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RESUMO 

 

ALBUQUERQUE, A. A. A., Uma formulação de barra embutida com rigidez uniaxiais, 

flexão e de cisalhamento para análises de concreto armado considerando não linearidades 

físicas. 2019. 226p. Tese (Doutorado) – Escola de Engenharia de São Carlos, Universidade de 

São Paulo, São Carlos, 2019. 

 

Na análise numérica via método dos elementos finitos (MEF) à adequada representação do aço 

(fibras) em materiais compósitos como o concreto (matriz) é de fundamental importância para 

que o modelo seja avaliado de forma apropriada. Por esta razão, pesquisas direcionadas a 

diferentes maneiras de representações numéricas de fibras em compósitos têm sido comumente 

exploradas. Atualmente, no concreto armado apenas a rigidez uniaxial da barra de aço têm sido 

considerada nas análises numéricas. Entretanto, para estruturas cujo mecanismo de colapso está 

relacionado com o efeito pino as fibras a serem consideradas nas análises utilizando elementos 

finitos devem apresentar rigidezes: uniaxial, à flexão e ao cisalhamento. O uso de elementos 

finitos de pórtico é uma opção para a solução deste problema. Neste contexto, a proposta da 

presente pesquisa visa em desenvolver um código computacional usando o MEF com 

formulação posicional considerando a formulação de fibras embutidas para simular as 

estruturas que apresentam o risco de colapso anteriormente mencionado. Desta maneira, o 

código computacional permite a análise de estruturas cujo efeito ao cisalhamento da barra de 

aço determina um comportamento global relevante. As não linearidades físicas para os 

elementos da matriz e da fibra são consideradas para a melhor discussão dos efeitos das 

rigidezes adicionais consideradas. Modelos de plasticidade unidimensional e bidimensional, 

aplicados aos elementos finitos de barra e pórtico, respectivamente, são estudados e 

implementados no código desenvolvido. Dois modelos de dano com a aproximação de modelos 

de fissuração distribuída são desenvolvidos para representar a degradação dos elementos da 

matriz. Exemplos são explorados para investigar e comprovar a formulação proposta. Por fim, 

mostra-se que para a análise de estruturas, as quais o mecanismo de cisalhamento não é um 

efeito preponderante, a consideração de fibras com as rigidezes a flexão e cisalhamento 

produzem resultados semelhantes quando comparados com as análises realizadas com fibras 

com apenas a rigidez uniaxial. Entretanto, para os casos em que o efeito pino é significante a 

avaliação da estrutura se adequa mais ao comportamento real quando os elementos das fibras 

são representados com os elementos que apresentam as rigidezes adicionais. 

 



 

 

Palavras-chaves: Armadura embutida. Mecânica da Fratura. Modelos de fissuração. Modelo de 

dano. Elementos finitos. Efeito pino. Mecanismo de cisalhamento. 



ABSTRACT 

 

ALBUQUERQUE, A. A. A., A positional formulation of the embedded bar with uniaxial, 

shear and flexural stiffness for the reinforced concrete analysis considering physical 

nonlinearities. 2019. 226p. Thesis (Ph.D.) – School of Engineering of São Carlos, University 

of São Paulo, São Carlos, 2019. 

 

Nowadays, the representation of reinforcement bars in composite materials, such as the 

reinforced concrete, is an important role that needs to be properly evaluated in numerical 

analysis with the finite element method. For this reason, researches that supply useful 

information about different ways to represent such reinforcements has commonly been 

explored. The matrix and fibers terminology is frequently adopted in numerical research to 

refers to the two materials: concrete and steel, respectively. Currently, only bars with the 

uniaxial stiffness have been assumed to the analysis of the reinforced concrete. However, some 

structures, in which the collapse mechanism is related to the dowel action phenomenon, must 

be evaluated with fibers represented by finite elements that take into account the uniaxial, 

flexural and shear stiffnesses. The use of frame finite element is an option to the solution of this 

problem. In this context, this research addresses a computational code using FEM with 

positional formulation approach to simulate the structures mentioned with embedded bar 

formulation. Thus, this code enables the analysis of structural elements whose shear effects in 

the fibers produce a global relevant behavior. The physical nonlinearities for the matrix and 

fibers elements are taken into account to better discuss the effects of such additional stiffnesses. 

The one-dimensional and plane-stress plasticity theories are studied and implemented in the 

developed code, being used by the bar and the frame elements, respectively. Two damage 

models related to the smeared crack models approach are suggested to represent the degradation 

of the matrix elements. Several examples are explored to investigate the theory proposed. It is 

showed that for the analysis of structures in which the shear mechanism is not a preponderant 

effect the consideration of the fiber with additional flexural and shear stiffnesses produce 

similar results when compared with analysis performed by fibers with only uniaxial stiffness. 

However, for the cases in which the dowel action is significant, a more appropriate analysis is 

carried out when the fiber elements present such additional stiffnesses. 

 

Keywords: Embedded reinforcement. Fracture Mechanic. Crack Models. Damage model. Finite 

Elements. Dowel Action. Shear mechanism. 
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1 INTRODUCTION AND RESEARCH SIGNIFICANCE 

 

The reinforced concrete is a material vastly used in structural elements responsible for 

providing stability and equilibrium of the civil engineering constructions. It is composed of two 

materials, the concrete and the steel, also called matrix and fibers, respectively. The 

combination of the properties related to the two elements are the most significant advantage of 

the final product. Innumerous studies were and continue to be published to describe the real 

behavior, while structural elements, of such material. From the point of view of the 

computational mechanics, this reinforced material embraces a significant set of aspects that 

constitute an area of extensive exploration. 

Computational mechanics covers a field of study that applies numerical methods to solve 

the mathematical models representing real physical phenomena. In the last three decades, its 

development and applicability have exponentially increased. The demand for quick answers of 

complex structures subject to different kind of actions, among other factors, has been the 

primary motivations of this trend. Nowadays, the application of the computational mechanics 

can be viewed in the more diverse areas such as solid and structural mechanics, fluid 

mechanics, fluid-structure interactions, biomechanics and mechanics in medicine, fracture 

mechanics and others. The reason for such a broad application is the viability of a sophisticated, 

safe and relatively rapid analysis.  

One alternative of representation of reinforced concrete in the computational mechanics 

area can be performed with the use of the finite element method (FEM). Within the numerical 

models, the FEM and its variations have proved to be a powerful technique to solve a vast 

number of problems. The FEM suitably allows the representation of any geometry with 

appropriate boundary conditions and load applications as well as facilitates the resolution of 

issues associated with the physical nonlinearities of the materials. The nonlinear physical 

behavior is an intrinsic characteristic of each material, and it is directly associated with its 

mechanism of stresses transference. 
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Concerning the representation of the physical behavior of the reinforced concrete, one 

option is the simulation of such a mechanism within the framework of continuum mechanics. 

In this context, the constitutive laws are mathematically expressed with the stress-strain 

relationship that represents the real answer of the material. The constitutive laws associate their 

expressions with rheological models, which in turn approximate the performance of materials 

under application of external actions. The plasticity theory and the damage and smeared crack 

models are examples of continuum models approach. 

The articles and books already published about the plasticity theory compose a substantial 

material collection that represents by itself the importance of the theme to the study of the 

materials and consequently to society. The plasticity theory associates the nonlinear behavior 

of the stress-strain curve of any material with the dissipation of energy due to the accumulation 

of plastic strain. Such mathematical approach describes the phenomenological behavior that 

happens in microscopical level with the changing of the configuration of the atomic 

arrangement of the polycrystals that compound the materials.  

The damage and smeared crack models arose in the 1960s, and since then the 

researchers have performed several contributions due to the importance of the subject. Such 

models associate the loss of energy with the degradation of the material caused by arising of 

micro-fissures and consequently opening cracks. These two models use criterions to specify the 

initial process of deterioration that once started its progression is controlled with the fracture 

energy and a numerical parameter called characteristic length or bandwidth. 

The application of the FEM involves other circumstances beyond the adequate 

representation of the materials with appropriate nonlinear physical law. A suitable association 

among all finite elements used, such as the same degrees of freedom and the connection 

between their nodes is one of them. Three different approaches to perform the analysis of 

reinforced materials can be adopted. The first one, concern the representation with both 

materials, the matrix and the fibers, represented by the same two-dimensional finite elements. 

The second one, the finite elements used to represent the matrix and fibers are differents. The 

matrix is described with two-dimensional elements and the fibers with truss elements. The third 

case, the embedded theory is used to inserting the fibers in the finite elements that represent the 

matrix of the material.  

In the context of the embedded theory to representation of the steel reinforcement, a 

mathematical procedure to coupling bars with uniaxial, transversal and flexural stiffness is 
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proposed in this thesis. The performance of such formulation consist in the analysis of structures 

under the dowel action effects. 

The Dowel action is a component of shear mechanical behavior that occurs in the steel 

reinforcement of the structures. The adequate evaluation of the shear mechanism in the 

structures is an important aspect because its neglection involves dangerous characteristics such 

as the sudden and brittle collapse of the structural elements. The risk of human life is a 

consequence of these features once unsafe civil structures can be constructed. Several 

experimental and analytical research to understand the complex mechanical behavior of dowel 

action have been developed over the years. However, due to its complexity, the results 

published with numerical simulation shows that such field still comprehends an area that needs 

to be better developed. 

 

1.1 Aims 

 

The primary objective of this study is the development of a computational code based on 

the finite element method with the positional formulation approach. Such code will allow the 

analysis of two-dimensional structures with dowel action phenomenon. The physical and 

geometrical nonlinearities, as well as the embedded steel reinforcement theories, are subjects 

explored and implemented in the code. 

To reach the main purpose of this thesis some specific objectives must be performed as 

follow presented. 

a) Studying and application of the finite element concept with positional formulation 

approach to evaluating two-dimensional structures. In such a context, it is 

indispensable a literature review of themes as the kinematic of the elements as 

well as the strain energy and constitutive laws considered.  

b) Implementing two-dimensional finite elements as well as the bars and frame 

elements for the nonlinear geometrical analysis of elastic solids. 

c) Literature review of different representations of steel reinforcement bars in 

numerical simulation. 

d) Coupling of bar and frame elements (also called as stell reinforcement bars or 

fibers) in two-dimensional finite elements (matrix) to simulate composite 

materials, more specifically the reinforced concrete. 
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e) Studing of one/two-dimensional plasticity models to represent the material physic 

nonlinearities of the reinforcement bars. The one-dimensional plasticity model is 

implemented for the bar element while the two-dimensional model is employed 

for the frame element. 

f) Studing and development of a damage constitutive relationship to represent the 

nonlinear physical degradation of the matrix finite elements.  

g) Analysis of structures to perform the validation of the code developed. 

h) Investigation of two-dimensional reinforced structures in which the uniaxial, 

flexural and shear stiffness of steel reinforcement bar have a relevant effect to 

strength distribution. 

 

1.2 Justifications 

 

The research addresses significant subjects that in the literature review have never been 

discussed in this way. The applicability of the damage model and embedded model through the 

finite element method with positional formulation approach. Being, the embedded model used 

to simulate the steel reinforcement bars. The damage constitutive relationship employed to 

represent the physical nonlinearity of the matrix of the reinforced materials. All characteristics 

mentioned are some aspects that define the originality of the idea proposed in this research and 

therefore represent the justification of the present thesis. 

 

1.3 Methodology 

 

The following four steps were accomplished to produce the present thesis: literature 

review, analytical development of the models, implementation of the formulation proposed and 

validation of the code developed. The above-described steps were not necessarily performed 

separately and in sequence. They were made according to the demand of the research. However, 

they are presented here in topics to improve understanding this work. 

The literature review provided a background about the different numerical procedures 

already used to represent the steel reinforcement bars into two-dimensional structures. The 

study of the finite element method with the positional formulation was also part of the 

http://www.linguee.com.br/ingles-portugues/traducao/originality.html
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bibliographic review. The plasticity and the damage models used to characterize the materials 

physical nonlinearity behavior, also compound the topic explored in the literature. 

The analytical development concern to the description of the finite elements used and the 

constitutive relationship established to simulate the physical nonlinearities of the materials. The 

coupling between fibers and matrix elements also constitute another important topic. It stands 

out the coupling is performed with the summation of the total strain energy associated with the 

elements and posterior differentiation of these terms about the global positions of the matrix 

elements. Such method constitutes a novel coupling technique recently developed and used 

with the finite element method with the positional formulation. The coupling between the frame 

elements, which possess the uniaxial, flexural and shear stiffness, and matrix constitute one of 

the contributions of the present work. 

The implementation of the expressions studied resulted in a computational code that is 

compound by the three steps specified in Figure 1.1. The pre-processing stage, which 

corresponds to the definition of the geometrical dimensions, boundary conditions, load setting, 

and the meshing discretization, is performed with the Gmesh program, available in 

http://gmsh.info/. The Gmesh exports the data of the structure in a .txt format file that is read 

with the reading algorithm implemented in the Fortran language. Next, the calculation process 

of the structure is executed and the results of the analysis are performed with the post-

processing done into AcadView, available in http://www.set.eesc.usp.br/portal/pt/softwares. 

 

Pre-processing Processing Post-processing

 

Figure 1.1 – Overview of the program. 

 

Table 1 details the followed steps to develop the processing environment of the code. 

First, the two-dimensional isoparametric finite elements were implemented. Such elements are 

quadrangular with four and eight nodes and the triangular with ten nodes. Next, the one-

dimensional element was coupled with the previous elements. The one-dimensional element is 

often called as bar finite element in this work. Such element correspond to the representation 

http://gmsh.info/
http://www.set.eesc.usp.br/portal/pt/softwares
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of the steel reinforcement bar with only the uniaxial stiffness. The flexural and shear stiffness 

was taken into account with the implementation of the frame element that was also coupled in 

the two-dimensional element. The verifications of the numerical implementation of these finite 

elements were performed with some examples. For these first examples, the initial analyzes 

concern the materials assumed with the elastic behavior. 

 

Table 1 – Phases to development of the code. 

STEPS IMPLEMENTATION 

1 Two-dimensional finite elements 

2 Embedded reinforcement finite elements 

3 Elastoplastic models for the reinforcement bars 

4 Damage model 

5 Validation examples 

 

After, two elastoplastic models were implemented to govern the physical nonlinearity 

of the steel reinforcement bars. The one and two-dimensional plasticities are employed for the 

bar and frame finite elements, respectively. For both cases, the Von Mises Criterion is the 

plastic surface adopted with linear hardening. To validate such models some examples were 

properly investigated. 

Finally, two damaging models were developed to describe the physical nonlinearity of 

the two-dimensional finite elements. A first damage model is an approach of the well-known 

smeared crack models. Such model calculate the stiffness penalization in a preferential direction 

once the limited strength of the material is reached. The second model uses numerical 

development to the first one to enhance the penalization calculation of the material taking into 

account the traction and compression behavior. It emphasizes that the two damage models 

developed compound one of the main contributions of the present work. Analogous to the 

previous implementations both models are discussed and tested with examples. 

At last, some numerical analysis was accomplished to evaluate the performance of the 

code. 
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1.4 Outline of the thesis 

 

The present thesis is composed of six chapters. All chapters discuss themes indispensable 

to the development of the work such as the finite element method with a positional approach, 

plasticity models and damage model. 

Chapter 2 presents a literature review about dowel action, positional finite element, the 

numerical representation of fibers, plasticity theory, and damage models. 

Chapter 3 details the two-dimensional, the bar and the frame finite elements implemented 

on the code. Some aspects such as the positional approach in the technique of finite element 

method, the kinematic configuration, the elastic constitutive laws adopted and the construction 

of the internal forces vector and Hessian matrix for all elements are presented. Such chapter 

also shows the strategy used to the coupling the bar and frame elements in the two-dimensional 

element. To the end of each numerical model presented, the programming strategy is illustrated 

with flowcharts. 

Chapter 4 discusses the physical nonlinearity models employed. The mathematical 

description of the one and two-dimensional plasticity is expressed. The equations related to the 

one and two-dimensional plasticity models are written for the bar and frame elements. Next, 

the chapter also describes the mathematical formalism of two damage models. The first model 

takes into account only the degradation of the material due to traction requested in a preferential 

direction of cracking formation. The second one enlarges the concepts used to the previous 

model to accomplish the stiffness penalization due to compression and traction situations. 

Chapter 5 presents the analysis of the numerical simulation performed with the 

formulation discussed in the preceding sections 3 and 4. The examples validate the 

mathematical expressions as well as their implementation on the code developed. 

Chapter 6 discusses the more significant conclusions evaluated during the process of 

development of this thesis. 
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2  LITTERATURE REVIEW 

 

This chapter addresses the literature review of the subjected explored in the present 

research. Firstly, the dowel action problem is discussed, following by the positional finite 

element method and the matrix-fiber coupling technique. The nonlinearities of the material are 

briefly presented from plasticity and damage and smeared crack models approach. 

 

2.1 Dowel Action 

 

By definition, dowel action is a mechanism of transfer of shear forces between concrete 

and steel bar (Fédération Internationale du Béton-fib 2008). The inclusion of dowel action 

effects in the analysis is relevant for problems in which the transference of shear force has a 

significant influence, such as the casting joints and connections. In concrete structures, such 

mechanism occurs locally and can take place in a bar that connects two elements or even when 

the bar is completely immersed in the concrete. For the first case, this phenomenon is commonly 

observed in precast structures that assure the connection between the elements with dowel 

connectors. For the second case, the dowel action mechanism occurs in the regions that the 

reinforcing bars crossing the concrete cracks. 

In accordance with Fédération Internationale du Béton-fib (2008) three different failure 

modes are associated to the collapse of the structures under dowel action mechanism: (a) Steel 

shear failure; (b) Concrete splitting failure and (c) Steel flexural failure (combined steel/ 

concrete failure). The strengths and dimensions of the bar and concrete are the factors that 

determine how will follow the collapse of the structure. 

The flexural behavior of the concrete members is more predictable if compared with the 

structural members subjected to the shear mechanism (Kwan and Ng 2013). The failure of a 

structural member under shear mechanism action is sudden and brittle (Wight and MacGregor 

2012). According to El-Ariss (2007) in experimental tests, the shear force transferred by the 

dowel action is quite difficult to measure because it is embedded with other shear transfer 



34 

 

 

components. Park and Paulay (1975) and He and Kwan (2001) define the shear transfer 

mechanism in the concrete as complex behaviour. Such mechanism is associated with: direct 

transfer of shear force by uncracked concrete, tensile force of the stirrups crossing the shear 

cracks, aggregate interlocking, and the dowel action of the reinforcement bars crossing the shear 

cracks, Figure 2.1. 

 

 

Figure 2.1 – Internal forces in a cracked beam. Source: Kwan and Ng (2013). 

 

The geometry of the member, the arrangement of the applied load, the reinforcement 

layout and the crack pattern are variables that when changed has direct influence with the 

contribution of the shear transfer mechanism (Singh and Chintakindi 2012, He and Kwan 2001).  

Several experimental, analytical, and numerical studies were already developed over the 

years to understand and describe the influence on the structures of the physical phenomenon of 

the dowel force. In agreement with Moradi et al. (2012) the investigation of such shear 

mechanism can be found on the literature from three different points of view: direct dowel test 

setups, divided beam test, and beam end test. The first two groups the dowel action mechanism 

is studied with little or no tension on the reinforcement (He et al. 2017, Randl 2007, Ashour 

1997), while the last one enables the analysis with the interactions between the tensile and 

dowel forces (Li et al. 2018). 

The proper experimental direct dowel test setup is the biggest challenge that the 

researchers have been found to carry out an appropriate shear mechanical representation. The 

first investigations performed with the direct dowel test concerned in the analysis of the 

characteristic of shear planes, characteristic of the reinforcements, and the influence of the 

concrete strength under different types of possible failures. The main proposal of such tests is 

the reduction of the effect of bending on the specimens and hence to achieve a pure state of 

shear. Commonly, the following three main configurations of specimens are used to represent 

such a phenomenon, Figure 2.2. 
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(a) (b) (c) 

Figure 2.2 – Some test setups used to investigate the direct shear behavior. (a) Z-type, (b) JSCE-type and (c) 

FIP-type. Adapted from Soetens and Matthys (2017). 

 

Other variations of the geometrical configurations shown in Figure 2.2 are found in the 

literature. For the so-called “push-off test” (Figure 2.2a), Mattock and Hawkins (1972), 

Soroushian et al. (1987) and Foster et al. (2016) discuss among other aspects the influence of 

the dimensions of the specimens and the load application configuration with the position of the 

shear plan formation. To avoid the residual of other possible mechanisms, as flexural behavior, 

Echegaray-Oviedo et al. (2017) proposed a methodology to cracked concrete specimens before 

the push-off test. Thus, the test is carried out in two stages: pre-cracking and push-off. The 

authors showed that such methodology avoided possible damage and undesired displacements 

on the shear plane in the handling stage of the specimen. As a consequence of this, the 

experimental validation of crack dilatancy models was possible. For the experimental test setup 

presented in Figure 2.2b, Vintzeleou and Tassios (1987) propose a practical recommendation 

for the interfaces between the blocks that transfer the shear force. Husain et al. (2009) following 

such advice carried out a similar experimental test and the results were used to performed a 

numerical simulations. The beam-type specimens, Figure 2.2c, is extensively debated with the 

studies produced by Maekawa and Qureshi (1996a), Maekawa and Qureshi (1996b), Maekawa 

and Qureshi (1997), Maekawa et al. (2006) and Moradi et al. (2012). Beyond the experimental 

apparatus, the researches also discuss the dowel action under cyclic and repeating load 

conditions. 

Among the three experimental test configurations previously presented the push-off test 

is preferably employed by the researchers to correlate the failure of structures under shear 

mechanism with design parameters. At this context, Table 2 presents some researches 

performed in the last years. 
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Table 2 – Some researches developed with the experimental “push-off “test. 

Authors Research carried out 

Frenay et al. (1992a) and 

Frenay et al. (1992b) 

Performed the push-off test with the application of the 

load during a specific time to verify the time-dependent 

shear transfer mechanism. 

Sagaseta and Vollum (2011) Use two sets of push-off tests to investigate the effect of 

aggregate fracture on shear transfer through cracks. 

Marine dredged gravel and limestone were used in 

differents specimens. It was observed that the cracks 

passed through the limestone aggregate but passed 

around the gravel aggregate. However, despite this 

fracturing for the limestone aggregate, the crack 

dilatancy was almost identical for both specimens. 

Xu et al. (2015) Apply the finite element method to simulate the push-

off tests, to provide a relationship between the shear 

stress and slip for a range of design parameters, such as 

concrete strength, percentage of dowel and variation of 

normal lateral pressure on RC members. 

Jongvivatsakul et al. (2016) Presents the shear behavior and a crack-shear slip model 

of high-strength steel fiber-reinforced concrete based on 

a push-off test. The test results indicated that the shear 

strength increased by approximately 1.5–2 times due to 

the presence of steel fibers and the ductility effectively 

increased when using steel fibers and stirrups. 

Rahal et al. (2016) Carried out a Fifteen non-precracked push-off 

specimens test to investigate the shear-transfer behavior 

of normal strength and high strength self-compacting 

concrete (SCC). The reported results include the 

cracking stresses, the yielding stresses, the ultimate 

strengths and the post-ultimate residual strengths. 

Figueira et al. (2016) Performed push-off tests in the study of cyclic behavior 

of interfaces between concretes cast at different times. 
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Authors Research carried out 

Ahmad et al. (2018) Presented a simple analytical model for the estimation 

of shear transfer strength (STS) of uncracked (UC) 

interfaces. The combination of cohesion resistance 

offered by concrete and frictional resistance offered by 

the reinforcement provided across the interface are the 

bases of the model. 

Waseem and  

Singh (2018)  

 

Developed analytical formulation based on the truss 

analogy to predict the shear capacity in uncracked push-

off speciemens with natural concrete and recycled 

aggregate concrete. 

 

Many other research investigates the shear mechanism and the dowel action with 

different experimental test setups. Ashour (1997) compared eight reinforced concrete 

continuous deep beams. The main parameter considered was shear span-to-depth ratio, amount 

and type of web reinforcement, and amount of main longitudinal reinforcement. Yang and 

Ashour (2007) performed the experimental test to investigate the failure of ten reinforced-

concrete continuous deep beams with openings. Aguiar (2010) and Aguiar et al. (2012) studied 

the behavior of grouted dowels used in beam-to-column connections in precast concrete 

structures. Xia et al. (2015) examined the influence of dowel action in the ultra-high 

performance fiber reinforced concrete. Li et al. (2018) investigated the mechanical properties 

of dowel action under fatigue loads. 

According to Sørensen et al. (2017), a dowel action mechanism is most clearly observed 

when rebar has part of its length embedded in a large block of concrete while being loaded by 

a transverse force at the concrete surface. From the point of view of analytical expressions 

development, such experimental configuration is represented by a beam transversely supported 

on springs (Timoshenko 1956). To increase the accuracy of this model the nonlinear elastic 

behavior for both the beam and the springs must be considered. Several authors have embraced 

this approach to obtain the load-displacement curves (Vintzeleou and Tassios 1986, Vintzeleou 

and Tassios 1987, Hsu et al. 1987, Dei Poli et al. 1992, He and Kwan 2001, Randl 2007, El-

Ariss 2007, Mansur et al. 2008, Kwan and Ng 2013). In a few words and consistent with 

Sørensen et al. (2017), the load-displacement curves or trajectory of equilibrium of the dowel 
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action mechanism describes beyond the load carrying capacity a nonlinear behaviour. Such 

characteristic is associated with the plastic hinge formation in the rebar followed by the local 

crushing of the concrete. 

Figure 2.3 shows a typical final configuration after subjected for a load F, of a casting 

joint constituted by two different concretes. In accordance with Sørensen et al. (2017), the 

collapse due to the shear mechanism developed in the structure from the dowel action is 

compound by different stages. Initially, it observes the plastic hinge formation. In such a step, 

the casting joint is subjected to pure dowel action. The plastic hinge on the rebar happens 

simultaneously on the two blocks, and its position of formation is associated with the 

characteristic of the concrete, such as its strength. As long as the displacement (u) increase, the 

dowel action is accompanied by a uniaxial tension represented by the elongation (  ) in the 

plastic hinges formed. At this instance, the structural behavior is established by the combination 

of these two actions. At the final stage, the mechanical behavior of the casting joint is described 

by the uniaxial tensions, which defines a configuration of the catenary effect of the rebar. In 

brief words, the trajectory of equilibrium and the posterior collapse of the casting joint directly 

depends on the diameter of the steel rebar and the strength capacity of the two blocks. 

 

 

Figure 2.3 – Casting joint between two diferente concretes subjected to shear diaplacements and crossed by a 

rebar. Adapted from Sørensen et al. (2017). 

 

As demonstrated, the mechanism of the dowel action involves several aspects that turn 

it on a complicated configuration to be described and consequently analyzed. El-Ariss (2007) 

points out that for the analysis of the dowel action with the use of the finite element methods 

(FEM), the steel bars need to be individually modeled by finite elements and a considerably 

dense mesh has to be used for the concrete. To circumvent such issues, a dowel action 
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formulation was developed to be applied with a program that uses the displacement method and 

the initial stiffness procedure to perform the calculation. 

He and Kwan (2001) use the beam-on-elastic-foundation theory (BoEFT) and proposes 

the change of the constitutive law to enable the analysis with the application of the finite 

element method. Both the dowel action and the reinforcement bar are considered with a smeared 

representation approach. Kwan and Ng (2013) also derived a dowel action formulation based 

on the BoEFT to be applied with the FEM. However, the reinforcement bars are represented 

with the discrete approach. Sanches Júnior and Venturini (2007) proposed a damage modeling 

of reinforced concrete beams that takes into account the stiffness reductions and determines the 

ultimate loads with the consideration of non-linear effects due to the shear components. A finite 

element reinforced concrete is the final product of such an approach. For all researches, over-

reinforced beams are used to prove the coherence of the strategies proposed. 

As verified, many types of research associated with shear effects and related explicitly to 

the dowel action mechanism have been developed over the years. The sudden and brittle failure 

are dangerous characteristics that provide sufficient reasons to justify the engagement of several 

works in this field. In general, for all papers cited in this section that applies the FEM in the 

investigations the bar finite elements with only the uniaxial stiffness are considered in the 

analysis, i.e., the shear and flexural stiffness are neglected, as commented by Kwan and Ng 

(2013). At this context, the present work embraces this lack, proposing an embedded bar 

formulation that takes into account such stiffnesses. 

 

2.2 Positional Finite element method and equilibrium 

 

The finite element method used in this work calls positional because it is based on 

position, not displacements as a traditional FEM. The first works that discuss such method were 

carried out by Bonet et al. (2000), Coda and Greco (2004), and Coda and Paccola (2007, 2008, 

2010). The development and use of the positional theory has an important role to Computational 

Mechanics group at the Department of Structures (SET) at São Carlos School of Engineering 

(EESC) at the University of São Paulo (USP). 

Table 3 shows some of latest works developed with such positional formulation. 
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Table 3 - The use of the positional finite element formuation in some researchs. 

Authors Research carried out 

Maciel (2008) Development a plane frame and 3D solids 

elements to investigates nonlinear geometric 

problems 

Marques (2006) and Sánchez (2013) Development and posterior aplication of 

positional formulation in dynamic applications. 

Sanches (2006 and 2011) Aplication in analysis of problems that involves 

fluid-structure interaction. 

Silva (2010 and 2014) Investigation of problems with soil-structure 

interaction. 

Sampaio (2014); Development of formulation of laminated shells 

reinforced with fibers. 

Carrazedo (2009) Evaluation of Thermoelastic and Thermoplastic 

behaviors in the impact analysis. 

Pascon (2012) and Reis (2012) Study of the elastic and elastoplastic constitutive 

models. 

Moura (2015) Applications in particulate composites 

problems.  

Nogueira (2015) Development of laminated finite elements.  

(Ramírez 2018) Biomechanical analysis to simulate the skeletal 

muscles behavior  

(Felix 2018) Investigation of the reinforced concrete strain as 

a consequence of corrosion products formation. 

 

The development of the present formulation is based on a change of the configuration 

function. Thus, the actual configuration (equilibrium) is determined from a fixed domain 

represented by the initial configuration. Such methodoly is defined as a Total Lagrangian 

formulation. The Green strain is the measure adopted and consequently, the Saint-Venant-

Kirchhoff stress is the energetic conjugate. 

The Lagrange polynomials define the interpolation of nodal positions. The mechanical 

problem applies the principle of stationary total mechanical energy to reach the equilibrium of 
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the structure. In such a context, the minimum energy obtained with the first variation of the 

total mechanical energy about the positions must be null. The equilibrium configuration results 

in a system of nonlinear equations and the Newton-Raphson method is adopted as the solution 

process. 

So, the total potential energy  Y  associated to the structure in the static equilibrium 

is mathematically expressed as: 

     Y U Y Y  
 

(2.1) 

where Y  is the current position vector, while U  and   are the elastic strain energy and 

external forces potential, respectively. Note that the kinetic energy is not considered because 

all problems proposed in the present work are static. The second parcel   is defined as: 

j jF Y  
 

(2.2) 

where jF  is the vector of external forces, jY  is the current position vector and the index j  the 

degree of freedom of the finite element. The equilibrium position performed with the Principle 

of Stationary Total Mechanical Energy in the equation (2.1) gives: 

int 0j j j j

j j

U
g F F F

Y Y

 
     
 

 

(2.3) 

which jg  represent the residual or unbalanced force vector of the equilibrium between internal 

and external forces 
int

jF  and jF , respectively.  

The equilibrium equation written in (2.3) is a set of nonlinear equations solved with any 

numerical procedure. Newton-Raphson method, Line search method and Arc-Length method 

are some examples of numerical procedure that could be applied (Bonet and Wood 2010, 

Crisfield 1991, Crisfield 1997). In this thesis, the Newton-Raphson strategy is the method used. 

The Newton-Raphson method is extensively employed in the solution of nonlinear 

problems. The strategy consists of an incremental-iterative process, which the linearization of 

the function on the incremental step is performed and the answer is obtained with an iterative 

process. In the iterative process, an initial trial solution is adopted. When the convergence 

criterion is found the iterative procedure finishes.  

Equation (2.3) is therefore developed in Taylor series truncated in the first order 

derivative term, as follows is described: 
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   
 0

0 2 0
j

j j k j

k Y

g
g Y g Y Y

Y



    


 (2.4) 

where 
2

j  are the neglected terms. It is possible rewrite Eq. (2.4) as:  

       
0 0

11
2

1
0 0 0j

k j j kj j

k k jY Y

g U
Y g Y g Y H g Y

Y Y Y



   
        

          

(2.5) 

where kjH  is the Hessian matrix numerically calculated in the trial position 0Y  whose 

dimension is equal the total number of degrees of freedom of the model in analysis. Regarding 

that the terms to second derivative of external forces vector are nulls and therefore the Hessian 

Matrix is calculated only with the second derivative of the strain energy. Thus, the accuracy of 

the procedure is reached as long the value of 0Y  is close the solution. For this, successively new 

values of Y  is updated from accumulation of Y , calculated in each iteration ( m ), as follow 

presented: 

a)    
1

0

(m) (m) (m)
Computing: kj jY H g Y



   . 

b) Computing the new value of 
     

0

1m m m
Y Y Y


  . 

(2.6) 

 

The end of iterative procedure is obtained when the relative error, Eq. (2.7), in position, 

force or energy is sufficiently smaller than tolerance defined by the user. 

       

,   ,  and  

m m
m mT

T

m m m m

Y g g Y
tolerence tolerence tolerence

Y g g Y

 
  

 
 (2.7) 

The parenthesis under the index  m  indicates that the value of vector refers to the 

iteration  m  while the index m  without parenthesis refers to the accumulated value in the step 

load in analysis as follow expressed: 

   

1 1

  and  
m m

i i

m m

i i

Y Y g g
 

        (2.8) 

 

Figure 2.4 shows the steps adopted during the solution of the Newton Raphson Method. 

First, at the beginning of each increment, the error is always assumed bigger than tolerance. 
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Thus, it is performed the calculus of the internal force (
int

jF ) showed in Eq.(2.3), the Hessian 

matrix (
2

k jU Y Y   ) and the unbalanced force vector ( jg ), both defined in Eq.(2.5). After, the 

incremental of the trial position is performed from the solution of the operation between the 

inverse of the Hessian matrix and the unbalanced force vector (Eq.(2.6)a). Next, the new 

positions are updated with Eq.(2.6)b. Finally, the relative error (2.7) is calculated and, if the 

error assumes values smaller than tolerance, the increment is finished. Otherwise, with the news 

position values the procedure previously described is repeated. 

 

Starting 

Increment

Error > 

Tolerance

Internal Force (Fint
j)

Hessian Matrix (Hkj)

Unbalanced force vector (gj)

Solve of the system

Update position

End of the 

increment

Yes

No

Relative error calculus
 

Figure 2.4 - Newton-Raphson’s method. 

The finite element method with the positional formulation approach is the calculation 

procedure adopted to compound the basis of the computational code developed in this research. 
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2.3 Numerical representation of the steel reinforcement bars 

 

Analysis by the finite element method (FEM) of reinforced concrete (RC) structures is 

performed by taking into account the two mains materials used in this composite: concrete and 

steel. In the literature review the terminology "concrete elements" or "matrix elements" are 

commonly used to associate the finite elements employed to simulate the behavior of the 

material concrete. On the other hand, the terms “reinforcement bars” or “fibers” are reserved to 

designate the steel material. In the present topic both terminologies associated with each 

material are employed.  

The numerical representation of reinforcement bar in the analysis of concrete structures 

with the finite element method can be performed following three approaches, (Barzegar and 

Maddipudi 1994, Markou and Papadrakakis 2012): (i) discrete model, (ii) distributed or 

smeared model and (iii) Embedded model, Figure 2.5. 

 

   

(i) Discrete Model (ii) Smeared Model (iii) Embedded Model 

Figure 2.5 – Representation of the matrix and fiber elements. 

 

The discrete model is the simplest case used for the representation of the bar into the 

concrete. The reinforcement (fiber) is only placed in the borders of the concrete finite element 

(matrix). In such model the combination between of nodal point of the matrix and fiber elements 

must be done. The one-dimensional truss finite element with two degrees of freedom in each 

node is commonly employed. For this element, only the longitudinal stiffness is taken into 

account in the study. Alernatively, still in the discrete conception, the reinforcement with beam 

finite elements can also be used to perform the investigation of structures. In such case, three 

degrees of freedom are associated per node of element.  
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The distributed or smeared model is more suitable to be applied in the analysis of 

surface-type structures even tough could be applied in plane analysis. This representation can 

be performed in accord with any principal angle 𝜃. The constitutive relationship for the 

composite material, concrete-steel for example, is assumed to develop the model.  

In the embedded model, the reinforcement (fiber) is inserted on the concrete finite 

element (Matrix), such as is presented in the real case. In this model, the nodal points between 

fiber and matrix do not need to be the same. Thus, to perform the analysis the mesh of matrix 

elements are first defined. Next, the reinforcement bars are inserted independently from the 

mesh of the matrix elements. The embedment is done with the contribution of the stiffness of 

the fibers in the elements of the matrix in which presents the concrete elements. 

The first works destinated to analysis of structures with the numerical representation of 

the reinforced concrete using the discrete conception to simulate the steel were perfomed by 

Ngo and Scordelis (1967) followed by Nilson (1968). The application of the discrete conception 

in the development of the codes is relatively straightforward once the finite elements used are 

the classical finite elements widely employed in the literature. Due to this characteristic, 

structural analysis with the employment of the discrete model is perfectly available with 

commercial software, such as DIANA® 10.2 (2017), ABAQUS® 6.13 (2013), ATENA® (5.6 

2016) and others.  

Over the years, several works based on the simulation of structures from the discrete 

model were developed (Yankelevsky 1985, Girard and Bastien 2002, Qin et al. 2017, Özcan et 

al. 2009, Kwan and Ng 2013, Dawari and Vesmawala 2014, Hawileh 2015 Kwan and Ma 2016, 

Yu et al. 2018, Džolev et al. 2018, Mousa et al. 2018, Piscesa et al. 2018). 

As previously affirmed the nodal points between the matrix and fiber elements must be 

superimposed in the discrete model. Therefore, the discrete representation is preferably applied 

in the simulation that the use of simple mesh is sufficient to represent the structures adequately 

in the analysis. If the mesh is refined and the geometry of the structure is complex the 

connection between the nodes of the matrix and fibers can become a laborious task, especially 

for the 3D-models. Another aspect is that the discrete model increases the degrees of freedom 

of the numerical model with the number of reinforcements.  

To circumvent the limitation of the method, El-Mezaini and Citipitioglu (1991) 

developed isoparametric elements with mobile nodes to until use the discrete model approach 

for the bar representation. The basic idea of the formulation consists of shifting the edge nodes 
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of the concrete elements to coincide with nodal points of the reinforcement bars. The nodal 

points of the bars are previously defined in the intersection between the reinforcement bars and 

the border of the concrete elements, Figure 2.6.  

 

 

Figure 2.6 – Finite element mesh configuration: (a) Initial mesh and (b) Shifted egde nodes. (El-Mezaini and 

Citipitioglu 1991). 

 

Still accordding to El-Mezaini and Citipitioglu (1991) in the present formulation the 

spaced location between the vertex nodes of the standard and the modified isoparametric finite 

elements must remain the same, as represented in Figure 2.7a and c. Numerically, this is 

performed by changing the shape functions and their derivatives of the standard isoparametric 

element. For the case that such an assumption is not obeyed a node mapping distortion could 

appear in the model, as presented Figure 2.7a and b.  

 

 

Figure 2.7 – Quadratic elements: (a) Standard isoparatmetric element; (b) Twisted isoparametric element and (c) 

Modified isoparametric element. Source: El-Mezaini and Citipitioglu (1991) 

 

With the modified isoparametric element, fictitious springs were assumed in the nodal 

connection between the concrete and steel elements to include also the bond slip effect. The 

shortcoming of this procedure is when more than one fiber trespass the same matrix finite 

element, as commented in Barzegar and Maddipudi (1994). 
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From smeared model conception Barzegar (1988) and Barzegar (1989) proposed finite 

elements modeled as membrane layer approach with an equivalent cross-section area to 

represent the reinforcement distribution. Such an approach was performed to the plane-stress 

and plate bending finite elements, Figure 2.8. 

 

 

 

(a) (b) 

Figure 2.8 – Finite element model (a) Plane stress element and (b) Plate bending element. Adapted from 

Barzergar (Barzegar 1988) and (Barzegar 1989). 

 

Although the smeared model be less used if compared with the discrete model, several 

works that use the distributed formulation to analysis reinforced structures can be found in the 

literature, such as Owen et al. (1983), Vecchio (1990), Kim and White (1999), Zhang et al. 

(1994), Hu et al. (2004), Barbato (2009) and Heiza (2013). 

He and Kwan (2001) developed a numerical model for the dowel action of steel 

reinforcement bar crossing cracks in concrete to be applied with the finite element method. In 

such a study, a constitutive relationship, representing both the cracks of concrete and the bars 

in the smeared form, is developed. The numerical model is verified with experimental test of 

reinforced concrete beams. The comparision was perfomed with and neglecting the dowel 

action modeling. It was concluded that, in certain cases, the results from numerical analysis 

done with the consideration of the dowel action model developed generally agree better with 

experimental values. 

Others works combined the discrete and the smeared conception at the same analysis. 

For example, Saatci and Vecchio (2009) performed tests and numerical simulations of a set of 

RC beams to introduce a methodology to evaluate the structures under impact loads. The 
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longitudinal reinforcement was simulated with truss using the discrete model conception. The 

transversal bars were considered with smeared model because the stirrups were evenly 

distributed along the specimen. Another application can be found in Arafa and Mehlhorn (1998) 

and Bouziadi et al. (2018) that uses the discrete model to the steel reinforcements and smeared 

model to simulate the steel fibres. 

The embedded conception was provided by Phillips and Zienkiewicz (1976) on the 

condition that the reinforcements necessarily must be aligned with the one axle of the local 

isoparametric element which represents the concrete. In the same context, Elwi and Murray 

(1980) expose the embedded model formulation. Chang et al. (1987) take into account the 

inclination of straight bars in the formulation. Balakirshnan and Murray (1986) and Assan 

(2003) present the effect of bond-slip on the straight bar. Filippou (1990) uses truss elements 

to represent the bar with the consideration of the bond-slip effect. More recently Simão (2003) 

implemented the curve and axisymmetric finite elements with the embedded model developed 

by Elwi and Hrudey (1989) and Liu and Foster (1998), respectively, considering the bond-slip 

effect. In all papers cited, the numerical formulations proposed were validating with examples 

compared with experimental results and the differences were satisfactory. 

To still facilitate the input-data of the structures simulated with the embedded model, 

Barzegar and Maddipudi (1994) and Markou and Papadrakakis (2012) developed an automatic 

procedure for the inclusion of reinforced bars in the three-dimension solid elements.  

For the method proposed by Barzegar and Maddipudi (1994) the embedded bars are 

represented by straight segments, which are identified by only the coordinates of its end two 

points. The intersections between the bars and the surfaces of the solids elements are 

automatically determined. The authors suggest that such procedure reduce the task of 

generating the input data with embedded elements, principally when remeshs or refinements 

need to be performed. The developed formulation was applied in the subsequent works: 

Barzegar and Maddipudi (1997a), Barzegar and Maddipudi (1997b) and Sato and Naganuma 

(2007)  

Jendele and Cervenka (2006) enhanced the embedded formulation considering a 

mathematical description simulate a arbitrary bond between the fiber and the matrix. 

Satisfactory results were obtained from the validation of the model performed with the pull out 

test and shear failure of beam.  
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Based in enrichment functions on the bond behaviour between Matrix-fiber Radtke et 

al. (2010a, 2010b, 2011), Hettich et al. (2008), Chudoba et al. (2009) and Oliver et al. (2008) 

use the conception of partition of unity to represent the composite materials. 

Also using the embedded model idea, Vanalli et al. (2008) proposed a simple way to 

introduce short and long fibers into finite element modelling. The fibers were placed arbitrarily 

inside a continuum domain called matrix represented by plane stress finite elements. Numerical 

and experimental results were confronted and the model developed showed to be a satisfactory 

numerical representation.  

Taking into account the last approach and the positional finite element formulation, the 

distribution of the contact stress between fiber and matrix is studied and available by Paccola 

et al. (2014). Sampaio et al. (2015) enhances the application of this numerical model for the 

analysis of fiber reinforced laminated plates and shells. In the same way Pereira (2015) present 

this theory applied in tri-dimensional finite elements and Friedel (2016) consider the active 

viscoelastic fiber to analyse biomechanical problems. 

At this point, it emphasizes that the structures investigated in the present thesis takes the 

embedded reinforcement formulation analogous to the last previous studies described. And as 

one of the contributions of this thesis, additionally to the uniaxial effect, is the considerantion 

of the flexural and shear effects in the fibers elements. 

The use of the embedded formulation boosted many investigations for the behaviour of 

cementicious and composite materials. Table 4 sumerizes some recent researchs. 

 

 

 

Table 4 - The use of the embedded formulation in some researchs. 

Authors Research carried out 

Spiliopoulos and Lykidis (2006) The steel bars are modelled as uniaxial elements 

and embedded formulation is used to perform a 

three-dimensional dynamic analysis of reinforced 

concrete structures. 

  

Cunha et al. (2012) A numerical approach is presented to simulate the 

behavior of the steel fibre reinforced concrete. 
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Authors Research carried out 

Santos and Henriques (2015) A bond-slip relationship between the concrete and 

steel is proposed, also including the steel strain 

effect. The fiber is considered with the embedded 

model formulation. 

Bencardino et al. (2016) A numerical and analytical study of concrete beams 

with steel, FRP and hybrid FRB-steel 

reinforcement is performed. 

Mourlas et al. (2017) Authors use the embedded ideia and propose a 

computational model to analysis the behavior of the 

concrete under cyclic action. 

Dashti et al. (Dashti et al. 2017) The paper uses the reinforcement bar of DIANA® 

(2017) software with the shell finite elements to 

predict the behavior of the rectangular reinforced 

concrete structural walls. 

Eftekhari et al. (2018) Multi-scale modelling is applied to analysis 

concrete columns subjected to service loads. The 

simulation taking into accout the concrete 

reinforced with nano material called carbon 

nanotubes (CNTs). The incorporation of the CNTs 

is performed in accord with the embedded 

formulation with truss elements 

Piscesa et al. (2018) FRP confined reinforced concrete columns are 

investigated using the truss bar embedded in the 

hexaedral elements. 

 

As demonstrated in the present section the use of reinforcement bars in the numerical 

analysis is a common practice. Two lines of research have been developed over the years: the 

first is related to the mathematical development of the formulation and another one is concerned 

to the application of these numerical models in case analyzes. 
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2.4 Plasticity 

 

Nowadays, plasticity models have been widely used in many applications in engineering. 

The studies of the theory can be reported in classical literature (Chen 2007, Lubliner 2006). The 

famous book of Simo and Hughes (1998) discuss the numerical algorithm implementation 

while Owen and Hinton (1980), Dunne and Petrinic (2005) and de Souza Neto et al. (2008) 

debate this theory applied directly with the finite element method. 

The theory of plasticity concerns to represent materials answer for which permanent 

strains are developed after reach a certain yield strength (Belytschko et al. 2014). In Lemaitre 

and Chaboche (2000) the plasticity phenomenon is discussed under the optic of 

thermodynamics of irreversible process. Such phenomenological model appears beyond the 

elastic regime. The yield strength defines the boundary between the elastic and plastic regimes, 

which combined defines the called elastoplastic models. Mathematically, according to Lemaitre 

and Chaboche (2000), to describe a plastic regime it is necessary the definitions of the internal 

variables known as plastic strain tensor and hardening parameters. The plastic strain tensor 

represents the permanent strain parcels while the hardening parameters describe the gain of 

material strength related to the increase of plastic strain. Two classical phenomenological 

hardening models are known: the isotropic and the kinematic hardening. In the isotropic 

models, the expansion of the initial yield surface is symmetric from its center. For the kinematic 

model the initial yield surface does not change of size; however, change of position in the stress 

axles with the plastic process evolution. 

Two elastoplastic models were implemented in the code developed in the present work. 

One for the bar finite element which characterizes the one-dimensional plasticity and another 

for the frame finite element which corresponds to the plane stress plasticity. Both models are 

described according to the irreversible process of thermodynamics. Chapter 3 discusses the 

formulation and consequently the implementation strategy adopted to carry out the numerical 

simulations presented in chapter 5. 

 

2.5 Damage and Smeared crack model 

 

Physically, the collapse of materials under the action of a set of loads is understood as a 

mechanism which is initiated with micro-cracks diffuses that undergoes by coalescence process 
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and forms a macrocrack, (Lemaitre and Desmorat 2005). In the last stage, the material present 

collapse mechanic and therefore it verifies the crack propagation. 

The concepts commonly used in the numerical analysis of structures to study the failure 

of materials can be divided into following two branches (Oliver and Huespe 2004):  

(a) The discrete approach, which is based on the modeling of the cohesive surface, guided 

by the traction-separation law, located between two continuum materials. 

(b) The Continuum approach, which the formulation is associated with the continuum 

mechanics (Smeared cracks and damage models) or refined theories as well the enriched 

continuum (non-local approaches, gradient enrichment). 

The two previously assumptions, when applied with the finite element method (FEM), 

demands distinguished algorithms. For the first case the discrete approach, the failure surface 

is in the boundary between the finite elements. The nodal connectivity changes during the 

process of the crack propagation what is also already pre-established with the finite element 

mesh. Such characteristic induced algorithm researchers about automatic re-meshing to become 

this model a practical method (Ingraffea and Saouma 1985, Azócar et al. 2010, Chiaruttini et 

al. 2013, Areias et al. 2016), Figure 2.9a. For the Continuum approach, the crack is assumed by 

Stress-Strain relation evaluated at the integration point of the finite elements of the mesh. In 

this case once established the discretization no remeshing algorithm is required, Figure 2.9b. 

 

  

(a) (b) 

Figure 2.9 – Model conceptions for: (a) Discrete approach (b) Continuum approach. 

 

Several computational finite elements codes, such as ATENA® 5.6 (2016), DIANA® 

10.2 (2017) and Abaqus® 6.13 (2013), have implemented the Smeared crack and Damage 

models for nonlinear analysis of the structures. Independently of the mathematical formalism 

adopted both theories associate the loss of stability, provided by the crack mechanism 

formation, with the stiffness degradation of the material. Next, the failure of materials is 

reviewed under the continuum conceptions.  
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The Continuum Damage Mechanics is addressed to the study of the macroscopic level 

representation of degradation phenomena occurring in materials at the microscopic level. For 

engineering structures, such degradations are associated with any type of action that acts under 

the material used, such as physical loads, temperature variations and others. So, as results of 

these actions, the material presents microcracks, microvoids, and similar defects that lead to the 

degradation of material stiffness on the macroscale. 

Nowadays, Lemaitre (1996), Lemaitre and Desmorat (2005), Lemaitre and Chaboche 

(2000) are the classical books that present the discussion of damage mechanics in the 

thermodynamic sense. According to Lemaitre and Desmorat (2005)  the term “Continuum 

Damage Mechanics” was firstly introduced by Hult in 1972 but the concept of damage was 

initially discussed in the studies published by Kachanov in 1958 and further developed by 

Rabotnov in 1968, Hayhurt in 1972, Leckie and Hayshurt in 1974. 

The difference between the plasticity and damage models concern in the fact that the 

plasticity theory is an irreversible process associated to the plastic strain accumulation while 

the damage theory is elated to the stiffness degradation, Figure 2.10. Phenomenologically, the 

strain accumulation of plasticity model is caused by the relative displacement of the atoms and 

the stiffness degradation results of breaks of bond and debonding because of the appearance of 

cracks. 

 

  

(a) (b) 

Figure 2.10 – Basic representation for: (a) Plasticity model and (d) Damage model 

 

Lemaitre and Desmorat (2005) show several versions of damage models that have been 

developed. The isotropic damage model defined by only one scalar variable that characterizes 

material degradation is the simplest version. The improvement of this formulation is considered 

when the damage parameter is associated with two variables, which determine the different 
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levels of stiffness degradation for compression and tensile states. More sophisticated damage 

versions describe the anisotropy of the materials with damage variables associated with vectors, 

second orders tensors or even with fourth-order tensors. 

The smeared crack conception was firstly applied to simulate fracture mechanics in the 

1960s by Rashid (1968). The development of this theory concerns application in quasi-brittle 

materials like concrete and rock. Such model gained popularity being entirely explored in the 

subsequent years (Cervenka and Gerstle 1971, Suidan and Schnobrich 1973, Bazant and ASCE 

1976, Crisfleld and Wills 1989, Cervenka 1996, Jirasek and Zimmermann 1998, Lee et al. 2004, 

Cervenka and Papanikolaou 2008, Hariri-ardebili et al. 2013, Behbahani and Al. 2015, Thybo 

et al. 2017). 

Despite the difference between the discrete and smeared formulations, both are based 

on the relationship between stress and strain. The Stress-strain correlation in fracture mechanics 

defines the cohesive-zone model. Dugdale (1960) introduces the cohesive zone for ductile 

fracture while Barenblatt (1962) for brittle one. The propagation of pre-existing cracks for 

quasi-brittle material was first developed by Hillerborg et al. (1976) in accordance with the 

fictitious crack model. Following this approach, cohesive stress is assumed as a function of the 

crack opening (  COHf w ), i.e. when the crack opens the stress does not suddenly fall to zero, 

Figure 2.11. 

 

 

Figure 2.11 – Fictitious crack approach.  

 

The function associated with the gradual decreasing of the stress is called softening 

function and is considered a material property that can be related to the fracture energy fG   as 

follow: 

 
0

cw

f COHG f w dw   
(2.9) 
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where cw  is the critical crack opening which indicates the stress are null for larger values and 

therefore physically a real crack is formed. fG  is defined as the amount of energy required to 

create one unit of area of a continuous crack. 

Based on the fracture mechanics the so-called characteristic length chl  can be derived 

as: 

2

f

ch

t

G
l

f


 

(2.10) 

where  and tf  are Young’s modulus and the tensile strength, respectively. Generically the 

characteristic length is a material property, which is assumed as an inverse measurement of its 

brittleness. 

Although the development of the fictitious crack model was applied to the propagation 

of the pre-existing crack its mathematical formalism is similar to the cohesive crack band 

approach. The crack band model is directly used with the continuum conception, presented by 

Bazant in the followings articles: Bazant and oh (1983), Cedolin and Bazant (1980), Bazant and 

ASCE (1983), Bazant et al. (1983), Bazant (1985) and in the book of Bazant and Planas (1998). 

Rots et al. (1985), De Borst and Nauta (1985), De Borst (1986), Rots and De Borst 

(1987) and Rots (1988) mathematically describes the smeared crack approach by 

decomposition of total strain into two parcels referred to the elastic and inelastic strain. The 

inelastic parcel is often called as the crack strain. Successive associations among local 

coordinates, positioned in the direction of the cracks, and the global coordinates of the system 

are considered to formulate the constitutive relation for a cracked material. The stiffness of the 

material cracked is analogous to the prepositions previously taken into account by Bazant in 

the context of the crack band theory. 

More recently, Jirasek (2011) discuss that taking into account the assumptions used to 

define the constitutive law from the smeared crack models can be observed that this approach 

differs from the formalism associated with the plasticity and damage theory. Although the 

decomposition of total strain in elastic and inelastic parts are taken into account, as the plasticity 

theory, their progress is not defined by a Yielding condition and a respective flow rule. In the 

smeared crack approach the evolution of the crack strain is directly associated with a traction 

separation law which is related to the plan of crack.  
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Figure 2.12 shows the rheological model, represented by a spring, and a unit cohesive 

crack associated with the crack local coordinates of the smeared crack conception. 

 

 

 

(a) (b) 

Figure 2.12 – (a) Rheological model and (b) Local coordinate system aligned with the crack. Withdrawn from 

(Jirasek 2011). 

 

Initially, three models derivate by the smeared conception are found in the literature: 

a) Fixed 

b) Rotating 

c) Multi-fixed 

Summarizing, in the fixed crack model (a) the cracks do not change its direction once they 

are activated. In the rotating model (b) the inclination of the cracks can be changed and its 

rotation is established by direction of the principal strain. In the multi-fixed model (c) multiples 

cracks can arise at the same point of analysis since the principal stress rotation increment 

exceeds a threshold value. 

 

Softening curves and experimental aspects  

The crack opening evolution for the smeared crack model or the damaging process 

evolution for the damage models is based on the softening curves. Thus, it could be declared 

that the complete information of the softening curve is an essential input data for performing 

the numerical simulation. 

The softening curve can be determined by experimental tests. Ideally, the direct tensile 

test it seems the best method to define this. However, they are difficult to be carried out in 

practice because the fastening devices of the specimens introduce secondary stresses that they 

cannot be neglected (Mehta and Monteiro 2008). 
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If in the tensile test it is considered a prismatic or cylindrical specimen the failure can 

appear as a set of multiplies cracks spread over the volume of the specimen instead of in a 

localization zone, Figure 2.13a. To circumvent this problem some other shape of specimens 

were already used, for instance: notched one and dog bone specimens, Figure 2.13b and c, 

respectively. However as pointed out by Bazant and Planas (1998) the secondary stresses for 

such cases still persists into the experimental tests. This occurs due to following two reasons: 

(1) The specimen tends to shift to an asymmetric mode of fracture due the heterogonous 

microstructure of the specimen even with a single central crack formed, Figure 2.13d 

and e. 

(2) Imagining that two cracks are growing from both sides of the specimen what occurs 

is that their extremity tend to avoid each other when they approach and overlap. 

Therefore, a single crack is not formed in this case, (Figure 2.13f). 

 

 

(a) (b) (c) (d) (e) (f) 

Figure 2.13 – (a) Multiples cracks, (b) Notched specimens, (c) dog bone specimens, (d) rotation in the end of 

experiment, (e) accommodate by internal deformation and (f) Cracks growing from notched to the center. 

Adapted from Bazant and Planas (1998). 

 

As the full strain softening curve is difficult to be obtained from the tensile test, 

alternatively, this descending branch can be estimated by the determination of some parameters, 

such as tensile strength and fracture energy.  

 

Tensile strength limit  
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The tensile strength limit ( tf  ) delimiters the border between the elastic and inelastic 

regime, i.e. the moment that the crack is activated. In the smeared formulation, such value is 

assumed constant and equals the tensile strength ( ctf ). 

The splitting cylinder test (or so-called Brazilian test) and four-point bending test can 

be used to estimate the tensile strength. The Brazilian test is performed with a cylinder specimen 

with dimensions commonly equal 15x30 cm², (ABNT-NBR 7222:2011). In this test, the 

compression loading is applied along two axial lines diametrically opposed. Such procedure 

leads to the failure under tensile in the cross section, Figure 2.14a. The tensile strength by 

diametrical compression of cylindrical test specimens ( ,ct spf ) is calculated with the follow 

expression: 

,

2
ct sp

F
f

ld


 
(2.11) 

where F  is the rupture loading, l  and d  are the length and the diameter of the specimen, 

respectively. 

 

Figure 2.14 – (a) Brazilian test and (b) Four point bending. Adapted from (Mehta and Monteiro 2008). 

 

In the four-point bending test a beam with dimensions 150x150x500mm³ is loaded in 

the third of the span, Figure 2.14b. The flexural strength ( ,ct ff ) is determined with: 

, 2ct f

FL
f

bd


 
(2.12) 

where F  is the rupture loading, L , b  and d  are the length, width and the height of the 

specimen, respectively. 
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ABNT NBR (6118:2014) suggests a reduction of about 30% on the flexural strength as 

follow defined: 

,0.7ct ct ff f
  

(2.13) 

 

Similar CEB - FIB Model Code (2010) prescribes the following relationship between 

mean direct tensile strength ( ctmf ) and flexural strength ( ,ct flf ): 

0.7

, 0.7

0.06

1 0.06

b
ctm ct fl

b

h
f f

h



 CEB-FIB (2010) (2.14) 

where bh  is the beam depth. The strength unities are assumed in MPa. 

Alternatively, for the case that there is no experimental data ABNT NBR (6118:2014) 

and CEB - FIB Model Code (2010) recommends that the tensile direct strength can be estimated 

as characteristic value ( ctmf ) from the compressive strength ( ckf ) according the follow 

relationships: 

 

  

2 3

2 3

0.3                               concrete grades < C50

2.12 ln 1 0.1    concrete grades > C50

ctm ck

ctm ck

f f

f f f



   
 

where 8f MPa   and all unities that refers to the strength may be considered in 

MPa. 

(2.15) 

 

 

2 3

2 3

0.3                               concrete grades < C50

2.12ln 1 0.11              C55 < concrete grades < C90

ctm ck

ctm ck

f f

f f



 
 

(2.16) 

 

Area under the softening curve 

The area under the softening curve ( fg ) is mathematically expressed as: 

 
0

f cohg f d


    
(2.17) 

Such parameter is properly related to the fracture energy ( fG ) with the equivalent length also 

called as characteristic length with the following expression: 

f

f

G
g

h


 

(2.18) 
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The characteristic length as a crack band approach assures that the energy dissipation 

does not depends on the finite element size (Cervenka and Papanikolaou 2008). Some authors 

point out that equivalent length could be associated as a representative dimension of the mesh 

size (Bazant and Oh 1983, Rots 1988, Oliver 1989, Volokh 2013). However, the value of the 

characteristic length ( h ) goes beyond this assumption once depends on the chosen of the 

element size, element type, element shape, integration scheme and even of the problem 

considered. In accordance with Feenstra (1993) and De Borst (2002) the equivalent length is 

written as function of the area of the element as follow: 

1/2

1

det(J )
NIP

e i i

i

h A  


 
   

 


 

(2.19) 

where the area of element ( eA ) is calculating with the numerical integration. NIP is the 

abbreviation for number of integrations point. The variable i  is the weight factors of the 

numerical integration rule and iJ  is the Jacobian transformation between the local, 

isoparametric coordinates and the global coordinates of the system in integration i . The factor 

 depends on the element type and the integration scheme. According to Rots (1988) such 

factor is defined equal 1 for quadratic elements and 2  for linear elements. 

The three point bending test of a notched concrete beam, Figure 2.15, is the most 

common experimental test performed to determine the fracture energy (RILEM Committee 50 

1985, Guinea et al. 1992, Planas et al. 1992, Elices et al. 1992, Hanson and Ingraffea 2003, 

Martin et al. 2008, Lee and Lopez 2014). 

 

 

Figure 2.15 – Three point bending test of a notched concrete beam. 

According to CEB - FIB Model Code (2010) in the absence of experimental data for 

ordinary normal weight concrete the fracture energy may be estimated as: 

0.1873f cmG f
 

(2.20) 

where cmf  is the mean compressive strength in MPa. 
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The shape of the softening curve 

The shape of the softening relation is another crucial factor to describe the cohesive law 

adequately, (Bazant and Planas 1998, Morales-alonso et al. 2015). Intrinsically, this 

relationship is linked to the fracture energy released ratio and the crack opening evolution, as 

previously mentioned. From the mathematical point of view, the shape of a proper cohesive law 

point out a gradual process of dissipation of energy and avoid the unrealistic stress jump. 

The adoption of strain softening curve in quasi-brittle materials is physically justified 

by the fact that the formation of a macroscopic stress-free crack in such materials preceded by 

initiation, growth and coalescence of a network of microcracks (Jirasek 2011). 

Over the years some shape of softening curves were proposed, Figure 2.16. The linear 

softening curve was first suggested by (Hillerborg et al. 1976) as an approximation of the 

concrete behavior.  

 

 

Figure 2.16 – Different softening-curves configurations. 

 

Bazant and Planas (1998) presents that the bilinear curve can be obtained from results 

of tensile strength and fracture energy provided by the experimental tests, such as the Brazilian 

test and the three-point bend test. Proposed of bilinear curves can also be found in CEB - FIB 

Model Code (2010) and JSCE (2010). 

The softening curve suggested by Cornelissen et al. (1986) and Hordijk (1991) has the 

following form: 

     
 

 

2 2

3

3

1 11 1 0

0

c

ult

c

ult

ult ult

ct

ult

c e c e iff

f
if



 
 

 

 


 
 
 

  
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    


  

 (2.21) 
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where 1c  and 2c  are constant parameters respectively equals 3 and 6.93 as suggested by 

Hordijk (1991). This constants control the shape of the curve. ctf  is the uniaxial tensile strength, 

ult  is the strain from which the stress are null. 

The exponential law is also often used as an approximation of softening curves in Jirásek 

and Zimmermann (2001) and Jirasek (2011). 

It should be emphasized that the concepts discussed in the present topic constitute the 

basis for the two damage models developed and written at item 4.2 and 4.3 of this thesis. 

 

2.6 Summary 

 

In this chapter, a brief literature review was presented about the themes covered for the 

development of this work: Dowel action, Positional finite element method, Numerical 

representation of the reinforcement bars, Plasticity, and Damage and Smeared crack models. 

The shear mechanism of Dowel action constitutes an important effect that the steel 

reinforcement bars of the structures are subjected. Such a mechanism is characterized by actions 

that occur transversally to the longitudinal axle of the bars. It can occur in casting joints and 

even in the structures in which the reinforcements completely emerge in the concrete. It was 

showed that experimental, analytical and numerical researches have been constantly developed 

over the years. The major challenges found by the researchers consist of the suitable 

experimental and numerical representation of such a problem. It was presented that the beam-

on-elastic-foundation theory is commonly employed for the analytical representation of the 

dowel action mechanism. However, although such approach results in satisfactory results when 

compared with experimental test the shear and flexural stiffnesses of the reinforcement bars are 

neglected with this approach. 

Regarding the positional finite element method, it was showed the importance of such 

formulation to Department of Structures (SET) of the School Engineering of São Carlos (EESC) 

at the University of São Paulo (USP). Several works were and continue to be published with 

this methodology. It was also exposed to the mathematical basis for its application. 

Following, the progress of the numerical representation of fibers in the context of the 

finite element method was briefly discussed. The three different approaches discrete, smeared 

and embedded theories were proposed over the years. Several papers were already published to 
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shows the mathematical formalities of these three approaches and their applications to 

investigate reinforced structures. It was presented the advantages and disadvantages of each 

one. The discrete model is the most realistic representation of the reinforcement bar in the 

reinforced structures once its contribution occurs exactly at the same position as the 

reinforcements bars presented in the real case. However, from the numerical point of view, the 

smeared and embedded theories enable satisfactory analysis with a more practical application. 

A brief background about the plasticity theory from the thermodynamics point of view 

was presented. 

At last, from the numerical point of view, it was presented the two ways, Discrete and 

Continuum approaches, that the problem of failure of material can be treated. Between the 

possible continuum approach models, the smeared and damage models were briefly presented. 

Some aspects such as the fracture energy, softening curves, and crack bandwidth or equivalent 

length was also presented. In the end, the importance of the definition of the three parameters 

(tensile strength, area, and shape of the softening curves) necessary to determine the crack 

opening and the damage process evolution was discussed. 

Finally, this chapter provided information about dowel action mechanism and suitable 

numerical formulations available to be used to represent material and structures in order to 

introduce this thesis and insert it in the context of previous researches. 
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3 THE NUMERICAL APPROACH 

 

The current chapter addresses the mathematical formulation of the finite elements 

implemented during the development of this work. The two-dimensional finite element is first 

presented, followed by the bar and frame. The positional formulation is used to describe the 

Kinematics of the elements. The chapter also discusses the constitutive laws used as well as the 

expression that compound the components of the internal forces vector and the Hessian matrix. 

The last descriptions concern to the coupling of the bar and frame elements into two-

dimensional elements. The coupling technique developed to embedded the frame element into 

the two-dimensional finite element deserves particular attention because it constitutes one of 

the contributions of this work. 

 

3.1 Two-dimensional finite element 

 

The present topic concern to the demonstration of the two-dimensional finite element 

formulation. The theory disposed follow the works developed in Marques (2006) and Sampaio 

(2014) and more recently the book Coda (2018) entitled as “O Método dos elementos finitos 

posicional: sólidos e estruturas – não linearidade geométrica e dinâmica”. 

 

Mapping configuration 

Two mappings are used to develop the positional formulation. The initial configuration 

mapping (the non-deformed state) 0  and the current configuration related with deformed state 

  (Figure 3.1). 
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Figure 3.1 – Mapping of initial and current configurations. 

 

Both configurations are described from a system of dimensionless coordinates 1  

according to the follow expressions: 

 0

1 2, l

i i l ix f X   
 

(3.1) 

 1

1 2, l

i i l iy f Y   
 

(3.2) 

 

The coordinates ix  and iy  of the initial and current configurations are respectively 

mapped on the space 1  using coordinates i  with shape function  1 2,l    and the real 

coordinates nodes 
l

iX  and 
l

iY  at the element. The index i and j represent a certain nodal point 

while l  is the number of nodal coordinates at the element.  

0

if  and 
1

if  are configuration functions that describe the change of configuration between the 

initial and current one and the dimensionless coordinates, respectively. The change of 

configuration at the initial to current is performed with the function f  that is calculated from 

0f  and 
1f  as: 

 
1

1 0f f f



 

(3.3) 

 

The gradient of f , called here as A , is written from the gradient of 
0f  and 

1f  as: 
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 
0 1

1
0 1 0,    ,    i i
ij ij

j j

f f
A A A A A

 

 
   
 

 

(3.4) 

 

Strain-energy density 

The strain energy density at Saint-Venant-Kircchoff is used and defined as: 

1 1
: :    or    

2 2
e e ij ijkl klu E E u E E C C

 
(3.5) 

where E  is the second order Green strain tensor expressed in (3.6) and C  is the fourth order 

elastic constitutive tensor (3.7). 

       
1 1 1 1

 or 
2 2 2 2

T

ij ij ij ki kj ijE C I A A I E C A A        
 

(3.6) 

 
2

1 2
ijkl ij kl ik jl il jk


     


  


C

 
(3.7) 

With C  being the right Cauchy stretch, I  the second order identity tensor and   Kronecker’s 

delta,  2 1      the transversal elastic modulus,   the Poisson ration and  is the 

longitudinal elastic modulus 

For the plane stress case Eq. (3.5) can be conveniently written as: 

 
   2 2 2 2 2

11 22 11 22 12 212
2 1

1
eu E E E E E E 


     


 

(3.8) 

 

Strain Energy 

The strain energy for one element eU  is obtained with the volume integration 0V  of the 

strain-energy density and it is written as: 

0

0

e e

V

U u dV 
 

(3.9) 

 

The specific strain energy written as a function of the dimensionless coordinates results 

in: 

   
1 1

1 2 0 1 2 1 2

0 0

, ,e eU u J d d       
 

(3.10) 
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where the domain of the integration is done between 0 and 1 and 0J  is the Jacobian calculated 

by the determinant of the matrix 0A  as follow showed: 

   0 0 0 0 0

0 1 2 11 22 12 21, detJ A A A A A    
 

(3.11) 

 

The numerical integration with the Hammer quadrature is adopted to calculate the 

integration defined in (3.10). Therefore, the integration is substituted by a summation of the 

specific strain energy defined for all numerical integration point  1 2,   multiplied by its 

respective weight ic  and Jacobian  0 1 2,
i

J   . 

   1 2 0 1 2

1

, ,
nhp

e e ii i
i

U u c J   



 

(3.12) 

The index nhp  is the number of Hammer’s points for one element. 

 

Internal Force 

As showed in Eq. (2.3) the internal force is obtained with the first derivative of the strain 

energy and is written as: 

 

   
0

int 0

1 2 0 1 2

1

, ,
nhp

e e
i iV
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U u
F dV f c J

Y Y

 

  

 
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
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(3.13) 

where the index   is the direction of the nodal point  . The development of the term f 

  

gives: 

1 1
   or    

2 2

ije e e e e

ij

CU u u U uE C C
f f

Y E C Y E Y Y E Y

 
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    

      
    
        

 

(3.14) 

 

The index i and j can be assumed as 1 or 2. By the energy conjugate assumptions, one 

finds the second Piola-Kirchhoff stress, defined as: 

   or   e e
ij

ij

u u
S S

E E

 
 
 

 

(3.15) 

 

The other term that must be defined is C Y 

  , therefore: 
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(3.16) 

where 
1A Y 

   for each direction   and a certain node   is: 
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(3.17) 
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(3.18) 

 

Hessian Matrix 

The Hessian matrix definition is performed with the second derivative of the strain 

energy or with the first derivative of the internal force, as exposed in (2.5), and now rewritten 

as: 
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(3.19) 

where the index   and   are the direction of the nodes   and  , respectively. As defined for 

the internal force the numeric integration is also applied to determine the integration of the 

second derivative of the specific strain energy. 

The development of the term 
2

eU Y Y 

    gives: 

22
1 1

2 2

ij ij ij ije
ij ij
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       

      
                  

(3.20) 

where ( ijC Y 

  ) and ijS  were already presented in (3.16) and (3.15), respectively. 

The derivative of Piola-Kirchhoff stress is: 

1

2

ij ij ij ij ij

ij

S E E C C

Y Y C Y Y   

   
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  
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C C C

 

(3.21) 

remembering that ijC Y 

   is already known in (3.16). 

The second derivative of the right Green stretch  2

ijC Y Y 

 
   
 

 is: 
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(3.22) 

Observing the Eqs. (3.17) and (3.18) the term  2 1A Y Y 
 

   
 

is null and all the other 

terms presented in (3.22) are already known. 

Chapter 5 shows all simulations of structures performed with this two-dimensional finite 

element. More specifically, the example 5.1.1 certify this implementation while the exemples 

5.2.1, 5.2.2, 5.4.1, 5.5.1, 5.5.2, 5.6.1, 5.6.2, 5.6.3, 5.6.4, 5.7.1, 5.7.2 and 5.8 use this two-

dimensional element to validate others theories that will still be discussed in this work. 

 

3.2 Bar finite element 

 

Next, the curved bar finite element formulation developed by Sampaio (2014) and 

Paccola et al. (2014) is presented. Such an element can be used with straight or curved 

configuration with any order of approximation. 

 

Kinematic of the bar finite element  

Figure 3.2 shows the mapping configuration of the bar finite element. Similar to the 

two-dimensional element previously discussed the initial ( 0 ) and the current ( ) 

configurations are taken into account as well as the system of dimensionless coordinates ( 1 ), 

which is assumed as the reference for the calculus. It is also defined the configurations functions 

0

f f  and 
1

f f  that describes the change of configuration between 0  and   with 1 . 
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Figure 3.2 – Mapping of initial and current configurations. 

So any point p  at the initial (
p

f X ) and current (
p

fY ) coordinates presented in the 

domains ( 0 , ) are respectively mapped with the shape functions ( f p ) and dimensionless 

coordinates   as follow written: 
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(3.23) 

where f x  and f y  are the initial and currents mapped coordinates in the domain of the finite 

element.  

Both the tangent vectors and theirs respective modules for each point of the finite 

element in the initial and final configurations are respectively defined as: 
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(3.24) 

 

According to the modules expressed in (3.24) the Green strain is assumed as: 
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(3.25) 

 

The strain-energy density ( f u ) definition is: 

21

2 ff fu E
 

(3.26) 

where 
f

 is the tangent elasticity modulus.  

Integrating (3.26) over the initial volume gives:  

0
0

f
f f f

V
U ud V 

 
(3.27) 

 

The global internal force and the Hessian matrix are obtained, respectively, with the first 

and second derivative of the strain energy density. 

The internal force definition is, therefore: 

0

0
f

f f fi

f fi i i

f f fV

U u E
F d V

Y E Y


  

  
 
  

 

(3.28) 

where: 

f f fS E
 

(3.29) 
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

 
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  
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(3.30) 
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The integral solution of the Eq.(3.28) is performed in the dimensioneless coordinates 

domain. So the integration limits [-1,+1] is assumed and the initial volume of the element (

0 0f f fV A L ) is defined as function of the isoparametric coordinates   as follow written: 

 
1

0
1

fi

f f f fi

f

E
F S J Ad

Y




 






 

(3.31) 

where f A  it is the initial cross-section of the bar and the Jacobian  0f J   can be expressed 

as: 

 
0

2 2

1 2
0f

dx dx
J T

d d


 

    
     

     

(3.32) 

 

The Gauss-Legendre quadrature assumed to solve the Eq.(3.31) gives: 

   
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0
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S d d
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   


 
 

 
 
 
 



 

(3.33) 

where npg  are the numbers of Gauss points and f kc  theirs respective weights. 

The second derivative of the energy-strain density defines the Hessian matrix as: 

0 0

2

0 0

f f

f f fij

f f fi j i j j i

f f f f f fV V

U u u
H d V d V

Y Y Y Y Y Y


     

   
    

       
 

 

(3.34) 

 

Applying the chain rule to solve the expression inside the integral defined in (3.34) it is 

possible to write: 

f f f f f f

f fj i j i j i j i

f f f f f f f f f

u E E S E E
S S

Y E Y Y Y Y Y Y Y       

         
     

                

(3.35) 

where (
i

f fE Y  ) and ( f S ) were already defined in (3.29) and (3.30). The others terms are 

following expressed: 

 f f

f f fj j j

f f f

S E
E

Y Y Y  

 
 
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(3.36) 



74 

 

 

 

0 2

pf p f j
f

f f

j i j i j

f f f f f
f

d d
Y

d dE E

Y Y Y Y Y
T



    

  
 



   
          

            
 
   

(3.37) 
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   

(3.38) 

 

The integral solution of Hessian matrix (3.34) is also performed with the Gauss-

Legendre quadrature. Thus, replacing the expressions (3.29), (3.30), (3.36), (3.37), (3.38) in 

(3.35) and after into (3.34) the numerical integration is follow specified: 
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 
 
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(3.39) 

where   is the Kronecker delta. 

Such bar finite element formulation contributes to the analysis of the examples 5.2.1, 

5.2.2, 5.3.1, 5.3.2, 5.3.3, 5.5.2, 5.7.1, 5.7.2 and 5.8 performed and written in Chapter 5. 

 

3.3 Frame finite element 

 

Reis and Coda (2014) developed the frame finite element used in the present work. The 

positions in the directions 1 and 2 and the rotations of the cross-section are the three degrees of 

freedom considered in its construction. In this work, the element implemented presents four 
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nodes that correspond to a cubic order element with twelve degrees of freedom. Such two-

dimensional element contemplates the Reissner kinematic once the shear stress distribution is 

included in the formulation and for any deformed configuration, the cross-section does not 

necessarily remain orthogonal with the longitudinal neutral axle. Next, the formulation of the 

element is discussed. 

 

Kinematic of the frame finite element  

The initial mapping at the reference line of the frame finite element for the 

dimensionless coordinate system is performed with the shape functions as follow expressed: 

 
0m

m m

i l ilf x X  
 

(3.40) 

 

Figure 3.3 illustrates the reference line at a finite element of 4 nodes (cubic 

approximation). 

 

 

Figure 3.3 – Reference line parameterization for initial configuration. (REIS and CODA, 2014). 

 

The ix  indicates the coordinates for the directions  1, 2i   of the nodes mapped at the 

dimensionless configuration. The subscript m is the point in the reference line at the element, 

X  are the nodes coordinates at the element and, the repetition of index l  indicates summation.  

At nodes, the tangent vector at a reference line, Figure 3.4, can be written as: 
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 

k

l m

ik il

d
T X

d


 




 

(3.41) 

where k  is the dimensionaless coordinate of node k  and ikT  is the thi  component of the tangent 

vector at node k . 

 

 

Figure 3.4 – Nodal normal vectors. Adapted from (REIS and CODA, 2014). 

 

The normal vectors at the nodes ilustred in Figure 3.4 is calulcated as: 

   1 2k k i k i k
V T T T 

 
(3.42) 

   2 1k k i k i k
V T T T

 
(3.43) 

 

The index inside brackets does not mean summation and it could be written as: 

         
2 2

1 2i k i k k k
T T T T 

 

(3.44) 

 

The nodal angle 
0

k  between the normal vector ikV  and horizontal direction  1x  is 

determined by: 

    0

2 1k k k
arctg V V 

 
(3.45) 
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The angle 0  can be approximate with the shape functions, thus the  0   for any 

cross-section along the initial configuration is calculated as: 

   0 0

l l    
 

(3.46) 

 

Any point inside the continuum at the frame finite element presented in Figure 3.5 can 

be described adding the normal vector  0 ,ig    to a point of the reference line as follow 

presented: 

     0, ,m

i i ix x g     
 

(3.47) 

 

 

Figure 3.5 – Point P at a general section of the initial element configuration. (REIS and CODA, 2014). 

 

Defining the initial cross-section orthogonal to the reference line, as ilustred in Figure 

3.5, it is possible write the normal vector   0 ,ig    in function of   0   as: 

    0 00
1 , cos

2
l l

h
g      

 
(3.48) 

    0 00
2 , sin

2
l l

h
g      

 
(3.49) 

 

Therefore, substituting the expressions (3.40), (3.48) and (3.49) into (3.47), the 

expression that describes the mapping between the initial configuration and the dimensionless 

coordinate system is defined as: 
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      0 00
1 1 1, , cos

2

m

l l l l

h
f x X          

 
(3.50) 

    0 00
2 2 2, sin

2

m

l l l l

h
f x X        

 
(3.51) 

 

Analogously, the changes function configuration between the current configuration and 

dimensionless coordinate system can be written as: 

      1 10
1 1, , cos

2

m

l il l l

h
f y Y          

 
(3.52) 

      1 10
2 2 2, , sin

2

m

l l l l

h
f y Y          

 
(3.53) 

For the current configuration, the  1 2,y y  positions and angle    are determined 

directly at the non-linear solution process. 

Figure 3.6 presents the current configuration mapping at the frame finite element. As 

can be seen from equations (3.52) and (3.53), the cross-section remains straight but not 

orthogonal to the reference line as the initial configuration. The height 0h  and the width 0b  do 

not also change for current configuration. This fact allows the constitutive relation for accept 

any shear elastic modulus but always null poison ration. 

 

 

Figure 3.6 – Point P at a general section of the current element configuration. Adapted from (REIS and CODA, 

2014). 
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Similar to the other fintie elements, such one is also based in the two mappings the initial 

 0  and current    configurations that are mapped according a dimensionless coordinate 

system  1  as shows Figure 3.7. 

 

 

Figure 3.7 – Point P at a general section of the current element configuration. (REIS and CODA, 2014). 

 

The calculus of the function change configuration  f  from initial to current state is 

done with the decomposition of mappings  0f  and  1f  as: 

 
1

1 0f f f



 

(3.54) 

 

The gradients of f  is the matrix A  with dimensions 2x2 that is determined from the 

gradient of the initial and current mappings of 
0f  and 

1f , as: 

 
1

1 0A A A


 
 

(3.55) 

 

The gradients 0A  and 1A , in index notation 
0

ijA  and 
1

ijA , are written as: 
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(3.57) 

 

The expressions to the parcels of the two gradients (3.56) and (3.57) are determined 

inserting in such parcels the Eqs. (3.50), (3.51), (3.52) and (3.53), which results in: 
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2
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(3.65) 

 

The Saint-Venant-kirchhoff constitutive relation and the Poisson value null are assumed 

to define the strain energy density as follow represented: 

    2 2 2 2

11 22 12 21
2

eu E E E E   
 

(3.66) 
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Internal Force 

The internal force is obtained from the derivative of strain energy density in a relation 

to nodal and angular positions as follow defined: 

 
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(3.68) 

 

Taking into account the computational implementation, the two internal forces 

demonstrated in (3.67) and (3.68) can be refereed as only one vector as: 

 

 
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1 2 1 2 1 2
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(3.69) 

 

The expression of the derivative of internal force ( eU Y 

  ) is exactly the same 

equation written in (3.14). However, the second Piola-Kirchhoff stresses is defined for the 

present element as: 
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(3.70) 
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(3.73) 

 

The derivative of right Cauchy stretch  C Y 

   is generically defined in (3.16) and 

the terms  1A Y 

   as: 
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  

    
 

   
     

 
  
 


  
      

(3.76) 

 

Hessian Matrix 

The Hessian matrix calculation is performed with the second derivative of the strain 

energy density as: 

 
         0

2
2 2

0

0 0

,
, ,

g g

g g g gg g g g

e i j
e e

i j i ji j i jV

uU u
H dV w w J h w w J

Y Y Y Y Y Y
      

     

 
   

 
   
     

 

(3.77) 

 

Remembering from (3.20) the second derivative of the strain energy can be defined as: 

22
1 1

2 2

ij ij ij ije
ij ij

C S C CU
S S

Y Y Y Y Y Y Y Y       

       

      
                  

(3.78) 

where the term ijS  has been already presented in (3.70) until (3.73) and the term ( ijC Y 

  ) 

in (3.16). The derivative of Piola-Kirchhoff stress was also already defined in (3.21) and it is 

rewritten as: 

1

2

ij ij ij ij ij

ij

S E E C C

Y Y C Y Y   

   

    
  

    
 

(3.79) 

with ijC Y 

   already kwon in (3.16).  
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The term  2C Y Y 

 
   
 

 is defined in (3.22). All terms with first derivative are 

already known from (3.74) until (3.76). 
2 1A Y Y 

     has a relevant computation cost if 

compare with its contribution for the convergence ratio, therefore, these values are not 

calculated. 

The frame element formulation previously presented was validated with the example 

5.1.2, beyond to be used to discuss the cases 5.2.1, 5.2.2, 5.4.1, 5.4.2, 5.4.3, 5.5.2, 5.7.1, 5.7.2 

and 5.8 addressed in chapter 5. 

 

3.4 Coupling of the reinforcement bars 

 

In previous sections, all finite elements formulations used in the present research were 

separately described. Next, the internal forces vector and Hessian matrix at a finite element 

reinforced by fiber will be presented and discussed. The initial formulation idea showed and 

used in the present studies was defined by Vanalli et al. (2008). Paccola et al. (2014) and 

Sampaio et al. (2015) also enhanced the formulation applying to study the stress contact 

between fiber and matrix.  

 

Total strain energy 

The basic idea of the coupling consists in calculate the total strain energy  U  with the 

sum of matrix  matU  and fiber  fU  energy, as: 

mat fU U U 
 

(3.80) 

 

Following the natural sequence of the finite element method the next step is calculate 

the internal force and the Hessian matrix. It is important to note that these terms must be 

determinate as function of position of the matrix. Therefore, before to present them it is 

necessary to discuss how this relationship is perfomed. 

It considers a point P belong to the bar element and it is inside in the matrix domain as 

presented in Figure 3.8. 
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Figure 3.8 – Point P in the matrix domain 

 

The coordinates at a node P  ;P PX Y   following direction   can be written in function 

at the shape function matrix element  mat

l  with the isoparametric coordinates known 

 1 2,p p   and the matrix coordinates  ;lmat lmat

i iX Y  according to:  

 

 

1 2

1 2

,

,

f p mat p p lmat

l

f p mat p p lmat

l

X X

Y Y

 

 

  

  




 

(3.81) 

where the index l  represent a summation of all nodal points of the matrix finite element. 

 

Internal Force 

The internal force at a node i  following direction   can be expressed as:  

 
i int

f P
mat f f fmat mat

i i i i i f P i

U U U UU U YU
F

Y Y Y Y Y Y Y




      

     
     

        

(3.82) 

 

The first internal force parcel ( i

matU Y  ) is the same internal force for the two-

dimensional finite element presented in (3.13). The chain rule applied for second parcel (

i

fU Y  ) is necessary because as previously discussed the strain energy of the fiber is now 

derivative as function of the position nodes of the matrix. The term  f P iY Y    performance 
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the contribution of the internal force of the bar  P

fU Y   and when k   and the node P is 

inside at the matrix element the parcel is calculated as    1 2,f P i p p

iY Y       . 

 

Hessian Matrix 

As already described, the hessian matrix is determined with the second derivative of 

strain energy. In the present context, such derivation is the relation at position of the matrix 

finite element as follows: 

 2 222
mat f fmat

i j i j i j i j

U U UUU

Y Y Y Y Y Y Y Y       

  
  

       
 

(3.83) 

where the first parcel refers to the Hessian of the matrix and the second parcel can be written 

as: 

2 2p p p
f f f f f

i j i j j p i j p i p j i

U U U U UY Y Y

Y Y Y Y Y Y Y Y Y Y Y Y Y

  

            

              
                               

(3.84) 

 

The term of the second derivation is null and therefore the first parcel is:  

2 qp p
f f

j p i p q j i

U U YY Y

Y Y Y Y Y Y Y

 

      

    
                

(3.85) 

 

The derivation with superior order is the Hessian of the fiber, and the other terms refer 

to correct contribution of the bar in the global Hessian. So, we can finally write the expression 

of the hessian as follow: 

   
2

1 2 1 2, ,mat f p p p p

j ii j

U
H H

Y Y
 

 

       


 
 

 

(3.86) 

 

Matrix Notation 

The contribution of the internal forces and the Hessian matrix of the bar in the matrix 

component is performed by node of each fiber element. In general, the terms composed by 

 f l mY Y    performance the coupling of the fiber elements and theirs values are related to the 

geometric association between fiber and matrix.  
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Once determined the internal force vector of the one fiber finite element for each node 

P it has one pair of internal force int

2

fF 
   and, therefore, its contribution in the matrix domain 

can be done as follow:  

 int int

2 22 2
.f

f x NN
F F B        

(3.87) 

assuming N equal the number of nodes at one matrix finite element. 

The matrix  
2 2x N

B  refers to the therm  f P iY Y    of Eq. (3.82) and it is composed by 

the nodal shape functions of the matrix with values calculated with the isoparametric 

coordinates of the nodal point P. 

 

The contribution of the Hessian of the fiber in the Hessian of the matrix, previously 

calculated from Eq. (3.85), is rewritten in matrix notation as:  

   int int

2 2 2 22 2 2 2
. .

Tf

fx N x NNx N x
H B H B        

(3.89) 

 

So, the matrix operations expressed in (3.87) and (3.89) are calculated for each nodal 

poin P of the fiber element. The results of these two operations constitute the local internal force 

vector and the local Hessian matrix contributions of the fiber in the matrix elements. The global 

internal force and the global Hessian matrix of the structure must be determined. 

 

3.4.1 Coupling Matrix and Fiber-Frame Finite element 

 

As already previous emphasized the two-dimensional finite element presents two 

degrees of freedom per node, which correspond to the nodal translation in the 1 and 2 directions. 

The frame element has 3 degrees of freedom per node, linked to their translation in the 1 and 2 

directions and its angular rotation. The coupling procedure performed between these two 

elements and adopted in the present work consider the degree of freedom related to the angular 

rotation free. In other words, only the translation movements of the nodes of the frame elements 

are coupled with the tow-dimensional elements. The degree of freedom related to the angular 

 
     

     

1 2 10

1 2 1 2 1 2

2 2 1 2 10

1 2 1 2 1 2

, 0 , 0 ... , 0

0 , 0 , ... 0 ,

p p p p p p

x N p p p p p p
B

        

        

 
 
 
   

(3.88) 
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rotation is assumed as an additional variable in the equilibrium of the system. Following the 

mathematical formulation for this so-called semi coupling procedure is presented. 

The equilibrium position is determined with the variation of the Total potential energy 

in relation with all degree of freedom of the system (
l

Y  ). 

 
lint

f P
mat f f fmat mat

l l l l l lf P

U U U UU U YU
F

YY Y Y Y Y Y




     

     
     

       

(3.90) 

 

The vector Y  correspond to all degree of freedom of the system, i.e. the directions 1 

and 2 of the matrix elements plus the angular rotation of the frame elements. The index l  is the 

number of nodes of the system. While l  be associated with the nodes of the matrix elements (

i ), the index   assume values of   equal 1 and 2 that relate to the directions of such element. 

On the other hand, as long as the index l  relates to the nodes of the frame elements ( r ) the 

direction   assumes value 3 that connects to the degree of freedom linked with the angular 

rotation. 

The Eq. (3.90) is rewritten in matrix notation as follow: 

 int

(2 )

3 3(2 ) (2 )

int int

int int

,(r3) ,( 3)(2 ) (2

f P
fmat

i f P i

f PNm Nf
mat f

r f P r

Nm Nf Nm Nf

mat f

mat f rNm Nf Nm

UU Y

Y Y Y
F

U U Y

Y Y Y

F F

F F



  







 



   
       

     
     

        

      
     

       )Nf  

(3.91) 

where (2 )Nm Nf  determines the size of the internal force vector and Nm  and Nf  are the 

number of nodes of the matrix and frame finite elements, respectively. 

The second variation of the Total potential energy defines the Hessian matrix as follow: 
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22

22 2

22

               

              

f P
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l q q lf t f P

m

UU YU

YY Y Y Y Y Y

U UU Y Y

YY Y Y Y Y Y Y

U UU Y Y

Y YY Y Y Y



     

 
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  

      

   
  

     

2 f P

q lf P

Y

Y Y Y



  



   

(3.92) 

 

As the angular rotation is a degree of freedom free the third parcel ( 2 q lf PY Y Y    ) of 

Eq. (3.92) is null. Thus, the Hessian is summed up as: 

222 f t f P
fmat m

l q l q q lf t f P

m

UU Y YU

Y YY Y Y Y Y Y



     

  
 

        

(3.93) 

 

In matrix notation, the Hessian defines in (3.93) can be rewritten as: 

(2 )x(2 )

(2 )x(2 ) (2 )x(2 )

f fmat mat

Nm Nf Nm Nf

f fmat mat Nm Nf Nm Nf Nm Nf Nm Nf

HH
H  

   

  
    
     

(3.94) 

where each term of this such matrix is summarized in Table 5. 

 

Table 5 – Components of the Hessian matrix of Eq.(3.94). 

Two-dimensional element Frame element 

2

mat
mat i j

U
H

Y Y 



 

, 

2 f t f P
f m

f f t f P j i

m

U Y Y
H

Y Y Y Y



  

  

   

 

2

3 3

mat
mat f r f s

U

Y Y



 

, 

2

3 3

f

f f r f s

U

Y Y



 

 

2

3

mat
mat f s i

U

Y Y



 

, 

2

3

f

f f s f i

U

Y Y 



 

 

2

3

mat
mat f r j

U

Y Y



 

, 

2

3

f

f f r f j

U

Y Y 



 

 

 

Notes that mat H  it is the Hessian of the two-dimensional finite elements and the terms 

,  mat mat  and mat are nulls. On the other hand, f H  refers to the coupling components of 
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the Hessian of the frame elements associated with the degree of freedom linked to direction 1 

and 2. The components of f  are the terms of the Hessian of the frame element only related 

to the degree of freedom associated with the angular rotation. At last, it verifies that the term 

f  is the transpose of f  (
T

f f ), and they correspond to the terms of the Hessian 

matrix of the frame element. 

 

3.4.2 Algorithm process solution 

 

Figure 3.9 presents the organizational structure of the code with the frame finite element 

for the embedded model previously discussed. After the input data, the tangent and normal 

vector of the fiber are calculated through Eqs. (3.41), (3.42) and (3.43). The initial angle is also 

determined by Eq.(3.45) and (3.46). Next, it is calculated the location of the fiber nodes. To do 

so, the central node coordinates of each two-dimensional finite element is determined. The 

distances between the central node and the node of the fiber element (called as d) is calculated, 

as long as the distance between the central node and the vertices nodes of two-dimensional 

element (dc). If d>2dc the node of the fiber is outside of the two-dimensional finite element. 

Otherwise, d<2dc, the adimensional coordinates of the fiber node in relation to isoparametric 

coordinates of the two-dimensional element is stored. The last process is done by inverse 

mapping for local coordinates, technique presented in Elwi and Hrudey (1989). 

The procedure of the tangent and normal vector calculation, as well as the initial angle 

determination, is not necessary for the coupling technique performed with the bar finite 

element. This occurs because such a step is exclusive for the calculation of the internal force 

and the Hessian matrix of the frame finite element. Therefore, for the case that the fiber is 

represented by bar finite elements the structure of the algorithm is similar to Figure 3.9 

excepting such step procedure. 

The Newton Rapson procedure shows in Figure 3.9 and Figure 2.4 are similar, excepting 

the equations used to calculate the internal forces (3.82) and matrix hessian (3.86). 
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Figure 3.9 – Structural organization of the code nonlinear geometric and with the embedded 

model. 

 

The coupling technique presented between the fibers and matrix elements is validated 

with the examples 5.5.1 and 5.5.2, and posterior used to discuss the analysis performed in the 

topics 5.7.1, 5.7.2 and 5.8. 

 

3.5 Summary 

 

In this chapter, a detailed presentation of the three finite positional elements implemented 

in the code developed in this work was carried out. The kinematics and the constitutive law of 

all elements were discussed. The expressions linked to the internal force vector and the Hessian 

matrix of the elements were obtained. The coupling technique between the two-dimensional 
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(matrix) and bar/frame (fiber) elements was exposed. The additive composition of the total 

mechanical energy of the elements and posterior variation of this resultant energy in relation to 

positions of the matrix elements defines the procedure to perform the coupling technique. The 

embedded theory defines the strategy adopted. One of the contributions of the present work is 

presented with the coupling of the frame elements into the matrix elements. The strategy 

proposed considers the angular rotation of the frame elements as an additional variable of the 

system. As a result of this, it was showed that the number of equilibrium equations of the system 

increases proportionally. At last, a flowchart that describes the structural organization of the 

computational code developed with the formulation presented in this chapter was illustrated. 

Regarding the presentation of such subject in this chapter it is possible to remark that: 

a) Differently of the traditional finite elements, which is based in displacement, in the 

positional approach, the internal force vector, as well as the Hessian matrix, are 

directly obtained from global coordinates. Such characteristic avoids the necessity of 

the assemblage of matrix rotation for each element.  

b) Another advantage of the positional approach can be performed analyzing the 

expressions which involve the bidimensional elements, such as the two-dimensional 

and the frame. As showed the expressions consist of operations between matrixes at 

the same size (2x2). This characteristic facilitate the implementation of such elements.  

c) The strategy employed for the application of the embedded theory between elements 

seems to be a practical and direct procedure that can be applied to the coupling 

between other finite elements. 
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4 PHYSICAL NONLINEARITIES 

 

The physical nonlinear theory involves the study of the material behavior beyond the 

idealized elastic-linear regime. Such physical behavior is related to the stress-strain relationship 

that the material describes beyond a certain loading level. So, depending on the intensity of the 

force applied, permanent strains can arise with different characteristics. Additionally, the 

materials can present degradations associated with diffuses microcracks. The coalescence 

process between these microcracks results in major cracks. These major cracks can appear 

locally or spread over all material and can compromise the mechanical stability of the material. 

All such above process can be described with mathematical models in accordance with the 

continuum mechanics. At this sense, the one-dimensional and plane-stress plasticity 

formulations are summarized. The so-called Damage model with the smeared crack approach 

and the two-dimensional damage model are also discussed. All models are used in the analysis 

of this work. 

 

4.1 Plasticity 

 

Two elastoplastic models were implemented in the code developed in the present work. 

One is the one-dimensional plasticity model that was implemented to be used with the bar finite 

element formulation and another it is the plane stress plasticity which is applied to the frame 

finite element. The aims to implements such models consist in to approximate the real physical 

behavior of the steel reinforcement bars in the structures analyzed in this thesis. Both models 

are described according to the irreversible process of thermodynamics. 

 

4.1.1 Equilibrium equation 

 

Eq. (2.1) showed the total potential energy written to obtain the static elastic 

equilibrium. Such expression was defined as a function of the potential energy of elastic strain 
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and the potential energy of external forces. In this context, all energy introduced in the system 

from the parcel associated with the external forces by a loading process is entirely stored by the 

elastic strain energy parcel. On the other hand, the elastic strain energy accumulated can be 

fully recovered since the system is under unloading process. 

Differently from the elastic process, the plasticity is thermodynamically associated with 

irreversible deformation process (Lemaitre and Chaboche 2000). Thus, the energy introduced 

in a system by a set of external forces applied over a body is not fully recovered for an unloading 

case. At this sense, a parcel of the energy remains on the body. So to characterize such 

phenomenon, the total potential energy previously written must be changed. To do so, in place 

of elastic density energy, the Helmholtz/Density free energy potential can be adopted, once it 

is a scalar value function, objective and twice differentiable (Holzapfel 2000). Such potential 

depends on state variables called observable variables, symbolized by total strain ( E ), and 

internal variables represented by elastic ( eE ) and plastic ( pE ) strains. So assuming the symbol 

( ) to the density free energy potential, the Eq. (2.1) can be rewritten to characterize the 

elastoplastic process as: 

     
0

0,
V

Y E p dV Y  
 

(4.1) 

where p  is a kinematic variable responsible to store the memory history of the material, 

indispensable to describe the irreversible phenomenon.  

The Principle of Stationary Total Potential Energy is applied to obtain the equilibrium 

position: 

0

0 0
V

E
dV Y F Y

E Y


  

 
   

 
 

(4.2) 

 

The parameter p  does not increase the number of degree of freedom of the system and 

it is calculated intrinsically from relation between E  and S . The constitutive relationship and 

the total, elastic and plastic strains correlation determine the elastoplastic model. 

Following the uniaxial and plane stress elastoplastic models, used to the bar and frame 

finite elements, are discussed. 
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In the present work although the formulation is suitable to large displacement all 

analysis performed involves small strain. In this case the linear relation between the Green 

strain and the second Piola-Kirchhoff stress can be adopted in place of the Cauchy stress. 

 

4.1.2 A one-dimensional model of the plasticity 

 

The four assumptions considered to develop the elastoplastic model are: (a) partition 

hypothesis an additive decomposition of the strain; (b) elastic limit stress; (c) a flow rule to 

strain plastic; and (d) a flow rule to hardening tensor. 

 

(a) Partition hypothesis 

The separation of the elastic and plastic effects for an elastoplastic model composition 

is suitable according to the physics of the phenomenon observed in experiments. For this work, 

the additive decomposition of the strain is assumed, as follow:  

  or  e p e pE E E E E E     (4.3) 

 

The elastic (
eE ) and plastic (

pE ) strains are the internal variables assumed for the 

elastoplastic process (Lemaitre and Chaboche 2000). The plastic strain is responsible for 

characterizing the irreversible process of the plasticity. 

The results of this decomposition allow writing the free energy in two parcels, elastic 

and plastic, as follow: 

         , , ,e p p p

e p e pE p E E p E E E p            (4.4) 

 

The elastic energy ( e ) represents the conservative energy of the system, i.e. under an 

unloading process such energy is recovered. The plastic energy ( p ) is associated with 

irreversible phenomena by internal variable parameter ( p ) and the plastic strain ( pE ).  

The free specific potential energy is therefore written as: 

1 1

2 2

e eE E php    (4.5) 

where h  is a scalar with hardening parameters. 
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The static variable i.e. the Second Piola-Kirchhoff ( S ) and the associated 

thermodynamic force ( R ) are written as: 

 e pS E E E
E


   


 (4.6) 

R hp
p


 
  

(4.7) 

 

(b) Elastic limit 

The elastic limit in the elastoplastic models is associated with the yield stress, also called 

as yield criterion, yielding condition or plasticity criteria, which determines the threshold 

between the reversible and irreversible phenomenon. In other words, geometrically a plasticity 

criterion defines a boundary, which identifies a limit elastic or plastic of the material. The 

differences criteria of this loading surface distinguish the innumerous theories of plasticity 

developed over the years, as can be reviewed in Simo and Hughes (1998) and de Souza Neto et 

al. (2008). Mathematically, the yield criteria  f  assume values less or equal to zero. When the 

value is zero it assumes the domain of problem is plastic, otherwise, it is an elastic domain, i.e:  

0f   (elastic domain) (4.8) 

0f   (plastic domain) (4.9) 

 

Thermodynamically, this yield condition is expressible as a function of the components 

of the stresses and depends on the hardening state through the internal variables. The internal 

variables is related with the thermodynamic forces, previously presented as ( R ) Eq. (4.7). 

 

(c) An hardening flow rule  

The hardening can be physically associated with the disagreement accumulation of the 

crystallographic structures of the material (Dunne and Petrinic 2005). In the plastic models 

there are two classical formulations to describe the hardening and they are defined as isotropic 

and kinematic. For the isotropic hardening law once the yielding condition is violated its 

expansion in the stress spaces occurs symmetrically, Figure 4.1a. The kinematic hardening 

describes a configuration that the elastic limit is always represented by the same size but the 

position of its center is changed in accordance with the plastic strain evolution Figure 4.1b. 
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(a) (b) 

Figure 4.1 – a) Linear Isotropic Model, and b) Kinematic model. 

 

For the present work, the isotropic model is considered. So, according to Figure 4.1a the 

stress yS  is the initial size of the yielding condition and once violated its expansion takes a new 

value equal ( 1y Hp  ). For this case, the plastic strain associated to the plasticity criteria 

expansion is 1

p pE E . Thus according to the isotropic model for state stress equilibrated in the 

point 2 the same plastic strain of the point 1 is presented, i.e 2

p pE E . And in the case where 

the plasticity criteria is again increased for the point 3 with its new value ( 3y Hp  ) it is 

verified that the plastic strain is null although the value of hardening is changed.  

In this terms and taking into account the one-dimensional case the yield criteria defined 

in accordance with the uniaxial stress space is mathematically written as: 

   , yf f S R S S R   
 

(4.10) 

where yS  is the initial size of the yielding condition and once violated its expansion takes a 

new value equal ( yS R ). 

(d) An flow rule to strain plastic 

The flow rule of plastic strain describes the changing configuration of the yielding 

surface with the increase of plastic strain and for one-dimension plasticity can be expressed as:  

 pdE d sign S
  

(4.11) 
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The Eq. (4.11) shows that the plastic strain has the same signal of the stress. The scalar 

plastic multiplier d  with the yield condition must comply with the Khun-Tucker 

complementary conditions and the consistency conditions formally defined as: 

0  with   0  and  0d f d f     (4.12) 

 0  with      0d df df  
 

(4.13) 

 

The both previously conditions assure that the increase of plastic strain occurs only 

when the plastic criteria is violated and for the new state stress equilibrated the yielding 

condition is always satisfied. These conditions will be opportunely used to develop the tangent 

elastoplastic modulus. 

The Table 6 summarizes all equations previously discussed for one-dimensional 

plasticity model implemented in the curved finite element bar of the code. 

 

Table 6 – One-dimensional isotropic plasticity. 

i. Additive decomposition 

  e p e pE E E E E E      

ii. Elastic stress-strain relantioship 

    e pS E S E E     

iii. Yielding condition 

   , yf S p S S Hp  
 

iv. Flow rule and isotropic hardening law 

(S)pdE d sign  and dp d  

v. Kuhn-Tucker complementarity conditions 

   0,  , 0  and  , 0 d f S p d f S p   
 

vi. Consistency condition 

    , 0  If      , 0d df S p f S p  
 

 

 

Newton-Raphson procedure 



99 

 

 

The Eq. (4.2) as already discussed is nonlinear and can be solved with the Newton 

Raphson procedure with similar strategy described in the torpic 2.1. The equilibrium of Eq. 

(4.2) is rewritten as follows: 

int 0j j j j

j j

g F F F
Y Y

 
     
 

 

(4.14) 

 

The equilibrium of the system is fulfilled with the equality between the internal and 

external force. For the internal force calculation it is necessary the determination of the Piola-

Kirchhoff stress. The level of this stress must attend the elastoplastic model represented by the 

yield criteria and the evolution of the plastic strain. So to comply with these conditions, it is 

required an internal procedure to evaluate if the stresses computed are correct. 

In this work, the Return-mapping algorithm was implemented and its execution is based 

in the elastic or trial prevision and the elastoplastic correction for the case that the criterion is 

not satisfied. This algorithm is summarized at the end of this topic. 

Following the Taylor’s series expansion truncated in the first order derivative term of 

Eq. (4.14) results in: 

   
 0

0 0i
j j k

k Y

g
g Y g Y Y

Y


   


 

(4.15) 

 

The derivative of the residual ( g ) can also be obtained from the second derivative of 

the free energy potential as follow expressed:  

 
 

0 0

2 2

0 0

,
,

p

p

V V

S E E E E E
dV S E E dV

Y Y E Y Y Y Y

    
 

         (4.16) 

 

The terms 
2 and E Y E Y Y     are similar for the elasticity and plasticity cases. The 

Piola-Kirchhoff stress (  , pS E E ) depends on total and plastic strain as already defined with 

Eq. (4.6) and outcome from the return-mapping algorithm. The term (  , pS E E E  ) can 

change during the elastoplastic analysis. If the analysis corresponds to the equilibrium under 

elastic domain this relation is the elastic modulus; however, for the analysis under a plastic 

domain, such term is modified. Due to the importance that this term presents in the convergence 
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of the Newton Raphson method under plastic regime, its nomenclature is defined as the tangent 

elastoplastic consistent modulus. The next item discusses and formalizes this expression for 

both elastic/plastic cases. 

 

The tangent elastoplastic consistent modulus  

The tangent elastoplastic consistent modulus can be obtained from the linearization of 

the yielding plasticity function in the level of the stress associated. The linearization of the 

yielding plasticity function as follow defined as: 

df df
df dS dp

dS dp
   (4.17) 

 

where, 

 
df

sign S
dS

  (4.18) 

 pdS dE dE   (4.19) 

df
H

dp
  (4.20) 

(S)dp d sign  (4.21) 

p

d p d  (4.22) 

 

Substituting the Eqs. (4.18), (4.19), (4.20) into (4.17) and after the Eqs. (4.21) and (4.22) 

is possible to define: 

   df sign S dE H d  
 

(4.23) 

 

Note that 0df   cannot hold, thus with the consistency condition d  is nonzero only 

with: 

 

 
0  

sign S dE
df d

H
  


  (4.24) 
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With the expression written in (4.24) the constitutive relationship (4.19) can be rewritten 

and the analysis elastic or plastic regime is defined as: 

 

               if  0

    if 0 

dE d

dS H
dE d

H








 


   

(4.25) 

 

Thus, in elastic regime 0d   and the constitutive relationship assumed is calculated 

with the elastic modulus. Otherwise, in plastic regime 0d   and the constitutive relationship 

can be determined with the tangent elastoplastic modulus. Figure 4.2a and b shows the 

representation of the elastoplastic tangent modulus and the plastic modulus. 

 

  

(a) (b) 

Figure 4.2 – (a) Tangent modulus and (b) the plastic modulus. 

 

Evolution calculation 

Table 7 summarizes the evolution calculation assuming a certain interval [ 1,n nt t  ] for 

which n  and 1n   are the previous equilibrated and the current steps, respectively. Such an 

algorithm is defined as the return-mapping strategy that consists on the trial/elastic prevision 

and the elastoplastic correction for the case that the criterion is not fulfilled. 
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Table 7 – Evolution calculation (return-mapping) 

i. Initialization 

1 1 1 1, , ,  trial trial p p trial trial

n n n n n n nE E E R R        

ii. Stress level 

 1 1 1

trial trial p p trial p

n n n nS E E E S E       
 

iii. Yielding condition verification 

 1 1

trial trial

n n yf S S R   
 

If 1 0trial

nf    the step is elastic and none plastic 

correction need to be done, 

Else 1 0trial

nf   the step is elastoplastic go to iv. 

iv. Correction 

1 0
trial

nf

H
   

  

1 1 1( )trial trial

n n nS S sign S   
 

 1 1

p p trial

n n nE E sign S  
 

1

p p

n np p     

  

dS H

dE H



 

End of the return-mapping algorithm 

 

Initializing the procedure the input parameters are updated from the previous step 

solved, conforming is showed in (i). The input parameters correspond to the total trial strain (

1

trial

nE  ), that is calculated with Green Strain Eq. (3.25), the level of plastic strain ( 1

trial p

nE  ) as 

well the hardening ( 1

trial

n  ) and the thermodynamic forces ( 1

trial

nR   ). The stress level 

calculation is directly obtained from the trial stress minus the accumulated plastic stress, written 

in (ii). If the stress level does not satisfy the yielding condition, see (iii), the analysis is elastic 

and thus any correction must be performed. Otherwise, in the case where this stress level 
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violates the yielding condition a correction need to be done. Thus, the incremental of plastic 

multiplier (  ) is computed from the elastic and plastic modulus, ( , H ) respectively, and 

unbalanced force represented by (
trial f ). Next, the stress is updated in accordance with the 

evolution law of the plastic strain. Following, the actualization of the plastic strain and the 

hardening parameter are determined. The tangent consistent elastoplastic modulus is also 

computed. 

The validation and discussion of this one-dimensional plasticity theory applied in the 

bar finite element are addressed in the examples 5.3.1, 5.3.2 and 5.3.3 in chapter 5. Other 

examples such as 5.7.1, 5.7.2 and 5.8 also use this theory to perform the analysis. 

 

4.1.3 Plane stress plasticity 

 

The adoption of plasticity in two-dimensional problems in the frame finite element 

previously discussed is justified because although this element is used to analyse uniaxial 

structures its formulation is developed as a bi-dimensional problem (plane-stress and plane-

strain).  

The plasticity in two-dimensional problems can be treated by two different approaches: 

plane-strain state or plane-stress state. For the first case, the general three-dimensional plasticity 

formulations can be adopted with the strain out-of-plane constrained. However, for the second 

one, only constrained the stress out-of-plane, it verifies that once the plastic regime is started 

the plane-stress condition is violated and therefore such procedure is not suitable. The violation 

of the plane stress condition occurs because adopting the return-mapping algorithm the stress 

components initially assumed constrained must be zero for all analysis, which does not happen. 

The constitutive relationship of the frame finite element assumes Poisson null, which 

implies similarities between the plane-strain and plane-stress states formulations. For this work, 

the plane-stress plasticity was adopted. Thus, taking into account such consideration according 

to Souza Neto et al. (2008) three main general approaches can be adopted to implement the 

elastoplastic algorithms:  

a) The direct inclusion of the plane-stress constraint into the three-dimensional elastic 

predictor and plastic corrector algorithm equations applied at the Gauss point level. This 

approach can also be implemented by means of a nested Newton return-mapping iteration for 

plane stress enforcement. 
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b) The use of the standard three-dimensional return mapping at the Gauss point level 

with the plane-stress condition added as a structural constraint at the global structural level. 

c) The use of plane stress-projected constitutive equations where, similarly to the 

procedure of item (a), the plane-stress constraint is enforced at the Gauss point level. 

The latter algorithm topic (c) was implemented and used to analyze the structures 

reported in this thesis. This choice is justified because still according to Souza Neto et al. (2008) 

such procedure is more efficient when compared with the two others approaches since the set 

of involved equations is directly defined in-plane stress components. Therefore all expressions 

are reduced. Simo and Taylor (1985) and Jetteur (1986) were the precusores to development 

and application of such algorithm in the computational environment. 

Once the formulation involves only in-plane variables the Voigt notion is used in order 

to simplify the comprehension of the procedure. The total, elastic and plastic strain tensors as 

well the stress and deviatoric stress tensors are respectively written as: 

     11 22 12 11 22 12 11 22 12, , 2 , , ,2   and  , ,2
T TT e e e p p pE E E E E E E E E  e p

E E E
 

(4.26) 

   11 22 12 11 22 12, ,   and  ,S ,
TT

S S S S S S S
 

 

The partition hypothesis with the additive decomposition of the strain is therefore 

considered as follow: 

  e p e p E = E E E = E- E  
(4.27) 

 

The Helmholtz free energy potential is also used to describe the irreversible 

phenomenon: 

1 1

2 2

p p
eT e E H E  E EC

 

(4.28) 

where the C  is the constitutive tensor of the plane-stress case written in voigt notation and 
p

E  

is a kinematic variable responsible to store the memory history of the material, indispensable 

to describe the irreversible phenomenon. 

The Piola-Kircchhoff stress and the associated scalar thermodynamic forces is defined 

as:  
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 e p

e


  


S  E E- E
E

C C  (4.29) 

p

p
R H E

E


 
  

(4.30) 

 

(a) Elastic limit 

Differently from the uniaxial force that the elastic limit is defined with the yield stress 

this threshold for bi-dimensional problems is associated with the yield surface. So, assuming 

the Von Mises criterion the plasticity surface can be generically written as: 

23 ( )
p

J E  
 

(4.31) 

with the second invariant ( 2J ) defined as 

1/2

2

1
:

2
J S S

 
  
 

 and ( )
p

E  being the function that 

determines the limit of the Von Mises criterion. 

The Eq. (4.31) corresponds geometrically to a cylinder in the three-dimensional 

principal stress space with its axis aligned with the line 1 2 3S S S  . The Von Mises criterion 

is based on the octahedral stress, and the hydrostatic stress does not affect the plastic behavior. 

For bi-dimensional problems 3S  is null, and therefore the Von Mises criterion is geometrically 

defined by an elliptical shape 

In Voigt notation the Von Mises criterion is directly written in plane-stress space as 

defined by Simo and Hughes (1998) as:  

3

2

p
T E  S PS ( )

 

(4.32) 

where P  is a constant matrix used to perform the calculation of the deviatory stress ( S ) from 

the in-plane stress vector ( S ) defined as: 

2 1 0
1

1 2 0
3

0 0 6

 
 

 
 
  

P

 

(4.33) 

S = PS  
(4.34) 
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(b) The hardening flow rule 

According to the hardening flow rule adopted two types of plasticity models are 

classified in the literature, called associative and nonassociative ((Simo and Hughes 1998), 

(Dunne and Petrinic 2005) and (Lubliner 2006)). To the associated plasticity, the evolution and 

direction of the plastic strain and the internal variables defined with the equipotential surface 

are linked to the yield criteria. In other words, the equipotential surface and the yield criteria 

have the same mathematical dinitition. For this postulation, the evolution of the plastic strain 

occurs normal to the yield criteria. The classical literature defines this behaviour as the 

normality hypothesis of plasticty, Figure 4.3.  

 

 

Figure 4.3 – The Von Mises Yield surface for condition of plane stresses. Direction normal to the tangent the 

surface. 

 

Adopting the associative condition the hardening law explicitly written for the plane-

stress space is therefore defined by:  

3

2

p

d E d d 


 
 T

PS

S S PS  

(4.35) 

p

d E d  
(4.36) 

 

Table 8 summarizes the previously expressions used to define the isotropic plane stress-

projected Von Mises model. 
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Table 8 – Isotropic plane stress-projected plasticity. 

i. Additive decomposition 

e p E E E  

ii. Elastic stress-strain relantioship 

 e f f pS = E   S = E - E  C C
 

iii. Yielding condition 

3

2

p
T E  S PS ( )

 

iv. Flow rule and isotropic hardening law 

3

2

p

d E d d 


 
 T

PS

S S PS  

p

d E d  

v. Kuhn-Tucker complementarity conditions 

0, 0  and  0 d d      

vi. Consistency condition 

 

To simplify the expression Simo and Hughes (1998) and de Souza Neto et al. (2008) 

propose the equations of this model with the square form of the Von Mises criterion, written in 

Eq. (4.32). In this context, the Von Mises criteria and the hardening evolution law are defined 

by: 

21 1

2 3

p

E   T
S PS ( )

 

(4.37) 

pd dE PS  (4.38) 

2

3

p

d E d T
S PS

 

(4.39) 

 

The evolution calculation 

The evolution of the calculation is analogous to the previous procedure describes for the 

one-dimensional plasticity. The thermodynamic equilibrium is reached with the minimization 

of the total potential energy, and the Newton Raphson procedure is used to solve the set of 

nonlinear equations. The Green strain and its conjugate energetic the Piola-Kirchhoff stress 
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obtained for each integration point are necessary to the constructions of the Hessian and global 

internal force of the structure. The elastoplastic parameters, as well as the evaluation of the 

elastoplastic criteria, are performed in an implicit way for each integration point in accordance 

with the Return-mapping algorithm. The tangent elastoplastic consistent modulus is also 

required to improve the convergence of the Newton Raphson. 

 

The elastic preditor and the Return-mapping algorithm 

The plane stress-projected Return-mapping algorithm involves the resolution of the 

following set of equations: 

1 1 1

triale e

n n n  E = E PS
 

(4.40) 

 1 1 1

2

3

p p T
n n n nE E   = S PS

 

(4.41) 

   
2

11 1

1 1
0

2 3

pT
nn n yS H E     S PS

 

(4.42) 

 

The Eqs. (4.40), (4.41) and (4.42) can be reduced to an expression with only one 

variable, the incremental plastic multiplier (  ). Before to written such equation firstly 

consider the inverse of elastic law, the Eq. (4.40), and the substitution of Eq. (4.41) into (4.42) 

as respectively follow defined: 

1
1 1

1 1

trial

n n


 

 
   S = P SC C

 
(4.43) 

 

2

1 1 1 1

1 1 2
0

2 3 3

p TT
nn n y n nS H E    

  
       

   

S PS S PS

 

(4.44) 

 

Following the expression with only the plastic multiplier (  ) as variable can be 

obtained from inserterting Eq. (4.43) into (4.44): 

     

2
~ 1 1 2

0
2 3 3

p

nyS H E     
  

            
     

(4.45) 

where the parameter     is expressed as: 
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       1 1

T
trial T trial

n n       S A PA S
 

(4.46) 

 
1

1 1 


     A PC C
 

(4.47) 

Table 9 summarizes for a certain interval [ 1,n nt t  ] for which n  and 1n   are the previous 

equilibrated and the current steps, respectively, the background of the elastic predictor and the 

return-mapping algorithm.  

  

 Table 9 – Background of the elastic predictor and the return-mappig algorithm. 

i. Initialization 

1

trial

nE
,

 

1

p trial p

n nE E   

ii. Stress level 

  trial

1 1 1

trial p p trial p

n n n n       S E E E S EC C
 

iii. Check the Yielding condition verification ( 1

trial

n ): 

     

 

2 2 2

1 11 22 2 22 11 3 12

1 2 3

2
 trial

1

; ;

1 1
2

2 2

1 1

2 3

trial trial trial trial trial

trial

ptrial trial
ny

a S S a S S a S

a a a

S H E



 

    

  

   
 

Obtained from Eqs. (4.45), (4.46) and (4.47). 

If 1 0trial

n   the step is elastic and none plastic correction need to be done, 

Else 1 0trial

n  the step is elastoplastic go to iv. 

iv. Return-mapping algorithm go to Table 10 to enforce:  

  0  
 

with the determination of   the state variables are updated 

 

 

1 1

1

2

3

trial

n n

p p

n nE E



  

 



 

   

S A S

 

End of the return-mapping algorithm 
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Newton-Raphson algorithm to determine  . 

From Eq. (4.45) verifies a nonlinear behavior in the solution of the multiplier plastic 

increment (  ) once it is within of the squared parcel. So differently from one-dimensional 

plasticity formulation, a closed expression to   is not possible. The solution is performed 

with a Newton Raphson procedure, as follow described. 

The Taylor series applied at Eq. (4.51) truncated on the linear term results in the follow 

expression:  

 
 

 

~~
~

~
'

0       
d

d



    




 
        


 

  

(4.48) 

 

The value   is therefore determined from the accumulation of    inside of an 

iteration procedure. From expression (4.48) it observes that the differentiation in   of Eq. 

(4.45) must be perfomed. However such operation can result in a robustness algorithm, as 

described in de Souza Neto et al. (2008). The equation (4.45) is written in function of the scalar 

  which depends on the matrix A and finally  . Remembering that A  is associated with 

matrix operations such as sum, multiplication and even inverse. Therefore to circumvent such 

robustness Simo and Hughes (1998) propose the diagonalization of P  and C  once these 

matrixes share the same eigenvectors. Therefore, the follow matrix Q  is defined to excute such 

transformation: 

1 1
0

2 2

1 1
0

2 2

0 0 1

 
 
 
 

  
 
 
  

Q

 

(4.49) 

 

Therefore, the follow orthogonal transformation can be done as: 

* T
P QPQ  

(4.50) 
* T
 Q QC C  
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 
* *1

* 1 * 1 


    
 

A PC C
 

*

1 1

trial trial

n n S QS
 

 

Thus, Eq. (4.46) is simplified and written as: 

       

   

 

 

   

 

1 1

2
* * * *

1 1

2 2
2

22 11 12
11 22

2 2

          

1
2

2          
1 2

6 1
3 1

T
trial T trial

n n

T
trial trial

n n

trial trial trial
trial trial S S SS S

G

   







 

 

   

   

 
 

  
 

 

S A PA S

S A P S

 

(4.51) 

 

Table 10 summarize the steps and the expression previously defined to determine the 

plastic multiplier increment. 

 

Table 10 - Newton Raphson algorithm for the determination of the plastic multiplier increment 

i. Initial values 

     

2
~ 1 1 2

2 3 3

p

nyS H E     
  

           
    ; 0   

ii. Newton Raphson iteration continues until reaches the convergence 

2

3

p

y

p

E

dS
H

d E  



 

 

 

 

   
 

2 2 2

11 22 22 11 12'

3 3

4
2

1 1 2
9 1

3 1

trial trial trial trial trialS S S S S
G

G


 



  
  

   
 

   

   
 

 

'
2 2

2
3 3 2

p

nyH S H E H
 

    
 

     
                   
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 
~

' '1 1

2 3
H    

 

~

~
'

 


   

  

 

 

   

 

2 2
2

22 11 12
11 22

2 2

1
2

2

1 2
6 1

3 1

trial trial trial
trial trial S S SS S

G






 
 

  
 

   

~ 1 1 2

2 3 3

p

nyS H E  
  

        
     

iii. Check convergence 

IF (
~

    error) EXIT 

ELSE return to (ii) with    updated. 

 

Souza neto et al. (2008) propose the follow simple notation to the matrix  A , 

defined in (4.47), with the orthogonal transformation performed with ( Q ): 

   *T   A Q A Q
 

(4.52) 

 

Opening the matrix  A  we have: 

 

   

   

* * * *

11 22 11 22

* * * *

11 22 11 22

*

33

1 1
0

2 2

1 1
0

2 2

0 0

A A A A

A A A A

A



 
  

 
    
 
 
 
  

A

 

(4.53) 

where the asterisk terms are defined as: 

 

 
*

11

3 1

3 1
A



 




  
, 

*

22

1

1 2
A

G 


 
 and 

* *

33 22A A  (4.54) 
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The tangent elastoplastic consistent modulus  

The tangent elastoplastic modulus is defined as:  

1 1

1 1

ep n n

trial

n n

d d

d d

 

 

 
S S

E E
C

 

(4.55) 

where the value of 1nS  is resulted from the Return-mapping algorithm. 

To obtain the epC  it can be started differentiating Eq.(4.40) with the elastic law, which 

results on: 

1 1 1

trial

n n nd d d   
    S E PSE

 
(4.56) 

where E  is assumed as: 

   

   

* * * *

11 22 11 22

1
1 * * * *

11 22 11 22

*

33

1 1
0

2 2

1 1
0

2 2

0 0

E E E E

E E E E

E






 
  

 
         
 
 
  

PE= C

 

(4.57) 

with 

 

*
* * * 22
11 22 33

3 3
,   ,   

3 1 1 2 2

EG
E E E

G  
  

    
 

(4.58) 

 

Following, plastic consistency yield equation (4.45) is differentiated:  

~ 1 2 2

2 3 3 2

1 2 1
      0

2 3 2

yd d S H d d

d H d d


   



    

 
      

 

 
      

   

(4.59) 

 

From the previously equation the follow expression can be written:  

3 2
1

4 3
d H d

H
  



 
    

   

(4.60) 

 

Taking into account the elastic law and the definition of E  the scalar term    defined 

by Eq. (4.46) is rewritten as:  
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 1 1

T
trial trial

n n   E P EE E
 

(4.61) 

 

The defferentiation of the above question gives: 

   

 

1 1 1 1

1 1 1 1

2 2

    2

T T
trial trial trial trial

n n n n

T
T trial T

n n n n

d d d

d d





   

   

 

  

E P E E P E

S P E S P PS

E E E E

E E
 

(4.62) 

 

Now, replacing (4.62) into (4.60) and next substituting in (4.56) gives: 

   1 1 1 1

trial

n n n nd d   
    S PS PS EE E E

 
(4.63) 

where the scalar   is taken as: 

1 1

1

2

3 2

T

n n

H

H





 

 

=

S P PS +E
 

(4.64) 

 

From Eq. (4.62) the elastoplastic tangent operator consistent for the Von Mises plane 

stress-projected Return-mapping is defined as: 

   1 1

ep

n n    PS PSC E E E
 

(4.65) 

 

Table 11 summarizes and describes the order of the expressions calculation previously 

developed. 

 

Table 11 - Elastoplastic tangent operator 

i. For a certain 1nS , 1

p

nE  and   (determined from the Return-mapping), it should 

be computed 

1 1

T

n n  = S PS
 

1
P
n

y

p

dS
H

d




EE  

` 1
1 


   = PCE
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1nn = PSE
 

1

1

2

3 2

T

n

H

H







 

=

S Pn +
 

ii. The elastoplastic tangent modulus 

ep   n nC E  

 

The validation and discussion of this elastoplastic plane-stress model are performed with 

examples 5.4.1, 5.4.2 and 5.4.3 addressed in chapter 5. The cases 5.5.1and 5.5.2 certifies the 

application of such an elastoplastic model accomplished with the embedded matrix-fiber 

theory. The examples of the topics 5.7.1, 5.7.2 and 5.8 also considered such a model to simulate 

the global behavior of the structures analyzed. 

 

4.2 Damage model with the smeared crack approach 

 

The present section addresses in the formulation of the damage model with the smeared 

crack approach applied to the numerical analysis performed in this work. The analytical 

expressions and the algorithm schedule considered in its implementation are presented. 

It should be emphasized that the present damage model is a product of the work developed 

during the visiting of 6 months of the author of this thesis at the University of Glasgow. During 

this period the author received scholarship granted by the Capes Foundation, an agency under 

the Ministry of Education of Brazil. The present model was performed in collaboration with 

Prof. Dr. Lukasz Kaczmarczyk. 

 

4.2.1 Equilibrium equation 

 

The Principle of Stationary Total Potential Energy is used to solve the mechanical 

problem. In order to do so, the total potential energy is written as function of Helmoltz free 

energy ( ) and the external loads potential ( ) as follow presented: 

     
0

0,
V

Y E k dV Y  
 

(4.66) 
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where E  is the Green strain tensor and k  is an internal variable that store the damage history 

of the material. 

The equilibrium position is found when the variation of the equation (4.66) is equal zero. 

Such variation is performed in function of the position variable (Y ) as follow written:  

0

0 0
V

E
dV Y F Y

E Y


  

 
   

 
 

(4.67) 

 

In accordance with the energy conjugate assumption it is possible to define: 

S
E




  

(4.68) 

where S  is the Saint-Venant-Kirhhoff stress. In the next section an anisotropic damage model 

is used to stablish the relationship between S  and E . 

Replacing (4.68) in (4.67) result in: 

0

0 0
V

E
S dV F Y

Y
 

 
    

 
 
  (4.69) 

 

The equilibrium condition is a nonlinear equation, which is solved with the Newton 

Raphson procedure, as described in the item 2.1. 

0

0 0
V

E
S dV F

Y


 

  (4.70) 

 

4.2.2 Constitutive relationship with damage model 

 

To assume the damage process in the evolution of analysis the constitutive relationship 

is used in secant format:  

sS EC
 

(4.71) 

where sC  is the constitutive tensor of an isotropic material.  

Initially, the constitutive relation (4.71) has an elastic isotropic behavior, indicating that 

e

s C C . Such elastic behavior remains until the damage process be started. From the physical 
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point of view, the damage process is related to the set of micro-defects, which tends to align to 

a common preferential direction. For the present model, the guidance of these micro-defects is 

ranged in an orthonormal direction to the maximum principal stress. In accord with the smeared 

approach this preferential direction of the micro-defects is represented by one single cohesive 

crack or softening law. 

In accordance with the previous assumption hypothesis, the Rankine criterion is taken 

into account to determine the beginning of the damage process. Rankine criterion evaluates the 

maximum principal stress with the tensile stress ( tf  ). The tensile strength is determined by a 

simple uniaxial tension test. So, if the maximum principal stress is larger than the tensile limit 

the damage process is initiated. Otherwise, the material remains in the elastic regime. 

Once initiated the damage process, its evolution, which describes the stiffness 

penalization of the material, is governed by a softening curve.  

( )nnf e
 

(4.72) 

 

The softening curve adopted in (4.72) is a function of the local strain (
nne ) related to the 

orthonormal direction ( nn ) of the preferential damaging plan.  

To take into account the loading and partial reloading process the internal variable k  is 

introduced to assure the history of the material. In other words the variable k  stores the 

maximum strain level reached in the analysis in a given time of load t : 

   
  

max nn
t

k t e






 

(4.73) 

 

Following, the expressions that involve the stiffness penalization of the material are 

presented. 

 

4.2.3 Softening law 

 

Two shapes of softening curves, linear and multilinear, are adopted in the analysis of 

the structure of this thesis. The expression that defines the stiffness degradation of the material 

is first developed for the linear softening curve and next it is expanded for the multilinear case. 
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Linear Softening 

At this time, it takes the linear softening law, shown in Figure 4.4, to develop the 

mathematical expressions considered in the present model. 

 

 

Figure 4.4 - Constitutive law with linear softening. 

 

As previously discussed the initialization of the damaging process occurs when the 

maximum principal stress reaches the value of the tensile strength of the material ( tf ). Until 

this point, the behavior of the material is considered isotropic elastic. Once achieved such 

criterion, the initial stiffness of the material ( 0E ) at the same direction of the principal stress 

starts to reduce (  E k ). The stiffness reduction is performed in accord with the damage 

evolution, stored indirectly in the internal variable k . Next, the mathematical development of 

such evolution function of degradation is described.  

To do so, first the softening law is written as function of the internal variable k  and the 

properties of the material, such as tensile strength and fracture energy. Afterward, the equation 

to stiffness penalization into local coordinates is defined. Finally, with the previously 

expressions the anisotropic constitutive tensor for the damaging material is determined. 

 

Softening law equation 

For a plane stress case the stiffness in a direction n  is a scalar defined as: 
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0

eE n n C
 

(4.74) 

where eC  is the elastic constitutive tensor defined for the plane stress case. The vector 

 2 2cos sin 2sin cosn   is the direction orthogonal to the preferential damaging plane. 

In the border between the elastic and inelastic regime the parameter 0k  is calculate as: 

0

0

t t

e

f f
k

E n n
 

C
 

(4.75) 

 

The relationship between the area under the softening curve and the fracture energy is 

performed with the characteristic length or crack bandwidth as follow written: 

f

f

G
g

h


 
(4.76) 

 

The determination of the internal variable ( ultk ) is associated with the tensile stress, 

energy fracture and the characteristic length as: 

2

2

f ft ult
f ult

t

G Gf k
g k

h hf
   

 

(4.77) 

ultk  is the internal variable related with the largest value of strain at which the crack still transmit 

stress. For strain values bigger than ultk  the crack is assumed completely open and therefore for 

this point there is no more rigidity contribution for the global stiffness of the material. 

The tangent slope ( H ) of the softening curve is defined as: 

2

2

ct ct

ult f

f f h
H

k G
 

 

(4.78) 

 

Therefore, the softening linear equation is written as function of the material properties 

and the internal variable k  as:  

 
2

1
2 2

t t
t t t

f f

f h f h
f k f Hk f k f k

G G

 
      

 
   

(4.79) 
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Stiffness penalization into the local coordinates  

From smeared crack models the material damaged is represented schematically with 

elastic unit coupled in series to a crack unit. So, the inverse of the constitutive law in the local 

coordinates with the crack plan is defined as:  

 
1 1

0

e d

nn nnc c t e k k
 

   
 

(4.80) 

where 
1ec


 and 
1dc


 are the inverse or compliance of the elastic and damaged material stiffness in 

the direction n . 

Once started the damage process the stress nnt  is equivalent to the value of the  f k . 

Replacing (4.74) and (4.79) into (4.80) and knowing that  
1

1
e ec n n


 C , it is possible to 

define: 

11
1

2

d t t
te e

f

f h f
c f k k

n n G n n

   
           C C

 

(4.81) 

 

Finally, the scalar term 
1dc


associated with the stiffness degradation can be expressed 

as: 

 
 

1

22

2

e

f td

e

t f t

G n n f h
c k

n nf G f hk

  


 

C

C
 

(4.82) 

The constitutive tensor for the damage material  

The constitutive law, which describes a material damaged or cracked, is written in global 

coordinates as follow: 

1 1 1( )e d

sS E E
    C C C

 
(4.83) 

where 
1eC  is the inverse of the constitutive tensor and the tensor 

1d 

C  is assumed as: 

 
1 1d cc n n
 

 C
 

(4.84) 

 

So, replacing (4.84) in (4.83) the constitutive tensor for the damage material is therefore 

defined as: 
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(4.85) 

 

As can be observed in (4.86) for the case (a) when 
1dc


 is zero the second term of the 

expression (4.85) is null, and therefore the constitutive matrix is purely elastic. For the case (b), 

when 
1dc


 is a value different from zero the stiffness edC  is computed by (4.85).  For the last 

case (c), when the term 
1dc


 is a high value the second term of (4.85) is equals the elastic tensor 

eC  and consequently the constitutive tensor of the material damaged is null. 

 

 
 

 

 

1

1

1

1

1

0

1

0

d ed e

d
d cr ec e e e

d e

d ed

a c

c
b c c n n

c Trace n n

c c highnumber











   



    
    


  

C C

C C C C
C

C
 

(4.86) 

 

Multilinear Softening 

Two dimensionless parameters   and    are used in the equations to describe the 

multilinear softening formulation, Figure 4.5. The basic idea consists in to assume values 

between 0 and 1 for  and   as long as the multilinear softening curve is adequate to the 

softening curve obtained from the experimental test. The index  n  refers to the total number 

of linear branch and  H  the tangent of each linear branch. 
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Figure 4.5 – Multilinear Softening. 

 

Therefore, according to Figure 4.5 the tangent of each linear branch softening is 

calculated as: 

   

1

1 2

;   with  1,nt i i
i

ult n i n i

f
H i

k

 

 


   

 
  
 
   

(4.87) 

 

The index  i  is here used to indicate the linear branch in analysis. Analogously, the 

general expression to calculate the area under the softening curve is: 

       1 1 2
;   with  1,n

2

t ult
j j j n j n j

f k
A j       

   
 

(4.88) 

 

Taking into account that  f f jg G h A  , with the index  j  varying between 1 and 

number of linear branch, the internal variable  ultk  associated to the ultimate strain is 

expressed as: 
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2 1
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(4.89) 

 



123 

 

 

The softening law equation to calculate the stress   if k , in the branch  i , in function 

of the internal variable  k  is: 

    2i i t i ultn i
f k f H k k 

 
  

 
(4.90) 

 

Replacing (4.87) into (4.90) the softening law is rewritten as follow: 
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(4.91) 

 

Similar to the procedure adopted for the linear softening law, Eq. (4.81), the stiffness 

degradation into the local coordinates of the crack is resulted from the following expression:  
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(4.92) 

Thus, the scalar term dc  is obtained from the replacement of (4.90) into (4.92) and 

therefore the following expression it can be found: 
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(4.93) 

 

The general equation defined in (4.86) is also the constitutive matrix for the damaged 

material determined with the multilinear softening law. The only difference for the analysis 

performed with the multilinear softening is that the parameter 
1dc


 must be calculated with the 

expression (4.93). 

The expressions presented in this topic although written to the multilinear softening case 

can be used to calculate structures adopting linear softening. Such procedure can be performed 

taking into account only one linear branch softening, i.e. 1n  , and the following dimensionless 

parameters:  

 

 

11 1 11

1 1 2 21 2 1

11
, and 

0 0

 

   

 

  

  
 

      

(4.94) 
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Assuming the values determined in (4.94) to calculate ultk  with Eq. (4.89)  and 

substituting all these values in the Eqs. (4.90) and (4.91) the expressions for 
1dc


 and  f k  are 

analogous to those previously written in (4.82) and (4.79), respectively, as rewritten below:  
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(4.95) 
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 
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(4.96) 

 

4.2.4 Evolution calculation 

 

The penalization of the constitutive stiffness matrix previously discussed is used to 

calculation of internal force and the Hessian matrix. Taking into account the Newton Raphson 

method both terms are constantly calculated in the iterative process as showed in Figure 4.6. 
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Figure 4.6 – Newton Raphson method 

 

From the schedule of the numerical implementation shown in Figure 4.6, it observes 

that the internal variable k  updates the auxiliary variable balancedk  outside the iterative process. 

balancedk  is always used to calculate the Saint-Venant-Kircchhoff stress before the verification 

of the damage criterion. The variable k  is constantly updated into the iterative process since the 

stress level calculated in the integration point violates the damage criterion. 

The damage criterion verification and consequently the evolution of the penalization of 

the constitutive matrix are performed in the Saint-Venant-Kirchhoff stress calculation.  
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Figure 4.7 summarizes, for one integration point, the procedure related to the verification of the 

damage criterion and consequently actualization of the constitutive tensor taking into account 

a certain iteration ( m ).  
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Figure 4.7 – Damage model at integration point level. 
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For a specific iteration ( m ) the Green strain ( E ) and the internal variable balanced (

balancedk  ) are known, (Step 1). Next, in the step 2 the stress is obtained with the constitutive 

matrix updated with the internal variable from the previously balanced increment of load 

balancedk , Eq. (4.86). In the step 3 it is verified if the material is already damaged. Such procedure 

is performed with the variable mk , which stores the history of the damaging of the material. For 

the case in which the material has not yet presented damage 1mk   is equal zero and the principal 

direction of the stress has to be determined (Step 4). Otherwise, the strain and stress in the 

principal direction are directly calculated in step 5. Following, the stress in the principal 

direction ( ) is compared with the softening curve adopted  1mf k   in the step 6. Note that for 

the integration point in which the damage process has not started the value of the softening 

curve is equal to the tensile strength, i.e.  1m tf k f  . So, if the principal stress does not violate 

the previously criterion no updated is needed. On the other hand, once violates the criterion the 

internal variable mk  is updated according to the expression written in the step 8. Where 1mk   is 

the previous value of k , 
nnE  is the strain value in the principal direction and 0k  is determined 

by Eq. (4.75).  

Next in the step 9 it is verified if the new value of mk  is bigger than ultk . For the case 

when such comparison is false the criteria (  m mf k ) and 
1d

mc


 are determined according to 

expression written in step 12 and 13, respectively. Otherwise, when mk  exceeds ultk  such 

integration point does not contribute to strength of the structure. Physically this means the 

material is fully damage. From numerical point of view, this situation is represented attributing 

for the function  m mf k  a small value and for 
1d

mc


 a high value, according steps 10 and 11, 

respectively.  

The step 14 refers to the calculation of the constitutive matrix for the material damaged 

(
ec

mC ). Lastly, as shows the step 15 the new stress is determined. 

The new stress obtained in the iteration is used to calculate the internal forces and 

stiffness matrix required in the solution of the finite element method. 
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For numerical reasons, the level of stress is not compared with the softening curve for 

the first iteration of each increment of load. Thus, the update of stress previously discussed is 

assumed only from the second iteration. 

Once the principal stresses surpass the strength limit of the material ( tf ) two damages 

models can be considered in the analysis: the fixed and rotating damage models.  

The so-called fixed damage model stores the direction of the plan in which the damaging 

is initiated. Such direction remains unchangeable until end of the analysis, and therefore the 

penalization of the constitutive tensor is continuously associated with the evolution of damage 

in this direction. On the other hand, for the analysis performed with the rotating damage model 

the main direction is always calculated for the first iterative process that the damage criterion 

is verified, independently if the damage process has already been initiated. 

In chapter 5, the examples written in the topics 5.6.1, 5.6.2, 5.6.3, 5.7.1 and 5.7.2 shows 

the application of such damage model with smeared crack approach in the analysis of the 

structures. 

 

4.3 Bimodular damage model 

 

The previously damage model described was developed only to taking into account the 

degradation of the material under traction cases. Next, this formulation is enhanced for the 

compression damage cases, and consequently, a bimodular damage model is presented. 

 

4.3.1 Constitutive relationship 

 

Analogous to the damage model with the smeared approach the constitutive relationship 

is taken into secant format, as shown in (4.97).  

ed

sS E E C C
 

(4.97) 

 

Once the damage process initialized the penalization of the constitutive tensor ( sC ) is 

performed with the adoption of any softening curves. Such curves are considered to describe 

the material behaviour in tension and compression regime. 
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4.3.2 Damage criteria 

 

Figure 4.8 shows schematically the behaviour of the damage model in the principal 

direction plan. 

 

 

Figure 4.8 – Plane state damage behaviour. 

 

Initially the material is assumed elastic until the damage criteria be violated, which 

occurs when the principal stresses, in the nn  direction, reach the tensile or compression strength 

of the material  ,t cf f . After such point the constitutive relationship follow any softening law 

function ( ( ), ( )t c

nn nn nn nnf e f e ) adopted. The history of the physical non-linearity of the material 

in such direction is stored at the two internal variable  ,t c

nn nnk k  independently from each other. 

The overwritten t  and c  is used to differentiate the parameters related to degradation due to 

traction and compression action, respectively. 

The softening curves are written in function of the internal variables as follow: 
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In plane-stress case, the stress perpendicular to the direction nn  is also evaluated and 

the softening curves are defined at the same similar way as: 
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(4.101) 

where  2 2sin cos 2sin coss    is the vector related to the direction ss  which is 

perpendicular to the direction. 

 

Stiffness penalization into the local coordinates  

According to Figure 4.8, the un-loading process happens elastically and the damage of 

the material under tension and compression actions are independent. In other words, in such 

model the degradation of the material caused by the tensile forces is not considered when this 

same material is subjected to compression forces and vice versa. Mathematically, such 

consideration is assumed when the history of the damage of the material is stored in different 

internal variables, as previously written. Take advantage of such observation, the scalar terms 

associated to the stiffness penalization into the local coordinates and in the direction- nn

 
1 1

,t d c d

nn nnc c
 

 can be obtained following the same steps already described from the previous 

model. So, rewritten (4.93) with the nomenclature adopted for the present model and taking 

into account the multilinear softening cases the terms 
1 1

 and  t d c d

nn nnc c
 

 are defined as follow: 
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132 

 

 

            

     
1 1 11 1 2 2

11 2

c c c c c c c c c c c c c

i c nn cc nn ult c nn nn ult c i nn nn ultn i n i n i n ic d

nn
c c c c c c c c

c i nn nn ult i nn nn ultn i n i

f k f k f E k k f k k
c

Ef k k k k

      

   

        

   

      


    
   

(4.103) 

 

For the degradation of the material due to the efforts that acting in the direction ss  the 

terms 
1 1

 and t d c d

ss ssc c
 

 are similar to Eqs (4.102) and (4.103), and written as follow: 
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If linear softening is adopted, we have 1n   and the dimensionless parameters equal: 

 

 

 

 

1 11 1 1 1 1 11 1

1 1 2 2 1 1 2 21 2 1 1 2 1

1 11 1
;   and ;  

0 0 0 0

t t c ct c

t t t t c c c c

    

       

   

    

         
   

             

(4.106) 

 

Therefore, the expressions (4.102) and (4.103) can be reduced for: 
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Note that the energy of fracture ( )fG  and the tensile strength  tf  were replaced to the 

compressive energy ( )cG  and the compressive strength  cf . The compressive energy is defined 

as gc cG h , where cg  correspond to the area under the stress-strain curve pos-peak load (Figure 

4.8). The equivalent strength value ( h ) is the same for the tension and compression cases. The 

scalar terms depend directly on its respective internal variable considered , ,  or t c t c

nn nn ss ssk k k k .  
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The constitutive tensor for the two-dimensional damage model 

The constitutive law for the plane state damaged model is written in global coordinates 

as follow: 

1 1 1 1 1 1( )e t d c d t d c d

s nn nn ss ssS E E
          C C C C C C

 
(4.111) 

 

The tensor 
1eC  is the inverse of the elastic stiffness and the other terms are the inverse 

of the tensors related to the degradation of the material: 
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As described in (4.111) the constitutive tensor sC  is calculated by the inverse of five 

tensors: 
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Eq.(4.113), according to (Miller 1981), can be finally written as: 
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(4.114) 

where the index k  ranges from 1 to 4. 

The constitutive tensor defined in Eq. (4.114) is used to calculate the internal forces and 

the Hessian matrix of the finite element method, as already discussed in Figure 4.6. 

 

4.3.3 Evolution calculation 

 

Figure 42 shows the flowchart that describes the routine to the present damage model 

for a certain iteration ( m ) implemented for the analysis of stress at the integration point level. 
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Figure 4.9 – Damage model 

The Green strain and the internal variable are known from the step 1. Following, if any 

damage has initiated, which is verified with the internal variables different to zero, the principal 

direction is calculated with the strain previously determined. Otherwise, if the damage process 
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has already started the step 3 is neglected and the procedure goes to the step 4 where all scalar 

terms are given null values. Next, the plane-state configuration is evaluated. Four different 

configurations of stress in the plane states are possible, as shows the Figure 4.10, being them: 

(1) traction-traction (TT); (2) traction-compressive (TC); (3) compressive-traction (CT); and, 

(4) compression-compression (CC). 

 

 

Figure 4.10 - Plane state cases. 

 

Once determined the two-dimensional stress configuration the scalar terms associated 

with the damage degradation is calculated with their respective internal variable balanced (step 

6a, b, c or d). Here, it is important to observe that only the scalar terms associated with the two-

dimensional configuration detected are calculated while the others remain null. So, the stresses 

are calculated in step 7. The stresses previously determined are rotated to the principal direction 

(step 8), to verify the damage criteria. The step 9 verifies the damage criteria, the internal 

variables are updated and the constitutive tensor is therefore determined according to the Eq. 

(4.114). Such routine will be discussed latter. Finally, at the last step, the level of stress is 

corrected to satisfy the damage criteria. 

The verification of the damage criteria at the step 9 is performed with the stresses 

calculated in n  and s  directions. It emphasizes that such stresses are analysed independently 

of each other but in a similar way. Thus, next only one case of stress will be assumed to explain 

the algorithm proposed to correct the parameters needed. 

Figure 4.11 presents the routine calculation for the updating of the stress in the principal 

direction n  when the tensile strength is violated.  
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Figure 4.11 – Verification of the damage criteria for the tensile stress cases at the direction n. 

 

The step 9.a verifies if the level of stress surpass the damage criteria. If 

 t t

nn nn nn mS f k   the algorithm advances to the step 9.b and no correction is performed, 

otherwise the internal variable 
t

nn mk  is updated in the stage 9.c. Next, the new value of the 

internal variable is compared with 
t

ultk , which is variable related to the maximum strain. In one 

hand, if 
t t

nn m ultk k  it means that this point does not contribute any more to the global rigidity 

of the structure which numerically is assured assuming small values for  1 1

t t

nn m nn mf k 
 and a 

large one for 
1

1

t d

nn mc


 , as shown at the steps 9.e and f. In another hand, if 
t t

nn m ultk k  the steps 9.g 

and h are executed and news values for  1 1

t t

nn m nn mf k 
 and 

1

1

t d

nn mc


  are determined with Eqs 

(4.98) and (4.102), respectively. 
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Assuming compressive stress at the direction nn  a similar routine to Figure 4.11 must 

be implemented with the equations and parameters adapted to this situation. The analysis of 

stress in the direction ss  follows likewise the structure of the flowchart presented. 

The global behavior of such Bimodular damage model for the situation of loading and 

unloading configuration is discussed in the example 5.6.4 of chapter 5. On the other hand, 

beyond the analysis of the structures considered, the examples 5.7.1 and 5.7.2 compare such a 

model with the Damage model with the smeared crack approach. Finally, example 5.8 directly 

apply the Bimodular damage model to represent the degradation of the matrix elements of the 

structure. 

 

4.4 Summary 

 

In this chapter two physical nonlinearities formulation was described to represent the 

physical behaviors of the materials: the elastoplastic and the damage models. 

The plasticity theory for uniaxial and bidimensional cases was vastly presented. Both cases 

considered the Von Mises criteria for the border between the elastic and plastic regime. The 

additive composition between the parcels of elastic and plastic strains constitute the hypothesis 

of this theory. The expressions defined for the bidimensional plasticity algorithm encompass 

the plane stress-projected constitutive equations found in the books Simo and Hughes (1998) 

and de Souza Neto et al. (2008). With the formulation presented, it should be a remark that the 

additive composition of strains enables the analysis of structures with the materials presenting 

a small strain. 

Two damage models were proposed in this study. The first one considered the degradation 

of the material only in one preferential direction when the Rankine Criterion is reached. Such 

a formulation was developed based in the smeared crack approach models. At this sense, two 

variations of such model were presented. For the first variation, the preferential direction of 

degradation remains fixed for the first plane of rupture reached, while, the second one considers 

that this preferred direction rotates, following the rotation of the principal direction of strain. 

The second damage model, named as Bimodular damage model, resulted from the enhancement 

of the first damage model. In this model, the damaging evolution happens when the 

compression or the tension stresses surpass the strength limit of the material. The history of the 

material damage for under compression and tension situations are independently stored from 
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each other. From the formulations presented it should be stressed that both damage models are 

classified as anisotropic damage models because the degradation evolution of the structure is 

not the same for different principal stress directions. 
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5 NUMERICAL VALIDATION 

 

The examples of validation and analysis related to the formulation discussed and described 

in the previous chapters are following presented. The order of examples follows the order of 

presentation of the models described in this thesis.  

The results of the analysis are performed with the post-processing program AcadView, 

available in http://www.set.eesc.usp.br/portal/pt/softwares. 

 

5.1 Elastic Nonlinear Analysis 

 

Two geometrical nonlinear analysis are following discussed with the two-dimensional 

and the frame finite elements. 

 

5.1.1 Tow-dimensional finite element 

 

The follow cantilever beam example was discussed by Mattiasson (1981) who shows 

the analytical solution with geometrical non-linear effect. Such example is used to verify the 

implementation of the two-dimensional finite element. The concentrated load of 10kN applied 

in the free extremity is the only action in the structure. The same 100 load steps adopted in the 

resolution done by Marques (2006) was adopted as well as the discretization of 120 finite 

elements. The properties of the material and the geometrical characteristics considered are 

explicit in the Figure 5.1. 

9
210 10

10

0.0178

1

0.0

E x Pa

L m

h m

Thickness m











  

Figure 5.1 – Cantilever beam. 

http://www.set.eesc.usp.br/portal/pt/softwares
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Figure 5.2 shows that the equilibrium trajectories for horizontal and vertical 

displacement of the free extremity of the numerical solution are the same those obtained by 

Mattiason (1981) with analytical solution. Therefore, the numerical implementation of the plane 

stress finite element is consistent. 

 

 

Figure 5.2 – Trajectories of equilibrium. 

 

5.1.2 Frame finite element 

 

Mattiasson (1981) presents an analysis of frame in lozenge shape with elliptic integrals. 

Figure 5.3 shows such structure requested by different load configurations. In the first load 

configuration (a) all rods of the structures are under tensile (T) effect, while for the second case 

(b) the rods are under compression (C) effect. As the frame is double symmetric, the 

representation of the problem can be analysed by an inclined beam with appropriate boundary 

conditions. The inclined beam was discretized by 4 finite elements. The geometrical and 

properties taken into account in the analysis can be viewed in Figure 5.3. 
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(a) (b) 

Figure 5.3 – Lozenge shape structure. (a) Rods under tensile effects and (b) Rods under compression effects 

 

The frame was also studied by Nogueira (2015), which analysed the problem with the 

positional formulation, considering the frame finite elements with degrees of freedom 

represented with position vectors. 

The equilibrium trajectories with relation the horizontal (u) and vertical (v) 

displacements for superior and the right extremities of the beams, respectively, are the results 

analysed in Figure 5.4.  

 

    

(a) (b) 

Figure 5.4 – Equilibrium trajectories for: (a) Force versus Horizontal displacement and (b) Force versus Vertical 

displacement. 

 

Figure 5.4a and b show the equilibrium trajectories for the cases in which the structure is 

subjected to tension (T) and compression (C) requesting. As can be seen, curves provided with 

the simulation performed in the present work are agreed with those picked from the literature. 
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5.2 Matrix-Fiber coupling 

 

The following two examples validate the matrix-fiber coupling technique, between the 

two-dimensional finite elements and the bar/frame elements, proposed in chapter 4. The 

analysis are performed taking into account the elastic regime for all materials. Firstly, a bar 

axially requested is investigated. Next, a cantilever beam is used to evaluate the matrix-fiber 

coupling formulation in structures disposed to preferential flexural behavior. 

 

5.2.1 Bar with axial load 

 

A bar under a tension efforts was analysed with the bar and frame finite element 

embedded in the matrix. Two meshes coarse and refined were used to verify the formulation, 

Figure 5.5. Both the matrix and fiber materials were represented by cubic finite elements. The 

analysis was performed with 10 steps of displacement equal 1mm on the top surface of the 

column. The energy tolerance equal 0.001 was used to check the convergence at each 

displacement increment. All properties and the dimension description are presented at the same 

Figure 5.5. 

 

 
  

 

L 3000mm 

b 300mm 

h 300mm 

c 30mm 
 

Matrix 

Ec 21GPa 

Poisson 0.0 

Fiber 

Es 210GPa 

Diameter 12mm 

Geometrical configuration Coarse Mesh Fine Mesh Geometry and properties 

Figure 5.5 – Geometry and properties of the column studied. 
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Figure 5.6 shows the displacement resulted in the final configuration of the analysis and 

the numeration of the fiber elements for the coarse and fine mesh, respectively. The same 

displacement distribution was obtained for both meshes and for the analysis with the bar and 

frame embedded. 
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Bar 

 

Frame 

 

Fine Mesh 

 

Bar 

 

Frame 

 

Bar 

 

Bar 

  

Frame Frame 

Coarse Mesh Fine Mesh 
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Figure 5.6 – Some results. 

 

Figure 5.6 shows that the normal force on the bars is constant and the value is agreed 

with the analytical solution (158kN, approximately) obtained by the follow expression: 

   or   s s s s
s s s

s s c c

E A E A
P P P

E A E A L
 


 

(5.1) 

 

As demonstrated, the embedded technique used for the bar and frame finite elements 

present satisfactory results for the situations in which the structure is requested under uniaxial 

action. It was also verified that there is no difference between the simulations performed with 

the fiber represented by bar or frame elements. 
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5.2.2 Cantilever beam 

 

Figure 5.7 shows a beam fixed in the left extremity under a uniform distribution load 

 50 /q kN m  for all its length. Such structure was analysed by Sampaio et al. (2015). The 

investigation of the embedded bar formuation under flexure is performed. The matrix and fiber 

properties are 21mE GPa , 0m   and 210fE GPa , 0f   and 4 ²fA cm , respectively. 

The geometrical configurations are cmL 300 , 20h cm , 10b cm , 3d cm , ' 14h cm . 

 

 

Figure 5.7 – Beam reinforced with fibers. 

 

To such an example, the reinforcements were simulated by linear and cubic 

approximation bar finite elements, respectively represented in the Figure 5.8 with the 

nomenclature B1 and B2. For for the reinforcements represented by frame elements only the 

cubic approximation was considered. The results obtained from the simulations was compared 

with the answers presented by Sampaio (2014) and Sampaio et al. (2015). Although the frame 

element presents additional flexural and shear stiffness for this particular example such stiffness 

has not relevant effect, as can be seen in Figure 5.8 and Figure 5.9. 

 

 

Figure 5.8 – The final position of the beam. 
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Figure 5.9 shows the distribution of vertical displacement for cases of the beam with 

and without reinforcements. As expected, the displacement of the beam without reinforcement 

is larger than beam reinforced, i.e., the embedded formulation plays consistent results. It also 

verified that identical values of displacements were obtained for the analysis with the 

reinforcements represented by bar and frame elements. 

 

 

Bidimensional Bidimensional finite element + bar Bidimensional + Frame 

Linear Cubic 

    

Figure 5.9 – Vertical displacement distribution. 

 

Figure 5.10 shows that the uniaxial internal force distribution for the superior fiber 

represented by different finite elements has satisfactory results with the answer obtained by 

analytical formulation written in Eq (5.2). 
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Figure 5.10 – Uniaxial internal force in the superior bar. 
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(5.2) 

 

5.3 Elastoplastic examples 

 

The one-dimensional plasticity model presented in chapter 4 item 4.1.2 is discussed with 

the following three examples. 

 

5.3.1 Elastoplastic Models 

 

The first example to discuss the plasticity formulation implemented concern of a simple 

tensile bar of length (L) equal 100mm, Figure 5.11. The elasticity modulus (E) equal 210GPa 

was adopted and the cross section area ( 0A ) 122.72mm².  

  

 

Figure 5.11 – Tensile bar. 

 

The elastoplastic perfect behaviour was adopted with the tensile strength ( y ) 500MPa, 
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linear finite elements. Twenty (20) steps of displacement ( ) of 0.05mm was applied on the 

right extremity of the bar. 

Figure 5.12a and b shows the trajectory of equilibrium for the situation in which the bar 

is under tension and compression actions, respectively. For both numerical simulations, the 

maximum force value is agreed with the theoretical value estimated. 

 

  

(a) (b) 

Figure 5.12 – Curve force versus displacement (a) Traction bar and (b) Compression bar 

 

5.3.2 Elastoplastic truss analysis 

 

The Figure 5.13 shows the lattice geometry used to verify the elastoplastic model in a 

configuration in which more than 1 bar reaches its yielding from different load applied in the 

structure. The cross section area 100 ²A mm , the elastic modulus 210E GPa and the 

elastoplastic behaviour with the tensile strength equal 500y MPa   for all bars were adopted.  

 

 

Figure 5.13 – Truss. Unity (mm) 
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The symmetry of the structure was taken account for the numerical analysis, see Figure 

5.14a. Therefore, the value of properties of the vertical bar (bar 0) was divided per 2 (

0 / 2EA EA ). Each bar was represented by 1 cubic finite element bar. The analysis was 

performed by displacement control with 40 steps of 0.05 mm vertically applied on the meeting 

node of the bars. Figure 5.14b shows that the curve force versus displacement obtained with the 

numerical simulation agrees with the analytical response. 

 

 

 

 

(a) (b) 

Figure 5.14 – (a) Symmetric truss and (b) Curve: Force versus Displacement. 

 

The equilibrium and compatibility equations were used to define the coordinates of the 

analytical curve. The critical points (slope change) are determined with the follows expressions: 
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where: i refers to the bar that has begun the plastic regime; k is the index summation; m is the 

number of bars that is in the plastic regime; n is the number of inclined bars for the symmetric 

structure; and, 
0L  the length of the bar 0. 

The bar 0 is the first bar to reach the plastic regime and there after the bars 1, 2, 3 and 

4, sequentially. Therefore, the coordinates (
0 0,F  ) define the end of elastic regime of the 

structure and the equations (5.3) and (5.4) can be thus simplified and written as: 
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The peak load of the structure is defined when all bars is in plastic regime. This point 

occurs when starts the yielding of the bar 4. Therefore the equations (5.3) and (5.4) are defined 

as: 
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(5.8) 

 

The Figure 5.14b shows that once the peak load is reached the load remains constant 

while the strain level increases.  

Figure 5.15 shows the level of stress in all bars always 1 load step before and after each 

bar reach its respective yielding regime. As can be seen the bars 0, 1, 2, 3 and 4 reach theirs 

limit tensile stress from load steps 5, 7, 10, 16 e 24, respectively. 
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Figure 5.15 – Stresses. Unities (N/mm²) 

 

5.3.3 Elastoplastic truss analysis: Traction and compression 

 

Figure 5.16 shows geometry of the lattice structure analyzed. The main objective of the 

following example consists of the validation of the elastoplastic algorithm implemented in the 

situation in which in the structure there are bars under compressive and tensile regime. 

 

 

Figure 5.16 – Truss. Unities (mm) 

 

Figure 5.17 shows the symmetry of the structure used to perform the numerical analysis 

and the area of the bars considered. The numbers inside the circle and triangles are the nodal 

numeration and the finite element number, respectively. Each bar of the structure was 

represented by one linear finite element of bar. Vertically in the node 4 it was applied 100 

displacement increments of 1mm at the indicate direction and the equilibrium was reached with 

energy tolerance equal 0.001. The elasticity modulus is the same for all bars with value equal 
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210 GPa. The perfect elastoplastic with the tensile strength equal 100 MPa was taken into 

account. 

 

 

Finite element number Area 

(mm²) 

1,3,5,6 and 7 3303.219 

2 2290.318 

4,8,9,10,11,12 and 13 1045.159 
 

Figure 5.17 – Symmetry of the structure, boundary conditions, nodal numeration and finite elements number. 

Unities (mm). 

Figure 5.18 shows the final configuration position of the structure and the respective 

internal force of the bars. As can be seen, the horizontal bars 1, 2, and 3 are compressed while 

the elements 7, 6, and 5 are stretched. 

 

 

(a) 

 

(b) 

 

Figure 5.18 – Final configuration (a) Displacement with increased scale 100 times. Unities(mm). (b) Internal 

force. Unities (N)  
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Figure 5.19 shows the force versus displacement curve for the node 4 of the structure. 

Due to the symmetry used in the simulation the forces values obtained from the analysis was 

multiplied per 2.  

 

 

Figure 5.19 – Force versus displacement curve. 

 

It verifies that the equilibrium trajectory is agreed with the results obtained from the 

code DIANA® (2017). The L2TRU finite element was used to perform the analysis in this 

commercial code. The same properties previously cited as well the increment of displacement 

and the tolerance criterion were adopted. The elastoplastic perfect model with the Von Mises 

criteria was also taken into account. The elastoplastic regime starts from 260kN (increment 28), 

approximately, and the maximum load that the structure supports occurs with the value equal 

300kN (increment 45). From Table 12 the bars 2 and 6 determined the collapse of the structure 

as can be seen the yielding condition in tensile and compressed regime were respectively 

reached. Table 12 also shows that the Piola Kirchhoff and Cauchy stress are equals to the same 

increment of displacement applied which justifies the addictive strain decomposition for the 

plastic model.  
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Table 12 - Bar stress for the last displacement of load. 

Finite 

element 

Stress (MPa) 

Increment 28 

Stress (MPa) 

Increment 45 

Stress (MPa) 

Last Increment 

Piola 

Kirchhoff 
Cauchy 

Piola 

Kirchhoff 
Cauchy Piola Kirchhoff Cauchy 

1 68.0938 68.1159 76.1783 76.2059 76.6886 76.7166 

2 99.7186 99.7659 100.098 100.231 100.640 101.038 

3 81.4593 81.4908 94.6546 94.6972 98.0583 98.1175 

4 63.5426 63.5618 83.4103 83.4435 94.2478 94.2901 

5 -93.1501 -93.1088 -100.522 -100.425 -97.7903 -97.6349 

6 -81.5344 -81.5027 -99.9940 -99.9398 -100.468 -100.201 

7 -79.2098 -79.1799 -88.5099 -88.4725 -88.7059 -88.6684 

8 -3.24049 -3.24054 -24.0981 -24.0953 -25.1210 -25.1180 

9 20.0505 20.0524 21.3051 21.3073 32.9765 32.9817 

10 -49.7028 -49.7016 31.5551 31.5598 31.4865 31.4912 

11 17.5364 17.5378 48.4875 48.4987 47.6770 47.6878 

12 -37.6299 -37.6232 -59.9620 -59.9449 -75.4666 -75.4394 

13 87.0638 87.0999 80.2886 80.3193 65.8978 65.9184 

 

5.4 Plane stress plasticity 

 

Some aspects of the plane-stress plasticity model presented in chapter 4 item 4.1.3 are 

discussed with the follows three examples. 

 

5.4.1 Elastoplastic model bar (Frame) 

 

The bar of the Figure 5.20 has length (L) 1000mm and the measure of the cross section 

(b,h) equal 50mm and 100mm, respectively.  

 

 

Figure 5.20 – Bar model. 

 

This uniaxial bar model was analyzed by three different numerical configurations, 

Figure 5.21. Two elements the bi-quadratic quadrilateral and the cubic frame were used to test 
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the plane stress-projected plasticity model. Figure 5.21 show the model discretized by 98 

quadrilateral elements and 10 cubic finite elements, respectively. Two configurations of 

boundary conditions were assumed to the analysis with the quadrilateral elements. In the case 

a.1 the transversal cross-section strains are free while in the case a.2 these strains are restricted. 

The latter case was assumed to compare with the results from frame elements once its kinematic 

does not allow the strain in the transversal cross-section. For the analysis with the frame 

element, case (b), all degrees of freedom were constrained on the left extremity and on the right 

extremity only the horizontal direction was restricted to enable the displacement application. 

 

 

(a.1) 

 

(a.2) 

 

(b) 

Figure 5.21 – Bar discretization. 

 

The Figure 5.22 shows analysis of the bar for the three configurations previously 

discussed. The results consist of the bar under the perfect elastoplastic behavior with traction 

and compressive hypothesis. The poisson presumed for all analysis were 0.0. According to the 

elastic branch it can be seen the same stiffness for all simulations. Once the bar reaches the 

yielding stresses, defined by the force 1200kN, only the quadrilateral finite element with the 

boundary conditions configuration showed in Figure 5.21a.1 follow the typical elastoplastic 

perfect behavior. For the simulation performed by the other elements the trajectory of 

equilibrium continues showing an unrealistic stiffness (locking), even after reaching the 

maximum plasticity load. 
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Figure 5.22 – Curve Force versus Displacement. 

 

Such behavior occurs because the frame as long as the quadrilateral elements in the case 

a.2 have a state in which it is not allowed the transversal strain on the cross-section of the bar. 

So to release the frame element locking it was assumed the value 0.5 for the poisson on the Von 

Mises criteria ( p ). When this value is assumed it is verified in accordance with Figure 5.22 

that the curve presents results agreed with the analytical answer. To improve the convergence 

of the model only the diagonal terms from the elastoplastic tangent matrix epC  from Eq. (4.65) 

was considered.  

 

5.4.2 Cantilever beam: plastic hinge 

 

The plastic hinge formation is discussed with the cantilever beam presented in Figure 

5.23. 

 

 

Figure 5.23 – Beam. 

The length (L) 1000mm and the cross-section dimensions (b) 50mm and (h) 100mm 

were used. The elasticity modulus (E) considered is equal 210GPa. It was adopted the perfect 

elastoplastic with the yield stress ( y ) equal 240MPa. The final 30 mm of displacement was 

applied in 15 steps of 2mm. The energy criteria equal 0.001 is used to assure the static 

equilibrium. The beam was discretized with 10 finite elements and the number of integration 

points assumed was 4x3. 
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Figure 5.24 shows the curve force-displacement for the right extremity of the beam. It 

observes that both analytical and numerical results present initially an elastic behavior. With 

10mm of displacement, the structure presents loss of stiffness, which physically is associated 

with the begun of the plastic hinge process formation. The ultimate load analytically estimated 

in 30kN is reached for an equal displacement 15mm.  

 

 

Figure 5.24 – Curve Force-Displacement on the right extremity. 

 

The analytical expression that relates the load on the right extremity of the beam and the 

vertical displacement at the same point is presented by Lubliner (2006) and has the follow form: 
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where 
*y  is the distance between the longitudinal axes of beam and the fiber coordinate in the 

cross section where the yielding stress y  is already reached. The elastic displacement and 

ultimate elastic force ( E  and EP , respectively) are calculated for the case when the bottom and 

the top face of cross-section has reached the yielding criteria and therefore the stress distribution 

remains still linear.  
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5.4.3 Elastic-Plastic of Pure bending 

 

A beam under a pure bending testing it was used to verify the behavior of the 

formulation which more than 1 cross section starts the elastoplastic regime for the same load 

applied in the structure.  

 

 

Dimensions (mm) 

a 2000 

2c 100 

b 50 
 

Figure 5.25 – Beam. 

 

The elasticity modulus (E) 210GPa was adopted to the analysis, the yield stress ( y ) 

200MPa and the perfect elastoplastic analysis was considered. In order to facilitate the analysis 

the symmetry of the structure it was taken into account, Figure 5.26. The analysis was 

performed under displacement control vertically applied in the left extremity. Thus, it was used 

30 steps of 10mm. The energy tolerance considered was 0.001. 

 

 

Figure 5.26 – Symmetry of the structure. 

 

The structure was discretized by 4, 10 and 20 finite elements. The number of integrations 

points (IP) per elements was varied between 12, 30, 56 and 90 points. The distribution of 

integration points was done following the nomenclature 4x3, 6x5, 8x7 and 10x9 which 

corresponds to the number of points per element in the longitudinal and vertical direction, 

respectively.  
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Figure 5.27 presents the bending moments distribution for various load levels. The 

results are for analysis performed with 4 finte elements. The load values correspond to the steps 

1, 5, 10, 15 and 30. It observes that the results plotted agree with the bending moment 

distribution expected. Between 0 and 200cm, the moment variation is linear while for the central 

span its value is constant. It also verifies that for the last two steps the beam is already in the 

plastic regime and therefore no moment variation between them is presented. 

 

 

Figure 5.27 – Bending moments diagrams for some load levels. 

 

Figure 5.28 shows two analyses of Force-Displacement relationship at the point of 

displacement application.  

 

  

(a) (b) 

Figure 5.28 –Force versus Displacement curve: (a) Changing the number of integration points and (b) 

Comparison with different mesh discretization. 
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Figure 5.28a presents the force-displacement curves for the structure discretized by 4 

finite elements with different number of integration points. As can be seen, the equilibrium 

trajectory changed according to the number of integration points considered. For the analysis 

done with IP:4x3 the elastic regime is followed until the load equal 11kN, approximately, which 

is bigger than the analytical solutions 8.33kN. Once ended the elastic regime the curve presents 

the horizontal yielding tensile that defines the  collapse of the structure. The ultimate load 

reached is smaller than the analytical resulted 12.5kN. On the other hand, for the analysis 

performed with more integration points, the elastic regime becomes close to the analytical 

answer as well the ultimate load. It verifies that once starts the plastic regime the stiffness of 

the structure is gradually reduced as long the displacement increase. This behaviour happens 

because the vertical number and distribution of the integration points at the cross section of the 

finite element, Figure 5.29.  

 

 

Figure 5.29 – Plastic mechanism of a cross section in pure bending. 

 

When the element has only 3 integration points in the cross-section the elastoplastic 

behaviour is determined only by one integration point, if we take into account the symmetry of 

the section. Therefore, once reached the yielding tensile all section is considered under plastic 

state and thus the transition of the curve force-displacement between the elastic and plastic state 

is abrupt as previously discussed. However, for the section that presents more than one 

integration point verifies that the yielding criteria for each point considered is reached for 

different levels of displacements and thus justifies the gradual reduction of the stiffness of the 

structure. 

The Figure 5.29b shows the h-refinement test performed to verify the convergence of 

the analysis. According to the three meshes used, the results obtained were the same. This 
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behaviour characterizes that the numerical convergence is reached even for a discretization with 

4 elements. Curves with IP:4x3 and IP:10x9 were also plotted and all results were the same if 

it is compared the results obtained between different meshes.  

The analytical answer to determine the end of elastic answer as well the yielding tensile 

was performed following the configurations presented in the Figure 5.29 and the configuration 

of the structure, Figure 5.25. In the transition between the elastic limit and the beginning of the 

plastic state (a) only the top and the bottom surface at the cross-section has the yielding tensile 

reached and therefore a linear distribution of stress can be assumed. For this case, it is possible 

write: 
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The calculation of the ultimate load takes all integration points of the cross-section under 

the plastic regime (c) and is predicted as: 
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(5.14) 

 

5.5 Plasticity in the fibers  

 

The embedded theory for the coupling technique between the matrix-fiber elements 

considering the elastoplastic behavior for the fibers is following validated. 

 

5.5.1 Bar with axial load 

 

The steel reinforcement bar located at the centre of the bar presented in Figure 5.30 is 

used to verify the coupling matrix-fibers with the fibers under elastoplastic behavior. The 

properties and the geometrical dimensions are ilustred at the same figure. 
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Figure 5.30 – Uniaxial bar. 

 

The convergence in energy equal 0.001 was adopted to check the equilibrium. The total 

displacement of 10mm was progressively applied in 10 steps on the top extremity of the 

structure. Next, the results to the simulation performed with elastic and elastoplastic behaviors 

for the steel reinforcement bar are discussed. 

Figure 5.31 shows the force-displacement curves measured at the top extremity of the 

reinforcement bar. The steel reinforcement bar was simulated by the bars finite elements as well 

as the two frame finite elements. It verifies that all curves agree betweem them. The analysis 

performed with the plastic behavior for the bar presents the maximum force equal 90.48kN 

which correspond to the tensile strength yield adopted. 
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Figure 5.31 – Force-Displacement curve for the reinforcement bar. 

Figure 5.32 shows the vertical displacement at the last increment displacement for the 

all analysis performed. As noted, all analysis results at similar strain distribution. There is a 

non-uniforme strain distribution only at the regions next to the extremity of the reinforcement 

bar while for all other cross-section the strain is more regular. Comparing the different 

reinforcement formulation verifies that all results are the exactly the same value of strain. 

Differences appears only when it is compared the values of the strain for the analysis performed 

with the reinforcement bar with elastic and plastic behaviors. 

 

    

Elastic Plastic Elastic Plastic 

Bar Frame 

Figure 5.32 – Vertical strain distribution for the last step load. 

 

5.5.2 Cantilever beam with plasticity in the fiber 

 

To verify the elastoplastic behavior on the fibers for the matrix-fiber coupling 

formulation the same reinforced cantilever beam previously discussed in the topic 5.2.2 was 

considered. Excepting the tensile yield assumed for the reinforcement equal 500MPa, all other 

properties and geometrical dimensions previously described remains the same. The bar and 

frame elements were used to simulate the reinforcement bars of the structure.  

Figure 5.33 shows the final displacement position of the cantilever beam analysed. For 

all results, the matrix elements were represented by the two-dimensional finite elements with 
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cubic approximation and assuming elastic physical behavior. The same cubic approximation 

was taken into account for the finite elements that represents the reinforcement bars. Such a 

figure confront the values of simulations performed for the situation of the structure without 

reinforcement bars and with the reinforcements represented by bar and frame finite elements 

under the elastic and elastoplastic model.  

 

 

Beam without 

reinforcement bar 

Two-dimensional finite element + 

Bar with Elastic behavior 

Two-dimensionalfinite element + 

Frame finite element with elastic 

behavior 

 

  

Bar with plasticity model Frame with plasticity model 

  

Figure 5.33 – Final displacement position. 
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As can be seen the consideration of the elastoplastic model for the reinforcement bars 

increase the value of the final displacement from -23,03cm to -28,95cm. However, such an 

amount remains less than the final displacement of the structure without reinforcements (-

36,45cm). 

Figure 5.34 shows the normal strength distribution throughout the reinforcement bars 

for all analysis considered. It verifies that the top and bottom reinforcements present the normal 

strength distribution consistent with the analytical expression written in (5.15). It also observes 

that, with the elastoplastic model assumption, the top and bottom reinforcements until the 

coordinate 150cm reach the yield stress, and therefore present plastic behavior. For values of 

coordinates bigger 150cm the reinforcements are under the elastic regime and therefore the 

normal strength distribution follows the expected behavior described by Eq. (5.15). 

 

 

Figure 5.34 – Uniaxial internal force in both reinforcements. 
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(5.15) 

 

5.6 Damage models examples 

 

The general characteristics of the two damage models proposed in chapter 4 items 4.2 

and 4.3 are discussed with the following examples. 
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5.6.1 Behavior of the softening 

 

The behavior of the smeared damage model described on the topic 4.2 and the 

verification of the correct implementation is following discussed. To do so the quadrilateral 

geometry with the boundary, mesh discretization and loading configuration showed in the 

Figure 5.35 is assumed. 

 

 

Figure 5.35 – Geomtry of the structure. 

 

The equilibrium of the problem was reached with the value of the energy criterion equal 

0.001. The initial value of the elastic modulus ( E ) supposed for the problem was 10.000MPa 

and the length L equal 1mm. The parameters responsible to describe the post peak behavior are 

the fracture energy, characteristic length and the shape of the softening curves. The same values 

0.01N/mm and 0.707mm of fracture energy and the characteristic length were respectively 

adopted for all analysis. The end of elastic regime is defined with the value of the tensile 

strength equal 3MPa.  

Figure 5.36a shows the equilibrium trajectory of such structure assuming linear, bilinear 

and multilinear softening curves, while Figure 5.36b presents the stress-strain curve for loading 

and unloading conditions, only for the linear softening shape. 
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(a) (b) 

Figure 5.36 – (a) Differents softening curve shapes subjected only loading process and (b) Load and unloading 

analysis with linear softening curves. 

 

The analytical curves plotted into the Figure 5.36a and b refer to results obtained for 

alfa and beta coefficients presented in Table 13. 

 

Table 13 – Parameters for the softening’ curves. 

Linear Bilinear Trilinear 

i i  i  

1 1.00 1.00 

2 0.00 0.00 
 

i i  i  

1 1.00 1.00 

2 0.20 0.20 

3 0.00 0.00 
 

i i  i  

1 1.00 1.00 

2 0.35 0.35 

3 0.10 0.10 

4 0.00 0.00 
 

 

The analysis was performed with the displacement control. For all curves of Figure 

5.36a before reaches the tensile strength it was adopted 3 increment of 41.0  mm  and in the 

softening branch for the linear, bilinear and trilinear curves were assumed 10, 25 and 30 steps 

of 31.0 mm , respectively. For the curve plotted into Figure 5.36b the increment of displacement 

is showed at the same figure. 

Figure 5.36a shows that assuming the same values of fracture energy and characteristic 

length with different shapes of softening curves changes the value of the ultimate strain. For 

the linear softening curve, the ultimate strain recorded was 0.0097 while for the trilinear and 

multilinear cases were 0.0239 and 0.0305, respectively.  

Figure 5.36b shows that once initiated the damage process the stiffness of the structure 

decrease and under a loading and unloading process there is no accumulation of inelastic strain. 

-0.005 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
tr

es
s 

(M
P

a)

Strain

 Analytical

 Bilinear - Analytical

 Trilinear - Analytical

 Linear - Numeric

 Bilinear - Numeric

 Multilinear - Numeric

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S
tr

e
s
s
 (

M
P

a
)

Strain

 Numerical

 Analytical

Steps 

Numbers 
Increment 

3 -41.0  

2 -3
1.0  

3 -3
-1.0  

3 -3
1.0  

4 -3
1.0  

4 -3-1.0  

7 -3
1.2  

 



167 

 

 

The damage process occurs only when the tensile strength is reached, and, once gotten the 

stiffness of the structure is affected for both tension and the compression configuration. 

 

5.6.2 Strain localization – Mesh Sensitivity 

 

The follow example addresses the mesh sensitivity discussion for smeared model 

implemented over a situation with failure localization zone. To do so a specimen under uniaxial 

traction and dimensions 50x25x25mm³ (length x height x thickness, respectively) was adopted.  

The elasticity modulus ( E ) equal 21GPa and Poisson null were used to the analysis. It was 

applied 60 increment of displacement equal 0.002mm on the right side of the bar while on the 

left extremity remained constrained. The energy control equal 0.001 was assumed to determine 

the equilibrium convergence. Three different meshes constructed with quadrilateral elements 

were tested, as illustrated in the Figure 5.37. A smaller tensile strength 3.5MPa was considered 

for the hatched elements to force the strain localization while the others ones its value was 

7.0MPa. The linear softening and the fracture energy supposed equal 0.1N.mm/mm were taken 

into account. The curves force-displacement measured at the right extremity is showed in Figure 

5.37a. Different values of characteristic length ( h ) in accordance with the bandwidth softening 

were assumed to provide the mesh objectivity. Figure 5.37b shows once initialized the strain 

localization the middle element of the bar undergoing softening while the others unloads 

elastically. 

 

  

(a) (b) 

Figure 5.37 – Results of the analysis. 
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5.6.3 Beam notched under three point support  

 

The follow example consists of a beam notched under three point supports, Figure 5.38. 

This is a standard test done in laboratory to determine the fracture energy ( fG ) of the material. 

The test involves a beam supported in its extremities under a load applied to the middle of the 

length. 

 

 

Figure 5.38 – Beam notched. 

 

Table 14 presents the dimensions of the beam and properties of the concrete used to the 

follows simulations. All dimensions, properties and experimental test results were withdrawn 

of the work performed by Reinhardt and Kormeling (1983). 

 

Table 14 – Geometry and Properties. 

Heigth (H): 100mm 

Thickness (B): 100mm 

Length (L): 450mm 

Elasticity Modulus (E): 20GPa 

Poisson ( ): 0.20 

Tensile stress (fct): 2.4MPa 

Fracture Energy (Gf): 0.113N/mm 

 

The mesh discretization was done by finite triangular cubic elements, Figure 5.39. Each 

element has 7 hammer points. It was applied 100 increments of 0.01mm. The convergence 

adopted was 0.0001 in force and displacement and 0.001 in energy. However, during the 

analysis it was verified that the first convergence reached for all increments was in energy. 
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Figure 5.39 – Mesh. 

Softening curve shape discussion 

Taking into account the rotate crack model the structure was analyzed with three 

different softening curves assuming the same ultimate strain 
ult  equal 7%0, approximately. 

Figure 5.40 shows the three softening curves adopted and the parameters values 
i  and 

i  

used in the models. Although the ultimate strain (
ult ultk  ) and the fracture energy ( fG ) are the 

same for the three curves as can be seen the area under the curves ( fG

h
) are different due to 

the crack band parameter. The crack band ( h ) adopted for the linear, bilinear and multilinear 

softening curves were 13mm, 34mm and 44mm, respectively. The bilinear softening was 

assumed according to prescription suggested by CEB FIB Model Code (2010) while the 

multilinear softening was adjusted to the Hordijk et al. (1986) softening curve. 

 

 

Figure 5.40 – The three softening branch adopted. 

 

Figure 5.41a shows in the final configuration that the collapse of the structure occurred 

vertically to the point of load application. The figure presented refers to the last increment of 
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displacement with the scale 10 times increased. According to Figure 5.41b the equilibrium 

trajectories obtained by the numerical solutions are agreed with the experimental results, i.e. 

the same global stiffness with a linear branch, follow to the peak load and the softening branch. 

The elastic behaviors for the three simulations are similar until the value of force equal 1200N, 

approximately. Following, the concrete starts to present more clearly its degradation and 

reaches the peak load for different values of force and displacement. So, as can be seen the 

softening curve has direct influence over the dissipation rate of energy represented by the crack 

activation and consequently the global collapse of the structure. The dissipation rate of energy 

in the analysis decreased according to the following order of softening curve: linear, bilinear 

and multilinear. This behavior is agreed with the total area under the softening curves that was 

presented in Figure 5.40. Figure 5.41b still shows that the slopes for all curves in the post-peak 

branch are the same, which indicate that in this stage, the major crack is entirely open and 

therefore the shape of the softening curve has no more influence. 

 

 

 

 

(a) (b) 

Figure 5.41 - Last increment of load and the scale 10 times increased and (b) Equilibrium of the structure. 

 

Figure 5.42a shows that the crack zone occurs on the middle of the beam upper the 

region notched. It can be also seen that the integration points located on the vertical direction 

of the notch presents enable cracks with the biggest intensities (blue color). The Figure 5.42b 

shows a zoom of the crack zone for the simulations performed by the three softening curves 

and the legends that refers to the parameter ( k ) of the model.The intensity of the crack activation 

( k ) is related to the degree of stiffness degradation of the material, which is evaluated in the 

integration points of the finite elements. From a physical point of view, Figure 5.42 shows a 
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preferred path for the crack opening, illustrated by the cracks with the blue color. Such 

characteristic indicates the formation of a macro-crack that starts on the top of the notch and 

has its propagation vertically until the point of the load application. The cracks in red color are 

associated with the micro-crack diffuses that is a characteristic of a typical damage zone. 

 

 

(a) 

   

   

(1) (2) (3) 
 

(b) 

Figure 5.42 – Crack patterns. (a) All beam and (b) Detailed crack for the different softening curves: (b.1) Linear, 

(b.2) Bilinear and (b.3) Multilinear. Unities(mm). 

 

Rotate and Fixed crack model confrontation  

Figure 5.43 shows that the curves resulted from the simulation with the rotate as well 

fixed models before the peak load is similar for all analysis. However, the peak load reached 

from the fixed crack analysis are bigger than the results obtained from the rotate model for the 

same softening curve and the same crack band. The behavior of the post-peak obtained with the 
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fixed model distances more from the experimental results than the answer done by the rotation 

model. The stiffness degradation direction of the integrations points of the the finite elements, 

which the cracks are enabled, is the explanation for this behavior, as is follow written. 

 

  

Figure 5.43 – Fixe-Rotate comparison. 

 

Figure 5.44a shows the crack zone configuration for the analysis performed with the 

fixed crack model. It can be seen the cracks pattern is similar those obtained from the rotate 

model presented in Figure 5.42. However, according to Figure 5.44b the cracks located 

precisely on the middle of the beam has vertical direction and as long they move away from the 

notched the cracks presents others directions. For the upper part of the beam, the cracks have 

horizontal direction, which is resulted from the compressive zone. Such behavior characterizes 

that the direction of the stiffness degradation of the finite elements does not offer a way that 

enable a propagation of the major crack in the vertical direction, differently from the simulation 

performed with the rotatate model. In conclusion, this explains why the equilibrium trajectory 

discussed with Figure 5.43 does not show the softening behavior obtained from the 

experimental test and the results from the rotate model simulation. 
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(a) 

   

   

(1) (2) (3) 
 

(b) 

Figure 5.44 – (a) Crack zone of the beam Linear Softening  and (b) Detailed crack for the different softening 

curves: (b.1) Linear, (b.2) Bilinear and (b.3) Multilinear. Unities(mm). 

 

5.6.4 Damage model plane state 

 

The follows example discuss the behavior under loading and unloading cases of the 

damage model described in topic 4.3. To do so a quadrilateral configuration, with dimension L 

equal 1mm, composed by two triangular finite elements was considered, Figure 5.45. In such 

example, the increment of load is applied at the right edge while the left edge of the structure 

is constrained. The Table 15 presents all material properties taken into account. 
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Table 15 – Material properties. 

Elasticity modulus (GPa): 10 

Compressive strength(fc) (MPa): 10 

Tensile strength (ft) (MPa): 3 

Fracture energy (Gf) (N/mm): 0.010 

Equivalent length (h): 0.707 
 

Figure 5.45 – Configuration of the example and properties of the material. 

 

The linear softening behavior is adopted to simulate the material after the maximum 

tensile strength. The compression behavior is linear elastic until reached the yield of 

compressive stress, and it stays with this value for any strain calculated. The equilibrium was 

accept for value of energy equal 0.001. 

Figure 5.46 shows the Stress-Strain relationship with the increment of loads applied at 

the left edge of the structure. 

 

 

Figure 5.46 – Stress-Strain relationship. 

 

At the beginning, the material presents an elastic linear regime, which correspond the 

branch between the points 0-1. In the point 1 the tensile strength is reached and the stress starts 

to decrease as long the material is stretched, in other words the damaging process is initialized. 

In the point 2 the structure is elastically discharged until the point 3 and next is reloaded until 

point 4. It should be noted that during the reloading process after point 3 the damage of the 
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material restarts to increase only after the tensile stress reaches again the value previously 

obtained in point 2. The inclinations of the branches between the points 1-2 and 2-4 are the 

same due to the linear softening curve adopted. At the point 4 stage, the structure is completely 

discharged until point 5. Between the points 5 and 6 the material presents a linear elastic 

behaviour under compression. It emphasizes that the material initially presents a linear elastic 

behaviour even though in traction it has already been damaged. Next, the linear curve continues 

until 10MPa, which correspond to the compressive strength of the material. At point 7 the 

material is discharged until 8 and subsequently recharged again until point 9. From point 9 the 

structure is stretched again and as can be seen the compressive stress linearly decrease. At point 

5 the material returns to have tensile stresses with the same damage level already presented 

when the structure was being under tensile action. Then, the structure continues to be stretched 

until point 10 when the values of stress are null, this fact indicates the complete failure of the 

material. 

 

5.7 Reinforced concrete beams 

 

Two under and over reinforced concrete beams are follow investigated to verifies the 

implementation of the embedded theory, used to couple the matrix-fibers elements, working 

together with the physical nonlinearities models discussed in this thesis. 

 

5.7.1 Under-Reinforced beam under four point flexural test 

 

The results of the experimental four-point flexural test beam studied in this section were 

picked up in Tavares (2006) and Tavares et al. (2008). For this under-reinforced beam, the 

crushing of the material in the transversal section of the maximum flexural moment does not 

have a significant effect on the failure of the structure. The Figure 5.47 shows the geometrical 

dimensions for the beam as long the positions of the reinforcement bars.  
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Figure 5.47 – Beam configuration. Unities (mm). 

 

The materials properties used in this simulation are summarized in Table 16. 

 

Table 16 – Material properties. 

Steel Concrete 

Diameter (mm) Yield Stress (MPa) 

6.3 551 Elasticity modulus (GPa) 38 

8 572 Compressive strength (fcc) (MPa) 44.00 

12.5 597 Tensile strength (fct) (MPa) 3.17 

- - Fracture energy (Gf) (N/mm) 0.144 

 

The fracture energy was estimated according CEB FIB Model Code (2010) with the 

follow expression. 

   
0.18 0.18

73     73 44     0.144 /f ck f fG f f G G N mm     
 

(5.16) 

 

For the numerical simulation, it was taking into account the symmetry of the structure. 

The displacement control was applied with 80 steps of 0.25mm. The cubic triangular elements 

for the concrete and cubic elements for the steel were used, as follow illustrated: 

 

 

Figure 5.48 - Symmetrical structure. 
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The numerical analysis was performed with the two damage models presented in itens 

4.2 and 4.3. Remembering that the first model taking into account the degradation of the 

material once reached Rankine criteria, while the second one assumes the degradation for 

tension and compression forces for the two directions of bi-dimensional problems. For each of 

damage models, the influence of the steel reinforcement of the beam was analyzed with the bar 

and frame finite elements. At last, for all previous consideration two shape of softening curves 

linear and multilinear were considered being the multilinear case calibrated in accord with the 

Hordijk et al. (1986) curve, Eq. (5.17). 
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Figure 5.49 shows the values of parameters  ,   of the multilinear softening curve. 

The crack band length or equivalent length  h  equal 120 mm was estimated considering the 

ultimate strain for the steel approximately equal 0.002. 

 

 

i i  i  

1 1.00 1.00 

2 0.55 0.30 

3 0.25 0.15 

4 0.18 0.02 

5 0.00 0.00 
 

(a) (b) 

Figure 5.49 – (a) Softening curves and (b) Parameters of the multilinear softening curves. 
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branch, for the displacement between 1 and 2.5mm refers to the elastic behavior of the beam. 

The second one it starts with the cracking moment value and finish when the beam reachs the 

maximum force. The slope of the second branch changes, which physically represents a 

reduction of the structural stiffness. Lastly, the last branch starts with displacement 12.5 mm, 

approximately, and the horizontal trajectory indicates that the steel reaches its yield strength 

and therefore the collapse of the structure is achieved. 

 

Figure 5.50 – Load versus Displacement. 

 

According to Figure 5.50 it can be seen that for both damage models adopted, here 

symbolized by T of tension and TC of tension-compression, similar equilibrium trajectories are 

obtained. This means that the crushing of concrete does not present a substantial effect on the 

global collapse of the structure and therefore the failure of the beam happens under tensile 

stresses during flexure. 

The shape of the softening curve is related with the energy release ratio during the 

damage process of the structure. In accordance with the Figure 5.50, the adoption of the linear 

or multilinear softening had direct influence in the cracking moment of the beam. For the 

analysis performed with the linear softening the intensity of force applied at the instant of the 

cracking moment was equal 37kN, that is bigger than 23 kN, which was the value reached for 

the multilinear softening cases. 

Regarding the type of the finite element considered to represent the steel reinforcement, 

the equilibrium trajectory plotted showed there is no difference between the results obtained 

with the analysis performed with the bar and frame finite elements. In other words, the 

0 5 10 15 20 25 30
0

20

40

60

80

100

F
o
rc

e 
(k

N
)

Displacement (mm)

 Experimental

 Bar - Linear Softening - T

 Bar - Multilinear Softening - T

 Frame - Linear Softening - T

 Frame - Multilinear Softening - T

 Bar - Linear Softening - TC

 Bar - Multilinear Softening - TC

 Frame - Linear Softening - TC

 Frame - Multilinear Softening - TC



179 

 

 

contribution of the shear and the bending stiffness of the bar are not relevant to the global 

behavior of this structure, as already expected.  

The SecTrans software developed by Haach (2010) was used to calculate and compare 

the moment-curvature diagram obtained with the results of the finite element analysis, Figure 

5.51. The input data for the concrete were the elastic modulus, the tensile strength with linear 

softening and compressive strength with Parabola-Rectangle diagram. To represent the steel 

were considered only the tensile strength equal 597MPa and the elastic modulus. All other 

values correspond to the same presented in Table 16.  

  

Figure 5.51 – Moment-Curvature diagram 

 

Figure 5.51 indicates a satisfactory agreement between the curves of moment-curvature 

plotted. The same three branches presented for the load-displacement graphics are also 

visualized in the moment-curvature diagram. As can be seen depending of the softening curve 

adopted the cracking moment varies between 12.5kN and 17.5kN and the ultimate capacity 

supported by the beam correspond to the value of moment approximately equal 40 kN.m. 

The Figure 5.52 and Figure 5.53 show some results for the analysis performed with the 

bar finite element representing the steel reinforcement, the damage model only taking into 

account the degradation due to the traction criteria with the linear softening curve, (Bar – Linear 

Softening - T). 

 

 

 

 

0 1 2 3 4
0

10

20

30

40

M
o
m

e
n

t 
(k

N
.m

)

Curvature(m)

 SecTrans

 Bar - Linear Softening - T

 Bar - Multilinear Softening - T

 Frame - Linear Softening - T

 Frame - Multilinear Softening - T

 Bar - Linear Softening - TC

 Bar - Multilinear Softening - TC

 Frame - Linear Softening - TC

 Frame - Multilinear Softening - TC



180 

 

 

 
   

 
   

    

(a) (b) 

Figure 5.52 – (a) Vertical displacement (mm) and (b) Cauchy stresses (N/mm²). 

 

 
 

 
 

 
   

 
   

(a) (b) 

Figure 5.53 – (a) Horizontal strain and (b) cracking pattern. 
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is applied, the maximum values of displacements in the three steps presented are -0.87, -8.83 

and -23.90 mm, respectively.  

Excepting the upper longitudinal bar all steels present tension stresses. The bottom 

longitudinal bar is the bar most requested to tension being the only one that reaches the plastic 

behaviour, as can be seen in the step 80. Such plastic behavior happens in the same region that 

the beam has the most significant vertical displacements. 

The tension and compressive regions of the beam it verified with the plot of horizontal 

strain distribution. As showed, the cross-sections located between the application of the load 

and the right extremity of the beam present similar strain configuration. In such region, the 

bottom and upper cross sections are under tension and compressive regime, respectively. 

Differently, of the step-3, that presents a uniform strain distribution; in the steps 30 and 80, it 

can be seen vertical regions with the most significant strain. The plot of the cracking pattern 

show that such region present the most advanced damaging process. 

 

5.7.2 Over-Reinforced beam under four point flexural test 

 

Figure 5.54 shows the configuration of the beam under four-point bending test 

considered to be investigated. The difference between this example and the beam analysed in 

the previous section 5.7.1 is that this one is over-reinforced and therefore it was designed to 

collapse into domain 4. Such consideration suggests that the crushing of the material in the 

transversal section of the maximum flexural moment have a significant effect on the failure of 

the structure, differently of the previous beam. 

 

 

Figure 5.54 – Beam. 

 

The symmetry of the structure was taken into account to execute the numerical 

simulation, as shows the Figure 5.55. The analysis were performed with displacement control, 
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80 steps of 0.5mm was applied. The convergence of the model was assumed with the energy 

criteria equal 0.001. 

 

  

Figure 5.55 – Numerical model. 

 

The physical properties of steel consist on the yield plasticity strength ( yf ) equal 

500MPa and the elasticity modulus of 210GPa. The elasticity modulus of the concrete was 

considered equal 20GPa and its tensile behaviour after the tensile strength ( ctf ) 2.2MPa 

following a linear softening branch with fracture energy equal ( fG ) 0.139Nmm/mm. The 

compressive behaviour it is linear until the compression yield ( ccf ) with the value equal 20MPa. 

The equivalent length ( h  ) adopted was 60mm.  

 

 

Figure 5.56 – Material Physical behaviour. 

 

Figure 5.57 shows the curves of force versus displacement. The forces were computed 

from the displacement point application while the displacements were picked on the bottom of 

the mid-span length. 
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Figure 5.57 – Equilibrium trajectory. 

 

As can be observed in Figure 5.57, two types of curves were obtained from the 

simulations performed with the beam in question. Curves with the yield around to 82.5kN and 

others with 56.25kN, which results in 31.82% of difference between them. The curves with the 

highest yield consider only the degradation of the material associated to the traction criteria, i.e. 

there is no stiffness penalization for the compression strength. On the other hand, the curves 

related to the yield 56.25kN take into account the criteria under tension and compression regime 

to evaluate the stiffness degradation of the concrete. So, faced this results it can be concluded, 

as expected, that the crushing of the concrete has a significant effect in the failure prediction of 

this structure. 

The two estimative of ultimate forces showed in the Figure 5.57 were calculated with 

the equilibrium of transversal section subjected to the maximum flexural moment. The two 

estimative differs from each other due to the consideration or not of the crushing concrete. Such 

equations are follow written.  
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where, 'sA  and sA  are the area of the cross-section for the upper and bottom longitudinal bars, 

respectively; d  the distance between the upper surface of the transversal section until the 

bottom longitudinal bars; 'd  the distance between the upper surface of the transversal section 
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until the upper longitudinal bars; L  the length of the beam; wb  the width of the transversal 

section; ccf  the compressive strength of the concrete; yf  the yield plasticity strength; x  the 

neutral axis depth; 
t

ultF . and 
tc

ultF  are the ultimate forces with and without the compressive 

criterion, respectively. 

Still according to the Figure 5.57, for both damage models the steel reinforcements were 

simulated with the bar and frame finite elements. According to the curves, it could be verified 

that independently of the finite element used the equilibrium trajectory obtained presents the 

same behavior. The previous observation implies that the steel reinforcement bars of the 

structure are mainly subjected to the uniaxial forces and in this sense, the flexural and shear 

effects can be neglected.  

Next, a general discussion between the results obtained by the two damage models used 

in the analysis is performed. It was only considered the results with the model simulated for the 

steel reinforcement bar represented by the bar finite element once, as already discussed, the 

using of the bar or frame elements does not affect the global behavior of this structure. 

Figure 5.58 shows the final displacement configuration of the beam. It verifies that the 

displacement pattern is similar for both cases and the intensity differs less than 1% between 

them. Taking into account only the damage criteria in traction (a) the maximum displacement 

was equal 48.60 mm while for the damaging criteria in traction and compression (b) it was 

49.14 mm. 

 

 
 

 
 

(a) T (b) TC 

Figure 5.58 – Vertical displacement (mm) 

 

Figure 5.59 shows the stresses distribution of the beam for the increment of load in the 

steps 3, 30 and 80. It observes that the highest stress value occurs on the third middle span that 

was the sector with the highest displament. In such region, the top and bottom face of the cross 

section presents compressive and tensile efforts, respectively. In the step 3, the damage process 

Step-80 Step-80 
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initiated does not affect the global linear elastic behavior of the structure. Therefore, there is no 

substantial difference between the stress distribution calculated with the both damage models 

(a and b). At step 20, the neutral axle depth for the mid-span cross section for the beam 

simulated by the model (a) is lesser than the neutral axle depth of the model (b). Such difference 

occurs because in the model (b) some points at top face reach the yield compressive strength, 

defined as 20MPa, and therefore a larger compressed region is necessary to satisfy the 

equilibrium of the section. Step 80 shows cleary the difference between the compressive and 

traction stress distribution obtained with the two models. For the model (a) the value of the 

compressive stress on the top face of the most required cross section is around 85MPa while 

for the model (b) is 20MPa. 

 

 

 

 

 

 
 

 

 

 
 

 
 

(a)T (b)TC 

Figure 5.59 – Horizontal Cauchy stresses (N/mm²) 

 

Figure 5.60 shows the evolution of cracking patterns for same steps 3, 20 and 80. Step 

3 shows the appearance of the first cracks at the region of the highest flexural moment. The 

same crack patterns is observed for both model (a and b) however, as long as the increment of 

displacement is increased some differences can be observed. At step 20 it verifies that more 

cracks appear in the beam and major cracks are concentrated where the cracking was initiated. 

Step-3 

Step-20 

Step-80 

Step-3 

Step-20 

Step-80 
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At step 8, the model (a) compared with the model (b) presents both a larger area of the cracked 

region and larger values of crack opening. 

 

 

 

 

 

 
 

 

 

 
 

 
 

(a)T (b)TC 

Figure 5.60 – Cracking pattern. 

 

The stresses of the steel reinforcement bars are presented in the Figure 5.61. It verifies 

that only the upper longitudinal steel reinforcement bar presents compressive behavior while 

all the others have a tensile stress. Similar to the previously results the stress distribution at step 

3 is equivalent for both analysis (a and b). In step 20, the upper longitudinal steel reinforcement 

is already in a plastic regime. This happens because, by this stage, the damaging process due to 

compressive forces is already initialized and therefore such reinforcement is more requested to 

satisfy the equilibrium of the cross-section. At last step, differently from model (b), which both 

longitudinal bars is under plastic behavior, the model (a) only the bottom longitudinal bar 

reaches the yield tensile strength. The previous behavior happens because in the model (a) the 

damaged region due traction forces presents crack openings that are more significant than that 

occurs in the model (b). 
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(a)T (b)TC 

Figure 5.61 – Cauchy Stresses (N/mm²). 

 

5.8 Dowel action 

 

Sørensen et al. (2017) performed an experimental study to investigate the initiation of the 

dowel action, at small shear displacements, followed by catenary action in the reinforcement 

bar at large displacement. Figure 5.62 shows the test setup perfomed in their study. The test 

setup composed by two independents cubic blocks of edge dimensions 200mm linked only by 

a longitudinal rebar. Steel plates placed on the top and bottom surfaces guarantee the adequate 

distribution of the vertical force applied in the test. The boundary conditions and the location 

of the load application ensures that the preferential shear displacement action occurs vertically 

on the midle of the longitudinal bar. 

 

 

Figure 5.62 – Test setup. Adapted from (Sørensen et al. 2017). 
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Figure 5.63 shows the numerical model adopted to simulate such structure. All analysis 

follow discussed were performed with displacement control ( u ) applied on the top of the steel 

plate. The boundary condition applied in the corner of the bottom plate steel assures the 

constrained of displacement in the horizontal and vertical directions. The boundary condition 

considered between the two blocks of concrete enables the relative vertical displacement and 

constraint the stresses horizontal distribution between them. 

 

 

Figure 5.63 – Numerical modeling. 

 

The present problem involves aspects of localized rupture characterized by the dowel 

action of the longitudinal bar, at small shear displacements, followed by catenary action under 

the large strain domain. Such characteristic defines by itself the complexity of this analysis. 

First, the localized rupture effects are physically understood as a discrete phenomenon and the 

finite element method is developed assuming strain continuity. Thus, the introduction in the 

constitutive laws of the physical nonlinearities formulation could lead to numerical problems 

for specific analysis. Such problem redouble with the use of the additional techniques as the 

embedding of fibers in the matrix elements. Second, the geometrical non-linear effects can be 

sharply raised with the significative influence of the physical non-linearities. At last, the 

theories linked to materials that present small and large strain effects diverge mathematically 

from each other when such effects are significative. In this sense, for the same structure, 

different results are possibly obtained. 

The definition and classification of the small or larger strain is not so evident. Such 

classification is complex once there is no numerical value of deformation that clarify these two 

domains. Specifically, two strain measures were adopted to performed the analysis of such 
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structure, the Green strain, as already employed in the previously analysis, and the so-called the 

Engineering strain. 

The formulation of the two-dimensional, bar and frame finite elements with the 

application of Green strain was already presented in chapter 3. Following, it is discuss the 

expressions related to the finite elements with the adoption of the Engineering strain measure. 

To do so, the Engineering strain measure for the uniaxial and bidimensional cases is first written 

as a function of the positions. At last, it is following presented the expressions to the calculation 

of the internal force and the Hessian matrix for the two-dimensional, bar and frame finite 

elements. 

 

5.8.1 Strain measures written as a function of the positions 

 

The following topics presents the definition of the strain measures as a function of the 

positions. 

 

Uniaxial strain 

For the uniaxial case, the Eq.(3.25) defines the Green strain as a function of the modulus 

of the tangent vectors and consequently the nodal position of the nodes of the bar finite element, 

as follow rewritten. 
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(5.20) 

 

In this same sense, according to the definition of longitudinal strain, the strain measure 

for the uniaxial case can also be written as: 
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(5.21) 

 

Bidimensional strain 

For two-dimensional cases, as already defined in Eq.(3.6) the Green strain tensor written 

as a function of the right stretch Cauchy tensor ( C ) or the gradient configuration function ( A

) is: 

   
1 1

2 2

TE C I A A I   
 

(5.22) 

 

From the relationship between the configuration function and the displacement function 

the gradient of the configuration function called as A  can be written as a function of the 

gradient of displacement ( u ) as follow presented: 

A u I    (5.23) 

 

Therefore, replacing Eq.(5.23) in (5.22) the Green strain tensor expressed as a function 

of the gradient of the displacements is: 

     1 1 1
. .

2 2 2

t t t t

E u u u u u u u u          
 

(5.24) 

 

The first term is commoly defined as the small strain and called as Linear or Engineering 

strain. Thus, replacing the relationship (5.23) in (5.24) the Engineering strain written as a 

funcition of the gradient of the configuration function results: 
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(5.25) 

 

Remembering that the gradient of the configuration function is calculated with the nodal 

position of the finite element considered. 

The Engineering strain defined in (5.25) is used in the internal force and Hessian matrix 

calculation of the two-dimensional and the frame finite elements. It verifies that this expression 

is the same for both finite elements. However, the gradient of the configuration function A  is 

different for each one once its definition depends on the Kinematic of the element, as described 

in the chapter 3.  

The Internal force and the Hessian matrix expressions for the bar finite element and the 

bidimensional finite elements with the Engineering strain is following presented. 

 

5.8.2 Finite elements with the unidimensional formulation 

 

The use of the Engineering strain defines the strain energy density ( f u ) as: 

21

2 ff fu 
 

(5.26) 

where 
f

 is the tangent elasticity modulus. 

The integration of (5.26) over the initial volume gives:  
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(5.27) 

 

Internal Force 

The variation of the elastic strain energy as a function of nodal position of the elements 

defines the internal force vector, as following described: 
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(5.28) 

where: 
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(5.30) 

 

According to the Energetic conjugates assumption, the variation of the strain energy 

density as a function of Engineering strain defines the Cauchy stress ( f  ), as shows the 

Eq.(5.29). 

The integral solution of the Eq.(5.28) is performed in the dimensioneless coordinates 

domain with the Gauss-Legendre quadrature, as follows described: 
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(5.31) 

where npg  are the numbers of Gauss points,   the isoparametric coordinates, f kc  theirs 

respective weights, 0f A  it is the initial cross-section of the bar and the Jacobian  0f J   

expressed as: 
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(5.32) 

 

Hessian Matrix 

The second derivative of the strain energy density defines the Hessian matrix as: 
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(5.33) 

 

Applying the chain rule to solve the expression inside the integral defined in (5.33) it is 

possible to write: 
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(5.34) 

where: 
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(5.36) 

 

The integral solution of Hessian matrix (5.34) is also done with the Gauss-Legendre 

quadrature. Thus, replacing the expressions (5.35) and (5.36) into (5.33) the numerical 

integration is follow specified: 
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(5.37) 

 

5.8.3 Finite elements with the bidimensional formulation 

 

The strain energy density (u )for the bidimensional formulation is expressed as: 

1 1
: :    or    
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(5.38) 

The integration of (5.26) over the initial volume gives:  
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(5.39) 

 

Internal Force 

The first derivative of the strain energy defines the internal force as: 

 

0

0

int 0

0
V

V

U u u
F dV dV

Y Y Y



   

  





   
  
    

 

(5.40) 

 



194 

 

 

In accordance with the Energetic conjugate assumption, the first term ( u   ), i.e. the 

variation of the energy-strain density as function of Engineering strain, defines the Cauchy 

stress and therefore it is possible writes the Eq. (5.41). The second term ( Y 

  ) is developed 

in (5.42). 
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For the two-dimensional finite elements the terms 
1A Y 

   are exactly the same defined 

in the Eqs. (3.17) and (3.18) of chapter 3 in topic 3.1. On the other hand, for the frame finite 

element, 
1A Y 

   is the expressions written in the Eqs. (3.74), (3.75) and (3.76) in topic 3.3. 

 

Hessian Matrix 

The second derivative of the strain energy density defines the Hessian matrix as: 
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The development of the term 
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where ( ij Y 

  ) was already presented in (5.42) and the term (
2
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The derivative of Cauchy stress is: 
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(5.45) 

Remembering that ij Y 

   is already known in (5.42). 

 

Figure 5.64 shows the three mesh adopted to the simulation of the structure. The two-

dimensional finite elements and the elements used to represent the steel rebars have cubic 



195 

 

 

approximation. The difference between the Meshes 1 and 2 refers to the numbers of finite 

elements of the longitudinal rebars. For the Mesh 1 was adopted 5 elements, while for the Mesh 

2 was used 7 finite elements. The Mesh 3 corresponds to the refinement of the two-dimensional 

elements and in such situation the longitudinal rebars was refined with 7 elements. 

 

   

(Mesh - 1) (Mesh - 2) (Mesh -3) 

Figure 5.64 – Mesh refinement. 

 

The numerical analysis of such experimental study consists of two stages. The first one 

assumes the elastic behavior for the two blocks and the elastoplastic behaviors for the steel 

rebars. For the second stage, beyond the elastoplastic formulation taken for the steel bars the 

two-dimensional damage model is used to represent the degradation process of the concrete in 

the two blocks. In both stages is analyzed the influence of the mesh refinement as well as the 

use of the Green and Engineering Strain. 

For all analysis, the Yield stresses and diameters of the stirrups and the longitudinal bars 

are the same and equals 614MPa and 8mm, respectively. The elasticity modulus initially 

adopted for all reinforcements were 210GPa. However to consider the bond slip effect the 

strategy to represent such phenomena with the changing of the constitutive law of the steel rebar 

was assumed, as described in (Terán and Haach 2018). Therefore, for some results the initial 

elasticity modulus supposed for the longitudinal rebar was 31.960MPa. 

 

Elastic regime for the two blocks and Elastoplastic behaviours for the steel rebars  

Figure 5.65 shows the typical final position configuration for the two blocks of concrete 

and the steel reinforcement obtained for all analysis following discussed. As can be seen, occurs 

only the vertical displacement of the two blocks. The finite element that represents the 

longitudinal bar and link the two blocks is the most requested. In the final position, such element 
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reach the Yield stress only in the region that the reinforcement bar link the two blocks, Figure 

5.65b. 

 

  

(a) The two block and the reinformenct bars. 

Unities (mm) 

(b) Normal strength of the reinforcement bars. 

Unities (N) 

Figure 5.65 – Final displaced position 

 

Figure 5.66 shows the trajectory of equilibrium for the simulations performed with the 

rebars simulated with frame and bar finite elements confronted with the experimental curve 

obtained from the experimental test. Such analysis consider the elastic behaviour for the two 

blocks and elastoplastic behaviours for the steel rebars. The graphs plotted in the right and left 

column correspond to the analysis with the elasticity modulus of the longitudinal rebar assumed 

as 210GPa and 31.960MPa, repectively. The set of graph shows the influence of the three-mesh 

initilially assumed (Figure 2.5). In each graph, the results of the simulation performed with the 

Green and Engineering strains are also plotted. 
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Mesh - 2 (
sE =210GPa) Mesh - 2 (

sE =31960MPa) 

  

Mesh - 3 (
sE =210GPa) Mesh - 3 (

sE =31960MPa) 

Figure 5.66 - Force versus displacement curve. Cubic approximation for the finite elements. 

 

The experimental curve gotten from Sørensen et al. (2017) shows that the initial stiffness 

of the structure changes at the value of load equal 15kN. From the test observation, such 

changing of configuration occurs with the plastic hinge formation in the longitudinal rebar. 

After the plastic hinge formation, the longitudinal rebar presents a catenary action behavior and 

therefore justifies the growth of the load capacity of the structure until the peak load value of 

35kN, approximately. The peak load represents the rupture of the bar with a combination of the 

shear and uniaxial actions. 

According to Figure 5.66, all curves plotted from the simulations performed with bars 

elements does not presents stiffness at the beginning of the displacement. Such result is already 

waited once the bar finite element only present uniaxial stiffness. The structure stiffness 

increase only after 2.5mm of displacement (for the analysis with 
sE =31.960MPa) and this 
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occurs due to the catenary action of the bar. In other words, at this stage, the bar finite element 

has only efforts at its longitudinal axle. On the other hand, the results provided with the 

simulations executed with frame elements shows that even for the first load steps the structure 

already presents initial stiffness. For the curves plotted with 
sE =210GPa, it observes that the 

stiffness of the structure is bigger than the stiffness obtained from experimental test. For results 

calculated with 
sE =31.960MPa the initial stiffness are well agrees with the experimental curve. 

Therefore, from such observation it concludes that the bond slip effect has a significant 

influence in the behaviour of the present structure. The initial stiffness of the structure is 

constant until the value of load equal 18kN and 15kN, for the analysis with 
sE  equal 210GPa 

and 31.960MPa, respectively. At this load level, the curve shows a changing of inclination that 

indicates the formation of the plastic hinge in the reinforcement bar. For values of load bigger 

than 18kN and 15kN, the catenary action of the reinforcement bar determines the stiffness of 

the structure. 

From the previous observation, it has been proved that the element only with uniaxial 

stiffness does not represent well the problem and therefore it is not adequate to be used in such 

analysis. So, it was proposed the use of the frame element, which presents beyond the uniaxial, 

the shear and bending stiffnesses, to circumvent such a problem. Such element was embedded 

in the two-dimensional finite elements (matrix elements) with the coupling technique described 

in topic 3.4 in the present work. As shown, such a solution strategy contemplates a satisfactory 

procedure to solve the problem and therefore an essential scientific contribution in the analysis 

of dowel action problems. 

Still according to Figure 5.64, for the three meshes adopted the initial behavior of the 

curves do not present a significant difference between them. The considerable difference occurs 

when the structure is under catenary action effect. The results obtained from the Meshes (2 and 

3) are similar, and both diverge from the answer of the Mesh 1. Therefore, for the present 

analysis the mesh refinement of the longitudinal rebar has more influence on the trajectory of 

equilibrium of the structure than the two-dimensional finite element. The divergence of the 

results occurs mainly for the curves plotted with the use of Green Strain. 

In general, the results of the analysis performed with the frame finite element and the 

adoption of the Engineering strain measure provides results closer to the experimental curve. 

The force values for all curves plotted with the simulations performed with the use of Green 

strain increase indefinitely. Such behavior continues even though after all integrations points 
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on the shear section have already reached the plasticity yield on the catenary action 

configuration. The curves plotted with the use of Engineering strain also shows a growth of the 

load after the plastic hinge formation but such curves trend to a peak load value. 

 

Two-dimensional damage model for the two blocks and Elastoplastic behaviours 

for the steel rebars 

The compressive strength  ccf  of the concrete specified by Sorenren et al. (2017) is 

equal  48MPa. The estimation of the values of elasticity modulus  cE , tensile strength  ctf , 

and fracture energy  fG  according to CEB-FIB Model Code (2010) results in 38.180MPa, 

3.96Mpa and 0.150N/mm, respectively. Figure 5.67a shows the damage criteria to characterize 

the non-linear physical behaviour of the two blocks. The multilinear softening curve was 

calibrated with the Hordijk et al. (1986) curve for an ultimate strain equal 0.002. Figure 5.67b 

also shows the admensional coordinates  ,  . The value of the equivalent length  h  

adopted was 170mm. 

 

 

i i  i  

1 1.00 1.00 

2 0.70 0.60 

3 0.30 0.20 

4 0.10 0.05 

5 0.10 0.00 
 

(a) (b) 

Figure 5.67 – (a) Damaging criteria and (b) Parameters of the multilinear softening curves. 

 

Figure 5.68 shows the non-linear behavior of the force-displacement curves resulted 

from the numerical simulations performed with the use of Bimodular damage models applied 

to the two blocks of concrete. In general, it observes that the trajectories of equilibrium obtained 

in such situation are similar to these already commented in Figure 5.66, determined with the 

two blocks under elastic regime. The final cracking configuration of the structure simulated 

with the use of Engineering strain and frame finite elements for the steel rebars are presented 
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inside of the graphs. It verifies that the cracking patterns appear in the region next to the shear 

displacement of the longitudinal rebars and the refinement of the mesh linked to the two-

dimensional finite element enable a better representation of the cracking propagation (Mesh–

3). Therefore, it concludes that for such simulation although the two blocks present regions 

where the damaging process starts such areas are restricted and do not offer an essential effect 

in the global equilibrium of the structure. Thus, indeed the structural behavior of this structure 

is directly associated with the dowel action phenomena. 
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Mesh – 3 (
sE = 210GPa) Mesh – 3 (

sE = 31.960MPa) 

Figure 5.68 - Force versus displacement curve. Cubic approximation for the elements. 

 

5.9 Summary 

 

This chapter dealt with numerous examples of validation and analysis of the formulations 

discussed in the present thesis. From them, the two-dimensional, bar and frame finite elements 

formulations were tested and certified. The plasticity theory represented by the one-dimensional 

and the plane-stress approach was verified as well as the characteristics of the two damage 

models developed. Regarding the discussions performed over all examples it was possible to 

formulate the following general conclusions: 

a) The code developed provided coherent results for all analysis performed and therefore 

can be used to carry out other structural investigations of new structures; 

b) The geometrical nonlinear formulation implemented provided satisfactory results for 

the examples analyzed; 

c) The physical nonlinear approaches discussed and proposed in this work produced 

adequate results in the analysis. It shows to be possible their application with the 

positional finite element method technique; 

d) The consideration of the flexural and the shear stiffnesses beyond the uniaxial stiffness 

in the reinforcement bar for the analysis of the structures subjected to Dowel action 

mechanism is essential to carry on suitable investigations. 
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6 CONCLUSION AND FINAL REMARKS 

 

In such study one program (2D) of finite element method with positional formulation 

approach, implemented in Fortran language and considering the physical and geometrical 

nonlinearities to simulate some generic structures was developed. In accordance with the main 

objective of the present work. Three finite positional elements constitute the code developed 

named in this thesis as two-dimensional, bar and frame elements. The formulation and the 

strategy of implementation of such elements were presented in details. Some examples of 

structures were used to validate the formulation presented. The results were compared with 

commercial codes, analytical results and experimental tests, being the last one acquired from 

the literature. Overall, with the analysis the main conclusion of this thesis is the formulation 

proposed is adequate to represent the mechanical behavior of structures with differents 

geometries, boundary conditions and displacement/load aplications. Such conclusion shows the 

consistency and accuracy of the theory proposed. 

 

6.1 About the embedded theory 

 

The embedded theory for the matrix-fiber coupling was used with the three-finite 

positional elements initially implemented. The two-dimensional elements symbolize the matrix 

elements while the bar and frame elements the fibers one. The coupling technique presented 

was developed with the additive composition of the total potential energy of the matrix-fiber 

elements and posterior variation of this energy in relation with the positions of the matrix 

elements. It should be emphazise that the coupling between the two-dimensional and the frame 

finite elements constituted the one of the novelty of this thesis. Regarding the results obtained 

with such formulation it was possible to formulate the following conclusions: 

a) The results obtained from such strategy was suitable with the examples explored. For 

all analysed examples the additional stiffness of the fiber elements contribute to the 
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global structural behavior. Therefore, this coupling technique made the analysis of 

reinforced structures possible. 

b) Besides the coupling between the two-dimensional and the frame elements consider 

the angular rotation as an additional variable in the global system, it could be observed 

that the benefits of this procedure still relates the fact that the users does not need to 

worry about the nodal connection. 

c) The frame finite elements as fibers representation can be adopted to simulate 

structures in which the shear mechanism is not a relevant effect in its global behavior. 

Examples 5.2.1 and 5.2.2, showed in chapter 5, certified that the fibers represented as 

bar or frame elements provided the same answers for the analysis of structures 

subjected to uniaxial effects. Similar observation occured for the examples 5.2.2, 

5.5.2, 5.7.1 and 5.7.2, which correspond to structures that the fibers are principally 

under uniaxial requesting from flexural action. 

d) The fiber with the uniaxial, flexural and shear stiffnesses are essential to analyze the 

dowel action mechanism. As discussed in example 5.8 the initial stiffness of such 

problem were adequately represented when the frame element was considered. 

e) The typical mechanism of the plastic hinge formation on the reinforcement bar could 

only be observed for the rebar represented by the frame finite element. 

 

6.2 About the physical nonlinearities  

 

In this thesis, two physical nonlinearities formulation was adopted to represent the 

physical behaviors of the materials: the elastoplastic and the damage models. From the results 

of the examples 5.3.1, 5.3.2, 5.3.3, 5.4.1, 5.4.2, 5.4.3, 5.5.1, 5.5.2, 5.6.1, 5.6.2, 5.6.3, 5.6.4, 

5.7.1, 5.7.2 and 5.8, discussed in chapter 5, it was possible to formulate the following 

conclusions: 

a) The one-dimensional and the plane-stress plasticity theory are suitable to represent 

the physical behavior of the fibers. 

b) The consideration of the additive decomposition of strain enable the use of the 

computational code in the analysis of structures with the material presenting small 

strain. 
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c) The ultimate load value for the structure simulated in the example 5.6.3 diverges with 

different shapes of the softening curve adopted for the so-called damage model with 

the smeared crack approach. 

d) The variation (fixed-rotation) of the damage model with the smeared crack approach 

can provide different results for the same structure analyzed with the same input data. 

As demonstrated, similar results are obtained in the cases where the preferential plan 

of rupture does not change during the analysis, which occurs for uniaxial cases. On 

the other hand, as treated in the example 5.6.3, it was showed that the trajectory of 

equilibrium of the three point experimental test can present several deviations. Such 

deviations depends on the damage models adopted, such as fixed or rotate. It was 

observed that the main variation occurred from the different shapes of equilibrium 

curves obtained for beyond peak load values. 

e) Both Damage model with the smeared crack approach and Bimodular damage model 

developed are classified as anisotropic damage models because the evolution of the 

degradation of the structure is not the same for different principal stress directions. 

f) The adoption of the compression criteria for the matrix elements, such as assumed in 

the Bimodular damage model, constitute an important aspect to adequately simulate 

some structures such as the over-reinforced beams. 

g) The adoption of any physical nonlinear model influence the results of the structure 

analyzed. At this sense, to avoid any problems with numerical simulations the 

knowledge of the model used is of fundamental importance to perform realistic 

analysis. 

Finally, from the last three examples 5.7.1, 5.7.2 and 5.8 that covered simultaneously the 

application of all formulations discussed in this thesis it was possible to formulate the following 

conclusion:  

a) The application of the embedded theory together with the elastoplastic and damage 

models in the positional finite element method provides a satisfactory analysis of 

reinforced structures. 

b) The consideration of the flexural and shear stiffnesses beyond the uniaxial stiffness 

in the reinforcement of the bars in structures requested mainly by shear effects, which 

results in the dowel action mechanism, is essential to perform adequate analysis. 
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6.3 Projections for future research 

 

During the development of the present study, it was possible to verify that the all themes 

covered to perform the current research comprehend a large field of study that still needs to be 

developed and therefore refined to make feasible the adequate analysis of specific structures. 

Thus, some proposals for future research are presented below: 

 

1) Exploring the capacity of the computational code developed with differents structures; 

2) Implementation of three-dimensional finite elements, such as solid and plate elements, 

to evaluate structures in 3D; 

3) Expansion of the elastic plastic and damage formulations proposed for the simulation 

of three-dimensional structures; 

4) Parallelization technique for the calculus optimizations of the computational code; 

5) Implementation of the arch-length method to enable the resolution of structures that 

presents snap-back effects in the curves of equilibrium trajectory. 

6) Implementation of numerical techniques, such as the Line search method to improve the 

convergence of the iterative process of the Newton Raphson method already used. 

7) Study and implementation of the elastoplastic models for large strains with the adoption 

of multiplicative decomposition of the deformation gradient tensor. 

8) Exploration and implementation of other traditional damage models (such as the 

isotropic, orthotropic and anisotropic models) and posterior comparaison with the model 

proposed; 

9) Study of differents Constitutive Laws applied in the analysis with consideration of 

geometrical nonlinearity; 

10) Exploration of the technique of the embedded theory applied at this study for three-

dimensional cases; 
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