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ABSTRACT 

SATO, F. M. Numerical experiments with stable versions of the Generalized Finite Element 

Method. 2017. 97p. Dissertation (Master degree). São Carlos School of Engineering, University 

of São Paulo, São Carlos, 2017 

The Generalized Finite Element Method (GFEM) is essentially a partition of unity based method 

(PUM) that explores the Partition of Unity (PoU) concept to match a set of functions chosen to 

efficiently approximate the solution locally. Despite its well-known advantages, the method may 

present some drawbacks. For instance, increasing the approximation space through enrichment 

functions may introduce linear dependences in the solving system of equations, as well as the 

appearance of blending elements. To address the drawbacks pointed out above, some improved 

versions of the GFEM were developed. The Stable GFEM (SGFEM) is a first version hereby 

considered in which the GFEM enrichment functions are modified. The Higher Order SGFEM 

proposes an additional modification for generating the shape functions attached to the enriched 

patch. This research aims to present and numerically test these new versions recently proposed for 

the GFEM. In addition to highlighting its main features, some aspects about the numerical 

integration when using the higher order SGFEM, in particular are also addressed. Hence, a splitting 

rule of the quadrilateral element area, guided by the PoU definition itself is described in detail. The 

examples chosen for the numerical experiments consist of 2-D panels that present favorable 

geometries to explore the advantages of each method. Essentially, singular functions with good 

properties to approximate the solution near corner points and polynomial functions for 

approximating smooth solutions are examined. Moreover, a comparison among the conventional 

FEM and the methods herein described is made taking into consideration the scaled condition 

number and rates of convergence of the relative errors on displacements. Finally, the numerical 

experiments show that the Higher Order SGFEM is the more robust and reliable among the versions 

of the GFEM tested.  

 

Keywords: Generalized Finite Element Method. Stable Generalized Finite Element Method. 

Higher Order Stable Generalized Finite Element Method. Rate of convergence. Scaled condition 

number. 



 



 

RESUMO 

SATO, F. M. Experimentos numéricos com versões estáveis do Método dos Elementos Finitos 

Generalizados. 2017. 97p. Dissertação (Mestrado). Escola de Engenharia de São Carlos, 

Universidade de São Paulo, São Carlos, 2017 

O Método dos Elementos Finitos Generalizados (MEFG) é essencialmente baseado no método da 

partição da unidade, que explora o conceito de partição da unidade para compatibilizar um conjunto 

de funções escolhidas para localmente aproximar de forma eficiente a solução. Apesar de suas 

vantagens bem conhecidas, o método pode apresentar algumas desvantagens. Por exemplo, o 

aumento do espaço de aproximação por meio das funções de enriquecimento pode introduzir 

dependências lineares no sistema de equações resolvente, assim como o aparecimento de elementos 

de mistura. Para contornar as desvantagens apontadas acima, algumas versões aprimoradas do 

MEFG foram desenvolvidas. O MEFG Estável é uma primeira versão aqui considerada na qual as 

funções de enriquecimento do MEFG são modificadas. O MEFG Estável de ordem superior propõe 

uma modificação adicional para a geração das funções de forma atreladas ao espaço enriquecido. 

Esta pesquisa visa apresentar e testar numericamente essas novas versões do MEFG recentemente 

propostas. Além de destacar suas principais características, alguns aspectos sobre a integração 

numérica quando usado o MEFG Estável de ordem superior, em particular, são também abordados. 

Por exemplo, detalha-se uma regra de divisão da área do elemento quadrilateral, guiada pela própria 

definição de sua partição da unidade. Os exemplos escolhidos para os experimentos numéricos 

consistem em chapas com geometrias favoráveis para explorar as vantagens de cada método. 

Essencialmente, examinam-se funções singulares com boas propriedades de aproximar a solução 

nas vizinhanças de vértices de cantos, bem como funções polinomiais para aproximar soluções 

suaves. Ademais, uma comparação entre o MEF convencional e os métodos aqui descritos é feita 

levando-se em consideração o número de condição do sistema escalonado e as razões de 

convergência do erro relativo em deslocamento. Finalmente, os experimentos numéricos mostram 

que o MEFG Estável de ordem superior é a mais robusta e confiável entre as versões do MEFG 

testadas. 

Palavras-chave: Método dos Elementos Finitos Generalizados. Método dos Elementos Finitos 

Generalizados Estável. Método dos Elementos Finitos Generalizados Estável de ordem superior. 

Razão de convergência. Número de condição escalonado.



 

 

 

  



 

LIST OF FIGURES 

 

Figure 1 – (a) Representation of the pyramid or hat basis function i for a patch formed by 

quadrilateral elements and vertex iV . (b) Master element. ......................................................... 30 

Figure 2 – Example of an independent geometry domain mesh. (a) The approximation mesh that 

contains the integration mesh. (b) The integration mesh. (c) and (d) details of the integration 

mesh. ........................................................................................................................................ 31 

Figure 3 – Type of mesh used in this research ........................................................................... 32 

Figure 4 – Construction of the shape function of GFEM using as enrichment (a) polynomial (b) 

non-polynomial functions. Where  is the hat partition of unity, 
 

jL


 the enrichment function and 

j

 the shape function of GFEM. ............................................................................................... 33 

Figure 5 – Element type classification ....................................................................................... 35 

Figure 6 – Construction of SGFEM shape function ................................................................... 40 

Figure 7 – Representation of flat-top partition of unity. (a) 1-D function for the left node, (b) 1-D 

function for the right node ......................................................................................................... 43 

Figure 8 – Quadrilateral element ............................................................................................... 43 

Figure 9 – Representation of flat-top PoU 2D version ............................................................... 45 

Figure 10 – Illustration of flat-top PoU with 1.0 and three integration points (black dots in the 

figure) ....................................................................................................................................... 46 

Figure 11 – Split in subdomains for flat-top PoU....................................................................... 47 

Figure 12 – Example of a problem containing a reentrant corner. .............................................. 50 

Figure 13 – Illustration of Equation (16) for 1 Γ  and 2Γ  both Dirichlet boundaries. (a) k = 1. (b) 

k = 2. (c) k = 3. ......................................................................................................................... 51 

Figure 14 – L-shaped panel ....................................................................................................... 54 

Figure 15 – L-shaped panel: h-convergence for different values of  ........................................ 56 

Figure 16 – L-shaped panel: scaled condition number for  analysis ......................................... 56 

Figure 17 – L-shaped panel: h-convergence for incomplete polynomial .................................... 58 

Figure 18 – L-shaped panel: scaled condition number for incomplete polynomial ..................... 59 

Figure 19– L-shaped panel: h-convergence for complete polynomial ........................................ 60 



 

Figure 20 – L-shaped panel: layer representation (a) Layer 0, (b) Layer 1 and (c) Layer 2. The red 

dots highlight the enriched nodes .............................................................................................. 61 

Figure 21 – L-shaped panel: h-convergence for singular layer 0 with different values of 
singularn

 ................................................................................................................................................. 62 

Figure 22 – L-shaped panel: h-convergence for singular layer 1 with different values of
singularn  62 

Figure 23 – L-shaped panel: h-convergence for singular layer 2 with different values of 
singularn

 ................................................................................................................................................. 62 

Figure 24 – L-shaped panel: comparison between methods with respect to h-convergence for 

singular layer 0 ......................................................................................................................... 63 

Figure 25 – L-shaped panel: comparison between methods with respect to h-convergence for 

singular layer 1 ......................................................................................................................... 64 

Figure 26 – L-shaped panel: comparison between methods with respect to h-convergence for 

singular layer 2 ......................................................................................................................... 64 

Figure 27 – L-shaped panel: comparison for incomplete polynomial and singular layer 0 .......... 65 

Figure 28 – L-shaped panel: comparison for incomplete polynomial and singular layer 1 .......... 65 

Figure 29 – L-shaped panel: comparison for incomplete polynomial and singular layer 2 .......... 66 

Figure 30 – L-shaped panel: SCN for incomplete polynomial and singular layer 0 .................... 67 

Figure 31 – L-shaped panel: SCN for incomplete polynomial and singular layer 1 .................... 67 

Figure 32 – L-shaped panel: SCN for incomplete polynomial and singular layer 2 .................... 67 

Figure 33 – L-shaped panel: h-convergence for complete polynomial and singular layer 2 ........ 68 

Figure 34 – L-shaped panel: effect of mesh refinement ............................................................. 69 

Figure 35 – L-shaped panel: nodal stress Sxy for mesh 64 x 32 using different enrichment ....... 70 

Figure 36 – Edge cracked panel ................................................................................................. 70 

Figure 37 – Edge cracked panel: h-convergence for different values of  .................................. 72 

Figure 38 – Edge cracked panel: SCN for  analysis ................................................................. 72 

Figure 39 – Edge cracked panel: relative error values for incomplete polynomial and mesh 

refinement ................................................................................................................................. 74 

Figure 40 – Edge cracked panel: scaled condition number for incomplete polynomial and mesh 

refinement ................................................................................................................................. 74 

Figure 41– Edge cracked panel: relative error values for complete polynomial and mesh 

refinement ................................................................................................................................. 75 



 

Figure 42 – Edge cracked panel: (a) Layer 0, (b) Layer 1 and (c) Layer 2. The red dots are the 

enriched nodes .......................................................................................................................... 75 

Figure 43 – Edge cracked panel: h-convergence for singular layer 0 with nsingular varying from 1 

to 3 ........................................................................................................................................... 76 

Figure 44 – Edge cracked panel: h-convergence for singular layer 1 with nsingular varying from 1 

to 3 ........................................................................................................................................... 76 

Figure 45 – Edge cracked panel: h-convergence for singular layer 2 with nsingular varying from 1 

to 3 ........................................................................................................................................... 77 

Figure 46 – Edge cracked panel: comparison between methods with respect to h-convergence for 

singular layer 0 ......................................................................................................................... 78 

Figure 47 – Edge cracked panel: comparison between methods with respect to h-convergence for 

singular layer 1 ......................................................................................................................... 78 

Figure 48 – Edge cracked panel: comparison between methods with respect to h-convergence for 

singular layer 2 ......................................................................................................................... 79 

Figure 49 – Edge cracked panel: h-convergence curves for incomplete polynomial and singular 

layer 0 ....................................................................................................................................... 79 

Figure 50 – Edge cracked panel: h-convergence curves for incomplete polynomial and singular 

layer 1 ....................................................................................................................................... 80 

Figure 51 – Edge cracked panel: h-convergence curves for incomplete polynomial and singular 

layer 2 ....................................................................................................................................... 80 

Figure 52 – Edge cracked panel: SCN for incomplete polynomial and singular layer 0 .............. 81 

Figure 53 – Edge cracked panel: SCN for incomplete polynomial and singular layer 1 .............. 81 

Figure 54 – Edge cracked panel: SCN for incomplete polynomial and singular layer 2 .............. 82 

Figure 55 – Edge cracked panel: h-convergence for complete polynomial and singular layer 2 . 83 

Figure 56 – Edge cracked panel: effect of mesh refinement ....................................................... 84 

Figure 57 – Edge cracked panel: nodal stress Syy for mesh 64 x 64 for different enrichments ... 85 

Figure 58 – Irregular polygonal panel........................................................................................ 85 

Figure 59 – Irregular polygonal panel: subdivision in areas and singular point .......................... 86 

Figure 60 – Irregular polygonal panel: h-convergence for incomplete polynomial and singular 

layer 0 ....................................................................................................................................... 88 



 

Figure 61 – Irregular polygonal panel: h-convergence for incomplete polynomial and singular 

layer 1 ....................................................................................................................................... 88 

Figure 62 – Irregular polygonal panel: SCN for incomplete polynomial and singular layer 0 ..... 89 

Figure 63 – Irregular polygonal panel: h-convergence for complete polynomial and singular layer 

1 ............................................................................................................................................... 89 

Figure 64 – Irregular polygonal panel: Effect of mesh refinement. ............................................ 91 



 

LIST OF TABLE 

 

Table 1 – First derivative for the singular function .................................................................... 51 

Table 2 – L-shaped panel: relative errors for incomplete polynomial ......................................... 57 

Table 3 – L-shaped panel: degrees of freedom for incomplete polynomial ................................. 58 

Table 4 – L-shaped panel: scaled condition number for complete polynomial ........................... 59 

Table 5 – L-shaped panel: SCN for complete polynomial and singular layer 2 .......................... 68 

Table 6 – Edge cracked panel: Relative errors for incomplete polynomial enrichment ............... 73 

Table 7 – Edge cracked panel: scaled condition number for complete polynomial ..................... 75 

Table 8 – Edge crack panel: SCN for complete polynomial and singular layer 2 ....................... 82 

Table 9 – parameter and singular function for each corner ...................................................... 87 

Table 10 – Irregular polygonal: SCN for complete polynomial and singular layer 1 .................. 90 

 

 



 



 

LIST OF ABBREVIATIONS 

 

C-XFEM   Corrected eXtended Finite Element Method 

DoF   Degrees of Freedom 

FEM   Finite Element Method 

GFEM   Generalized Finite Element Method 

PoU   Partition of Unity 

PUM   Partition of Unity Method 

SCIEnCE  São Carlos Integrity Environment for Computational Engineering  

SCN   Scaled Condition Number 

SGFEM  Stable Generalized Finite Element Method 

 



 



 

LIST OF SYMBOLS 

 

j

    Shape function 

    Partition of unity 

 
jL


   Enrichment function   
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1 INTRODUCTION 

 

The Finite Element Method (FEM) is indeed one of the most powerful tools of computational 

engineering.  However, this method has shown to be ineffective or having limited efficacy when 

used to simulate problems presenting some special features, such as solids containing reentrant 

corners, cracks, materials interfaces and boundary layers. In fact, to account for these kinds of 

features, an exaggerated mesh refinement is normally required around these singularity regions. 

Therefore, using conventional FEM, obtaining satisfactory numerical results demands higher 

computational costs. 

The Generalized Finite Element Method (GFEM), Strouboulis, Babuška and Copps (2000), was 

proposed both to address the mesh refinement problem and efficiently solve the above mentioned 

classes of special problems, therefore overcoming some of the inconveniences presented by the 

FEM. 

The GFEM is essentially a partition of unity based method (PUM) that explores the Partition of 

Unity (PoU) concept to match a set of functions chosen to efficiently approximate the solution 

locally. These local approximations are called enrichment functions and once matched increase the 

global conforming approximation space.  

The GFEM contains the FEM shape functions in particular. However, differently from the standard 

FEM, where the shape functions are attached to elements, in the GFEM the shape functions are 

attached to a node. This node is vertex of a local patch, which is the region where the shape function 

is defined. In the GFEM, overlapping patches covering the domain of the problem can be defined 

with the help of a finite element mesh. A patch is then defined by the set of elements sharing a 

common node, which is its vertex. 

The main characteristic of the GFEM is the possibility to introduce an a priori knowledge into the 

approximation about the solution through the enrichment functions. Moreover, according to the 

peculiarities of the problem, the method enables the selective improvement of the approximation 

space only where it is necessary. Consequently, a good global approximate solution can be obtained 

even if using a coarse mesh, therefore reducing the computational cost. 
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Despite the above mentioned advantages, the method may present some drawbacks. For instance, 

increasing the approximation space through enrichment functions may result in a system of 

equations linearly dependent. In this case, round-off errors prevail when solving the system, 

making the approximate solution less reliable. As will be shown later, the level of instability can 

be assessed by the Scaled Condition Number (SCN). In the worst cases of instability, the SCN is 

of a higher order of magnitude compared to the FEM level. Another drawback presented by the 

GFEM derives from the so-called blending elements. This kind of element appears when the 

enrichment is limited to a restricted region of the domain or number of patches. Then, looking at 

the elements of a mesh, instead of the patches, it may happen that only some nodes are enriched or 

that the nodes show a different number of enrichment functions. Consequently, unwanted 

approximation terms appear, adversely influencing the rate of convergence of the global solution. 

To address the drawbacks mentioned above, some improved versions of the GFEM were 

developed, such as the Stable Generalized Finite Element Method (SGFEM), Babuška and 

Banerjee (2012) and the Corrected eXtended Finite Element Method (C-XFEM), Fries (2008). In 

this research, the C-XFEM will not be considered.  

The SGFEM is a version of the GFEM where the enrichment functions are modified. In short, the 

modified enrichment function is the enrichment function of the GFEM minus a linear or bilinear 

interpolation of its nodal values. This version was proposed with the premise of solving two issues: 

the linear dependency of the resulting system and the unwanted terms existing in the blending 

elements. 

Despite its premise, the SGFEM can still be ineffective for solving the problem of linear 

dependences, as exemplified by the examples presented herein. In fact, when considering complete 

second degree enrichment, for instance, the SCN is shown to be likewise bad, once presenting a 

magnitude order comparable to the value obtained for GFEM. To deal with this issue, a new 

improved 2-D GFEM version called Higher Order SGFEM, Zhang, Banerjee and Babuška (2014), 

is also introduced and hereby tested. 

The Higher Order SGFEM proposes a further modification for generating the shape functions 

attached to the enriched patch. This improvement consists of using a flat-top PoU for multiplying 

the local enrichment functions. Due to the particular features of the flat-top PoU, it is expected that 
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the resulting set of shape functions is linearly independent. In fact, the effectiveness of this 

improved version of the GFEM is numerically demonstrated in the examples hereby presented. 

 

1.1 Objectives 

 

The main aim is to present and test some of the new developments recently proposed for the GFEM. 

In particular, an improved formulation of the method called Stable GFEM, as well as its higher 

order version are addressed through a numerical investigation. 

As the main objective, the purpose of this research is to compare the above mentioned GFEM 

versions with the conventional FEM. The focus is to identify the advantages and shortcomings of 

each method, and to conclude if there is one among them which is more robust and reliable.  

 

1.2 Materials and methods 

 

The methodology adopted in this research consists firstly of a bibliographic review about the 

GFEM and its improved versions, SGFEM and higher order SGFEM. 

The second step comprises an investigation of the advantages and shortcomings of each method 

through two-dimensional numerical examples. The analysis was conducted using the São Carlos 

Integrity Environment for Computational Engineering (SCIEnCE) code, which has already had 

these versions implemented. 

Moreover, the analysis of the numerical results was then taken as a guideline for proceeding the 

investigation. For instance, based on the results it was shown that when considering a complete 

polynomial as enrichment, both GFEM and SGFEM reveal high scaled condition numbers, 

therefore indicating ill-conditioning of the resulting system of equations. To overcome this 

disadvantage, a 2-D version of the higher order SGFEM was implemented and tested. 

Finally, a comparison between the methods herein described and the conventional FEM is made 

through selected numerical examples. For instance, the rates of convergence for the relative errors 
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on displacements and the scaled condition number were used to highlight the overall GFEM 

efficacy and also to identify which one among the GFEM versions is more robust and reliable. 

 

1.3 Structure of the dissertation 

 

Besides the Introduction section, this dissertation has seven more chapters. The outline of the 

chapters is as follows: 

In Chapter 2, a brief review of the GFEM is presented. However, some details are given regarding 

the formulation, main advantages and drawbacks of the method. Moreover, the modified versions 

developed to overcome the GFEM drawbacks are addressed. 

Chapter 3 is related to the SGFEM. Essentially, the modification of the enrichment function, aiming 

to overcome the GFEM problems is emphasized. 

In Chapter 4, the Higher Order version of the SGFEM is presented. The main aspects related to the 

flat-top PoU definition for 1-D and 2-D analysis using quadrilateral elements are discussed, 

including some comments on the numerical integration. 

Chapter 5 focuses on the numerical integration of the resulting 2-D enriched shape functions for 

the Higher Order SGFEM. In particular, a splitting rule of the quadrilateral element area, guided 

by the PoU definition itself is described in detail. 

In Chapter 6, the enrichment functions considered in this research are presented. Essentially, 

singular functions with good properties to approximate the solution near corner points and the 

polynomial functions for approximating smooth solutions are examined. 

In Chapter 7, three numerical examples are presented. The first one is an L-shaped panel, in which 

the reentrant corner favors the use of a special enrichment. The second example is a panel 

containing an edge crack. Again, enrichments with special and polynomial functions are explored. 

The third example is an irregular polygonal panel containing multiple voids and reentrant corners, 

as well as two edge cracks. In these examples, comparisons among the GFEM versions are made 

in relation to the h-convergence rate and scaled condition number. 

In Chapter8, the conclusions and final remarks are presented. 
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2 THE GENERALIZED FINITE ELEMENT METHOD 

 

The generalized finite element method was developed to solve problems where the standard FEM 

is inefficient or is costly computationally due to the extreme mesh refinement required, e.g. 

problems involving stress concentrations induced by cracks and reentrant corners, boundary layers 

and materials interfaces. The main idea of this method is to increase the FEM trial and test function 

spaces with functions a priori in harmony with the solution. 

 

2.1 A brief historical review 

 

The GFEM can be seen as a version of Galerkin’s method, which is characterized by the availability 

of more flexible approximations to the solutions of boundary value problems. 

Historically, the conception of this method is preceded by the seminal proposal of Babuška and 

Osborn (1983), according to which the shape of the approximation function is ruled by the 

differential equation of its own problem. Next, Babuška, Caloz and Osborn (1994) proposed the 

Special Finite Element Method. In this version, local approaches presenting characteristics of the 

solution sought were incorporated into the approximation space using the Partition of Unity (PoU) 

concept. Later, the idea of exploring the PoU for matching the local approximations and 

constructing a global approximation was formalized in the Partition of Unity Method (PUM), 

Melenk and Babuška (1996).  

The PUM is a new finite element method that can create conform approximation spaces presenting 

local features that are interesting for the solution. One of the main advantages of this method is that 

an a priori knowledge of the solution can be incorporated into the approximation space. Moreover, 

approximation spaces with any regularity can be easily constructed. 

The construction of the approximation space of the PUM essentially explores the concepts of 

Partition of Unity and covering sets called patches or clouds. Accordingly, the domain  of the 

given problem is covered by overlapping subdomains i . A set of enrichment functions associated 

to each subdomain is then defined as:
      1i i

i j j iL L L H   , where H1 is the Hilbert space of 
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functions with continuous first order derivative. The global approximation to the solution can then 

be defined as 

 
   i i

PUM i j j

i j

u u L
 

  
 

   
(1) 

where  i
jL is the enrichment function,  i

ju parameter involved in the linear combination of the 

enrichment functions and the sequence of shape functions 
i are a partition of unity 

0C  which is 

used to paste together the local enrichments, thus ensuring continuity for the global approximation. 

In GFEM, the shape functions are defined in subdomains called patches. The concept of patches 

was preceded by the concept of clouds introduced by Duarte (1996) in its proposition of the hp-

Cloud method. A patch in the GFEM is a subdomain created, for example, by quadrilateral 

elements sharing a common node called vertex iV . In each patch, the functions i that appear in the 

relation (1) show the unity value at the vertex of this subdomain and the null value on its boundary.  

Moreover, as shown in Figure 1(a), the shape functions i are constructed by gathering the PoU of 

each element i and attaching them to the vertex of the patch, defined as follows: 

 
     1 1

4

i k k

k

   


 
  (2) 

Figure 1 – (a) Representation of the pyramid or hat basis function i for a patch formed by quadrilateral elements 

and vertex iV . (b) Master element. 

 

Adapted: Strouboulis, Babuška and Copps (2000) 
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In the relation (2), the superscript i is for the element in the patch, k is the node number of the 

element in coincidence with the vertex, while   and   are the coordinates of the master 

quadrilateral element shown in Figure 1(b). 

Finally, once the partition of unity
 i
k merge, the resulting function i  is piecewise bilinear. The 

PoU generated by the overlapping of subdomains is 
0C and will guarantee the inter-element 

continuity and will create a 
0C approximation. 

As the main advantages of the GFEM, the following can be mentioned: 

a) for each patch, a set of enrichment functions can be adopted presenting characteristics 

of good local approximation for the solution; 

b) through the concept of the augmented trial space of the FEM, a better approximated 

solution can be obtained without the need of exploring a refined mesh; 

c) there is a possibility of using meshes which are independent of the domain geometry, 

as depicted in Figure 2, however by doing this two meshes need to be created. One 

approximation mesh and an integration mesh, Figures 2(a) and 2(b), respectively. 

Figure 2 – Example of an independent geometry domain mesh. (a) The approximation mesh that contains the 

integration mesh. (b) The integration mesh. (c) and (d) details of the integration mesh. 

 

Adapted: Strouboulis, Copps and Babuška (2001) 

Despite the possibility of using a mesh independent of the domain, this research explores the 

standard non-overlapping FEM meshes, e.g. the mesh is built by subdividing the domain into 
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triangular or quadrilateral elements satisfying the restrictions about the connections between the 

neighbor elements, as shown in Figure 3. 

Figure 3 – Type of mesh used in this research 

 

Adapted: Strouboulis, Copps and Babuška (2001) 

Therefore, considering a standard FEM mesh, as well as exploring the concepts of PUM and local 

enrichments in the patches, the formulation of the GFEM is formally presented next. 

 

2.2 Formulation 

 

Despite exploring a mesh of elements, the shape functions of GFEM are conceptually different 

from those of the conventional FEM, as their construction follows the PUM framework. In fact, in 

the GFEM the shape functions are attached to patches  , while in the FEM the shape functions 

are defined in finite elements.  

Therefore, the GFEM shape functions (
j

 ) result from the multiplication among the linear or 

bilinear partition of unity (  ) provided by triangular and quadrilateral elements, respectively, and 
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the enrichment functions (
 
jL


), functions that contain the a priori knowledge of the solution. This 

construction process is illustrated in Figure 4. 

 
 

j jL  
    

(3) 

 

 

Figure 4 – Construction of the shape function of GFEM using as enrichment (a) polynomial (b) non-polynomial 

functions. Where  is the hat partition of unity, 
 

jL


 the enrichment function and 
j

 the shape function of GFEM. 

 

Adapted: Gupta, Kim and Duarte (2012) 

In relation (3),  j 1, ,m  where  m   is the number of components of the enrichment vector 

basis (
 L


), which can be different from patch to patch. 

Conventionally, the first component of the enrichment vector basis is the unity. Therefore, 

considering a discretization with N nodes covering the problem domain and adopting an 

enrichment vector for each of them, the global approximation field for the solution of a boundary 

value problem can be expressed as follows: 
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 (4a,b,c) 

In the relation (4b), Ne ( N) is the number of enriched nodes. The first sum refers to an 

approximation given by the PoU multiplied by the unity, i.e. this sum refers to the standard FEM 

approximation, and involves conventional degrees of freedom ( û ) attached to the nodes of the 

finite element. The second sum involves additional nodal parameters 
 
ju


, associated to the 

remaining components of the enrichment vector basis. Moreover, the sum between brackets at 

relation (4b) can be condensed into the parameter L
that contains the enrichment functions and 

the additional nodal parameters for each node α. The relation (4c) shows the role of the PoU for 

matching the local approximations. 

As already mentioned before, the enrichment functions provide local approximations. Moreover, 

as exemplified in relation (4), the enrichment is not necessarily imposed for the whole set of nodes, 

i.e., a number of nodes can remain having the unity as its single component in the enrichment 

vector basis. This possibility of selective enrichment can be useful, for instance, in domains 

presenting reentrant corners and/or cracks. In fact, in this kind of problem, the solution can be 

smooth in most of the domain, however presenting some sort of singularity only in the 

neighborhood of the crack or reentrant corner.  

The local approximation provided by the method is a key advantage indeed, however there may be 

drawbacks. When selective enrichment is adopted, at the element level, no enriched elements, 

uniformly enriched elements or blending elements, in this case presenting different levels of 

enrichment in their nodes, can appear. Consequently, the approximation of the blending element in 

particular can be badly affected and special treatment is needed in these elements for recovering 

its effectiveness. 
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2.3 Some general comments on the Blending Elements 

 

Considering a given mesh, as a result of the selective local enrichment, the elements can be 

collected in three distinctive categories. The first one includes the standard elements that do not 

present enriched nodes. In the second category are the so-called reproducing elements that have all 

the nodes with the same enrichment functions. The third one comprises the blending elements that 

only have some of their nodes enriched or have different enrichments at the nodes. In the second 

category, as a consequence of the PoU sum property equal to one, the enrichment function can be 

reproduced precisely inside the elements. The lack of this favorable feature is the main drawback 

of the blending elements. Therefore, in the last category, the enrichment functions cannot be 

reproduced and depending on the type of function, the resulting local approximation can affect 

directly both the quality of the global approximation and rate of convergence. The element 

classification mentioned is illustrated in Figure 5. 

Figure 5 – Element type classification 

 

Adapted: Lins (2015) 

Still regarding blending elements, according to Fries (2008) the issue requiring the most attention 

is the introduction of unwanted terms in the approximation due to the difference among nodal 

enrichments. The uneven or unwanted terms cannot be reproduced inside the element and impact 

the convergence rate significantly. In the following example, a quadrilateral element containing 

only one node enriched is considered: 

     2 2

1

ˆ
N

hu x u x L x u    



 


   (5) 
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where N is the number of nodes and   is the enriched node. In general, the application of 

enrichment functions produces unwanted terms that result from   2x L   and its detrimental 

influence cannot be compensated by the FEM part  
1

ˆ
N

x u 






 . Therefore, the only way to not 

generate unwanted terms is making 2 0u  , which means that the enrichment is deactivated. 

To overcome the drawbacks caused by the blending elements, some new versions of the GFEM 

have been proposed. Some of them are briefly specified below: 

a) Stable Generalized Finite Element Method (SGFEM): this method proposes a modification 

in the enrichment functions that can reduce the deleterious influence of blending elements 

on the rate of convergence, Babuška and Banerjee (2012); 

b) Corrected eXtended Finite Element Method (C-XFEM): this method introduces a ramp 

function on the blending elements to eliminate unwanted terms of approximation and to 

recover the property of reproducibility of the enrichment, Fries (2008); 

c) 
kC -GFEM: This method explores PoU with higher regularity build by the moving least 

square technique, Torres, Barcellos and Mendonça (2015). 

The SGFEM was chosen in this research for treating the blending elements because this method 

was conceived to overcome not only the blending element effects, but also the additional drawback 

associated to the ill-conditioning of the stiffness matrix. 

 

2.4 On the conditioning of the underlying linear system 

 

Essentially, the conditioning of a linear system of equations is related to how reliable the solution 

will be.  

Consider the linear system cAx  . If the system is well-conditioned, it means that a small change 

in the coefficient matrix A or a small change in vector c will result in a small change in the solution 

vector x. On the other hand, if the system is ill-conditioned, a small change in matrix A or a small 

change in vector c will result in a significant change in solution vector x. 
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The condition number is a scalar measure of the conditioning of a system and, therefore, indicates 

the loss of accuracy of the computed solution. If the condition number is small then the system is 

well conditioned, otherwise, it is ill conditioned. An ill-conditioned matrix includes linear 

dependencies among its equations. 

In the GFEM, as any function can be used as enrichment, the underlying linear system may not be 

well conditioned with respect to the mesh and enrichment adopted. This shortcoming occurs when 

functions presenting similar characteristics are adopted, such as PoU and enrichment. For instance, 

when hat functions are adopted as PoU and polynomial are used for enrichment, the shape functions 

may result almost linearly dependent and, therefore, the stiffness matrix is ill conditioned. 

Regarding its measure, a condition number close to the value computed for the FEM is an 

acceptable indicator of well conditioning of the GFEM underlying the linear system. Here, a further 

improved measure called Scaled Condition Number (SCN) of the stiffness matrix will be used, 

Babuška and Banerjee (2012). According to Zhang, Banerjee and Babuška (2014), given the 

coefficient matrix A, this value can be obtained by computing the condition number  2  of the 

scaled matrix Â based on 
2

   vector norm, as indicated below:  

      1

2 2
2 2

ˆ ˆ ˆk A : A DAD A A      (6) 

where D is a diagonal matrix having its diagonal terms computed as:
21 iiii AD . 

In this equation, the scaled matrix Â is obtained by pre and post multiplying the coefficient matrix 

A by the diagonal matrix D. Moreover, the SCN can also be calculated by the ratio between the 

largest and smallest eigenvalues of the scaled matrix. 

A way to reduce the occurrence of linear dependencies in the GFEM is to use enrichment functions 

that are of a different nature with respect to the PoU. In other words, if the PoU is polynomial, a 

non-polynomial enrichment function should be used. 

However, even if the dependencies are presented and consequently the SCN is large, it is possible 

to solve a linear system where the stiffness matrix is semi-positive definite. It can be done by 

making a scaling process on the stiffness matrix and after that, imposing a little perturbation in its 

diagonal terms, as originally proposed by Strouboulis, Babuška and Copps (2000). It is important 
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to note that although the ill-conditioned system can deliver multiple solutions to the unknown 

coefficients, the boundary value problem presents a unique solution. 

The above mentioned procedure for solving the ill-conditioned system is iterative hence, depending 

on the problem it can be computationally costly. Therefore, the SGFEM was conceived as a more 

robust and general method to avoid the problem of the ill-conditioned stiffness matrix. 
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3 THE STABLE GENERALIZED FINITE ELEMENT METHOD 

 

The so-called Stable Generalized Finite Element Method is a new version developed to overcome 

two drawbacks observed in the GFEM. The method does not have the ill conditioning problem of 

the stiffness matrix and significantly reduces the negative effects caused by blending elements, 

Babuška and Banerjee (2012). 

The basic difference between the stable and the conventional versions of the GFEM is a simple 

modification in the enrichment functions used to obtain the shape functions. In SGFEM, the 

enrichment function is modified in such a way that its values at the patch nodes are equal to zero. 

The construction of this modified enrichment function  j (mod)L is shown below:   

 j (mod) j jL L I L
      (7) 

where  jI L
   is the linear or bilinear piecewise interpolant of nodal values of the enrichment 

function jL
 for the patch  . Therefore, 


I is: 

 
1

,
epN

j

i i i

i

I L x y
 



  (8) 

Where epN  is the number of element nodes belonging to the patch, i is the node of the element in 

analysis and  ,i ix y is its coordinates.  

Once the enrichment functions are modified, the SGFEM shape functions can be constructed 

similarly to the GFEM:  

j (mod) j (mod)L      (9) 

Figure 6 illustrates the construction of the SGFEM nodal shape function. 



40 
 

Figure 6 – Construction of SGFEM shape function 

 

Adapted: Gupta et al. (2015) 

As the vector of enrichment functions presents the unity as its first component, the approximation 

space to the field of interest can be split as in GFEM: 

mod

h FEM enrichu S S   (10) 

where FEMS is the standard FEM approximation space and mod
enrichS is the augmented space related to 

the modified enrichment functions. Since the construction of the shape functions and therefore the 

approximated field for SGFEM is the same as for GFEM, this method is easy to implement. 

Concerning the issue of the blending elements, since the values of the SGFEM shape functions are 

null at the element nodes, the effects of unwanted terms in the approximation are reduced. 

Therefore, no special treatment in the blending elements is necessary. 

As can be concluded from the procedure mentioned above, the modification of the enrichment 

function basically eliminates the linear portion of it, therefore avoiding conflict with the linear 

approximation ability already presented in the PoU. Consequently, the equations of the system are 

expected to be better conditioned and the scaled condition number close to that obtained for FEM. 

Even though such good features are actually verified in the 1-D approach, the scaled condition 

number for SGFEM could still be large in the 2-D approach, as demonstrated by the examples 

described herein. To overcome this problem, a further modification to the method can be 

implemented leading to the higher order version of the Stable GFEM, hereby selected to be studied 

and implemented in the SCIEnCE code. 
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4 THE HIGHER ORDER SGFEM 

 

The higher order SGFEM, Zhang, Banerjee and Babuška (2014), was developed to yield higher 

order convergence and to ensure good conditioning of the stiffness matrix in any dimensional 

approach. This new version of the GFEM is derived from a further specific modification of the 

enrichment space aiming to ensure that the shape functions of the enriched space are locally almost 

linearly independent, while maintaining good flexibility for the construction of local 

approximations as in the standard SGFEM. 

Essentially, the suggested modification consists of using another PoU for constructing the mod

enrichS

space, different from the piecewise hat functions that however are preserved for constructing the 

basic SFEM space. Thus, the higher order SGFEM approximation space is represented as follows: 

mod

enrichFEMSGFEM SSS   (11) 

 

1

1

mod  (mod)

1 2

Le

N

FEM

NN
FT j j

enrich

j

S u

S L a

 





  









 







 

 (12) 

In the mod

enrichS space definition, mod

iL
 is constructed as indicated in relation (7), where  LN  is the 

number of enrichment functions applied on node  , while FT

 represents the so-called ‘flat-top’ 

PoU function, Griebel and Schweitzer (2002). According to Zhang, Banerjee and Babuška (2014), 

the use of another partition of unity to construct the mod
enrichS  will contribute to generating linearly 

independent enrichment spaces, and consequently, a good conditioning of the linear system will be 

warranted.  
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The relations defining the flat-top PoU attached to a two node bar element and hereby adopted in 

the 1-D approach are presented below. The relations above  FT

Left x  and  FT

Right x are for the 

functions attached to the left and to the right node, respectively, 
jx  and 

1jx 
are the nodal 

coordinates, h is the element length,   is a parameter for controlling the flat region length that can 

vary between 0 and 0.5 and l is a positive integer for controlling the smoothness of the curve 

segment linking the flat regions. Figure 7 (a) and (b) shows, respectively, the functions  FT

Left x  

and  FT

Right x for a 1-D master element in correspondence to 2h  , 0 25.   and 1l . 
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Figure 7 – Representation of flat-top partition of unity. (a) 1-D function for the left node, (b) 1-D function for the 

right node 

 

The tensorial product of the 1-D functions described above is used for constructing the 2-D version 

of the flat-top PoU associated to a regular quadrilateral element depicted in Figure 8. 

Figure 8 – Quadrilateral element 

 

The relations defining the component attached to node 1 are the following.  
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The relations to the remaining nodes are quite similar. The resulting flat-top function attached to 

node 1 of the quadrilateral master element is depicted in Figure 9 (a) and (b) in correspondence to 

2h  , 0 25.   and 1l . 
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Figure 9 – Representation of flat-top PoU 2D version 

 

When the flat-top partition of unity is used, caution should be taken regarding the numerical 

integration either of the stiffness matrix or the equivalent nodal force vector. 

For instance, considering a four node quadrilateral element, if the conventional Gauss-Legendre 

quadrature rule is assumed for the numerical integration, it is necessary to pay attention to the 

number of integration points that will be adopted. In fact, despite a number of 3x3 integration points 

being enough for integrating a bilinear portion of the PoU, it may generate an erroneous result if 

the flat-top PoU is the function to be integrated. Moreover, as shown before, the geometry of the 

flat-top depends on the value of the parameter . As an example, consider the case where three 

conventional integration points are adopted, as illustrated in Figure 10. 
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Figure 10 – Illustration of flat-top PoU with 1.0 and three integration points (black dots in the figure) 

 

If the aim is to integrate a flat-top relative to 1.0 , only the bilinear portion of the function 

receives the integration points and consequently the approximated value of the element integral is 

affected. 

The strategy herein adopted for improving numerical integrations through the quadrature rule is 

presented next.  
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5 NUMERICAL INTEGRATION AND SPLIT STRATEGY FOR HIGHER ORDER 

SGFEM 

 

The Gauss-Legendre quadrature rule is applied to numerically integrate both the element stiffness 

matrix and the element equivalent nodal force vector components when the flat-top PoU described 

herein is involved. 

As well known, the Gaussian quadrature is efficient if the function to be integrated can be well 

approximated by a polynomial function. However, this may not be the case in the GFEM when 

special functions are used for enrichment. Therefore, the Gaussian quadrature may not return a 

good result in such situations. Even so, the rule is hereby considered by using a great number of 

integration points whenever necessary.  

As mentioned, for the case of flat-top PoU, a different strategy for the numerical integration is 

adopted to avoid the inconvenience caused by the relation number of integration points and value 

of  . 

Four characteristics of the flat-top PoU component can be revealed when considering the master 

element domain, as shown in Figure 11(a), each one expressed by a polynomial function. 

Figure 11 – Split in subdomains for flat-top PoU. 

 



48 
 

Areas 1 and 4 have constant values 1 and 0 respectively, areas 2 are described by a ‘ramp’ function 

and area 3 is described by a higher order polynomial function.  

Therefore, the element can be split into nine parts, as shown in Figure 11(b), next applying the 

Gauss quadrature rule to each subdomain for computing the components of the stiffness matrix and 

equivalent nodal force vector. Moreover, the numerical integration encompasses only regions 1 to 

3. Essentially, this is the strategy hereby adopted for generating the results of the examples 

presented later on. 
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6 THE ENRICHMENT FUNCTIONS 

 

Two types of enrichment functions are hereby considered aiming to assess if the SGFEM can 

effectively overcome the ill-conditioned issue. The first type is the singular function and is 

suggested to deal with problems with reentrant corners and cracks. The second type is the 

polynomial function, whose effectiveness is known in problems where the expected solution is 

smooth. The main features of these enrichments are presented next. 

 

6.1 Singular function 

 

The singular function is used to better describe the stress distribution in a close vicinity of a corner. 

According to Szabo and Babuška (1991), the exact solution of 2-D problems presenting corners in 

their geometry identified by a finite number of points can be given by a sum of two functions: one 

smooth function 1u  and another one 2u  that takes into account the singularities in the corners’ 

vicinity. Function 2u  in polar coordinates is expressed by: 

 
 




k

i

M

i

ii rAu
1

2 
 (15) 

Where kM  is the number of corner points, r and are local coordinates, iA  are coefficients that 

depend on the loading,   i are smooth functions and i is a parameter related to the singularity. 

In view of the general feature of the singular functions shown in relation (15), the enrichment 

function hereby adopted is written as: 

 
   k

kk
L r f




   (16) 

It is worth observing that this function is the solution to the Laplace’s problem (which can be 

specialized to plane linear elasticity or thermal analysis, for example), defined in a domain

presenting at its edge corners characterized by an angle measured internally to the solid, as shown 
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in Figure 12. In each corner, the singular solution can be expressed by a series, as presented in the 

next relation: 

Figure 12 – Example of a problem containing a reentrant corner. 

 

Adapted: Strouboulis, Babuška and Copps (2000) 
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(18) 

 

 
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1 2

      if Γ  and Γ  have both Neumann or both Dirichlet

2 1
 if Γ  and Γ  have mixed boundary conditions

2

k

k

k


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









 




 (19) 

In relation (17), 
singularn is the number of terms optionally adopted. Figure 13 depicts the 

representation of Equation (17) considering 1 Γ  and 2Γ  both Dirichlet boundaries and k varying 

from 1 to 3. 
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Figure 13 – Illustration of Equation (16) for 1 Γ  and 2Γ  both Dirichlet boundaries. (a) k = 1. (b) k = 2. (c) k = 3. 

 

As will be shown later, for the problems discussed in this work, the number of terms has little 

influence on the relative displacements, therefore 
singularn  = 1 will be adopted. 

Moreover, it is important to observe that stress concentration occurs only for a certain range of the 

internal angle  . Since the stress depends on the first derivatives of the function, Relation (16) 

represents a stress concentration when its first derivatives goes to infinity when the radius goes to 

zero, otherwise this relation acts as a sine or cosine function and does not return a stress 

concentration at the corner. Table 1 shows the first derivative for the singular function of the four 

possible combinations of boundary conditions. 

Table 1 – First derivative for the singular function 

 Situation 1 Situation 2 Situation 3 Situation 4 

1Γ  Dirichlet Dirichlet Neumann Neumann 

2Γ  Dirichlet Neumann Neumann Dirichlet 

L  sin  r    sin  r    cos  r    cos  r   

  


 
2




 


 
2




 

L
x




  1 sinr       1 sinr       1 cosr       1 cosr      

L
y




  1 cosr       1 cosr       1 sinr       1 sinr      

 

In the equation above,   is the angle between the x-axis and the point in analysis, Figure 12. 
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Since the values of sine and cosine are in the range of  1,1 the first derivatives will tend to go 

towards infinity only if 
1r  . For situations 1 and 3, where the boundary conditions are both 

Dirichlet or both Neumann, this occurs for 2    which results in a 1 . For situations 2 

and 4 where mixed boundary conditions are applied, this occurs for 2
2

    . 

 

6.2 Polynomial functions 

 

Polynomial functions have a smooth behavior. The general form of the polynomial enrichment 

component basis can be expressed by the shifted arrangement as follows: 

 
 

   
nm

nm

h

yyxx
nmL




 ,  (20) 

Where xα and yα are the coordinates of the patch with vertex node α and h is a scaling factor given, 

for instance, by the radius of the circle centered at the vertex and circumscribing the largest element 

of the patch.   

One advantage of the shifted enrichment functions is that they are zero in the node where they are 

imposed. It follows that the physical meaning of the original degree of freedom associated to the 

basic part of the approximation at such a node is preserved. Moreover, this feature enables one, in 

principle, to directly enforce displacement boundary conditions in the same way as in the FEM. 

In this work, two possibilities of polynomial enrichments will be tested. The first one is a complete 

quadratic polynomial that contains the set:  1;1  nm ,  0;2  nm ,  2;0  nm . The second 

one is the incomplete quadratic polynomial, i.e., the first set without the mixed term, therefore: 

 0;2  nm ,  2;0  nm .  
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7 NUMERICAL EXAMPLES AND DISCUSSION 

 

Three examples consisting of 2-D panels of unitary thickness were hereby selected to illustrate in 

particular the performance of the SGFEM with flat-top PoU for constructing the approximations 

to the solutions. Plane stress conditions were assumed in all of the examples. Structured meshes 

were adopted and a combination of shifted polynomial with singular function explored as 

enrichments. Moreover, the material was supposed to present the linear elastic response and a 

Young’s Modulus with a reference value of 100.0 and a Poisson’s ratio of 0.3 were adopted for the 

elastic parameters. 

The first example is an L-shaped panel. The basic aim is to analyze both the convergence order and 

the scaled condition number provided by the combined effects of mesh refinement and nodal 

enrichments. In addition, the good characteristics and shortcomings of each of these explored 

resources are also observed. 

The second example has the purpose of showing that the methods are quite efficient even if a crack 

is presented at the edge of a rectangular panel. 

In the last example, the overall potential of the GFEM versions hereby considered is illustrated. 

Therefore, a complex panel with external polygonal geometry containing multiple reentrant 

corners, internal large voids and edge cracks is tested. 

 

7.1 L-shaped panel 

This example consists of an L-shaped panel under uniform distributed loading at the longer edges. 

Sliding supports are prescribed at the Dirichlet boundary condition and corner points, as depicted 

in Figure 14. Furthermore, Dirichlet boundary conditions are imposed using a penalization 

technique.   

Six structured meshes varying from coarse to fine and composed by bilinear quadrilateral elements 

were used to analyse the h-convergence, however for the study of the SCN, only the four coarser 

meshes were considered due to the loss of accuracy for the finer meshes. These meshes are 
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indicated according to the number of elements defined respectively in the longer and shorter edges 

as: 4x2, 8x4, 16x8, 32x16, 64x32 and 128x64. 

Figure 14 – L-shaped panel 

 

Moreover, the problem is analysed through GFEM versions under four different conditions: 

a) In the first one, a study about the parameter of the flat-top PoU is made;  

b) In the second condition, only the polynomial enrichment is applied. The basic aim is to 

carefully observe the shortcoming introduced by the linear dependencies associated to this 

kind of enrichment. Therefore, the large scaled condition number of each version of the 

method is highlighted; 

c) In the third condition only the singular enrichment is applied and the effect of the blending 

elements is observed; 

d) In the fourth condition, both enrichments above are applied. The aim is to show that the 

versions of the method can provide good approximate solutions even if a course mesh is 

used. 
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7.1.1   Parameter analysis 

 

As shown before, the parameter   of the flat-top partition of unity controls the lengths of the flat 

portions of the function. In particular, taking 0 , the hat-function PoU is recovered and taking 

5.0 , the Heaviside step function is recovered (presenting values 1 or 0 in the domain). 

Since the split strategy of numerical integration described in topic 5 is adopted for the higher order 

SGFEM, values for  between limits 0 and 0.5, as well the number of integration points can be 

chosen arbitrarily. Therefore, a study considering different values of  is hereby made seeking to 

verify its efficacy. 

The analysis of the results is presented next by comparing the convergence rates of the relative 

errors in the displacement for   equal to 0.01, 0.1, 0.2, 0.3 and 0.4. Moreover, the complete 

quadratic polynomial is considered as enrichment.  

Using the 2  norm, the relative error on displacements is defined as follows: 

2

2

relative error
ref

ref

u u

u


  (21) 

In the relation above, 
refu is for the reference solution computed by FEM using a very refined 

structured mesh (2048x1024) and ũ is for the approximate solution. The h-convergence curves in 

a log x log graphs are presented in Figure 15. 
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Figure 15 – L-shaped panel: h-convergence for different values of  

 

It can be concluded that the lower the   value is, the better the solution becomes. In fact, by 

decreasing the  value, the flat-top approaches the hat-function PoU. Consequently, the higher 

order SGFEM turns into the SGFEM. However, the scaled condition number increases since the 

complete polynomial enrichment is used. To illustrate such an effect, the SCN is presented in 

Figure 16. 

Figure 16 – L-shaped panel: scaled condition number for  analysis 

 

In conclusion, concerning the values of   adopted, there is practically no difference between the 

h-convergence curves. However, when considering 01.0 , the SCN increases comparatively, 

already for the coarse mesh, and the solution is therefore less reliable. Since 1.0  was shown 

to have the lowest value of relative error, this value will be selected for the next conditions. 
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7.1.2 Polynomial enrichment 

 

Complete and incomplete polynomials of degree two, both in their shifted readings are considered 

in this section as the enrichment option.  

A comparison between the GFEM, SGFEM and higher order SGFEM methods is presented. The 

rate of convergence based on the estimate relative errors on displacements, as well as the scaled 

condition number are the main aspects assessed. 

The relative errors computed for the case of incomplete polynomial enrichment are reported in 

Table 2. 

Table 2 – L-shaped panel: relative errors for incomplete polynomial 

Mesh h FEM GFEM SGFEM 
Higher Order 

1.0  

4x2 0.25 0.1423 0.08988 0.07063 0.078560718 

8x4 0.125 0.06743 0.03542 0.032 0.034963031 

16x8 0.0625 0.03046 0.01567 0.01483 0.016122405 

32x16 0.03125 0.0137 0.00711 0.00682 0.007415862 

64x32 0.01563 0.00615 0.00318 0.00306 0.003339863 

128x64 0.00781 0.00271 0.00135 0.0013 0.001429723 

 

The log x log graphs depicted in Figure 17 show the h-convergence of the relative errors for the 

case of incomplete enrichment. It must be pointed out that this is not a regular problem as the 

reentrant corner of the L-shaped panel induces stress singularity. Even so, it can be observed that 

comparing GFEM and SGFEM versions to the FEM, the convergence rates are pretty much of the 

same order. 
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Figure 17 – L-shaped panel: h-convergence for incomplete polynomial 

 

In terms of comparative gains, the relative errors provided by the GFEM or SGFEM are very close 

in values to the ones obtained through FEM, however demanding a mesh one level coarser. 

Therefore, analyzing the number of degrees of freedom used for this example, both the 

GFEM/SGFEM spent less DoF obtaining the same relative error, as shown in Table 3. Of course, 

this reduction in the DoF implies in a low processing time. 

Table 3 – L-shaped panel: degrees of freedom for incomplete polynomial 

Mesh h FEM GFEM/SGFEM 

4x2 0.25 42 126 

8x4 0.125 130 390 

16x8 0.0625 450 1350 

32x16 0.03125 1666 4998 

64x32 0.01563 6402 19206 

128x64 0.00781 25090 75270 

 

Another remarkable measure is the scaled condition number. If comparable to the FEM values, 

SCN indicates stability of the GFEM/SGFEM linear system. Figure 18 shows the SCN for the 

methods using the incomplete enrichment. It is observed that the values obtained for the GFEM, 

SGFEM and higher order SGFEM are close to the FEM values. Indeed, the SGFEM versions do 

not present any advantage over the GFEM, since the incomplete enrichment verifies the linear 

independence condition already for the GFEM. 
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Figure 18 – L-shaped panel: scaled condition number for incomplete polynomial 

 

However, as reported in Table 4, when a complete enrichment is considered, the SCN is strongly 

affected in the SGFEM, which remains comparable to the bad condition level shown by GFEM. 

This is evidence that the resulting enriched space lacks linear independence property. However, 

this property is provided to the enrichment space when the flat-top PoU is used and this advantage 

can be observed by the decrease in the SCN values, comparable to the FEM ones.  

Table 4 – L-shaped panel: scaled condition number for complete polynomial 

Mesh h FEM GFEM SGFEM 
Higher Order 

1.0  

4 x 2 0,25 2.16E+02 3.87556E+16 4.00E+16 4.02E+02 

8 x 4 0,125 9.43E+02 1.37449E+17 2.19E+15 1.59E+03 

16 x 8 0,0625 3.87E+03 1.69705E+17 8.10E+15 6.34E+03 

32 x 16 0,03125 1.56E+04 4.05187E+17 6.59E+17 2.53E+04 

 

Although using the flat-top PoU results in a well-conditioned matrix, as a consequence of its limited 

capacity of approximation, the relative error is a little higher than that obtained through SGFEM, 

as shown in Figure 19. 
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Figure 19– L-shaped panel: h-convergence for complete polynomial 

 

 

7.1.3 Singular enrichment 

 

The singular enrichment function is applied locally in the neighborhoods of the reentrant corner. 

The application is made in a three layer scheme, defined as follows: 

a) Layer 0 (L0): only the node at the corner is enriched; 

b) Layer 1 (L1): all the nodes of the elements containing the corner are enriched; 

c) Layer 2 (L2): in addition to layer 1, all the nodes of elements adjacent to it are enriched. 

These layers are shown in Figure 20. 
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Figure 20 – L-shaped panel: layer representation (a) Layer 0, (b) Layer 1 and (c) Layer 2. The red dots highlight the 

enriched nodes 

 

For each layer case, an analysis is made regarding the effect of different values of 
singularn , related 

to the number of terms for defining the singular function. Moreover, a comparison between the 

GFEM and SGFEM is presented. In both cases, the main aspect evaluated is the rate of convergence 

based on the relative error on displacement. 

For the case of the L-shaped panel, the singular enrichment function given in relation (17) is such 

that 1 Γ  and 2Γ are both Neumann boundaries and 3
2

  . Therefore, the resulting expression 

reads as below: 

   
2

3 2cos   
3

k

k
kL r


    (22) 

The h-convergences for GFEM considering different layers are presented in Figures 21 to 23. For 

each layer the parameter
singularn varies from 1 to 3. It worth mentioning that when considering 

3singular n , for instance, the enrichment vector is {1,
 1

L


,
 2

L


,
 3

L


} and not just as {1,
 3

L


}. 
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Figure 21 – L-shaped panel: h-convergence for singular layer 0 with different values of 
singularn  

 

Figure 22 – L-shaped panel: h-convergence for singular layer 1 with different values of
singularn  

 

Figure 23 – L-shaped panel: h-convergence for singular layer 2 with different values of 
singularn  
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For the different cases presented the rate of convergence is practically the same regardless of the 

value 
singularn  adopted. Therefore, it is valid to adopt 

singularn  equals to one for the next analysis. 

Moreover, the misalignment of the points related to the coarse mesh (4x2) observed in Figures 22 

and 23 is supposed to be a consequence of the significant number of enriched nodes included in 

the layer regarding the total number of nodes in the mesh. Differently from the other meshes, in 

this mesh, all nodes are enriched when applying layer 2, for instance and no blending elements are 

presented. Then, the presence of blending elements actually worsens the approximate solution. 

Fixing the value of 1singularn   and analyzing the results of h-convergence for GFEM and SGFEM 

(Figures 24 to 26), the relative error for the SGFEM is slightly reduced and the rate of convergence 

is slightly greater when compared to the GFEM and FEM rates. This once again can be associated 

to the blending elements. As in both versions the GFEM and SGFEM blending elements are 

present, apparently the SGFEM itself is more effective in terms of overcoming the related 

detrimental effects. 

Figure 24 – L-shaped panel: comparison between methods with respect to h-convergence for singular layer 0 
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Figure 25 – L-shaped panel: comparison between methods with respect to h-convergence for singular layer 1 

 

Figure 26 – L-shaped panel: comparison between methods with respect to h-convergence for singular layer 2 

 

 

 

7.1.4 Polynomial and singular enrichment combined 

 

In this section, the possibility provided by the GFEM/SGFEM of augmenting the trial/test spaces 

with as many functions as necessary for better approximating the solution is explored. The basic 

aim is to show that the combination of distinct enrichments in specific parts of the panel will 

contribute to obtain a better approximate solution, therefore dismissing an excessive mesh 

refinement. Hence, the polynomial enrichment is applied at all nodes of the mesh, since the solution 

is predominantly smooth in the panel. In addition, the singular enrichment is applied at the part 
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near the reentrant corner as the response presents significant gradients due to the stress 

concentration caused by the local geometry.  

The analysis of the numerical response will be conducted by controlling the rate of convergence of 

the relative errors on displacements and also through the SCN.  

Figures 27 to 29 show the h-convergence considering the singular enrichment in different layers 

combined with an incomplete polynomial enrichment of second degree. 

Figure 27 – L-shaped panel: comparison for incomplete polynomial and singular layer 0 

 

Figure 28 – L-shaped panel: comparison for incomplete polynomial and singular layer 1 
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Figure 29 – L-shaped panel: comparison for incomplete polynomial and singular layer 2 

 

As well as what was observed in the case of single singular enrichment, the h-convergence curve 

provided by the SGFEM is slightly more inclined, indicating that its response converges more 

quickly than the FEM. In addition, both enrichments contribute to a clear improvement in the 

approximate solution with respect to the FEM. Looking at the response shown in Figure 29, 

considering a same mesh, the SGFEM exhibits a relative error one order of magnitude smaller than 

the standard FEM. 

Moreover, in Figure 29, it is possible to conjecture about the effects of the blending elements. In 

particular, regarding the first mesh, (4x2), when using the layer 2 option for singular enrichment, 

all the nodes of the mesh become enriched and consequently, there are no blending elements. As a 

result of this, the GFEM and SGFEM responses are very close. Nevertheless, in the finer meshes, 

once blending elements appear, apparently the GFEM response is more affected then SGFEM is, 

therefore generating an increase in the relative error values. 

Regarding the SCN values, when considering layer 0 they are close to ones provided by the FEM 

for any of the methods, as shown in Figure 30. However, once introducing the singular function to 

nodes far away from the corner (layers 1 and 2), the SCN number increases significantly, in 

particular with respect to the coarse mesh, as can be seen in Figures 31 and 32. It can be concluded 

that probably such enrichment generates shape functions that are almost linearly dependent. 

However, once again the SGFEM versions prove to be a better option than GFEM. 
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Figure 30 – L-shaped panel: SCN for incomplete polynomial and singular layer 0 

 

Figure 31 – L-shaped panel: SCN for incomplete polynomial and singular layer 1 

 

Figure 32 – L-shaped panel: SCN for incomplete polynomial and singular layer 2 
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Finally, when considering the complete polynomial enrichment, as expected, the SCN for the 

GFEM and SGFEM are strongly affected, therefore resulting in a bad conditioned stiffness matrix. 

Nevertheless, the higher order SGFEM preserves a SCN close to that one obtained for FEM, as 

reported in Table 5. 

Table 5 – L-shaped panel: SCN for complete polynomial and singular layer 2 

Mesh h FEM GFEM SGFEM 
Higher Order 

1.0  

4 x 2 0.25 2.16E+02 1.8E+16 8.40E+16 1.19E+05 

8 x 4 0.125 9.43E+02 1.08E+16 6.52E+15 1.63E+03 

16 x 8 0.0625 3.87E+03 4.78E+14 4.29E+15 6.43E+03 

32 x 16 0.03125 1.56E+04 5.07E+16 3.27E+15 2.57E+04 

 

Despite the better conditioning for the Higher order, using the flat-top partition of unity results in 

a worse approximate solution when compared to the SGFEM, as depicted in Figure 33.  

Figure 33 – L-shaped panel: h-convergence for complete polynomial and singular layer 2 

 

However, the higher order SGFEM benefits from the mesh refinement, as can be seen in Figure 

34. Furthermore, the stress concentration due to the singular enrichment is shown in Figure 35. 
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Figure 34 – L-shaped panel: effect of mesh refinement 
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Figure 35 – L-shaped panel: nodal stress Sxy for mesh 64 x 32 using different enrichment 

 

 

 

7.2 Panel presenting an edge crack 

 

The selected problem, as well an example of a regular mesh adopted for analysis is depicted in 

Figure 36. 

Figure 36 – Edge cracked panel 
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Sliding supports are prescribed at the left Dirichlet vertical boundary and at the crack tip. The 

Dirichlet boundary conditions are imposed using a penalization technique. Uniform distributed 

loads are applied at the top and bottom edges. Besides, a gap of 10-4 order is considered to represent 

the crack. 

Six structured meshes varying from coarse to fine and composed by bilinear quadrilateral elements 

are used to analyze the h-convergence, however, for the study of the SCN only the four coarser 

meshes are considered due to the loss of accuracy for the finer ones. These meshes present the 

following grid arrangements: 4x4, 8x8, 16x16, 32x32, 64x64 and 128x128, according to the 

number of elements in the horizontal and vertical directions, respectively. 

Analogous to the L-shaped panel, in this example the analysis is made considering four conditions, 

aiming to focus on the relative differences, advantages and shortcomings, among the GFEM 

versions. 

 

7.2.1   Parameter analysis 

 

The analysis is presented next in terms of the convergence rates of relative errors in displacements 

for  equals to 0.01, 0.1, 0.2, 0.3 and 0.4. The enrichment considered is the shifted complete second 

degree polynomial. 

The reference solution 
refu used in Relation (21) was computed through FEM using a very refined 

structured mesh of (2048x2048) elements. The resulting h-convergence curves are presented in 

Figure 37. 
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Figure 37 – Edge cracked panel: h-convergence for different values of  

 

As well as in the L-shape example, the smaller the   is, the better the approximate solution. 

However, if  becomes too small, the partition of unity tends to be pretty much similar to the hat 

PoU. Then, the scaled condition number increases relatively, already for the coarse mesh, as seen 

in Figure 38. 

Figure 38 – Edge cracked panel: SCN for  analysis 

 

Despite the similarity of the obtained results when comparing the different values of  in the range 

from 0.1 to 0.4, a small relative difference can be observed. Therefore, 1.0 is chosen for the 

next analysis, since comparatively this value has provided the smallest error and the lowest SCN. 
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7.2.2 Polynomial enrichment 

 

Shifted complete and incomplete second degree polynomials are considered in this example for the 

enrichments applied to the whole set of nodes. 

A comparison between GFEM, SGFEM and higher order SGFEM is presented. The main aspects 

appraised are the rate of convergence based on the estimated errors in displacements and the scaled 

condition number. 

The relative errors in displacements were computed using the 2  norm. For the case of incomplete 

enrichment, the resulting values are reported in Table 6. 

Table 6 – Edge cracked panel: Relative errors for incomplete polynomial enrichment 

Mesh h FEM GFEM SGFEM 
Higher Order 

1.0  

4x4 0.25 0.26134 0.17022 0.15184 0.166581834 

8x8 0.125 0.14344 0.08548 0.08275 0.089600582 

16x16 0.0625 0.07421 0.04378 0.04392 0.047327711 

32x32 0.03125 0.03741 0.02209 0.02247 0.024203718 

64x64 0.01563 0.01853 0.01088 0.01113 0.012011457 

128x128 0.00781 0.00898 0.00515 0.0053 0.005740655 

 

The log x log graphs depicted in Figure 39 show the h-convergence of the relative errors. Even if 

this is not a regular problem, as the crack tip induces heavy stress singularity, it can be observed 

that the convergence rates are pretty much of the same order comparing the GFEM versions with 

FEM. 
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Figure 39 – Edge cracked panel: relative error values for incomplete polynomial and mesh refinement 

 

In Figure 40, the scaled condition number is compared still considering the incomplete enrichment 

case. It can be seen that the values obtained with GFEM versions are of the same order as the values 

provided by FEM analysis. Once the shape functions resulting from the incomplete enrichment 

space verify the linear independence condition, in fact the flat-top option does not have any 

advantage over the SGFEM.  

Figure 40 – Edge cracked panel: scaled condition number for incomplete polynomial and mesh refinement 

 

However, when considering complete second degree polynomial enrichment, the SCN for SGFEM 

is strongly affected, becoming comparable to the bad condition level shown by GFEM, as reported 

in Table 7. This is a consequence of the linear dependence among the shape functions introduced 

by the crossed term of the enrichment functions vector. However, linear independence is preserved 
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when using flat-Top PoU for constructing the enrichment space. This advantage is clear when 

observing the low SCN values, which are comparable in order to the values obtained by the FEM.  

Table 7 – Edge cracked panel: scaled condition number for complete polynomial 

Mesh h FEM GFEM SGFEM 
Higher Order 

1.0  

4 x 4 0,25 1.16E+02 1.02282E+16 3.07E+17 2.44E+02 

8 x 8 0,125 4.89E+02 2.89938E+15 1.75E+16 8.58E+02 

16 x 16 0,0625 2.05E+03 1.13806E+16 2.62E+14 3.43E+03 

32 x 32 0,03125 8.42E+03 1.05935E+17 2.76E+14 1.38E+04 

 

Once more, using the flat-top PoU results in a limited capacity of approximation and the relative 

error is higher than that obtained for the SGFEM, as depicted in Figure 41. 

Figure 41– Edge cracked panel: relative error values for complete polynomial and mesh refinement 

 

 

7.2.3 Singular enrichment 

 

Analogous to the L-shaped panel example, the enrichment using the singular function is now 

applied locally around the crack tip according to a three-layer scheme, as shown in Figure 42. 

 

 

Figure 42 – Edge cracked panel: (a) Layer 0, (b) Layer 1 and (c) Layer 2. The red dots are the enriched nodes 
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First of all, for each layer case a comparison between different values of 
singularn is made using only 

the GFEM. Then, after identifying the more convenient value of 
singularn , a comparison between 

the GFEM and SGFEM is presented. In both cases, the comparison is conducted by using the rate 

of convergence of the relative error. 

The singular function parameters for Relation (17) adopted in this example are such that 1Γ and 2Γ  

are both Neumann boundaries and 2  . The resultant enrichment function is: 

   2 cos   
2

k

k
kL r


    (23) 

The h-convergence curves for different layers are presented in the log x log graphs of Figures 43 

to 45. For each layer the value of
singularn varies from 1 to 3. 

Figure 43 – Edge cracked panel: h-convergence for singular layer 0 with nsingular varying from 1 to 3 

 

Figure 44 – Edge cracked panel: h-convergence for singular layer 1 with nsingular varying from 1 to 3 
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Figure 45 – Edge cracked panel: h-convergence for singular layer 2 with nsingular varying from 1 to 3 

 

The rate of convergence slightly improves when increasing the value of
singularn  adopted. Therefore, 

looking for a good compromise between precision and reduced computational costs, it is valid to 

adopt 
singularn  equals to one for the next analysis. 

Once again, the misalignment of the points related to the coarse mesh (4x4) observed in Figure 45 

in particular is supposed to be consequent from the significant number of enriched nodes included 

in the layer regarding the total number of nodes in the mesh. Differently from the other meshes, in 

this mesh all nodes are enriched when applying layer 2, for instance and no blending elements are 

presented. However, when passing to the next mesh, the relative error increases as blending 

elements arise. Moreover, it is important to note that the singular function is good to approximate 
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only the neighborhood of the crack tip. Therefore, no significant gain of approximation can be 

noted in the region far away from crack tip. 

In Figures 46 to 48, the h-convergence curves for GFEM and SGFEM are presented using different 

layers and setting nsingular = 1. It is clear that the SGFEM is able to overcome the shortcoming 

caused by the blending elements. 

Figure 46 – Edge cracked panel: comparison between methods with respect to h-convergence for singular layer 0 

 

Figure 47 – Edge cracked panel: comparison between methods with respect to h-convergence for singular layer 1 
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Figure 48 – Edge cracked panel: comparison between methods with respect to h-convergence for singular layer 2 

 

 

7.2.4 Polynomial and singular enrichment combined 

 

Here both polynomial and singular enrichments are combined. The shifted polynomial is applied 

to the whole set of nodes, while the singular function is set locally in layers, as in the previous 

condition. 

The analysis is performed with respect to the rate of convergence based on the relative error and 

the SCN. Figures 49 to 51 show the h-convergence curves resulting from the combination of the 

singular enrichment in different layers and incomplete polynomial. 

Figure 49 – Edge cracked panel: h-convergence curves for incomplete polynomial and singular layer 0 
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Figure 50 – Edge cracked panel: h-convergence curves for incomplete polynomial and singular layer 1 

 

Figure 51 – Edge cracked panel: h-convergence curves for incomplete polynomial and singular layer 2 

 

As can be seen in particular in Figure 51 for the GFEM results, the singular enrichment used in a 

coarse mesh has produced a kind of misalignment of the curve. However, such an effect is not 

observed in both SGFEM versions. Therefore, apparently these versions are less sensitive to the 

presence of blending elements. 

Although the h-convergence rate for the GFEM versions are similar to the FEM, using these 

versions are still a good choice due to the fact that the solution can be approximated at an equivalent 

error level without needing excessive mesh refinement. In fact, as can be seen in the figures above, 

by already using coarse meshes, the GFEM versions provide solutions similar to the one obtained 

through FEM using a finer mesh. 
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Regarding the SCN, while considering singular enrichment restricted to the layer 0 scheme, the 

results for the GFEM versions are close to numbers provided by the FEM, as shown in Figure 52. 

However, when the singular function enrichment includes nodes around the corner, the SCN is 

badly affected, especially for coarse meshes, as can be observed in Figures 53 and 54. Probably, 

the enrichment combination generates shape functions that are almost linearly dependent on those 

cases. Even so, the higher order SGFEM seems to be a safer option and the relative small 

disturbances in SCN values should not be taken into account as the main purpose of using the 

singular function is to capture the stress concentration that occurs in a small neighborhood of the 

crack tip. 

Figure 52 – Edge cracked panel: SCN for incomplete polynomial and singular layer 0 

 

Figure 53 – Edge cracked panel: SCN for incomplete polynomial and singular layer 1 
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Figure 54 – Edge cracked panel: SCN for incomplete polynomial and singular layer 2 

 

Once again, when considering the complete polynomial, the SCN values for the GFEM and 

SGFEM are significantly affected. However, the higher order SGFEM keeps a low SCN, with a 

still acceptable exception for the coarser mesh, as shown in Table 8. 

Table 8 – Edge crack panel: SCN for complete polynomial and singular layer 2 

Mesh h FEM GFEM SGFEM 
Higher Order 

1.0  

4 x 4 0.25 1.16E+02 6.3922E+15 6.07E+15 4.27E+05 

8 x 8 0.125 4.89E+02 1.51867E+17 1.26E+18 9.25E+02 

16 x 16 0.0625 2.05E+03 1.6821E+16 1.12E+15 3.60E+03 

32 x 32 0.03125 8.42E+03 2.4264E+15 5.30E+14 1.44E+04 

 

In fact, despite the relative higher SCN for the coarser mesh when using the higher order SGFEM, 

this result is still acceptable as it does not point to an ill-conditioned stiffness matrix. Nevertheless, 

in spite of using the flat-top PoU lead to a well-conditioned system, the relative error obtained is 

comparatively higher than the error of the SGFEM, as shown in Figure 55. 
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Figure 55 – Edge cracked panel: h-convergence for complete polynomial and singular layer 2 

 

Nevertheless, the SGFEM using flat-Top PoU benefits from the mesh refinement, as shown in 

Figure 56. Furthermore, the stress concentration due to the singular enrichment is presented in 

Figure 57. 
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Figure 56 – Edge cracked panel: effect of mesh refinement 
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Figure 57 – Edge cracked panel: nodal stress Syy for mesh 64 x 64 for different enrichments 

 

 

 

7.3 Panel with multiple corners, polygonal voids and edge cracks 

 

This example aims to show that even if a more complex structure is simulated, the methods hereby 

considered are still accurate. This example is similar to the test problem originally proposed in 

Strouboulis, Copps and Babuška (2001). The irregular polygonal geometry is shown in Figure 58a. 

Figure 58 – Irregular polygonal panel 
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The crack lengths highlighted in red in the figure above are: 127.0a1  and 107.0a2  . 

The strong form of the mathematical problem for the linear elasticity, without considering body 

forces and the respective boundary conditions are defined as follows: 

  1

2

3 4 10

( ) 0  on 

2  on 

0  on 

0  on ,  ,  ..., 

div T

Tn q x y

u

q

 

    

 

   

 

where T is the stress tensor. 

Taking as a reference the preliminary subdivision of the panel domain in subareas, four structured 

meshes varying from coarse to fine were conceived to analyze the h-convergence rate, each one 

consisting of bilinear quadrilateral elements. Although, when considering the SCN only the three 

coarser meshes were considered due to the loss of accuracy for the finer one. 

For a better understanding, Figure 59 depicts the areas defined from the preliminary subdivision of 

the panel domain. The meshes were then successively constructed by dividing the edges of the 

subareas into 2, 4, 8, 16 parts. In Figure 58b, the mesh where the subareas are divided into 4 parts 

is depicted. 

Figure 59 – Irregular polygonal panel: subdivision in areas and singular point 
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Shifted incomplete and complete second degree polynomials combined with singular functions 

were considered for enrichment. The polynomial was imposed to the whole set of nodes. The 

singular enrichment was applied at the corners and crack tips highlighted in Figure 59, following 

the layer-schemes 0 and 1, as described in the previous examples. 

The corners where the singular function was applied were selected by analyzing the stress 

distribution shown by the reference numerical solution. In this solution, the 17 corners highlighted 

in Figure 59 presented a more significant stress concentration. 

Table 9 lists the parameters adopted and the singular functions used in each of the selected corners. 

Table 9 – parameter and singular function for each corner 

Corner 

number   
Singular 

function 

Corner 

number   
Singular 

function 

1 0.5   cosr   10 0.743723   cosr  

2 0.877278   sinr   11 0.769407   cosr  

3 0.883286   sinr   12 0.663369   cosr  

4 0.811627   sinr   13 0.761295   cosr  

5 0.84071   sinr   14 0.750657   cosr  

6 0.666667   cosr   15 0.667065   cosr  

7 0.662808   cosr   16 0.829467   cosr  

8 0.672313   cosr   17 0.5   cosr  

9 0.664954    cosr      

 

A comparison between the GFEM versions is presented next. The main aspects evaluated are the 

rate of convergence based on the relative errors in displacements and the SCN. 

The reference solution 
refu  needed for computing the relative error through expression (21) was 

obtained by a FEM analysis using a very refined structured mesh. In this mesh, the edges of the 

subareas were divided into 256 segments.  

Relative errors in displacements computed using the 2  norm for combined enrichment cases are 

presented in log x log scale graphs, as shown in Figures 60 and 61.  
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Figure 60 – Irregular polygonal panel: h-convergence for incomplete polynomial and singular layer 0 

 

Figure 61 – Irregular polygonal panel: h-convergence for incomplete polynomial and singular layer 1 

 

This problem involving multiples reentrant corners and two edge cracks induces heavy stress 

singularity in more than one place. Nevertheless, it can be observed that the GFEM version 

converges faster than FEM. Although a large number of blending elements can be found in this 

example, the h-convergence ratio is well-behaved. 

In Figure 62, the SCN related curves are shown. For the incomplete case, the SCN for SGFEM and 

higher order SGFEM almost have the same order as the FEM. The GFEM curve presents a higher 

order for the SCN, but it is still acceptable. Comparatively, the benefits of using SGFEM and higher 

order version can easily be concluded. 
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Figure 62 – Irregular polygonal panel: SCN for incomplete polynomial and singular layer 0 

 

When considering complete polynomial enrichment combined with singular enrichment for layer-

scheme 1, the approximate solution improves compared to FEM, in the way the relative error for a 

same mesh is smaller, as shown in Figure 63. 

In terms of h-convergence, the SGFEM shows to be the best among the GFEM versions discussed. 

However, the complete polynomial contains a parcel which makes the resulting shape functions 

linearly dependent. Consequently, the SCN becomes high enough to make the solution less reliable, 

Table 10. 

Figure 63 – Irregular polygonal panel: h-convergence for complete polynomial and singular layer 1 

 

Despite the higher level of the relative error of the GFEM with respect to the SGFEM, its low SCN 

makes the higher order SGFEM a more reliable method. 
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Table 10 – Irregular polygonal: SCN for complete polynomial and singular layer 1 

Number of 

divisions per area 
FEM GFEM SGFEM 

Higher Order 

1.0  

2 4.81E+03 1.71146E+16 1.19674E+16 1.86E+04 

4 2.46E+04 5.9114E+15 1.13896E+16 9.29E+04 

8 1.11E+05 1.2702E+16 5.55485E+16 4.17E+05 

 

Once again, the higher order benefits from the mesh refinement as shown in Figure 64. 
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Figure 64 – Irregular polygonal panel: Effect of mesh refinement. 
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8 CONCLUSION 

 

In this research, new versions of the generalized finite element method were numerically tested 

through a combination of polynomial and singular enrichment functions for increasing the 

approximation space. The new versions hereby considered were originally conceived to overcome 

two major drawbacks that may significantly influence the convergence and stability of the GFEM. 

They are the problem of ill-conditioning caused by linear dependencies induced into the solving 

system through the adopted enrichment and the appearance of the blending elements when the 

enrichment is restricted to a part of the domain. 

Three examples allowing the possibility of local enrichment and consisting of structural panels 

were considered for performing linear 2-D analysis. The basic geometric features of the examples 

herein described were the existence of reentrant corners and cracks, both inducing stress 

concentrations restricted to the regions around it. Therefore, in order to capture such localized 

effects, the singular function enrichment was explored only in a neighboring region from those 

points. Polynomial enrichments were used to capture the smooth parts of the solutions. 

In the stable GFEM version, a modification of the enrichment function is proposed aiming to 

guarantee stability comparable to the FEM solving linear system. Nevertheless, as concluded from 

the examples, linear dependencies still remain when the enrichment is a complete polynomial, 

therefore making the solution unreliable. Hence, as already observed in the original formulation, it 

was confirmed that the above mentioned modification is not a sufficient condition for stability. 

Aiming to further investigate the SCN issue, now considering that high values for it cannot be 

completely avoided in the SGFEM, an improved version of the SGFEM was tested numerically. 

Once again, the numerical analysis was over the 2-D panels. In conclusion, the higher order 

SGFEM fulfilled what was proposed in its formulation, i.e. the scaled condition number 

comparable to the FEM values. Therefore, taking the low levels of scaled condition number as the 

criterion for comparison, this method appears to be more reliable than the GFEM and SGFEM. 

Despite this good feature, it is important to point out that taking the same mesh into consideration, 

the higher order SGFEM provides results including a larger error margin when compared mainly 

with the SGFEM results. 
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Finally, throughout the tested examples, it was also observed that the blending elements for the 

case of singular enrichment do not cause significant harmful effects to the rate of convergence. 
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