01	7059
2154	F	402	400	5,369	15,53	5,00	0,17	3,97	4828
2155	F	442	441	7,998	22,66	6,91	0,21	4,46	5910
2160	S2	474	472	5,81	22,84	7,95	0,20	6,79	3762
2161	F	547	546	5,33	22,84	13,49	0,49	3,84	2940

Tabela Apêndice B.8 -	Dados referentes aos	ensaios mecânicos

		Tabe	ia Apellu	100 D.8 - Da	uos referer	nes aos ens	salos mecal	licos	
ID	CV	D1	D2	E3	Fc0	Fc90	Ft90	Fv0	KNT
2162	F	435	437	9,534	19,01	7,90	0,19	3,70	7129
2163	S 3	448	456	9,219	16,81	7,62	0,27	4,41	3737
2164	F	541	528	11,304	11,88	9,02	0,19	6,05	1711
2167	S 3	446	457	8,798	14,80	7,80	0,20	2,66	5107
2173	F	453	451	7,147	25,04	7,24	0,34	4,37	4711
2181	S 2	479	482	9,226	29,24	7.80	0,27	5,99	2454
2183	S 1	456	453	10,731	24,67	7,24	0,24	3,59	1303
2184	F	428	421	7.521	17.73	6.34	0.21	4.88	7246
2187	S2	463	455	7.866	21.56	6.94	0.22	4.63	3795
2191	S3	484	497	9,846	26.50	10.03	0.24	6.72	5610
2194	S2	453	449	9.211	20.10	5.94	0.17	4.15	5529
2197	S1	404	415	5 181	17 36	8 20	0.24	4 32	2600
2198	F	444	443	9 821	13 52	7 14	0.21	5 72	2000 6601
2120	F	447	458	8 388	25 58	6 51	0.27	3,72 4 72	5196
)204	F	515	515	8 105	10.42	8 34	0,27	-, <i>12</i> 5,52	8847
2204	F	<i>A</i> 16	125 125	5.057	16.45	7 12	0,51	3,32	4620
2203	F	410	423	8 3 2 8	6.40	7,12	0,10	3,77 1 37	7/35
2200	1 ⁻ 52	443	440	0,320 8 258	0,40	7,00 8.03	0,15	4,37	7433 5070
2210	52 E	432 301	447	0,230 5 300	15 00	6,05	0,20	5,15 1 21	9697
2217	1 ¹	291	400	5,509	19,90	5.40	0,23	1,31	2080
2210	52 52	384 477	403	0,008	18,40	5,49 0.79	0,10	4,41 5,20	2989
219	52 E	477	482	9,015	21,73	9,78	0,24	5,59 2,10	2142 5256
2221	Г G2	429	44Z	0,314 5,50	18,40	12,03	0,22	5,19	5550
2225	22	3/8	397 500	5,59 9,500	21,02	7,03	0,24	4,48	5065
2228	33	487	509	8,522	31,98	8,40	0,29	6,25	1004
2235	51	620	634	14,437	32,35	9,07	0,17	6,56	990
240	55	400	436	6,762	30,15	8,80	0,42	4,75	1020
2241	F	450	473	5,437	15,90	11,90	0,23	5,17	3233
2242	SS	474	500	9,981	30,15	8,77	0,37	7,12	811
2243	SS	476	501	7,96	28,14	9,31	0,39	5,81	2757
2245	S1	398	408	7,761	15,35	6,58	0,15	3,37	2818
2248	S 3	444	445	7,596	14,07	6,02	0,20	5,50	5316
2250	S 2	525	519	6,757	27,41	12,13	0,28	5,77	1734
2251	SS	489	537	6,26	31,07	12,03	0,54	6,54	1288
2252	S 2	406	444	6,115	24,31	9,93	0,45	5,19	4830
2254	SS	533	548	8,127	36,55	10,03	0,27	5,68	1409
2256	S 3	434	434	5,963	16,45	5,85	0,20	4,66	4924
2258	F	376	380	5,113	15,35	4,37	0,17	3,39	8298
2263	S 1	659	662	18,401	37,28	10,81	0,35	7,47	1069
2265	S 3	514	519	12,555	21,38	7,71	0,21	5,81	6213
2266	S 2	492	501	8,41	27,41	10,17	0,36	7,38	2942
2269	S2	462	488	8,372	18,64	9,00	0,36	7,30	4391
2272	F	557	557	9,839	25,58	8,01	0,19	5,97	6057
2273	SS	472	491	9,408	33,63	8,32	0,32	6,54	686
2274	SS	431	437	6,642	23,76	6,63	0,28	3,28	1254
2299	S 2	475	474	5,998	22,84	8,82	0,22	5,23	1602
2304	SS	544	569	10,891	26,13	10,40	0,32	5,28	3372
2315	F	521	522	9,455	22,18	8,20	0,19	3,22	4923

Tabela	Apêndice	B.9 – Dado	os referentes	s aos ensa	ios mecânicos	

		1000	ia i spena	D = D			sulos mecul		
ID	CV	D1	D2	E3	Fc0	Fc90	Ft90	Fv0	KNT
2328	S 1	658	709	18,114	38,38	13,97	0,46	6,54	890
2372	SS	464	482	10,222	25,22	7,97	0,18	4,88	3190
2388	SS	487	518	9,277	35,09	10,37	0,40	6,23	2449
2391	S 3	446	444	6,742	21,93	9,02	0,25	2,62	5008
2395	SS	530	537	8,303	38,44	14,21	0,35	6,14	1282
2396	SS	580	589	12,566	35,48	11,85	0,36	8,01	1312
2398	S 1	431	431	8,975	20,47	5,69	0,20	5,59	3349
2401	S 3	383	380	5,437	17,18	5,24	0,15	4,01	3402
2407	SS	443	446	6,127	23,39	8,57	0,24	4,88	4275
2408	SS	470	477	4,47	26,61	9,18	0,36	5,21	47
2412	S 1	387	408	5,596	21,20	5,34	0,43	4,97	2592
2413	S 3	481	476	9,647	21,75	7,78	0,16	5,81	4318
2418	S 3	402	403	5,805	17,36	5,49	0,23	4,37	7686
2419	S2	403	398	5,906	17,00	6,23	0,25	3,57	4067
2427	S 2	394	400	6,907	19,55	9,39	0,16	3,64	3963
2431	S 3	456	468	9,299	27,05	7,36	0,21	6,65	5037
2433	S 3	382	384	5,789	12,79	6,11	0,17	3,04	5002
2435	F	358	375	6,077	15,35	4,64	0,20	2,00	4141
2437	S 2	542	555	10,317	17,91	10,76	0,24	7,23	3875
2440	F	448	459	8,19	14,62	7,05	0,25	4,44	9816
2442	S 3	402	413	6,441	15,53	6,06	0,22	3,35	6174
2444	S 2	415	414	8,098	21,02	7,56	0,19	4,32	4829
2446	S 1	457	490	6,2	22,30	6,82	0,30	6,21	3604
2449	S 2	404	404	7,91	16,63	8,46	0,22	4,12	3248
2452	S 2	417	422	4,183	17,73	7,31	0,28	4,39	4259
2457	S 3	436	438	8,752	16,08	5,84	0,18	3,17	4129
2458	F	484	473	6,062	10,05	6,93	0,17	3,15	7175
2462	S 3	417	414	8,223	13,16	5,66	0,20	5,68	7928
2468	S 3	438	429	7,332	18,64	6,12	0,20	5,32	3470
2473	F	451	456	5,399	19,19	7,08	0,25	5,57	5063
2480	F	455	491	9,535	10,96	8,25	0,19	5,85	6511
2483	S 3	434	449	5,964	19,55	8,17	0,29	5,54	4729
2486	F	463	482	10,347	23,76	9,28	0,19	4,15	6170
2487	F	457	476	9,853	21,02	8,39	0,21	5,59	4873
2489	S2	392	400	5,878	16,45	5,57	0,17	4,21	3991
2490	S 3	442	432	8,218	16,45	6,43	0,18	4,97	5775
2491	S 3	459	462	10,886	17,73	6,80	0,23	4,68	5515
2497	S2	427	450	5,454	20,83	7,77	0,27	5,30	3640
2502	S 3	440	434	7,978	20,10	6,89	0,18	3,57	4309
2503	S 1	463	463	6,831	19,19	9,27	0,29	3,08	2559
2506	S 1	460	484	8,865	20,10	9,20	0,38	6,87	2809
2508	F	431	440	7,028	18,27	7,70	0,24	4,75	7423
2510	S2	466	481	8,582	21,93	8,62	0,26	2,28	2480
2652	SS	446	433	8,377	21,38	6,68	0,24	4,10	978

Apêndice C – Resultados dos ensaios de tração paralela às fibras

Tabela Apêndice C.1 – Dados referentes aos ensaios mecânicos

ID	CV	D1	D2	E3	Ft0	Fc90	Ft90	Fv0	KNT
6	S 3	430	431	8,33	23,06	5,91	0,26	5,70	3762
7	S 3	407	405	7,25	19,52	6,59	0,35	2,75	4683
9	F	389	388	7,72	4,44	4,53	0,20	4,21	8023
10	F	509	510	5,71	4,14	8,01	0,36	5,97	6828
11	F	417	413	7,95	17,74	4,64	0,22	4,99	4243
12	F	415	409	8,14	22,47	5,81	0,17	3,59	2941
13	S 3	434	441	9,08	20,40	5,92	0,07	5,03	2815
15	F	371	378	6,16	13,90	4,95	0,28	1,77	6820
16	F	387	390	6,61	7,98	6,56	0,18	2,66	7085
17	F	445	443	7,14	18,63	6,13	0,34	4,90	7937
19	F	417	410	7,71	10,35	5,36	0,22	2,55	8260
22	F	452	452	6,84	18,63	9,42	0,24	4,44	7249
24	F	440	437	8,65	15,08	7,23	0,26	5,50	4156
25	F	460	458	8,38	16,26	6,31	0,19	5,10	4768
34	F	424	430	6,58	9,76	6,87	0,25	2,08	5984
36	S 3	440	433	9,32	21,58	4,92	0,13	5,52	3731
38	SS	424	413	6,79	29,86	8,34	0,24	5,32	863
39	F	437	443	8,56	13,90	5,36	0,32	5,10	7513
40	S 3	460	478	5,48	12,12	9,43	0,37	4,99	5143
41	S 3	468	467	8,80	22,47	7,87	0,26	6,48	3062
43	S 3	428	432	6,06	25,13	7,56	0,33	3,17	2415
47	F	417	429	7,95	17,45	6,46	0,22	3,57	6480
48	F	491	492	8,85	13,90	8,44	0,42	4,44	5851
55	SS	594	621	14,83	37,26	13,83	0,47	9,62	543
58	S 1	554	550	13,24	32,23	10,12	0,34	6,87	1821
59	S 3	449	448	9,87	15,97	6,50	0,18	5,43	1848
61	S 1	550	561	9,25	16,26	8,52	0,36	6,54	3114
68	F	483	497	9,39	8,57	7,68	0,18	6,70	6403
70	F	481	479	7,59	8,28	8,40	0,38	3,53	7417
71	F	376	379	5,19	8,28	5,79	0,19	4,19	7840
73	S 3	442	440	6,55	8,28	8,76	0,26	4,35	3493
74	F	424	431	8,12	14,78	9,35	0,30	4,88	4359
77	S 3	449	454	10,62	17,74	9,63	0,20	5,63	3742
81	S 3	426	416	7,67	13,31	6,26	0,15	4,52	4702
82	S 2	465	468	7,99	18,33	9,33	0,31	4,88	4662
83	SS	423	429	4,91	23,65	6,67	0,24	4,88	723
84	S 1	479	482	11,98	29,57	7,45	0,24	5,99	877
85	S 1	367	371	7,85	19,81	6,07	0,21	4,32	1870
86	S 2	425	426	7,91	18,33	6,28	0,21	3,04	2299
87	S 3	444	443	11,24	17,74	5,87	0,24	6,16	4058
90	S 1	402	401	8,65	24,54	6,22	0,19	4,61	3839
92	S 3	437	433	8,04	10,35	6,92	0,24	4,17	3436
93	S 1	576	588	12,30	81,31	9,80	0,32	7,98	155
94	F	482	492	7,72	7,98	10,22	0,24	5,85	6280

		Tabela A	Apêndice (C.2 - Dado	s referentes	s aos ensaic	os mecânico	OS	
ID	CV	D1	D2	E3	Ft0	Fc90	Ft90	Fv0	KNT
95	S 3	404	403	6,14	16,26	5,97	0,20	4,66	3167
99	F	420	412	6,90	6,51	6,29	0,21	1,22	7141
101	S2	454	449	9,23	23,65	8,73	0,19	5,32	1626
103	S 3	441	446	11,34	15,08	6,02	0,19	4,88	3818
104	S2	457	477	7,14	15,08	9,39	0,26	6,63	2383
109	S 1	476	477	11,37	28,68	7,53	0,26	4,32	1279
110	S 3	438	449	8,47	14,49	7,76	0,19	6,21	5626
113	F	438	436	10,42	23,95	5,13	0,23	4,44	4657
115	F	476	482	10,12	26,32	8,48	0,23	6,43	4588
116	F	370	368	5,70	4,73	5,67	0,21	4,10	5680
117	S2	399	421	8,53	14,49	8,05	0,38	4,55	4629
120	F	441	448	6,11	5,91	8,23	0,20	5,63	9778
125	F	446	452	10,60	9,17	9,03	0,21	5,97	3993
126	S2	538	541	12,63	20,99	7,89	0,31	6,76	4046
608	F	420	424	6,74	8,28	6,32	0,18	4,08	11454
729	S 1	481	511	9,03	21,88	10,39	0,40	6,52	1398
732	F	439	440	4,17	3,55	6.33	0,22	4,37	8647
734	F	412	426	4,68	6,51	6,12	0,19	3,10	6919
735	SS	466	472	7,82	36,96	9,16	0,19	4,21	394
736	S 3	407	415	8.11	11.24	5.65	0.21	2.82	3711
740	SS	464	485	7.19	38.14	9.32	0.39	4.10	732
741	F	456	476	7.99	6.80	7.95	0.21	5.72	4725
746	S 3	475	493	9.55	11.83	6.79	0.21	6.72	4808
747	S2	370	383	8.07	10.35	5.00	0.16	2.66	3837
749	S 3	455	477	9.71	15.67	7.23	0.23	6.12	3661
750	S3	504	511	5.34	15.97	10.55	0.32	4.30	4933
751	S3	419	434	8.64	10.94	8.00	0.19	3.90	4385
752	S1	487	492	8.79	35.48	8.05	0.28	5.72	454
753	F	437	450	7.46	11.83	6.35	0.22	3.59	5982
754	SS	473	502	9.46	58.25	10.43	0.26	6.32	176
755	S2	439	477	5.74	10.35	10.41	0.27	4.88	3497
758	S3	393	398	5.64	8.28	5.62	0.24	3.99	5809
760	SS	437	468	7.20	26.91	9.65	0.31	5.28	2473
765	S3	451	471	8.81	19.52	7.85	0.18	5.37	4688
769	F	501	520	11.86	15.67	7.88	0.26	5.50	5598
774	F	379	391	6.80	7.10	5.44	0.18	3.59	7556
777	S1	495	507	9.95	34.30	6.85	0.27	5.99	1235
779	SS	592	602	14.85	88.70	9.04	0.25	8.54	178
782	S 3	521	533	11.15	16.56	8.25	0.23	4.28	3067
788	S3	519	521	13.03	19.81	7.67	0.22	5.23	3479
789	F	442	455	6.71	12.42	6.02	0.17	4.97	3594
793	SS	530	525	8 38	59 73	8 86	0.26	641	94
796	S2	502	520	9.85	11.83	7 45	0.32	619	2912
797	S1	381	402	6.09	12.12	6.25	0.22	4.39	2620
801	F	416	422	6 94	9 76	6.00	0.18	4 83	5283
803	F	528	531	7.77	7.39	8.37	0.21	6.61	5073
804	F	409	412	6 50	9 46	6,00	0.13	4 86	6279
	-		• • •	5,50	- ,	3,00	5,15	.,00	5-17

		Tabela A	Apêndice (C.3 - Dado	s referente	s aos ensaic	os mecânico)S	
ID	CV	D1	D2	E3	Ft0	Fc90	Ft90	Fv0	KNT
808	F	445	447	7,25	4,73	6,92	0,17	3,95	8418
811	F	498	505	8,43	9,46	8,20	0,27	5,63	6049
813	SS	387	403	6,06	32,53	6,87	0,21	4,99	474
814	S 1	477	509	10,37	41,69	8,18	0,41	7,63	1461
817	F	428	433	5,60	12,42	6,25	0,35	3,24	5484
837	S 2	417	443	6,84	9,76	8,25	0,30	6,08	3677
838	F	480	483	9,87	14,19	7,23	0,19	6,32	4055
839	F	434	443	6,76	16,26	6,53	0,33	4,63	4329
840	S 3	410	407	6,24	9,46	7,12	0,17	4,01	3478
861	S 3	411	415	7,73	4,73	7,22	0,12	3,88	4826
875	F	425	424	4,32	10,94	7,50	0,20	2,42	4288
876	S 3	382	404	4,86	10,35	5,41	0,17	4,99	3610
882	F	400	403	6,92	11,24	6,80	0.27	1.73	5487
885	S 3	390	386	4.93	7.98	6.32	0.13	3.66	5633
891	S 3	472	467	5.94	9.46	9.15	0.39	6.14	4263
892	F	440	438	8.79	17.15	7.99	0.13	4.97	4616
895	F	422	415	7.47	6.80	6.45	0.16	5.21	7501
902	S 3	446	445	7.63	14 49	8 65	0.17	3 77	3338
908	F	432	432	9.27	15.08	7 55	0.14	5 32	6123
912	F	475	472	6.09	10.94	10.58	0.23	5 57	6340
916	53	474	423	8 70	10,91	5 05	0,25	4 37	3259
919	F	423	419	7.60	13,01	5,05 7 41	0.17	3 99	7463
922	53	423	462	6.24	14 78	8 16	0,17	5.01	2285
928	S2	367	367	0,24 5.66	10,70	6,10 6,64	0,55	3,01	2534
940	S2 S3	432	438	5,00 6 54	9.46	6,04 6,45	0,17	5 43	2334 5637
953	\$3	432	430	6 57	13 31	8 30	0,14	2,43 2,64	3144
960	S3	480	478	9.49	10.94	9.12	0,10	2,04 6,70	4516
963	SJ	410	408	6.85	10,74	5,12 6,62	0,10	4.06	1640
964	S1 S3	38/	301	6,07	9 17	0,02 1 78	0,22	4,00	3308
90 4 076	55 E	440	127	6.20	10.04	7 25	0,20	5.08	5014
970	11 S 1	440	437	0,20 5.68	14.40	7,35	0,19	2.03	2014
078	51	419	420	5,08 7,53	14,49	8.02	0,50	2,93	2942 4440
0.02	52 E	472	4/4	7,55 8 02	0 07	6,02	0,15	275	5060
903	Г Б	405	409	8,92 8,00	0,07 0 57	0,70 6,41	0,22	5,75	5000 4665
993	Г С2	447	403	6,00 6,02	0,57	0,41 6 5 5	0,10	4,37	4003
994	33 82	420	419	0,05	9,17	0,55	0,15	5,55	2262
995	33 82	4/1	490	7,23 8 20	12,71	10,39	0,55	0,05	2125
1001	33 E	401	401	8,29 6.00	13,38	0,57	0,17	4,90 5 77	5155
1005	Г С2	402	409	0,99	18,92	8,01	0,30	5,77	2404
1020	52 E	440	449	8,50	11,83	10,58	0,22	5,21	3404
1021	Г Г	4/0	467	5,93	9,76	9,45	0,18	4,97	0058
1032	F	308	305	4,12	0,21 12.00	5,07	0,17	3,37	2004
1040	55	441	441	6,01	13,90	/,/6	0,33	4,55	2884
1043	F	418	442	1,24	11,53	/,55	0,15	5,21	9393
1049	F	413	453	4,02	3,55	8,28	0,32	4,88	10559
1064	F	474	493	10,24	18,04	6,99	0,20	6,33	4373
1066	F	419	424	4,76	13,31	8,14	0,24	5,03	4961
1069	S 3	393	408	3,16	13,31	6,27	0,26	3,33	2951

		Tabela A	pêndice (2.4 – Dado	s referente	s aos ensaic	s mecânico	DS	
ID	CV	D1	D2	E3	Ft0	Fc90	Ft90	Fv0	KNT
1071	SS	495	496	7,13	41,69	10,16	0,40	6,96	673
1250	S 3	442	443	4,63	20,99	7,67	0,28	5,21	2770
1264	S 3	421	426	8,83	13,90	7,22	0,17	5,34	3173
1265	F	501	502	9,34	13,60	8,27	0,17	6,61	4398
1269	F	492	486	8,67	8,28	7,96	0,31	4,46	6832
1272	F	488	489	12,38	18,33	7,85	0,17	5,77	6264
1274	S 3	452	465	7,08	15,97	7,67	0,16	4,99	2786
1275	S2	500	499	9,40	15,67	9,46	0,20	5,52	2720
1284	S 3	430	428	10,04	14,19	7,56	0,16	5,46	6628
1288	F	385	384	6,30	12,12	6,00	0,13	4,37	6191
1303	F	479	478	6,56	8,28	8,68	0,30	5,46	5215
1308	F	440	439	7,13	11,24	7,34	0,20	5,30	6131
1310	S 3	385	383	6,57	7,98	5,88	0,16	4,08	5001
1318	F	470	473	9.02	12.42	8.45	0.30	6.70	5924
1320	F	460	456	7.54	7.39	7.99	0.18	2.33	4292
1338	F	400	402	5.72	9.76	6.00	0.16	4.57	4730
1348	F	397	399	4 21	9 17	615	0.18	4 1 5	7433
1354	F	385	384	6.42	12.71	5 88	0.16	2.55	5212
1361	53	371	366	7 24	14 19	5,00 5,49	0.14	4 21	3535
1364	F	378	375	6.45	9.76	5.22	0,11	4 15	3268
1365	53	123	A26	0, 4 5 0,76	12 12	7 23	0.13	-,15 5 30	3744
1369	55	425	420	5,70	12,12 12.42	7,25	0,15	1.88	4005
1360	52 53	445	444	0,05 8 20	12,42	6.54	0,20	4,00	3202
1/18	55 E	421 370	422	5.86	6.80	0,54 5.66	0,10	2.07	5026
1410	Г Б	522	524	J,80 7 29	0,80	10.55	0,11	2,97	0561
1490	г сэ	JJJ 126	JJ4 496	7,20	0,20 20.00	10,55	0,10	J,00 4.00	9501 2850
1/21	52 52	420	420	9,10	20,99	0,77 5,60	0,25	4,99	2630
1021	52 E	402	410	0,77 5 20	12,42	5,00 9,24	0,22	5,42	5594
1832	Г Г	450	455	5,20	5,03	8,34	0,21	4,55	5647
18/2	F	420	416	5,19	4,/3	6,55	0,14	2,08	6/41
1957	S2	411	434	9,01	13,01	6,54	0,22	4,61	4231
1961	F	483	484	8,51	10,05	6,88	0,14	5,70	/659
1962	\$3	412	430	5,34	14,19	6,51	0,28	4,66	3505
1963	F	471	492	6,46	10,94	9,39	0,34	5,52	7969
1969	SS	568	561	13,16	90,48	7,36	0,27	7,21	140
1970	S 2	549	583	12,79	27,20	13,25	0,37	9,07	3006
1980	S1	463	463	6,65	30,16	8,56	0,33	5,30	2421
1981	F	407	404	5,70	23,95	7,09	0,26	3,22	6150
1982	S 3	438	444	6,85	13,31	6,66	0,17	4,04	5405
1983	S 1	511	535	12,05	42,28	10,16	0,23	6,99	2021
1984	S 3	443	471	9,99	14,49	6,61	0,22	4,26	7202
1986	S2	491	516	8,43	23,95	6,78	0,35	5,54	3912
1988	F	442	459	7,62	8,87	6,53	0,24	4,83	7593
1989	S 1	473	497	8,66	20,11	8,24	0,24	3,66	1881
1990	S2	509	511	8,18	21,58	7,87	0,27	5,48	1696
1991	F	438	455	7,76	5,62	6,88	0,14	4,01	6474
1992	S 3	357	363	5,72	7,98	4,91	0,17	3,42	4681
1995	S 1	495	497	6,47	29,57	9,53	0,27	5,57	1397

		Tabela A	pendice (J.5 - Dado	s reterentes	s aos ensaic	s mecânico	DS	
ID	CV	D1	D2	E3	Ft0	Fc90	Ft90	Fv0	KNT
1996	SS	525	543	10,07	39,33	9,71	0,39	5,81	1191
1997	SS	580	595	7,90	42,28	13,19	0,37	8,00	1103
1999	F	559	568	11,16	15,97	9,31	0,26	6,12	5966
2000	F	500	522	8,76	25,72	9,16	0,23	4,77	4986
2001	SS	541	548	11,17	47,31	6,38	0,30	7,16	130
2002	S 1	419	422	8,37	24,54	5,40	0,18	4,30	1926
2004	SS	453	458	8,24	39,33	6,42	0,23	4,32	455
2005	F	439	443	6,34	9,17	5,97	0,23	3,90	7069
2011	F	439	456	5,45	11,53	9,08	0,24	4,52	5202
2013	S 3	504	508	12,92	22,77	7,05	0,23	4,99	2962
2016	F	393	399	5,05	4,44	4,70	0,18	2,42	6412
2017	S 3	388	404	5,46	26,32	5,68	0,16	2,22	4899
2022	SS	468	472	7,30	42,28	6,71	0,41	5,17	45
2023	S 3	538	555	10,55	25,72	9,39	0,18	3,55	3581
2024	S 3	487	503	11,35	26,61	6,13	0,20	6,39	3447
2026	S 3	457	471	8,52	12,71	6,80	0,24	5,28	3043
2027	F	483	492	8,99	9,76	6,44	0,20	4,68	6198
2028	S 3	372	381	4,98	8,57	4,69	0,13	3,37	5099
2034	F	434	440	7,93	13,31	6,49	0,23	4,26	5440
2036	S2	566	570	13.24	45,83	7.78	0,10	7,52	3040
2039	S 3	522	523	10.33	17,74	6,83	0,23	4,52	4708
2040	F	448	460	5.20	8.57	7.78	0.32	4.21	4022
2041	SS	402	411	7.31	39.62	5.25	0.20	4.30	523
2042	SS	443	449	5,86	27,50	7.25	0,35	3,79	184
2043	S 3	450	476	10.33	13.60	7.30	0.24	6.12	2586
2044	S 2	536	558	9.59	26.32	9.44	0.27	6.72	3904
2048	SS	556	577	9.60	35.78	10.39	0.40	6.45	1674
2050	F	455	462	9.45	17.15	6.83	0.25	5.92	3566
2051	F	484	499	10.05	17.15	9.07	0.26	5.81	3874
2053	S 2	442	473	9.78	26.61	5.31	0.32	5.08	4368
2056	SS	409	431	6.60	23.06	5.99	0.22	4.35	954
2061	SS	476	479	7.42	26.61	8.82	0.23	5.37	1448
2070	SS	430	448	9.07	34.00	7.00	0.28	4.66	1382
2072	S2	390	403	6.96	9.46	4.76	0.18	4.44	2311
2077	SS	474	500	10.10	47.60	9.83	0.35	6.92	168
2082	S 3	416	429	7.27	20.40	7.02	0.19	3.81	2853
2084	S3	361	370	5.33	9.46	5.31	0.25	3.44	4371
2085	S3	435	447	7.62	15.08	6.94	0.07	4.88	3567
2089	F	437	461	7 80	8 87	7 67	0.24	2.48	8435
2090	53	411	414	7,88	21.58	5.28	0.22	3.26	3541
2094	F	408	420	5.09	10.35	7.71	0.17	2.08	6621
2097	53	457	458	8 59	11 24	5 25	0.18	2,00 3,10	5610
2101	SS	553	555	9 71	80.43	9 37	0 33	5 68	181
2102	55	498	510	11 35	12,71	7 39	0.23	6 14	3560
2102	F	303	407	497	8 78	, , , , , , , , , , , , , , , , , , ,	0.29	3 70	6313
2104	S1	397	413	-, <i>72</i> 8 05	31 34	6.21	$0,2^{2}$	2,70 4 52	1084
2100	F	388	392	5 13	10.05	5 10	0.18	2,06	7643
2100	1	500	574	5,15	10,05	5,10	0,10	2,00	1015

acânia - **1**. . : . c Talaal . ~ 1. _ D

		Tabela A	pêndice (C.6 – Dado	s referente	s aos ensaic	os mecânico	DS	
ID	CV	D1	D2	E3	Ft0	Fc90	Ft90	Fv0	KNT
2109	F	434	434	5,69	5,03	4,74	0,21	1,88	12091
2110	S 3	421	429	6,44	11,53	8,22	0,19	4,41	7023
2112	S 3	408	427	6,81	8,28	7,05	0,20	4,68	3347
2114	S2	388	401	6,82	19,81	5,47	0,17	3,42	1902
2116	F	396	404	4,32	4,14	6,45	0,32	2,99	6482
2117	S 1	386	408	5,31	20,99	6,74	0,20	4,92	1788
2119	S2	438	445	8,24	12,71	7,07	0,27	5,48	3659
2120	F	481	496	6,51	8,87	7,49	0,25	1,02	9823
2121	F	443	452	8,57	10,64	5,41	0,21	2,71	9413
2122	S 3	465	476	7,59	15,67	6,49	0,22	4,90	3213
2124	S 1	487	505	6,36	36,37	11,08	0,33	5,30	737
2125	SS	461	477	9,10	39,92	8,02	0,23	4,99	1473
2127	S2	384	397	7,00	17,15	7,27	0,17	4,55	3660
2130	SS	422	431	8,17	52,34	6,42	0,15	4,41	39
2131	F	402	412	6,58	15,97	6,64	0,24	3,35	7308
2132	S 3	396	409	6,93	18,92	5,42	0.23	2,77	3005
2135	S 3	346	365	5.94	7.98	5.77	0.15	3.24	4296
2138	S 2	439	455	8.09	11.53	6.17	0.19	4.70	3029
2140	S3	410	426	7.15	8.28	5.14	0.20	4.10	6544
2141	F	437	474	7.26	10.64	7.22	0.27	3.61	5270
2142	F	436	441	4.86	8.87	6.41	0.18	3.48	8028
2144	F	411	417	5 27	8 28	5.62	0.24	4 01	6653
2145	S1	450	476	8 58	18.04	6,62	0.27	3.84	1794
2147	SS	500	526	9.11	32.23	12.04	0.41	7.05	248
2148	53	462	473	8 95	17 45	7 64	0.24	4 66	4859
2140	SS	462	462	7 30	32.82	9.13	0,24	4,00	104
2152	55 S2	412	412	4 26	7 39	6 67	0,33	3 66	5483
2152	S2 S3	456	467	8.18	11 53	7 39	0,22	1 39	3808
2150	S2	374	388	6.02	14 19	6 55	0.18		3356
2150	S2	161	765	10.16	8 57	0,55 7 71	0,10	5.88	/081
2165	55 F	404	405	7 54	10.9/	7,71	0,10	2.48	71/7
2160	53	305	432	6.68	8 28	7,12	0,19	2,40	3032
210)	55	527	538	10.47	11 53	0.01	0,20	5,55 6.43	4020
2170	S2 S1	J27 135	763	7 47	17.15	7,50	0,34	3 77	3270
2171	F	455	405	5 20	5 62	8.67	0,27	3,00	10163
2172	22	40J 384	402	3.04	21.20	0,67	0,15	<i>3,77</i> <i>1,16</i>	1501
2175	22	/01	400	3,74 8 15	21,27	0.07	0,32	+,+0 5 54	008
2175	55 F	4)1	472	5 20	12 12	10.17	0,25	5,54	5703
2180	1 22	437	401	5,20 8.46	34.80	0.66	0,43	<i>J</i> ,72 <i>A</i> 21	641
2102	55 S1	303	404	3 70	11 52	9,00 7,70	0,27	4,21	2577
2100	51	595 458	415	7.02	11,55	10.56	0,27	4,55 6 10	4502
2109	55	450	401	10.46	65.64	0.86	0,27	5 00	4392
2190	22 22	433 570	475 562	6 47	57.66	9,00	0,23	J,00 5 17	120
2190	22 22	J10 102	517	0,4/	51.45	7,11 1276	0,19	J,17 160	170
2200	50 52	473 270	272	0,04 6 00	J1,4J 12 21	12,70	0,41	4,00	213 5162
2201	33 01	370 420	313 165	0,08	15,51	4,02 7 00	0,13	4,10	2000
2202	51	430	403	7,23	23,12 10.25	1,00	0,27	0,30	2009
2203	22	433	439	1,97	10,35	9,30	0,19	0,10	3242

		Tabela A	Apêndice (C.7 – Dado	s referente	s aos ensaic	os mecânico	DS	
ID	CV	D1	D2	E3	Ft0	Fc90	Ft90	Fv0	KNT
2207	SS	514	529	10,89	47,60	11,07	0,30	7,54	76
2209	S 1	509	525	7,32	29,27	12,20	0,30	5,37	435
2211	S 1	492	508	6,94	18,33	10,99	0,30	6,85	2806
2212	S2	412	417	7,10	20,11	6,97	0,30	6,41	3854
2215	S 1	403	422	7,36	12,12	6,81	0,31	4,72	2895
2220	S 1	497	508	9,55	34,59	10,13	0,33	5,68	1284
2222	S 1	475	492	9,05	12,42	10,19	0,35	4,72	2755
2224	S 3	428	430	7,79	7,98	6,27	0,20	4,30	4228
2227	S 1	429	442	4,96	12,71	9,12	0,33	4,21	2682
2231	S 1	452	456	5,31	21,88	8,29	0,43	4,59	1943
2232	S 3	475	472	6,12	16,56	6,33	0,22	4,19	5548
2233	S 1	466	486	6,75	25,72	12,14	0,38	4,21	2354
2234	F	450	452	6,62	18,33	7,47	0,27	3,28	8718
2236	S 3	386	404	6,46	7,98	6,26	0,23	4,77	4418
2239	S 3	424	434	6,38	18,63	8,27	0,38	7,50	5025
2244	S 3	414	436	4,95	12,12	8,11	0,31	4,52	5296
2246	SS	459	449	5,11	16,56	6,72	0,17	4,10	1915
2247	S2	465	477	9.51	21,58	7.08	0.31	4,04	3545
2249	S 1	437	465	8,72	22,47	11.03	0.39	5,52	1308
2253	S 1	572	575	12.09	52.63	11.80	0.38	6.25	1403
2255	S 1	542	553	14.48	33.12	10.10	0.24	4.32	653
2259	S 2	394	398	6.66	10.64	5.58	0.23	4.61	2942
2260	S2	482	498	9.16	14.19	10.93	0.28	6.81	4250
2264	S1	395	399	4.99	12.71	6.87	0.24	4.66	2586
2267	F	555	562	13.58	11.53	9.90	0.29	6.70	4122
2270	SS	454	464	6.10	23.95	9.20	0.27	3.59	1117
2311	F	511	516	7.38	11.24	7,75	0.26	4.15	8141
2312	S 3	455	470	6.61	10.64	6.46	0.22	3.61	4634
2313	SS	573	600	15.02	34.59	8.23	0.25	6.10	897
2325	SS	656	662	16.30	35.19	9.97	0.26	7.67	1555
2369	F	478	485	8.12	15.08	9.84	0.32	6.54	4311
2382	S1	441	454	8.60	12,42	7.07	0.22	5.70	2083
2389	SS	422	442	4.29	44.94	8.86	0.40	4.88	830
2390	S3	395	401	7.87	13.01	4.99	0.20	4.79	2418
2392	S1	434	436	8.26	31.34	6.29	0.27	6.21	1410
2393	S1	419	425	6 30	21.29	6.28	0.21	4 57	2524
2394	S3	451	469	9.88	13.90	7.77	0.29	2.00	3286
2399	F	447	462	7.62	9.17	7.56	0.20	3.73	7090
2402	S2	445	464	6 37	20.99	8 97	0.17	6.05	1615
2404	S2	374	381	4 99	5.03	5 48	0.16	3 77	3322
2405	S2	416	418	6 70	12.12	615	0.17	5 43	3829
2406	F	382	389	7.04	8 57	5,15 5,45	0.19	2,15 4 46	7731
2409	S2	397	396	7.09	15 38	5,19	0,15	3.42	2888
2411	SS	410	427	6.81	34 30	7 64	0.32	5,12	493
2414	53	430	429	7 02	7 69	6 99	0.25	4 95	6190
2415	S3	423	437	4 02	10 35	10.29	0.37	3 88	6447
2417	F	458	462	7.68	18.33	8.22	0.24	5.14	4820
	*		.04	,,00	10,00		<i></i>	2,11	.020

		Tabela A	pêndice (C.8 – Dado	s referentes	s aos ensaic	os mecânico)S	
ID	CV	D1	D2	E3	Ft0	Fc90	Ft90	Fv0	KNT
2420	F	424	430	6,37	5,03	7,66	0,20	4,81	6280
2422	S 2	458	483	7,67	23,65	10,95	0,18	5,88	2084
2423	S 1	434	442	8,49	20,11	9,24	0,27	5,01	2783
2424	S 3	501	490	8,77	16,56	9,65	0,17	5,03	4190
2425	F	439	457	6,57	16,26	7,69	0,31	4,44	8784
2426	F	454	467	5,33	9,46	7,67	0,35	5,21	4463
2428	F	442	446	6,61	6,51	8,01	0,23	1,53	9211
2429	F	425	435	6,99	5,32	7,10	0,22	4,44	8263
2430	F	413	421	7,51	16,56	6,85	0,15	2,55	7685
2432	S2	445	456	7,15	11,24	7,25	0,22	3,75	5080
2434	F	414	422	7,19	13,60	7,03	0,18	4,48	6689
2436	S 3	361	367	6,15	12,12	5,69	0,16	4,66	5455
2438	SS	499	493	8,70	57,66	9,71	0,18	5,32	1687
2439	S 1	506	518	12,92	29,86	9,80	0,24	4,86	685
2441	S 3	438	447	7,95	11.83	7,68	0,20	3,81	4995
2443	S 3	444	459	5.13	11.53	7.56	0.18	3.66	6129
2445	S 2	442	475	5.29	18.63	7.83	0.25	5.21	5571
2447	F	387	399	4.32	5.32	6.19	0.23	0.82	7292
2448	SS	449	461	7.01	28.68	6.48	0.23	5.43	769
2450	SS	548	553	8 64	46.13	12.79	0.42	5 59	282
2453	F	458	459	9.27	10,15	7 23	0.21	4 55	6360
2454	53	409	454	5.68	13.60	6.21	0.26	4 21	3674
2455	S1	512	519	12 66	57.66	7.61	0,20	7.27	123
2455	F	508	512	9 59	7 69	8.00	0,15	4.81	8581
2459	S2	416	432	8 19	17 45	6.48	0.23	3 66	3716
2457	S2	478	436	8.62	17,45	6,40	0,25	2,00 4 88	2734
2461	F	471	482	11.05	12 12	8 90	0.20	6.32	4495
2463	F	308	402	6 25	8 28	6,90	0,22	4 17	5315
2403	22	<i>44</i> 7	400	9.20	0,20 24 54	7 21	0.23	-,17 6.08	1081
2465	22	лт <i>і</i> Л66	475	5 36	27,37 57.66	9.70	0,23	5 79	510
2405	55 S1	400	473	5,50 7.40	25 72	6.88	0,22	5,77	959
2400	S1	430	443	7,40	15.67	6.08	0,24	5,05	2024
2407	22	429	133	5.43	21.88	1.87	0,10	1 32	1574
2409	53	420	455	3,43 8 47	21,00	4,07 6,40	0,18	4,32 5 30	5826
2470	55 F	302	300	673	13.60	6.22	0,20	5,59 1 11	0086
2471	L L	138	399 115	0,75	2 27	6.78	0,11	+,++ 5 03	5080 6587
2472	1 ⁻ 52	430	445	9,52	0,07	0,78 7.40	0,08	5,05 4 75	3523
2474	33 52	455	441 205	0,19 7 20	13,30	7,40 5.06	0,19	4,75	3323 2507
2475	52 E	124	393 457	7,39	11,05	5,00	0,24	5,40	4702
2470	Г С2	434	437	/,11 9.71	12,12	0,45	0,20	5.02	4705
2477	33 E	420	431	0,71 6.64	6.80	7,07 8 45	0,14	3,03	5500 6142
2470	Г СС	415	421	0,04	0,00	0,45	0,17	5,00	704
2479	55 51	415	457	5,51	19,22	9,00	0,28	5,14	794
2481 2482	51	440	403 504	3,20 11 76	13,38	9,98 0 00	0,18	4,99	2420 2161
2402 2494	<u>ь</u>	494	JU0 407	11,/0	20,91	0,00	0,20	5,10	2101 5010
2484 2489	Г Б	493 501	40/	0,30 10.12	0,21	1,3U 0 <i>5 6</i>	0,24	3,99 7 07	JY19 7440
2488 2402	Г C2	521 270	332 296	10,13	0,0/ 10.52	0,30 5,22	0,20	(,07	/449
249Z	33	370	380	0,09	19,52	3,22	0,10	0,23	4880

ID	CV	D1	D2	E3	Ft0	Fc90	Ft90	Fv0	KNT
2493	F	393	396	5,92	9,17	5,95	0,17	1,15	6038
2494	F	406	424	6,67	10,35	6,56	0,21	5,10	6686
2495	S 2	434	452	9,50	14,49	6,67	0,21	5,85	2472
2496	S 2	447	464	4,92	18,04	9,09	0,48	4,95	2688
2498	F	421	431	7,39	19,52	6,46	0,15	5,32	5422
2499	S 1	508	523	11,30	28,98	9,41	0,31	4,21	2465
2500	S 3	410	410	6,87	6,51	6,25	0,16	2,77	4372
2501	S 2	377	383	6,61	13,31	6,84	0,20	4,59	4557
2507	F	466	461	5,50	7,39	7,60	0,29	5,85	9071
2509	S2	460	478	6,20	13,90	11,84	0,38	4,35	3839

Tabela Apêndice C.9 – Dados referentes aos ensaios mecânicos

Simbologia dos Apêndices E, F e G

ID	adm	Identificação da amostra.
D _X	kg/m³	Densidade estimada pelos modelos estatísticos.
$\mathbf{C}\mathbf{D}_{\mathbf{M}}$	adm	Classificação atribuída à densidade média normativa.
CD _K	adm	Classificação atribuída à densidade característica normativa.
Ex	GPa	Módulo de elasticidade estimado pelos modelos estatísticos.
CEM	adm	Classificação atribuída ao módulo de elasticidade médio normativa.
CE _K	adm	Classificação atribuída ao módulo de elasticidade característico normativa.
F _{MX}	MPa	Resistência à flexão estimada pelos modelos estatísticos.
CF _{MX}	adm	Classificação atribuída à resistência à flexão normativa.
F _{c0X}	MPa	Resistência à compressão paralela às fibras estimada pelos modelos estatísticos.
CF _{c0X}	adm	Classificação atribuída à resistência à compressão paralela às fibras normativa.
F _{t0X}	MPa	Resistência à tração paralela às fibras estimada pelos modelos estatísticos.
CF _{t0X}	adm	Classificação atribuída à resistência à tração paralela às fibras normativa.
R _M	adm	Resultado da classificação considerando os valores médios estipulados pela norma EN 338.
VER M	adm	Verificação dos valores médios estimados comparados com os valores reais obtidos em
		laboratório.
R _K	adm	Resultado da classificação considerando os valores característicos estipulados pela EN 338.
VER K	adm	Verificação dos valores característicos estimados comparados com os valores reais obtidos em laboratório.

			1	abela A	penuice	D.1 - FI	otocolo de	ciassificaça	o por meto	JUS Hau ues	arunvos par	a nexao es	anca			
ID	Dx	CD _M	CD _K	Ex	СЕм	СЕк	F _{MX}	СГмх	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	Rĸ	VER K
20	410	C22	C35	5,34	SC	C14	11,08	SC	16,32	C14	8,98	C14	SC	OK	SC	OK
28	450	C27	C45	7,73	C14	C20	42,26	C40	28,1	C45	31,68	C50	C14	OK	C20	OK
30	503	C40	C50	6,89	SC	C20	16,49	C16	19,82	C20	11,26	C18	SC	OK	C16	OK
44	420	C24	C40	7,11	C14	C20	12,19	SC	17,16	C16	9,37	C14	SC	OK	SC	OK
50	461	C30	C50	6,41	SC	C20	14,56	C14	18,73	C18	10,35	C16	SC	OK	C14	OK
52	409	C20	C35	5,19	SC	C14	35,18	C40	26,49	C40	24,51	C40	SC	OK	C14	OK
64	468	C30	C50	6,53	SC	C20	38,26	C40	27,23	C45	27,48	C45	SC	OK	C20	OK
100	459	C27	C45	6,44	SC	C20	34,4	C30	26,29	C40	23,8	C35	SC	OK	C20	OK
119	419	C22	C35	5,42	SC	C16	14,42	C14	18,64	C18	10,29	C16	SC	OK	C14	OK
124	596	C50	C50	11,34	C20	C50	51,07	C50	29,77	C50	42,47	C50	C20	OK	C50	OK
329	422	C24	C40	4,18	SC	SC	14,2	C14	18,5	C18	10,19	C16	SC	OK	SC	OK
416	448	C24	C45	5,83	SC	C16	15,2	C14	19,1	C20	10,64	C16	SC	OK	C14	OK
417	508	C40	C50	7,49	C14	C20	34,74	C30	26,38	C40	24,11	C40	C14	OK	C20	OK
418	470	C30	C50	6,95	SC	C20	16,53	C16	19,84	C20	11,28	C18	SC	OK	C16	OK
419	400	C20	C35	5,6	SC	C16	38,05	C40	27,18	C45	27,27	C45	SC	OK	C16	OK
420	492	C35	C50	6,55	SC	C20	18,75	C18	20,95	C20	12,44	C20	SC	OK	C18	OK
421	432	C24	C40	6,83	SC	C20	31,53	C30	25,52	C35	21,3	C35	SC	OK	C20	OK
422	509	C40	C50	7,42	C14	C20	52,6	C50	30,03	C50	44,56	C50	C14	OK	C20	OK
423	501	C40	C50	6,11	SC	C18	21,34	C20	22,09	C20	13,94	C20	SC	OK	C18	OK
424	411	C22	C35	3,7	SC	SC	8,82	SC	14,31	SC	8,34	C14	SC	OK	SC	OK
425	400	C20	C35	4,05	SC	SC	28,68	C20	24,69	C30	19	C30	SC	OK	SC	OK
426	418	C22	C35	6,42	SC	C20	31,14	C30	25,42	C35	20,97	C30	SC	OK	C20	OK
428	454	C27	C45	5,19	SC	C14	15,25	C14	19,13	C20	10,66	C16	SC	OK	C14	Ν
429	462	C30	C50	6,26	SC	C18	18,53	C18	20,85	C20	12,32	C20	SC	OK	C18	OK
430	486	C35	C50	4,46	SC	SC	29,26	C20	24,87	C30	19,46	C30	SC	OK	SC	OK

Apêndice D – Protocolo de classificação por métodos não destrutivos para flexão estática Tabela Apêndice D 1 – Protocolo de classificação por métodos não destrutivos para flexão estática

			-		spendice	D.2 - 1		ciassificaçã	ao por meto	uos nao ues	su uu vos pa	а пелао е	statica			
ID	Dx	CD _M	CD _K	$\mathbf{E}_{\mathbf{X}}$	CEM	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
431	462	C30	C50	9,08	C18	C35	41,23	C40	27,89	C45	30,56	C50	C18	OK	C35	Ν
432	451	C27	C45	5,71	SC	C16	32,19	C30	25,71	C35	21,86	C35	SC	OK	C16	OK
433	425	C24	C40	6,64	SC	C20	24,74	C20	23,39	C30	16,14	C20	SC	OK	C20	OK
434	432	C24	C40	5,64	SC	C16	10,29	SC	15,67	SC	8,73	C14	SC	OK	SC	OK
435	424	C24	C40	6,78	SC	C20	15,13	C14	19,06	C20	10,61	C16	SC	OK	C14	OK
436	393	C20	C30	3,98	SC	SC	29,13	C20	24,83	C30	19,36	C30	SC	OK	SC	OK
437	464	C30	C50	7,62	C14	C20	42,32	C40	28,12	C45	31,75	C50	C14	OK	C20	OK
438	502	C40	C50	7,76	C14	C20	33,87	C30	26,15	C40	23,32	C35	C14	OK	C20	OK
439	483	C35	C50	7,14	C14	C20	50,46	C50	29,66	C50	41,64	C50	C14	OK	C20	OK
440	414	C22	C35	6,55	SC	C20	18,38	C18	20,77	C20	12,24	C20	SC	OK	C18	OK
441	444	C24	C45	7,35	C14	C20	27,11	C20	24,19	C30	17,82	C20	C14	OK	C20	Ν
442	403	C20	C35	6,39	SC	C18	12,49	SC	17,37	C16	9,48	C14	SC	OK	SC	OK
444	412	C22	C35	6,78	SC	C20	22,17	C20	22,43	C20	14,46	C20	SC	OK	C20	OK
445	387	C18	C30	5,81	SC	C16	30,4	C30	25,2	C35	20,37	C30	SC	OK	C16	OK
446	417	C22	C35	5,75	SC	C16	7,63	SC	13,03	SC	8,13	C14	SC	OK	SC	OK
447	422	C24	C40	6,68	SC	C20	15,25	C14	19,13	C20	10,66	C16	SC	OK	C14	OK
448	469	C30	C50	5,4	SC	C14	44,11	C40	28,48	C45	33,77	C50	SC	OK	C14	OK
449	494	C35	C50	6,59	SC	C20	37,83	C40	27,13	C45	27,05	C45	SC	OK	C20	OK
450	453	C27	C45	4,78	SC	C14	28,77	C20	24,72	C30	19,08	C30	SC	OK	C14	OK
451	461	C30	C50	5,99	SC	C16	14,63	C14	18,76	C18	10,38	C16	SC	OK	C14	OK
452	453	C27	C45	3,62	SC	SC	27,64	C20	24,37	C30	18,22	C30	SC	OK	SC	OK
453	452	C27	C45	4,25	SC	SC	21,48	C20	22,15	C20	14,03	C20	SC	OK	SC	OK
454	444	C24	C45	5,32	SC	C14	3,21	SC	5,42	SC	9,88	C14	SC	OK	SC	OK
455	421	C24	C40	7,11	C14	C20	35,05	C40	26,46	C40	24,39	C40	C14	OK	C20	OK
458	427	C24	C40	8,7	C16	C30	52,79	C50	30,06	C50	44,83	C50	C16	OK	C30	OK
459	362	C14	C24	3,93	SC	SC	16,62	C16	19,89	C20	11,32	C18	SC	OK	SC	OK
460	468	C30	C50	3,14	SC	SC	20,22	C20	21,62	C20	13,28	C20	SC	OK	SC	OK
461	435	C24	C40	5,94	SC	C16	24,73	C20	23,39	C30	16,13	C20	SC	OK	C16	OK

Tabela Apêndice D.2 – Protocolo de classificação por métodos não destrutivos para flexão estática

					spendice	D.5 = 1		ciassificaçã	ao por merc	uos nao ues	su un vos pa	a nexao e	statica			
ID	Dx	CD _M	CD _K	Ex	CE _M	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
462	461	C30	C50	5,5	SC	C16	30,83	C30	25,33	C35	20,72	C30	SC	OK	C16	OK
465	379	C16	C27	5,69	SC	C16	30,55	C30	25,25	C35	20,48	C30	SC	OK	C16	OK
466	457	C27	C45	8,91	C16	C35	25,83	C20	23,77	C30	16,9	C20	C16	OK	C20	OK
468	465	C30	C50	5,78	SC	C16	24,22	C20	23,2	C30	15,79	C20	SC	OK	C16	OK
469	427	C24	C40	3,32	SC	SC	12,72	SC	17,53	C16	9,57	C14	SC	OK	SC	OK
470	400	C20	C35	3,54	SC	SC	7,56	SC	12,95	SC	8,12	C14	SC	OK	SC	OK
471	426	C24	C40	7,25	C14	C20	37,47	C40	27,04	C45	26,69	C40	C14	OK	C20	OK
473	458	C27	C45	6,88	SC	C20	41,01	C40	27,84	C45	30,33	C50	SC	OK	C20	OK
474	466	C30	C50	7,04	C14	C20	35,79	C40	26,64	C40	25,08	C40	C14	OK	C20	OK
475	426	C24	C40	7,26	C14	C20	18,82	C18	20,98	C20	12,48	C20	C14	Ν	C18	Ν
476	452	C27	C45	8,68	C16	C30	21,65	C20	22,21	C20	14,13	C20	C16	OK	C20	Ν
477	526	C45	C50	11,87	C20	C50	52,09	C50	29,94	C50	43,86	C50	C20	OK	C50	OK
478	517	C40	C50	9,15	C18	C35	48,2	C45	29,26	C50	38,71	C50	C18	OK	C35	OK
479	526	C45	C50	8,64	C16	C30	51,36	C50	29,82	C50	42,85	C50	C16	OK	C30	OK
480	487	C35	C50	7,25	C14	C20	17,39	C16	20,28	C20	11,71	C18	C14	OK	C16	OK
481	495	C35	C50	8,23	C16	C30	40,62	C40	27,75	C45	29,9	C45	C16	OK	C30	OK
482	400	C20	C35	6,98	SC	C20	19,43	C18	21,26	C20	12,82	C20	SC	OK	C18	Ν
484	467	C30	C50	5,48	SC	C16	21,98	C20	22,35	C20	14,34	C20	SC	OK	C16	OK
485	418	C22	C35	6,3	SC	C18	11,63	SC	16,74	C14	9,17	C14	SC	OK	SC	OK
486	451	C27	C45	9,9	C20	C40	34,94	C30	26,43	C40	24,29	C40	C20	OK	C30	OK
488	500	C40	C50	6,78	SC	C20	29,73	C20	25,01	C35	19,83	C30	SC	OK	C20	Ν
489	449	C24	C45	7,21	C14	C20	16,48	C16	19,81	C20	11,25	C18	C14	OK	C16	Ν
490	457	C27	C45	5,24	SC	C14	34,45	C30	26,3	C40	23,84	C35	SC	OK	C14	OK
491	468	C30	C50	8,05	C16	C30	26,27	C20	23,92	C30	17,21	C20	C16	OK	C20	OK
492	454	C27	C45	6,44	SC	C20	21,18	C20	22,02	C20	13,85	C20	SC	OK	C20	N
493	475	C30	C50	5,07	SC	C14	23,3	C20	22,86	C20	15,18	C20	SC	OK	C14	OK
494	469	C30	C50	4,53	SC	SC	5,58	SC	10,27	SC	8,15	C14	SC	OK	SC	OK
495	408	C20	C35	5,24	SC	C14	40,42	C40	27,71	C45	29,7	C45	SC	OK	C14	OK

Tabela Apêndice D.3 – Protocolo de classificação por métodos não destrutivos para flexão estática

				I abela A	pendice	D.4 - F		ciassificaçã	ao por meto	uos nao des	situtivos pa	a nexao e	statica			
ID	Dx	CD _M	CD _K	Ex	CE _M	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
496	520	C45	C50	4,87	SC	C14	17,22	C16	20,2	C20	11,63	C18	SC	OK	C14	Ν
503	552	C50	C50	10,76	C20	C50	46,85	C45	29,01	C50	37,03	C50	C20	OK	C45	OK
504	505	C40	C50	9,27	C18	C35	44,55	C40	28,57	C45	34,28	C50	C18	OK	C35	OK
505	500	C40	C50	7,12	C14	C20	51,76	C50	29,89	C50	43,4	C50	C14	OK	C20	OK
506	500	C40	C50	7,94	C14	C20	34,69	C30	26,37	C40	24,06	C40	C14	OK	C20	OK
507	460	C30	C50	4,05	SC	SC	16,9	C16	20,04	C20	11,47	C18	SC	OK	SC	OK
508	456	C27	C45	7	SC	C20	37,74	C40	27,11	C45	26,95	C40	SC	OK	C20	OK
510	439	C24	C40	3,96	SC	SC	23,87	C20	23,07	C30	15,55	C20	SC	OK	SC	OK
511	426	C24	C40	6,93	SC	C20	22,8	C20	22,67	C20	14,86	C20	SC	OK	C20	Ν
512	401	C20	C35	6,24	SC	C18	22,6	C20	22,59	C20	14,73	C20	SC	OK	C18	Ν
513	550	C50	C50	6,29	SC	C18	25,14	C20	23,53	C30	16,41	C20	SC	OK	C18	Ν
514	418	C22	C35	6,62	SC	C20	36,22	C40	26,75	C40	25,49	C40	SC	OK	C20	OK
515	387	C18	C30	6,63	SC	C20	32,54	C30	25,8	C35	22,16	C35	SC	OK	C20	OK
518	386	C18	C30	3,51	SC	SC	21,8	C20	22,28	C20	14,23	C20	SC	OK	SC	OK
520	404	C20	C35	5,57	SC	C16	42,09	C40	28,07	C45	31,5	C50	SC	OK	C16	OK
521	445	C24	C45	6,31	SC	C18	46,13	C45	28,87	C45	36,15	C50	SC	OK	C18	OK
522	479	C30	C50	4,6	SC	SC	29,44	C20	24,92	C30	19,6	C30	SC	OK	SC	OK
523	489	C35	C50	9,47	C18	C40	51,76	C50	29,89	C50	43,4	C50	C18	OK	C40	OK
524	539	C45	C50	7,58	C14	C20	52,79	C50	30,06	C50	44,83	C50	C14	OK	C20	OK
525	389	C18	C30	5,46	SC	C16	33,32	C30	26,01	C40	22,83	C35	SC	OK	C16	OK
526	502	C40	C50	4,8	SC	C14	5,14	SC	9,56	SC	8,26	C14	SC	OK	SC	OK
527	533	C45	C50	11,27	C20	C50	51,65	C50	29,87	C50	43,25	C50	C20	OK	C50	OK
529	413	C22	C35	8,03	C16	C30	16,05	C16	19,58	C20	11,04	C18	C16	OK	C16	OK
530	528	C45	C50	7,54	C14	C20	15,92	C14	19,51	C20	10,98	C16	C14	OK	C14	OK
532	417	C22	C35	6,45	SC	C20	16,87	C16	20,02	C20	11,45	C18	SC	OK	C16	N
533	453	C27	C45	3,86	SC	SC	35,74	C40	26,63	C40	25,04	C40	SC	OK	SC	OK
534	415	C22	C35	6,74	SC	C20	17,64	C16	20,41	C20	11,84	C18	SC	OK	C16	OK
535	534	C45	C50	8,78	C16	C35	15,24	C14	19,13	C20	10,66	C16	C14	N	C14	N

Tabela Apêndice D.4 – Protocolo de classificação por métodos não destrutivos para flexão estática

			10	abela Ap	endice L	0.3 - P10	locolo de	classifica	çao por me	todos não de	estrutivos pa	ra nexao es	statica			
ID	Dx	CD _M	CD _K	Ex	CE _M	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
536	544	C45	C50	9,49	C18	C40	30,78	C30	25,31	C35	20,67	C30	C18	OK	C30	OK
537	382	C18	C30	4,59	SC	SC	24,31	C20	23,23	C30	15,85	C20	SC	OK	SC	OK
538	458	C27	C45	9,44	C18	C40	25,79	C20	23,76	C30	16,87	C20	C18	OK	C20	Ν
539	472	C30	C50	7,53	C14	C20	49,62	C45	29,52	C50	40,53	C50	C14	OK	C20	OK
540	383	C18	C30	6,28	SC	C18	32,87	C30	25,89	C35	22,44	C35	SC	OK	C18	OK
541	381	C18	C30	5,74	SC	C16	23,12	C20	22,79	C20	15,06	C20	SC	OK	C16	Ν
543	441	C24	C45	7,76	C14	C20	34,1	C30	26,22	C40	23,53	C35	C14	OK	C20	OK
544	375	C16	C27	5,57	SC	C16	21,38	C20	22,11	C20	13,97	C20	SC	OK	C16	OK
545	384	C18	C30	5,67	SC	C16	37,67	C40	27,09	C45	26,89	C40	SC	OK	C16	OK
546	412	C22	C35	6,09	SC	C18	37,72	C40	27,1	C45	26,94	C40	SC	OK	C18	OK
547	423	C24	C40	3,25	SC	SC	18,94	C18	21,04	C20	12,54	C20	SC	OK	SC	OK
561	379	C16	C27	4,63	SC	SC	11,84	SC	16,9	C14	9,24	C14	SC	OK	SC	OK
593	399	C20	C30	5,06	SC	C14	20,29	C20	21,64	C20	13,31	C20	SC	OK	C14	OK
600	403	C20	C35	4,11	SC	SC	15,03	C14	19,01	C20	10,56	C16	SC	OK	SC	OK
655	402	C20	C35	5,93	SC	C16	31,11	C30	25,41	C35	20,94	C30	SC	OK	C16	OK
687	488	C35	C50	9,55	C20	C40	28,18	C20	24,53	C30	18,62	C30	C20	OK	C20	OK
718	448	C24	C45	6,12	SC	C18	21,54	C20	22,17	C20	14,06	C20	SC	OK	C18	OK
743	553	C50	C50	12,5	C30	C50	49,12	C45	29,43	C50	39,88	C50	C30	OK	C45	OK
745	451	C27	C45	3,61	SC	SC	20,17	C20	21,59	C20	13,24	C20	SC	OK	SC	OK
786	384	C18	C30	4,99	SC	C14	24,8	C20	23,41	C30	16,18	C20	SC	OK	C14	OK
790	492	C35	C50	7,87	C14	C20	52,43	C50	30	C50	44,33	C50	C14	OK	C20	OK
806	630	C50	C50	12,27	C30	C50	50,77	C50	29,72	C50	42,06	C50	C30	OK	C50	OK
809	581	C50	C50	10,16	C20	C45	50,64	C50	29,7	C50	41,89	C50	C20	OK	C45	OK
820	580	C50	C50	12,57	C30	C50	46,41	C45	28,93	C45	36,5	C50	C30	OK	C45	OK
821	388	C18	C30	6,71	SC	C20	27,38	C20	24,28	C30	18,02	C30	SC	OK	C20	OK
822	359	C14	C24	4,94	SC	C14	22,52	C20	22,56	C20	14,68	C20	SC	OK	C14	OK
823	460	C30	C50	6,72	SC	C20	24,79	C20	23,41	C30	16,17	C20	SC	OK	C20	OK
824	602	C50	C50	12,04	C30	C50	51,1	C50	29,77	C50	42,5	C50	C30	OK	C50	OK

Tabela Apêndice D.5 – Protocolo de classificação por métodos não destrutivos para flexão estática

				i abela A	pendice	D.0 - P		e classificaça	ao por meto	dos não des	strutivos pa	a nexao e	statica			
ID	D _X	CD _M	CD _K	Ex	CEM	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
825	434	C24	C40	3,26	SC	SC	4,33	SC	8,04	SC	8,65	C14	SC	OK	SC	OK
827	491	C35	C50	10,74	C20	C50	18,94	C18	21,04	C20	12,55	C20	C18	OK	C18	OK
829	494	C35	C50	7,56	C14	C20	35,68	C40	26,61	C40	24,98	C40	C14	OK	C20	OK
830	420	C24	C40	5,65	SC	C16	13,61	SC	18,13	C18	9,94	C14	SC	OK	SC	OK
831	452	C27	C45	6,84	SC	C20	25,15	C20	23,53	C30	16,42	C20	SC	OK	C20	Ν
832	492	C35	C50	6,37	SC	C18	25,73	C20	23,74	C30	16,83	C20	SC	OK	C18	Ν
834	479	C30	C50	4,16	SC	SC	12,8	SC	17,59	C16	9,61	C14	SC	OK	SC	OK
836	446	C24	C45	8,27	C16	C30	35,94	C40	26,68	C40	25,22	C40	C16	OK	C30	OK
842	437	C24	C40	4,77	SC	C14	19,92	C18	21,48	C20	13,1	C20	SC	OK	C14	OK
843	513	C40	C50	7,15	C14	C20	13,34	SC	17,95	C16	9,82	C14	SC	OK	SC	OK
845	521	C45	C50	10,95	C20	C50	40,07	C40	27,63	C45	29,33	C45	C20	OK	C40	OK
846	410	C22	C35	5,58	SC	C16	49,92	C45	29,57	C50	40,94	C50	SC	OK	C16	OK
847	621	C50	C50	10,97	C20	C50	48,32	C45	29,28	C50	38,86	C50	C20	OK	C45	Ν
850	403	C20	C35	6,19	SC	C18	37,4	C40	27,03	C45	26,62	C40	SC	OK	C18	OK
851	473	C30	C50	6,87	SC	C20	23,18	C20	22,82	C20	15,1	C20	SC	OK	C20	Ν
852	468	C30	C50	9,62	C20	C40	52,79	C50	30,06	C50	44,83	C50	C20	OK	C40	OK
854	509	C40	C50	7,51	C14	C20	36,26	C40	26,75	C40	25,52	C40	C14	OK	C20	OK
856	414	C22	C35	6,24	SC	C18	15,18	C14	19,09	C20	10,63	C16	SC	OK	C14	Ν
857	460	C30	C50	6,42	SC	C20	30,12	C30	25,12	C35	20,14	C30	SC	OK	C20	OK
858	413	C22	C35	3,94	SC	SC	33,37	C30	26,02	C40	22,88	C35	SC	OK	SC	OK
859	439	C24	C40	8,28	C16	C30	40,57	C40	27,74	C45	29,86	C45	C16	OK	C30	OK
862	410	C22	C35	4,37	SC	SC	18,45	C18	20,81	C20	12,28	C20	SC	OK	SC	OK
864	411	C22	C35	6,21	SC	C18	49,01	C45	29,41	C50	39,75	C50	SC	OK	C18	OK
865	436	C24	C40	8,19	C16	C30	24,15	C20	23,18	C30	15,74	C20	C16	OK	C20	OK
868	482	C35	C50	5,91	SC	C16	7,54	SC	12,93	SC	8,12	C14	SC	OK	SC	OK
870	450	C27	C45	7,43	C14	C20	17,84	C16	20,51	C20	11,95	C18	C14	OK	C16	Ν
872	443	C24	C45	7,83	C14	C20	25,61	C20	23,69	C30	16,74	C20	C14	OK	C20	OK
873	519	C40	C50	8,98	C16	C35	38,27	C40	27,23	C45	27,48	C45	C16	OK	C35	N

Tabela Apêndice D.6 – Protocolo de classificação por métodos não destrutivos para flexão estática

				i abela P	spendice	D.7 - F		e classificaçã	ao por meto	uos nao ues	su unvos pa	a nexao e	statica			
ID	D _X	CD _M	CD _K	Ex	CE _M	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
877	455	C27	C45	7,16	C14	C20	34,31	C30	26,27	C40	23,72	C35	C14	OK	C20	OK
878	469	C30	C50	8,9	C16	C35	30,22	C30	25,15	C35	20,22	C30	C16	OK	C30	OK
879	520	C45	C50	5,81	SC	C16	9,92	SC	15,35	SC	8,62	C14	SC	OK	SC	OK
880	405	C20	C35	4,04	SC	SC	14,8	C14	18,87	C18	10,46	C16	SC	OK	SC	OK
881	404	C20	C35	4,97	SC	C14	34,28	C30	26,26	C40	23,69	C35	SC	OK	C14	OK
883	456	C27	C45	8,58	C16	C30	18,7	C18	20,93	C20	12,42	C20	C16	OK	C18	Ν
884	482	C35	C50	9,06	C18	C35	41,05	C40	27,85	C45	30,37	C50	C18	OK	C35	OK
886	479	C30	C50	4,85	SC	C14	30,64	C30	25,27	C35	20,57	C30	SC	OK	C14	OK
888	440	C24	C45	4,56	SC	SC	14,85	C14	18,9	C18	10,48	C16	SC	OK	SC	OK
889	464	C30	C50	9,44	C18	C40	23,16	C20	22,81	C20	15,08	C20	C18	OK	C20	OK
890	443	C24	C45	6,17	SC	C18	6,61	SC	11,78	SC	8,06	C14	SC	OK	SC	OK
893	434	C24	C40	3,89	SC	SC	22,96	C20	22,73	C20	14,95	C20	SC	OK	SC	OK
896	441	C24	C45	6,44	SC	C20	37,26	C40	26,99	C40	26,49	C40	SC	OK	C20	OK
901	414	C22	C35	7,77	C14	C20	38,89	C40	27,37	C45	28,11	C45	C14	OK	C20	OK
903	450	C27	C45	6,12	SC	C18	44,6	C40	28,58	C45	34,34	C50	SC	OK	C18	OK
905	472	C30	C50	7,31	C14	C20	32,82	C30	25,88	C35	22,4	C35	C14	OK	C20	Ν
907	512	C40	C50	8,81	C16	C35	52,14	C50	29,95	C50	43,93	C50	C16	OK	C35	OK
909	423	C24	C40	7,45	C14	C20	22,24	C20	22,45	C20	14,5	C20	C14	OK	C20	OK
911	405	C20	C35	6,11	SC	C18	22,92	C20	22,72	C20	14,93	C20	SC	OK	C18	Ν
914	428	C24	C40	7,65	C14	C20	34,03	C30	26,2	C40	23,47	C35	C14	OK	C20	OK
915	463	C30	C50	7,53	C14	C20	28,4	C20	24,6	C30	18,79	C30	C14	OK	C20	OK
917	444	C24	C45	6,42	SC	C20	30,69	C30	25,29	C35	20,61	C30	SC	OK	C20	OK
918	442	C24	C45	6,62	SC	C20	51,09	C50	29,77	C50	42,48	C50	SC	OK	C20	OK
920	441	C24	C45	7,78	C14	C20	41,22	C40	27,88	C45	30,55	C50	C14	OK	C20	OK
921	482	C35	C50	4,91	SC	C14	16,05	C16	19,58	C20	11,04	C18	SC	OK	C14	OK
923	417	C22	C35	5,19	SC	C14	28,57	C20	24,66	C30	18,92	C30	SC	OK	C14	N
930	453	C27	C45	6,16	SC	C18	27,15	C20	24,21	C30	17,85	C20	SC	OK	C18	OK
931	392	C20	C30	6,29	SC	C18	30,04	C30	25,1	C35	20,07	C30	SC	OK	C18	OK

Tabela Apêndice D.7 – Protocolo de classificação por métodos não destrutivos para flexão estática

			17			<u>- 10</u>		classifica	çao por me							
ID	D _X	CD _M	CD _K	Ex	CE _M	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
933	389	C18	C30	5,72	SC	C16	26	C20	23,83	C30	17,01	C20	SC	OK	C16	OK
938	413	C22	C35	7,69	C14	C20	36,07	C40	26,71	C40	25,35	C40	C14	OK	C20	OK
939	454	C27	C45	2,62	SC	SC	19,48	C18	21,29	C20	12,85	C20	SC	OK	SC	OK
941	415	C22	C35	6,29	SC	C18	21,82	C20	22,29	C20	14,24	C20	SC	OK	C18	Ν
943	458	C27	C45	8,32	C16	C30	35,42	C40	26,55	C40	24,74	C40	C16	OK	C30	OK
944	493	C35	C50	8,09	C16	C30	33,34	C30	26,01	C40	22,85	C35	C16	OK	C30	OK
945	374	C16	C27	5,87	SC	C16	24,86	C20	23,43	C30	16,22	C20	SC	OK	C16	OK
946	476	C30	C50	8,47	C16	C30	34,06	C30	26,2	C40	23,49	C35	C16	OK	C30	OK
949	372	C16	C27	5,49	SC	C16	15,51	C14	19,28	C20	10,78	C16	SC	OK	C14	OK
952	459	C27	C45	6,38	SC	C18	29,72	C20	25	C35	19,82	C30	SC	OK	C18	ОК
955	441	C24	C45	7,1	C14	C20	14,54	C14	18,71	C18	10,34	C16	C14	OK	C14	OK
957	416	C22	C35	6,71	SC	C20	31,44	C30	25,5	C35	21,22	C35	SC	OK	C20	OK
958	436	C24	C40	7,13	C14	C20	16,31	C16	19,72	C20	11,17	C18	C14	OK	C16	OK
959	491	C35	C50	7,55	C14	C20	26,49	C20	23,99	C30	17,37	C20	C14	OK	C20	OK
967	426	C24	C40	4,02	SC	SC	22,98	C20	22,74	C20	14,97	C20	SC	OK	SC	OK
968	389	C18	C30	5,85	SC	C16	41,61	C40	27,97	C45	30,97	C50	SC	OK	C16	OK
969	436	C24	C40	7,64	C14	C20	36,21	C40	26,74	C40	25,47	C40	C14	OK	C20	OK
970	463	C30	C50	7,12	C14	C20	34,11	C30	26,22	C40	23,54	C35	C14	OK	C20	OK
971	405	C20	C35	4,67	SC	SC	17,71	C16	20,45	C20	11,88	C18	SC	OK	SC	ОК
972	460	C30	C50	6,37	SC	C18	21,53	C20	22,17	C20	14,06	C20	SC	OK	C18	ОК
973	395	C20	C30	5,38	SC	C14	31,21	C30	25,43	C35	21,03	C35	SC	OK	C14	OK
979	452	C27	C45	5,48	SC	C16	17,31	C16	20,24	C20	11,67	C18	SC	OK	C16	OK
981	482	C35	C50	8,74	C16	C35	36,26	C40	26,76	C40	25,53	C40	C16	OK	C35	OK
982	386	C18	C30	6	SC	C18	40,47	C40	27,72	C45	29,75	C45	SC	OK	C18	OK
984	428	C24	C40	6,15	SC	C18	35,37	C40	26,54	C40	24,69	C40	SC	OK	C18	OK
985	394	C20	C30	5,21	SC	C14	18,42	C18	20,8	C20	12,26	C20	SC	OK	C14	ОК
990	395	C20	C30	6,61	SC	C20	29,76	C20	25,02	C35	19,85	C30	SC	OK	C20	OK
991	407	C20	C35	3,95	SC	SC	10,81	SC	16,1	C14	8,89	C14	SC	OK	SC	OK

Tabela Apêndice D.8 – Protocolo de classificação por métodos não destrutivos para flexão estática

			1	abela Ap	endice D	-9 - P10	locolo de	classifica	çao por me	louos nao de	strutivos pa	ra nexao es	latica			
ID	Dx	CD _M	CD _K	$\mathbf{E}_{\mathbf{X}}$	CEM	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
992	482	C35	C50	5,65	SC	C16	26,37	C20	23,95	C30	17,28	C20	SC	OK	C16	OK
997	428	C24	C40	6,69	SC	C20	28,01	C20	24,48	C30	18,49	C30	SC	OK	C20	N
1002	406	C20	C35	5,61	SC	C16	21,72	C20	22,24	C20	14,18	C20	SC	OK	C16	OK
1004	483	C35	C50	8,45	C16	C30	24,92	C20	23,45	C30	16,26	C20	C16	OK	C20	OK
1005	377	C16	C27	4,69	SC	SC	46,97	C45	29,03	C50	37,18	C50	SC	OK	SC	OK
1006	484	C35	C50	8,31	C16	C30	16,55	C16	19,85	C20	11,29	C18	C16	Ν	C16	N
1007	441	C24	C45	6,08	SC	C18	31,73	C30	25,58	C35	21,47	C35	SC	OK	C18	OK
1009	443	C24	C45	4,15	SC	SC	52,47	C50	30,01	C50	44,38	C50	SC	OK	SC	OK
1012	450	C27	C45	4,63	SC	SC	17,69	C16	20,43	C20	11,87	C18	SC	OK	SC	OK
1014	431	C24	C40	4,67	SC	SC	37,78	C40	27,12	C45	27	C40	SC	OK	SC	OK
1015	473	C30	C50	5,86	SC	C16	46,84	C45	29,01	C50	37,02	C50	SC	OK	C16	OK
1016	462	C30	C50	6,49	SC	C20	8,04	SC	13,49	SC	8,19	C14	SC	OK	SC	OK
1017	504	C40	C50	7,69	C14	C20	19,09	C18	21,11	C20	12,63	C20	C14	OK	C18	N
1019	445	C24	C45	6,52	SC	C20	18,28	C18	20,72	C20	12,18	C20	SC	OK	C18	N
1022	497	C35	C50	9,33	C18	C35	12,15	SC	17,13	C16	9,36	C14	SC	OK	SC	OK
1026	457	C27	C45	5,29	SC	C14	52,79	C50	30,06	C50	44,83	C50	SC	OK	C14	OK
1027	415	C22	C35	5,85	SC	C16	33,08	C30	25,95	C35	22,62	C35	SC	OK	C16	OK
1028	465	C30	C50	3,96	SC	SC	6,57	SC	11,72	SC	8,06	C14	SC	OK	SC	OK
1029	411	C22	C35	4,81	SC	C14	35,59	C40	26,59	C40	24,89	C40	SC	OK	C14	OK
1030	413	C22	C35	3,5	SC	SC	35,37	C40	26,54	C40	24,68	C40	SC	OK	SC	OK
1033	403	C20	C35	5,09	SC	C14	22,05	C20	22,38	C20	14,38	C20	SC	OK	C14	OK
1038	476	C30	C50	5,98	SC	C16	11,01	SC	16,26	C14	8,95	C14	SC	OK	SC	OK
1039	414	C22	C35	5,02	SC	C14	52,79	C50	30,06	C50	44,83	C50	SC	OK	C14	OK
1041	426	C24	C40	6,51	SC	C20	37,71	C40	27,1	C45	26,93	C40	SC	OK	C20	OK
1042	521	C45	C50	7,51	C14	C20	48,73	C45	29,36	C50	39,39	C50	C14	OK	C20	OK
1044	404	C20	C35	5,51	SC	C16	26,78	C20	24,09	C30	17,58	C20	SC	OK	C16	OK
1045	472	C30	C50	6,08	SC	C18	51,23	C50	29,8	C50	42,68	C50	SC	OK	C18	OK
1058	394	C20	C30	6,17	SC	C18	28,69	C20	24,69	C30	19,01	C30	SC	OK	C18	OK

Tabela Apêndice D.9 – Protocolo de classificação por métodos não destrutivos para flexão estática

			1a	bela Ape	endice D	-10 - Pic		e classifica	ação por me	etodos não d	estrutivos pa	ara nexao e	statica			
ID	Dx	CD _M	CD _K	Ex	CE _M	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
1083	434	C24	C40	5,14	SC	C14	44,94	C40	28,64	C45	34,74	C50	SC	OK	C14	OK
1085	384	C18	C30	6,83	SC	C20	17,97	C16	20,57	C20	12,02	C20	SC	OK	C16	N
1086	431	C24	C40	5,8	SC	C16	11,67	SC	16,78	C14	9,18	C14	SC	OK	SC	OK
1087	386	C18	C30	4,65	SC	SC	9,33	SC	14,81	SC	8,46	C14	SC	OK	SC	OK
1088	472	C30	C50	8,16	C16	C30	27,83	C20	24,43	C30	18,36	C30	C16	OK	C20	OK
1091	426	C24	C40	4,18	SC	SC	15,73	C14	19,4	C20	10,89	C16	SC	OK	SC	OK
1101	439	C24	C40	5,43	SC	C16	5,99	SC	10,9	SC	8,09	C14	SC	OK	SC	OK
1103	460	C30	C50	8,46	C16	C30	47,02	C45	29,04	C50	37,23	C50	C16	OK	C30	OK
1114	411	C22	C35	5,01	SC	C14	26,6	C20	24,03	C30	17,45	C20	SC	OK	C14	OK
1115	425	C24	C40	4,52	SC	SC	25,31	C20	23,59	C30	16,53	C20	SC	OK	SC	OK
1116	452	C27	C45	6,57	SC	C20	46,49	C45	28,94	C45	36,59	C50	SC	OK	C20	OK
1117	432	C24	C40	4,62	SC	SC	9,75	SC	15,19	SC	8,57	C14	SC	OK	SC	OK
1120	423	C24	C40	5,27	SC	C14	26,23	C20	23,91	C30	17,18	C20	SC	OK	C14	OK
1121	565	C50	C50	7,16	C14	C20	52,79	C50	30,06	C50	44,83	C50	C14	OK	C20	OK
1135	458	C27	C45	4,72	SC	C14	19,68	C18	21,38	C20	12,96	C20	SC	OK	C14	OK
1137	404	C20	C35	6,6	SC	C20	24,03	C20	23,13	C30	15,65	C20	SC	OK	C20	OK
1138	378	C16	C27	4,18	SC	SC	24,97	C20	23,47	C30	16,3	C20	SC	OK	SC	OK
1139	448	C24	C45	5,61	SC	C16	9,23	SC	14,71	SC	8,44	C14	SC	OK	SC	OK
1140	426	C24	C40	5,12	SC	C14	29,21	C20	24,85	C30	19,41	C30	SC	OK	C14	OK
1141	429	C24	C40	7,31	C14	C20	25,41	C20	23,62	C30	16,6	C20	C14	OK	C20	OK
1142	513	C40	C50	4,22	SC	SC	30,29	C30	25,17	C35	20,28	C30	SC	OK	SC	OK
1143	425	C24	C40	5,51	SC	C16	18,11	C18	20,64	C20	12,09	C20	SC	OK	C16	N
1154	589	C50	C50	9,18	C18	C35	50,88	C50	29,74	C50	42,2	C50	C18	OK	C35	OK
1155	528	C45	C50	6,58	SC	C20	42,37	C40	28,13	C45	31,81	C50	SC	OK	C20	OK
1156	465	C30	C50	4,52	SC	SC	24,78	C20	23,4	C30	16,17	C20	SC	OK	SC	OK
1157	445	C24	C45	5,46	SC	C16	14,72	C14	18,82	C18	10,42	C16	SC	OK	C14	OK
1158	340	SC	C22	6,37	SC	C18	22,27	C20	22,46	C20	14,52	C20	SC	OK	C18	OK
1159	455	C27	C45	6,41	SC	C20	26,45	C20	23,98	C30	17,34	C20	SC	OK	C20	OK

Tabela Apêndice D.10 – Protocolo de classificação por métodos não destrutivos para flexão estática

			1	abela A	pendice	D.11 - F	10100010 0	e classificaç	ao por meto	buos não de	estrutivos pa	ira nexao e	estatica			
ID	D _X	CD _M	CD _K	Ex	CE _M	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
1160	466	C30	C50	6,43	SC	C20	17,69	C16	20,44	C20	11,87	C18	SC	OK	C16	OK
1161	475	C30	C50	7,63	C14	C20	23,3	C20	22,86	C20	15,18	C20	C14	OK	C20	OK
1162	462	C30	C50	5,36	SC	C14	19,75	C18	21,41	C20	13	C20	SC	OK	C14	OK
1170	410	C22	C35	5,35	SC	C14	35,03	C40	26,45	C40	24,37	C40	SC	OK	C14	OK
1171	391	C20	C30	3,55	SC	SC	17,05	C16	20,11	C20	11,54	C18	SC	OK	SC	OK
1173	453	C27	C45	6,26	SC	C18	33,85	C30	26,15	C40	23,3	C35	SC	OK	C18	OK
1175	412	C22	C35	6,44	SC	C20	28,69	C20	24,69	C30	19,01	C30	SC	OK	C20	Ν
1176	412	C22	C35	6,28	SC	C18	19,86	C18	21,46	C20	13,07	C20	SC	OK	C18	OK
1177	420	C24	C40	4,12	SC	SC	15,06	C14	19,02	C20	10,57	C16	SC	OK	SC	OK
1178	537	C45	C50	6,64	SC	C20	14,4	C14	18,63	C18	10,28	C16	SC	OK	C14	N
1179	411	C22	C35	8,07	C16	C30	37,95	C40	27,16	C45	27,17	C45	C16	OK	C30	OK
1181	450	C27	C45	5,94	SC	C16	11,65	SC	16,76	C14	9,17	C14	SC	OK	SC	OK
1182	404	C20	C35	2,2	SC	SC	15,58	C14	19,32	C20	10,82	C16	SC	OK	SC	OK
1183	428	C24	C40	7,53	C14	C20	27,69	C20	24,38	C30	18,25	C30	C14	OK	C20	Ν
1184	522	C45	C50	10,49	C20	C45	24,49	C20	23,3	C30	15,97	C20	C20	OK	C20	OK
1185	549	C45	C50	11,4	C20	C50	51,44	C50	29,83	C50	42,96	C50	C20	OK	C50	OK
1186	573	C50	C50	12,57	C30	C50	50,79	C50	29,72	C50	42,09	C50	C30	OK	C50	OK
1187	552	C50	C50	11,04	C20	C50	48,63	C45	29,34	C50	39,26	C50	C20	OK	C45	OK
1188	466	C30	C50	5,18	SC	C14	21,18	C20	22,02	C20	13,84	C20	SC	OK	C14	Ν
1189	544	C45	C50	11,25	C20	C50	17,68	C16	20,43	C20	11,87	C18	C16	OK	C16	OK
1191	497	C35	C50	8,4	C16	C30	31,15	C30	25,42	C35	20,98	C30	C16	OK	C30	OK
1192	492	C35	C50	11,81	C20	C50	41,41	C40	27,92	C45	30,75	C50	C20	OK	C40	OK
1193	542	C45	C50	13,44	C35	C50	36,04	C40	26,7	C40	25,32	C40	C35	Ν	C40	Ν
1194	436	C24	C40	6,27	SC	C18	41,43	C40	27,93	C45	30,77	C50	SC	OK	C18	OK
1195	453	C27	C45	6,98	SC	C20	22,17	C20	22,43	C20	14,46	C20	SC	OK	C20	N
1196	421	C24	C40	9,01	C18	C35	35	C40	26,44	C40	24,35	C40	C18	OK	C35	OK
1197	370	C16	C27	4,42	SC	SC	17,36	C16	20,27	C20	11,7	C18	SC	OK	SC	OK
1198	436	C24	C40	6,71	SC	C20	35,73	C40	26,62	C40	25,02	C40	SC	OK	C20	OK

Tabela Apêndice D.11 – Protocolo de classificação por métodos não destrutivos para flexão estática

			1 a	ibela Ape	endice D	.12 - Pic		e classifica	ação por me	elodos não d	estrutivos pa	ara nexao e	statica			
ID	Dx	CD _M	CD _K	Ex	CE _M	СЕК	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
1199	471	C30	C50	4,71	SC	C14	21,06	C20	21,97	C20	13,77	C20	SC	OK	C14	OK
1200	426	C24	C40	3,75	SC	SC	21,36	C20	22,1	C20	13,95	C20	SC	OK	SC	OK
1202	393	C20	C30	5,45	SC	C16	16,98	C16	20,08	C20	11,5	C18	SC	OK	C16	N
1204	367	C14	C24	4,77	SC	C14	17,18	C16	20,18	C20	11,61	C18	SC	OK	C14	OK
1206	550	C50	C50	12,56	C30	C50	50,91	C50	29,74	C50	42,25	C50	C30	OK	C50	OK
1207	570	C50	C50	11,31	C20	C50	51,19	C50	29,79	C50	42,63	C50	C20	OK	C50	OK
1208	553	C50	C50	12,55	C30	C50	43,97	C40	28,45	C45	33,61	C50	C30	OK	C40	OK
1209	508	C40	C50	10,11	C20	C45	35,87	C40	26,66	C40	25,16	C40	C20	OK	C40	OK
1210	402	C20	C35	6,04	SC	C18	25,3	C20	23,59	C30	16,52	C20	SC	OK	C18	OK
1211	448	C24	C45	7,55	C14	C20	18,23	C18	20,7	C20	12,16	C20	C14	N	C18	N
1212	570	C50	C50	10,4	C20	C45	27,46	C20	24,31	C30	18,08	C30	C20	OK	C20	OK
1213	364	C14	C24	4,57	SC	SC	15,93	C14	19,52	C20	10,99	C16	SC	OK	SC	OK
1214	417	C22	C35	4,37	SC	SC	23,91	C20	23,09	C30	15,58	C20	SC	OK	SC	OK
1215	453	C27	C45	9,32	C18	C35	39,32	C40	27,47	C45	28,55	C45	C18	OK	C35	OK
1216	481	C35	C50	5,55	SC	C16	9,93	SC	15,36	SC	8,62	C14	SC	OK	SC	OK
1217	470	C30	C50	7,63	C14	C20	30,22	C30	25,15	C35	20,22	C30	C14	OK	C20	N
1218	366	C14	C24	4,43	SC	SC	23,09	C20	22,78	C20	15,04	C20	SC	OK	SC	OK
1219	479	C30	C50	8,2	C16	C30	32,22	C30	25,72	C35	21,88	C35	C16	OK	C30	OK
1220	711	C50	C50	15,22	C45	C50	38,04	C40	27,18	C45	27,26	C45	C40	OK	C40	OK
1221	432	C24	C40	4,86	SC	C14	8,47	SC	13,96	SC	8,27	C14	SC	OK	SC	OK
1222	462	C30	C50	6,04	SC	C18	22,68	C20	22,62	C20	14,77	C20	SC	OK	C18	N
1224	466	C30	C50	8,53	C16	C30	40,62	C40	27,75	C45	29,9	C45	C16	OK	C30	OK
1225	471	C30	C50	8,47	C16	C30	40,18	C40	27,66	C45	29,44	C45	C16	OK	C30	N
1226	532	C45	C50	10,57	C20	C45	29,05	C20	24,8	C30	19,29	C30	C20	OK	C20	OK
1228	562	C50	C50	11,7	C20	C50	37,72	C40	27,1	C45	26,94	C40	C20	OK	C40	N
1229	416	C22	C35	4,7	SC	C14	9,72	SC	15,17	SC	8,56	C14	SC	OK	SC	OK
1230	487	C35	C50	6,86	SC	C20	23,29	C20	22,86	C20	15,17	C20	SC	OK	C20	N
1231	445	C24	C45	6,08	SC	C18	13,71	SC	18,19	C18	9,98	C14	SC	OK	SC	OK

Tabela Apêndice D.12 – Protocolo de classificação por métodos não destrutivos para flexão estática

			1 a	bela Ape	indice D.	13 - PIC	otocolo de	e classifica	içao por me	etodos nao de	estrutivos pa	ara nexao e	statica			
ID	Dx	CD _M	CD _K	$\mathbf{E}_{\mathbf{X}}$	CEM	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
1232	429	C24	C40	4,69	SC	SC	41,59	C40	27,96	C45	30,95	C50	SC	OK	SC	OK
1233	597	C50	C50	12,26	C30	C50	39,41	C40	27,49	C45	28,65	C45	C30	Ν	C40	N
1234	422	C24	C40	7,08	C14	C20	11,99	SC	17,01	C16	9,3	C14	SC	OK	SC	OK
1235	393	C20	C30	6,63	SC	C20	19,25	C18	21,18	C20	12,72	C20	SC	OK	C18	N
1236	368	C14	C24	6,26	SC	C18	24,86	C20	23,43	C30	16,22	C20	SC	OK	C18	OK
1237	384	C18	C30	5,53	SC	C16	21,95	C20	22,34	C20	14,32	C20	SC	OK	C16	OK
1238	420	C24	C40	5,6	SC	C16	18,03	C18	20,6	C20	12,05	C20	SC	OK	C16	N
1239	418	C22	C35	7,96	C14	C20	24,98	C20	23,47	C30	16,3	C20	C14	OK	C20	OK
1242	380	C18	C30	5,88	SC	C16	30,1	C30	25,12	C35	20,12	C30	SC	OK	C16	OK
1243	419	C22	C35	6,2	SC	C18	16,3	C16	19,72	C20	11,17	C18	SC	OK	C16	OK
1244	519	C40	C50	12,32	C30	C50	41,36	C40	27,91	C45	30,7	C50	C30	OK	C40	N
1249	433	C24	C40	6,93	SC	C20	37,74	C40	27,11	C45	26,95	C40	SC	OK	C20	OK
1251	535	C45	C50	11,25	C20	C50	39,03	C40	27,4	C45	28,26	C45	C20	OK	C40	OK
1256	497	C35	C50	8,3	C16	C30	51,29	C50	29,81	C50	42,76	C50	C16	OK	C30	OK
1257	415	C22	C35	7,09	C14	C20	32,35	C30	25,75	C35	21,99	C35	C14	OK	C20	OK
1258	511	C40	C50	8,85	C16	C35	24,84	C20	23,43	C30	16,21	C20	C16	OK	C20	OK
1260	573	C50	C50	11,24	C20	C50	38,37	C40	27,25	C45	27,59	C45	C20	OK	C40	OK
1262	421	C24	C40	4,45	SC	SC	41,58	C40	27,96	C45	30,94	C50	SC	OK	SC	OK
1263	618	C50	C50	11,3	C20	C50	34,24	C30	26,25	C40	23,65	C35	C20	OK	C30	OK
1266	449	C24	C45	8,34	C16	C30	23,84	C20	23,06	C30	15,53	C20	C16	OK	C20	OK
1270	549	C45	C50	7,66	C14	C20	51,96	C50	29,92	C50	43,68	C50	C14	OK	C20	OK
1271	551	C50	C50	11,86	C20	C50	25,86	C20	23,78	C30	16,92	C20	C20	OK	C20	OK
1273	459	C27	C45	8,41	C16	C30	23,92	C20	23,09	C30	15,58	C20	C16	OK	C20	OK
1279	474	C30	C50	7,21	C14	C20	34,59	C30	26,34	C40	23,97	C35	C14	OK	C20	OK
1280	521	C45	C50	7,79	C14	C20	18,33	C18	20,75	C20	12,21	C20	C14	OK	C18	OK
1281	374	C16	C27	6,35	SC	C18	25,62	C20	23,7	C30	16,75	C20	SC	OK	C18	OK
1282	383	C18	C30	4,6	SC	SC	32,63	C30	25,83	C35	22,23	C35	SC	OK	SC	OK
1283	599	C50	C50	12,1	C30	C50	33,06	C30	25,94	C35	22,61	C35	C30	OK	C30	OK

Tabela Apêndice D.13 – Protocolo de classificação por métodos não destrutivos para flexão estática

			1 a	ibela Ape		14 - FIC		classifica	ição por me	touos nao u	estrutivos pa	ara nexao e	statica			
ID	Dx	CD _M	CD _K	Ex	CEM	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
1285	424	C24	C40	6,58	SC	C20	22,02	C20	22,36	C20	14,36	C20	SC	OK	C20	OK
1286	423	C24	C40	4	SC	SC	30,42	C30	25,21	C35	20,38	C30	SC	OK	SC	OK
1287	503	C40	C50	8,09	C16	C30	27,44	C20	24,3	C30	18,07	C30	C16	OK	C20	OK
1291	611	C50	C50	12,47	C30	C50	47,05	C45	29,05	C50	37,27	C50	C30	OK	C45	OK
1293	449	C24	C45	7,2	C14	C20	21,03	C20	21,96	C20	13,75	C20	C14	OK	C20	OK
1295	478	C30	C50	7,18	C14	C20	23,31	C20	22,87	C20	15,18	C20	C14	OK	C20	OK
1296	508	C40	C50	7,74	C14	C20	35,54	C40	26,58	C40	24,84	C40	C14	OK	C20	OK
1300	422	C24	C40	6,88	SC	C20	33,67	C30	26,1	C40	23,14	C35	SC	OK	C20	OK
1301	455	C27	C45	5,45	SC	C16	11,15	SC	16,37	C14	9	C14	SC	OK	SC	OK
1302	490	C35	C50	7,63	C14	C20	34,65	C30	26,35	C40	24,02	C40	C14	OK	C20	OK
1305	414	C22	C35	4,55	SC	SC	22,78	C20	22,66	C20	14,84	C20	SC	OK	SC	ОК
1309	481	C35	C50	8,04	C16	C30	9,69	SC	15,14	SC	8,55	C14	SC	OK	SC	OK
1311	423	C24	C40	3,53	SC	SC	45,83	C45	28,82	C45	35,79	C50	SC	OK	SC	ОК
1313	367	C14	C24	5,8	SC	C16	27,27	C20	24,25	C30	17,93	C20	SC	OK	C16	OK
1314	609	C50	C50	11,81	C20	C50	30,8	C30	25,32	C35	20,69	C30	C20	OK	C30	OK
1315	404	C20	C35	6,87	SC	C20	22,02	C20	22,37	C20	14,36	C20	SC	OK	C20	ОК
1317	416	C22	C35	6,18	SC	C18	30,57	C30	25,25	C35	20,5	C30	SC	OK	C18	OK
1321	427	C24	C40	6,26	SC	C18	24,7	C20	23,37	C30	16,11	C20	SC	OK	C18	Ν
1323	501	C40	C50	6,44	SC	C20	52,79	C50	30,06	C50	44,83	C50	SC	OK	C20	ОК
1325	381	C18	C30	4,05	SC	SC	20	C18	21,52	C20	13,14	C20	SC	OK	SC	ОК
1326	507	C40	C50	7,85	C14	C20	29,4	C20	24,91	C30	19,57	C30	C14	OK	C20	ОК
1327	369	C14	C24	6,3	SC	C18	37,82	C40	27,13	C45	27,04	C45	SC	OK	C18	OK
1328	443	C24	C45	6,55	SC	C20	45,32	C45	28,72	C45	35,18	C50	SC	OK	C20	ОК
1329	477	C30	C50	8,3	C16	C30	38,59	C40	27,3	C45	27,8	C45	C16	OK	C30	OK
1330	450	C27	C45	8,11	C16	C30	52,05	C50	29,94	C50	43,79	C50	C16	OK	C30	OK
1331	466	C30	C50	6,57	SC	C20	15,99	C14	19,55	C20	11,01	C18	SC	OK	C14	OK
1332	467	C30	C50	7,62	C14	C20	41,44	C40	27,93	C45	30,78	C50	C14	OK	C20	OK
1336	442	C24	C45	7,09	C14	C20	34,25	C30	26,25	C40	23,67	C35	C14	OK	C20	OK

Tabela Apêndice D.14 – Protocolo de classificação por métodos não destrutivos para flexão estática

			1a	bela Ape	endice D.	13 - Pic		e classifica	içao por me	ciodos não de	estrutivos pa	ira nexao e	statica			
ID	D _X	CD _M	CD _K	$\mathbf{E}_{\mathbf{X}}$	CEM	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
1337	456	C27	C45	8,23	C16	C30	26,08	C20	23,85	C30	17,07	C20	C16	OK	C20	OK
1339	417	C22	C35	6,7	SC	C20	24,28	C20	23,22	C30	15,82	C20	SC	OK	C20	N
1340	533	C45	C50	8,6	C16	C30	34,5	C30	26,32	C40	23,89	C35	C16	OK	C30	OK
1342	450	C27	C45	5,53	SC	C16	17,51	C16	20,35	C20	11,78	C18	SC	OK	C16	N
1343	467	C30	C50	9,11	C18	C35	52,79	C50	30,06	C50	44,83	C50	C18	OK	C35	OK
1345	382	C18	C30	3,41	SC	SC	17,59	C16	20,39	C20	11,82	C18	SC	OK	SC	OK
1346	453	C27	C45	6,46	SC	C20	41,52	C40	27,95	C45	30,88	C50	SC	OK	C20	OK
1347	506	C40	C50	7,68	C14	C20	31,97	C30	25,65	C35	21,67	C35	C14	OK	C20	OK
1349	505	C40	C50	5,53	SC	C16	51,57	C50	29,86	C50	43,14	C50	SC	OK	C16	OK
1350	479	C30	C50	3,99	SC	SC	51,68	C50	29,87	C50	43,29	C50	SC	OK	SC	OK
1353	439	C24	C40	6,16	SC	C18	27,63	C20	24,36	C30	18,21	C30	SC	OK	C18	OK
1355	404	C20	C35	6,04	SC	C18	22,61	C20	22,6	C20	14,73	C20	SC	OK	C18	OK
1356	473	C30	C50	7,68	C14	C20	27,23	C20	24,23	C30	17,91	C20	C14	OK	C20	OK
1357	432	C24	C40	6,64	SC	C20	9,43	SC	14,9	SC	8,49	C14	SC	OK	SC	OK
1358	553	C50	C50	7,97	C14	C20	33,81	C30	26,14	C40	23,27	C35	C14	OK	C20	OK
1360	378	C16	C27	5,35	SC	C14	25,31	C20	23,59	C30	16,53	C20	SC	OK	C14	OK
1366	440	C24	C45	6,82	SC	C20	12,11	SC	17,1	C16	9,34	C14	SC	OK	SC	OK
1367	391	C20	C30	4,69	SC	SC	38,78	C40	27,35	C45	28	C45	SC	OK	SC	OK
1370	418	C22	C35	7,24	C14	C20	38,69	C40	27,33	C45	27,91	C45	C14	OK	C20	OK
1371	403	C20	C35	4,03	SC	SC	12,76	SC	17,56	C16	9,59	C14	SC	OK	SC	OK
1372	504	C40	C50	7,6	C14	C20	41,7	C40	27,98	C45	31,06	C50	C14	OK	C20	OK
1373	485	C35	C50	6,73	SC	C20	40,39	C40	27,71	C45	29,67	C45	SC	OK	C20	OK
1375	529	C45	C50	9,19	C18	C35	28,2	C20	24,54	C30	18,64	C30	C18	OK	C20	N
1393	494	C35	C50	7,82	C14	C20	25,21	C20	23,56	C30	16,46	C20	C14	OK	C20	OK
1394	452	C27	C45	7,75	C14	C20	26,9	C20	24,13	C30	17,66	C20	C14	OK	C20	OK
1395	506	C40	C50	9	C18	C35	52,25	C50	29,97	C50	44,08	C50	C18	OK	C35	OK
1398	481	C35	C50	7,08	C14	C20	17,3	C16	20,24	C20	11,67	C18	C14	OK	C16	OK
1401	394	C20	C30	5,72	SC	C16	12,06	SC	17,06	C16	9,32	C14	SC	OK	SC	OK

Tabela Apêndice D.15 – Protocolo de classificação por métodos não destrutivos para flexão estática

			1 a	bela Ape		10 - FIC		classifica	ição por me	ciouos nao u	estrutivos pa	ii a nexao e	statica			
ID	Dx	CD _M	CD _K	Ex	CEM	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
1402	422	C24	C40	5,85	SC	C16	14,2	C14	18,51	C18	10,19	C16	SC	OK	C14	OK
1413	447	C24	C45	7,11	C14	C20	14,12	C14	18,45	C18	10,15	C16	C14	OK	C14	OK
1417	423	C24	C40	5,77	SC	C16	24,15	C20	23,18	C30	15,74	C20	SC	OK	C16	OK
1419	455	C27	C45	5,23	SC	C14	17,46	C16	20,32	C20	11,75	C18	SC	OK	C14	OK
1420	410	C22	C35	4,59	SC	SC	6,3	SC	11,34	SC	8,07	C14	SC	OK	SC	OK
1434	399	C20	C30	5,66	SC	C16	39,18	C40	27,44	C45	28,4	C45	SC	OK	C16	OK
1448	395	C20	C30	6,69	SC	C20	21,77	C20	22,27	C20	14,21	C20	SC	OK	C20	OK
1516	481	C35	C50	4,35	SC	SC	22,63	C20	22,61	C20	14,75	C20	SC	OK	SC	OK
1525	437	C24	C40	5,47	SC	C16	10,81	SC	16,1	C14	8,89	C14	SC	OK	SC	OK
1527	565	C50	C50	9,69	C20	C40	34,58	C30	26,34	C40	23,96	C35	C20	OK	C30	OK
1559	465	C30	C50	8,86	C16	C35	15,83	C14	19,46	C20	10,94	C16	C14	OK	C14	OK
1587	354	C14	C24	7,15	C14	C20	47,27	C45	29,09	C50	37,54	C50	C14	OK	C20	OK
1598	507	C40	C50	9,17	C18	C35	34,19	C30	26,24	C40	23,61	C35	C18	OK	C30	N
1606	494	C35	C50	10,13	C20	C45	35,62	C40	26,6	C40	24,92	C40	C20	OK	C40	N
1626	444	C24	C45	6,59	SC	C20	37,35	C40	27,02	C45	26,57	C40	SC	OK	C20	OK
1718	468	C30	C50	7,51	C14	C20	21,58	C20	22,19	C20	14,09	C20	C14	OK	C20	N
1801	492	C35	C50	8,29	C16	C30	41,64	C40	27,97	C45	31	C50	C16	OK	C30	OK
1802	546	C45	C50	8,78	C16	C35	51,7	C50	29,88	C50	43,32	C50	C16	OK	C35	OK
1803	457	C27	C45	6,32	SC	C18	11,73	SC	16,82	C14	9,2	C14	SC	OK	SC	OK
1804	430	C24	C40	6,88	SC	C20	43,29	C40	28,31	C45	32,83	C50	SC	OK	C20	OK
1805	558	C50	C50	8,49	C16	C30	51,43	C50	29,83	C50	42,95	C50	C16	OK	C30	OK
1806	451	C27	C45	5,88	SC	C16	46,52	C45	28,95	C45	36,63	C50	SC	OK	C16	OK
1808	506	C40	C50	7,67	C14	C20	26,24	C20	23,91	C30	17,19	C20	C14	OK	C20	OK
1809	370	C16	C27	4,9	SC	C14	23,07	C20	22,77	C20	15,02	C20	SC	OK	C14	OK
1810	457	C27	C45	7,33	C14	C20	23,98	C20	23,11	C30	15,62	C20	C14	OK	C20	N
1812	396	C20	C30	6,44	SC	C20	21,07	C20	21,98	C20	13,78	C20	SC	OK	C20	OK
1813	488	C35	C50	7,33	C14	C20	38,37	C40	27,25	C45	27,59	C45	C14	OK	C20	OK
1814	492	C35	C50	6,59	SC	C20	28,77	C20	24,72	C30	19,08	C30	SC	OK	C20	OK

Tabela Apêndice D.16 – Protocolo de classificação por métodos não destrutivos para flexão estática

			18	ibela Ape	endice D	.17 - Prc		e classifica	içao por me	ciodos nao d	estrutivos pa	ara nexao e	estatica			
ID	Dx	CD _M	CD _K	$\mathbf{E}_{\mathbf{X}}$	CEM	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
1815	406	C20	C35	8	C16	C30	40,38	C40	27,7	C45	29,66	C45	C16	OK	C30	Ν
1816	411	C22	C35	6,08	SC	C18	17,51	C16	20,35	C20	11,78	C18	SC	OK	C16	OK
1817	505	C40	C50	8,51	C16	C30	30,57	C30	25,25	C35	20,5	C30	C16	OK	C30	OK
1818	390	C20	C30	6,24	SC	C18	17,53	C16	20,36	C20	11,79	C18	SC	OK	C16	OK
1819	458	C27	C45	6,52	SC	C20	31,48	C30	25,51	C35	21,26	C35	SC	OK	C20	OK
1820	418	C22	C35	5,55	SC	C16	20,34	C20	21,67	C20	13,34	C20	SC	OK	C16	OK
1822	419	C22	C35	5,31	SC	C14	12,89	SC	17,65	C16	9,64	C14	SC	OK	SC	OK
1823	476	C30	C50	10,03	C20	C45	25,14	C20	23,53	C30	16,41	C20	C20	OK	C20	OK
1824	453	C27	C45	9,2	C18	C35	42,34	C40	28,12	C45	31,77	C50	C18	OK	C35	OK
1825	512	C40	C50	4,54	SC	SC	46,55	C45	28,95	C45	36,67	C50	SC	OK	SC	OK
1826	426	C24	C40	4,3	SC	SC	29,56	C20	24,96	C30	19,7	C30	SC	OK	SC	OK
1827	397	C20	C30	5,85	SC	C16	17,82	C16	20,5	C20	11,94	C18	SC	OK	C16	OK
1828	464	C30	C50	7,26	C14	C20	22,33	C20	22,49	C20	14,55	C20	C14	Ν	C20	N
1829	479	C30	C50	5,85	SC	C16	28,14	C20	24,52	C30	18,59	C30	SC	OK	C16	OK
1830	385	C18	C30	6,51	SC	C20	41,32	C40	27,91	C45	30,66	C50	SC	OK	C20	OK
1831	405	C20	C35	5,37	SC	C14	15,44	C14	19,24	C20	10,75	C16	SC	OK	C14	OK
1833	447	C24	C45	7,48	C14	C20	31,79	C30	25,6	C35	21,51	C35	C14	OK	C20	OK
1834	496	C35	C50	7,32	C14	C20	34,37	C30	26,28	C40	23,77	C35	C14	OK	C20	OK
1835	487	C35	C50	3,8	SC	SC	40,5	C40	27,73	C45	29,78	C45	SC	OK	SC	OK
1836	432	C24	C40	4,76	SC	C14	12,36	SC	17,28	C16	9,44	C14	SC	OK	SC	OK
1839	433	C24	C40	5,5	SC	C16	17,48	C16	20,33	C20	11,76	C18	SC	OK	C16	OK
1841	456	C27	C45	5,73	SC	C16	21,35	C20	22,09	C20	13,95	C20	SC	OK	C16	N
1842	429	C24	C40	6,95	SC	C20	16,35	C16	19,74	C20	11,19	C18	SC	OK	C16	OK
1843	461	C30	C50	7,98	C14	C20	34,79	C30	26,39	C40	24,16	C40	C14	OK	C20	OK
1844	379	C16	C27	3,85	SC	SC	23,54	C20	22,95	C20	15,34	C20	SC	OK	SC	OK
1845	416	C22	C35	7,36	C14	C20	26,76	C20	24,08	C30	17,56	C20	C14	OK	C20	OK
1846	376	C16	C27	3,01	SC	SC	14,59	C14	18,74	C18	10,36	C16	SC	OK	SC	OK
1847	416	C22	C35	7,43	C14	C20	21,37	C20	22,1	C20	13,96	C20	C14	OK	C20	OK

Tabela Apêndice D.17 – Protocolo de classificação por métodos não destrutivos para flexão estática

			1a	bela Ape	endice D.	10 - PIC		e classifica	içao por me	ciodos não de	estrutivos pa	ira nexao e	statica			
ID	D _X	CD _M	CD _K	Ex	CEM	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
1848	440	C24	C45	4,99	SC	C14	11,07	SC	16,31	C14	8,97	C14	SC	OK	SC	OK
1849	486	C35	C50	6,99	SC	C20	34,47	C30	26,31	C40	23,87	C35	SC	OK	C20	OK
1851	422	C24	C40	6,94	SC	C20	29,12	C20	24,82	C30	19,35	C30	SC	OK	C20	OK
1852	485	C35	C50	10,01	C20	C45	31,2	C30	25,43	C35	21,02	C35	C20	OK	C30	OK
1853	448	C24	C45	5,11	SC	C14	17,76	C16	20,47	C20	11,91	C18	SC	OK	C14	OK
1854	484	C35	C50	8,51	C16	C30	29,23	C20	24,86	C30	19,43	C30	C16	OK	C20	OK
1855	411	C22	C35	6,52	SC	C20	36,18	C40	26,74	C40	25,45	C40	SC	OK	C20	OK
1856	411	C22	C35	6,65	SC	C20	29,3	C20	24,88	C30	19,49	C30	SC	OK	C20	OK
1857	469	C30	C50	5,49	SC	C16	18,54	C18	20,85	C20	12,33	C20	SC	OK	C16	N
1858	504	C40	C50	8,6	C16	C30	20,22	C20	21,62	C20	13,28	C20	C16	OK	C20	OK
1859	432	C24	C40	6,63	SC	C20	19,04	C18	21,08	C20	12,6	C20	SC	OK	C18	N
1860	440	C24	C45	8,38	C16	C30	39,18	C40	27,44	C45	28,4	C45	C16	OK	C30	OK
1861	444	C24	C45	5,5	SC	C16	24,88	C20	23,44	C30	16,23	C20	SC	OK	C16	N
1864	411	C22	C35	4,39	SC	SC	24,83	C20	23,42	C30	16,2	C20	SC	OK	SC	OK
1865	475	C30	C50	7,48	C14	C20	25,23	C20	23,56	C30	16,47	C20	C14	OK	C20	OK
1866	513	C40	C50	8,37	C16	C30	17,44	C16	20,31	C20	11,74	C18	C16	OK	C16	OK
1867	373	C16	C27	4,36	SC	SC	13,48	SC	18,05	C18	9,88	C14	SC	OK	SC	OK
1871	388	C18	C30	5,38	SC	C14	21,81	C20	22,28	C20	14,23	C20	SC	OK	C14	OK
1873	449	C24	C45	3,6	SC	SC	37,29	C40	27	C45	26,51	C40	SC	OK	SC	OK
1874	514	C40	C50	6,26	SC	C18	37,87	C40	27,14	C45	27,09	C45	SC	OK	C18	OK
1875	459	C27	C45	6,64	SC	C20	23,83	C20	23,06	C30	15,52	C20	SC	OK	C20	N
1877	518	C40	C50	6,54	SC	C20	51,75	C50	29,89	C50	43,38	C50	SC	OK	C20	OK
1878	379	C16	C27	5,69	SC	C16	21,4	C20	22,11	C20	13,98	C20	SC	OK	C16	N
1879	403	C20	C35	5,18	SC	C14	21,05	C20	21,97	C20	13,77	C20	SC	OK	C14	OK
1880	511	C40	C50	11,28	C20	C50	42,2	C40	28,09	C45	31,61	C50	C20	OK	C40	OK
1881	430	C24	C40	5,91	SC	C16	19,39	C18	21,24	C20	12,8	C20	SC	OK	C16	OK
1882	500	C40	C50	7,46	C14	C20	12,85	SC	17,62	C16	9,62	C14	SC	OK	SC	OK
1883	387	C18	C30	6,21	SC	C18	19,81	C18	21,43	C20	13,04	C20	SC	OK	C18	N

Tabela Apêndice D.18 – Protocolo de classificação por métodos não destrutivos para flexão estática

			1 a	ibela Ape		19 - PIC		e classifica	içao por me	etodos nao de	estrutivos pa	ara nexao e	statica			
ID	Dx	CD _M	CD _K	Ex	CEM	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
1884	390	C20	C30	5,35	SC	C14	15,92	C14	19,51	C20	10,98	C16	SC	OK	C14	OK
1885	528	C45	C50	10,29	C20	C45	26,65	C20	24,04	C30	17,48	C20	C20	OK	C20	OK
1886	457	C27	C45	7,31	C14	C20	25,3	C20	23,59	C30	16,52	C20	C14	OK	C20	N
1887	516	C40	C50	7,87	C14	C20	33,75	C30	26,12	C40	23,22	C35	C14	OK	C20	OK
1888	520	C45	C50	11,31	C20	C50	52,72	C50	30,05	C50	44,73	C50	C20	OK	C50	OK
1889	527	C45	C50	7,42	C14	C20	26,85	C20	24,11	C30	17,63	C20	C14	OK	C20	N
1890	518	C40	C50	6,81	SC	C20	16,42	C16	19,78	C20	11,23	C18	SC	OK	C16	OK
1891	417	C22	C35	5,74	SC	C16	11,88	SC	16,93	C14	9,26	C14	SC	OK	SC	OK
1892	531	C45	C50	10,31	C20	C45	32,5	C30	25,79	C35	22,12	C35	C20	OK	C30	OK
1893	410	C22	C35	6,08	SC	C18	12,49	SC	17,37	C16	9,49	C14	SC	OK	SC	OK
1894	482	C35	C50	6,64	SC	C20	16,82	C16	19,99	C20	11,42	C18	SC	OK	C16	OK
1895	405	C20	C35	6,31	SC	C18	23,37	C20	22,89	C20	15,22	C20	SC	OK	C18	Ν
1896	475	C30	C50	7,03	C14	C20	17,11	C16	20,14	C20	11,57	C18	C14	OK	C16	OK
1897	457	C27	C45	6,33	SC	C18	16,44	C16	19,79	C20	11,23	C18	SC	OK	C16	N
1898	396	C20	C30	6,25	SC	C18	14,71	C14	18,81	C18	10,42	C16	SC	OK	C14	OK
1900	420	C24	C40	6	SC	C16	17,12	C16	20,15	C20	11,58	C18	SC	OK	C16	OK
1901	423	C24	C40	7,87	C14	C20	21,78	C20	22,27	C20	14,21	C20	C14	OK	C20	N
1902	449	C24	C45	5,77	SC	C16	14,95	C14	18,96	C18	10,53	C16	SC	OK	C14	N
1903	426	C24	C40	5,99	SC	C16	13,69	SC	18,18	C18	9,97	C14	SC	OK	SC	OK
1904	490	C35	C50	9,98	C20	C40	29,17	C20	24,84	C30	19,38	C30	C20	OK	C20	OK
1905	487	C35	C50	8,56	C16	C30	24,89	C20	23,44	C30	16,24	C20	C16	OK	C20	OK
1906	476	C30	C50	6,52	SC	C20	21,45	C20	22,13	C20	14,01	C20	SC	OK	C20	Ν
1907	467	C30	C50	6,62	SC	C20	8,44	SC	13,92	SC	8,26	C14	SC	OK	SC	OK
1909	546	C45	C50	5,85	SC	C16	24,99	C20	23,48	C30	16,31	C20	SC	OK	C16	OK
1911	445	C24	C45	8,05	C16	C30	31,94	C30	25,64	C35	21,64	C35	C16	OK	C30	OK
1914	416	C22	C35	6,64	SC	C20	27,23	C20	24,24	C30	17,91	C20	SC	OK	C20	N
1915	399	C20	C30	4,92	SC	C14	27,78	C20	24,41	C30	18,32	C30	SC	OK	C14	OK
1916	478	C30	C50	8,33	C16	C30	9,6	SC	15,06	SC	8,53	C14	SC	OK	SC	OK

Tabela Apêndice D.19 – Protocolo de classificação por métodos não destrutivos para flexão estática

		rabela Apendice D.20 – Flotocolo de classificação por metodos não destrutivos para nexão estática														
ID	Dx	CD _M	CD _K	Ex	CEM	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
1917	402	C20	C35	6,37	SC	C18	24,42	C20	23,28	C30	15,92	C20	SC	OK	C18	OK
1918	471	C30	C50	7,2	C14	C20	11,63	SC	16,75	C14	9,17	C14	SC	OK	SC	OK
1920	413	C22	C35	7,69	C14	C20	25,97	C20	23,82	C30	17	C20	C14	OK	C20	OK
1921	441	C24	C45	9,31	C18	C35	25,26	C20	23,57	C30	16,5	C20	C18	OK	C20	OK
1922	430	C24	C40	6,36	SC	C18	27,26	C20	24,24	C30	17,93	C20	SC	OK	C18	OK
1923	443	C24	C45	7,75	C14	C20	15,95	C14	19,53	C20	10,99	C16	C14	OK	C14	OK
1924	509	C40	C50	8,43	C16	C30	20,96	C20	21,93	C20	13,71	C20	C16	Ν	C20	N
1925	512	C40	C50	7,1	C14	C20	38,88	C40	27,37	C45	28,1	C45	C14	OK	C20	OK
1926	456	C27	C45	6,4	SC	C20	18,53	C18	20,85	C20	12,32	C20	SC	OK	C18	N
1927	450	C27	C45	4,84	SC	C14	15	C14	18,98	C18	10,55	C16	SC	OK	C14	OK
1928	475	C30	C50	8,02	C16	C30	32,83	C30	25,88	C35	22,41	C35	C16	OK	C30	OK
1929	435	C24	C40	4,43	SC	SC	24,65	C20	23,36	C30	16,07	C20	SC	OK	SC	OK
1930	438	C24	C40	7,41	C14	C20	23,38	C20	22,89	C20	15,23	C20	C14	OK	C20	OK
1931	491	C35	C50	10,18	C20	C45	32,33	C30	25,75	C35	21,98	C35	C20	OK	C30	OK
1932	416	C22	C35	5,88	SC	C16	15,91	C14	19,5	C20	10,97	C16	SC	OK	C14	OK
1933	452	C27	C45	8,31	C16	C30	17,89	C16	20,54	C20	11,98	C18	C16	OK	C16	OK
1935	415	C22	C35	6,8	SC	C20	23,73	C20	23,02	C30	15,46	C20	SC	OK	C20	OK
1936	422	C24	C40	6,17	SC	C18	15,38	C14	19,21	C20	10,73	C16	SC	OK	C14	OK
1937	484	C35	C50	8,2	C16	C30	44,33	C40	28,52	C45	34,02	C50	C16	OK	C30	OK
1938	426	C24	C40	5,69	SC	C16	19,55	C18	21,32	C20	12,89	C20	SC	OK	C16	OK
1939	533	C45	C50	8,46	C16	C30	23,05	C20	22,77	C20	15,01	C20	C16	OK	C20	OK
1940	553	C50	C50	7,13	C14	C20	51,16	C50	29,78	C50	42,58	C50	C14	OK	C20	OK
1942	609	C50	C50	9,89	C20	C40	36,56	C40	26,83	C40	25,81	C40	C20	OK	C40	OK
1943	429	C24	C40	6,74	SC	C20	27,07	C20	24,18	C30	17,79	C20	SC	OK	C20	N
1944	470	C30	C50	6,59	SC	C20	23,29	C20	22,86	C20	15,17	C20	SC	OK	C20	OK
1945	491	C35	C50	5,91	SC	C16	29,05	C20	24,8	C30	19,29	C30	SC	OK	C16	OK
1946	488	C35	C50	6,23	SC	C18	19,87	C18	21,46	C20	13,07	C20	SC	OK	C18	OK
1947	451	C27	C45	5,51	SC	C16	36,7	C40	26,86	C40	25,95	C40	SC	OK	C16	OK

Tabela Apêndice D.20 – Protocolo de classificação por métodos não destrutivos para flexão estática

		rabeia Apendice D.21 – Protocolo de classificação por metodos não destrutivos para nexão estática														
ID	Dx	CD _M	CD _K	Ex	CEM	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
1948	506	C40	C50	8,66	C16	C30	19,39	C18	21,24	C20	12,8	C20	C16	OK	C18	OK
1949	404	C20	C35	4,85	SC	C14	34,45	C30	26,3	C40	23,84	C35	SC	OK	C14	OK
1951	423	C24	C40	5,65	SC	C16	16,61	C16	19,88	C20	11,32	C18	SC	OK	C16	N
1952	451	C27	C45	9,82	C20	C40	25,1	C20	23,52	C30	16,39	C20	C20	OK	C20	OK
1953	425	C24	C40	5,87	SC	C16	25,62	C20	23,7	C30	16,75	C20	SC	OK	C16	OK
1954	562	C50	C50	9,81	C20	C40	51,61	C50	29,86	C50	43,19	C50	C20	OK	C40	OK
1955	523	C45	C50	9,05	C18	C35	40,11	C40	27,64	C45	29,37	C45	C18	OK	C35	N
1956	529	C45	C50	7,57	C14	C20	51,2	C50	29,79	C50	42,64	C50	C14	OK	C20	OK
1964	503	C40	C50	8,32	C16	C30	37,45	C40	27,04	C45	26,67	C40	C16	OK	C30	OK
1977	545	C45	C50	9,18	C18	C35	46,86	C45	29,01	C50	37,05	C50	C18	OK	C35	OK
1978	555	C50	C50	10,5	C20	C45	51,02	C50	29,76	C50	42,39	C50	C20	OK	C45	OK
1998	581	C50	C50	10,37	C20	C45	51,3	C50	29,81	C50	42,77	C50	C20	OK	C45	OK
2020	448	C24	C45	9,39	C18	C35	52,79	C50	30,06	C50	44,83	C50	C18	OK	C35	OK
2030	620	C50	C50	8,17	C16	C30	50,99	C50	29,76	C50	42,36	C50	C16	OK	C30	OK
2035	655	C50	C50	9,34	C18	C35	52,79	C50	30,06	C50	44,83	C50	C18	OK	C35	OK
2046	606	C50	C50	11,1	C20	C50	47,03	C45	29,04	C50	37,25	C50	C20	OK	C45	OK
2047	584	C50	C50	9,67	C20	C40	51,39	C50	29,83	C50	42,9	C50	C20	OK	C40	OK
2076	464	C30	C50	7,82	C14	C20	21,94	C20	22,33	C20	14,31	C20	C14	OK	C20	OK
2096	556	C50	C50	8,71	C16	C35	52,79	C50	30,06	C50	44,83	C50	C16	OK	C35	OK
2099	552	C50	C50	9,8	C20	C40	50,43	C50	29,66	C50	41,61	C50	C20	OK	C40	OK
2136	497	C35	C50	7,31	C14	C20	25,42	C20	23,63	C30	16,61	C20	C14	OK	C20	N
2166	543	C45	C50	5,9	SC	C16	52,79	C50	30,06	C50	44,83	C50	SC	OK	C16	OK
2178	480	C35	C50	5,35	SC	C14	52,79	C50	30,06	C50	44,83	C50	SC	OK	C14	OK
2185	479	C30	C50	7,09	C14	C20	52,79	C50	30,06	C50	44,83	C50	C14	OK	C20	OK
2193	480	C35	C50	8,7	C16	C35	52,79	C50	30,06	C50	44,83	C50	C16	OK	C35	OK
2195	492	C35	C50	7,48	C14	C20	52,7	C50	30,05	C50	44,7	C50	C14	OK	C20	OK
2206	435	C24	C40	7,5	C14	C20	51,18	C50	29,79	C50	42,61	C50	C14	OK	C20	OK
2210	499	C35	C50	9,57	C20	C40	48,34	C45	29,29	C50	38,89	C50	C20	OK	C40	OK

Tabela Apêndice D.21 – Protocolo de classificação por métodos não destrutivos para flexão estática

		rabela Apendice D.22 – i fotocolo de classificação por metodos não destrutivos para nexão estatica														
ID	$\mathbf{D}_{\mathbf{X}}$	CD _M	CD _K	$\mathbf{E}_{\mathbf{X}}$	CEM	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	$\mathbf{R}_{\mathbf{M}}$	VER M	R _K	VER K
2226	449	C24	C45	5,48	SC	C16	41,8	C40	28,01	C45	31,18	C50	SC	OK	C16	OK
2237	480	C35	C50	8,61	C16	C30	26,97	C20	24,15	C30	17,72	C20	C16	OK	C20	OK
2257	434	C24	C40	6,22	SC	C18	31,03	C30	25,38	C35	20,88	C30	SC	OK	C18	OK
2262	480	C35	C50	3,78	SC	SC	44,79	C40	28,61	C45	34,56	C50	SC	OK	SC	OK
2271	430	C24	C40	4,74	SC	C14	43,14	C40	28,28	C45	32,66	C50	SC	OK	C14	OK
2275	524	C45	C50	6,42	SC	C20	41,4	C40	27,92	C45	30,74	C50	SC	OK	C20	OK
2276	459	C27	C45	11,58	C20	C50	35,15	C40	26,48	C40	24,49	C40	C20	OK	C40	OK
2277	396	C20	C30	5,36	SC	C14	15,93	C14	19,52	C20	10,99	C16	SC	OK	C14	Ν
2278	477	C30	C50	3,99	SC	SC	22,68	C20	22,62	C20	14,77	C20	SC	OK	SC	OK
2279	433	C24	C40	5,31	SC	C14	15,15	C14	19,07	C20	10,62	C16	SC	OK	C14	Ν
2280	507	C40	C50	9,41	C18	C40	13,57	SC	18,1	C18	9,92	C14	SC	OK	SC	OK
2281	494	C35	C50	6,34	SC	C18	15,67	C14	19,37	C20	10,86	C16	SC	OK	C14	OK
2282	464	C30	C50	5,52	SC	C16	52,18	C50	29,96	C50	43,98	C50	SC	OK	C16	OK
2283	515	C40	C50	6,11	SC	C18	38,99	C40	27,39	C45	28,21	C45	SC	OK	C18	OK
2284	550	C50	C50	10,84	C20	C50	49,88	C45	29,56	C50	40,88	C50	C20	OK	C45	OK
2285	507	C40	C50	8,74	C16	C35	28,58	C20	24,66	C30	18,93	C30	C16	OK	C20	OK
2286	464	C30	C50	6,86	SC	C20	27,33	C20	24,27	C30	17,98	C20	SC	OK	C20	OK
2287	525	C45	C50	6,72	SC	C20	8,89	SC	14,38	SC	8,36	C14	SC	OK	SC	OK
2288	471	C30	C50	3,48	SC	SC	23,1	C20	22,79	C20	15,05	C20	SC	OK	SC	OK
2289	482	C35	C50	5,57	SC	C16	6,81	SC	12,03	SC	8,07	C14	SC	OK	SC	OK
2290	637	C50	C50	11,17	C20	C50	36,7	C40	26,86	C40	25,95	C40	C20	OK	C40	OK
2291	559	C50	C50	10,73	C20	C50	25,58	C20	23,68	C30	16,72	C20	C20	OK	C20	OK

Tabela Apêndice D.22 – Protocolo de classificação por métodos não destrutivos para flexão estática
			1 a	idela Ape		.23 - Pic		classifica	içao por me	etodos não de	estrutivos pa	ara nexao e	statica			
ID	Dx	CD _M	CD _K	Ex	CE _M	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
2292	454	C27	C45	8,13	C16	C30	26,21	C20	23,9	C30	17,17	C20	C16	OK	C20	OK
2293	459	C27	C45	4,31	SC	SC	16,49	C16	19,82	C20	11,26	C18	SC	OK	SC	OK
2294	457	C27	C45	7,37	C14	C20	36,91	C40	26,91	C40	26,15	C40	C14	OK	C20	OK
2295	637	C50	C50	15,44	C45	C50	42,14	C40	28,08	C45	31,55	C50	C40	OK	C40	OK
2296	588	C50	C50	12,32	C30	C50	50,47	C50	29,67	C50	41,66	C50	C30	OK	C50	OK
2297	426	C24	C40	7,06	C14	C20	28,95	C20	24,77	C30	19,21	C30	C14	OK	C20	OK
2300	547	C45	C50	5,99	SC	C16	19,67	C18	21,37	C20	12,96	C20	SC	OK	C16	OK
2301	473	C30	C50	5,68	SC	C16	47,91	C45	29,21	C50	38,35	C50	SC	OK	C16	OK
2302	470	C30	C50	4,96	SC	C14	34,75	C30	26,38	C40	24,12	C40	SC	OK	C14	OK
2305	526	C45	C50	9,23	C18	C35	26,75	C20	24,08	C30	17,56	C20	C18	OK	C20	OK
2306	460	C30	C50	6,08	SC	C18	50,9	C50	29,74	C50	42,23	C50	SC	OK	C18	OK
2307	457	C27	C45	5,35	SC	C14	10,72	SC	16,03	C14	8,86	C14	SC	OK	SC	OK
2308	524	C45	C50	8,86	C16	C35	21,24	C20	22,05	C20	13,88	C20	C16	OK	C20	OK
2309	470	C30	C50	5,25	SC	C14	36,32	C40	26,77	C40	25,58	C40	SC	OK	C14	OK
2310	482	C35	C50	8,31	C16	C30	52,79	C50	30,06	C50	44,83	C50	C16	OK	C30	OK
2314	415	C22	C35	6,15	SC	C18	32,89	C30	25,9	C35	22,46	C35	SC	OK	C18	OK
2316	501	C40	C50	8,29	C16	C30	39,32	C40	27,47	C45	28,55	C45	C16	OK	C30	OK
2317	561	C50	C50	4,98	SC	C14	51,65	C50	29,87	C50	43,25	C50	SC	OK	C14	OK
2318	408	C20	C35	5,96	SC	C16	17,63	C16	20,41	C20	11,84	C18	SC	OK	C16	OK
2319	455	C27	C45	9,23	C18	C35	39,32	C40	27,47	C45	28,55	C45	C18	OK	C35	Ν
2320	575	C50	C50	8,88	C16	C35	36,91	C40	26,91	C40	26,15	C40	C16	OK	C35	OK
2321	477	C30	C50	5,95	SC	C16	26,02	C20	23,83	C30	17,03	C20	SC	OK	C16	OK
2322	443	C24	C45	4,87	SC	C14	29,89	C20	25,06	C35	19,96	C30	SC	OK	C14	OK
2323	526	C45	C50	6,33	SC	C18	27,16	C20	24,21	C30	17,86	C20	SC	OK	C18	OK
2324	452	C27	C45	6,95	SC	C20	50,6	C50	29,69	C50	41,83	C50	SC	OK	C20	OK
2326	427	C24	C40	7,01	C14	C20	42,18	C40	28,09	C45	31,59	C50	C14	OK	C20	OK
2327	540	C45	C50	7,17	C14	C20	50,89	C50	29,74	C50	42,22	C50	C14	OK	C20	OK
2329	405	C20	C35	5,11	SC	C14	44	C40	28,46	C45	33,64	C50	SC	OK	C14	OK

Tabela Apêndice D.23 – Protocolo de classificação por métodos não destrutivos para flexão estática

			1 a			.24 – FIC			içao por me							
ID	D _X	CD _M	CD _K	Ex	CE _M	СЕК	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
2330	547	C45	C50	10,37	C20	C45	22,05	C20	22,38	C20	14,38	C20	C20	OK	C20	OK
2331	513	C40	C50	8,9	C16	C35	38,86	C40	27,37	C45	28,08	C45	C16	OK	C35	OK
2332	447	C24	C45	4,35	SC	SC	22,52	C20	22,56	C20	14,67	C20	SC	OK	SC	OK
2333	468	C30	C50	5,33	SC	C14	19,64	C18	21,36	C20	12,94	C20	SC	OK	C14	OK
2334	423	C24	C40	4,19	SC	SC	27,96	C20	24,47	C30	18,46	C30	SC	OK	SC	OK
2335	529	C45	C50	8,49	C16	C30	41,53	C40	27,95	C45	30,89	C50	C16	OK	C30	OK
2336	531	C45	C50	10,16	C20	C45	35,66	C40	26,61	C40	24,96	C40	C20	OK	C40	OK
2337	528	C45	C50	5	SC	C14	18,12	C18	20,65	C20	12,1	C20	SC	OK	C14	OK
2338	432	C24	C40	5,6	SC	C16	13,96	SC	18,35	C18	10,09	C16	SC	OK	SC	OK
2339	532	C45	C50	9,42	C18	C40	43,52	C40	28,36	C45	33,09	C50	C18	OK	C40	OK
2340	503	C40	C50	6,3	SC	C18	16,71	C16	19,94	C20	11,37	C18	SC	OK	C16	OK
2341	460	C30	C50	7,65	C14	C20	52,79	C50	30,06	C50	44,83	C50	C14	OK	C20	OK
2342	422	C24	C40	6,42	SC	C20	28,29	C20	24,57	C30	18,7	C30	SC	OK	C20	OK
2344	436	C24	C40	6,5	SC	C20	16,8	C16	19,98	C20	11,41	C18	SC	OK	C16	N
2345	501	C40	C50	9,19	C18	C35	45,63	C45	28,78	C45	35,55	C50	C18	OK	C35	OK
2346	438	C24	C40	6,39	SC	C18	35,67	C40	26,61	C40	24,97	C40	SC	OK	C18	OK
2347	552	C50	C50	4,36	SC	SC	49,27	C45	29,45	C50	40,09	C50	SC	OK	SC	OK
2348	477	C30	C50	8,38	C16	C30	52,67	C50	30,04	C50	44,66	C50	C16	OK	C30	OK
2349	424	C24	C40	5,89	SC	C16	35,16	C40	26,48	C40	24,5	C40	SC	OK	C16	OK
2350	456	C27	C45	5,94	SC	C16	19,75	C18	21,4	C20	13	C20	SC	OK	C16	N
2351	508	C40	C50	6,66	SC	C20	43,42	C40	28,34	C45	32,98	C50	SC	OK	C20	OK
2352	464	C30	C50	5,97	SC	C16	23,02	C20	22,76	C20	15	C20	SC	OK	C16	OK
2353	466	C30	C50	6,57	SC	C20	45,89	C45	28,83	C45	35,87	C50	SC	OK	C20	OK
2354	476	C30	C50	5,99	SC	C16	13,78	SC	18,24	C18	10,01	C16	SC	OK	SC	OK
2355	485	C35	C50	7,71	C14	C20	31,92	C30	25,63	C35	21,62	C35	C14	OK	C20	OK
2356	531	C45	C50	7,24	C14	C20	50,97	C50	29,75	C50	42,33	C50	C14	OK	C20	OK
2357	472	C30	C50	5,45	SC	C16	22,64	C20	22,61	C20	14,75	C20	SC	OK	C16	OK
2358	536	C45	C50	7,46	C14	C20	51,13	C50	29,78	C50	42,55	C50	C14	OK	C20	OK

Tabela Apêndice D.24 – Protocolo de classificação por métodos não destrutivos para flexão estática

	D					$\frac{23 - FIC}{CE}$			içao por me				statica D		D	
	D _X	CD _M	CD _K	Ex	CEM	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	K _M	VER M	K K	VER K
2359	396	C20	C30	5,13	SC	C14	22,06	C20	22,38	C20	14,39	C20	SC	OK	C14	OK
2360	417	C22	C35	9,47	C18	C40	36,49	C40	26,81	C40	25,74	C40	C18	OK	C35	OK
2361	454	C27	C45	5,77	SC	C16	11,24	SC	16,45	C14	9,03	C14	SC	OK	SC	OK
2362	426	C24	C40	7,11	C14	C20	18,96	C18	21,05	C20	12,56	C20	C14	Ν	C18	Ν
2363	481	C35	C50	7,17	C14	C20	52,79	C50	30,06	C50	44,83	C50	C14	OK	C20	OK
2364	476	C30	C50	6,28	SC	C18	45,31	C45	28,72	C45	35,17	C50	SC	OK	C18	OK
2365	387	C18	C30	5,54	SC	C16	26,33	C20	23,94	C30	17,26	C20	SC	OK	C16	OK
2366	462	C30	C50	6,51	SC	C20	11,51	SC	16,66	C14	9,13	C14	SC	OK	SC	OK
2368	485	C35	C50	6,62	SC	C20	13,96	SC	18,36	C18	10,09	C16	SC	OK	SC	OK
2371	482	C35	C50	6,52	SC	C20	34,21	C30	26,24	C40	23,63	C35	SC	OK	C20	OK
2373	489	C35	C50	6,77	SC	C20	44,32	C40	28,52	C45	34,01	C50	SC	OK	C20	OK
2374	454	C27	C45	8,19	C16	C30	20,83	C20	21,88	C20	13,64	C20	C16	OK	C20	OK
2375	457	C27	C45	5,97	SC	C16	45,48	C45	28,75	C45	35,38	C50	SC	OK	C16	OK
2376	509	C40	C50	7,47	C14	C20	34,99	C30	26,44	C40	24,34	C40	C14	OK	C20	OK
2377	413	C22	C35	7,57	C14	C20	19,85	C18	21,45	C20	13,06	C20	C14	Ν	C18	N
2378	487	C35	C50	8,4	C16	C30	52,79	C50	30,06	C50	44,83	C50	C16	OK	C30	OK
2379	444	C24	C45	8,13	C16	C30	44,3	C40	28,52	C45	33,98	C50	C16	OK	C30	OK
2380	367	C14	C24	4,28	SC	SC	38,15	C40	27,2	C45	27,36	C45	SC	OK	SC	OK
2381	398	C20	C30	6,36	SC	C18	31,11	C30	25,41	C35	20,94	C30	SC	OK	C18	OK
2383	554	C50	C50	7,39	C14	C20	29,32	C20	24,89	C30	19,5	C30	C14	OK	C20	OK
2384	546	C45	C50	9,29	C18	C35	52,79	C50	30,06	C50	44,83	C50	C18	OK	C35	OK
2385	507	C40	C50	9,24	C18	C35	47,68	C45	29,17	C50	38,06	C50	C18	OK	C35	OK
2386	483	C35	C50	7,47	C14	C20	47,03	C45	29,04	C50	37,25	C50	C14	OK	C20	OK
2387	413	C22	C35	6,49	SC	C20	52,79	C50	30,06	C50	44,83	C50	SC	OK	C20	OK
2403	464	C30	C50	5,07	SC	C14	52,15	C50	29,95	C50	43,94	C50	SC	OK	C14	OK
2551	447	C24	C45	5,46	SC	C16	39,59	C40	27,53	C45	28,83	C45	SC	OK	C16	OK

Tabela Apêndice D.25 – Protocolo de classificação por métodos não destrutivos para flexão estática

ID	Dx	СДм	СДк	Ex	СЕм	СЕк	F _{MX}	CF _{MX}	Fcox	CFc0x	Ftox	CFtox	RM	VER M	Rĸ	VER K
1	505	C40	C50	8.78	C16	C35	51.55	C50	29.85	C50	43.11	C50	C16	OK	C35	OK
14	388	C18	C30	6.28	SC	C18	13.18	SC	17.84	C16	9.76	C14	SC	OK	SC	OK
18	476	C30	C50	10.34	C20	C45	33.06	C30	25.94	C35	22.61	C35	C20	OK	C30	OK
21	467	C30	C50	8.60	C16	C30	19.81	C18	21.43	C20	13.04	C20	C16	OK	C18	OK
23	426	C24	C40	6.53	SC	C20	15.56	C14	19.31	C20	10.81	C16	SC	OK	C14	OK
26	422	C24	C40	5,75	SC	C16	14,17	C14	18,48	C18	10,17	C16	SC	OK	C14	OK
27	558	C50	C50	8,99	C16	C35	37,26	C40	26,99	C40	26,49	C40	C16	OK	C35	OK
29	467	C30	C50	7,71	C14	C20	28,60	C20	24,67	C30	18,94	C30	C14	OK	C20	OK
31	439	C24	C40	6,90	SC	C20	18,88	C18	21,01	C20	12,52	C20	SC	OK	C18	OK
32	437	C24	C40	6,56	SC	C20	20,15	C20	21,58	C20	13,24	C20	SC	OK	C20	OK
35	412	C22	C35	6,42	SC	C20	14,73	C14	18,83	C18	10,42	C16	SC	OK	C14	OK
37	470	C30	C50	5,60	SC	C16	23,91	C20	23,09	C30	15,58	C20	SC	OK	C16	OK
45	497	C35	C50	5,76	SC	C16	8,51	SC	14,00	SC	8,28	C14	SC	OK	SC	OK
51	537	C45	C50	6,75	SC	C20	23,16	C20	22,81	C20	15,09	C20	SC	OK	C20	OK
53	479	C30	C50	7,36	C14	C20	23,23	C20	22,84	C20	15,13	C20	C14	OK	C20	OK
56	457	C27	C45	4,99	SC	C14	35,41	C40	26,55	C40	24,73	C40	SC	OK	C14	OK
57	361	C14	C24	5,96	SC	C16	16,51	C16	19,83	C20	11,27	C18	SC	OK	C16	OK
60	466	C30	C50	6,15	SC	C18	11,35	SC	16,53	C14	9,07	C14	SC	OK	SC	OK
62	403	C20	C35	4,38	SC	SC	11,10	SC	16,33	C14	8,98	C14	SC	OK	SC	OK
63	488	C35	C50	8,44	C16	C30	36,58	C40	26,83	C40	25,83	C40	C16	OK	C30	OK
65	495	C35	C50	7,47	C14	C20	41,82	C40	28,01	C45	31,20	C50	C14	OK	C20	OK
66	510	C40	C50	11,48	C20	C50	50,74	C50	29,71	C50	42,01	C50	C20	OK	C50	OK
67	507	C40	C50	6,86	SC	C20	46,23	C45	28,89	C45	36,28	C50	SC	OK	C20	OK
69	411	C22	C35	5,94	SC	C16	12,88	SC	17,65	C16	9,64	C14	SC	OK	SC	OK
72	432	C24	C40	4,61	SC	SC	23,13	C20	22,80	C20	15,06	C20	SC	OK	SC	OK

Apêndice E – Protocolo de classificação por métodos não destrutivos para compressão paralela às fibras

Tabela Apêndice E.1 – Protocolo de classificação por métodos não destrutivos para compressão paralela às fibras

			Tabela A	Apendice	E.2 - Pr	0100010	ue classifi	icação por	metodos n	ao destrutivo	os para com	pressao para	alela as l	ibras		
ID	$\mathbf{D}_{\mathbf{X}}$	CD _M	CD _K	$\mathbf{E}_{\mathbf{X}}$	CEM	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	$\mathbf{R}_{\mathbf{M}}$	VER M	R _K	VER K
75	411	C22	C35	4,77	SC	C14	27,79	C20	24,41	C30	18,33	C30	SC	OK	C14	OK
76	418	C22	C35	3,96	SC	SC	20,26	C20	21,63	C20	13,30	C20	SC	OK	SC	OK
79	492	C35	C50	7,35	C14	C20	41,84	C40	28,02	C45	31,22	C50	C14	OK	C20	OK
88	548	C45	C50	12,53	C30	C50	33,95	C30	26,18	C40	23,40	C35	C30	OK	C30	OK
89	441	C24	C45	5,51	SC	C16	45,35	C45	28,72	C45	35,22	C50	SC	OK	C16	OK
96	357	C14	C24	6,47	SC	C20	29,77	C20	25,02	C35	19,86	C30	SC	OK	C20	OK
98	487	C35	C50	8,63	C16	C30	28,96	C20	24,78	C30	19,22	C30	C16	OK	C20	OK
102	528	C45	C50	7,43	C14	C20	29,98	C20	25,08	C35	20,03	C30	C14	OK	C20	OK
105	461	C30	C50	7,27	C14	C20	16,86	C16	20,01	C20	11,44	C18	C14	OK	C16	OK
106	374	C16	C27	7,70	C14	C20	41,33	C40	27,91	C45	30,67	C50	C14	OK	C20	OK
107	461	C30	C50	6,80	SC	C20	3,47	SC	6,10	SC	9,48	C14	SC	OK	SC	OK
108	378	C16	C27	5,57	SC	C16	18,65	C18	20,90	C20	12,38	C20	SC	OK	C16	OK
112	410	C22	C35	7,22	C14	C20	16,25	C16	19,69	C20	11,14	C18	C14	OK	C16	OK
114	519	C40	C50	10,24	C20	C45	41,62	C40	27,97	C45	30,98	C50	C20	OK	C40	OK
118	447	C24	C45	6,66	SC	C20	39,67	C40	27,55	C45	28,91	C45	SC	OK	C20	OK
122	424	C24	C40	9,00	C18	C35	35,27	C40	26,51	C40	24,59	C40	C18	OK	C35	OK
123	401	C20	C35	5,66	SC	C16	18,21	C18	20,69	C20	12,15	C20	SC	OK	C16	OK
127	483	C35	C50	6,36	SC	C18	39,09	C40	27,42	C45	28,31	C45	SC	OK	C18	OK
730	510	C40	C50	8,61	C16	C30	25,33	C20	23,60	C30	16,55	C20	C16	OK	C20	OK
731	533	C45	C50	4,86	SC	C14	24,24	C20	23,21	C30	15,80	C20	SC	OK	C14	OK
733	469	C30	C50	7,25	C14	C20	22,28	C20	22,47	C20	14,53	C20	C14	OK	C20	OK
737	455	C27	C45	6,15	SC	C18	25,89	C20	23,79	C30	16,94	C20	SC	OK	C18	OK
738	438	C24	C40	4,47	SC	SC	23,75	C20	23,03	C30	15,47	C20	SC	OK	SC	OK
739	462	C30	C50	6,72	SC	C20	16,92	C16	20,05	C20	11,48	C18	SC	OK	C16	OK
742	476	C30	C50	4,74	SC	C14	22,17	C20	22,42	C20	14,45	C20	SC	OK	C14	OK
748	533	C45	C50	9,96	C20	C40	27,01	C20	24,16	C30	17,75	C20	C20	OK	C20	OK
757	441	C24	C45	4,65	SC	SC	17,51	C16	20,35	C20	11,78	C18	SC	OK	SC	OK
759	495	C35	C50	10,49	C20	C45	25,38	C20	23,62	C30	16,58	C20	C20	OK	C20	OK

Tabela Apêndice E.2 – Protocolo de classificação por métodos não destrutivos para compressão paralela às fibras

			Tabela A	Apendice	E.3 - PI	0100010	de classif	icação po	rmetodos	nao destruti	vos para co	mpressao	baralela a	s noras		
ID	D _X	CD _M	CD _K	Ex	CEM	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
761	481	C35	C50	7,43	C14	C20	27,97	C20	24,47	C30	18,46	C30	C14	OK	C20	OK
763	473	C30	C50	5,68	SC	C16	26,36	C20	23,95	C30	17,28	C20	SC	OK	C16	N
766	425	C24	C40	6,13	SC	C18	25,59	C20	23,69	C30	16,73	C20	SC	OK	C18	OK
767	536	C45	C50	9,66	C20	C40	14,08	C14	18,43	C18	10,14	C16	C14	OK	C14	OK
768	582	C50	C50	11,64	C20	C50	23,36	C20	22,88	C20	15,21	C20	C20	OK	C20	OK
770	417	C22	C35	7,03	C14	C20	22,11	C20	22,40	C20	14,42	C20	C14	Ν	C20	N
771	467	C30	C50	5,89	SC	C16	16,55	C16	19,85	C20	11,29	C18	SC	OK	C16	OK
772	450	C27	C45	4,98	SC	C14	16,20	C16	19,66	C20	11,12	C18	SC	OK	C14	N
775	478	C30	C50	7,01	C14	C20	19,77	C18	21,42	C20	13,02	C20	C14	OK	C18	OK
776	472	C30	C50	7,95	C14	C20	42,94	C40	28,24	C45	32,44	C50	C14	OK	C20	OK
783	485	C35	C50	9,05	C18	C35	22,03	C20	22,37	C20	14,37	C20	C18	OK	C20	OK
784	449	C24	C45	5,18	SC	C14	21,54	C20	22,17	C20	14,07	C20	SC	OK	C14	OK
785	521	C45	C50	9,63	C20	C40	17,77	C16	20,48	C20	11,91	C18	C16	OK	C16	OK
787	420	C24	C40	3,79	SC	SC	37,67	C40	27,09	C45	26,89	C40	SC	OK	SC	OK
791	537	C45	C50	10,85	C20	C50	24,69	C20	23,37	C30	16,10	C20	C20	OK	C20	OK
795	426	C24	C40	7,60	C14	C20	10,23	SC	15,62	SC	8,71	C14	SC	OK	SC	OK
798	446	C24	C45	5,69	SC	C16	18,65	C18	20,90	C20	12,39	C20	SC	OK	C16	OK
802	391	C20	C30	5,94	SC	C16	22,85	C20	22,69	C20	14,89	C20	SC	OK	C16	OK
807	432	C24	C40	7,13	C14	C20	13,71	SC	18,19	C18	9,98	C14	SC	OK	SC	OK
810	464	C30	C50	8,26	C16	C30	19,89	C18	21,47	C20	13,08	C20	C16	OK	C18	OK
812	421	C24	C40	6,65	SC	C20	20,56	C20	21,76	C20	13,47	C20	SC	OK	C20	N
816	497	C35	C50	9,26	C18	C35	23,99	C20	23,12	C30	15,63	C20	C18	OK	C20	OK
818	522	C45	C50	9,54	C20	C40	40,69	C40	27,77	C45	29,98	C45	C20	OK	C40	N
819	520	C45	C50	7,43	C14	C20	19,28	C18	21,20	C20	12,74	C20	C14	OK	C18	OK
828	419	C22	C35	5,86	SC	C16	15,72	C14	19,40	C20	10,89	C16	SC	OK	C14	N
833	367	C14	C24	5,99	SC	C16	13,83	SC	18,27	C18	10,03	C16	SC	OK	SC	OK
853	461	C30	C50	8,96	C16	C35	15,94	C14	19,52	C20	10,99	C16	C14	OK	C14	OK
855	396	C20	C30	12,26	C30	C50	9,84	SC	15,27	SC	8,59	C14	SC	ОК	SC	OK

Tabela Apêndice E.3 – Protocolo de classificação por métodos não destrutivos para compressão paralela às fibras

			Tabela A	Арепиіс	е Б.4 – г	10100010	de classif	licação po	r metodos i	lao destrutiv	os para com	pressao par	alela as l	IDIAS		
ID	D _X	CD _M	CD _K	Ex	CE _M	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
860	484	C35	C50	7,56	C14	C20	21,84	C20	22,29	C20	14,25	C20	C14	OK	C20	OK
887	403	C20	C35	6,60	SC	C20	21,72	C20	22,24	C20	14,18	C20	SC	OK	C20	Ν
894	451	C27	C45	7,07	C14	C20	23,09	C20	22,78	C20	15,04	C20	C14	Ν	C20	Ν
897	429	C24	C40	7,38	C14	C20	23,18	C20	22,82	C20	15,10	C20	C14	OK	C20	OK
906	411	C22	C35	5,29	SC	C14	13,06	SC	17,77	C16	9,71	C14	SC	OK	SC	OK
910	408	C20	C35	6,65	SC	C20	16,51	C16	19,83	C20	11,27	C18	SC	OK	C16	OK
913	406	C20	C35	7,27	C14	C20	23,93	C20	23,10	C30	15,59	C20	C14	OK	C20	OK
924	484	C35	C50	6,56	SC	C20	43,74	C40	28,41	C45	33,34	C50	SC	OK	C20	OK
925	441	C24	C45	7,59	C14	C20	26,32	C20	23,93	C30	17,24	C20	C14	OK	C20	OK
926	450	C27	C45	4,38	SC	SC	19,91	C18	21,48	C20	13,09	C20	SC	OK	SC	OK
927	413	C22	C35	5,20	SC	C14	21,54	C20	22,17	C20	14,06	C20	SC	OK	C14	OK
934	481	C35	C50	9,92	C20	C40	21,83	C20	22,29	C20	14,24	C20	C20	OK	C20	OK
935	406	C20	C35	3,56	SC	SC	17,97	C16	20,57	C20	12,02	C20	SC	OK	SC	OK
936	421	C24	C40	6,69	SC	C20	14,47	C14	18,67	C18	10,31	C16	SC	OK	C14	OK
937	444	C24	C45	5,15	SC	C14	15,25	C14	19,13	C20	10,66	C16	SC	OK	C14	OK
947	376	C16	C27	6,20	SC	C18	18,72	C18	20,94	C20	12,43	C20	SC	OK	C18	Ν
948	404	C20	C35	5,26	SC	C14	16,02	C16	19,56	C20	11,03	C18	SC	OK	C14	OK
950	482	C35	C50	7,52	C14	C20	11,49	SC	16,64	C14	9,12	C14	SC	OK	SC	OK
951	391	C20	C30	4,02	SC	SC	32,29	C30	25,73	C35	21,94	C35	SC	OK	SC	OK
954	424	C24	C40	7,30	C14	C20	25,73	C20	23,74	C30	16,83	C20	C14	OK	C20	OK
961	419	C22	C35	4,14	SC	SC	14,74	C14	18,83	C18	10,43	C16	SC	OK	SC	OK
962	403	C20	C35	3,87	SC	SC	18,45	C18	20,81	C20	12,28	C20	SC	OK	SC	OK
963	408	C20	C35	5,99	SC	C16	36,21	C40	26,74	C40	25,47	C40	SC	OK	C16	OK
965	398	C20	C30	3,38	SC	SC	24,46	C20	23,29	C30	15,95	C20	SC	OK	SC	OK
975	398	C20	C30	5,33	SC	C14	21,01	C20	21,95	C20	13,74	C20	SC	OK	C14	OK
980	476	C30	C50	5,23	SC	C14	25,68	C20	23,72	C30	16,79	C20	SC	OK	C14	OK
986	409	C20	C35	5,94	SC	C16	36,19	C40	26,74	C40	25,46	C40	SC	OK	C16	OK
987	538	C45	C50	9,57	C20	C40	36,18	C40	26,74	C40	25,45	C40	C20	OK	C40	N

Tabela Apêndice E.4 – Protocolo de classificação por métodos não destrutivos para compressão paralela às fibras

			abela A	pendice	E.J - PI	0100010	le classifi	icação por	metodos n	ao destrutivo	os para com	pressao para	alela as l	Ioras		
ID	Dx	CD _M	CD _K	$\mathbf{E}_{\mathbf{X}}$	CEM	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	$\mathbf{R}_{\mathbf{M}}$	VER M	R _K	VER K
996	431	C24	C40	6,20	SC	C18	14,27	C14	18,55	C18	10,22	C16	SC	OK	C14	OK
999	495	C35	C50	9,65	C20	C40	35,26	C40	26,51	C40	24,59	C40	C20	OK	C40	OK
1000	446	C24	C45	9,13	C18	C35	20,62	C20	21,79	C20	13,51	C20	C18	OK	C20	OK
1008	417	C22	C35	4,90	SC	C14	16,73	C16	19,94	C20	11,38	C18	SC	OK	C14	OK
1013	402	C20	C35	3,18	SC	SC	22,77	C20	22,66	C20	14,84	C20	SC	OK	SC	OK
1018	435	C24	C40	8,98	C16	C35	27,38	C20	24,28	C30	18,02	C30	C16	Ν	C20	N
1024	446	C24	C45	4,14	SC	SC	19,45	C18	21,27	C20	12,83	C20	SC	OK	SC	OK
1025	495	C35	C50	8,85	C16	C35	28,17	C20	24,53	C30	18,61	C30	C16	OK	C20	OK
1031	428	C24	C40	7,17	C14	C20	13,71	SC	18,19	C18	9,98	C14	SC	OK	SC	OK
1035	484	C35	C50	5,86	SC	C16	27,31	C20	24,26	C30	17,97	C20	SC	OK	C16	OK
1037	425	C24	C40	5,20	SC	C14	28,63	C20	24,67	C30	18,96	C30	SC	OK	C14	OK
1046	402	C20	C35	5,46	SC	C16	8,92	SC	14,41	SC	8,36	C14	SC	OK	SC	OK
1047	429	C24	C40	6,68	SC	C20	34,57	C30	26,33	C40	23,95	C35	SC	OK	C20	OK
1050	419	C22	C35	4,12	SC	SC	16,51	C16	19,83	C20	11,27	C18	SC	OK	SC	OK
1052	400	C20	C35	4,38	SC	SC	18,38	C18	20,77	C20	12,24	C20	SC	OK	SC	OK
1054	337	SC	C20	4,41	SC	SC	16,57	C16	19,86	C20	11,30	C18	SC	OK	SC	OK
1059	507	C40	C50	6,72	SC	C20	46,50	C45	28,94	C45	36,60	C50	SC	OK	C20	OK
1060	471	C30	C50	7,73	C14	C20	40,82	C40	27,80	C45	30,12	C50	C14	OK	C20	OK
1062	466	C30	C50	6,90	SC	C20	40,52	C40	27,73	C45	29,80	C45	SC	OK	C20	OK
1068	354	C14	C24	4,03	SC	SC	20,85	C20	21,88	C20	13,64	C20	SC	OK	SC	OK
1070	458	C27	C45	6,39	SC	C18	23,98	C20	23,12	C30	15,63	C20	SC	OK	C18	N
1072	492	C35	C50	8,33	C16	C30	38,11	C40	27,19	C45	27,33	C45	C16	OK	C30	OK
1073	427	C24	C40	4,15	SC	SC	15,51	C14	19,28	C20	10,78	C16	SC	OK	SC	OK
1074	510	C40	C50	5,79	SC	C16	24,12	C20	23,17	C30	15,72	C20	SC	OK	C16	OK
1077	488	C35	C50	5,97	SC	C16	19,84	C18	21,45	C20	13,05	C20	SC	OK	C16	OK
1080	431	C24	C40	8,51	C16	C30	23,05	C20	22,77	C20	15,01	C20	C16	OK	C20	OK
1089	343	SC	C22	4,49	SC	SC	28,93	C20	24,77	C30	19,20	C30	SC	OK	SC	OK
1092	406	C20	C35	7,46	C14	C20	19,43	C18	21,26	C20	12,82	C20	C14	OK	C18	OK

Tabela Apêndice E.5 – Protocolo de classificação por métodos não destrutivos para compressão paralela às fibras

			abela A	pendice	E.0 - Pr	otocolo (ie classifi	icaçao por	metodos n	ao destrutivo	os para com	pressao par	alela as I	ibras		
ID	$\mathbf{D}_{\mathbf{X}}$	CD _M	CD _K	$\mathbf{E}_{\mathbf{X}}$	CEM	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	$\mathbf{R}_{\mathbf{M}}$	VER M	R _K	VER K
1093	425	C24	C40	7,59	C14	C20	22,11	C20	22,40	C20	14,42	C20	C14	OK	C20	OK
1094	408	C20	C35	7,09	C14	C20	19,42	C18	21,26	C20	12,81	C20	C14	OK	C18	OK
1095	516	C40	C50	7,12	C14	C20	25,74	C20	23,74	C30	16,83	C20	C14	OK	C20	OK
1096	442	C24	C45	5,51	SC	C16	28,54	C20	24,65	C30	18,89	C30	SC	OK	C16	OK
1097	455	C27	C45	4,77	SC	C14	43,75	C40	28,41	C45	33,36	C50	SC	OK	C14	OK
1098	448	C24	C45	3,73	SC	SC	5,85	SC	10,70	SC	8,11	C14	SC	OK	SC	OK
1099	408	C20	C35	6,75	SC	C20	25,85	C20	23,78	C30	16,91	C20	SC	OK	C20	OK
1100	515	C40	C50	8,01	C16	C30	29,61	C20	24,97	C30	19,73	C30	C16	OK	C20	OK
1102	474	C30	C50	5,25	SC	C14	24,22	C20	23,20	C30	15,79	C20	SC	OK	C14	OK
1104	420	C24	C40	6,02	SC	C18	18,88	C18	21,01	C20	12,51	C20	SC	OK	C18	OK
1105	456	C27	C45	9,46	C18	C40	36,80	C40	26,89	C40	26,04	C40	C18	OK	C40	OK
1108	429	C24	C40	6,20	SC	C18	18,95	C18	21,04	C20	12,55	C20	SC	OK	C18	Ν
1109	474	C30	C50	8,44	C16	C30	22,91	C20	22,71	C20	14,93	C20	C16	OK	C20	OK
1110	453	C27	C45	7,15	C14	C20	22,39	C20	22,51	C20	14,59	C20	C14	OK	C20	OK
1111	396	C20	C30	7,18	C14	C20	18,03	C18	20,61	C20	12,05	C20	C14	OK	C18	OK
1112	362	C14	C24	6,76	SC	C20	24,92	C20	23,45	C30	16,26	C20	SC	OK	C20	OK
1113	415	C22	C35	6,09	SC	C18	22,42	C20	22,52	C20	14,61	C20	SC	OK	C18	OK
1118	508	C40	C50	6,37	SC	C18	49,32	C45	29,46	C50	40,15	C50	SC	OK	C18	OK
1119	423	C24	C40	6,24	SC	C18	29,14	C20	24,83	C30	19,36	C30	SC	OK	C18	OK
1122	402	C20	C35	5,86	SC	C16	23,98	C20	23,11	C30	15,62	C20	SC	OK	C16	OK
1123	447	C24	C45	4,84	SC	C14	41,34	C40	27,91	C45	30,68	C50	SC	OK	C14	OK
1124	518	C40	C50	8,95	C16	C35	16,92	C16	20,04	C20	11,47	C18	C16	OK	C16	OK
1125	463	C30	C50	4,56	SC	SC	25,00	C20	23,48	C30	16,32	C20	SC	OK	SC	OK
1127	425	C24	C40	7,63	C14	C20	44,43	C40	28,54	C45	34,14	C50	C14	OK	C20	OK
1128	452	C27	C45	5,42	SC	C16	11,01	SC	16,26	C14	8,95	C14	SC	OK	SC	OK
1129	503	C40	C50	6,43	SC	C20	34,51	C30	26,32	C40	23,89	C35	SC	OK	C20	OK
1130	400	C20	C35	4,00	SC	SC	19,20	C18	21,16	C20	12,69	C20	SC	OK	SC	OK
1131	462	C30	C50	9,70	C20	C40	25,58	C20	23,68	C30	16,72	C20	C20	OK	C20	OK

Tabela Apêndice E.6 – Protocolo de classificação por métodos não destrutivos para compressão paralela às fibras

ID	D	CD		E	$\frac{\mathbf{C} \cdot \mathbf{C} - \mathbf{F} \cdot \mathbf{C}}{\mathbf{C} \mathbf{F}}$		E Classific		F						D	VED V
<u>ID</u>	115	$CD_{\rm M}$	CD_{K}	$\frac{\mathbf{E}_{\mathbf{X}}}{2.5c}$			F MX		$\frac{\Gamma_{c0X}}{22.96}$		Γ t0X	$C\Gamma_{t0X}$				
1132	415	C22	C35	3,56	SC	SC	23,31	C20	22,86	C20	15,18	C20	SC	OK	SC	OK
1133	400	C20	C35	6,54	SC	C20	11,73	SC	16,82	C14	9,20	C14	SC	OK	SC	OK
1134	400	C20	C35	6,43	SC	C20	8,56	SC	14,05	SC	8,29	C14	SC	OK	SC	OK
1136	509	C40	C50	10,72	C20	C50	51,82	C50	29,90	C50	43,48	C50	C20	OK	C50	OK
1144	384	C18	C30	4,52	SC	SC	10,16	SC	15,55	SC	8,69	C14	SC	OK	SC	OK
1145	563	C50	C50	8,33	C16	C30	33,49	C30	26,06	C40	22,98	C35	C16	OK	C30	OK
1146	379	C16	C27	7,03	C14	C20	21,75	C20	22,25	C20	14,19	C20	C14	OK	C20	OK
1147	429	C24	C40	5,52	SC	C16	19,68	C18	21,38	C20	12,96	C20	SC	OK	C16	OK
1148	570	C50	C50	6,71	SC	C20	18,89	C18	21,02	C20	12,52	C20	SC	OK	C18	OK
1149	355	C14	C24	5,70	SC	C16	29,63	C20	24,98	C30	19,75	C30	SC	OK	C16	OK
1150	434	C24	C40	6,22	SC	C18	30,24	C30	25,16	C35	20,24	C30	SC	OK	C18	OK
1152	417	C22	C35	4,88	SC	C14	30,22	C30	25,15	C35	20,22	C30	SC	OK	C14	OK
1153	466	C30	C50	8,20	C16	C30	26,37	C20	23,95	C30	17,28	C20	C16	OK	C20	OK
1163	490	C35	C50	7,72	C14	C20	13,57	SC	18,10	C18	9,92	C14	SC	OK	SC	OK
1164	393	C20	C30	5,04	SC	C14	21,40	C20	22,11	C20	13,98	C20	SC	OK	C14	OK
1165	452	C27	C45	6,39	SC	C18	20,66	C20	21,80	C20	13,53	C20	SC	OK	C18	OK
1166	404	C20	C35	6,63	SC	C20	12,23	SC	17,19	C16	9,39	C14	SC	OK	SC	OK
1167	359	C14	C24	4,51	SC	SC	14,53	C14	18,71	C18	10,34	C16	SC	OK	SC	OK
1168	444	C24	C45	7,38	C14	C20	38,75	C40	27,34	C45	27,97	C45	C14	OK	C20	OK
1169	499	C35	C50	8,72	C16	C35	10,07	SC	15,48	SC	8,66	C14	SC	OK	SC	OK
1180	493	C35	C50	11,04	C20	C50	26,45	C20	23,98	C30	17,34	C20	C20	OK	C20	OK
1190	634	C50	C50	15,56	C45	C50	38,18	C40	27,21	C45	27,40	C45	C40	OK	C40	OK
1241	528	C45	C50	8,01	C16	C30	16,42	C16	19,78	C20	11,22	C18	C16	OK	C16	OK
1319	481	C35	C50	10,23	C20	C45	42,75	C40	28,20	C45	32,22	C50	C20	OK	C40	OK
1344	415	C22	C35	5,44	SC	C16	7,61	SC	13,02	SC	8,13	C14	SC	OK	SC	OK
1374	413	C22	C35	5,10	SC	C14	18,54	C18	20,85	C20	12,33	C20	SC	OK	C14	OK
1376	489	C35	C50	5,53	SC	C16	16,21	C16	19,67	C20	11,12	C18	SC	OK	C16	OK
1377	448	C24	C45	5,50	SC	C16	22,81	C20	22,67	C20	14,86	C20	SC	OK	C16	OK

Tabela Apêndice E.7 – Protocolo de classificação por métodos não destrutivos para compressão paralela às fibras

			Tabela A	pendice i	E.0 - FIC		e classific	cação por	metodos na		s para comp	nessao para	alela as l	IDIAS		
ID	Dx	CD _M	CD _K	Ex	CE _M	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
1378	471	C30	C50	10,28	C20	C45	36,16	C40	26,73	C40	25,43	C40	C20	OK	C40	OK
1379	478	C30	C50	7,00	C14	C20	32,09	C30	25,68	C35	21,77	C35	C14	OK	C20	OK
1380	432	C24	C40	8,02	C16	C30	29,51	C20	24,94	C30	19,65	C30	C16	OK	C20	OK
1381	350	C14	C24	4,25	SC	SC	14,68	C14	18,80	C18	10,40	C16	SC	OK	SC	OK
1382	415	C22	C35	6,22	SC	C18	15,00	C14	18,98	C18	10,55	C16	SC	OK	C14	OK
1383	424	C24	C40	7,41	C14	C20	20,05	C20	21,54	C20	13,17	C20	C14	Ν	C20	Ν
1384	420	C24	C40	6,03	SC	C18	14,73	C14	18,83	C18	10,42	C16	SC	OK	C14	OK
1385	450	C27	C45	8,09	C16	C30	25,12	C20	23,52	C30	16,40	C20	C16	OK	C20	OK
1386	396	C20	C30	6,30	SC	C18	28,10	C20	24,51	C30	18,56	C30	SC	OK	C18	OK
1387	438	C24	C40	6,71	SC	C20	10,17	SC	15,57	SC	8,69	C14	SC	OK	SC	OK
1388	406	C20	C35	6,71	SC	C20	21,89	C20	22,31	C20	14,28	C20	SC	OK	C20	Ν
1389	451	C27	C45	6,34	SC	C18	11,63	SC	16,75	C14	9,17	C14	SC	OK	SC	OK
1390	468	C30	C50	5,37	SC	C14	21,42	C20	22,12	C20	13,99	C20	SC	OK	C14	OK
1396	414	C22	C35	4,13	SC	SC	18,15	C18	20,66	C20	12,11	C20	SC	OK	SC	OK
1397	465	C30	C50	5,78	SC	C16	9,12	SC	14,61	SC	8,41	C14	SC	OK	SC	OK
1399	433	C24	C40	5,74	SC	C16	12,00	SC	17,02	C16	9,30	C14	SC	OK	SC	OK
1400	501	C40	C50	8,01	C16	C30	18,34	C18	20,76	C20	12,22	C20	C16	OK	C18	OK
1403	420	C24	C40	6,77	SC	C20	5,36	SC	9,92	SC	8,20	C14	SC	OK	SC	OK
1404	453	C27	C45	6,40	SC	C18	20,53	C20	21,75	C20	13,46	C20	SC	OK	C18	OK
1405	534	C45	C50	7,93	C14	C20	37,09	C40	26,95	C40	26,32	C40	C14	OK	C20	OK
1406	484	C35	C50	10,47	C20	C45	50,03	C50	29,59	C50	41,07	C50	C20	OK	C45	OK
1407	433	C24	C40	4,03	SC	SC	31,05	C30	25,39	C35	20,90	C30	SC	OK	SC	OK
1408	420	C24	C40	6,41	SC	C20	6,61	SC	11,77	SC	8,06	C14	SC	OK	SC	OK
1409	401	C20	C35	6,17	SC	C18	17,21	C16	20,20	C20	11,62	C18	SC	OK	C16	OK
1410	530	C45	C50	8,74	C16	C35	46,32	C45	28,91	C45	36,38	C50	C16	OK	C35	OK
1411	415	C22	C35	5,66	SC	C16	18,38	C18	20,77	C20	12,24	C20	SC	OK	C16	OK
1412	385	C18	C30	6,09	SC	C18	20,74	C20	21,84	C20	13,58	C20	SC	OK	C18	OK
1414	379	C16	C27	5,56	SC	C16	16,73	C16	19,95	C20	11,38	C18	SC	OK	C16	OK

Tabela Apêndice E.8 – Protocolo de classificação por métodos não destrutivos para compressão paralela às fibras

			abela A	pendice	E.9 – Pr	0100010	le classifi	icação por	metodos n	ao destrutivo	os para com	pressao para	alela as l	ibras		
ID	$\mathbf{D}_{\mathbf{X}}$	CD _M	CD _K	$\mathbf{E}_{\mathbf{X}}$	CEM	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
1415	442	C24	C45	7,35	C14	C20	21,16	C20	22,01	C20	13,83	C20	C14	OK	C20	OK
1416	447	C24	C45	8,14	C16	C30	11,88	SC	16,93	C14	9,26	C14	SC	OK	SC	OK
1421	472	C30	C50	9,20	C18	C35	49,67	C45	29,53	C50	40,61	C50	C18	OK	C35	OK
1422	423	C24	C40	6,32	SC	C18	10,42	SC	15,78	SC	8,77	C14	SC	OK	SC	OK
1423	417	C22	C35	4,99	SC	C14	19,99	C18	21,51	C20	13,14	C20	SC	OK	C14	OK
1424	448	C24	C45	6,26	SC	C18	9,15	SC	14,63	SC	8,42	C14	SC	OK	SC	OK
1425	463	C30	C50	7,20	C14	C20	29,50	C20	24,94	C30	19,64	C30	C14	OK	C20	OK
1426	422	C24	C40	5,44	SC	C16	7,71	SC	13,13	SC	8,14	C14	SC	OK	SC	OK
1427	431	C24	C40	7,86	C14	C20	37,49	C40	27,05	C45	26,72	C40	C14	OK	C20	OK
1428	555	C50	C50	8,86	C16	C35	28,70	C20	24,70	C30	19,02	C30	C16	OK	C20	OK
1430	410	C22	C35	6,84	SC	C20	15,29	C14	19,15	C20	10,68	C16	SC	OK	C14	OK
1431	382	C18	C30	6,75	SC	C20	17,81	C16	20,50	C20	11,93	C18	SC	OK	C16	OK
1432	479	C30	C50	9,06	C18	C35	47,21	C45	29,08	C50	37,47	C50	C18	OK	C35	OK
1433	366	C14	C24	4,82	SC	C14	17,33	C16	20,25	C20	11,68	C18	SC	OK	C14	OK
1435	533	C45	C50	3,92	SC	SC	5,74	SC	10,54	SC	8,12	C14	SC	OK	SC	OK
1436	487	C35	C50	6,97	SC	C20	45,45	C45	28,74	C45	35,34	C50	SC	OK	C20	OK
1437	522	C45	C50	6,99	SC	C20	50,49	C50	29,67	C50	41,69	C50	SC	OK	C20	OK
1438	431	C24	C40	7,76	C14	C20	35,83	C40	26,65	C40	25,12	C40	C14	OK	C20	OK
1439	444	C24	C45	6,55	SC	C20	18,46	C18	20,81	C20	12,28	C20	SC	OK	C18	OK
1440	396	C20	C30	7,53	C14	C20	22,42	C20	22,52	C20	14,61	C20	C14	OK	C20	OK
1837	437	C24	C40	7,46	C14	C20	31,40	C30	25,49	C35	21,19	C35	C14	OK	C20	Ν
1958	499	C35	C50	9,52	C20	C40	29,69	C20	25,00	C30	19,80	C30	C20	OK	C20	OK
1959	535	C45	C50	7,64	C14	C20	23,03	C20	22,76	C20	15,00	C20	C14	OK	C20	OK
1960	489	C35	C50	9,04	C18	C35	38,79	C40	27,35	C45	28,01	C45	C18	OK	C35	Ν
1965	418	C22	C35	3,70	SC	SC	31,49	C30	25,51	C35	21,27	C35	SC	OK	SC	OK
1966	484	C35	C50	8,52	C16	C30	22,75	C20	22,65	C20	14,82	C20	C16	OK	C20	OK
1967	421	C24	C40	3,26	SC	SC	19,21	C18	21,16	C20	12,70	C20	SC	OK	SC	OK
1968	539	C45	C50	7,70	C14	C20	51,15	C50	29,78	C50	42,56	C50	C14	OK	C20	OK

Tabela Apêndice E.9 – Protocolo de classificação por métodos não destrutivos para compressão paralela às fibras

		_	abela A	pendice	E.9 – PI	0100010	le classifi	icação por	metodos n	ao destrutivo	os para com	pressao para	alela as l	IDFas		
ID	D _X	CD _M	CD _K	Ex	CEM	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
1971	386	C18	C30	4,97	SC	C14	9,61	SC	15,06	SC	8,53	C14	SC	OK	SC	OK
1972	459	C27	C45	4,91	SC	C14	25,51	C20	23,66	C30	16,67	C20	SC	OK	C14	OK
1973	451	C27	C45	6,61	SC	C20	32,23	C30	25,72	C35	21,89	C35	SC	OK	C20	OK
1974	450	C27	C45	6,34	SC	C18	23,27	C20	22,85	C20	15,16	C20	SC	OK	C18	N
1975	421	C24	C40	6,60	SC	C20	14,52	C14	18,70	C18	10,33	C16	SC	OK	C14	N
1976	431	C24	C40	4,52	SC	SC	13,37	SC	17,97	C16	9,84	C14	SC	OK	SC	OK
1979	581	C50	C50	5,63	SC	C16	48,37	C45	29,29	C50	38,92	C50	SC	OK	C16	OK
1985	462	C30	C50	6,90	SC	C20	10,53	SC	15,87	SC	8,80	C14	SC	OK	SC	OK
1987	420	C24	C40	3,73	SC	SC	21,98	C20	22,35	C20	14,34	C20	SC	OK	SC	OK
1993	427	C24	C40	4,43	SC	SC	17,04	C16	20,11	C20	11,54	C18	SC	OK	SC	OK
1994	466	C30	C50	6,90	SC	C20	17,66	C16	20,42	C20	11,85	C18	SC	OK	C16	OK
2006	463	C30	C50	6,06	SC	C18	21,04	C20	21,97	C20	13,76	C20	SC	OK	C18	OK
2007	377	C16	C27	4,84	SC	C14	18,93	C18	21,03	C20	12,54	C20	SC	OK	C14	N
2008	454	C27	C45	8,52	C16	C30	14,60	C14	18,75	C18	10,37	C16	C14	OK	C14	OK
2010	496	C35	C50	8,67	C16	C30	14,97	C14	18,96	C18	10,53	C16	C14	OK	C14	OK
2012	466	C30	C50	7,74	C14	C20	14,27	C14	18,55	C18	10,22	C16	C14	OK	C14	OK
2014	547	C45	C50	5,91	SC	C16	35,40	C40	26,54	C40	24,71	C40	SC	OK	C16	OK
2015	404	C20	C35	4,22	SC	SC	9,78	SC	15,22	SC	8,58	C14	SC	OK	SC	OK
2018	474	C30	C50	6,21	SC	C18	12,01	SC	17,03	C16	9,30	C14	SC	OK	SC	OK
2019	584	C50	C50	8,36	C16	C30	35,24	C40	26,50	C40	24,56	C40	C16	OK	C30	OK
2021	381	C18	C30	5,59	SC	C16	12,06	SC	17,06	C16	9,32	C14	SC	OK	SC	OK
2025	447	C24	C45	4,52	SC	SC	22,95	C20	22,73	C20	14,95	C20	SC	OK	SC	OK
2029	564	C50	C50	7,59	C14	C20	42,86	C40	28,23	C45	32,35	C50	C14	OK	C20	OK
2031	491	C35	C50	7,11	C14	C20	39,68	C40	27,55	C45	28,92	C45	C14	OK	C20	Ν
2033	436	C24	C40	4,94	SC	C14	39,95	C40	27,61	C45	29,20	C45	SC	OK	C14	OK
2037	465	C30	C50	7,54	C14	C20	30,78	C30	25,31	C35	20,67	C30	C14	OK	C20	OK
2038	435	C24	C40	7,65	C14	C20	25,79	C20	23,76	C30	16,87	C20	C14	OK	C20	OK
2045	483	C35	C50	6,18	SC	C18	21,81	C20	22,28	C20	14,23	C20	SC	OK	C18	OK

Tabela Apêndice E.9 – Protocolo de classificação por métodos não destrutivos para compressão paralela às fibras

		1	abela A	pendice E	2.10 - Pro		le classifi	cação por	metodos n	ao destrutivo	os para com	pressao par	alela as l	libras		
ID	D _X	CD _M	CD _K	Ex	CEM	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
2049	544	C45	C50	10,98	C20	C50	27,48	C20	24,31	C30	18,09	C30	C20	OK	C20	OK
2052	495	C35	C50	5,56	SC	C16	32,36	C30	25,75	C35	22,00	C35	SC	OK	C16	OK
2054	417	C22	C35	4,15	SC	SC	20,60	C20	21,78	C20	13,50	C20	SC	OK	SC	OK
2059	422	C24	C40	4,30	SC	SC	22,20	C20	22,44	C20	14,47	C20	SC	OK	SC	OK
2060	412	C22	C35	6,60	SC	C20	21,23	C20	22,04	C20	13,87	C20	SC	OK	C20	N
2062	571	C50	C50	8,26	C16	C30	19,24	C18	21,18	C20	12,71	C20	C16	OK	C18	OK
2063	453	C27	C45	5,46	SC	C16	19,17	C18	21,14	C20	12,67	C20	SC	OK	C16	OK
2064	557	C50	C50	9,40	C18	C40	11,66	SC	16,77	C14	9,18	C14	SC	OK	SC	OK
2065	509	C40	C50	9,76	C20	C40	37,06	C40	26,95	C40	26,29	C40	C20	OK	C40	N
2066	411	C22	C35	4,18	SC	SC	21,34	C20	22,09	C20	13,94	C20	SC	OK	SC	OK
2067	484	C35	C50	4,03	SC	SC	6,86	SC	12,10	SC	8,07	C14	SC	OK	SC	OK
2068	532	C45	C50	9,50	C20	C40	30,71	C30	25,29	C35	20,62	C30	C20	OK	C30	N
2071	487	C35	C50	8,18	C16	C30	17,93	C16	20,56	C20	12,00	C18	C16	OK	C16	OK
2073	449	C24	C45	5,14	SC	C14	19,20	C18	21,16	C20	12,69	C20	SC	OK	C14	OK
2074	435	C24	C40	6,02	SC	C18	47,17	C45	29,07	C50	37,42	C50	SC	OK	C18	OK
2075	445	C24	C45	8,14	C16	C30	24,55	C20	23,32	C30	16,01	C20	C16	OK	C20	OK
2079	509	C40	C50	9,62	C20	C40	19,64	C18	21,36	C20	12,94	C20	C18	OK	C18	OK
2080	478	C30	C50	4,15	SC	SC	27,53	C20	24,33	C30	18,13	C30	SC	OK	SC	OK
2081	572	C50	C50	7,23	C14	C20	50,70	C50	29,71	C50	41,97	C50	C14	OK	C20	OK
2083	492	C35	C50	5,07	SC	C14	18,22	C18	20,70	C20	12,15	C20	SC	OK	C14	OK
2086	444	C24	C45	6,78	SC	C20	15,88	C14	19,49	C20	10,96	C16	SC	OK	C14	OK
2088	429	C24	C40	4,23	SC	SC	16,31	C16	19,72	C20	11,17	C18	SC	OK	SC	OK
2091	388	C18	C30	5,36	SC	C14	20,50	C20	21,74	C20	13,44	C20	SC	OK	C14	N
2092	567	C50	C50	10,22	C20	C45	16,46	C16	19,80	C20	11,24	C18	C16	OK	C16	OK
2093	497	C35	C50	7,00	C14	C20	16,94	C16	20,06	C20	11,49	C18	C14	OK	C16	N
2100	419	C22	C35	6,08	SC	C18	22,23	C20	22,45	C20	14,49	C20	SC	OK	C18	N
2103	484	C35	C50	7,93	C14	C20	16,39	C16	19,76	C20	11,21	C18	C14	N	C16	N
2105	436	C24	C40	6,35	SC	C18	20,47	C20	21,72	C20	13,42	C20	SC	OK	C18	N

Tabela Apêndice E.10 – Protocolo de classificação por métodos não destrutivos para compressão paralela às fibras

		18	abela Ap	endice E	2.11 - PT		ie classif	icação po	r metodos i	nao destruti	vos para con	npressao p	aralela as	s noras		
ID	D _X	CD _M	CD _K	Ex	CE _M	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
2107	436	C24	C40	3,91	SC	SC	8,49	SC	13,97	SC	8,27	C14	SC	OK	SC	OK
2111	476	C30	C50	5,20	SC	C14	31,59	C30	25,54	C35	21,35	C35	SC	OK	C14	OK
2115	444	C24	C45	3,32	SC	SC	11,87	SC	16,93	C14	9,25	C14	SC	OK	SC	OK
2118	490	C35	C50	6,63	SC	C20	40,21	C40	27,66	C45	29,47	C45	SC	OK	C20	OK
2123	405	C20	C35	5,48	SC	C16	47,12	C45	29,06	C50	37,37	C50	SC	OK	C16	OK
2126	532	C45	C50	6,36	SC	C18	30,79	C30	25,32	C35	20,69	C30	SC	OK	C18	OK
2128	489	C35	C50	3,54	SC	SC	17,79	C16	20,49	C20	11,93	C18	SC	OK	SC	OK
2129	539	C45	C50	5,88	SC	C16	31,59	C30	25,54	C35	21,35	C35	SC	OK	C16	OK
2133	438	C24	C40	5,33	SC	C14	23,18	C20	22,82	C20	15,10	C20	SC	OK	C14	OK
2134	467	C30	C50	7,73	C14	C20	13,79	SC	18,24	C18	10,01	C16	SC	OK	SC	OK
2137	429	C24	C40	4,59	SC	SC	8,17	SC	13,64	SC	8,21	C14	SC	OK	SC	OK
2139	518	C40	C50	5,75	SC	C16	30,53	C30	25,24	C35	20,47	C30	SC	OK	C16	OK
2143	445	C24	C45	8,66	C16	C30	17,84	C16	20,51	C20	11,95	C18	C16	OK	C16	OK
2146	479	C30	C50	4,77	SC	C14	26,55	C20	24,01	C30	17,41	C20	SC	OK	C14	OK
2150	439	C24	C40	7,84	C14	C20	20,67	C20	21,81	C20	13,54	C20	C14	OK	C20	OK
2151	548	C45	C50	9,36	C18	C35	22,51	C20	22,56	C20	14,67	C20	C18	OK	C20	OK
2153	414	C22	C35	6,44	SC	C20	10,41	SC	15,77	SC	8,76	C14	SC	OK	SC	OK
2154	400	C20	C35	4,70	SC	SC	17,39	C16	20,29	C20	11,72	C18	SC	OK	SC	OK
2155	441	C24	C45	7,00	SC	C20	13,56	SC	18,10	C18	9,92	C14	SC	OK	SC	OK
2160	472	C30	C50	5,08	SC	C14	22,22	C20	22,45	C20	14,49	C20	SC	OK	C14	OK
2161	546	C45	C50	4,66	SC	SC	26,85	C20	24,11	C30	17,63	C20	SC	OK	SC	OK
2162	437	C24	C40	8,34	C16	C30	10,24	SC	15,63	SC	8,71	C14	SC	OK	SC	OK
2163	456	C27	C45	8,07	C16	C30	22,35	C20	22,50	C20	14,57	C20	C16	Ν	C20	N
2164	528	C45	C50	9,89	C20	C40	35,62	C40	26,60	C40	24,92	C40	C20	Ν	C40	N
2167	457	C27	C45	7,70	C14	C20	16,31	C16	19,72	C20	11,17	C18	C14	N	C16	N
2173	451	C27	C45	6,25	SC	C18	17,87	C16	20,52	C20	11,96	C18	SC	OK	C16	OK
2181	482	C35	C50	8,07	C16	C30	30,02	C30	25,09	C35	20,06	C30	C16	OK	C30	OK
2183	453	C27	C45	9,39	C18	C35	39,12	C40	27,42	C45	28,35	C45	C18	OK	C35	N

Tabela Apêndice E.11 – Protocolo de classificação por métodos não destrutivos para compressão paralela às fibras

		16	abela Ap	bendice E	1.12 - Pro		ie classifi	icação po	r metodos i	lao destruti	vos para coi	npressao p	aralela as	sindras		
ID	D _X	CD _M	CD _K	$\mathbf{E}_{\mathbf{X}}$	CEM	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
2184	421	C24	C40	6,58	SC	C20	9,97	SC	15,39	SC	8,63	C14	SC	OK	SC	OK
2187	455	C27	C45	6,88	SC	C20	22,06	C20	22,38	C20	14,38	C20	SC	OK	C20	OK
2191	497	C35	C50	8,61	C16	C30	14,53	C14	18,70	C18	10,33	C16	C14	OK	C14	OK
2194	449	C24	C45	8,06	C16	C30	14,80	C14	18,87	C18	10,46	C16	C14	OK	C14	OK
2197	415	C22	C35	4,53	SC	SC	29,03	C20	24,80	C30	19,28	C30	SC	OK	SC	OK
2198	443	C24	C45	8,59	C16	C30	11,57	SC	16,70	C14	9,14	C14	SC	OK	SC	OK
2199	458	C27	C45	7,34	C14	C20	15,98	C14	19,54	C20	11,01	C18	C14	OK	C14	OK
2204	515	C40	C50	7,09	C14	C20	6,90	SC	12,15	SC	8,07	C14	SC	OK	SC	OK
2205	425	C24	C40	4,42	SC	SC	18,24	C18	20,71	C20	12,17	C20	SC	OK	SC	OK
2208	440	C24	C45	7,29	C14	C20	9,55	SC	15,01	SC	8,52	C14	SC	OK	SC	OK
2216	447	C24	C45	7,22	C14	C20	13,35	SC	17,96	C16	9,83	C14	SC	OK	SC	OK
2217	406	C20	C35	4,64	SC	SC	7,16	SC	12,47	SC	8,09	C14	SC	OK	SC	OK
2218	405	C20	C35	5,78	SC	C16	26,55	C20	24,01	C30	17,41	C20	SC	OK	C16	OK
2219	482	C35	C50	7,89	C14	C20	32,26	C30	25,73	C35	21,91	C35	C14	OK	C20	OK
2221	442	C24	C45	5,52	SC	C16	15,40	C14	19,22	C20	10,73	C16	SC	OK	C14	OK
2225	397	C20	C30	4,89	SC	C14	16,47	C16	19,81	C20	11,25	C18	SC	OK	C14	OK
2228	509	C40	C50	7,46	C14	C20	36,01	C40	26,69	C40	25,28	C40	C14	OK	C20	OK
2235	634	C50	C50	12,63	C30	C50	42,04	C40	28,06	C45	31,44	C50	C30	OK	C40	OK
2240	436	C24	C40	5,92	SC	C16	41,75	C40	28,00	C45	31,13	C50	SC	OK	C16	OK
2241	473	C30	C50	4,76	SC	C14	25,10	C20	23,52	C30	16,38	C20	SC	OK	C14	Ν
2242	500	C40	C50	8,73	C16	C35	43,81	C40	28,42	C45	33,42	C50	C16	OK	C35	OK
2243	501	C40	C50	6,96	SC	C20	28,00	C20	24,48	C30	18,49	C30	SC	OK	C20	OK
2245	408	C20	C35	6,79	SC	C20	27,61	C20	24,36	C30	18,19	C30	SC	OK	C20	Ν
2248	445	C24	C45	6,65	SC	C20	15,54	C14	19,30	C20	10,80	C16	SC	OK	C14	Ν
2250	519	C40	C50	5,91	SC	C16	35,43	C40	26,55	C40	24,74	C40	SC	OK	C16	OK
2251	537	C45	C50	5,48	SC	C16	39,26	C40	27,45	C45	28,49	C45	SC	OK	C16	OK
2252	444	C24	C45	5,35	SC	C14	17,38	C16	20,28	C20	11,71	C18	SC	OK	C14	OK
2254	548	C45	C50	7,11	C14	C20	38,18	C40	27,21	C45	27,40	C45	C14	OK	C20	OK

Tabela Apêndice E.12 – Protocolo de classificação por métodos não destrutivos para compressão paralela às fibras

		12	abela Ap	bendice E	-15 - Property - 100		le classifi	icação po	r metodos i	lao destruti	vos para col	npressao p	araieia as	s noras		
ID	D _X	CD _M	CD _K	Ex	CE _M	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	$\mathbf{R}_{\mathbf{M}}$	VER M	R _K	VER K
2256	434	C24	C40	5,22	SC	C14	17,01	C16	20,09	C20	11,52	C18	SC	OK	C14	OK
2258	380	C18	C30	4,47	SC	SC	7,83	SC	13,26	SC	8,16	C14	SC	OK	SC	OK
2263	662	C50	C50	16,10	C50	C50	41,29	C40	27,90	C45	30,62	C50	C40	OK	C40	OK
2265	519	C40	C50	10,98	C20	C50	12,65	SC	17,48	C16	9,55	C14	SC	OK	SC	OK
2266	501	C40	C50	7,36	C14	C20	26,84	C20	24,11	C30	17,62	C20	C14	OK	C20	OK
2269	488	C35	C50	7,32	C14	C20	19,23	C18	21,17	C20	12,71	C20	C14	OK	C18	OK
2272	557	C50	C50	8,61	C16	C30	13,11	SC	17,80	C16	9,73	C14	SC	OK	SC	OK
2273	491	C35	C50	8,23	C16	C30	45,09	C45	28,67	C45	34,91	C50	C16	OK	C30	OK
2274	437	C24	C40	5,81	SC	C16	39,57	C40	27,52	C45	28,80	C45	SC	OK	C16	OK
2299	474	C30	C50	5,25	SC	C14	36,52	C40	26,82	C40	25,78	C40	SC	OK	C14	OK
2304	569	C50	C50	9,53	C20	C40	24,31	C20	23,23	C30	15,85	C20	C20	OK	C20	OK
2315	522	C45	C50	8,27	C16	C30	17,02	C16	20,09	C20	11,52	C18	C16	OK	C16	OK
2328	709	C50	C50	15,85	C45	C50	43,02	C40	28,26	C45	32,53	C50	C40	OK	C40	OK
2372	482	C35	C50	8,94	C16	C35	25,35	C20	23,60	C30	16,56	C20	C16	OK	C20	OK
2388	518	C40	C50	8,12	C16	C30	30,06	C30	25,10	C35	20,09	C30	C16	OK	C30	OK
2391	444	C24	C45	5,90	SC	C16	16,69	C16	19,92	C20	11,36	C18	SC	OK	C16	OK
2395	537	C45	C50	7,26	C14	C20	39,31	C40	27,47	C45	28,54	C45	C14	OK	C20	OK
2396	589	C50	C50	10,99	C20	C50	39,04	C40	27,41	C45	28,27	C45	C20	OK	C40	OK
2398	431	C24	C40	7,85	C14	C20	24,44	C20	23,28	C30	15,93	C20	C14	OK	C20	OK
2401	380	C18	C30	4,76	SC	C14	24,14	C20	23,17	C30	15,73	C20	SC	OK	C14	OK
2407	446	C24	C45	5,36	SC	C14	19,75	C18	21,41	C20	13,00	C20	SC	OK	C14	OK
2408	477	C30	C50	3,91	SC	SC	52,23	C50	29,97	C50	44,04	C50	SC	OK	SC	OK
2412	408	C20	C35	4,90	SC	C14	29,09	C20	24,81	C30	19,32	C30	SC	OK	C14	OK
2413	476	C30	C50	8,44	C16	C30	19,56	C18	21,32	C20	12,89	C20	C16	OK	C18	OK
2418	403	C20	C35	5,08	SC	C14	9,01	SC	14,50	SC	8,38	C14	SC	OK	SC	OK
2419	398	C20	C30	5,17	SC	C14	20,72	C20	21,83	C20	13,57	C20	SC	OK	C14	OK
2427	400	C20	C35	6,04	SC	C18	21,22	C20	22,04	C20	13,87	C20	SC	OK	C18	OK
2431	468	C30	C50	8,14	C16	C30	16,57	C16	19,86	C20	11,30	C18	C16	OK	C16	OK

Tabela Apêndice E.13 – Protocolo de classificação por métodos não destrutivos para compressão paralela às fibras

		1	abela A	benuice .	E.14 - P.	rotocolo	de classif	icação po	r metodos i	nao destrutiv	os para com	pressao pai	raleia as	libras		
ID	Dx	CD _M	CD _K	Ex	CE _M	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
2433	384	C18	C30	5,06	SC	C14	16,71	C16	19,93	C20	11,37	C18	SC	OK	C14	Ν
2435	375	C16	C27	5,32	SC	C14	20,37	C20	21,68	C20	13,36	C20	SC	OK	C14	Ν
2437	555	C50	C50	9,03	C18	C35	21,65	C20	22,22	C20	14,13	C20	C18	Ν	C20	Ν
2440	459	C27	C45	7,17	C14	C20	5,52	SC	10,19	SC	8,16	C14	SC	OK	SC	OK
2442	413	C22	C35	5,63	SC	C16	12,76	SC	17,56	C16	9,59	C14	SC	OK	SC	OK
2444	414	C22	C35	7,08	C14	C20	17,39	C16	20,28	C20	11,71	C18	C14	OK	C16	OK
2446	490	C35	C50	5,42	SC	C16	23,05	C20	22,77	C20	15,01	C20	SC	OK	C16	OK
2449	404	C20	C35	6,92	SC	C20	25,01	C20	23,49	C30	16,32	C20	SC	OK	C20	Ν
2452	422	C24	C40	3,66	SC	SC	19,82	C18	21,44	C20	13,04	C20	SC	OK	SC	OK
2457	438	C24	C40	7,66	C14	C20	20,42	C20	21,70	C20	13,39	C20	C14	OK	C20	Ν
2458	473	C30	C50	5,30	SC	C14	10,14	SC	15,53	SC	8,68	C14	SC	OK	SC	OK
2462	414	C22	C35	7,19	C14	C20	8,52	SC	14,01	SC	8,28	C14	SC	OK	SC	OK
2468	429	C24	C40	6,41	SC	C20	23,77	C20	23,04	C30	15,48	C20	SC	OK	C20	Ν
2473	456	C27	C45	4,72	SC	C14	16,48	C16	19,81	C20	11,25	C18	SC	OK	C14	OK
2480	491	C35	C50	8,34	C16	C30	11,81	SC	16,88	C14	9,23	C14	SC	OK	SC	OK
2483	449	C24	C45	5,22	SC	C14	17,79	C16	20,49	C20	11,93	C18	SC	OK	C14	OK
2486	482	C35	C50	9,05	C18	C35	12,77	SC	17,57	C16	9,60	C14	SC	OK	SC	OK
2487	476	C30	C50	8,62	C16	C30	17,21	C16	20,20	C20	11,62	C18	C16	OK	C16	OK
2489	400	C20	C35	5,14	SC	C14	21,08	C20	21,98	C20	13,79	C20	SC	OK	C14	OK
2490	432	C24	C40	7,19	C14	C20	13,99	SC	18,37	C18	10,10	C16	SC	OK	SC	OK
2491	462	C30	C50	9,52	C20	C40	14,85	C14	18,90	C18	10,48	C16	C14	OK	C14	OK
2497	450	C27	C45	4,77	SC	C14	22,86	C20	22,69	C20	14,89	C20	SC	OK	C14	OK
2502	434	C24	C40	6,98	SC	C20	19,60	C18	21,34	C20	12,91	C20	SC	OK	C18	OK
2503	463	C30	C50	5,98	SC	C16	29,31	C20	24,88	C30	19,49	C30	SC	OK	C16	OK
2506	484	C35	C50	7,76	C14	C20	27,67	C20	24,37	C30	18,24	C30	C14	OK	C20	OK
2508	440	C24	C45	6,15	SC	C18	9,57	SC	15,03	SC	8,52	C14	SC	OK	SC	OK
2510	481	C35	C50	7,51	C14	C20	29,84	C20	25,04	C35	19,92	C30	C14	OK	C20	OK
2652	433	C24	C40	7,33	C14	C20	42,16	C40	28,08	C45	31,57	C50	C14	OK	C20	OK

Tabela Apêndice E.14 – Protocolo de classificação por métodos não destrutivos para compressão paralela às fibras

ID	Dx	CD _M	$\frac{1000}{CD_{K}}$	E _X	CE _M	СЕк	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	Ftox	CF _{t0X}	R M	VER M	R _K	VER K
6	431	C24	C40	7,29	C14	C20	22,22	C20	22,45	C20	14,49	C20	C14	OK	C20	OK
7	405	C20	C35	6,35	SC	C18	17,98	C16	20,58	C20	12,03	C20	SC	OK	C16	OK
9	388	C18	C30	6,75	SC	C20	8,34	SC	13,82	SC	8,24	C14	SC	OK	SC	OK
10	510	C40	C50	5,00	SC	C14	10,98	SC	16,24	C14	8,94	C14	SC	OK	SC	OK
11	413	C22	C35	6,95	SC	C20	19,90	C18	21,47	C20	13,09	C20	SC	OK	C18	OK
12	409	C20	C35	7,12	C14	C20	26,84	C20	24,11	C30	17,62	C20	C14	OK	C20	OK
13	441	C24	C45	7,94	C14	C20	27,63	C20	24,36	C30	18,21	C30	C14	OK	C20	OK
15	378	C16	C27	5,39	SC	C14	11,00	SC	16,25	C14	8,95	C14	SC	OK	SC	OK
16	390	C20	C30	5,78	SC	C16	10,35	SC	15,72	SC	8,74	C14	SC	OK	SC	OK
17	443	C24	C45	6,25	SC	C18	8,51	SC	13,99	SC	8,28	C14	SC	OK	SC	OK
19	410	C22	C35	6,74	SC	C20	7,90	SC	13,34	SC	8,17	C14	SC	OK	SC	OK
22	452	C27	C45	5,99	SC	C16	9,97	SC	15,39	SC	8,63	C14	SC	OK	SC	OK
24	437	C24	C40	7,57	C14	C20	20,30	C20	21,65	C20	13,32	C20	C14	OK	C20	OK
25	458	C27	C45	7,33	C14	C20	17,63	C16	20,41	C20	11,84	C18	C14	OK	C16	OK
34	430	C24	C40	5,76	SC	C16	13,33	SC	17,95	C16	9,82	C14	SC	OK	SC	OK
36	433	C24	C40	8,15	C16	C30	22,38	C20	22,51	C20	14,59	C20	C16	OK	C20	OK
38	413	C22	C35	5,94	SC	C16	43,29	C40	28,31	C45	32,83	C50	SC	OK	C16	OK
39	443	C24	C45	7,49	C14	C20	9,38	SC	14,85	SC	8,47	C14	SC	OK	SC	OK
40	478	C30	C50	4,80	SC	C14	16,18	C16	19,65	C20	11,10	C18	SC	OK	C14	OK
41	467	C30	C50	7,70	C14	C20	26,11	C20	23,86	C30	17,09	C20	C14	OK	C20	OK
43	432	C24	C40	5,30	SC	C14	30,29	C30	25,17	C35	20,28	C30	SC	OK	C14	OK
47	429	C24	C40	6,96	SC	C20	11,89	SC	16,94	C14	9,26	C14	SC	OK	SC	OK
48	492	C35	C50	7,74	C14	C20	13,74	SC	18,22	C18	9,99	C14	SC	OK	SC	OK
55	621	C50	C50	12,98	C30	C50	46,60	C45	28,96	C45	36,72	C50	C30	OK	C45	OK
58	550	C50	C50	11,59	C20	C50	34,73	C30	26,38	C40	24,10	C40	C20	OK	C30	OK

Apêndice F – Protocolo de classificação por métodos não destrutivos para tração paralela às fibras

Tabela Apêndice F.1 – Protocolo de classificação por métodos não destrutivos para tração paralela às fibras

			Tabela	a Apendio	се г.2 –	Protocol	o de class	inicação p	bor metodo	s nao destrui	uvos para u	ação parale	a as no	ras		
ID	Dx	CD _M	CD _K	Ex	CE _M	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
59	448	C24	C45	8,63	C16	C30	34,51	C30	26,32	C40	23,90	C35	C16	OK	C30	Ν
61	561	C50	C50	8,09	C16	C30	25,79	C20	23,76	C30	16,87	C20	C16	OK	C20	OK
68	497	C35	C50	8,21	C16	C30	12,11	SC	17,10	C16	9,34	C14	SC	OK	SC	OK
70	479	C30	C50	6,64	SC	C20	9,59	SC	15,05	SC	8,53	C14	SC	OK	SC	OK
71	379	C16	C27	4,54	SC	SC	8,70	SC	14,19	SC	8,32	C14	SC	OK	SC	OK
73	440	C24	C45	5,73	SC	C16	23,64	C20	22,99	C20	15,40	C20	SC	OK	C16	Ν
74	431	C24	C40	7,10	C14	C20	19,37	C18	21,24	C20	12,79	C20	C14	OK	C18	OK
77	454	C27	C45	9,29	C18	C35	22,33	C20	22,49	C20	14,55	C20	C18	OK	C20	OK
81	416	C22	C35	6,71	SC	C20	17,90	C16	20,54	C20	11,98	C18	SC	OK	C16	OK
82	468	C30	C50	6,99	SC	C20	18,07	C18	20,62	C20	12,07	C20	SC	OK	C18	OK
83	429	C24	C40	4,29	SC	SC	44,71	C40	28,60	C45	34,46	C50	SC	OK	SC	OK
84	482	C35	C50	10,48	C20	C45	43,15	C40	28,29	C45	32,67	C50	C20	OK	C40	OK
85	371	C16	C27	6,87	SC	C20	34,34	C30	26,28	C40	23,74	C35	SC	OK	C20	OK
86	426	C24	C40	6,92	SC	C20	31,11	C30	25,41	C35	20,95	C30	SC	OK	C20	OK
87	443	C24	C45	9,83	C20	C40	20,76	C20	21,85	C20	13,59	C20	C20	OK	C20	OK
90	401	C20	C35	7,57	C14	C20	21,83	C20	22,29	C20	14,24	C20	C14	OK	C20	OK
92	433	C24	C40	7,03	C14	C20	23,95	C20	23,11	C30	15,61	C20	C14	OK	C20	Ν
93	588	C50	C50	10,76	C20	C50	50,95	C50	29,75	C50	42,29	C50	C20	OK	C50	OK
94	492	C35	C50	6,76	SC	C20	12,45	SC	17,35	C16	9,47	C14	SC	OK	SC	OK
95	403	C20	C35	5,37	SC	C14	25,48	C20	23,65	C30	16,65	C20	SC	OK	C14	OK
99	412	C22	C35	6,03	SC	C18	10,22	SC	15,60	SC	8,70	C14	SC	OK	SC	OK
101	449	C24	C45	8,07	C16	C30	36,32	C40	26,77	C40	25,58	C40	C16	OK	C30	OK
103	446	C24	C45	9,92	C20	C40	21,94	C20	22,33	C20	14,31	C20	C20	OK	C20	OK
104	477	C30	C50	6,25	SC	C18	30,52	C30	25,24	C35	20,46	C30	SC	OK	C18	OK
109	477	C30	C50	9,95	C20	C40	39,34	C40	27,47	C45	28,57	C45	C20	OK	C40	OK
110	449	C24	C45	7,41	C14	C20	14,47	C14	18,67	C18	10,31	C16	C14	OK	C14	OK
113	436	C24	C40	9,12	C18	C35	18,09	C18	20,63	C20	12,08	C20	C18	OK	C18	OK
115	482	C35	C50	8,85	C16	C35	18,38	C18	20,77	C20	12,24	C20	C16	OK	C18	OK

Tabela Apêndice F.2 – Protocolo de classificação por métodos não destrutivos para tração paralela às fibras

ID	Dv	СДм		Ex	1000000000000000000000000000000000000	CE _K	F _{MX}	CF _{MX}	F _{oox}	CE _{aav}	Fior	CE _{tox}	\mathbf{R}_{M}	VER M	Rĸ	VER K
116	368	$\frac{c_{\rm DM}}{C_{\rm I4}}$	$\frac{C24}{C24}$	4 99		C14	$\frac{1430}{1430}$	C14	18 56	C18	10.23	C16	SC	OK	C14	OK
117	421	C24	C40	7 47	C14	C20	18.21	C18	20.69	C20	12.15	C20	C14	OK	C18	OK
120	448	C24	C45	5 34	SC	C14	5 57	SC	10.26	SC	8 15	C14	SC	OK	SC	OK
125	452	C27	C45	9.28	C18	C35	21.07	C20	21.98	C20	13 78	C20	C18	N	C20	N
126	541	C45	C50	11.05	C20	C50	20.82	C20	21,90	C20	13.63	C20	C20	OK	C20	
608	424	C24	C40	5 89	SC SC	C16	3 79	SC	6.87	SC	9 10	C14	SC	OK	SC.	OK
729	511	C40	C50	7 90	C14	C20	38.28	$\frac{50}{C40}$	27.23	C45	27.49	C45	C14	OK	$\frac{c}{C20}$	
732	440	C24	C45	3 64	SC	SC SC	7 23	SC	12 55	SC	8.09	C14	SC		SC	
734	426	C24	C40	4 10	SC	SC	10.75	SC SC	16.05	C14	8.87	C14	SC		SC	
735	472	C30	C50	6.84	SC	C20	48.22	C45	29.26	C50	38.74	C50	SC	OK	C20	OK
736	415	C22	C35	7.09	<u>C14</u>	$\frac{C20}{C20}$	22 49	$\frac{C10}{C20}$	22,20	<u>C20</u>	14 65	$\frac{c_{20}}{C_{20}}$	$\frac{50}{C14}$		$\frac{C20}{C20}$	N
740	485	C35	C50	6.29	SC	C18	44 61	C40	22,55	C45	34 35	C50	SC		C18	
741	476	C30	C50	<u>6 99</u>	SC	C20	17.81	C16	20,50	C20	11 93	C18	SC	OK	C16	N
746	493	C35	C50	8.35	C16	C30	17.47	C16	20.33	C20	11,76	C18	C16	OK	C16	OK
747	383	C18	C30	7.06	C14	C20	21.84	C20	22.29	C20	14.25	C20	C14	OK	C20	N
749	477	C30	C50	8.50	C16	C30	22.75	C20	22.65	C20	14.82	C20	C16	OK	C20	OK
750	511	C40	C50	4.67	SC	SC	16.98	C16	20.07	C20	11.50	C18	SC	OK	SC	OK
751	434	C24	C40	7.56	C14	C20	19.26	C18	21.18	C20	12.72	C20	C14	OK	C18	N
752	492	C35	C50	7,69	C14	C20	47,56	C45	29,14	C50	37,91	C50	C14	OK	C20	OK
753	450	C27	C45	6,52	SC	C20	13,34	SC	17,95	C16	9,82	C14	SC	OK	SC	OK
754	502	C40	C50	8,28	C16	C30	50,70	C50	29,71	C50	41,97	C50	C16	OK	C30	ОК
755	477	C30	C50	5,02	SC	C14	23,62	C20	22,98	C20	15,39	C20	SC	OK	C14	ОК
758	398	C20	C30	4,93	SC	C14	13,88	SC	18,30	C18	10,05	C16	SC	OK	SC	ОК
760	468	C30	C50	6,30	SC	C18	29,89	C20	25,06	C35	19,96	C30	SC	OK	C18	OK
765	471	C30	C50	7,71	C14	C20	17,96	C16	20,57	C20	12,01	C20	C14	OK	C16	OK
769	520	C45	C50	10,38	C20	C45	14,57	C14	18,73	C18	10,35	C16	C14	OK	C14	OK
774	391	C20	C30	5,95	SC	C16	9,29	SC	14,76	SC	8,45	C14	SC	OK	SC	OK
777	507	C40	C50	8,71	C16	C35	39,74	C40	27,56	C45	28,98	C45	C16	OK	C35	OK

Tabela Apêndice F.3 – Protocolo de classificação por métodos não destrutivos para tração paralela às fibras

			Tabela	a Apendi	се г.4 –	Protocol	5 de class	mcaçao p	or metodo	s nao destrut	ivos para tra	ição parale	la as mo	ras		
ID	D _X	CD _M	CD _K	Ex	CE _M	СЕК	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
779	602	C50	C50	12,99	C30	C50	50,68	C50	29,70	C50	41,93	C50	C30	OK	C50	OK
782	533	C45	C50	9,75	C20	C40	26,08	C20	23,85	C30	17,07	C20	C20	OK	C20	OK
788	521	C45	C50	11,40	C20	C50	23,72	C20	23,02	C30	15,45	C20	C20	OK	C20	OK
789	455	C27	C45	5,87	SC	C16	23,10	C20	22,79	C20	15,05	C20	SC	OK	C16	OK
793	525	C45	C50	7,33	C14	C20	51,67	C50	29,87	C50	43,27	C50	C14	OK	C20	OK
796	520	C45	C50	8,61	C16	C30	27,02	C20	24,17	C30	17,76	C20	C16	OK	C20	Ν
797	402	C20	C35	5,32	SC	C14	28,90	C20	24,76	C30	19,17	C30	SC	OK	C14	OK
801	422	C24	C40	6,07	SC	C18	15,66	C14	19,37	C20	10,86	C16	SC	OK	C14	ОК
803	531	C45	C50	6,80	SC	C20	16,44	C16	19,79	C20	11,23	C18	SC	OK	C16	N
804	412	C22	C35	5,68	SC	C16	12,46	SC	17,35	C16	9,47	C14	SC	OK	SC	OK
808	447	C24	C45	6,35	SC	C18	7,62	SC	13,02	SC	8,13	C14	SC	OK	SC	OK
811	505	C40	C50	7,38	C14	C20	13,13	SC	17,81	C16	9,74	C14	SC	OK	SC	OK
813	403	C20	C35	5,30	SC	C14	47,34	C45	29,10	C50	37,64	C50	SC	OK	C14	ОК
814	509	C40	C50	9,07	C18	C35	37,73	C40	27,10	C45	26,95	C40	C18	OK	C35	OK
817	433	C24	C40	4,90	SC	C14	14,96	C14	18,96	C18	10,53	C16	SC	OK	C14	OK
837	443	C24	C45	5,98	SC	C16	22,66	C20	22,62	C20	14,76	C20	SC	OK	C16	N
838	483	C35	C50	8,63	C16	C30	20,77	C20	21,85	C20	13,60	C20	C16	OK	C20	OK
839	443	C24	C45	5,91	SC	C16	19,51	C18	21,30	C20	12,86	C20	SC	OK	C16	OK
840	407	C20	C35	5,46	SC	C16	23,72	C20	23,02	C30	15,45	C20	SC	OK	C16	N
861	415	C22	C35	6,76	SC	C20	17,40	C16	20,29	C20	11,72	C18	SC	OK	C16	N
875	424	C24	C40	3,78	SC	SC	19,69	C18	21,38	C20	12,97	C20	SC	OK	SC	OK
876	404	C20	C35	4,26	SC	SC	23,01	C20	22,75	C20	14,99	C20	SC	OK	SC	OK
882	403	C20	C35	6,06	SC	C18	14,94	C14	18,95	C18	10,52	C16	SC	OK	C14	ОК
885	386	C18	C30	4,31	SC	SC	14,45	C14	18,66	C18	10,30	C16	SC	OK	SC	OK
891	467	C30	C50	5,19	SC	C14	19,80	C18	21,43	C20	13,03	C20	SC	OK	C14	OK
892	438	C24	C40	7,69	C14	C20	18,26	C18	20,72	C20	12,17	C20	C14	OK	C18	OK
895	415	C22	C35	6,54	SC	C20	9,40	SC	14,87	SC	8,48	C14	SC	OK	SC	OK
902	445	C24	C45	6,67	SC	C20	24,50	C20	23,30	C30	15,97	C20	SC	OK	C20	OK

Tabela Apêndice F.4 – Protocolo de classificação por métodos não destrutivos para tração paralela às fibras

ID	Dv	СЪм		E _v	$\frac{CE_{I}}{CE_{M}}$	CE _w	Fue class	CEwy	F -ox	CE-ox	Eux	CE ₄₀ y		VER M	R	VER K
008	<u>/32</u>	$\frac{CD_{\rm M}}{C24}$	$\frac{CD_{K}}{C40}$	8.11	C16	C30	12 Q1		17.66		9.65					
- 012	472	$\frac{C24}{C30}$	$\frac{C+0}{C50}$	5.22	<u>SC</u>	$\frac{C30}{C14}$	12,71	<u> </u>	17,00	C10	0.41	C14				
912	472	$\frac{C30}{C24}$	<u>C40</u>	7.61	$\frac{SC}{C14}$	C14 C20	24.05	$\frac{3C}{C20}$	22.46	C10 C20	16.09	C14 C20	$\frac{SC}{C14}$		$\frac{3C}{C20}$	
910	423	C24	C40	/,01	<u> </u>	C20	24,95	<u>C20</u>	23,40	<u> </u>	10,28	C20			C20	
919	419	C22	<u>C35</u>	6,65	SC	C20	9,49	SC	14,95	SC	8,50	C14	SC	OK	SC	
922	462	<u>C30</u>	<u>C50</u>	5,46	SC	<u>C16</u>	31,21	C30	25,44	<u>C35</u>	21,03	<u>C35</u>	SC	OK	C16	OK
928	367	C14	C24	4,95	SC	C14	29,48	C20	24,93	C30	19,63	C30	SC	OK	C14	OK
940	438	C24	C40	5,72	SC	C16	14,44	C14	18,65	C18	10,29	C16	SC	OK	C14	OK
953	442	C24	C45	5,74	SC	C16	25,62	C20	23,70	C30	16,75	C20	SC	OK	C16	OK
960	478	C30	C50	8,31	C16	C30	18,68	C18	20,92	C20	12,41	C20	C16	OK	C18	Ν
963	408	C20	C35	5,99	SC	C16	36,21	C40	26,74	C40	25,47	C40	SC	OK	C16	OK
964	391	C20	C30	5,31	SC	C14	24,67	C20	23,36	C30	16,09	C20	SC	OK	C14	OK
976	437	C24	C40	5,42	SC	C16	16,66	C16	19,91	C20	11,34	C18	SC	OK	C16	OK
977	420	C24	C40	4,97	SC	C14	26,84	C20	24,11	C30	17,62	C20	SC	OK	C14	OK
978	474	C30	C50	6,59	SC	C20	19,01	C18	21,07	C20	12,59	C20	SC	OK	C18	OK
983	469	C30	C50	7,81	C14	C20	16,49	C16	19,82	C20	11,26	C18	C14	OK	C16	OK
993	465	C30	C50	7,00	SC	C20	18,06	C18	20,62	C20	12,07	C20	SC	OK	C18	Ν
994	419	C22	C35	5,28	SC	C14	23,14	C20	22,80	C20	15,07	C20	SC	OK	C14	ОК
995	496	C35	C50	6,34	SC	C18	24,36	C20	23,25	C30	15,88	C20	SC	OK	C18	OK
1001	461	C30	C50	7,25	C14	C20	25,67	C20	23,71	C30	16,78	C20	C14	OK	C20	ОК
1003	469	C30	C50	6,11	SC	C18	14,46	C14	18,66	C18	10,30	C16	SC	OK	C14	OK
1020	449	C24	C45	7,44	C14	C20	24,13	C20	23,17	C30	15,73	C20	C14	OK	C20	Ν
1021	467	C30	C50	5,19	SC	C14	13,11	SC	17,80	C16	9,73	C14	SC	OK	SC	OK
1032	365	C14	C24	3,60	SC	SC	4,08	SC	7,52	SC	8,83	C14	SC	OK	SC	OK
1040	441	C24	C45	5,26	SC	C14	27,20	C20	24,22	C30	17,88	C20	SC	OK	C14	OK
1043	442	C24	C45	6,33	SC	C18	6,09	SC	11,04	SC	8,08	C14	SC	OK	SC	OK
1049	453	C27	C45	3,51	SC	SC	4,65	SC	8,68	SC	8,46	C14	SC	OK	SC	OK
1064	493	C35	C50	8,96	C16	C35	19,31	C18	21,21	C20	12,75	C20	C16	OK	C18	OK
1066	424	C24	C40	4,16	SC	SC	16,87	C16	20,02	C20	11,45	C18	SC	OK	SC	OK

Tabela Apêndice F.5 – Protocolo de classificação por métodos não destrutivos para tração paralela às fibras

ID	Dv	СДм		Ex	$\frac{CP_{10}-1}{CE_{M}}$	$\frac{10100010}{CE_{K}}$	F _{MX}	CF _{MX}	F _{eox}	CEas	Ftox		R M	VER M	Rĸ	VER K
1069	$\frac{-2x}{408}$	C20	C35	2.76	SC	SC	26.78	$\frac{C20}{C20}$	24.09	C30	17.58	C20	SC	OK	SC	OK
1071	496	C35	C50	6.24	SC	C18	45.22	C45	28.70	C45	35.07	C50	SC	OK	C18	OK
1250	443	C24	C45	4.05	SC	SC	27.92	C20	24.45	C30	18.42	C30		OK	SC	OK
1264	426	C24	C40	7.72	C14	C20	25.45	C20	23.64	C30	16.63	C20	C14	OK	C20	OK
1265	502	C40	C50	8.17	C16	C30	19.20	C18	21.16	C20	12.69	C20	C16	OK	C18	OK
1269	486	C35	C50	7.59	C14	C20	10.97	SC	16.23	C14	8.94	C14	SC	OK	SC	OK
1272	489	C35	C50	10.83	C20	C50	12.50	SC	17.38	C16	9.49	C14	SC	OK	SC	OK
1274	465	C30	C50	6.20	SC	C18	27.82	C20	24.42	C30	18.35	C30		OK	C18	OK
1275	499	C35	C50	8.23	C16	C30	28.24	C20	24.56	C30	18.67	C30	C16	OK	C20	OK
1284	428	C24	C40	8.78	C16	C35	11.50	SC	16.64	C14	9.12	C14	SC	OK	SC	OK
1288	384	C18	C30	5.51	SC	C16	12.71	SC	17.53	C16	9.57	C14	SC	OK	SC	OK
1303	478	C30	C50	5.74	SC	C16	15.91	C14	19.50	C20	10.97	C16	SC	OK	C14	OK
1308	439	C24	C40	6,24	SC	C18	12,89	SC	17,65	C16	9,64	C14	SC	OK	SC	OK
1310	383	C18	C30	5,75	SC	C16	16,71	C16	19,94	C20	11,37	C18	SC	OK	C16	N
1318	473	C30	C50	7,89	C14	C20	13,52	SC	18,07	C18	9,90	C14	SC	OK	SC	OK
1320	456	C27	C45	6,59	SC	C20	19,67	C18	21,37	C20	12,96	C20	SC	OK	C18	N
1338	402	C20	C35	5,00	SC	C14	17,79	C16	20,49	C20	11,92	C18	SC	OK	C14	N
1348	399	C20	C30	3,68	SC	SC	9,55	SC	15,01	SC	8,52	C14	SC	OK	SC	OK
1354	384	C18	C30	5,62	SC	C16	15,92	C14	19,51	C20	10,98	C16	SC	OK	C14	OK
1361	366	C14	C24	6,33	SC	C18	23,41	C20	22,90	C20	15,25	C20	SC	OK	C18	OK
1364	375	C16	C27	5,64	SC	C16	24,90	C20	23,45	C30	16,25	C20	SC	OK	C16	N
1365	426	C24	C40	8,54	C16	C30	22,32	C20	22,48	C20	14,55	C20	C16	OK	C20	OK
1368	444	C24	C45	5,27	SC	C14	21,02	C20	21,95	C20	13,75	C20	SC	OK	C14	OK
1369	422	C24	C40	7,18	C14	C20	24,76	C20	23,40	C30	16,15	C20	C14	OK	C20	N
1418	368	C14	C24	5,13	SC	C14	13,51	SC	18,06	C18	9,89	C14	SC	OK	SC	OK
1498	534	C45	C50	6,37	SC	C18	5,86	SC	10,70	SC	8,11	C14	SC	OK	SC	OK
1721	426	C24	C40	7,96	C14	C20	27,41	C20	24,29	C30	18,04	C30	C14	OK	C20	OK
1821	410	C22	C35	5,92	SC	C16	23,10	C20	22,79	C20	15,05	C20	SC	OK	C16	OK

Tabela Apêndice F.6 – Protocolo de classificação por métodos não destrutivos para tração paralela às fibras

ID	Dv	СДм		Ex	$\frac{CE_M}{CE_M}$	$\frac{10100010}{CE_{V}}$	F _{MX}	CF _{MV}	F.ov	CEasy	Finx		R M	VER M	Rv	VER K
1832	455	$\frac{\mathcal{C}\mathcal{D}_{M}}{C27}$	$\frac{CDK}{C45}$	4 55	$\frac{SL_{M}}{SC}$	SC	14 40	$\frac{C14}{C14}$	18.63	C18	10.28	C16		OK	SC	
1872	416	$\frac{C27}{C22}$	C35	4 54		SC	11,10	SC	16,05	C14	9.02	C14			SC	
1957	434	$\frac{C22}{C24}$	$\frac{C33}{C40}$	7.88	C14	$\frac{\text{DC}}{\text{C20}}$	19.95	C18	21 50	C20	13.12	$\frac{C20}{C20}$	C14		C18	
1961	484	C24	C50	7,00	$\frac{C14}{C14}$	$\frac{C20}{C20}$	9.07		14 56	<u>SC</u>	8.40	$\frac{C20}{C14}$	<u>SC</u>		SC	
1901	430	$\frac{C33}{C24}$	$\frac{C30}{C40}$	1,44		<u> </u>	23 58	$\frac{30}{20}$	22.07	<u> </u>	15.36	$\frac{C14}{C20}$			<u>sc</u>	
1962	430	C24	C50	5.65	<u> </u>	$\frac{50}{C16}$	<u>23,30</u> <u>8 44</u>	<u> </u>	13.93	<u> </u>	8 26	$\frac{C20}{C14}$			<u>sc</u>	
1903	561	$\frac{C50}{C50}$	$\frac{C50}{C50}$	11 51	$\frac{30}{20}$	C10	51 12		20.78		42.53	C50	$\frac{30}{20}$		<u> </u>	
1909	592	C50	C50	11,51	$\frac{C20}{C20}$	C50	26.44	$\frac{C30}{C20}$	29,70	C30	42,33	<u>C30</u>	$\frac{C20}{C20}$		$\frac{C30}{C20}$	
1970	162	$\frac{C30}{C30}$	C50	5.92	<u> </u>	$\frac{CJ0}{C16}$	20,44	$\frac{C20}{C20}$	25,90	C30	20.25	$\frac{C20}{C20}$	<u> </u>		C_{20}	
1900	403	$\frac{C30}{C20}$	$\frac{C30}{C35}$	3,82		$\frac{C10}{C14}$	$\frac{50,23}{12.93}$	<u> </u>	23,10	C35	20,23	$\frac{C30}{C14}$			<u> </u>	
1901	404	$\frac{C20}{C24}$	C35	4,98		$\frac{C14}{C16}$	12,03	$\frac{SC}{C14}$	17,01	C10 C20	9,02	C14 C16			$\frac{SC}{C14}$	
1982	444 525	C24	C43	3,99		C10 C45	13,25	C14 C20	19,12	C20	10,05	C10 C25			C14	
1985	335	C45	C50	10,54	$\frac{C20}{C16}$	C45	33,17	<u> </u>	25,97	<u> </u>	22,70	<u>C35</u>	<u>C20</u>		<u>C30</u>	
1984	4/1	<u>C30</u>	<u>C50</u>	8,74	C16	<u>C35</u>	10,07	<u>SC</u>	15,48	<u> </u>	8,00	<u>C14</u>			SC	
1986	516	C40	C50	1,31	C14	C20	21,47	C20	22,14	C20	14,02	C20	<u>C14</u>		C20	
1988	459	C27	C45	6,66	SC	C20	9,21	SC	14,69	SC	8,43	C14	SC	OK	SC	
1989	497	<u>C35</u>	C50	7,57	C14	C20	34,25	C30	26,25	C40	23,67	<u>C35</u>	C14	OK	C20	
1990	511	C40	C50	7,16	C14	C20	35,74	C40	26,63	C40	25,04	C40	C14	OK	C20	OK
1991	455	C27	C45	6,79	SC	C20	11,91	SC	16,95	C14	9,27	C14	SC	OK	SC	OK
1992	363	C14	C24	5,00	SC	C14	17,99	C16	20,58	C20	12,03	C20	SC	OK	C14	N
1995	497	C35	C50	5,66	SC	C16	38,29	C40	27,23	C45	27,50	C45	SC	OK	C16	OK
1996	543	C45	C50	8,81	C16	C35	40,14	C40	27,65	C45	29,41	C45	C16	OK	C35	OK
1997	595	C50	C50	6,91	SC	C20	40,96	C40	27,83	C45	30,27	C50	SC	OK	C20	OK
1999	568	C50	C50	9,76	C20	C40	13,39	SC	17,98	C16	9,84	C14	SC	OK	SC	OK
2000	522	C45	C50	7,67	C14	C20	16,77	C16	19,97	C20	11,40	C18	C14	OK	C16	OK
2001	548	C45	C50	9,78	C20	C40	51,24	C50	29,80	C50	42,69	C50	C20	OK	C40	OK
2002	422	C24	C40	7,33	C14	C20	33,90	C30	26,16	C40	23,35	C35	C14	OK	C20	OK
2004	458	C27	C45	7,21	C14	C20	47,55	C45	29,14	C50	37,89	C50	C14	OK	C20	OK
2005	443	C24	C45	5,55	SC	C16	10,39	SC	15,75	SC	8,76	C14	SC	OK	SC	OK

Tabela Apêndice F.7 – Protocolo de classificação por métodos não destrutivos para tração paralela às fibras

	Dv	СЪм	$\frac{1 \text{ abera}}{CD_{V}}$	Ex	$\frac{CE_{1.0}-1}{CE_{M}}$	$\frac{10100010}{CE_{V}}$	Exercitassi Exercitassi	CEvy	F.ox	CE-ox	Fiox	CE ₁₀ v	$\frac{1}{\mathbf{R}}$	VER M	R	VER K
2011	456	$\frac{CD_{\rm M}}{C27}$	C45	<u>4 77</u>		$\frac{CL_{K}}{C14}$	15.96	$\frac{CIMX}{C14}$	19.53	$\frac{C20}{C20}$	11.00				<u>C14</u>	
2011	508	$\frac{C27}{C40}$	C50	11 30	$\frac{50}{C^{20}}$	C50	26 71	$\frac{C14}{C20}$	24.07	C30	17.53	C20	$\frac{C20}{C20}$		$\frac{C14}{C20}$	
2013	300	$\frac{C+0}{C^{2}0}$	$\frac{C30}{C30}$	4.42	<u> </u>	<u> </u>	12.08	<u> </u>	17.09	C16	0.33	$\frac{C20}{C14}$	<u> </u>		<u>SC</u>	
2010	404	$\frac{C20}{C20}$	$\frac{C30}{C35}$	4,42		$\frac{SC}{C14}$	12,00	$\frac{SC}{C16}$	20.14	<u>C10</u>	9,55	$\frac{C14}{C19}$			$\frac{SC}{C14}$	
2017	404	$\frac{C20}{C20}$	C50	4,78	<u>sc</u>	$\frac{C14}{C19}$	52.25	C10 C50	20,14	C20	11,37	C10			$\frac{C14}{C19}$	
2022	472	C50	C50	0,39	$\frac{SC}{C19}$	$\frac{C18}{C25}$	$\frac{32,23}{22,17}$	$\frac{C30}{C20}$	29,97	<u>C30</u>	44,08	$\frac{C30}{C20}$	$\frac{SC}{C19}$		$\frac{C18}{C20}$	
2025	502	C30	<u>C50</u>	9,25	C18 C20	C35 C40	23,17	C20	22,81	C20	15,09	C20	<u>C18</u>		C20	
2024	503	C40	<u>C50</u>	9,93	C20	C40	23,89	C20	23,08	<u>C30</u>	15,57	C20	C20		C20	
2026	4/1	C30	C50	7,45	C14	C20	26,22	C20	23,90	<u>C30</u>	1/,1/	C20	C14		C20	
2027	492	<u>C35</u>	C50	7,86	<u>CI4</u>	<u>C20</u>	12,69	SC	17,51	C16	9,56	C14	SC	OK	<u>SC</u>	
2028	381	<u>C18</u>	<u>C30</u>	4,36	SC	SC	16,34	<u>C16</u>	19,74	C20	11,18	<u>C18</u>	SC	OK	SC	OK
2034	440	C24	C45	6,94	SC	C20	15,11	C14	19,05	C20	10,60	C16	SC	OK	C14	OK
2036	570	C50	C50	11,58	C20	C50	26,24	C20	23,91	C30	17,19	C20	C20	OK	C20	OK
2039	523	C45	C50	9,03	C18	C35	17,88	C16	20,53	C20	11,97	C18	C16	OK	C16	OK
2040	460	C30	C50	4,55	SC	SC	20,93	C20	21,92	C20	13,70	C20	SC	OK	SC	OK
2041	411	C22	C35	6,39	SC	C18	46,81	C45	29,00	C50	36,98	C50	SC	OK	C18	OK
2042	449	C24	C45	5,13	SC	C14	50,61	C50	29,69	C50	41,84	C50	SC	OK	C14	OK
2043	476	C30	C50	9,04	C18	C35	29,13	C20	24,83	C30	19,35	C30	C18	OK	C20	OK
2044	558	C50	C50	8,39	C16	C30	21,51	C20	22,16	C20	14,04	C20	C16	OK	C20	OK
2048	577	C50	C50	8,40	C16	C30	35,92	C40	26,67	C40	25,21	C40	C16	OK	C30	OK
2050	462	C30	C50	8,27	C16	C30	23,25	C20	22,84	C20	15,14	C20	C16	OK	C20	OK
2051	499	C35	C50	8,79	C16	C35	21,66	C20	22,22	C20	14,14	C20	C16	OK	C20	OK
2053	473	C30	C50	8,56	C16	C30	19,33	C18	21,22	C20	12,77	C20	C16	OK	C18	OK
2056	431	C24	C40	5,77	SC	C16	42,39	C40	28,13	C45	31,83	C50	SC	OK	C16	OK
2061	479	C30	C50	6,49	SC	C20	37,84	C40	27,13	C45	27,06	C45	SC	OK	C20	OK
2070	448	C24	C45	7,94	C14	C20	38,42	C40	27,26	C45	27,63	C45	C14	OK	C20	OK
2072	403	C20	C35	6,09	SC	C18	31,03	C30	25,38	C35	20,88	C30	SC	OK	C18	N
2077	500	C40	C50	8,83	C16	C35	50,79	C50	29,72	C50	42,09	C50	C16	OK	C35	OK
2082	429	C24	C40	6,36	SC	C18	27,39	C20	24,29	C30	18,03	C30	SC	OK	C18	OK

Tabela Apêndice F.8 – Protocolo de classificação por métodos não destrutivos para tração paralela às fibras

			Tabela	Apendi	се г.9 – .						ivos para u	ação paraie				
ID	Dx	CD _M	CD _K	Ex	CE _M	СЕК	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
2084	370	C16	C27	4,66	SC	SC	19,32	C18	21,21	C20	12,76	C20	SC	OK	SC	OK
2085	447	C24	C45	6,67	SC	C20	23,24	C20	22,84	C20	15,14	C20	SC	OK	C20	OK
2089	461	C30	C50	6,82	SC	C20	7,59	SC	12,98	SC	8,13	C14	SC	OK	SC	OK
2090	414	C22	C35	6,52	SC	C20	23,38	C20	22,89	C20	15,23	C20	SC	OK	C20	OK
2094	420	C24	C40	4,45	SC	SC	11,51	SC	16,66	C14	9,13	C14	SC	OK	SC	OK
2097	458	C27	C45	7,51	C14	C20	14,53	C14	18,70	C18	10,33	C16	C14	OK	C14	OK
2101	555	C50	C50	8,49	C16	C30	50,64	C50	29,70	C50	41,89	C50	C16	OK	C30	OK
2102	510	C40	C50	9,93	C20	C40	23,28	C20	22,85	C20	15,16	C20	C20	OK	C20	OK
2104	407	C20	C35	4,30	SC	SC	12,36	SC	17,28	C16	9,43	C14	SC	OK	SC	OK
2106	413	C22	C35	7,04	C14	C20	41,14	C40	27,87	C45	30,47	C50	C14	OK	C20	OK
2108	392	C20	C30	4,48	SC	SC	9,10	SC	14,59	SC	8,41	C14	SC	OK	SC	OK
2109	434	C24	C40	4,98	SC	C14	3,27	SC	5,58	SC	9,78	C14	SC	OK	SC	OK
2110	429	C24	C40	5,63	SC	C16	10,50	SC	15,84	SC	8,79	C14	SC	OK	SC	OK
2112	427	C24	C40	5,96	SC	C16	24,45	C20	23,29	C30	15,94	C20	SC	OK	C16	Ν
2114	401	C20	C35	5,97	SC	C16	34,09	C30	26,21	C40	23,52	C35	SC	OK	C16	OK
2116	404	C20	C35	3,78	SC	SC	11,89	SC	16,94	C14	9,26	C14	SC	OK	SC	OK
2117	408	C20	C35	4,65	SC	SC	34,99	C30	26,44	C40	24,34	C40	SC	OK	SC	OK
2119	445	C24	C45	7,21	C14	C20	22,76	C20	22,65	C20	14,83	C20	C14	OK	C20	OK
2120	496	C35	C50	5,70	SC	C16	5,51	SC	10,17	SC	8,16	C14	SC	OK	SC	OK
2121	452	C27	C45	7,50	C14	C20	6,06	SC	11,00	SC	8,09	C14	SC	OK	SC	OK
2122	476	C30	C50	6,64	SC	C20	25,21	C20	23,56	C30	16,46	C20	SC	OK	C20	OK
2124	505	C40	C50	5,56	SC	C16	44,56	C40	28,57	C45	34,29	C50	SC	OK	C16	OK
2125	477	C30	C50	7,96	C14	C20	37,62	C40	27,08	C45	26,84	C40	C14	OK	C20	OK
2127	397	C20	C30	6,13	SC	C18	22,75	C20	22,65	C20	14,82	C20	SC	OK	C18	OK
2130	431	C24	C40	7,15	C14	C20	52,32	C50	29,98	C50	44,18	C50	C14	OK	C20	OK
2131	412	C22	C35	5,76	SC	C16	9,83	SC	15,27	SC	8,59	C14	SC	OK	SC	ОК
2132	409	C20	C35	6,06	SC	C18	26,45	C20	23,98	C30	17,34	C20	SC	OK	C18	OK
2135	365	C14	C24	5,19	SC	C14	19,65	C18	21,36	C20	12,95	C20	SC	OK	C14	N

Tabela Apêndice F.9 – Protocolo de classificação por métodos não destrutivos para tração paralela às fibras

			Tabela	Apendic	e F.10 –	Protocol	o de class	silicação	por metod	os não destru	uvos para u	ração parai	ela as lic	oras		
ID	Dx	CD _M	CD _K	Ex	CE _M	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
2138	455	C27	C45	7,08	C14	C20	26,30	C20	23,93	C30	17,23	C20	C14	OK	C20	Ν
2140	426	C24	C40	6,26	SC	C18	11,72	SC	16,81	C14	9,20	C14	SC	OK	SC	OK
2141	474	C30	C50	6,35	SC	C18	15,71	C14	19,39	C20	10,88	C16	SC	OK	C14	OK
2142	441	C24	C45	4,25	SC	SC	8,33	SC	13,81	SC	8,24	C14	SC	OK	SC	OK
2144	417	C22	C35	4,61	SC	SC	11,43	SC	16,59	C14	9,10	C14	SC	OK	SC	OK
2145	476	C30	C50	7,51	C14	C20	34,95	C30	26,43	C40	24,30	C40	C14	OK	C20	OK
2147	526	C45	C50	7,97	C14	C20	49,87	C45	29,56	C50	40,86	C50	C14	OK	C20	OK
2148	473	C30	C50	7,83	C14	C20	17,27	C16	20,22	C20	11,65	C18	C14	OK	C16	OK
2149	462	C30	C50	6,39	SC	C18	51,55	C50	29,85	C50	43,11	C50	SC	OK	C18	OK
2152	412	C22	C35	3,73	SC	SC	14,96	C14	18,96	C18	10,53	C16	SC	OK	SC	OK
2156	467	C30	C50	7,15	C14	C20	21,99	C20	22,35	C20	14,34	C20	C14	OK	C20	Ν
2158	388	C18	C30	5,26	SC	C14	24,40	C20	23,27	C30	15,91	C20	SC	OK	C14	OK
2165	465	C30	C50	8,89	C16	C35	16,79	C16	19,98	C20	11,41	C18	C16	Ν	C16	Ν
2168	432	C24	C40	6,59	SC	C20	10,20	SC	15,59	SC	8,70	C14	SC	OK	SC	OK
2169	408	C20	C35	5,85	SC	C16	21,37	C20	22,10	C20	13,96	C20	SC	OK	C16	Ν
2170	538	C45	C50	9,16	C18	C35	20,90	C20	21,90	C20	13,68	C20	C18	OK	C20	Ν
2171	463	C30	C50	6,54	SC	C20	24,89	C20	23,44	C30	16,24	C20	SC	OK	C20	OK
2172	462	C30	C50	4,55	SC	SC	5,10	SC	9,49	SC	8,27	C14	SC	OK	SC	OK
2175	400	C20	C35	3,44	SC	SC	37,38	C40	27,02	C45	26,61	C40	SC	OK	SC	OK
2179	492	C35	C50	7,13	C14	C20	42,84	C40	28,22	C45	32,33	C50	C14	OK	C20	OK
2180	461	C30	C50	4,55	SC	SC	14,22	C14	18,52	C18	10,20	C16	SC	OK	SC	OK
2182	484	C35	C50	7,40	C14	C20	45,56	C45	28,76	C45	35,47	C50	C14	OK	C20	OK
2188	415	C22	C35	3,31	SC	SC	23,19	C20	22,82	C20	15,10	C20	SC	OK	SC	OK
2189	481	C35	C50	6,14	SC	C18	18,36	C18	20,76	C20	12,23	C20	SC	OK	C18	OK
2190	475	C30	C50	9,15	C18	C35	51,29	C50	29,81	C50	42,76	C50	C18	OK	C35	OK
2196	562	C50	C50	5,66	SC	C16	50,70	C50	29,71	C50	41,97	C50	SC	OK	C16	OK
2200	517	C40	C50	7,73	C14	C20	49,58	C45	29,51	C50	40,49	C50	C14	OK	C20	OK
2201	373	C16	C27	5,32	SC	C14	15,03	C14	19,00	C20	10,56	C16	SC	OK	C14	OK

Tabala Anândica E 10 Drote olo do alegoificação . átoda não doctrutiz ara tração paralela às fib

ID	Dv		$\frac{10013}{CD_{v}}$	Ex	$\frac{11 - FIC}{CE_M}$		E classific Fxx		F.ox		s para traça E.ov		$\frac{as}{R_M}$	VER M	R	VER K
2202	<u>165</u>	$\frac{CD_{M}}{C30}$	$\frac{CD_{K}}{C50}$	8.07	C16	C20	26.43	$\frac{CP_{MX}}{C^{20}}$	23.07		17.32	$\frac{C^2}{C^2}$	$\frac{\mathbf{K}_{\mathrm{M}}}{\mathrm{C16}}$		$\frac{\mathbf{K}}{\mathbf{C}^{20}}$	
2202	405	$\frac{C30}{C27}$	$\frac{C30}{C45}$	6.07	<u>SC</u>	$\frac{C30}{C20}$	25,45	$\frac{C20}{C20}$	23,57	<u>C30</u>	16.35	$\frac{C20}{C20}$	<u>SC</u>		$\frac{C20}{C20}$	
2203	520	$\frac{C27}{C45}$	C4J	0,97	$\frac{30}{20}$	$\frac{C20}{C40}$	51.00	C20	20,01	C50	12 56	C20	$\frac{3C}{C20}$		$\frac{C20}{C40}$	
2207	529	$\frac{C45}{C45}$	C50	9,35	<u>C20</u>	$\frac{C40}{C20}$	31,00	C30	29,91	C30	45,50	C50	<u>C20</u>		$\frac{C40}{C20}$	
2209	525	C45	<u>C50</u>	0,41	<u> </u>	C20	47,77	<u>C45</u>	29,18	<u>C30</u>	38,17	<u> </u>			C20	
2211	508	C40	<u>C50</u>	6,07	SC	C18 C10	27,69	C20	24,38	<u>C30</u>	18,25	<u>C30</u>	SC		C18 C10	
2212	41/	C22	C35	6,21	SC	C18	21,76	C20	22,26	<u>C20</u>	14,20	C20	SC	OK	C18	OK
2215	422	C24	C40	6,44	SC	C20	27,13	C20	24,20	C30	17,83	C20	SC	OK	C20	OK
2220	508	C40	C50	8,35	C16	C30	39,29	C40	27,46	C45	28,52	C45	C16	OK	C30	OK
2222	492	C35	C50	7,91	C14	C20	28,02	C20	24,48	C30	18,50	C30	C14	OK	C20	OK
2224	430	C24	C40	6,81	SC	C20	19,96	C18	21,50	C20	13,13	C20	SC	OK	C18	Ν
2227	442	C24	C45	4,34	SC	SC	28,49	C20	24,63	C30	18,86	C30	SC	OK	SC	OK
2231	456	C27	C45	4,65	SC	SC	33,77	C30	26,13	C40	23,23	C35	SC	OK	SC	OK
2232	472	C30	C50	5,35	SC	C14	14,74	C14	18,83	C18	10,43	C16	SC	OK	C14	OK
2233	486	C35	C50	5,91	SC	C16	30,72	C30	25,30	C35	20,63	C30	SC	OK	C16	OK
2234	452	C27	C45	5,79	SC	C16	7,11	SC	12,41	SC	8,08	C14	SC	OK	SC	OK
2236	404	C20	C35	5,65	SC	C16	19,11	C18	21,12	C20	12,64	C20	SC	OK	C16	N
2239	434	C24	C40	5,58	SC	C16	16,62	C16	19,89	C20	11,32	C18	SC	OK	C16	OK
2244	436	C24	C40	4,33	SC	SC	15,62	C14	19,34	C20	10,83	C16	SC	OK	SC	OK
2246	449	C24	C45	4,47	SC	SC	33,99	C30	26,18	C40	23,43	C35	SC	OK	SC	OK
2247	477	C30	C50	8,32	C16	C30	23,36	C20	22,88	C20	15,22	C20	C16	OK	C20	OK
2249	465	C30	C50	7,63	C14	C20	39,08	C40	27,41	C45	28,30	C45	C14	OK	C20	OK
2253	575	C50	C50	10,58	C20	C45	38,23	C40	27,22	C45	27,45	C45	C20	OK	C40	OK
2255	553	C50	C50	12,66	C30	C50	45,43	C45	28,74	C45	35,32	C50	C30	OK	C45	OK
2259	398	C20	C30	5,83	SC	C16	26,84	C20	24,11	C30	17,62	C20	SC	OK	C16	OK
2260	498	C35	C50	8,01	C16	C30	19,86	C18	21,46	C20	13,07	C20	C16	OK	C18	OK
2264	399	C20	C30	4,37	SC	SC	29,13	C20	24,83	C30	19,35	C30	SC	OK	SC	OK
2267	562	C50	C50	11,88	C20	C50	20,46	C20	21,72	C20	13,41	C20	C20	N	C20	N
2270	464	C30	C50	5,34	SC	C14	40,83	C40	27,80	C45	30,13	C50	SC	OK	C14	OK

Tabala Anândica E 11 Proto aolo do alessificação não doctrutiz ara tração paralala às fib

	D	CD		Apendice E	$\frac{\Gamma \cdot \Gamma \cdot \Gamma - \Gamma}{CE}$		E Class	CE							D	VED V
	D_X			Ex					F _{c0X}		F _{t0X}		K _M			
2311	516	C40	C50	6,46	SC	C20	8,12	SC	13,58	SC	8,20	C14	SC	OK	SC	OK
2312	470	C30	C50	5,79	SC	C16	18,18	C18	20,68	C20	12,13	C20	SC	OK	C16	OK
2313	600	C50	C50	13,14	C35	C50	42,95	C40	28,25	C45	32,45	C50	C35	OK	C40	OK
2325	662	C50	C50	14,26	C40	C50	36,92	C40	26,91	C40	26,16	C40	C40	OK	C40	OK
2369	485	C35	C50	7,10	C14	C20	19,59	C18	21,33	C20	12,91	C20	C14	OK	C18	OK
2382	454	C27	C45	7,52	C14	C20	32,70	C30	25,84	C35	22,29	C35	C14	OK	C20	OK
2389	442	C24	C45	3,76	SC	SC	43,62	C40	28,38	C45	33,21	C50	SC	OK	SC	OK
2390	401	C20	C35	6,89	SC	C20	30,27	C30	25,17	C35	20,26	C30	SC	OK	C20	OK
2392	436	C24	C40	7,23	C14	C20	38,17	C40	27,21	C45	27,39	C45	C14	OK	C20	OK
2393	425	C24	C40	5,51	SC	C16	29,54	C20	24,95	C30	19,68	C30	SC	OK	C16	OK
2394	469	C30	C50	8,64	C16	C30	24,79	C20	23,41	C30	16,17	C20	C16	OK	C20	OK
2399	462	C30	C50	6,66	SC	C20	10,34	SC	15,71	SC	8,74	C14	SC	OK	SC	OK
2402	464	C30	C50	5,57	SC	C16	36,41	C40	26,79	C40	25,67	C40	SC	OK	C16	OK
2404	381	C18	C30	4,37	SC	SC	24,59	C20	23,34	C30	16,04	C20	SC	OK	SC	OK
2405	418	C22	C35	5,87	SC	C16	21,88	C20	22,31	C20	14,28	C20	SC	OK	C16	OK
2406	389	C18	C30	6,16	SC	C18	8,92	SC	14,41	SC	8,36	C14	SC	OK	SC	OK
2409	396	C20	C30	6,20	SC	C18	27,17	C20	24,21	C30	17,87	C20	SC	OK	C18	OK
2411	427	C24	C40	5,96	SC	C16	47,14	C45	29,06	C50	37,38	C50	SC	OK	C16	OK
2414	429	C24	C40	6,14	SC	C18	12,71	SC	17,53	C16	9,57	C14	SC	OK	SC	OK
2415	437	C24	C40	3,52	SC	SC	11,98	SC	17,01	C16	9,29	C14	SC	OK	SC	OK
2417	462	C30	C50	6,72	SC	C20	17,42	C16	20,30	C20	11,73	C18	SC	OK	C16	OK
2420	430	C24	C40	5,57	SC	C16	12,45	SC	17,35	C16	9,47	C14	SC	OK	SC	OK
2422	483	C35	C50	6,71	SC	C20	32,69	C30	25,84	C35	22,29	C35	SC	OK	C20	OK
2423	442	C24	C45	7,43	C14	C20	27,84	C20	24,43	C30	18,36	C30	C14	OK	C20	OK
2424	490	C35	C50	7,67	C14	C20	20,14	C20	21,58	C20	13,23	C20	C14	OK	C20	OK
2425	457	C27	C45	5,74	SC	C16	7,00	SC	12,28	SC	8,08	C14	SC	OK	SC	OK
2426	467	C30	C50	4,66	SC	SC	18,91	C18	21,03	C20	12,53	C20	SC	OK	SC	OK
2428	446	C24	C45	5,78	SC	C16	6,35	SC	11,41	SC	8,07	C14	SC	OK	SC	OK

Tabela Apêndice F.12 – Protocolo de classificação por métodos não destrutivos para tração paralela às fibras

			Tabela	Apendice	; r.15 – I	-10100010) de class	mcaçao p	or metodos	nao destrutivo	os para tração) paralela as	s noras			
ID	Dx	CD _M	CD _K	Ex	CE _M	CE _K	F _{MX}	CF _{MX}	F _{c0X}	CF _{c0X}	F _{t0X}	CF _{t0X}	R _M	VER M	R _K	VER K
2429	435	C24	C40	6,11	SC	C18	7,89	SC	13,33	SC	8,17	C14	SC	OK	SC	OK
2430	421	C24	C40	6,57	SC	C20	9,01	SC	14,50	SC	8,39	C14	SC	OK	SC	OK
2432	456	C27	C45	6,25	SC	C18	16,41	C16	19,78	C20	11,22	C18	SC	OK	C16	OK
2434	422	C24	C40	6,29	SC	C18	11,34	SC	16,52	C14	9,06	C14	SC	OK	SC	OK
2436	367	C14	C24	5,38	SC	C14	15,06	C14	19,02	C20	10,57	C16	SC	OK	C14	OK
2438	493	C35	C50	7,61	C14	C20	35,82	C40	26,65	C40	25,10	C40	C14	OK	C20	OK
2439	518	C40	C50	11,30	C20	C50	45,10	C45	28,68	C45	34,92	C50	C20	OK	C45	OK
2441	447	C24	C45	6,95	SC	C20	16,74	C16	19,95	C20	11,38	C18	SC	OK	C16	OK
2443	459	C27	C45	4,49	SC	SC	12,89	SC	17,65	C16	9,64	C14	SC	OK	SC	OK
2445	475	C30	C50	4,63	SC	SC	14,66	C14	18,78	C18	10,39	C16	SC	OK	SC	OK
2447	399	C20	C30	3,78	SC	SC	9,87	SC	15,30	SC	8,60	C14	SC	OK	SC	OK
2448	461	C30	C50	6,13	SC	C18	44,24	C40	28,51	C45	33,91	C50	SC	OK	C18	OK
2450	553	C50	C50	7,56	C14	C20	49,48	C45	29,49	C50	40,35	C50	C14	OK	C20	OK
2453	459	C27	C45	8,11	C16	C30	12,23	SC	17,19	C16	9,38	C14	SC	OK	SC	OK
2454	454	C27	C45	4,97	SC	C14	22,68	C20	22,62	C20	14,77	C20	SC	OK	C14	OK
2455	519	C40	C50	11,07	C20	C50	51,32	C50	29,81	C50	42,80	C50	C20	OK	C50	OK
2456	512	C40	C50	8,39	C16	C30	7,34	SC	12,69	SC	8,10	C14	SC	OK	SC	OK
2459	432	C24	C40	7,16	C14	C20	22,46	C20	22,54	C20	14,64	C20	C14	OK	C20	OK
2460	436	C24	C40	7,54	C14	C20	28,15	C20	24,53	C30	18,60	C30	C14	OK	C20	OK
2461	482	C35	C50	9,67	C20	C40	18,78	C18	20,96	C20	12,46	C20	C18	OK	C18	OK
2463	408	C20	C35	5,46	SC	C16	15,55	C14	19,30	C20	10,80	C16	SC	OK	C14	OK
2464	454	C27	C45	8,05	C16	C30	41,17	C40	27,87	C45	30,50	C50	C16	OK	C30	OK
2465	475	C30	C50	4,69	SC	SC	46,95	C45	29,03	C50	37,15	C50	SC	OK	SC	OK
2466	443	C24	C45	6,47	SC	C20	42,34	C40	28,12	C45	31,77	C50	SC	OK	C20	OK
2467	444	C24	C45	6,85	SC	C20	33,14	C30	25,96	C35	22,68	C35	SC	OK	C20	OK
2469	433	C24	C40	4,75	SC	C14	36,76	C40	26,88	C40	26,00	C40	SC	OK	C14	OK
2470	458	C27	C45	7,41	C14	C20	13,82	SC	18,27	C18	10,03	C16	SC	OK	SC	OK
2471	399	C20	C30	5,89	SC	C16	6,53	SC	11,67	SC	8,06	C14	SC	OK	SC	OK

Tabela Apêndice F.13 – Protocolo de classificação por métodos não destrutivos para tração paralela às fibras

ID	Dx	СДм		Ex	СЕм	СЕк	F _{MX}	CF _{MX}	F _{c0x}	CFcox	Ftox	CF _{t0x}	<u>в погаз</u> R м	VER M	Rĸ	VER K
2472	445	C24	C45	8,33	C16	C30	11,60	SC	16,73	C14	9,16	C14	SC	OK	SC	OK
2474	441	C24	C45	7,16	C14	C20	23,48	C20	22,93	C20	15,29	C20	C14	OK	C20	OK
2475	395	C20	C30	6,46	SC	C20	23,57	C20	22,96	C20	15,35	C20	SC	OK	C20	N
2476	457	C27	C45	6,22	SC	C18	17,90	C16	20,54	C20	11,98	C18	SC	OK	C16	OK
2477	431	C24	C40	7,62	C14	C20	24,68	C20	23,37	C30	16,10	C20	C14	OK	C20	OK
2478	421	C24	C40	5,80	SC	C16	12,85	SC	17,63	C16	9,63	C14	SC	OK	SC	OK
2479	437	C24	C40	4,82	SC	C14	43,98	C40	28,45	C45	33,62	C50	SC	OK	C14	OK
2481	465	C30	C50	4,60	SC	SC	30,26	C30	25,16	C35	20,25	C30	SC	OK	SC	OK
2482	506	C40	C50	10,29	C20	C45	32,12	C30	25,69	C35	21,79	C35	C20	OK	C30	OK
2484	487	C35	C50	7,49	C14	C20	13,53	SC	18,08	C18	9,90	C14	SC	OK	SC	OK
2488	532	C45	C50	8,86	C16	C35	9,52	SC	14,98	SC	8,51	C14	SC	OK	SC	OK
2492	386	C18	C30	5,33	SC	C14	17,18	C16	20,18	C20	11,61	C18	SC	OK	C14	OK
2493	396	C20	C30	5,18	SC	C14	13,17	SC	17,84	C16	9,75	C14	SC	OK	SC	OK
2494	424	C24	C40	5,83	SC	C16	11,34	SC	16,53	C14	9,07	C14	SC	OK	SC	OK
2495	452	C27	C45	8,31	C16	C30	29,90	C20	25,06	C35	19,96	C30	C16	OK	C20	OK
2496	464	C30	C50	4,30	SC	SC	28,45	C20	24,62	C30	18,83	C30	SC	OK	SC	OK
2498	431	C24	C40	6,46	SC	C20	15,17	C14	19,08	C20	10,63	C16	SC	OK	C14	OK
2499	523	C45	C50	9,89	C20	C40	29,95	C20	25,07	C35	20,00	C30	C20	OK	C20	OK
2500	410	C22	C35	6,01	SC	C18	19,31	C18	21,21	C20	12,76	C20	SC	OK	C18	Ν
2501	383	C18	C30	5,79	SC	C16	18,51	C18	20,84	C20	12,31	C20	SC	OK	C16	OK
2507	461	C30	C50	4,81	SC	C14	6,55	SC	11,70	SC	8,06	C14	SC	OK	SC	OK
2509	478	C30	C50	5,42	SC	C16	21,83	C20	22,29	C20	14,24	C20	SC	OK	C16	OK

Tabela Apêndice F.14 – Protocolo de classificação por métodos não destrutivos para tração paralela às fibras