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ABSTRACT 

 

AMORIM, D. L. N. F. On the lumped damage mechanics for nonlinear structural 

analyses: new developments and applications. 2016. 193 p. Thesis (Doctorate) – São 

Carlos School of Engineering, University of São Paulo, São Carlos, 2016. 

 

The accurate description of the nonlinear structural behaviour is an important issue in 

engineering science. Usually, classic nonlinear theories, such as fracture and damage 

mechanics, applied to finite element programmes are used to fulfil that purpose. Classic 

fracture mechanics describes the structural deterioration process by a few discrete cracks. This 

theory presents good precision for structures with simple geometries, few cracks and 

homogeneous materials. Classic damage mechanics measures the deterioration process by an 

internal variable called damage. This theory has been successful in the description of several 

deterioration mechanisms in continuum media. Despite their accuracy, classic fracture and 

damage mechanics present some drawbacks. Firstly, regarding civil engineering problems, 

both theories are not suitable for some practical applications. Secondly, fracture mechanics 

demands the consideration of initial cracks to begin the analysis. Lastly, classic damage 

models may present an issue known as localisation, what essentially leads to ill-posed 

problems and mesh-dependent numerical algorithms. Alternatively, a recent theory, called 

lumped damage mechanics, was proposed in order to achieve good accuracy in actual 

engineering problems. Such theory applies key concepts from fracture and damage mechanics 

in plastic hinges. In the light of the foregoing, the main goal of this thesis is the extension of 

the lumped damage mechanics framework to analyse different engineering problems. So far, 

lumped damage mechanics was characterised as a simplified methodology to analyse 

reinforced concrete frames under seismic and monotonic loadings; even with a few 

contributions on the analysis of local buckling in metallic structures. Therefore, this work 

extends the lumped damage mechanics framework to analyse reinforced concrete arches, 

unreinforced concrete structures, high cycle fatigue and continuum problems. The application 

examples show the accuracy of the proposed methodologies. 

 

Keywords: Lumped damage mechanics. Reinforced concrete. Quasi-brittle materials. High 

cycle fatigue. Localisation. 

 



  



 

RESUMO 

 

AMORIM, D. L. N. F. Sobre a teoria do dano concentrado para análise não linear de 

estruturas: novos desenvolvimentos e aplicações. 2016. 193 p. Tese (Doutorado) – Escola 

de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2016. 

 

A descrição acurada do comportamento não linear de estruturas é um problema importante na 

engenharia. Usualmente, teorias não lineares clássicas, tais como as mecânicas da fratura e do 

dano, aplicadas a programas de elementos finitos são utilizadas a fim de cumprir aquele 

propósito. A mecânica da fratura clássica descreve o processo de deterioração estrutural por 

meio de um pequeno número de fissuras discretas. Esta teoria apresenta boa precisão para 

estruturas com geometrias simples, poucas fissuras e materiais homogêneos. A mecânica do 

dano clássica tem sido exitosa na descrição de diversos mecanismos de deterioração em meios 

contínuos. Apesar de precisas, as abordagens clássicas em fratura e dano apresentam alguns 

entraves. Primeiramente, tratando-se de problemas da engenharia civil, ambas teorias não são 

adequadas para aplicações práticas. Em segundo lugar, os modelos clássicos de fratura 

demandam a consideração de fissuras iniciais para iniciar a análise. Por fim, os modelos 

clássicos de dano podem apresentar um problema conhecido como localização, o que 

essencialmente implica em problemas mal colocados e algoritmos com dependência de malha. 

Alternativamente, uma teoria recente, chamada teoria do dano concentrado, foi proposta a fim 

de obter boa precisão em problemas reais de engenharia. Tal teoria aplica conceitos-chave das 

mecânicas da fratura e do dano em rótulas plásticas. À luz do exposto, o principal objetivo 

desta tese é a extensão da teoria do dano concentrado para analisar diferente problemas da 

engenharia. Até então, a teoria do dano concentrado era caracterizada como uma metodologia 

simplificada para analisar pórticos de concreto armado sob solicitações monotônicas ou 

sísmicas; mesmo com algumas poucas contribuições na análise de instabilidade local em 

estruturas metálicas. Desta forma, este trabalho estende a teoria do dano concentrado a fim de 

analisar arcos de concreto armado, estruturas de concreto simples, fadiga de alto ciclo e 

problemas contínuos. Os exemplos de aplicação mostram a acurácia das metodologias 

propostas. 

 

Palavras-chave: Teoria do dano concentrado. Concreto armado, Materiais quase-frágeis. 

Fadiga de alto ciclo. Localização.  
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1 INTRODUCTION 

The analysis and prediction of nonlinear structural behaviour is an important issue for 

engineers and researchers. Nonlinear theories were proposed in order to achieve an accurate 

description of the structural behaviour. Among classic nonlinear theories, three options are 

emphasised: theory of plasticity, fracture mechanics and damage mechanics. 

Theory of plasticity is probably the most known nonlinear framework. In this theory, 

local plastic strains are responsible to account for the deterioration process. 

Classic fracture mechanics is a powerful tool to analyse propagation of a small number 

of cracks in continuum media. Differently from plasticity, in fracture mechanics a small 

number of discrete cracks characterises the deterioration process. The crack propagation is 

taken into account by energy principles. This approach shows remarkable success for 

structures with simple geometries, few cracks and homogeneous materials. 

Classic damage mechanics is the most recent great theory to describe the processes of 

deterioration and structural failure. The fundamental idea is quite simple: the introduction of 

an internal variable that characterises the material deterioration. This variable, called damage, 

usually takes values between zero and one. Damage is introduced in the behaviour laws also 

using simple concepts: an effective stress combined to a strain equivalence hypothesis. This 

theory has been successful in the description of several deterioration mechanisms in 

continuum media. 

Usually, the structural modelling is carried out using finite elements. For several 

engineering applications, frame members are sufficient to analyse structural behaviour. Thus, 

during the 20th century, several engineers and researchers proposed models based on plasticity 

to analyse frame structures. 

Alternatively, a recent nonlinear theory, called Lumped Damage Mechanics (LDM), 

was introduced in the early nineties in order to achieve more realistic results of frame 

structures. LDM applies some key concepts from fracture and damage mechanics in plastic 

hinges. Therefore, LDM models usually present suitable results for practical problems. It is 

noteworthy that the great majority of LDM models were developed to analyse reinforced 

concrete structures under monotonic or seismic loadings. 

On the other hand, in some specific cases, structures should be modelled as continuum 

media. This consideration demands two-dimensional or even three-dimensional finite element 
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analyses. As previously mentioned, the three emphasised classic theories (theory of plasticity, 

fracture and damage mechanics) applied in finite element programmes can describe the 

nonlinear structural behaviour. 

However, all aforementioned classic theories present some drawbacks. For instance, 

fracture mechanics demands the consideration of initial cracks to begin the analysis. This 

characteristic is not always suitable for practical applications. Another important drawback, 

which is clearly observed in classic plasticity and damage models, is a phenomenon called 

localisation. Note that localisation is a common term for physical and mathematical 

evidences. From the physical point of view, localisation denotes the formation of, for 

instance, shear bands with strain discontinuities; in other words, localisation is a physical 

phenomenon experimentally observed. From the mathematical point of view, localisation is a 

term used to refer to the mathematical drawbacks of classic damage or plasticity models, such 

as the loss of ellipticity that leads to ill-posed problems and mesh-dependent numerical 

algorithms. The failure of the classic damage mechanics in describing localisation bands 

marked the end of this stage of the theory. 

Therefore, modern damage mechanics was developed to circumvent this issue with 

two basic ideas: a modification in the damage evolutions laws by weight functions (nonlocal 

models) and the introduction of suitable kinematics (strain or displacement discontinuities) to 

take into account the damage localisation. In common, both ideas seek one main objective: 

the development of models that lead to objective numerical results. For a detailed review on 

modern damage models see, e.g., Comi (1996), Peerlings et al. (1996), Manzoli, Oliver and 

Cervera (1998), Comi and Rizzi (2000), Comi and Perego (2001), Bažant and Jirásek (2002), 

Desmorat, Gatuingt and Ragueneau (2007), Richard and Ragueneau (2013) and references 

therein. Some of those models were specifically developed to analyse concrete structures. 

Bažant and Lin (1988) was one of the very first model to consider a nonlocal model for 

concrete. Note that Comi and Perego (2001) presented a remarkable local damage approach 

considering a fracture energy regularisation. Regarding nonlocal models, Desmorat, Gatuingt 

and Ragueneau (2007) proposed a three-dimensional nonlocal damage model with induced 

damage anisotropy. Richard and Ragueneau (2013) proposed a nonlocal damage model for 

structures subjected to cyclic loadings, where crack closure is also considered. 

In the light of the foregoing, despite their accuracy and importance, the 

aforementioned theories (theory of plasticity, fracture and damage mechanics) present 

drawbacks or limitations in terms of computational costs or structural modelling that may 
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difficult their use for some engineering applications. Alternatively, LDM presents itself as an 

interesting tool for the modelling of structural behaviour. 

Therefore, the objective of this thesis is to describe, numerically, the nonlinear 

structural behaviour by means of LDM. To reach this objective, the LDM framework must be 

extended. In this sense, this thesis is organised as follows. 

Chapter 2 presents a review in LDM for frame structures, where a historic overview 

and the main concepts of fracture and damage mechanics are briefly highlighted in order to 

present the LDM theory for reinforced concrete frames. Note that, so far, all developments in 

LDM were presented to straight frames. 

Therefore, chapter 3 depicts the first original contribution of this thesis: LDM model 

for reinforced concrete arches. This is an important advance, once some structures are 

composed by arches. Chapter 3 also presents the second original development of this thesis: 

LDM model for quasi-brittle structures. This model was used to analyse unreinforced concrete 

beams, a tunnel lining and masonry arches, showing the capability of the LDM approach. 

Chapter 4 illustrates the use of LDM to analyse high cycle fatigue problems. Such 

advance is the third original development of this thesis. At this point, some concepts of 

fracture mechanics, such as stress intensity factors, are easily applied in LDM framework. 

This new approach allows for a simple and accurate solution of high cycle fatigue problems. 

Finally, chapter 5 opens a new research frontier: the extension of the LDM framework 

to continuum media. In this thesis, bending and tensile plates were used to illustrate the 

capability and accuracy of this new LDM approach. So far, LDM was usually taken as a 

simplified methodology to analyse frame structures. Note that, for the analysed examples, the 

extended LDM shows objectivity (refinement- or size-independence). Such observation may 

characterise LDM as a new general theory to analyse the nonlinear structural behaviour. 
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2 LUMPED DAMAGE MECHANICS FOR FRAME STRUCTURES 

2.1 Preamble 

Several civil engineering structures, such as buildings, bridges, cranes and electrical 

towers, are usually analysed as frames. Thus, the frame analysis is one of the most important 

themes in structural engineering. However, many textbooks that broach the frame analysis 

present solely linear elastic approaches. 

Some researchers and engineers presented simplified methodologies in order to 

characterise nonlinear phenomena in frames. Since most of those models where developed 

during the second half of the 20th century, they were based the concept of plastic hinges. On 

what follows, some of the main contributions in the field of the simplified methodologies are 

briefly reviewed. 

The very first inelastic beam model intending to analyse the inelastic earthquake 

response of tall buildings was proposed by Clough, Benuska and Wilson (1965). In such 

model the inelastic deformations are concentrated in plastic hinges at the edges of the beam 

element and the stiffness degradation is accounted for by a perfectly plastic rule. 

Concerning the behaviour of reinforced concrete structures, an important step into a 

more realistic modelling was given by Takeda, Sozen and Nielsen (1970), where a tri-linear 

force-deflection curve was proposed based on experimental observations using an earthquake 

simulator. This model accounts for concrete cracking, steel yielding and stiffness degradation 

under cyclic load reversals by means of a specific set of rules. 

Riva and Cohn (1990) proposed a method which combines a moment-rotation 

constitutive model with a relatively simple structural model, considering the effect of lumped 

plasticity. As a general condition, for certain load level the distributions of moment and 

curvature of the structure are determined in a way to satisfy equilibrium, constitutive and 

compatibility relations. 

Mulas and Filippou (1990) proposed an analytical approach to analyse the nonlinear 

behaviour of reinforced concrete frames under seismic loading. Mulas and Filippou (1990) 

also discussed the modelling of elements and the development of efficient numerical 

techniques to analyse nonlinear dynamics. 
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Later works also applied concepts from fracture (BROEK, 1984) and continuum 

damage mechanics (LEMAITRE; CHABOCHE, 1985) in plastic hinges. Some of these 

simplified methodologies are briefly reviewed on what follows. 

Flórez-López (1993, 1995) and Cipollina, López-Inojosa and Flórez-López (1995) 

proposed a methodology which considers lumped dissipation mechanisms to analyse the 

behaviour of reinforced concrete structures. In this procedure it can be proved (with some 

matrix manipulation) that the elastic equations are the same of the direct stiffness method, 

now written using Powell’s (1969) notation. In such model the concrete cracking, steel 

yielding and stiffness degradation induced by reversal cyclic loading are accounted for using 

the Griffith criterion (damage evolution law) and a kinematic hardening law. Perdomo, 

Ramírez and Flórez-López (1999) generalised such method by considering variable axial 

forces along the frame member; and the equations of such model were rewritten in terms of 

flexibility. 

Another generalisation of the model proposed by Flórez-López (1993, 1995) was 

presented by Álvares (1999), where a criterion of bending moment transmission between the 

nodes of the same element is proposed, based on the direct stiffness method. Alva (2004) and 

Alva and El Debs (2010) proposed a modification of the model presented by Álvares (1999) 

by means of a penalising factor on the damage evolution law in order to achieve a more 

accurate reproduction of experimental responses. 

According to Perera et al. (2000), models based on Griffith criterion are not capable of 

reproduce with good precision the collapse of structures under seismic actions. Thereby, 

Perera et al. (2000) proposed a lumped damage model which considers the accumulated 

fatigue, based on the formulation presented by Perdomo, Ramírez and Flórez-López (1999). 

Later, Kaewkulchai and Williamson (2004) proposed a model to analyse progressive collapse. 

Such model is based on the frame element proposed by Kim (1995). 

Faleiro, Oller and Barbat (2010) proposed a model based on the formulation presented 

by Flórez-López (1993, 1995) and Cipollina, López-Inojosa and Flórez-López (1995), where 

modifications were proposed on yield and damage laws. Santoro and Kunnath (2013) 

proposed a beam element based on the formulation presented by Perdomo Ramírez and 

Flórez-López (1999), although some modifications on yield function and damage evolution 

laws were also proposed. 

Toi and Hasegawa (2011) proposed a lumped dissipation model where an inelastic 

hinge can appear anywhere along a Bernoulli-Euler finite beam element. The formation of the 

inelastic hinge is based on some criteria which are valid solely for Bernoulli-Euler cubic 
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elements with two integration points. According to Toi and Hasegawa (2011), this lumped 

dissipation model is mesh-independent. 

None of the aforementioned approaches is capable to reproduce the hysteresis 

phenomena in an unloading-reloading procedure. Thus, Araújo (2007) and Araújo and 

Proença (2008) proposed a formulation so-called lumped dissipation model with hysteresis 

(LDMH). This model is a generalisation of the formulation proposed by Flórez-López (1993, 

1995) with some concepts introduced by Alva (2004). 

Recently, Flórez-López and Proença (2013) presented a lumped plasticity model for 

arches. Such model is based on the elastic formulation presented by Palaninathan and 

Chandrasekharan (1985), being adopted the Powell’s notation and the plastic hinge concept. 

Summarising, it is noteworthy that several researchers around the world developed 

frame models to study inelastic phenomena. Several frame models adopted the concept of 

plastic hinges, and some of those introduced concepts of fracture and continuum damage 

mechanics. Such models are usually based on the pioneer works of Flórez-López (1993, 1995) 

and Cipollina, López-Inojosa and Flórez-López (1995), which originated a new branch of 

structural analysis called Lumped Damage Mechanics. This general interest shows the 

importance of this theme for engineering applications. 

The term Lumped Damage Mechanics was firstly coined by Marante and Flórez-

López (2003) to characterise the nonlinear modelling of frame structures using concepts of 

fracture and continuum damage mechanics with the idea of plastic hinges. Flórez-López, 

Marante and Picón (2015) published the first book about lumped damage mechanics (LDM). 

2.2 Theory of structures for planar frames  

2.2.1 An introduction to Powell’s notation 

Until early sixties linear elastic structures were usually studied through the well-

established force and displacement methods. Powell aimed for a new set of equations in an 

attempt to achieve a standardisation for a theory including geometric nonlinear effects in 

elastic structures. 

To reach this objective, Powell proposed a theoretical formulation assuming small 

strains and large displacements. The new formulation was originally applied on frames, 

therefore involving both flexural effects and axial strain effects. However, Powell ensured 

that this methodology could be extended to other finite elements, such as the elements for 

plate bending, plane and three-dimensional stress. 
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In this theory, the frame structure is understood as composed by rigid joints linked by 

deformable structural (frame) members. It is also assumed that members are initially straight 

and external forces are applied only at the joints.  

From now on, due to the further developments of this thesis, Powell’s notation is 

presented only for linear elastic frame members. The structural behaviour of the frame 

members are deduced considering the Euler-Bernoulli flexure theory: 

 

���� = �� Z��Z��  (2.1) 

 

���� = 	� Z
Z� (2.2) 

 

where ���� and ���� are, respectively, the bending moment and axial force distributions 

along the element, � is the Young’s modulus, � is the inertia moment of the cross section, 	 is 

the area of the cross section, � is the transverse displacement and 
 is the longitudinal 

displacement. Note that in the original development (POWELL, 1969) eq.(2.2) also presents a 

quadratic term 	� 2⁄ �Z� Z�⁄ �� in order to introduce the effects of large displacements. 

According to the proposed development, the deformations and rigid body 

displacements of the element must be separated. Consider a frame member deformed without 

rigid body displacements (see Figure 2.1a). In such configuration, the member presents 

generalised deformations ~�� , �� , �� which are, respectively, two flexural rotations and a 

chord elongation. Combined to such deformations, there are generalised stresses ~��, �� , ���, 

respectively, two bending moments and an axial force. 

The unique definition of the kinematics of each element in terms of the member 

generalised deformations implies a unique solution for the behaviour of the complete structure 

in terms of joints generalised displacements. Therefore, the objective turns into the correct 

representation of axial and transverse displacements at any point of the element in terms of 

the generalised deformations. 

The longitudinal 
��� and transversal ���� displacements are represented by linear 

and cubic polynomials, respectively. Considering the supports in Figure 2.1b and assuming 

that the difference between the deformed ��� and initial ���� lengths are negligible, the 

equations for longitudinal and transversal displacements along the member and the 

correspondent boundary conditions are written as follows: 
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�0� = 0											
��� = � 


��� = �� � 
(2.3) 

 

��0� = ���� = 0												 � Z�Z� �-�� = �� 												� Z�Z� �-� = �� 

���� = ������ � 2��� � ���� � ������ � ��� ��� 
(2.4) 

 

Both equations for longitudinal 
��� and transversal ���� displacements, 

parameterised by the generalised deformations, depict the deformed shape of the frame 

member shown in Figure 2.1b. 

 

 

Figure 2.1 – (a) Member actions and deformations and (b) displacements of differential element (POWELL, 

1969). 

Then, using equations (2.1) and (2.2) the distributions of bending moments and axial 

forces along the element are given by the following equations: 

 

���� = �� � �6��� � 4�£�� �  �6��� � 2�£��¤ (2.5) 

 

���� = 	� �� (2.6) 
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On what follows, Powell’s notation is employed in its reduced form to linear elastic 

frames, in order to introduce the concepts of lumped damage mechanics (FLÓREZ-LÓPEZ; 

MARANTE; PICÓN, 2015).  

2.2.2 Kinematics of plane frames 

Consider a planar frame structure composed by m members connected by n nodes 

(Figure 2.2a). The matrix of generalised displacements of the node 
 is denoted as: 

 

���� = �
� �� ���j (2.7) 

 

where 
� and �� are the displacements at the directions of the global axes: � and �, 

respectively, and �� is the total rotation of the node with respect to initial configuration; the 

superscript ¦ means transpose. Then the matrix of the generalised nodal displacements of a 

member � between the nodes 
 and � is denoted by: 

 

���� = V����j ����jXj = �
� �� �� 
� �� ���j (2.8) 

 

The generalised nodal displacement matrix of the structure is given by gathering the 

generalised displacements of all nodes: 

 

��� = ����3j ����j … ���j̈�j = �
3 �3 �3 
� … 
¨ �¨ �¨�j (2.9) 

 

Note that the generalised nodal displacement matrix describes only components of the 

nodal rigid body movement i.e. there is no explicit information about the elastic behaviour 

and shape modification of the structure. To describe element deformations, a second set of 

variables, called generalised deformations, is needed. As previously introduced, the 

generalised deformation matrix of a member �, between nodes 
 and �, is denoted by ���� =��� �� ��j, where �� and �� are the relative rotations of the cross sections 
 and � with 

respect to the chord 
 � �, respectively, and � is the chord elongation (see Figure 2.2b). 
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Figure 2.2 – (a) Planar frame structure and generalised displacements of node 
; (b) generalised deformations of 

a member � between nodes 
 and �. 
If the frame member � suffers solely rigid body movement, the generalised 

deformation matrix ���� is nil. If there is shape modification of the member, the generalised 

deformations indicate the new shape of the member. The possible shape changes according to 

the given signs of each rotation component is depicted in Figure 2.3. The terms �� and �� 
specify the flexural behaviour of the member � i.e. if �� and �� present same sign, the frame 

member � shows an ‘S-like’ deformed shape (Figure 2.3a); if �� and �� present different 

signs, the frame member � shows a ‘C-like’ deformed shape (Figure 2.3b). Positive or 

negative sign of the term � indicates if the member � is stretched or shortened from its 

original length, respectively. 

 

 

Figure 2.3 – Deformed shapes of a frame member � due to generalised deformations �� and ��. 
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The generalised deformations can be obtained from the generalised displacements by 

means of geometrical considerations. For instance, consider a frame member � connected to 

nodes 
 and � as depicted in Figure 2.4. In such figure, the frame member is presented in its 

initial configuration. Note that in Figure 2.4 both global ���� and local �� ! � axes are 

shown. For a frame member, the local axes are such that present the origin at the node 
 and 

the � -axis direction coincides with the chord 
 � � of the member. The member in its initial 

configuration forms an angle "�� with the horizontal and presents ���  as chord length. After 

nodal movements, the angle and the cord length change, being described by the generalised 

displacements of the member i.e. "� = "�������, �� = ��������. 
The generalised displacements can also be attached to the local coordinate axes 

(Figure 2.4): �� ��j = V
� �� �� 
� �� �� X. Both global ���� and local �� �� 

generalised displacement matrices are geometrically related as follows: 

 


� = 
� cos "� � �� sin "� 

�� = �
� sin "� � �� cos "� 

�� = �� 
� = 
� cos "� � �� sin "� 

�� = �
� sin "� � �� cos "� 

�� = ��  

(2.10) 

 

Eq.(2.10) can be rewritten in matrix form: 

 

�� �� = #$%����� 						 ∴ 	 #$%� =
®̄
¯̄
°̄ cos "� sin "� 0 0 0 0� sin "� cos "� 0 0 0 00 0 1 0 0 00 0 0 cos"� sin "� 00 0 0 � sin"� cos "� 00 0 0 0 0 1²³

³³
³́
 (2.11) 

 

where #$%� is the axes transformation matrix. 
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Figure 2.4 – (a) Local coordinates for a frame member � and (b) generalised displacements in the local 

coordinate axes. 

The relationship between generalised displacements and generalised deformations can 

be easily deduced from the local coordinate system (Figure 2.5). For each infinitesimal 

generalised displacement applied at a node, 
 or �, the frame member presents an specific 

deformed configuration, given by increments of generalised deformations. 

Consider a horizontal infinitesimal displacement Z
�  applied at node 
 (Figure 2.5a). 

Such infinitesimal displacement only reduces the member length i.e. 

 

Z�� = 0																														Z�� = 0																														Z� = �Z
�  (2.12) 

 

By applying a vertical infinitesimal displacement Z��  at the node 
 (Figure 2.5b), 

increments of relative rotations of the member’s cross sections 
 and � are obtained, but there 

are no cord elongation: 

 

Z�� = �Z�� �� 																														Z�� = �Z�� �� 																														Z� = 0 (2.13) 

 

An infinitesimal rotation Z��  (Figure 2.5c) results only on an increment of relative 

rotation of the member’s cross section 
: 
 

Z�� = Z�� 																														Z�� = 0																														Z� = 0 (2.14) 
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Analogously, the same procedure is applied to node � (Figure 2.5d-f) resulting on the 

following relations: 

 

Z�� = 0																														Z�� = 0																														Z� = Z
�  (2.15) 

 

Z�� = Z�� �� 																														Z�� = Z�� �� 																														Z� = 0 (2.16) 

 

Z�� = 0																														Z�� = Z�� 																														Z� = 0 (2.17) 

 

 

Figure 2.5 – Increment of generalised deformations of a frame member � due to infinitesimal generalised 

displacements at the nodes 
 and �. 
Now, considering all infinitesimal displacements at the same time, the increments of 

generalised deformations are: 
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µ¶
·
¶̧Z�� = �Z�� �� � Z�� � Z�� ��
Z�� = �Z�� �� � Z�� �� � Z�� 

Z� = �Z
� � Z
� 
								⇒ 								 �Z��� = #&�� �%��Z� ��	

∴ 								 #&�� �%� =
®̄
¯̄
° 0 � 1�� 1 0 1�� 0
0 � 1�� 0 0 1�� 1
�1 0 0 1 0 0²³

³³́ 

(2.18) 

 

where #&�� �%� is the kinematic transformation matrix of the member � in the local 

coordinate system. The substitution of eq.(2.10) in eq.(2.18) results: 

 

�Z��� = #&�� �%�#$%��Z��� = #&���%��Z���	

∴ 								 #&���%� =
®̄
¯̄
°̄ sin "��� �cos "��� 1 � sin"��� cos "��� 0
sin "��� �cos "��� 0 � sin"��� cos "��� 1
� cos"� sin "� 0 cos"� sin "� 0²³

³³
³́
 

(2.19) 

 

where #&���%� is the kinematic transformation matrix of the member �. Note that eq.(2.19) is 

valid for the nonlinear case, where the effects of geometric nonlinearity are taken into 

account. However, when such effects can be neglected (because structures are usually very 

rigid) the kinematic equation can be expressed as: 

 

"� ≅ "��																	�� ≅ ��� 																	���� ≅ #&�%����� (2.20) 

 

where #&�%� is the kinematic transformation matrix referred to the initial configuration of the 

structure.  

The kinematic equation can also be expressed in terms of the displacement matrix of 

the structure: 
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�Z��� = #&'���%��Z�� 
or 

���� ≅ #&'�%���� 
(2.21) 

 

where #&'���%� (or #&'�%�) is denoted enlarged transformation matrix and it is built by adding 

columns of zeros in the positions of nodes that do not belong to the member, i.e. 

 

#&'���%� =

=
®̄
¯̄
°̄0 0 … sin "��� �cos "��� 1 0 … �sin"��� cos "��� 0 … 0
0 0 … sin"��� �cos "��� 0 0 … �sin"��� cos "��� 1 … 0
0 0 … � cos "� sin "� 0 0 … cos "� sin "� 0 … 0²³

³³
³́
 

						↓					↓																					↓																↓													↓					↓																			↓																↓											↓													↓ 

						
3		�3 	…												
�														��											�� 		
�¼3…								
� 														�� 									�� 			…			�¨ 

(2.22) 

 

2.2.3 Statics of plane frames 

Applying the principle of virtual work, the static equilibrium of a structure can be 

described by the following equation: 

 

()*+∗ = (*-.∗  (2.23) 

 

where ()*+∗  is the deformation work, (*-.∗  is the external work of the applied forces, and the 

superscript * means virtual. 

Now, consider a general frame structure as the one depicted on Figure 2.6a. Note that 

there are applied forces and moments concentrated at nodes and distributed loads on loading 

members (blue arrows in Figure 2.6a). As usual in structural analysis, distributed loading on 

members can be substituted by equivalent forces, which are applied on nodes. Therefore, all 

external loads can be gathered in a matrix of generalised nodal external forces: 

 

�/� = �zS3 z½3 z¾3 zS� … zS� z½� z¾� … z½¨ z¾¨�j (2.24) 
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Note that for each generalised force component there are two indexes: the first one is 

related to the global reference direction i.e. 
 for horizontal force, � for vertical force and � 

for bending moment; and the second one is related to the node i.e. 1,2, … , 
, �, … n. 

Then, being ��∗� the matrix of the virtual global nodal displacements, the external 

virtual work is defined as: 

 

(*-.∗ = ��∗�j�/� (2.25) 

 

In order to obtain the expression of the deformation work for a frame element, the 

generalised stress matrix �0��j = V��, �� , ��X of a member � is immediately introduced. In 

such matrix �� and �� are the bending moments at the member ends and �� the axial force 

(see Figure 2.6b). Thus, considering the conjugated generalised deformation matrix ��∗��, the 

expression of the deformation work results: 

 

()*+∗ = ¿��∗��j�0��
À
��3

 (2.26) 

 

 

Figure 2.6 – (a) External forces on a frame structure and (b) generalised stresses in a frame member. 

The equilibrium equation is obtained by substituting (2.25) and (2.26) int (2.23): 
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¿��∗��j�0��
À
��3

= ��∗�j�/� 					⇒ 					¿��∗�j#&'�%�j�0��
À
��3

= ��∗�j�/�					∀	��∗� 
¿#&'�%�j�0��
À
��3

= �/� 
(2.27) 

 

2.2.4 Constitutive relations for linear elasticity 

So far, kinematic and equilibrium relations for frame members were obtained using 

Powell’s notation. In order to complete the set of equations, the constitutive relations must be 

deduced. Such formulation is hereby based on the theory of Euler-Bernoulli beams.  

Consider a frame member as the one depicted in Figure 2.7a. By equilibrium 

conditions and the kinematics of Euler-Bernoulli beams, the following equations are obtained:  

 

Z�������Z��� = 1�����															Z�������Z��� = ��������� 															�� = �	� Z
�����Z��  (2.28) 

 

where ������ is the bending moment distribution along the element, 1����� is the applied 

distributed load, ������ is the deflection, 
����� is the longitudinal displacement, �� is the 

axial force, and ��� and 	�� are, respectively, the flexural (Young’s modulus multiplied by 

the inertia moment of the cross section) and axial (Young’s modulus multiplied by the area of 

the cross section) rigidities. The hypothesis that the bending and axial effects are uncoupled is 

adopted. 

By solving the first ordinary differential equation of (2.28) results: 

 

����� = ÂÂ1�����
-

�
Z��

-

�
Z�� � ℂ3� � ℂ� (2.29) 

 

Considering the bending moments �� and �� at the ends of the frame member, i.e. ���0� =
�� and ������ = ���, the integration constants ℂ3 and ℂ� can be found. 

By using the solution obtained in (2.29) in the second ordinary differential equation in 

(2.28), the general solution for the deflection is then achieved: 
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����� = ÂÂÂÂ1�����
-

�
Z��

-

�
Z��

-

�
Z��Z��

-

�
� ℂ3 ��6 � ℂ� ��2 � ℂ�� � ℂ4 (2.30) 

 

where the constants ℂ� and ℂ4 are obtained through the boundary conditions ���0� = 0 and 

������ = 0 (Figure 2.7b). 

 

 

Figure 2.7 – Forces and deflections on an element � in local coordinate axes. 

Now, the generalised deformations can be calculated through the deflection equation 

i.e. 

 

�Z��Z� �-�� = �� = ��3����� � ��6��� �� � ��� 

�Z��Z� �-� Ä = �� = � ��6����� � ��3����� � ��� 

(2.31) 

 

where ��� and ��� are, respectively, the terms of the generalised deformations �� and �� that 

do not depend on the generalised stresses �� and ��. 
Considering the common case of uniformly distributed transverse load, as depicted in 

Figure 2.8, the terms ��� and ��� are: 

 

��� = 5����24��� 																																					��� = � 5����24��� (2.32) 
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Figure 2.8 – Forces on an element � in local coordinate axes. 

The solution of the third ordinary differential equation in (2.28) with the boundary 

conditions 
��0� = 0 and 
����� = � lies: 

 

�� = �	��� � (2.33) 

 

Finally, by rearranging the equations (2.31) and (2.33) the constitutive relations can be 

expressed as: 

 

���� = #67%��0�� � ��7�� (2.34) 

 

where #67%� is the flexibility matrix of the frame member � 

 

#67%� =
®̄
¯̄
¯̄
° ��3��� � ��6��� 0
� ��6��� ��3��� 0

0 0 ��	��²³
³³
³³́
 (2.35) 

 

and ��7�� = V��� ��� 0Xj is denoted matrix of initial deformations. 

Alternatively, the constitutive relations can be expressed as: 

 

�0�� = #87%����� � �07�� (2.36) 

 

where #87%� is the elasticity matrix: 
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#87%� =
®̄
¯̄
¯̄
°4����� 2����� 0
2����� 4����� 0
0 0 	���� ²³

³³
³³́
 (2.37) 

 

and �07�� = �#87%���7�� is denoted matrix of initial stresses. 

2.3 Fracture and continuum damage mechanics revisited 

In this section some of the main concepts of fracture and continuum damage 

mechanics are broached. The objective here is to present hypotheses and assumptions from 

both theories that can characterise the behaviour of materials and structures.  

2.3.1 Basics on fracture mechanics 

During the 20th century, several accidents occur due to crack nucleation and 

propagation, especially in warships (Figure 2.9) and aeroplanes. Initially, many studies were 

devoted to achieve fracture criteria based on applied forces. However, those studies could not 

explain that, for the same structure such as warships, some structures fail and some do not 

fail. 

 

 

Figure 2.9 – Warships catastrophic failure: (a) Liberty and (b) SS Schenectady; both in 1943.  

[Images from: Ferreira (2013)] 

After several tests, engineers and researchers realised the fracture process starts in 

regions with geometrical notches and rivet connection holes due to stress concentration. This 

phenomenon was neglected by the regulation codes at that time, despite the works presented 

by Kirsch (1898), Kosolov (1909) and Inglis (1913), where problems of tensile plates with 

circular and elliptic holes were solved (Figure 2.10), among others.  
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Nevertheless, those studies do not explain the crack propagation. Note that if a crack is 

considered as a flat ellipse by the minor axis tending to zero, the stress concentration factor 

(SCF) tends to infinity. This observation shows that fracture criteria based on applied forces 

are inefficient. 

 

 

Figure 2.10 – Stress concentration for tensile plates with (a) circular and (b) elliptic holes. 

Based on previous works, Griffith (1921, 1924) proposed to quantify the fracture 

process by energy criteria (see Gdoutos (2005) for a detailed historic perspective of Griffith’s 

work). Using the thermodynamics of irreversible processes, Griffith (1921, 1924) proposed an 

energy balance taking into account the crack length 29 (or crack surface, considering unitary 

width).  

Neglecting thermal actions, the total energy E; for a mechanical problem is: 

 

E; = < −(*-. + E= (2.38) 

 

where < is the deformation energy, (*-. is the external work and E= is the necessary energy 

for the formation of new crack surfaces.  

The Griffith’s energy balance results: 

 ÅE;Å9 = 0						 ⇒ 					−	Å�< −(*-.�Å9 = ÅE=Å9  (2.39) 
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Where the left branch of the minimisation is the so-called energy release rate >? and the right 

branch is the cracking resistance @? i.e. 

 

>? = −	Å�< −(*-.�Å9  

@? = ÅE=Å9  

(2.40) 

 

Now, the propagation threshold can be understood as an equilibrium point. In other 

words, there is crack growth if the energy release rate is equal to the cracking resistance 

(>? = @?). For the sake of simplicity, an academic example is now presented (GRIFFITH, 

1921, 1924): consider an infinity tensile plate with a degenerated elliptic hole (similar to the 

one in Figure 2.10b). Considering the case of plane stress, the potential energy is given by: 

 

E; = < −(*-. + E= = <� − ÆA��� 9� + 2�2Γ=9� (2.41) 

 

where <� is the deformation energy for a plate without crack, � is the Young’s modulus, A� is 

the applied tension and Γ= is the elastic surface energy of the material. 

Note that the potential energy, in terms of the crack length, is expressed by a parabolic 

function. Therefore, by simple graphical observations (Figure 2.11) it can be affirmed that if 

the crack length is smaller than a critical value i.e. 9 Ç 9CD (Figure 2.11a) any increase of 

crack length Z9 requires an increase of energy. On the other hand, if the crack length is 

greater or equal to a critical value i.e. 9 È 9CD (Figure 2.11b) any increase of crack length Z9 

results on lower values of energy. As a result, there is a crack critical length that ensures crack 

propagation with constant load (A� in this case). 

 

 

Figure 2.11 – Total energy vs crack length for an infinity tensile plate with a degenerated elliptic hole. 
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The crack propagation condition >? = @? is then expressed as: 

 

− ÅÅ9 É<� − ÆA��� 9�Ê = ÅÅ9 #2�2Γ=9�% 
2ÆA��� 9 = 4Γ= 

(2.42) 

 

Such instability condition can be rewritten as: 

 

A�√9 = Ì2�Γ=Æ  (2.43) 

 

Note that the value Í2�Γ= Æ⁄  presents only constant coefficients, which can be 

characterised as a material parameter. Then, the previous equation shows that the crack will 

grow solely if the product A�√9 reaches such material parameter. It is noteworthy that this 

result was experimentally verified by Griffith (1921, 1924) for glass plates. 

The works developed by Griffith were the genesis of what is now called fracture 

mechanics (see Broek (1984) for a review). 

Despite the efficacy of the energy balance, obtaining such relation is a challenging 

task. Therefore, Irwin (1957) proposed a new quantity so-called stress intensity factor (SIF). 

The adoption of SIF intends to overcome the SCF for fracture analysis, allowing an accurate 

description of the stress state near the crack tip.  

For a crack, any behaviour can be expressed by the combination of three modes 

(Figure 2.12): opening (mode I), in-plane shear (mode II) and out-of-plane shear (mode III). 

There is a SIF for each mode (EF , EFF , EFFF). So, the energy release rate can be expressed by the 

stress intensity factors:  

 

>? = 1� �EF� + EFF� + EFFF�1 + G� 																																			for	plane	stress 
>? = �1 − G��� �EF� + EFF� + EFFF�1 − G� 																						for	plane	strain 

(2.44) 

 

where G is the Poisson’s ration. 
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Figure 2.12 – Fracture modes. 

For the Griffith fundamental problem, only mode I is active. Then, considering plane 

stress, the energy release rate can be expressed as: 

 

>? = EF��  (2.45) 

 

Therefore, the stress intensity factor is now expressed by the applied stress: 

 

2ÆA��� 9 = EF�� 								⇒ 								 EF = A�√2Æ9 (2.46) 

 

Thus, the instability condition occurs for critical values of SIF, i.e. EH = AH√2Æ9, where AH 

is the critical value for the applied stress. 

2.3.2 Basics on continuum damage mechanics 

For some problems, the inelastic phenomena occur due to diffuse distribution of 

micro-cracks or other micro-defects that affect material integrity. A pioneer work regarding 

material integrity was proposed by Kachanov (1958) and later developed by Rabotnov (1968). 

Afterwards, Lemaitre and Chaboche (1985) used the thermodynamics of irreversible 

processes to formulate, in a formal manner, the so-called continuum damage mechanics. 

Continuum damage mechanics is based on the introduction of an internal variable that 

measures micro-defects density, such as micro-cracks and micro-voids. Such micro-defects 

are too small to be considered as discrete cracks and though not small enough to be neglected. 

The quantification of micro-defects cannot be done in the structural scale (macroscale). Thus, 
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the representative volume element (RVE) is introduced (Figure 2.13). The RVE is a portion of 

a material represented in mesoscale, which allows the micro-defects quantification.  

Consider an arbitrary cross section IJJK of the RVE, being L the total area and LM the 

area of the micro-cracks, micro-voids or other defects (Figure 2.13a). Then, the effective area LN is given by: 

 

LN = L − LM (2.47) 

 

The mechanical resistance loss at an arbitrary cross section IJJK is, by definition, the 

local damage OIJJK (LEMAITRE; CHABOCHE, 1985), measured as (Figure 2.13b): 

 

OIJJK = LML  (2.48) 

 

Observe that the damage variable OIJJK lies between zero and one. If OIJJK = 0 the micro-

defects are negligible or do not exist; if OIJJK = 1 the cross section IJJK is totally damaged, 

resulting that the RVE breaks in two parts.  

 

 

Figure 2.13 – Representative volume element (RVE). 

For the sake of simplicity, henceforward the hypothesis of isotropic damage is 

adopted, i.e. 

 

OIJJK = O						∀	IJJK (2.49) 
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Considering a uniaxial case, if there is an applied force on an undamaged RVE the 

resistance force is the product between the Cauchy stress and the cross section area i.e. AL. If 

micro-cracks nucleate and propagate in the RVE the resistance force can be calculated in a 

similar way; however, since the cross section presents now an effective area LN smaller than 

the total area, the Cauchy stress in the resistance force is then replaced by an effective stress 

i.e. APLN. Therefore, by the equality AL = APLN the effective stress is obtained: 

 

AP = ALLN = ALL − LM 							⇒								AP = A1 − O (2.50) 

 

Note that AP È A i.e. O = 0		⇒		AP → A (Figure 2.14a) and O → 1		⇒		AP → ∞ (Figure 

2.14b). Considering this observation, Lemaitre and Chaboche (1985) proposed the so-called 

hypothesis of strain equivalence, which dictates that the deformation behaviour presented by 

the material is solely affected by damage in the form of effective stress (Figure 2.15): 

 

AP = �Q* 		⇒ 		A = �1 − O���Q − QR� (2.51) 

 

where � is the Young’s modulus, Q is the total strain, Q* is the elastic strain and QR is the 

plastic strain. 

 

 

Figure 2.14 – Relation between the effective and Cauchy stress with damage variable O in the following 

intervals: (a) #0.0,0.9% and (b) #0.0,1.0�. 
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Figure 2.15 – Hypothesis of strain equivalence. 

Through the hypothesis of strain equivalence, Hooke’s law (2.51) can be expressed as: 

 

Q − QR = A�1 − O�� = 1� A + O�1 − O�� A						 ∴ ÙQ* = 1� A															
Q) = O�1 − O�� A (2.52) 

 

where the total strain is now understood as a sum between elastic, damage and plastic strains 

i.e. Q = Q* + Q) + QR. Obviously, if O = 0		⇒		Q) = 0 otherwise Q) Ú 0 (for a certain value 

of A). 

By mathematical definition, the damage variable may reach values near to one; 

however, physically, materials collapse with lower values of damage. Therewith, here the 

term ultimate damage OS is adopted for such values of damage. According to Lemaitre and 

Chaboche (1985), materials usually present OS around 0.5 to 0.9. 

Now, consider a generalised Griffith criterion (MARIGO, 1985) applied to continuum 

damage mechanics: 

 

>T − @T Û 0 (2.53) 

 

where >T is the energy release rate of a damaged RVE and @T is the “damage resistance 

function” (FLÓREZ-LÓPEZ; MARANTE; PICÓN, 2015). The energy release rate can be 

expressed as: 
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>T = −	Å<ÅO = Å<∗ÅO  (2.54) 

 

being < the strain energy and <∗ the complementary energy, given by: 

 

< = 12AQ = 12 �1 − O��Q� 

<∗ = 12AQ = 12 A��1 − O�� 

(2.55) 

 

Finally, the energy release rate of a damaged RVE can be written in terms of stiffness 

or flexibility i.e. 

 

>T = 12�Q� = 12 A��1 − O��� (2.56) 

 

2.4 Lumped damage mechanics for reinforced concrete frames 

Nowadays, fracture and continuum damage mechanics are not often used in practical 

applications of civil engineering, but with limited use in specific fields. For civil engineering, 

such procedures are not suitable for practical purposes. On the other hand, the concepts 

behind both theories are strongly supported by thermodynamics. Then, the main idea 

presented by Flórez-López (1993, 1995) was the modelling of reinforced concrete structures 

using the concepts of fracture and continuum damage mechanics coupled with the concept of 

plastic hinge. 

Such model was the basis of several studies around the world, with several 

applications to reinforced concrete buildings, bridges and arches, for plane (see e.g. 

Cippolina, López-Inojosa and Flórez-López (1995), Liu and Liu (2004), Araújo and Proença 

(2008), Faleiro, Oller and Barbat (2010), Alva and El Debs (2010), Toi and Hasegawa (2011), 

Perdomo et al. (2013), Santoro and Kunnath (2013), Amorim, Proença and Flórez-López 

(2013), and some of the references therein) or three-dimensional frames (MARANTE; 

FLÓREZ-LÓPEZ, 2003), crack propagation in steel beams under ultra-low cycle fatigue (BAI 

et al., 2016), tunnel linings and masonry arches (AMORIM; PROENÇA; FLÓREZ-LÓPEZ, 
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2014a, 2014b). All these developments are gathered in a new branch of structural mechanics 

which is called lumped damage mechanics (LDM).  

Once this chapter is intended to present a review, the LDM for reinforced concrete 

(RC) frames is now presented. 

2.4.1 Constitutive relations for inelastic frames 

The nonlinear modelling of RC structures with LDM is carried out by assuming that 

the inelastic phenomena are concentrated at hinges, located at the ends of the elastic frame 

member. In other words, the frame element is considered as an assemblage of a linear elastic 

beam-column with two inelastic hinges at the edges (Figure 2.16a).  

Considering the hypothesis of strain equivalence, the generalised deformations (Figure 

2.16b) can be described as eq.(2.52): 

 

���� = ��U�� + V�WX� + ��Y�� (2.57) 

 

where ��U�� is the matrix of generalised deformations of the elastic beam-column, V�WX� is 

the damage deformation matrix and ��Y�� is the matrix of plastic deformations.  

The elastic generalised deformations are described by eq.(2.34), conveniently 

rewritten here: 

 

��U�� = #67%��0�� + ��7�� (2.58) 

 

being #67%� the elastic flexibility matrix of the slender frame member, �0�� the matrix of 

generalised stresses (Figure 2.16c) and ��7�� the matrix of initial deformations. 

The plastic deformations are related to reinforcement yielding. Usually, plastic 

elongations are neglected for reinforced concrete structures. Therefore, the matrix of plastic 

deformations contains solely the plastic rotations of the hinges i.e. 

 

��Y�� = Ü��R��R0 Ý (2.59) 
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The concrete cracking is accounted for by damage variables at the hinges (Z�, Z�). As 

the continuum damage variable (O), the ones from lumped damage mechanics (Z� , Z�) lie 

between zero and one and quantify the loss of (flexural) integrity at the hinges. 

Revisiting the hypothesis of strain equivalence (2.52), the damage deformations can be 

expressed as: 

 

V�WX� = #[�\�%��0�� 									 ∴ #[�\�%� =
®̄̄
¯̄°

��Z�3����1 − Z�� 0 0
0 ��Z�3���~1 − Z�� 00 0 0²³³

³³́ (2.60) 

 

where #[�\�%� is a matrix of additional flexibility due to concrete cracking. Note that if Z� = 0 and Z� = 0 the matrix #[�\�%� is nil i.e. there is no concrete cracking; on the other 

hand, if Z� → 1 and Z� → 1 the inelastic hinges present the behaviour of perfect hinges, found 

in textbooks of structural analysis, which means that the concrete cracking is extremely 

severe. 

 

 

Figure 2.16 – Lumped damage mechanics for RC frames: (a) inelastic hinges, (b) generalised deformations, (c) 

generalised stresses and (d) inelastic phenomena 

By substituting (2.58) and (2.60) in (2.57), the constitutive relation results: 

 

�� −�Y�� = #6�\�%��0�� + ��7�� (2.61) 
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where  

 

#6�\�%� = #67%� + #[�\�%� =
®̄̄
¯̄̄
° ��3����1 − Z�� − ��6��� 0

− ��6��� ��3���~1 − Z�� 0
0 0 ��	��²³

³³³
³́
 (2.62) 

 

is the flexibility matrix of a damaged frame member. 

The constitutive relation can also be expressed in terms of stiffness i.e. 

 

�0�� = #8�\�%��� − �Y�� + �07�\��� (2.63) 

 

where #8�\�%� = #6�\�%�Þ3 is the elasticity matrix of a damaged frame member  

 

#8�\�%� = �+ ®̄̄
°̄ 12�1 − Z�� 6�1 − Z��~1 − Z�� 06�1 − Z��~1 − Z�� 12~1 − Z�� 00 0 	���+��²³³

³́
 

																																				∴ �+ = 13 − �1 − Z��~1 − Z�� �����  

(2.64) 

 

and �07�\��� = −#8�\�%���7��. 

2.4.2 Generalised Griffith criterion for an inelastic hinge 

Previously, a generalisation of the Griffith criterion was presented for a simple 

uniaxial case using continuum damage mechanics. Now, a generalised Griffith criterion is 

presented for the aforementioned inelastic hinges. 

Consider a damaged frame member as the one presented in Figure 2.16a. The 

complementary energy of such member is given by: 
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<∗ = 12 �0��j�� − �Y�� = 12 �0��j#6�\�%��0�� + 12 �0��j��7�� (2.65) 

 

Then, the energy release rates of hinges 
 and � are expressed in terms of damage 

variables. Therefore, those quantities are now called “damage driving moments” (FLÓREZ-

LÓPEZ; MARANTE; PICÓN, 2015) and expressed as: 

 

>�) = Å<∗ÅZ� = ß33� ���2�1 − Z��� = �����6����1 − Z��� 

>�) = Å<∗ÅZ� = ß��� ���2~1 − Z��� = �����6���~1 − Z��� 

(2.66) 

 

Since the damage evolution is based on Griffith criterion, the damage evolution laws 

for both hinges are given by: 

 

à∆Z� = 0				if				>�) Ç @�)>�) = @�)				if				∆Z� > 0
à∆Z� = 0				if				>�) Ç @�)>�) = @�)				if				∆Z� > 0

 (2.67) 

 

where the terms @�) and @�) are the crack resistance functions of the inelastic hinges. 

The crack resistance functions were obtained through experimental observations 

(FLÓREZ-LÓPEZ; MARANTE; PICÓN, 2015). Note that for materials modelled using 

fracture mechanics, such as the glass plates tested by Griffith (1921, 1924), the experimental 

measurement of the crack resistance function is directly related to the crack length. On the 

other hand, for RC frames modelled with inelastic hinges, the measurement of the quantity 

and lengths of cracks is pointless. Therefore, a variable named damage describes the loss of 

flexural rigidity due concrete cracking. Such variable can be measured by a mono-sign cyclic 

test (FLÓREZ-LÓPEZ; MARANTE; PICÓN, 2015). In order to represent a beam-column 

joint on a frame structure subjected to bending, an RC specimen, as the one depicted in Figure 

2.17, was experimentally studied (FLÓREZ-LÓPEZ; MARANTE; PICÓN, 2015).  
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Figure 2.17 – Experimental test for crack propagation in RC elements due to bending: test set-up.  

[After Flórez-López, Marante and Picón (2015)] 

Considering the frame member assumed to be half of the specimen, located between 

nodes 1 and 2, the constitutive relation is: 

 

�� − ��R = − ��6����3 + ��3����1 − Z���� (2.68) 

 

From the equilibrium relations, the bending moments result: 

 

�3 = 0																										�� = z��2  (2.69) 

 

where z is the applied force.  

Finally, the kinematic equation for this problem is: 

 

�� = ]�� (2.70) 

 

where ] is the total deflection of the beam-column pseudo-joint.  

The substitution of (2.69) and (2.70) in (2.68) results: 

 

z = ^�Z�~] − ]R� 																	 ∴ µ¶·
¶̧Z = Z�																																																				^�Z� = ^��1 − Z� = 6����� �1 − Z�]R = ��R��																																													

 (2.71) 
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Note that the quantity ^�Z� is measured through an unloading-reloading process in the 

specimen (Figure 2.18). The value ^�Z� quantifies a slope that crosses the point where the 

elastic unloading starts and the abscissa-axis for ] = ]R (Figure 2.18). Thus, the value ^� 

represents the specimen while undamaged. Now, the damage variable can be experimentally 

calculated: 

 

Z = 1 − ^�Z�^�  (2.72) 

 

 

Figure 2.18 – Graphical representation of damage measurement.  

[After Flórez-López, Marante and Picón (2015)] 

During the test, the specimen presents concrete cracking as depicted in Figure 2.19. 

 

 

Figure 2.19 – Concrete cracking. 

With experimental measurements, a graph for damage Z (2.72) in terms of the energy 

release rate >) (2.67) is plotted (Figure 2.20). Once the energy release rates >) are computed 

while damage evolves, according to the generalised Griffith criterion, previously presented, 
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for such conditions >) is equal to the crack resistance function (@)). Therefore, the 

mathematical expression that describes the experimental data with good accuracy is given by 

(FLÓREZ-LÓPEZ; MARANTE; PICÓN, 2015): 

 

@)�Z� = @� + _ ln�1 − Z�1 − Z  (2.73) 

 

where @� and _ are parameters that depend on specimen characteristics.  

 

 

Figure 2.20 – Damage as a function of energy release rate.  

[After Cipollina, López-Inojosa and Flórez-López (1995)] 

In order to complete the modelling of RC frames, nonlinear behaviour of the 

reinforcement must be studied. With some algebraic manipulation, the constitutive relation of 

the test specimen (2.68) can be rewritten as: 

 

��R = ]�� − ��3����1 − Z���� (2.74) 

 

Thus, the plastic rotation of the cracked section can be graphed (Figure 2.21) using the 

bending moment and damage variable, both experimentally acquired.  

Once most of lumped damage models were proposed to analyse RC structures under 

seismic conditions, the yield function of an inelastic hinge 
 is described by kinematic 

hardening: 
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�̀ = � ��1 − Z� − a���R� − �b� Û 0 (2.75) 

 

where a� and �b� are parameters that depend on specimen characteristics. Therefore, the 

plastic deformation evolution laws for a frame member � are: 

 

à∆��R = 0				if				 �̀ Ç 0
�̀ = 0				if				∆��R Ú 0																																																																								

à∆��R = 0				if				 �̀ Ç 0
�̀ = 0				if				∆��R Ú 0 							 ∴ �̀ = â ��1 − Z� − a���Râ − �b� Û 0 (2.76) 

 

 

Figure 2.21 – Generalised stress as a function of plastic deformation.  

[After Cipollina, López-Inojosa and Flórez-López (1995)] 

So far, for each inelastic hinge, four parameters where introduced in order to describe 

the structural behaviour of RC frames. Regarding the aforementioned RC specimen, such 

parameters were obtained by means of experimental observations. However, for any RC 

frame, those parameters can be accurately obtained through the classic theory of reinforced 

concrete. Since there are four parameters to determine, other four known quantities are 

needed. 

Regarding concrete cracking, from the generalised Griffith criterion the following 

relation is obtained: 

 

>) = @) 				⇒ 			 ß���2�1 − Z�� = @� + _ ln�1 − Z�1 − Z  (2.77) 
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Note that such equation relates moment and damage (Figure 2.22). According to the 

classic theory of reinforced concrete, if the moment reaches a value called first cracking 

moment �CD (see Appendix A) cracks nucleate. At this point there is no damage, then the 

initial crack resistance @� is obtained: 

 ß��CD�2 = @� (2.78) 

 

From the classic theory of reinforced concrete it is well-known that the first cracking 

moment depends on the axial force on the element, then, @� is also a function of the axial 

force. 

 

 

Figure 2.22 – Moment as a function of damage, as stated in the generalised Griffith criterion. 

The maximum value of bending moment, called ultimate moment (�S), occur at a 

specific value of damage (Figure 2.22). Such value is called ultimate damage (ZS), which 

occurs in the maximum condition i.e. 

 Å�ÅZ = 0				 ⇒ 			2�1 − ZS�@� + _#ln�1 − ZS� + 1% = 0 (2.79) 

 

If Z = ZS ⇒ � = �S and substituting the value of @� in (2.77) results: 

 ß��S�2�1 − ZS�� = ß��CD�2 + _ ln�1 − ZS�1 − ZS  (2.80) 
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The equations (2.79) and (2.80) are a nonlinear system, which once solved gives the 

values of the hardening parameter (_) and ultimate damage (ZS). Note that the ultimate 

damage (ZS) usually takes a value from 0.6 to 0.65, and the hardening parameter (_) also 

depends on the axial force. 

Since the reinforcement only yields when cracks are already propagating, it is 

reasonable to consider the plastic moment �R larger than the first cracking moment (�CD). As 

for the ultimate moment, the plastic moment is directly related to a damage value, called 

plastic damage (ZR). Such value (ZR) represents the cracking density when the reinforcement 

starts yielding. Then, if Z = ZR ⇒ � = �R (2.77) results: 

 ß��R�2~1 − ZR�� = @� + _ ln~1 − ZR�1 − ZR  (2.81) 

 

At this point the yield function is nil and there is no plastic rotation yet i.e. �R = 0. 

Thus, the parameter �b results: 

 

�b = �R1 − ZR (2.82) 

 

The yield function is also nil when moment reaches its ultimate value, resulting: 

 

a = 1�SR   �S1 − ZS −�b£ = 1�SR � �S1 − ZS − �R1 − ZR� (2.83) 

 

where �SR is the ultimate plastic rotation (see Appendix A).  

The equations (2.81) to (2.83) compose a system in which the parameters a, �b and ZR are the solution. The value ZR usually lies between 0.3 and 0.4. 

2.5 Numerical implementation 

Uzcategui (2012) originally developed the finite element programme used in this 

thesis. The numerical implementation was made in two levels: global and local. The global 

level gathers the set of routines which solve the equilibrium equations. The local level 
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presents a routine that contains the finite element, being responsible for the structural 

behaviour. 

Consider the equilibrium equation (2.27), conveniently rewritten: 

 

�c� = ¿#&'�%�j�0��À
��3 − �/� = �7� (2.84) 

 

Equation (2.84) establishes that the resolution is only obtained when the residual force 

vector �c�, defined as the difference between the internal and external forces, is null. 

A finite element programme (UZCATEGUI, 2012) is here composed of a set of 

routines that process the user input, generate the structure calculation process step-by-step and 

provide the analysis results in tabulated or graphical form. At each calculation step, the 

programme solves numerically the problem defined by the matrix equation (2.84) accounting 

for the boundary conditions. These conditions are defined by known displacement values in 

regions where the forces are unknown and vice-versa. 

The finite element is fundamentally inserted in the routine that calculates the internal 

forces �d�� = #&'�%�j�0�� from displacements. The computational procedure that expands the 

matrices of internal forces and combines them in the matrix of residual forces is the well-

known assemblage algorithm. 

The frame element is then defined by the kinematic equation (2.21), which allows the 

strain calculation from displacements, by the elastic (2.61), damage (2.67) and plasticity 

(2.75)-(2.76) laws, which provide the generalised stresses and internal variables from strains 

and, finally, by the equilibrium equation �d�� = #&'�%�j�0��, which returns the internal forces 

from stresses.  

The system of global equilibrium equations of the structure is, in general, nonlinear. 

Therefore such system must be solved by linearization of the problem with some iterative 

method to correct the solution estimative, being the Newton’s method or any of its variants 

usually employed. In this case, due to the linearization, it is also necessary the calculation of 

tangent stiffness matrix, or Jacobian, of internal forces: #Åd��� Å�⁄ %�. 

Note that the constitutive model, represented by the set of equations (2.61), (2.67), 

(2.75)-(2.76) is also nonlinear. Therefore, it is necessary the use of Newton’s method 

combined with a predictor and corrector strategy in local character. It is noteworthy that an 

especial characteristic of this type of local problem is that the convergence conditions vary 
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significantly with the damage i.e. as higher the damage value to be calculated as smaller is the 

increment size. Furthermore, loading increases are usually followed by damage concentration 

on few hinges. That is why the classical procedure, which involves calculations of both global 

and local equilibrium problems, is not efficient. In this case, it is preferable to use different 

steps of calculation on each element (AVÓN, 2002). Figure 2.23 shows a possible local 

algorithm based on this idea. It is noteworthy that the following developments are based on 

this algorithm. 

 

 

Figure 2.23 – Multistep algorithm. 
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3 LUMPED DAMAGE MECHANICS FOR ARCHES 

The lumped damage models presented in this chapter are original developments of this 

thesis, being already published in Amorim, Proença and Flórez-López (2013, 2014a, 2014b). 

These procedures are based on the lumped plasticity model proposed by Flórez-López and 

Proença (2013), where the elastic formulation was firstly presented by Palaninathan and 

Chandrasekharan (1985). 

3.1 Statics and kinematics of arches 

Consider the frame illustrated in Figure 3.1 where an arch element	�, between the 

nodes 
 and �, is highlighted. Such element is characterised by a radius (@�) and an angle 

(e�). Two coordinate systems are defined: global ��, �� and local �� , ! �. The angle 

between the axes � and !  is called f�. The angles e� and f� may be expressed as: 

 

cos f� = �� − �H@�  

cos�e� + f�� = �� − �H@�  

(3.1) 

 

being ��H , �H� coordinates of the circle centre which contains the arch element, and ���, ��� 
and ~�� , ��� the global coordinates of nodes 
 and �, respectively. 

 

 

Figure 3.1 – Structure with a circular arch. 
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Three sets of static variables are introduced: the nodal forces matrix in global 

coordinates �d�� = �1S� 1½� 1¾� 1S� 1½� 1¾��j (Figure 3.2a), the nodal forces 

matrix in local coordinates �d �� = V1S� 1½� 1¾� 1S� 1½� 1¾� Xj (Figure 3.2b) and 

the generalised stress matrix �0�� = ��� �� �� 	�j (Figure 3.2c). The nodal forces and 

generalised stress matrices are related by the equilibrium equations: 

 �d �� = #&�� �%�j�0�� − �d7 �� �d�� = #&���%�j�0�� − �d7�� 									∴ #&���%� = #&�� �%�#$%�j 

(3.2) 

 

where #&�� �%� and #&���%� are the kinematic transformation matrices in local and global 

coordinates, respectively. The term #$%� is the usual geometric transformation matrix which 

relates the nodal forces matrices of the two reference systems: �d�� = #$%��d ��. Note that �d7�� and �d7 �� are called matrices of initial forces at global and local coordinates, 

respectively. For the sake of simplicity, in this thesis, such matrices are deduced only for 

uniformly radial load 5� (Figure 3.1): 

 

�d7�� = #$%��d7 �� = #$%� ã0 5�@��cose� − 1�sine� 0 0 5�@�cose� − 1�sine� 0äj (3.3) 

 

being #&�� �%� and #$%� given as follows: 

 

#&�� �%� =
®̄̄
¯̄̄
°0 − 1@� sine� 1 − 1@� cose�@ sine� 0
0 − 1@� sine� 0 − 1@� cose�@ sine� 1
1 −1 + cose�sine� 0 −1 −1 + cose�sine� 0²³³

³³³́ (3.4) 

 

#$%� =
®̄̄
¯̄°
cos f� sin f� 0 0 0 0− sinf� cos f� 0 0 0 00 0 1 0 0 00 0 0 cos�e� + f�� sin�e� + f�� 00 0 0 − sin�e� + f�� cos�e� + f�� 00 0 0 0 0 1²³

³³³́ (3.5) 
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Note that #&�� �%� is easily obtained by equilibrium relations between �d �� (Figure 

3.2b) and �0�� (Figure 3.2c), once it is assumed no distributed loads (5� = 0). 

By assuming small displacement regime, the equilibrium becomes: 

 

¿�d��À
��3 = �/� 					⇒ 					¿#&'�%�j�0��À

��3 = �/� +¿Vd7'X�À
��3  (3.6) 

 

where the #&'�%� and Vd7'X� are expanded matrices as the ones presented for straight frames. 

 

 

Figure 3.2 – Static variables: (a) internal forces in global and (b) local coordinates, and (c) generalised stresses. 

The right-hand part of the matrix equilibrium equation (3.6) includes two terms of 

external forces: the ones applied on the nodes and those resulting from the distributed forces 

on the element. Therefore, the virtual work equation ensuing from (3.6) is: 

 

��∗�j ¿#&'�%�j�0��À
��3 = ��∗�j å�/� +¿Vd7'X�À

��3 æ 

or 

¿��∗��j�0��À
��3 = ��∗�j å�/� +¿Vd7'X�À

��3 æ 

(3.7) 

 

The term inside the parentheses in (3.7) is the general external forces. The left-hand 

term of (3.7) represents the virtual work of generalised stresses and the right-hand the external 

virtual work. Thus, being ���� = ��� �� ���j the matrix of generalised deformations, the 

kinematic equation results: 

 



70 

���� = #&'�%���� (3.8) 

 

3.2 Constitutive relations for arches 

3.2.1 Linear elastic arches 

Regarding only linear elasticity and assuming the Euler-Bernoulli beam theory 

(@�/s > 10), the strain energy of an arch element � is: 

 

<� = Â ������2��� + �����2	�� �
èÄ
� @�Z� (3.9) 

 

where ��� and 	�� are the conventional bending and axial stiffness, ���� and ���� are the 

bending moment and axial force at a section located at an angle � (Figure 3.3): 

 

���� = �� + ��@��1 − cos �� − �� +�� + ��@��1 − cose��sine� sin �
+ 5�@�� sin � − sin � cose� − sine� + sine� cos �sine�  

���� = �� +�� + ��@��1 − cose��@� sine� sin � + �� cos �
− 5�@� sin � − sin � cose� − sine� + sine� cos �sine�  

(3.10) 

 

 

Figure 3.3 – Shear force, axial force and bending moment at a section of the elastic component. 
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The elastic deformations are obtained through the Castigliano’s Theorem: 

 

��* = Å<�Å�� 																									��* = Å<�Å�� 																									��* = Å<�Å��  (3.11) 

 

In matrix notation, such deformations can be written as: 

 

��U�� = #67%��0�� + ��7�� (3.12) 

 

where #67%� is the elastic flexibility matrix: 

 

#67%� = éß33� ß3�� ß3��ß3�� ß��� ß���ß3�� ß��� ß��� ê = ®̄̄
¯̄̄
°̄ Å�<�Å��Å��

Å�<�Å��Å��
Å�<�Å��Å��Å�<�Å��Å��

Å�<�Å��Å��
Å�<�Å��Å��Å�<�Å��Å��

Å�<�Å��Å��
Å�<�Å��Å�� ²³³

³³³
³́
 (3.13) 

 

and ��7�� is the initial deformation matrix produced by the distributed forces on the arch 

element: 

 

��� = 5�@�2 �5@��	�� sine� + ��� sine� − 2@��	��e� cose� − 3@��	��e� − ���e������cose� + 1�	��  

��� = 125�@��@��	�� sine� − @��	��e� + ��� sine� + ���e������cose� + 1�	��  

�� = 5�@������ sine� + 3@��	�� sine� − @�	��e� cose� − ���e� − 2@�	��e������cose� + 1�	��  

(3.14) 

 

Since <� is expressed by flexural and axial terms, the flexibility matrix can be 

understood as a sum between two parts: flexural h67+i� and axial #67?%� flexibility matrices i.e. 

 

#67%� = h67+i� + #67?%� (3.15) 
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where 

 

ß33+ = @��−8 sine� + 6e� − 4e��cose��� + 6 cose� sine��4����sine���  

ß3�+ = @��−4 sine� + 2e� − 2 cose� sine��4����sine���  

ß3�+ = @���10 cose� sine� + 6e� − 2e� cose� − 4e��cose��� − 10 sine��4����sine���  

ß��+ = @��2e� − 2 cose� sine��4����sine���  

ß��+ = @���−2 sine� − 2e� cose� + 2e� + 2 cose� sine��4����sine���  

ß��+ = @���−12 sine� + 12 sine� cose� − 4e��cose��� − 4e� cose� + 8e��4����sine���  

(3.16) 

 

and 

 

ß33? = 2e� − 2 cose� sine�4@�	���sine���  

ß3�? = 2e� − 2 cose� sine�4@�	���sine���  

ß3�? = 2 sine� + 2e� − 2 cose� sine� − 2e� cose�4	���sine���  

ß��? = 2e� − 2 cose� sine�4@�	���sine���  

ß��? = 2 sine� + 2e� − 2 cose� sine� − 2e� cose�4	���sine���  

ß��? = @� 4 sine� − 4 sine� cose� − 4e� cose� + 4e�4	���sine���  

(3.17) 

 

Geometrically, an arch segment can be degenerated to a straight line segment 

considering an infinite radius. Then, if @� → ∞ the angle e� tends to zero, @� sine� tends to 

the length of the element �� and f� becomes its orientation. Thus, the arch frame member can 

be degenerated to a straight frame member: 
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limíÄ→î#&7%� 	=
®̄̄
¯̄°
sin f��� −cos f��� 1 − sinf��� cos f��� 0sin f��� −cos f��� 0 − sinf��� cos f��� 1−cos f� −sinf� 0 cosf� sin f� 0²³³

³³́ 
limíÄ→î�d7�� = 5���2 �sin f� −cosf� 0 sin f� −cos f� 0�j 

limíÄ→î#67%� =
®̄̄
¯̄̄
° ��3��� − ��6��� 0
− ��6��� ��3��� 0

0 0 ��	��²³
³³³
³́ 				 ∴

µ¶¶
¶·
¶¶¶̧ limíÄ→îh67+i� = ®̄̄

°̄ ��3��� − ��6��� 0
− ��6��� ��3��� 00 0 0²³

³³́

limíÄ→î#67?%� = ï0 0 00 0 00 0 ��	��ð																
 

limíÄ→î��7�� = 5����24��� �1 −1 0� 

(3.18) 

 

Now, considering only a linear elastic straight frame element, the stiffness matrix of 

such element, given by: limíÄ→î#&7%�j#67%�Þ3#&7%�, is identical to the one presented in 

textbooks of structural analysis of the so-called direct stiffness method. 

3.2.2 Reinforced concrete arches 

Analogously to straight frames, the arch member can be used to analyse RC structures. 

The finite element is composed by an assemblage of an elastic arch member and inelastic 

hinges located at its edges, as presented in Figure 3.4. 

 

 

Figure 3.4 – An arched frame element with two inelastic hinges. 
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Again, consider that the generalised deformations ���� are described as a composition 

of an elastic part ��U�� = #67%��0�� + ��7��, a part due to damage V�WX� = #[�\�%��0�� 

and a plastic part ��Y��: 

 

���� = ��U�� + V�WX� + ��Y�� (3.19) 

 

being �\�j = �Z� Z� Z?� the damage variables matrix, which includes now bending 

damage variables (Z� and Z�) and an axial damage parameter Z? (see Figure 3.5), #67% the 

elastic flexibility matrix (previously presented) and #[�\�% the flexibility matrix on the 

hinges, given by: 

 

#[�\�%� =
®̄̄
¯̄̄
° Z��1 − Z�� ß33+ 0 0

0 Z�~1 − Z�� ß��+ 0
0 0 Z?�1 − Z?� ß��? ²³

³³³
³́
 (3.20) 

 

 

Figure 3.5 – Representation of bending damage and axial damage 

Substituting the relations that characterise ��U�� and V�WX� in the eq.(3.19), the 

constitutive law is expressed as: 
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�� −�Y�� = #6�\�%��0�� + ��7�� (3.21) 

 

being ��7�� the matrix of generalised initial deformations (previously presented) and #6�\�%� = #67%� + #[�\�%� the damaged flexibility matrix: 

 

#6�\�%� =
®̄̄
¯̄̄
° 11 − Z� ß33+ + ß33? ß3�� ß3��

ß3�� 11 − Z� ß��+ + ß��? ß���
ß3�� ß��� ß��+ + 11 − Z? ß��? ²³

³³³
³́
 (3.22) 

 

Inelastic hinges may experience plastic rotations and permanent elongations as shown 

in Figure 3.6. The plastic power (Rk 	 is therefore: 

 

(Rk 	 = ��0��k�R − ��0�∆k �R +��e���k�R − ��e��∆k�R (3.23) 

 

where ��R and ��R are plastic rotations and ∆�R and ∆�R are plastic elongations at the inelastic 

hinges 
 and � (see Figure 3.6); ��0� and ��0� are the bending moment and axial force on 

hinge 
, respectively, and, analogously, ��e�� and ��e�� are the bending moment and axial 

force on hinge �, respectively. 

 

  

Figure 3.6 – Plastic rotations and elongations. 

On the other hand, the plastic power (Rk 	 can also be expressed in terms of the 

generalised plastic deformations ��Y� = V��R, ��R, �R 	Xj i.e. 
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(Rk 	 = ���k�R +���k�R + 	��kR = ��0��k�R − ��0�∆k �R +��e���k�R −��e��∆k�R (3.24) 

 

Afterwards, using both relations of (3.10) results in the following equations: 

 ��0� = �� 
��e�� = �� + ��@� +��@�  

��0� = �� ��e�� = −�� 
(3.25) 

 

Thus, 

 

��R = ��R − ∆�R@� 

��R = −��R − ∆�R@� 

�R = −~∆�R + ∆�R� 
(3.26) 

 

So, neglecting the plastic elongations ∆�R and ∆�R the generalised deformations become: ��R = ��R, ��R = −��R and �R = 0. Then, the generalised plastic deformations matrix results: 

 

��Y�j = V��R, ��R, 0X (3.27) 

 

being ��R and ��R now understood as plastic rotations of the inelastic hinges.  

3.2.2.1 Evolution of internal variables 

The evolution law of the generalised plastic deformations are exactly as the ones for 

straight frames: 
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à∆��R = 0				if				 �̀ Ç 0
�̀ = 0				if				∆��R Ú 0 							 ∴ �̀ = � ��1 − Z� − a���R� − �b� Û 0

à∆��R = 0				if				 �̀ Ç 0
�̀ = 0				if				∆��R Ú 0 							 ∴ �̀ = â ��1 − Z� − a���Râ − �b� Û 0 (3.28) 

 

Neglecting the axial damage parameter, the damage evolution laws for RC arches are 

given by: 

 

à∆Z� = 0				if				>�) Ç @�)>�) = @�)				if				∆Z� > 0 					 ∴ >�) = ß33+���2�1 − Z��� 											@�)�Z�� = @�� + _� ln�1 − Z��1 − Z�
à∆Z� = 0				if				>�) Ç @�)>�) = @�)				if				∆Z� > 0 					 ∴ >�) = ß��+���2~1 − Z��� 											@�)�Z�� = @�� + _� ln~1 − Z��1 − Z�

 (3.29) 

 

3.2.2.2 Practical applications 

Since the lumped damage model for RC arches is an original development of this 

thesis, validation examples are needed. Now, three examples are discussed in order to present 

the accuracy of the proposed model. 

The first validation example consists on a test carried out by Caratelli et al. (2011). In 

such work, a precast RC tunnel segment was tested (Figure 3.7). Note that such tunnel lining 

was actually built between Italy and Austria (CARATELLI et al., 2011). 

The specimen considered by Caratelli et al. (2011) present thickness, length and width 

equal to 200 mm, 3640 mm and 1500 mm, respectively (Figure 3.7). The concrete presents 

average cubic compressive strength of 50 MPa, 8 mm rebars were used as longitudinal 

reinforcement and open stirrups were used as splitting reinforcement (Figure 3.7). 

Regarding the symmetry of the problem, the RC segment was represented by two arch 

elements as shown in Figure 3.7. Through the classic RC theory, the interaction diagrams 

(Figure 3.8) are obtained (see Appendix A). 
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Figure 3.7 – Specimen characterisation and test set-up. [After Caratelli et al. (2011)] 

 

 

Figure 3.8 – Interaction diagrams. 

Thus, since the axial force along the specimen is negligible, �CD = 45100	kN ∙ mm, �R = 55000	kN ∙ mm and �S = 91600	kN ∙ mm were taken from the interaction diagrams 

as the first cracking, plastic and ultimate moment, respectively. The ultimate plastic rotation is �SR = 0.0441	rad (see Appendix A) was taken with the same idea (negligible axial force). 
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Figure 3.9 presents the comparison between numerical and experimental (CARATELLI et al., 

2011) responses on the top of the specimen. Note that the numerical solution is well fitted to 

the experimental result. 

 

 

Figure 3.9 – Comparison between experimental and numerical solutions. 

The main gap between numerical and experimental responses is observed for 

displacements smaller than 10 mm. This occurs due to diffuse cracking in concrete, which is 

predominant at that point. Afterwards, the inelastic phenomena concentrate at the loaded 

point, resulting in a well-fitted numerical response.  

Considering again the initial stage of the test, the diffuse cracking occurs in the region 

between the supports (or from the loaded point to one support, due to the problem symmetry). 

In the numerical analysis, only one finite element represents this region. Therefore, it might 

be pointed out that the adopted mesh is favourable for the analysed problem, since there is no 

inelastic hinges between the loaded point and the support. Obviously, the adoption of two 

elements (Figure 3.10a) is a result of the practical purposes of this approach. However, 

another analysis with four elements is carried out (Figure 3.10b) to evaluate the accuracy of 

the numerical model. This new mesh (Figure 3.10b) presents a node in the region with diffuse 

cracking i.e. now an inelastic hinge can nucleate in the region with diffuse cracking. In Figure 

3.10c presents a comparison between experimental and numerical analyses. 
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Figure 3.10 – Tunnel segment analysis: adopted meshes with (a) two and (b) four elements, and experimental 

and numerical responses. 

Note that the numerical analyses (Figure 3.10c) are practically coincident. In the mesh 

with two elements, the cracking process is entirely lumped at the hinge A. On the other hand, 

in the mesh with four elements the hinges A and B account for the diffuse cracking. Despite 

this characteristic, when the diffuse cracking is no longer determinant to the mechanical 

behaviour, the damage evolution at hinge B stopped completely. At this point, damage at 

hinge A continues to evolve, ensuring the same global behaviour observed in the mesh with 

only two elements. This result shows the accuracy of the LDM approach, where the quantity 

of inelastic hinges seems to be irrelevant to characterise the structural behaviour. 

The second validation example consists in the numerical simulation of a test carried 

out by Nishikawa (2003). The specimen under consideration was similar to the one of the 

previous example but the loading was applied in two points of the segment (see Figure 3.11a). 

The specimen was represented using two arch elements as shown in the Figure 3.11b.  

The comparison between test and model is presented in Figure 3.12. This time, the 

parameters for the simulation were not computed but identified from the experimental results 

because of lack of pertinent information: 
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��� = 0.3014284 ô 103�	kN ∙ mm� 	�� = 0.1092 ô 10õ	kN @� = 1409	mm �CD = 1786	kN ∙ mm �R = 12952	kN ∙ mm �S = 17722	kN ∙ mm �SR = 0.02137	rad 

(3.30) 

 

 

Figure 3.11 – (a) Test by Nishikawa (2003) and (b) problem idealisation. 

 

 

Figure 3.12 – Displacement vs. force and displacement vs. damage in the test by Nishikawa (2003). 
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Figure 3.13 shows the bending moment distribution at four different stages of the 

loading; in the horizontal axis the position of the cross-sections is represented by its angle 

with respect to the axis of symmetry of the arch; bending moments at the internal cross 

sections were computed using (3.10). Figure 3.14 indicates the deformed configurations and 

the damage as well as plastic rotations of the hinges. Figure 3.13a and Figure 3.14a 

correspond to the initiation of cracking at hinges 1 and 2. Up to this stage, the behaviour of 

the arch is elastic; note that the maximum bending moments are equal to the first cracking 

moment of the cross-section. Figure 3.13b and Figure 3.14b correspond to the initiation of 

yielding of the longitudinal reinforcement, hence appearance of plastic rotations. At this stage, 

damage has evolved in hinges 1, 2 and 3 reaching values of 0.20; the resulting damage 

rotations of the hinges and are indicated in Figure 3.14b. Physically, those damage rotations 

are the consequence of the crack opening displacements of the set of fissures that are assumed 

concentrated in the plastic hinge zone. Moments on the hinges at this stage are equal to the 

yield moment of the cross section. 

Figure 3.13c and Figure 3.14c correspond to the maximum force reached during the 

simulation. Therefore bending moments are equal to the ultimate moments of the cross-

section. At this stage, damage as well as plastic rotations are present in the inelastic hinges; 

their values are indicated in Figure 3.14c. The state of the arch at the end of the simulation is 

represented in Figure 3.13d and Figure 3.14d. 

The model captures correctly the softening phase of the behaviour. Damage 

localisation was observed in the simulation. In the hardening stage, damage evolves in the 

inelastic hinges 1, 2 and 3; subsequently, damage evolution stops in hinges 1 and 3 while 

energy dissipation concentrates only on hinge 2. This damage localisation can also be 

observed in the bending distributions of Figure 3.13c-d as well as in the damage rotations 

indicated in Figure 3.14c-d. Note that the values of the damage rotations at hinge 1 decreased 

between stages c and d but augmented in hinge 2. Plastic rotation, on the other hand, remained 

constant in hinge 1 but continued increasing at hinge 2. 

Due to the lack of pertinent information, the damage localisation in the experiment 

may be not occurred at the same point of the numerical solution. Nevertheless, note that the 

entire process of damage localisation was captured by the finite element programme without 

human intervention. The automatic choice for the hinge 2 is easily explained by the LDM 

equations. Firstly, observe that hinge 2 belongs to the left element and hinge 3 belongs to the 

right one. In arch elements, the terms ß33+  and ß��+  of the flexibility matrix are different. The 
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term ß��+  dictates the damage evolution in hinge 2 and the term ß33+  has the same function in 

hinge 3. Since the radius @� and the flexural rigidity ��� are constant for both elements, 

considering the arc angles of each element the flexibility terms are: ß��+ ≅ 0.11@�/��� for 

hinge 2 and ß33+ ≅ 0.33@�/��� for hinge 3. Therefore, hinge 2 concentrates damage. 

 

 

Figure 3.13 – Bending moment distribution (a) crack initiation (b) plasticity initiation (c) ultimate force (d) final 

analysis. 

 

 

Figure 3.14 – Deformed configurations of the arch (a) crack initiation (b) plasticity initiation (c) ultimate force 

(d) final analysis. 
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The third examples addresses to a circular tube, tested by Silva (2011). The circular 

tube was made out of reinforced concrete (Figure 3.15c). The test set-up is depicted in Figure 

3.15a. Taking advantage of the double symmetry of the problem, only one element was used 

to model the quarter circumference (Figure 3.15b). For the numerical analysis, �� = 7.986 ô10÷	kN ∙ mm�, 	� = 1584000	kN, Mùú = 7516.7	kN ∙ mm, Mû = 9166.7	kN ∙ mm, Mü = 28625	kN ∙ mm, �SR = 0.0113 were adopted as model parameters. 

 

 

Figure 3.15 – (a) Set-up of a test on a reinforced concrete tube (SILVA, 2011); (b) Adopted mesh; (c) Tube cross 

section. 

Figure 3.16 shows the comparison between the numerical simulation and the 

experimental response in a graph of displacement vs. force. One can see clearly the good 

correspondence between experimental and numerical results. 
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Figure 3.16 – Displacement vs. load. 

3.2.3 Quasi-brittle structures 

Now, a lumped damage model is proposed to analyse structures made of quasi-brittle 

materials, such as unreinforced concrete. The main difference from the aforementioned 

models is related to the meaning and the evolution laws of the internal variables. 

The inelastic phenomena on RC structures are quantified via two internal variables: 

plastic deformation and damage. The plastic deformation variable describes the yielding of 

the reinforcement and the damage variable is related to the concrete cracking. 

However, for unreinforced concrete structures (or any quasi-brittle structures), plastic 

deformations can be neglected ��Y�� = �7� but the damage variable is still related to crack 

propagation. Then, the constitutive relation is given by: 

 

���� = #6�\�%��0�� + ��7�� (3.31) 

 

3.2.3.1 Evolution of internal variables 

The damage evolution law is again proposed by a generalised Griffith criterion: 

 

à∆Z� = 0				if				>�) Ç @�)>�) = @�)				if				∆Z� > 0 					 ∴ >�) = ß33+���2�1 − Z���
à∆Z� = 0				if				>�) Ç @�)>�) = @�)				if				∆Z� > 0 					 ∴ >�) = ß��+���2~1 − Z���

 (3.32) 
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where the crack resistance function @)�Z� must be defined and, again, the axial damage Z? is 

neglected. 

Immediately, an intuitive adoption to this type of structure is to assume a perfectly 

brittle behaviour: 

 

@)�Z� = @� (3.33) 

 

Such adoption can present some issues as, for instance, the numerical response may 

not be representative due to the perfectly brittle behaviour and the model might present 

numerical instabilities. 

An enhanced alternative is to consider that the quasi-brittle behaviour is described by 

an exponential function (Figure 3.17) such as: 

 

� = �CD exp~−m�� − �CD�� (3.34) 

 

where �CD is the first cracking moment, �CD = ß��CD is the first cracking rotation and m is a 

parameter that characterises the decaying tendency of the exponential branch (Figure 3.17). 

 

 

Figure 3.17 – Quasi-brittle behaviour. 

Using a deformation equivalence hypothesis, the quasi-brittle behaviour can also be 

expressed by an elasticity relation i.e. 

 

� = �1 − Z� 1ß� � (3.35) 
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Finally, by the generalised Griffith criterion: 

 ��ß�2�1 − Z�� = @)�Z� (3.36) 

 

where @)�Z� is the new crack resistance function. 

By solving the system composed by equations (3.34), (3.35) and (3.36), and adopting _Sn = m�CDß� exp�m�CDß�� as a model parameter, the new crack resistance function is: 

 

@)�Z� = �CD� ß�2 Wþ _Sn1 − Z��W�_Sn�Þ� = @�Wþ _Sn1 − Z��W�_Sn�Þ� (3.37) 

 

where W� � is the Lambert W function (see Corless et al. (1996) for a detailed discussion). 

Note the presence of the element flexibility ß� in the definition of the model parameter _Sn, 

therefore, _Sn depends on the element length. 

The Lambert W function, also named as omega function or product function, is the 

transcendental function that solves the equation � exp��� = � i.e. if � = W��� then the 

equation � exp��� = � is solved. The Lambert W function can be univocally defined as a real 

function in the interval �− exp�−1�,∞�. 
 

 

Figure 3.18 – Univocal definition of the Lambert W function. 
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Figure 3.19 presents a comparison between the three crack-resistance functions 

previously presented (logarithmic hardening – for RC structures –, perfectly brittle, and 

Lambert hardening). 

 

 

Figure 3.19 – Crack-resistance functions �@� = 0.01� for reinforced concrete �_ = −0.45�, unreinforced 

concrete �_Sn = 1.21� and perfectly brittle behaviour. 

Note that the Lambert hardening is a general relationship for brittle and quasi-brittle 

behaviours. In other words, if: _Sn → ∞ ⇒ 	W~_Sn/�1 − Z���W�_Sn�Þ� → 1 i.e. if the 

model parameter _Sn tends to infinite, the Lambert hardening tends to assume a perfectly 

brittle behaviour. 

3.2.3.2 Crack opening displacement as a function of the damage in an inelastic 

hinge 

Differently from RC structures, when an inelastic hinge activates in an unreinforced 

concrete structure there is predominance of a crack that should propagate up to the collapse of 

the cross section. Considering this particular behaviour, the crack opening displacement 

(COD), or crack mouth opening displacement, can be estimated by the activated inelastic 

hinge.  

This information may be useful in practical applications, where the COD can be 

correlated to a decision making about structural retrofitting and maintenance. According to 

Shi (2009), the diagnostics of structures such as tunnels, dams and bridges, among others, is 

obtained by using crack analysis. 
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Therefore, a methodology to estimate COD in unreinforced concrete structures (or any 

quasi-brittle structures) is here proposed. In a structure, consider a region with a cracked cross 

section (Figure 3.20a). In such cross section the resisting height st is smaller than the total 

height (s) due to the crack length. Thus, by LDM, the crack is described by a damage 

variable, resulting in a damage rotation of the inelastic hinge ��) (Figure 3.20b). Being � the 

distance between the crack mouth and the neutral axis, the COD can be calculated as: 

 

COD� ≅ ��)� = ��) �s − st2� (3.38) 

 

Between the quantities that are necessary to estimate COD, note that the resisting, or 

effective, height st is still uncalculated. 

 

 

Figure 3.20 – Estimation of COD. 

Now, the main assumption is that the inertia is directly affected by damage. In this 

sense, in an inelastic hinge 
, there is an effective inertia that may be approximated by the 

following relation: 

 

��u ≅ ���1 − Z�� (3.39) 

 

thus 

 �st�12 ≅ �s�12 �1 − Z�� (3.40) 
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Therefore, the effective height is defined in terms of the total height and the damage 

variable: 

 

st = sÍ1 − Z��  (3.41) 

 

Finally, COD is given as: 

 

COD� ≅ ��)s �1 − Í1 − Z�� 2 � (3.42) 

 

3.2.3.3 Parametric analysis 

So far, the model parameter _Sn was defined as _Sn = m�CDß� exp�m�CDß�� i.e. _Sn 

is related to the decaying tendency of the quasi-brittle response (m). Since a simplified 

estimation of COD is possible by the proposed LDM approach, the model parameter _Sn can 

be expressed in terms of fracture energy >+ (Figure 3.21a). The fracture energy >+ is obtained 

by integration of A − COD relation. 

For an inelastic hinge, the A − COD relation depends on the bending moment (�), the 

damage rotation (�)) and the function of the crack length (9) in terms of the damage variable. 

The simplified COD expression (3.38) is given by the product between the damage rotation 

(�)) and the distance from the neutral axis to the crack mouth (�). Note that the quantity � 
depends on the relation between the crack length and the damage variable. Then, since COD 

is proportional to �) and � is based on simplified assumptions, so far, an alternative is to use � − �) relation instead of A − COD (Figure 3.21b). Now, the integration of the �− �)  

relation gives a quantity v+ proportional to the fracture energy (v+ ∝ >+). This 

proportionality depends on the relation between � − �) and A − COD expressions. 
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Figure 3.21 – Parametric analysis based on fracture energy. 

The � − �) relation is a result of the generalised Griffith criterion: 

 ��ß�2�1 − Z�� = �CD� ß�2 Wþ _Sn1 − Z��W�_Sn�Þ� 

� = �CD�1 − Z�Wþ _Sn1 − Z�W�_Sn� 										 ∴ Z = �)ß�� + �) 

(3.43) 

 

The fracture quantity v+ is obtained by: 

 

v+ = Â ���)�Z�)î
� = 12�CD� ß�#W�_Sn� + 2%W�_Sn�  (3.44) 

 

Therefore, _Sn is expressed as: 

 

_Sn = 2�CD� ß�2v+ −�CD� ß� exp � 2�CD� ß�2v+ −�CD� ß�� 

or 2�CD� ß�2v+ −�CD� ß� = W�_Sn� = mß��CD 

(3.45) 

 

Note that the fracture quantity v+ is inversely proportional to m i.e. it is also possible 

to express m in terms of the fracture energy (>+). 

In order to analyse the influence of v+ in the numerical solution, an unreinforced 

concrete cantilever beam (see Figure 3.22) is evaluated. Two meshes, with one and two 
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elements, are used to analyse this problem (Figure 3.22). For the sake of simplicity, an 

arbitrary value of v+ is adopted (Figure 3.22). Therefore, the parameter _Sn presents a value 

for each mesh (Figure 3.22). Figure 3.23 presents the comparison between the numerical 

solutions. 

 

 

Figure 3.22 – Unreinforced cantilever beam: problem geometry and adopted meshes. 

 

 

Figure 3.23 – Comparison between numerical solutions. 

Note that the numerical responses are practically coincident. Such characteristic is due 

to the adoption of the fracture quantity (v+). For real problems, if v+ is obtained by the 

fracture energy (>+), the numerical analysis should reproduce a unique solution. It is 

noteworthy that, in the case with two elements, the mid-span hinge does not activate. 

On what follows, due to the lack of pertinent information about v+ the model 

parameter _Sn is obtained by experimental observations of decaying tendency of the quasi-

brittle response (m). 
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3.2.3.4 Practical applications 

In order to continue the validation process of this proposed lumped damage model, 

four examples where studied. In such examples, the LDM response is compared with 

experimental and/or classic fracture mechanics responses. 

The first example addresses to an unreinforced concrete beam subjected to bending 

(Figure 3.24a), tested by Shi et al. (2001). They also presented numerical modelling using 

finite elements and classic fracture mechanics (Figure 3.24b). 

 

 

Figure 3.24 – Fracture test on an unreinforced concrete beam (dimensions in mm): (a) test geometry (Shi et al., 

2001) and (b) finite element mesh for fracture analysis (Shi et al., 2001).  

Shi et al. (2001) carried out six simulations, considering different positions and lengths 

of cracks. According to Shi et al. (2001), the best simulation with fracture mechanics 

considers asymmetric crack propagation, since the experimental behaviour presents a main 

crack under the left point of applied force. 

Note that even if the structure is symmetric, the experimental result was not. 

Numerically, this response can be obtained by including a slightly larger crack in the fracture 

mechanics (FM) analysis (see Figure 3.24b) or a smaller crack resistance in the LDM one. 

A mesh with five elements was used in the LDM simulation (Figure 3.25a). Figure 

3.25b shows the comparison between FM, LDM and experimental responses in a 

displacement vs. load graph. Figure 3.26 depicts the COD vs. load responses for FM and 

LDM analyses. 
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Figure 3.25 – Fracture test on an unreinforced concrete beam: (a) Mesh for the LDM analysis (dimensions in 

mm) and (b) displacement vs. force. LDM analysis with �CD = 4705	kN ∙ mm, �� = 0.22 ô 103�	kN ∙ mm and _Sn = 0.20; experimental and Fracture Mechanics (FM) results from Shi et al. (2001). 

 

 

Figure 3.26 – Force vs. Crack opening displacement, fracture mechanics results (SHI et al., 2001) and LDM 

approach. 

Regarding Figure 3.25b, the LDM response is quite fitted to the FM and the 

experimental ones. An excellent agreement is also observed in the COD estimation, where 

there is only a numerical confrontation i.e. FM vs. LDM. 

The second example also addresses to an unreinforced concrete beam, which was 

tested by Hamad, Owen and Hussein (2013). The test scheme is presented in Figure 3.27 

(HAMAD; OWEN; HUSSEIN, 2013). 
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Figure 3.27 – Fracture test scheme used by Hamad et al. (2013); dimensions in mm. 

According to Hamad, Owen and Hussein (2013), due to physical imperfections of the 

specimen, an asymmetric response was observed, being the main crack positioned at 136 mm 

of the left support (Figure 3.28), instead of appearing at the mid-span of the prism (150 mm of 

the left support). Therefore, to perform the best simulation it is convenient to set a node/hinge 

precisely at 136 mm from the left support. Then, the LDM mesh contains six elements (Figure 

3.29). 

 

 

Figure 3.28 – Region with maximum bending moment and crack pattern HAMAD; OWEN; HUSSEIN, 2013); 

dimensions in mm. 

 

 

Figure 3.29 – LDM mesh (dimensions in mm). 



96 

In this example, the LDM is compared solely with experimental responses. Figure 

3.30 presents comparisons between LDM and experimental responses. 

 

 

Figure 3.30 – Fracture test on an unreinforced concrete beam (HAMAD; OWEN; HUSSEIN, 2013): (a) 

displacement vs. load and (b) COD vs. load graphs. Parameters for LDM analysis: �CD = 625.4	kN ∙ mm, �� = 0.2377 ô 10�	kN ∙ mm� and _Sn = 0.027. 

Both comparisons depicted in Figure 3.30 show the good accuracy of the hereby 

presented procedure. Regarding COD (Figure 3.30b), in correspondence to the crack 

nucleation the numerical response indicates a smooth decrease of load. However, the 

experimental behaviour depicts a more abrupt decrease. According to Hamad, Owen and 

Hussein (2013), in this test the COD becomes visible to the naked eye when the value of 0.15 

mm is reached. At this point, the numerical simulation is already quite close to the 

experimental behaviour. Beyond 0.2 mm of COD, the numerical and experimental responses 

are really close. According to Hamad, Owen and Hussein (2013), the prism failure was 

reached when the value of COD was 1.0 mm. At this point, in the numerical model the hinge 

presents damage value equal to 0.999994, characterising failure. 

Differently from the previous beam examples, the third example consists on an 

experimental test of a tunnel lining, carried out by Abo, Tanaka and Yoshida (2000). The 

specimen geometry and test set-up are depicted in Figure 3.31.  

Again, an analysis of the structure using fracture mechanics concepts in combination 

with the FEM was described in Shi et al. (2001) and is used as reference for the simplified 

analysis based on LDM. Note that the experimental results are available only for the 

hardening phase of the behaviour, thus only the fracture mechanics results can be used as a 

reference for the LDM approach. 
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Figure 3.31 – Unreinforced concrete tunnel lining: specimen geometry and test set-up (ABO; TANAKA; 

YOSHIDA, 2000; SHI et al., 2001). 

The finite element (SHI et al., 2001) and the LDM meshes are shown in Figure 3.32. It 

is noteworthy that the LDM mesh presents only four elements. The comparison between the 

experimental results and both numerical simulations is presented in Figure 3.33, in the form 

of curves of displacement vs. force. The parameters used in the LDM simulation are the 

following: ��� = 0.234375 ô 10÷	kN ∙ mm�, _Sn = 1.87, �CD = 24.6	kN ∙ mm and 	�� = 4500	kN. 

The damage evolution is represented in Figure 3.34a, where it can be noted that crack 

propagation starts at the inelastic hinges in the point C of Figure 3.32; however, the main 

damage occurs at the inelastic hinges at B. Damage at point A does not evolve. In Figure 3.33, 

it can be noted the elastic stage represented by the straight line that starts at the origin; 

followed by a second curve, still close to a straight line of smaller slope, representing a global 

hardening phase yet. This modification of slope is due to the appearance of the first inelastic 

hinges at point C. The softening part of the behaviour initiates after the formation of the 

inelastic hinges at point B. 

The COD evolution as a function of the load in both points is presented at Figure 

3.34b. In the LDM analysis, crack evolution starts only after the moment on the hinge reaches 

the value of the cracking one; in the FE analysis this is a continuous process that initiates at a 

lower rate during the hardening phase of the analysis and accelerates during the final part. 
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Figure 3.32 – Numerical analyses: (a) finite element mesh (SHI et al., 2001) and (b) LDM mesh. 

 

 

Figure 3.33 – Displacement vs. load; experimental and fracture mechanics (FM) analyses from, respectively, 

Abo, Tanaka and Yoshida (2000) and Shi et al. (2001). 

Figure 3.35 shows the evolution of the bending moment distribution in the lining. 

These diagrams were computed using eq.(3.10) and values of �0�� obtained during the 

analysis. Three different stages were chosen: the last elastic one that corresponds to the first 

hinge occurrence (Figure 3.35a), the second hinge occurrence (Figure 3.35b) and the end of 

the analysis (Figure 3.35c). Note that indeed, the first cracking moment value was reached at 

the point C in Figure 3.35a. In Figure 3.35b it can be noticed that the bending moment 

decreases in that area since the corresponding hinge enters in the softening stage; moments in 

the rest of the lining are higher. In the last figure, it can be observed a general reduction of the 

bending moments except in the zone close to point A. Also note that the bending moment 
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distribution in Figure 3.35a corresponds to the exact elastic solution of the problem; even if 

only four elements were used in the simulation of the lining.  

 

 

Figure 3.34 – (a) Damage evolution and (b) COD vs. load (FM analysis from Shi et al. (2001)). 

 

 

Figure 3.35 – Bending moment distribution: (a) first hinge occurrence, (b) second hinge occurrence and (c) end 

of the analysis. 

Finally, Figure 3.36 shows the deformed configurations at the end of the analyses 

using both, the FM approach and the LDM result. The two configurations are quite similar. 

The LDM analysis does not capture the small crack propagation at the notch A. Note that in 

the FM analysis ‘‘the growth of crack A stops as the maximum load is obtained […] and 

remains inactive until structural failure’’ (SHI et al., 2001, p. 1090). 
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Figure 3.36 – Final deformed configuration in the FE (SHI et al., 2001) and LDM analyses. 

Since this proposed model is intended to analyse any quasi-brittle structures, the next 

example addresses to an unreinforced masonry arch. Unreinforced masonry arches are 

commonly studied in order to reproduce the structural behaviour of western historic buildings. 

Note that masonry arches can be analysed with the proposed lumped damage model 

considering that the only inelastic phenomenon is the cracking of mortar joints. Such 

hypothesis may fail in some cases; however, the objective of this Thesis was not to develop a 

specific lumped damage model for masonry structures. Nevertheless, the proposed model 

presents suitable results for the analysed problem. 

The fourth example consists in two masonry arches tested by Basilio (2007), with 

approximately 1462 mm of span (L) (Figure 3.37a). At failure, both arches presented a four-

hinge mechanism as depicted in Figure 3.37b, which is usual for the adopted configuration. 

Note that the hinges appear in sequence (H1-H2-H3-H4). For the numerical analysis, nodes 

were positioned where the bending moment distribution presented maximum absolute values, 

leading to a mesh with four elements (Figure 3.37b). Note that this arch presents a brittle 

behaviour (Figure 3.38), such characteristic can be numerically achieved by excluding the 

Lambert term of the cracking resistant function or by considering an arbitrarily large value for _Sn. The second alternative was chosen for the numerical analysis because the exclusion of 

the Lambert term can present numerical instabilities and no sequential hinge formation is 

obtained. Then, Figure 3.38 shows the graph of force vs. displacement for the experimental 
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(BASILIO, 2007) and numerical responses. The parameters used in the numerical analysis 

(��� = 0.75 ô 10õ	kN ∙ mm�, �CD = 150	kN ∙ mm, 	�� = 36000	kN) were obtained by the 

material characterisation presented by Basilio (2007). 

 

 

Figure 3.37 – Masonry arch (BASILIO, 2007): (a) geometry (dimensions in mm) and (b) failure mechanism. 

 

 

Figure 3.38 – Comparison between experimental (BASILIO, 2007) and numerical responses. 

Note that the numerical response is satisfactorily fitted to the experimental envelope 

(BASILIO, 2007). In this analysis, the sequential hinge formation was not completed. The 

formation of the first hinge (Figure 3.39a) occurred in the peak of the numerical response; and 

the model lost numerical stability after the formation of the second hinge (Figure 3.39b). 

 

 

Figure 3.39 – Bending moment diagrams. 
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3.3 Remarks 

The proposed lumped damage models for arches present suitable approximations and 

characterise an extension of the LDM framework. For RC modelling, it was shown that the 

proposed model presents accurate solutions using classic RC theory to estimate the model 

parameters. For quasi-brittle modelling, the accuracy observed in unreinforced concrete 

structures and masonry arches illustrate the versatility of such model. However, some 

considerations about the parameter the Lambert hardening coefficient _Sn are necessary. 

Regarding the unreinforced concrete examples presented here, the Lambert hardening 

coefficient _Sn was considered as a regularisation parameter rather than a model constant. 

This coefficient was chosen so that a convergent solution, where the absolute value of the pre- 

and post-peak slopes are approximately the same (in the plots of displacement vs. force), is 

found. An engineer working on a real project can follow the same procedure. However, a 

study considering this constant as a model parameter and including an extensive experimental 

analysis would be very useful if this LDM procedure ever reaches some acceptance within the 

engineering community.  

Regarding the analysed masonry arch, a brittle behaviour was reached by the adoption 

of a very large _Sn value. It is noteworthy that a perfectly brittle analysis was carried out 

(@)�Z� = @�), resulting in only one hinge formation. The total behaviour of the real arches 

was not acquired by the LDM analysis in such example perhaps because of the model 

limitation to analyse such type of structure. According to the experimental observations made 

by Basilio (2007), at some joints the masonry arches underwent slipping instead of cracking 

(or crack propagation in mode II instead of mode I, in fracture mechanics terms). Therefore, 

an expansion in the proposed model may overcome this issue. 
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4 LUMPED FATIGUE AND FRACTURE MECHANICS 

In the examples presented so far, it was shown that the modelling of the complete 

evolution of failure using LDM of a complex structure is simple and accurate. Therefore, the 

analysis of a structure as the offshore platform in Figure 4.1a can be achieved with procedures 

based in LDM, ensuring good precision and low computer costs. Note that structures as an 

offshore platform (Figure 4.1a) usually collapse due to high cycle fatigue. 

The analysis of a complete complex structure under high cycle fatigue using classic 

approaches, as continuum damage mechanics or fracture mechanics, is out of the question. It 

is not only a matter of computer costs, which are still determinant; the most important aspect 

is that data input and transformation of numerical results in engineering decisions are 

essentially human activities, not automatable procedures. Despite computer costs are 

becoming a less important factor day by day, human effort is certainly not. 

Regarding classic techniques, a common procedure to analyse high cycle fatigue in 

complex systems consists in following a multi-scale scheme. Firstly, the global or large-scale 

versions of the structures are analysed with relatively simple models, for instance a linear 

elastic one. The vulnerable zones of the structure are then identified. Next, refined analyses of 

reduced structural parts with smaller geometrical complexities containing the vulnerable 

zones are simulated using more and more sophisticated models. Sometimes, simulations of 

the propagation of a crack in a sub-set of a sub-set of the total structure are the final small-

scale analyses (see Figure 4.1b). 

The goal of this chapter is to propose a formulation, based on LDM, adapted to the 

global analysis of complex structural systems that require studies of crack propagation. It is 

expected that the models might be used in the first, global, stages of the multi-scale studies of 

aerospace and offshore structures, or other industrial facilities. The potential advantages are 

significant. For instance, the global analysis could describe stress redistributions in the 

complete structure due to crack propagation in some of its components, which is not possible 

with elastic or elastic-plastic models. Also the connections among the different levels of the 

multi-scale analysis may be much more meaningful since all of them would be based on the 

same fundamental principles. Finally, the reliability studies that require thousands of analysis 

could be carried out for the entire structure and consider crack propagation in all the 

components at the same time. 
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Therefore, in this chapter the application of fatigue and fracture mechanics in inelastic 

hinges is presented. The modelling of high cycle fatigue using LDM is an original 

development of this thesis and it is here also called as Lumped Fatigue and Fracture 

Mechanics (LFFM). 

 

 

Figure 4.1 – (a) Offshore structure (TECHCON, 2015) and (b) crack propagation in a metallic joint (TWI-

Global, 2013). 

4.1 Modelling of single crack evolution through LDM 

4.1.1 Stress intensity factor of an inelastic hinge subjected to bending moment 

In RC components, damage takes the form of multiple cracks in the plastic hinge zone. 

However, in some other important applications, for instance low cycle fatigue in steel beams 

(BAI et al., 2016), high cycle fatigue or unreinforced concrete under monotonic loadings 

(AMORIM; PROENÇA; FLÓREZ-LÓPEZ, 2014a), it is assumed that damage is associated 

to only a single significant crack. Additionally, in the two last cases, plastic rotations can be 

negligible. 

Now, the problem of fracture mechanics, i.e. the propagation analysis of countable 

cracks, is dealt with the tools of LDM. In this case, the damage parameter can be considered 

as a dimensionless measure of the crack surface as it will be shown on what follows. 

The stress intensity factors EF can be computed from the energy release rate >? 

through the well-known expression: 

 

EF = √�>? (4.1) 
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Note that the energy release rate >? differs from the damage driving moments >�) or >�) since in the former case it is computed as the derivative of the complementary energy with 

respect to the crack surface Λ and the latter are derivatives with respect to the damage 

variables. However, both kinds of variables are closely related. As aforementioned, the 

damage rotation of an inelastic hinge 
 is: 

 

��) = x�� 																																					 ∴ x = Z�ß��+1 − Z� (4.2) 

 

where x is the compliance of the inelastic hinge. Therefore, the energy release rate of an 

inelastic hinge 
 can be computed as: 

 

>�? = 12ZxZΛ��� = 12ÅxÅZ ÅZÅΛ��� = >�) ÅZÅΛ (4.3) 

 

Thus, in order to calculate the energy release rate, it is needed to introduce a 

relationship between damage and crack surface i.e. Z = Z�Λ�. This expression must fulfill at 

least the following conditions: 

 

Z�0� = 0																																					Z�	� = 1																																					 ÅZÅΛ���� = 0 (4.4) 

 

where 	 is the cross section area. Note that the first and second conditions in (4.4) are quite 

obvious: the first one implies that if there is no crack surface the damage variable is nil; 

analogously, the second condition states that if the crack surface is equal to the cross section 

area the damage variable is equal to one. The third condition in (4.4) addresses to the stress 

intensity factor. According to eq. (4.1) and (4.3), the stress intensity factor depends on the 

product between the damage driving moment >) and the derivative of the damage variable 

with respect to the crack surface. While the crack surface is nil the stress intensity factor must 

be nil, therefore the quantity that ensures this condition is the derivative of the damage 

variable with respect to the crack surface. 

For rectangular cross sections, by multiplying both terms of the eq. (3.41) by the cross 

section basis (�), and being s and st the total and effective heights of the cross section, 
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	 = �s and 	N = �st the total and effective cross section areas and Λ = 	 − 	N the crack 

surface, the following expression is then obtained (AMORIM; PROENÇA; FLÓREZ-

LÓPEZ, 2014a): 

 

Z�Λ� = 1 −  1 − Λ	£� (4.5) 

 

Such expression was successfully extended to H shaped cross-sections in Bai et al. 

(2016) as: 

 

Z�Λ� = 1 −  1 − Λ	£� (4.6) 

 

where y is a parameter characterising the cross section geometry. However, the previous 

expressions for Z�Λ� cannot be used for the computation of stress intensity factors since they 

fail to fulfil the last condition of eq. (4.4); i.e. the derivative of the damage with respect to the 

crack surface is not zero when there is no crack. The simplest empiric modification of eq. 

(4.6) that satisfies all these conditions consists in multiplying the second part of (4.6) by a 

linear function: 

 

Z�Λ� = Λ	 − Λ	  1 − Λ	£� (4.7) 

 

Since the relation (4.7) is semi-empiric, a validation analysis is necessary. Consider a 

cantilever beam as the one presented in Figure 4.2a. If a crack with length 9 is considered in 

the restrained edge, the force-deflection of this beam is: 

 

z = ^�9�� (4.8) 

 

where ^�9� is the beam stiffness. 

Therefore, considering a mesh with 3000 four-node quadrilateral elements and a 

unitary imposed displacement (� = 1), the reaction z is exactly the beam stiffness ^�9� with 

respect to the crack length (9). This is a fracture mechanics approach. 
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The lumped damage mechanics solution is the direct consideration of the relation 

(4.7). Then, a force-deflection relation is: 

 

� = �3���1 − Z�� 

�� = �3���1 − Z� z� 

z = 3���1 − Z��� �																	 ∴ Z�9� = 9s − 9s þ1 − 9s�� 

z = ^�9�� 
(4.9) 

 

The numerical confrontation is given in Figure 4.2b. 

 

 

Figure 4.2 – Numerical evaluation of the damage-crack length/surface relation. 

Note that Figure 4.2b shows the good accuracy of the relation (4.7). Therefore, this 

new equation is an interesting alternative for further developments. 

Figure 4.3 shows the comparison between the values of dimensionless EF (i.e. EF�√s/z where � and s are base and height of the cross section, respectively, and z is the 

applied force) computed with fracture mechanics (FM), as presented in Anderson (2005), and 

LDM for a three-point bending test; the latter was computed using equations (4.1), (4.3) and 

(4.7) with y = 3 (rectangular cross sections). The beam was represented using two elements, 

which signifies that the cracked section was substituted by two inelastic hinges located at the 

same point; thus, the total energy release rate is the sum of the two contributions. Figure 4.3a 

presents the results of an analysis with an element that has an aspect ratio (�/s) of 5; it is 6 in 

Figure 4.3b and 8 in Figure 4.3c. 
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Figure 4.3 – Comparison between LDM and FM for the determination of EF  in a three-point bending specimen 

(y = 3): (a) �/s = 5, (b) �/s = 6 and (c) �/s = 8. 

The precision of the computation can be significantly increased by adding a correction 

factor ({), which depends on the aspect ratio (�/s), to eq. (4.3): 

 

>�? = {>�) ÅZÅΛ 																			 ∴ { = | s� (4.10) 

 

where | is a constant. Figure 4.4 shows the values of EF (dimensionless EF i.e. EF�√s/z) 

between FM and LDM after correction. 

 

 

Figure 4.4 – Comparison between LDM and FM for the determination of EF  in a three-point bending specimen 

(y = 3, | = 5.85): (a) �/s = 5, (b) �/s = 6 and (c) �/s = 8. 
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4.1.2 Stress intensity factor of an inelastic hinge subjected to axial forces 

In the previous development, the hinge was subjected only to bending. However, in 

some important applications the dominant effects are the result of axial forces or at least a 

combination of both. Now, the same procedure is followed to obtain stress intensity factors of 

a bar with a crack in the middle section. The damage elongation of the hinge �) is now 

defined as: 

 

�) = x�																						 ∴ x = Z	ß��?1 − Z (4.11) 

 

Then, the energy release rate is computed again as: 

 

>? = 12{ÅxÅZ ÅZÅΛ�� = {>) ÅZÅΛ 																		 ∴ { = | s� (4.12) 

 

Figure 4.5 shows the comparison between the values of stress intensity factor using 

(4.12) and fracture mechanics values given by the conventional equations i.e. bar with finite 

height � and width s, and a crack in the middle (ANDERSON, 2005). 

 

 

Figure 4.5 – Comparison between LDM and FM for the determination of EF  in a bar with a central crack 

subjected to axial forces z (y = 3, | = 0.15) 

4.1.3 Crack opening displacement as a function of the lumped damage  

As discussed in subsection 3.2.3, the crack opening displacement (COD) is again 

estimated. Now, since the relation between the damage variable and the crack length/surface 
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is changed due to the estimative of the stress intensity factor, a new estimation of COD is then 

required. For the same value of damage, the crack length/surface in (4.7) evolves differently 

from (4.5). Therefore, the evolution of the effective height st is also different.  

Consider again the LDM representation of a single crack presented in Figure 4.6. As 

previously presented in subsection 3.2.3, the COD is given in terms of the damage rotation, 

i.e. COD� ≅ ��)�. Regarding the aforementioned differences, the previous equation for COD 

estimation is now rewritten in terms of the crack length (9): 

 

COD� ≅ ��)� = ��) �s − st2� = 12 �s + 9���) (4.13) 

 

 

Figure 4.6 – Crack opening displacement: (a) Physical crack; (b) Inelastic hinge. 

Since a new COD estimation is here proposed, the unreinforced concrete examples 

under monotonic load are revisited in order to compare the COD estimation between LDM, 

fracture mechanics (FM) and experimental observations. 

The examples are: simply supported beams presented by Shi et al. (2001) and Hamad, 

Owen and Hussein (2013), and the tunnel lining presented by Shi et al. (2001). The 

description of such examples is depicted in item 3.2.3.4. Note that the new COD estimation 

also presents good accuracy (Figure 4.7) regarding the references (fracture mechanics or 

experimental observations). Therefore, the empirical modification of the COD estimation, 

which was necessary to fulfil the conditions to describe the stress intensity factor by LDM, 

still leads to accurate results. 
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Figure 4.7 – Empirical COD estimation for unreinforced concrete structures under monotonic loads: simply 

supported beams presented by (a) Shi et al. (2001) and (b) Hamad, Owen and Hussein (2013), and (c) the tunnel 

lining presented by Shi et al. (2001). Fracture mechanics (FM) and experimental results from, respectively, Shi 

et al. (2001) and Hamad, Owen and Hussein (2013). 

4.2 Finite elements for high cycle fatigue 

Any model for high cycle fatigue based on stress intensity factors, energy release rates 

or generalized energy release rates (damage driving moments) can now be included in the 

LDM framework. In this section, an alternative procedure to the rainflow or other cycle-

counting algorithms is proposed.  

Consider a structure subjected to high cycle fatigue loadings. Such structure may be 

composed by straight and circular frame bars. Note that both element types present the same 

quantity of degrees of freedom (see chapters 2 and 3). For high cycle fatigue problems, it is 

considered that each node presents six degrees of freedom, which are the maximum and 

minimum displacements and rotations per cycle. Thus, the matrix of nodal displacements of a 

member � at a cycle N ���N��� is: 
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���N���j == V
�À	
 ��À	
 ��À	
 
�À	
 ��À	
 ��À	
 
�À�¨ ��À�¨ ��À�¨ 
�À�¨ ��À�¨ ��À�¨X (4.14) 

 

The matrices of generalised deformations and stresses are expanded in the same way 

for straight frames: 

 ���N���j = V��À	
 ��À	
 �À	
 ��À�¨ ��À�¨ �À�¨X �0�N���j = V��À	
 ��À	
 ��À	
 ��À�¨ ��À�¨ ��À�¨X (4.15) 

 

and circular arches: 

 ���N���j = V��À	
 ��À	
 ��À	
 ��À�¨ ��À�¨ ��À�¨X �0�N���j = V��À	
 ��À	
 ��À	
 ��À�¨ ��À�¨ ��À�¨X (4.16) 

 

On the other hand, the variation of damage or crack surface during a cycle is 

neglected; therefore the damage matrix is: �\�N�� = �Z� Z� Z?�j. Boundary conditions 

and external loads on the structure can be described by histories of maximum and minimum 

displacements and nodal forces respectively. Each time increment, measured in terms of 

cycles, can include dozens, hundreds or even thousands of cycles. 

The elasticity law is given by the same matrix equation previously presented, 

neglecting plastic rotations and expanding the flexibility matrix accordingly: 

 

���N��� = �h6~\�N��i� #7%#7% h6~\�N��i�
 �0�N��� 

∴ h6~\�N��i� =
®̄̄
¯̄̄
° 11 − Z� ß33+ + ß33? ß3�� ß3��

ß3�� 11 − Z� ß��+ + ß��? ß���
ß3�� ß��� ß��+ + 11 − Z? ß��? ²³

³³³
³́
 

(4.17) 

 

Therefore, the corresponding damage driving moments are: 
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>�) = ���ß33+2�1 − Z��� 															>�) = ���ß��+2~1 − Z��� 															>?) = �� ß��?2�1 − Z?�� (4.18) 

 

The kinematics and equilibrium equations are extended analogously: 

 

���N��� = É#&7%� #7%#7% #&7%�Ê ���N��� 

¿É#&'�%�j #7%#7% #&'�%�jÊ �0�N���À
��3 = �/�N�� (4.19) 

 

where �/�N�� is the matrix of cyclic applied loads. 

Finally, as damage evolution law, the simplest of all high cycle fatigue laws might be 

used: 

 ZΛ�ZN = ÅΛ�ÅZ� ÅZ�ÅN = sC�~E�À	
 − E�À�¨�¨� 															Z�Λ�� = Λ�	 − Λ�	  1 − Λ�	£� (4.20) 

 

where C� and n� are the material parameters of the Paris law (PARIS et al., 1961; PARIS 

ERDOGAN, 1963). The stress intensity factors E�À	
 and E�À�¨ are computed as previously 

indicated (EF). 
4.3 Fatigue in three-point bending test 

This example is the numerical simulation of a test reported in Andreaus and Baragatti 

(2009) using the finite element proposed in the previous section. This is an aluminium beam 

with square cross-section � = s = 20	mm and � = 300	mm as the total span. The beam was 

represented using only one finite element (taking into account the symmetry of the problem) 

as shown in Figure 4.8a. The loading is characterised by constant maximum and minimum 

vertical forces (1600kN and 250kN) on the node 1 of the structure; i.e. the forces 

corresponding to the degrees of freedom 2 and 8 of the structure are imposed and are constant. 

Figure 4.8b and Figure 4.8c, respectively, show the evolution of the stiffness and crack length 

with the number of cycles for both, experiment and numerical analyses. The value of the 

beam inertia EI was identified to match the initial stiffness value of the curve in the Figure 

4.8b. The initial value of damage d3�Λ�� 	= 	0.00713125 for the hinge in node 1 (node with 
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applied forces) was computed with the initial crack length reported in Andreaus and Baragatti 

(2009) (Λ�/� = 1	mm) using eq. (4.7). For the simulation no correction factor was 

considered; i.e. the eq. (4.3) was used. Note the good agreement between test and analysis in 

both curves after updating. 

 

 

Figure 4.8 – Fatigue in a three-point bending test: (a) FE mesh, (b) Number of Cycles vs. Stiffness and (c) 

Number of cycles vs. crack extension. EI� = 990	N �m�, C� = 0.306 ô 10Þ3�	m/cycle/MPa �m3/�, n� = 3.73. 

4.4 Fatigue in a frame structure 

This example is an academic case. The purpose of this analysis is to show the capacity 

of the procedure to simulate crack propagation due to high cycle fatigue in complex 

structures. The frame structure of Figure 4.9 was divided in fourteen elements. A cycle force 

varying between 354	kN and 2268	kN was applied at the left upper node of the mesh. 
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Figure 4.9 – Frame structure subjected to high cycle fatigue. 

This structure was analysed using again the high cycle fatigue finite element, proposed 

in the previous section. The final state of damage is presented in Figure 4.10. Damage 

evolution is depicted in Figure 4.11a. Figure 4.11b shows the crack length and crack growth 

ratio histories for the two most dangerous hinges: h24 and h27. 

 

 

Figure 4.10 – Final state of damage. 
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Figure 4.11 – (a) Damage evolution, (b) Crack length and growth ratio evolution. 

Finally, the initial and final bending moment diagrams are presented, respectively, in 

Figure 4.12a and Figure 4.12b. Note the significant variation redistribution of bending 

moments due to the fatigue process. Even if the maximum and minimum values per cycle of 

external forces are constant, the local loadings on the structural components are certainly not. 

In h24 the variation of the bending moment was about 55% of the initial value. 

 

 

Figure 4.12 – Bending moment diagrams: (a) initial distribution and (b) final distribution. 
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4.5 Fatigue in an aeroplane fuselage panel 

The last example represents a fuselage component subjected to fatigue due to the 

process of pressurisation and depressurisation that was tested in laboratory (AHMED et al., 

2007). The experimental set up was represented as shown in Figure 4.13. 

 

 

Figure 4.13 –Shell subjected to high cycle fatigue: (a) Experimental set up and loading (AHMED et al., 2007) 

and (b) representation for the LDM analysis. 

According to Ahmed et al. (2007), the fuselage component was subjected to a complex 

loading history that is shown in Figure 4.14, with pressure given in psi (1.0 psi is equal to 

0.0068948 MPa). The stress ratio between minimum and maximum pressure was 0.1. 

 

 

Figure 4.14 – Maximum load spectrum used in the fuselage component fatigue test (AHMED et al., 2007). 

In the test, crack appears and propagates along the section AA as represented in Figure 

4.15. In such section there is a critical rivet line connection (AHMED et al., 2007), which is 

responsible for crack nucleation and lead the fuselage component to fatigue collapse. 
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Figure 4.15 – Crack in a fuselage component. 

The same model proposed in section 4.2 was used for the numerical simulation. But 

now, the damage law is that of fatigue and bending damages are neglected as axial damage 

prevails. Numerical simulation and experimental results are compared in Figure 4.16. Figure 

4.16a shows the evolution of the both ends of the crack. Figure 4.16b is a zoom of the last 

thousand cycles of the loading. 

 

 

Figure 4.16 – (a) Crack length vs. number of cycles: x� = 0.365ô 10−10	m/cycle/MPa �m1/2, �� = 3; (b) Last 

1400 cycles of the loading. 

In the LDM analysis, the main result is damage evolution rather than crack length 

propagation (Figure 4.17). Note that the damage variable starts to increase rapidly between 

the values of 0.4 and 0.5, where the value of ultimate damage for metals usually lies 

(LEMAITRE; CHABOCHE, 1985). 

 

 

Figure 4.17 – Damage evolution in the last two thousands cycles of the loading. 
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4.6 Remarks 

The examples of this chapter show the reasonable precision that may be attained using 

the simplified procedure. Note that LDM permits the computation of the structural behaviour, 

stress intensity factors, stiffness degradation, crack length and COD evolution with a fraction 

of the human and computational effort. Thus, it is indeed possible the development of a 

simplified fracture mechanics for complex structural systems. 

The material parameters for an LDM analysis can be identified using the standard 

procedures of the fracture mechanics (coupon tests, three point bending tests and so on). As in 

any other structural analysis, updating leads to significantly more precise results. 

This formulation may be integrated in the protocols for the design, certification and 

maintenance projects of complex structural systems based on multi-scale analyses. The 

example on the frame structure shows the significant variation of the local forces on a 

component subjected to fatigue even if the external forces on the facility or structure are 

expected to be constant. Thus, LDM incorporation would result in more coherent, safe and 

effective multi-scale procedures. 

The multi-scale procedure may be used in both senses. For instance, in items 4.1.1 and 

4.1.2, the fracture mechanics analyses where used to calibrate the correction factors. Thus, a 

multi-scale scheme with LDM may be as the one illustrated in Figure 4.18. In the multi-scale 

scheme depicted in Figure 4.18 the analysis starts with a FM stage, where the stress intensity 

factors for all cracks are calculated. Such values are used to calculate the correction factors 

for the global stage, where LDM is applied. In the global stage (LDM stage) the damage 

distribution map and the stress distribution are calculated. Note that using LDM at that stage 

the stress field can be rearranged, accounting for the cracks. With those results, the loading on 

components are estimated and then the local analysis is carried out by using classic fracture 

mechanics (FM stage).  
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Figure 4.18 – Multi-scale scheme using LDM. 

 

 



121 

 

5 EXTENDED LUMPED DAMAGE MECHANICS 

5.1 Initial comments 

Fracture and damage mechanics are recent theories that characterise inelastic 

phenomena due to material deterioration. In section 2.3 some concepts of both theories were 

briefly discussed. 

Classic damage mechanics evolved from the theory of plasticity to model material 

deterioration, initially tertiary creep, and then softening in ductile and brittle materials. As 

classic damage mechanics derived from the theory of plasticity, the kinematics of damaged 

solids is based on the concept of strain. Thus, damage evolution laws in classic models relate 

damage with local strains or plastic strains. The pioneers of the field expected that classic 

damage mechanics could eventually become an advantageous alternative to fracture 

mechanics, but this never happened because of the so-called localisation phenomenon. 

The term localisation is applied in two different situations. In experimental mechanics, 

localisation denotes the formation of, for instance, shear bands with strain discontinuities in 

brittle, ductile or geo-materials, i.e. localisation is an experimental evidence. In structural 

mechanics, localisation is often used to refer to the mathematical analysis of classic damage 

models e.g. the loss of ellipticity that leads to ill-posed problems and mesh-dependent 

numerical algorithms. The failure of the classic damage mechanics describing localisation 

bands marked the end of this stage of the theory. 

Modern damage mechanics was developed to circumvent this issue with two basic 

ideas: a modification in the damage evolutions laws by weight functions (nonlocal models) 

and the introduction of suitable kinematics (strain or displacement discontinuities) to take into 

account the damage localisation. In common, both ideas seek one main objective: the 

development of models that lead to objective numerical results. 

On the other hand, fracture mechanics represents structural deterioration by modifying 

the geometry of the solids, determining when this modification can occur, and then describing 

how it happens (see e.g. Shi (2009) for a review). The first works on fracture mechanics, the 

so-called linear elastic fracture mechanics (LEFM), proposed a two-state description of the 

process: nothing ensues or crack propagates. It was soon evident that this approach was 

insufficient for an adequately description of the phenomenon. Describing the inelastic 
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processes before crack propagation is as important as crack evolution per se. As the 

researchers on the field use geometry modifications as the tool for describing structural 

deterioration, the dominant approach is the introduction of equivalent cracks longer than the 

real ones; the inelastic phenomena preceding crack propagation are then assumed to occur in 

zones of zero volume: the artificial extension of the crack. In the fracture process zone 

approach (FPZ), a new fracture evolution law is then introduced, but instead of utilising strain 

as the kinematic variable, this law uses the crack opening displacement concept. So far, the 

fracture mechanics approach has been much more successful and it is much more frequently 

used in practical applications than damage mechanics.  

LDM is an alternative form of damage mechanics; but as discussed in this thesis, so 

far, LDM is limited to the analysis of uniaxial cases: beams, columns, frames and arches. In 

these models, damage as well as plasticity are concentrated in zones of zero length as in the 

FPZ. However, unlike fracture mechanics, this hypothesis does not modify the geometry of 

the structure, only the constitutive law as in damage mechanics. LDM does not uses the 

concept of curvature or strain as in the fibre or beam models but the inelastic rotation of the 

hinge; a concept that can be considered alike to the crack opening displacement. In general 

terms, it can be said that classic and modern damage mechanics are closer to plasticity than to 

fracture mechanics while in LDM is the other way around. LDM was developed to provide a 

better description of the structural deterioration phenomena in a proper context for civil 

engineering applications. However, at the same time, these models lead to mathematically 

objective results (TOI; HASEGAWA, 2011). 

In a plate, the inelastic hinges become hinge-lines, in a two-dimensional continuum, 

they transform in localisation bands, in a three-dimensional solid: localisation surfaces. This 

chapter shows that LDM is a general framework that can be extended to the analysis of any 

continuum media and that the resulting formulations may inherit the mesh-independence 

properties observed in the uniaxial case. In the analysed cases, the proposed LDM procedures 

present refinement-independence solutions i.e. solutions with no dependence of the size of the 

elements. 

Some finite elements including localisation bands have been presented in the literature 

(see e.g. Belytschko, Fish and Engelmann (1988) and Borja (2000) for a review). The 

approach proposed in this Thesis is radically different. The fundamental assumption is that 

localisation bands are a distinctive phenomenon that needs the introduction of specific state 

variables with their respective evolution laws for a proper modelling i.e. the continuum 
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damage variable is not the most adequate tool for describing the phenomena happening in the 

band. 

5.1.1 Mesh-dependence in classic damage mechanics 

For the sake of simplicity, the mesh-dependence in classic damage mechanics is here 

illustrated with a uniaxial example. Consider the following classic elementary problem. A bar 

of length � and cross section area 	 is subjected to prescribed displacements at both ends (see 

Figure 5.1a). 

 

 

Figure 5.1 – (a) Damageable bar; (b) Stress as a function of strain in the local damage model. 

The local damage constitutive equation is defined by: 

 

A = �1 − O��Q (5.1) 

 

and the damage evolution law is given by: 

 

>T�Q� − @T�O� Û 0						 ∴ �>T�Q� = |Q|																											@T�O� = QCDQSQS + O�QCD − QS� (5.2) 
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where >T�Q� is the adopted energy release rate, @T�O� is the damage resistance function, O 

is the conventional continuum damage variable, A and Q have the usual meaning, �, QCD and QS are material parameters as indicated in Figure 5.1b. 

A two-node finite element with linear displacements can now be developed by the 

conventional procedures. In the present case, this finite element gives exact solutions. The 

adopted mesh contains two finite elements, with lengths ℓ3 and ℓ� (ℓ3 + ℓ� = �) (Figure 

5.2a). As it is well known, the curve of force as a function of displacement is mesh-dependent 

when solutions localising in only one element are chosen. Considering the first element (ℓ3) 

as that one, the mesh-dependence is illustrated by varying the length ℓ3 (see Figure 5.2b). 

 

 

Figure 5.2 – (a) Finite element mesh and (b) force as a function of displacement for two element meshes with 

different sizes (note that the total length � is constant). 

Note that with this simple example the mesh-dependence in classic damage mechanics 

is easily illustrated. 

5.1.2 The hypothesis of strain equivalence revisited 

The hypothesis of strain equivalence was previously presented in section 2.3, being the 

uniaxial relation rewritten just for convenience: 

 

Q − QR = A�1 − O�� = 1� A + O�1 − O�� A						 ∴ ÙQ* = 1� A															
Q) = O�1 − O�� A (5.3) 
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Neglecting plastic strains, the previous expression is written as follows: 

 

Q = A�1 − O�� = 1� A + O�1 − O�� A						 ∴ ÙQ* = 1� A															
Q) = O�1 − O�� A (5.4) 

 

Thus, according to the hypothesis of strain equivalence, strain can be divided in two 

terms: an elastic strain (Q*) and a damage-related one (Q)). Note that there is an initial 

compliance given by the inverse of the elasticity modulus; damage induces an additional 

flexibility term that starts from zero and tends to infinity when the damage tends to one. 

For the sake of simplicity, consider only the case of monotonic and positive loadings. 

Based on the new concept of damage strain, the constitutive equations and the damage 

evolution law of the model can be rewritten as: 

 

Q = 1� A + Q) (5.5) 

 

A − ACD �1 − Q)QS� Û 0 (5.6) 

 

The latter is represented in Figure 5.3. 

 

 

Figure 5.3 – Stress as a function of the damage-related strain. 

In the continuation of this chapter, the LDM is formulated to two-dimensional 

problems of bending plates and tensile plates. Both procedures are presented as extensions 
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from uniaxial models. This new LDM framework is here called extended lumped damage 

mechanics (XLDM).  

5.2 Bending plates 

This section starts with the formulation presented for mesh-independence in LDM 

applied to beams. Afterwards, the same procedure is extended to bending plates.  

5.2.1 Unicity of the solution in a lumped damage model for bending in beams 

Consider now a beam fixed at one end and subjected to imposed deflections at the 

other one as shown in Figure 5.4a. The beam is divided in two-node finite elements with 

quadratic displacements. Thus, the matrix of nodal displacements is: 

 

���� = ��� �� �� ���j (5.7) 

 

Now, a model based on the standard lumped inelasticity model is presented; the 

element is assumed to be the assemblage of an elastic beam with two inelastic hinges at the 

ends 
 and � (see Figure 5.4b). All inelastic effects are lumped at the hinges. The generalised 

deformation matrix ���� = ��� ���j (see Figure 5.4c) is adopted as kinematic variable. The 

variable conjugated with the generalised deformation matrix is denoted as generalised stress 

matrix: �0�� = ��� ���j (see Figure 5.4d). 

The kinematic equation and the internal forces of the element can be written in the 

same way as in the case of the frame element: 

 ���� = #&�%�����	�d�� = #&�%�j�0��	
∴ #&�%� = ®̄

°̄− 1�� 1 1�� 0
− 1�� 0 1�� 1²³

³́ (5.8) 
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Figure 5.4 – Cantilever beam: (a) geometry and load conditions, (b) lumped inelasticity model, (c) generalised 

deformations and (d) generalised stresses 

Considering the hypothesis of strain equivalence, the generalised deformations can be 

expressed as: 

 

���� = ��U�� + V�WX� (5.9) 

 

where:  

 

��U�� = #67%��0�� = ï ��3�� − ��6��− ��6�� ��3�� ð �0��	
V�WX� = V��) ��)Xj 

(5.10) 

 

The damage laws for the inelastic hinges and under monotonic loadings are similar to 

the one used in (5.17): 

 

|��| −�CD �1 − ���)��S � Û 0	
���� −�CD �1 − ���)��S � Û 0 

(5.11) 
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where �CD and �S are material parameters (see Figure 5.5a). 

Consider again the problem of Figure 5.4a. In a first stage, the behavior of the beam is 

elastic while the imposed displacement generates moments on the fixed end that are less than 

the critical moment �CD. Next, the inelastic hinge appears; the softening phase develops until 

the moment on the hinge is equal to zero. At this point, deformations on all the elements are 

zero and the rotation of the inelastic hinge is equal to �S. Thus, the final deflection is always 

equal to the ultimate rotation �S times the length of the beam no matter how many elements 

are used; consequently, the curve of force vs. deflection is mesh-independent (see Figure 

5.5b). 

 

 

Figure 5.5 – Lumped inelasticity model for beams: (a) inelastic material response and (b) cantilever solution. 

 

5.2.2 The constant moment triangle 

5.2.2.1 Kinematic relations 

Consider the simplest of the finite elements for elastic plates. Morley (1971) proposed 

a non-conforming element for slender plates in bending, so-called constant moment triangle 

(CMT). The CMT element was chosen due to its constant moment approximation. Such 

characteristic enable a simple modelling of the XLDM. 

The CMT element consists in a triangle with six generalised displacements or degrees 

of freedom: 

 

���. = ��� �� �� �? �� �C�j (5.12) 
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where ��, �� and �� are the deflections of the nodes 
, � and � of coordinates ���, ���, ~�� , ��� 
and ���, ���; �?, ��, and �C are the normal slopes at the middle of, respectively, the sides 
�, �� and �
 (see Figure 5.6). 

 

 

Figure 5.6 – Non-conforming plate-bending element with six degrees of freedom (Morley, 1971). 

The deflection ���, �� in the CMT element is given by a second-degree polynomial. 

This field can be decomposed in a rigid-body displacement !��, �� and a relative deflection �D��, ��: 
 

���, �� = !��, �� + �D��, �� (5.13) 

 

The rigid-body deflection !��, �� is given by the plane that passes through the points ���, �� , ���, ~�� , �� , ��� and ���, ��, ���. Let’s introduce now the matrix of generalised 

deformations ���. that is defined as: 
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���. = ��? �� �C�j 

�? = Å�DÅ�? ��-�,b�� = �? − Å!Å�?��-�,b�� 
�� = Å�DÅ�� ��-Ä,bÄ� = �� − Å!Å����-Ä,bÄ� 
�C = Å�DÅ�C ��-�,b�� = �C − Å!Å�C��-�,b�� 

(5.14) 

 

i.e. the generalised deformation matrix gathers the normal rotations relative to the plane of the 

element. The kinematic equation relating generalised displacements and deformations is: 

 

���. = #&�%.���. (5.15) 

 

where #&�%. is the kinematic matrix, expressed as: 

 

�&0�. =

=
®̄̄
¯̄̄
°a?~�� − ��� + �?~�� − ���2	 a?��� − ��� + �?��� − ���2	 ���2	 1 0 0���2	 a���� − ��� + ����� − ���2	 a�~�� − ��� + ��~�� − ���2	 0 1 0aC~�� − ��� + �C~�� − ���2	 ���2	 aC~�� − ��� + �C~�� − ���2	 0 0 1²³³

³³³́ (5.16) 

 

being 	 the area of the element; ���, ���, ���, the lengths of the sides 
�, ��, and �
, 
respectively; and: a? = cos�y?�, �? = sin�y?�, a� = cos�y��, �� = sin�y��, aC = cos�yC�, �C = sin�yC�. 

It is noteworthy that the matrix of curvatures can be expressed by the generalised 

deformations i.e. 

 

���. = à−Å��DÅ�� −Å��DÅ�� −2Å��DÅ�Å��j = 1	 #$%.j���. (5.17) 

 

where #$%. is a transformation matrix, expressed as: 
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#$%. = é−���a?� −����?� −2���a?�?−���a�� −������ −2���a���−���aC� −����C� −2���aC�C ê (5.18) 

 

5.2.2.2 Static relations 

The specific bending moments (moments per unit length) �--, �bb, �-b are constant 

in the CMT element. Such quantities are gathered in the specific bending moment matrix: 

 

���. = ��-- �bb �-b�j (5.19) 

 

The specific bending moments �?, ��, �C are defined as the normal specific bending 

moments at the sides 
�, ��, �
 as shown in Figure 5.7. Such specific bending moments can be 

expressed in terms of �--, �bb, �-b, as follows: 

 �? = −�--a?� −�bb�?� − 2�-ba?�? �� = −�--a�� −�bb��� − 2�-ba��� �C = −�--aC� −�bb�C� − 2�-baC�C 

(5.20) 

 

 

Figure 5.7 – Normal specific bending moments at the sides of the CMT element. 

Now, let’s define the generalised stress matrix as: 

 

�0�. = ���� ��� ����j = �����? ����� ����C�j = #$%.���. (5.21) 
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Notice that the quantities ���, ���, ��� present units of bending moments. 

The nodal forces �d�. (vertical forces at the vertices and normal moments at the mid-

sides, as presented in Figure 5.8) are defined as follows: 

 

�d�.j = �1½� 1½� 1½� 1¾? 1¾� 1¾C� (5.22) 

 

 

Figure 5.8 – Nodal forces (left) and generalized stresses (right). 

The virtual work principle for the CMT element lies: 

 

 ��∗�.j���.!
Z	 = ��∗�.j�d�. 

	��∗�.j���. = ��∗�.j�d�. 
(5.23) 

 

where the superscript ∗ means virtual field. The substitution of (5.17) and (5.21) in (5.23) 

results: 

 

��∗�.j�0�. = ��∗�.j�d�. (5.24) 

 

and the substitution of (5.15) in (5.24) lies: 

 

��∗�.j#&�%.j�0�. = ��∗�.j�d�.																				∀��∗�. (5.25) 
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Finally, the nodal forces are now expressed in terms of generalised stresses, as 

follows: 

 

�d�. = #&�%.j�0�. (5.26) 

 

5.2.2.3 Elasticity 

The relationship between the specific bending moments and curvatures of the CMT 

element can be expressed as follows: 

 

���. = #\%.���. (5.27) 

 

where #\%. is the flexural rigidity matrix, defined as: 

 

#\% = � ï1 G 0G 1 00 0 1 − G2 ð (5.28) 

 

being � the bending stiffness of the plate, which is expressed in terms of the Young’s 

modulus �, the Poisson’s ratio G and the thickness of the plate: 

 

� = �s�12�1 − G�� (5.29) 

 

The strain energy <+ of the CMT element can be written as: 

 

<+ = 12 ���.j���.!
Z	 = 	2 ���.j���. = 	2 ���.j#\%Þ3���.

= 	2 �0�.j�#$%.j�Þ3#\%Þ3#$%.Þ3�0�. 
(5.30) 
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Therefore, the generalised deformations are now expressed in terms of generalised 

stresses: 

 

���. = Å<+Å�0�. = 	�#$%.j�Þ3#\%Þ3#$%.Þ3�0�. (5.31) 

 

where the elastic flexibility matrix is given by: 

 

#67%. = 	�#$%.j�Þ3#\%Þ3#$%.Þ3 (5.32) 

 

Then, the elastic constitutive relation is expressed as: 

 

���. = #67%.�0�. (5.33) 

 

5.2.2.4 Numerical test: linear elasticity 

In order to analyse the validity of the formulation presented so far and also evaluate 

the accuracy of the CMT element, a set of numerical examples is now presented. All 

examples are addressed to an isotropic square plate (Figure 5.9a) with Poisson’s ration taken 

as 0.3. This plate is loaded either by a central concentrated force z or a uniformly distributed 

load 5, applied on the plate surface. The edges are either all clamped or all simply supported. 

Figure 5.9b-f presents the finite element meshes adopted to perform the numerical analysis. 

The results are shown in Table 5.1. 

Note that, as finer as the mesh becomes, the numerical solution gets closer to the 

analytic solution. It is also noteworthy that the displacement decreases with the mesh 

refinement. This numerical behaviour is due to intrinsic over-flexible characteristics of the 

CMT element i.e. the CMT element “gives a strict upper bound to the bending energy of a 

plate” (ALLMAN; MORLEY, 2000, p. 739), which is directly related to the displacement 

presented in this elastic problem. 
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Figure 5.9 – Isotropic square plate: (a) geometry, (b) mesh 2×2, (c) mesh 4×4, (d) mesh 8×8, (e) mesh 16×16 and 

(f) mesh 32×32. 

 

Table 5.1 – Central deflection of an isotropic square plate. 

Mesh 
Central point force z 

 
Uniform pressure 5 

Simply supported Clamped 
 

Simply supported Clamped 

2×2 0.02706 0.02232 
 

0.00902 0.00744 

4×4 0.01741 0.01202 
 

0.00513 0.00285 

8×8 0.01351 0.00776 
 

0.00432 0.00170 

16×16 0.01219 0.00628 
 

0.00413 0.00138 

32×32 0.01178 0.00581 
 

0.00408 0.00129 

Analytic 0.01160 0.00560 
 

0.00406 0.00126 

Multiplier z��/� 
 

5�4/� 
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5.2.3 A lumped damage model for bending plates 

5.2.3.1 Model idealisation 

Now, consider that the bending plate element is an assemblage of the elastic CMT 

element with damage hinge-lines, as depicted in Figure 5.10. This assumption is clearly based 

on the beam element previously presented in this chapter. Therefore, the matrix of generalised 

damage deformations is introduced as follows: 

 

V�WX. = ��?) ��) �C)�j (5.34) 

 

which contains the damage rotations of the hinge-lines at sides 
�, �� and �
, respectively. 

 

 

Figure 5.10 – Lumped damage model idealisation. 

Considering the hypothesis of strain equivalence, the total generalised deformations 

are decomposed in an elastic part ��U�. and the damage rotations V�WX. of the hinge-lines: 

 

���. = ��U�. + V�WX. (5.35) 

 

The generalised elastic deformations are computed by the Morley (1971) element and 

the generalised damage deformations obey the following evolution laws (Figure 5.11):  
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â������ â − �CD �1 − |�?)|�S � Û 0 

â������ â − �CD �1 − ���)��S � Û 0 

������� � − �CD �1 − |�C)|�S � Û 0 

(5.36) 

 

 

Figure 5.11 – Inelastic response.  

Note that if �S → ∞ a curve with constant value �CD represents the inelastic 

behaviour. Therefore, it can be considered that the lumped damage model reduces to a lumped 

plasticity model. Such particular case is presented in Appendix B, where the plastic collapse 

of RC slabs is modelled. 

5.2.3.2 Application example 

A simple square bending plate � ô � with thickness s is analysed in order to illustrate 

the potentiality of the proposed model. Such plate is simply supported on the sides and loaded 

by a concentrated force at the centre. Note that the corners of the plate cannot lift. 

In the modelling, three meshes were used to analyse the objectivity of the proposed 

model. Note that the element size varies from one mesh another (Figure 5.12). The collapse 

mechanisms obtained with the three meshes are equal (Figure 5.12), and the all damage 

rotations at the end of the analysis present values equal to the ultimate rotation (�S). Finally, 

note also that the model present objectivity in the studied problem, as depicted in the graph of 

Figure 5.12. 

Regarding all results presented in Figure 5.12, it can be affirmed that the proposed 

model present objectivity i.e. the solution is size-independent. In the end of this chapter the 

limitations of this procedure are highlighted. 
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Figure 5.12 – Problem solution with the proposed lumped damage model. 

5.3 Tensile plates 

In this section, the main ideas of lumped damage mechanics proposed to bending 

plates are applied to tensile plates. Note that for bending problems the damage variable 

describes inelastic phenomena lumped on hinges (or hinge-lines). Now, the inelastic 

phenomena are lumped on localisation bands. 

The procedure proposed in this section is firstly illustrated with a bar in tension, and 

then its application in tensile plates is broached. 

5.3.1 A lumped damage model for a bar in tension 

Consider again the uniaxial problem presented in subsection 5.1.1. This time, it will be 

solved using a new two-node finite element inspired on the one described in item 5.2.1. The 

matrix of nodal displacements is denoted by: 
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���� = �
� 
��j (5.37) 

 

This time, damage is concentrated in a localisation band while the rest of the element 

remains elastic. This band has a nil initial thickness (see Figure 5.13). This idea is similar to 

the concept of inelastic hinge or the FPZ in fracture mechanics. 

 

 

Figure 5.13 – Lumped damage finite element for a uniaxial bar. 

In this element, the elongation � of the element is used as kinematic variable instead 

of Q. The kinematic equation relating displacements and deformations is: 

 

� = #&�%����� 										 ∴ #&�%� = #−1 1% (5.38) 

 

The matrix of internal forces �d�� of the element is: 

 

�d�� = 	#&�%�jA (5.39) 

 

where A is the conventional Cauchy stress. Now, a deformation equivalence hypothesis is 

introduced, instead of the strain equivalence one: 

 

� = �* + �) = ��� A + �) (5.40) 
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In the present context, �* is the elongation of the elastic part of the element and �) 

represents the elongation of the localisation band. Consider again the particular case of 

monotonic positive displacements, a damage evolution law similar to (5.17) is chosen, but this 

time in terms of the damage deformation instead of damage strain: 

 

A − ACD �1 − �)�S� Û 0 (5.41) 

 

where ACD and �S are material parameters (Figure 5.14a). Note that (5.41) is comparable to a 

tension-softening law in the FPZ of fracture mechanics, with the damage-related elongation �) playing the role of the crack-opening displacement. This finite element generates 

displacement vs. force curves that are mesh-independent (Figure 5.14b). 

 

 

Figure 5.14 – Lumped inelasticity model for bars in tension: (a) inelastic material response and (b) numerical 

solution for a simple bar in tension. 

It is easy to understand why this new element leads to stable results while the 

conventional one does not. In the conventional damage model, stress is zero when damage is 

equal to one (see the elasticity law of subsection 5.1.1), thus the elastic strain is also zero and 

only the damage-related strain may be no nil (see the elasticity law of subsection 5.1.2). 

According to the damage law, for A equal to zero, the damage-related strain Q) is equal to the 

ultimate strain QS. Therefore, the ultimate displacement is equal to the ultimate strain times 

the length of the element i.e. QS��. Consequently, the curve of displacement vs. force is mesh-

dependent. 

On the other hand, in the lumped damage model, the elongation of the localisation 

band is equal to the ultimate elongation �S when damage reaches the value of one and the 

stress is equal to zero. The rest of the bar is un-deformed; therefore, the ultimate displacement 
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does not depend on the length of the element and the resulting curve is, of course, mesh-

independent. 

In the simulations, one defect was introduced in the first element of all the meshes in 

order to impose damage localisation always at the same location. This feature may be 

compared with the introduction of an initial crack in fracture mechanics problems. 

5.3.2 A lumped damage model for tensile plates 

5.3.2.1 The elastic four-node element revisited 

Consider now a two-dimensional continuum. The classic four-node element (see 

Figure 5.15a) is defined by the following displacement matrix: 

 

���� = �
� "� 
� "� 
� "� 
� "��j (5.42) 

 

The conventional shape functions leads to expressions for strains ����, stresses ����, 

nodal forces �d�� and stiffness matrix #�%� that can be written as follows: 

 ���� = #�%����� ���� = #�%���� = #�%#�%����� 

�d�� =##�%�j ���Z$ 

#�%� =##�%�j #�%#�%�Z$ 

(5.43) 

 

where #�%� is the conventional kinematic matrix and #�% represents the matrix of elastic 

coefficients. 

Exactly the same element can be rewritten using a notation that will allow for the 

formulation of two-dimensional LDM element in a simpler way. Introduce now an equivalent 

five-bar truss as shown in Figure 5.15b. The total elongations of the bars are included in the 

matrix of generalised deformations: 

 

���� = ���� ��� ��� ��� ����j (5.44) 
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Where the subscript at each term of ���� represents the nodes that contains the truss bar, e.g. ��� represents the elongation of the bar between nodes 
 and � and so on. 

The kinematic equation between the nodal displacements and generalised 

deformations can, of course, be written as: 

 

���� = #&%����� (5.45) 

 

being #&%� the kinematic transformation matrix given in the Cartesian system (Appendix C) 

and  

 

#&�%� =
®̄̄
¯̄°
−1 0 1 0 0 0 0 0−√22 −√22 0 0 −√22 −√22 0 00 −1 0 0 0 0 0 10 0 0 −1 0 1 0 00 0 0 0 1 0 −1 0²³

³³³́ (5.46) 

 

the kinematic transformation matrix given in the reference space (Figure 5.15c). 

 

 

Figure 5.15 – (a) Conventional four-node quadrilateral element; (b) equivalent truss; (c) reference space. 

The strain tensor in any point of the conventional element depends on five constants; 

therefore it can also be expressed as a function of the generalized deformations: 

 

���� = #$%����� (5.47) 
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being #�%� = #$%�#&%�, where #$%� is the transformation matrix in Cartesian coordinates 

(Appendix C) and 

 

#$�%� = 14 ®̄
°̄ 1 − % 0 0 0 1 + %0 0 1 − & 1 + & 0−�1 + &� √2 2' −�1 + %� % − 1 & − 1²³

³́ (5.48) 

 

is the transformation matrix expressed in the usual reference space of coordinates % and &. 
The stress matrix is now given by: 

 

���� = #�%#$%����� (5.49) 

 

Finally, the nodal forces and stiffness matrix are rewritten as: 

 

�d�� =##�%�j ����Z$ = #&%�j##$%�j����Z$ 

#�%� =##�%�j#�%#�%�Z$ = #&%�j  ##$%�j#�%#$%�Z$£ #&%� 

(5.50) 

 

5.3.2.2 The LDM four-node element 

In the beam element only two inelastic hinges at its extremes were considered. This, of 

course, is an arbitrary choice for the sake of simplicity. Other elements with more than two 

hinges with variable location, that can be a function of the nodal displacements, can be 

imagined. In this section, keeping the same spirit, an element that is the result of the 

assemblage of an elastic part with four fixed localisation bands at the sides of the element is 

proposed (see Figure 5.16a). 

Given the nature of the shape functions of the element, it is assumed a linear variation 

in the thickness of the band (see Figure 5.16b). When a localisation band crosses any of the 

equivalent bars, it generates elongations V�WX�. In the reference space, this damage related 

elongations have the following simple expression: 
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V�WX� =
µ¶·
¶̧ 0��( √2 2'��(��(0 )¶*

¶+ +
µ¶¶
·¶
¶̧ ��,��, √2 2'00��, )¶¶

*
¶¶+ +

µ¶·
¶̧ 0��( √2 2'��(��(0 )¶*

¶++
µ¶¶
·¶
¶̧ ��,��, √2 2'00��, )¶¶

*
¶¶+

 (5.51) 

 

where ��( is the thickness of the band at the node 
 on the side 
� (see Figure 5.16b), ��,  
corresponds to the node � in the band �� and so on. The matrix V�WX� in the Cartesian system 

is presented in Appendix C. 

 

 

Figure 5.16 – (a) Localisation bands in a four-node element; (b) thickness of the bands 
� and ��. 

The deformation equivalence hypothesis establishes now that the total elongations are 

equal to the elongations of the elastic element plus those due to the localisation bands: 

 

���� = ��U�� + V�WX� (5.52) 

 

Therefore, the elasticity law is: 

 

���� = #�%#$%�V� − �WX� (5.53) 

 

The constitutive equations are completed with the following damage laws in the 

reference element: 
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A(�%�, &�� − ACD  1 − ��(�S £ Û 0																			A(~%�, &�� − ACD  1 − ��(�S£ Û 0 

A,~%� , &�� − ACD  1 − ��,�S£ Û 0																		A,�%�, &�� − ACD  1 − ��,�S £ Û 0 

A(�%�,&�� − ACD  1 − ��(�S £ Û 0																A(�%�, &�� − ACD  1 − ��(�S£ Û 0 

A,�%�, &�� − ACD  1 − ��,�S£ Û 0																			A,�%�, &�� − ACD  1 − ��,�S£ Û 0 

(5.54) 

 

Finally, the same kinematic and equilibrium equations of item 5.3.2.1 may be used: 

 ���� = #&%����� 

�d�� = #&%�j##$%j���Z$ 
(5.55) 

 

5.3.2.3 Application example 

The proposed finite element was implemented in an academic structural analysis 

programme (UZCATEGUI, 2012). The example presented in Figure 5.17 is used to show the 

convergence of the numerical solution with respect to the element size. This L-shaped plate is 

fixed at the bottom side and was subjected to a monotonically increasing displacement at the 

lower right corner designated as point A. The analysis ends when the ultimate elongation of 

the band is achieved at the interior corner of the plate. The material properties and the 

dimensions of the plate are indicated in Figure 5.17. 

Six meshes were used in the analysis. Such meshes present 12, 48, 108, 192, 300, 432 

elements. In this analysis, the finite elements present square shape, dividing the problem area 

equally e.g. for the mesh with 12 elements, the problem area is divided in 12 equal squares. 

Figure 5.18 shows the curves of displacement vs. reaction-force at point A. The last 

two curves, i.e. those corresponding to the meshes with 300 and 432 elements, are presented 

in Figure 5.19. These figures show the convergence of the analysis for this example. Finally, 

Figure 5.20 shows the final configuration for the meshes with 108, 192, 300 and 432 

elements, presenting also the localisation bands distribution. 
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Figure 5.17 – L-shaped plate: geometry, material properties and boundary conditions. 

 

 

Figure 5.18 – Displacement vs. force for the adopted meshes. 

 

 

Figure 5.19 – Displacement vs. force for meshes with 300 and 432 elements. 
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Figure 5.20 – L-shaped plate: deformed shape and localisation bands for meshes with (a) 108, (b) 192, (c) 300 

and (d) 432 elements. 

Considering this numerical example, it can be affirmed that the proposed lumped 

damage model presents objectivity i.e. the model is refinement- or size-independent. Note 

that, in Figure 5.18, as finer meshes are used, the numerical modelling appears to reach a 

unique solution. In Figure 5.20 the localisation bands in the four finer meshes simulations 

present a similar pattern. The critical bands appear near to the inner corner. However, some 

diffuse bands nucleate especially near to the base of the specimen. These bands present small 

thickness (from 10Þ- to 10Þ� at the end of the analysis), being negligible to the specimen 

collapse. The limitations of the proposed model are discussed in the next section. 

5.4 Limitations of the proposed models and perspective for future works 

Both lumped damage models for bending and tensile plates show great potentiality, 

leading to size-independent solutions. Although the simplicity of the examples, the results 
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presented in this chapter already prove the feasibility of the approach and justifies further 

efforts in this direction. The advantages with respect to other approaches in terms of 

simplicity and physical correctness might be important. However, some limitations must be 

highlighted in order to suggest improvements for further works.  

Considering the lumped damage model for bending plates, the collapse mechanism 

coincides with the sides of the elements. Once the hinge-lines can appear only at the sides of 

the elements, the mesh was deliberately chosen to ensure such coincidence. Obviously, 

another mesh with distorted elements could force the model to find another solution close to 

the expected one. However, such modelling would only present some kind of distortion limit 

for the mesh, which would be only applicable to the analysed meshes. Therefore, instead of 

this simplistic observation, it is preferable to suggest the modelling of arbitrary hinge-lines, 

allowing their appearance inside the finite element. The use of other finite elements is also 

suggested. 

Regarding the lumped damage model for tensile plates, the abovementioned 

observations about hinge-lines are applicable to the localisation bands, as well as the ones 

about element types. The formulation and implementation of other damage laws are also 

suggested, in order to reproduce, numerically, experimental observations. 
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6 CONCLUSIONS 

This thesis presents some original contributions on the Lumped Damage Mechanics 

(LDM) framework. These contributions are here characterised in four categories, being three 

advances in frame structures and one for continuum media: 

i. LDM for reinforced concrete arches; 

ii. LDM for unreinforced concrete structures; 

iii. LDM for high cycle fatigue analysis; 

iv. LDM for continuum media (or extended LDM). 

Note that, before this work, the great majority of models based on LDM presented 

solutions for reinforced concrete (RC) frames and just a few studies introduced LDM models 

to analyse local buckling in steel frames. As discussed in the main body of the text, the 

modelling of structures using LDM associates an internal variable for each inelastic 

phenomenon. Regarding RC structures, the main inelastic phenomena are concrete cracking 

and steel yielding; then, respectively, damage variables and plastic deformations account for 

those inelastic phenomena.  

So far, the application of LDM models was limited to straight frames. Therefore, the 

first original development of this thesis was the modelling of RC arches using LDM. The 

main objective was the analysis of circular RC structures, such as arch bridges and tunnels. 

The comparison between the proposed formulation and experimental results showed the 

accuracy of the LDM for RC arches. In such comparisons, the main observations are the use 

of the classic theory of reinforced concrete and the damage localisation. The classic theory of 

reinforced concrete is used to calculate the model parameters, which is preferable for practical 

applications. In an analysed case, the model correctly represented the softening phase, which 

was due to localisation of inelastic phenomena. Such important observation depicts the 

capability of the proposed procedure. Still, it is noteworthy that this first development also 

illustrates how to introduce finite elements with complex geometries in the LDM framework. 

The second original contribution is the LDM model for unreinforced concrete 

structures, or any kind of quasi-brittle materials. Once there is no reinforcement, the main 

inelastic phenomenon is the concrete cracking, which is modelled by damage variables. The 

quasi-brittle behaviour is reproduced by the damage evolution law. A special logarithm, 

known as Lambert W function, is used in the damage evolution law. Such LDM model 
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accurately represents the quasi-brittle behaviour of unreinforced concrete structures. As a 

main crack leads the cross section collapse, the damage variable is directly related to the 

Crack Opening Displacement (COD). Therefore, the COD estimated via LDM presents 

suitable results in comparison with experimental responses and fracture mechanics analyses. 

Despite the good accuracy, the model parameter has not a well-defined physical meaning. 

Therefore, further theoretical and experimental studies should be carried out in order to 

present a better physical meaning of the model parameter, or, at least, any kind of relation 

with the material properties. 

It is noteworthy that the LDM model for unreinforced concrete structures were also 

utilised to analyse masonry arches. Such particular type of structure is standard for historic 

construction in the western civilisation. Therefore, the analysis and behaviour prediction is 

extremely important. The main assumption to apply the aforementioned LDM model is that 

the only inelastic phenomenon is mortar cracking. This is not entirely true, but the numerical 

modelling showed that this is a reasonable approximation for the analysed problems. Further 

developments on LDM to analyse historic constructions are here suggested as a research 

frontier. 

The third original contribution is the modelling of structures under high cycle fatigue 

using LDM. Such contribution concludes the development of LDM models for frame 

structures. The objective was the simplified modelling of high cycle fatigue in complex 

structures, such as offshore platforms and aeroplanes. This LDM model was formulated to 

analyse single crack propagation by a damage variable, as the one for unreinforced concrete. 

However, instead of propose a new damage evolution law any classic fatigue law could be 

used. Note that the damage variable is easily related to the stress intensity factors through 

fracture mechanics concepts. Both bending and axial damage models were proposed, 

achieving accurate results. 

It is noteworthy that the original developments in LDM for frame analysis are based in 

the same principles of fracture and damage mechanics. As discussed in the text, in a structural 

analysis, data input and transformation of numerical results into engineering decisions are 

human activities. LDM simplifies both jobs considerably. The evaluation of damage 

distribution maps, as the one presented in Figure 4.10, becomes an easy and straightforward 

task, therefore reducing the possibility of human errors. All proposed frame models can be 

incorporated in conventional nonlinear structural analysis programmes simply as new finite 

elements. 
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In this thesis, the LDM formulation for frame structures was applied to the analysis of 

beams, plane frames, arches and rings subjected to monotonic loadings or fatigue. The 

generalisation to the tri-dimensional case is very important in the context of the potential 

applications of the theory. This task has been carried out successfully in the case of reinforced 

concrete structures subjected to monotonic loadings or ultra-low cycle fatigue (BAI et al., 

2016). Basically, the idea consists in introducing vector measures of damage in the hinges 

with the corresponding generalisation of the damage evolution laws. The components of these 

vectors are the damage parameters in the two principal directions of the cross section. The 

analysis of tri-dimensional structures under high cycle fatigue may be accomplished adopting 

the same ideas; however, the experimental validation and the evaluation of the precision of 

such a procedure must be done. 

Once LDM models for frame structures are based on the same general ideas, it is 

therefore possible to simulate the effect that high cycle fatigue has on the structural behaviour 

under an extreme event such as an earthquake, impact or explosion; and this analysis can be 

carried out for the entire industrial facility, airframe or bridge. Taken into account the 

inherently random character of the phenomenon, the use of probabilistic technics is 

indispensable; LDM appears to be an ideal approach for this kind of procedures. 

The coupling with other, non-structural, degrading phenomena, such as corrosion 

would also be very important for practical applications. Even if this subjected remains an 

open problem in the framework of LDM, it can be expected that the already established 

procedures may be successfully adapted to the theory. Therefore, LDM may become a useful 

tool for the assessment and retrofitting projects of ageing infrastructures. In general terms, the 

number and significance of the practical applications of LDM can be important. 

Finally, the fourth original contribution is the modelling of continuum media with 

LDM. This new branch of LDM framework was here named as extended lumped damage 

mechanics (XLDM). In this thesis, the modelling of continuum media through XLDM was 

limited to bi-dimensional problems, where models for bending and tensile plates were 

proposed. Regarding bending plates, the XLDM model was clearly inspired in LDM models 

for beams. In this case, inelastic hinges became inelastic hinge-lines. Therefore, the XLDM 

finite element was considered as an assemblage of an elastic plate-bending element with 

inelastic hinge-lines at its sides. Analogously, for tensile plates the XLDM finite element is an 

assemblage of an elastic plate element with localisation bands at its sides. 

The examples (presented chapter 5) show that the XLDM leads to size-independent 

finite element analysis in plates subjected to plane strain or bending. The formulation is 
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remarkable for its simplicity, which may also present drawbacks. The element is not very 

efficient in some cases, especially when a band (or hinge-line) tends to cross diagonally the 

elements. However, the room for improvements is also significant. Bands do not need to 

match the sides of the elements and other elements with bands of arbitrary orientation may be 

imagined. Additionally, the element does not need to have exclusively an elastic behaviour. It 

can be elastic-plastic and/or it can even exhibit continuum damage. Of course, after detection 

of localisation, damage should be made to concentrate exclusively in the bands as in the 

presented formulation. 

In the XLDM element for tensile plates presented in this thesis, bands are loaded on 

mode I. But, this does not need to be a limitation of the formulation neither. A more complex 

formulation involving mode II could also be considered. 

Lastly, the extension to the tri-dimensional case could be remarkably simple, opening 

a significant number of new applications. The results presented in this thesis already prove the 

feasibility of the approach and justifies further efforts in this direction. The advantages with 

respect to other approaches in terms of simplicity and physical correctness might be 

important. 

Despite the limitations of XLDM models proposed here, a significant step into the 

characterisation of LDM as a general theory, such as fracture and damage mechanics, was 

given in this thesis.  
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APPENDIX A – Interaction diagrams for reinforced concrete 

The main objective of this appendix is to introduce the interaction diagrams for 

reinforced concrete (RC). Since this theme is used in the modelling of RC frame structures 

(FLÓREZ-LÓPEZ; MARANTE; PICÓN, 2015), initially the main concepts regarding plastic hinges 

are briefly presented. 

The plastic hinge 

Consider a simply supported beam constituted by a homogeneous material and bi-

symmetric cross section (Figure A.1a). As the applied force increases, at some point the 

maximum bending moment � exceeds the plastic threshold, or plastic moment, �R 

although � still smaller than the collapse limit, or ultimate moment, �S (Figure A.1b). As a 

result, plastic strains occur where the bending moment exceeded �R (Figure A.1a). The 

resulting curvature distribution is depicted in Figure A.1c. Note that, at the mid-section, 

. → ∞ while � → �S (Figure A.1c). The exact moment-curvature response for this structure 

is given in Figure A.2.  

 

 

Figure A.1 – Simply supported beam: (a) plastic zone distribution in the beam; (b) bending moment distribution 

across the beam; (c) curvature distribution across the beam. 
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The exact response of this problem can be simplified by considering a plastic hinge 

located at the mid-span of the beam. For the sake of simplicity, the elastic-plastic moment-

curvature relationship is considered elastic-perfectly plastic. Then, for a given cross section, 

if the yield threshold �b is reached, the cross section yields entirely. Therefore, �b is usually 

taken as �R or �S (Figure A.2). For a detailed discussion about plastic hinges, see Flórez-

López, Marante and Picón (2015).  

 

 

Figure A.2 – Moment-curvature at the mid-section of the beam. 

Now, an academic example is presented in order to apply the plastic hinge concept. 

Consider the beam depicted in Figure A.3a, where � is its total length and z is the applied 

load. The deflection along the beam is represented by ���� and: 

 

���� = �Z�Z�  

���� = ��.��� = �� Z��Z��  

$��� = Z�Z� = �� Z��Z��  

5���� = Z$Z� = �� Z4�Z�4  

(A.1) 

 

being �� the flexural stiffness, ���� the total rotation of the cross section, ���� the bending 

moment, .��� is the curvature distribution, $��� is the shear force and 5���� is the load 

distribution along the beam.  

Since the only external force is z the load distribution is given by: 
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5���� = �δM  � � �4£z (A.2) 

 

where δM� � is the Dirac delta function.  

The deflection along the beam ���� is obtained by the solution of an ordinary 

differential equation, where the boundary and initial conditions are:  

 

��0� 	= 0 ��0� 	= 0 ���� 	= 0 ���� 	= 0 ���/2� 	= 0 (A.3) 

 

In the analysis, the elastic limit is reached in the first step (Figure A.3b) i.e. the 

absolute value of ��0� reached the adopted yield moment �b (Figure A.3d). At this point 

the first plastic hinge is activated and the beam presents elastic behaviour. Note that the 

graphs of the bending moment distributions (Figure A.3d) follow the tensioned fibres of the 

cross sections along the beam. 

Another plastic hinge is activated in the second step (Figure A.3b). As the analysis 

reach the second step, the plastic rotation of the first hinge evolves (Figure A.3c). The 

difference between both responses (black and blue curves in Figure A.3c-d) is still small.  

The next step of the analysis consists in the activation of the third hinge. Since the 

beam is two times hyperstatic, the evolution of plastic rotations at the third hinge will turn 

the beam in a mechanism. Therefore, the maximum value of z is then reached. Note that 

the plastic rotations of hinges 1 and 2 just reached their maximum value (Figure A.3c). From 

now on, while the deflection �� increases (point 4 in Figure A.3b), z remains constant and 

the plastic rotation of the third hinge �R��/2� evolves. If �R��/2� reaches its maximum 

value, the structure turns into a hypostatic system. 

Note that, at the end of the analysis the total rotation along the beam ���� presents 

discontinuities characterised by the plastic rotations at the hinges. 

This example was solved using directly the differential relations for this beam. 

However, a finite element analysis with plastic hinges could be carried out. Then, the yield 

function is: 

 

`��� = |�|��b ≤ 0 (A.4) 
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and the elastic domain is given for `��� Ç 0 i.e. −�b Ç � Ç �b. 

 

 

Figure A.3 – Academic problem: (a) geometry; (b) load-deflection response; (c) total rotation distribution; (d) 

bending moment distribution. 

On the other hand, for frame structures the plastic hinge may present plastic 

rotations and plastic elongations. Considering a rectangular cross section and linear stress 

and strain distribution, the yield function results (FLÓREZ-LÓPEZ; MARANTE; PICÓN, 2015): 

 

`��,�� = |�|�b � � ��b�
� � 1 ≤ 0 (A.5) 

 

where � is the axial force in the cross section and �b is the axial force that produces the 

total plasticisation of the cross section. 

Now, the elastic domain and the yield surface are presented in Figure A.4. Note that 

the evolution of the internal variables, plastic rotation (�R) and plastic elongation (ΔR), is 
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given by a normality rule (Figure A.4). If other type of cross section is considered, the yield 

function changes, which leads to a modification on the shape of the yield surface. 

 

 

Figure A.4 – Yield surface, elastic domain and normality rule for a rectangular cross section. 

So far, a perfectly plastic behaviour was assumed to analyse structures composed by 

a homogenous material. If an isotropic or a kinematic yield function is adopted, the 

modelling of steel structures is possible with accurate results. However, RC structures are 

composed by two materials: steel bars and concrete. 

Reinforced concrete: behaviour of the materials 

In conventional buildings, the RC beams and columns usually present rectangular 

cross sections. Then, consider a rectangular concrete cross section b ô h (Figure A.5) 

reinforced by longitudinal and transversal steel. Internal forces are equilibrated by stresses 

in the cross section. Most of compression stresses are supported by the concrete; 

longitudinal and transversal reinforcements mainly support, respectively, tension and shear 

forces. 

Since tension stresses in RC structures usually occur due to bending, the longitudinal 

reinforcement is positioned near to the faces of the cross section (Figure A.5). The 

longitudinal reinforcement areas A4 and A4�  support tension and compression (in part) 

stresses, respectively. The values d and d� are distances of tensioned (A4) and compressed 
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(A4� ) reinforcements to the most compressed fibre. The transversal reinforcement, usually 

constituted by stirrups, support shear forces and keep the longitudinal steel in place during 

the construction. For rectangular cross sections, stirrups usually present hoop shapes.  

 

 

Figure A.5 – Typical cross section of a reinforced concrete element. 

The concrete compressive strength (fù�) is measured by the standard compression 

test, where concrete cylinders at the age of 28 days are subjected to axial loads up to 

collapse in a compression-test machine. Then, the compressive strength of the specimen is 

the ratio between the failure load and the circular cross section. All steps of this test are 

standardised in code regulations.  

The concrete compressive behaviour is precisely measured by nonlinear elastic 

models. One of the most cited and accurate model was proposed by Hognestad (1951). In 

such model (Figure A.6), fù = �A is the compression stress and εù = �Q is the compression 

strain. Note that, in the Hognestad (1951) model, the maximum compression stress fù�� is 

different from cylinder strength fù� due to the specimen geometry and the strain rate applied 

during the test. Generally the maximum compression stress fù�� is taken as 0.85fù� for usual 

concretes in practical applications. Up to 0.5fù�� the compressive behaviour is almost linear. 

From 0.5fù�� to fù�� a parabolic behaviour is assumed. At the maximum compression stress fù�� 
the concrete presents a strain value ε� which is almost constant (2‰) for usual concretes. 

The failure deformation εùü usually takes value from 3‰ to 4‰ depending on the concrete 

resistance.  
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Figure A.6 – Stress-strain curve proposed by Hognestad (1951). 

The elasticity modulus Eù is usually calculated by empirical equations given in code 

regulations, such as the ACI 318-05 (ACI, 2005) and the NBR 6118:2014 (ABNT, 2014). In 

these calculations, Eù is estimated by the cylinder strength (fù�), which is given in MPa in 

codes that use SI units (ABNT, 2014) or in psi in those that still use the Imperial System (ACI, 

2005).  

In practice, the transversal reinforcement may confine the concrete core in the cross 

section (Figure A.5). For confined concretes, many studies proposed modifications in 

Hognestad (1951) model, being the Kent and Park (1971) model one of the most used 

(Figure A.7). 

Even neglected during the design, the concrete tension strength is important to 

determine the cracking process. The concrete tension strength (f7) is directly measured by a 

standard direct tension test. However, this test might present execution issues, being 

susceptible to errors. An alternative is the Brazilian test, where the tension strength is 

estimated by a diameter compression in standard cylinders. The Brazilian test is simple to 

execute, once the same materials of the compression test are used, being less susceptible to 

errors. 
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Figure A.7 – Stress-strain curve proposed by Kent and Park (1971).  

The steel bars used in reinforced concrete structures present a nonlinear behaviour 

as shown in Figure A.8. Commonly in the RC theory, the important information from the 

steel behaviour curve is: yield stress (f8), yield strain (ε8), and the ultimate stress (f4ü). 
 

 

Figure A.8 – Behaviour curve of steel bar. 

Computation of the interaction diagrams 

The concept of plastic hinge can be applied in RC elements. In the plastic hinge 

concepts introduced in this appendix only a yield moment was needed to describe the 

nonlinear behaviour of a structural element, as the beam in the academic example. For 

elements subjected to bending moment and axial force, the concept of yield surface (Figure 
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A.4) was briefly introduced. This leads to a moment-curvature relation that depends on the 

axial force. However, an accurate description of RC elements require a more sophisticated 

moment-curvature (-rotation) relation. A possibility is presented in Figure A.9. Such curve is 

described by four properties of an RC cross section: first cracking moment (�CD), plastic 

moment (�R), ultimate moment (�S) and ultimate plastic rotation (�SR). Such quantities 

depend on the axial force, being presented then by interaction diagrams (Figure A.10). 

 

 

Figure A.9 – Constitutive model for RC elements. 

For a cross section, an interaction diagram is constructed using at least four 

conditions: pure compression, pure tension, pure bending and maximum bending resistance 

(balanced conditions). Note that the interaction diagrams can present more points if the 

analyst considers necessary, and these points should be joined by straight lines as presented 

in Figure A.10.  
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Figure A.10 – Interaction diagrams. 

Initially, the first cracking condition is analysed. For such condition, the transformed 

section concept is applied in the cross section (see e.g. Figure A.11), where A;= and I;= are 

the area and inertia moment of the transformed cross section, respectively. 

In the pure compression point (Figure A.11) the strain and stress distributions are 

assumed constant in the cross section. Assuming a linear behaviour of concrete up to almost 

half of the total resistance, the axial compression force at the concrete cracking threshold is: 

 

�CD = �A;=0.45fù� (A.6) 

 

 

Figure A.11 – Transformed section, strain and stress distributions in pure compression for first cracking. 
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In the pure tension point (Figure A.12) the strain and stresses are also constant in the 

cross section. If the stresses reach the tension strength f7 then cracks nucleate, therefore the 

corresponding axial force is:  

 

�CD = A;=f7 (A.7) 

 

 

Figure A.12 – Transformed section, strain and stress distributions in pure tension for first cracking. 

The pure bending consists, evidently, in a condition where there is no axial force. 

Since the Euler-Bernoulli beam theory is adopted (see chapter 2), the stress and strain 

distributions are assumed linear (Figure A.13). Then, considering that the maximum tension 

stress is equal to f7 the first cracking moment is: 

 

f7 = �CDz:;I;= 								⇒								�CD � f7I;=z:;  (A.8) 

 

where z:; is the distance between the extreme tension fibre and the centroid axis (Figure 

A.13).  
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Figure A.13 – Transformed section, strain and stress distributions in pure bending for first cracking. 

The main assumption in the balanced condition point is that the maximum 

compression and tension stresses are, respectively, 0.45fù� and f7 i.e. both simultaneously 

reach the adopted limits (Figure A.14). 

The stress distribution (f) is linearly described by the following equation: 

 

f = �CDzI;= � �CDA;= (A.9) 

 

where z is the distance between the centroid axis and the considered fibre (Figure A.14).  

The bending moment and the axial force are calculated considering fù� and f7 as the 

maximum compressive stress and maximum tension stress, respectively. 

 

µ¶·
¶̧0.45fù� = �CD�h� z:;�I;= � �CDA;=
f7 = �CDz:;I;= � �CDA;=																				

								⇒							 Ù�CD � z:;�0.45fù� � f7� � hf7h A;=
�CD = 0.45fù� � f7h I;=																							 (A.10) 
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Figure A.14 – Transformed section, strain and stress distributions in the balanced condition point for first 

cracking. 

In the plastic condition, concrete presents no resistance to tension stresses due to 

cracks. Therefore, the longitudinal reinforcement is responsible to resist to tension stresses 

up to plastic limit.  

In the pure compression point, the strain distribution in the cross section is constant 

and equal to the yield strain (ε8), leading to the following axial force: 

 

�R ≅ C4� � Cù � C4 � �f8A4� � fù�bh � A4� � A4� � f8A4 (A.11) 

 

where fù is the maximum stress in the concrete. The main assumption in this point is that the 

reinforcement yields in compression while concrete reaches compression maximum 

strength.  
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Figure A.15 – Concentrated loads, strain and stresses distributions in the pure compression point for plastic 

condition. 

For the pure tension point the concrete resistance is neglected (Figure A.16) and the 

strain at the reinforcement bars is equal to the yield strain (ε8) resulting the following 

expression to the axial force: 

 

�R ≅ T4� � T4 � f8A4� � f8A4 (A.12) 

 

 

Figure A.16 – Concentrated loads, strain and stresses distributions in the pure compression point for plastic 

condition. 

As the classic RC theory for bending elements is based on the Euler-Bernoulli theory, 

the strain presents linear distribution.  
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Considering the pure bending point (Figure A.17), the main assumption is that the 

tensioned reinforcement starts yielding. In the following equation the location of the neutral 

axis z=; is determined: 

 

�R � C4� � Cù � T4 � �f4A4� � b Â fù>?@
� Zz � f8A4 � 0 (A.13) 

 

Then, the plastic moment �R is: 

 

�R � C4�  h2 � d�£ � Cù �h2 � ~z=; � z:ù�¤ � T4  d � h2£ (A.14) 

 

 

Figure A.17 – Concentrated loads, strain and stresses distributions in the pure bending point for plastic condition. 

In the maximum bending resistance point (Figure A.18), the tensioned and 

compressed reinforcements are assumed to yield simultaneously. Thus, the neutral axis 

location is: 

 

z=; � d � d�2  (A.15) 

 

Then, the strain at the extreme compression fibre is determined and the plastic load �R and the plastic moment �R are obtained: 
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µ¶·
¶̧�R � C4� � Cù � T4 � �f4A4� � b Â fù>?@

� Zz � f8A4														
�R � C4�  h2 � d�£ � Cù �h2 � ~z=; � z:ù�¤ � T4  d � h2£

 (A.16) 

 

 

Figure A.18 - Concentrated loads, strain and stresses distributions in the balanced condition point for plastic 

condition. 

Finally, in the ultimate condition the cross section presents maximum load capacity. 

In the pure compression (Figure A.19) point the ultimate axial force is assumed 

approximately equal to the plastic axial force i.e. 

 

�S ≅ �R ≅ C4� � Cù � C4 � �f8A4� � fù�bh � A4� � A4� � f8A4 (A.17) 
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Figure A.19 – Concentrated loads, strain and stresses distributions in the pure compression point for ultimate 

condition. 

In the pure tension point (Figure A.20) the hardening of the steel is considered, which 

leads to the following axial force: 

 

�S ≅ T4� � T4 � f4üA4� � f4üA4 (A.18) 

 

 

Figure A.20 – Concentrated loads, strain and stresses distributions in the pure tension point for ultimate 

condition. 
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The pure bending point (Figure A.21) is characterised by the assumption that the 

extreme compression fibre reaches the ultimate value (εùü). The axial equilibrium leads to 

the location of the neutral axis z=; i.e. 

 

�S � C4� � Cù � T4 � �f4A4� � b Â fù>?@
� Zz � f8A4 � 0 (A.19) 

 

Then, the bending moment results: 

 

�S � C4�  h2 � d�£ � Cù �h2 � ~z=; � z:ù�¤ � T4  d � h2£ (A.20) 

 

 

Figure A.21 – Concentrated loads, strain and stresses distributions in the pure bending point for ultimate 

condition. 

To reach the maximum bending resistance point (Figure A.22), the strain in the 

maximum compressive fibre and the strain in the tensioned reinforcement are assumed with 

their maximum values i.e. εùü and ε8 respectively. Then, the neutral axis location is given by: 

 

z=; � εùüεùü � ε8 d (A.21) 

 

Thus, the axial force and the bending moment are: 
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µ¶·
¶̧�S � C4� � Cù � T4 � �f4A4� � b Â fù>?@

� Zz � f8A4													
�S � C4�  h2 � d�£ � Cù �h2 � ~z=; � z:ù�¤ � T4  d � h2£

 (A.22) 

 

 

Figure A.22 – Concentrated loads, strain and stresses distributions in the balanced condition point for ultimate 

condition. 

In the plastic and ultimate conditions, two quantities were presented in strain 

distributions in bending: plastic .R and ultimate .S curvatures. The difference between such 

quantities characterise the ultimate plastic curvature: 

 

Ù.R � ε8d � z=;.S � εùüz=;							 					 ∴ .S
R � .S � .R (A.23) 

 

The ultimate plastic rotation �SR is defined as: 

 

�SR � .SR�R (A.24) 
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where �R is called plastic hinge length in RC literature and it represents the zone where the 

reinforcement bars underwent plastic deformations. Note that �R is usually computed using 

empirical expressions, such as (FLÓREZ-LÓPEZ; MARANTE; PICÓN, 2015): 

 

�R � 0.5d + 0.05xù4 (A.25) 

 

being xù4 the distance from the critical section to the point of inflection. 

The interaction diagram for the ultimate plastic rotation/curvature is computed as 

the previous ones. In the pure tension and pure compression points the plastic 

rotations/curvatures are zero; and in pure bending and maximum bending resistance points 

.SR and �SR are calculated using equations (A.23) and (A.24). 

Therefore, with the interaction diagrams presented here, the modelling of RC 

structures with plastic hinges (chapter 2) is then based on the classic RC theory.  
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APPENDIX B – A lumped plasticity model for RC slabs 

Introduction 

In the beginning of the 20th century there were many nonlinear studies using the 

theory of plasticity. The most common developments were made using limit analysis (see 

e.g. Save and Massonet (1972) for a review). Using this idea, some studies appeared in order 

to account for the collapse of plates. The research frontier that treated the reinforced 

concrete (RC) plates is usually known as yield-line theory (or fracture-line theory). 

The yield-line theory was fundamentally conceptualised in Bach (1890) process. 

Despite its significance, such process could be applied only for a few problems. Later, 

Inglerslev (1923) formulated rupture criteria for clamped and simply supported rectangular 

RC slabs, assuming the collapse by yielding of the reinforcement. However, some hypotheses 

assumed by Inglerslev (1923) were corrected solely a few years later by Johansen (1932). In 

Johansen (1932) the yield-line theory was presented in a very formal way. Based on 

Johansen (1932), there were many developments of this theory in the following decades, 

where here the work of Chamecki (1948) is emphasised. Among great developments around 

the world, the most significant were presented by Jones and Wodd (1967) and van 

Langendonck (1970, 1975).  

Despite the significance of the aforementioned works, the yield-line theory requires 

an assumption of the collapse mechanism that the RC slab will suffer. For usual problems, 

this issue is well-solved. However, for slabs with complex geometries, this can be a real 

problem. 

On the other hand, models based on lumped plasticity concepts, i.e. the idealisation 

of plastic hinges, are quite useful to analyse RC frames (see e.g. Park and Paulay (1975) and 

Inel and Ozmen (2006) for a review). In fact, these concepts were expanded by additional 

concepts of fracture and damage mechanics in order to represent a more realistic behaviour 

of RC frames (for a review, see Flórez-López, Marante and Picón (2015) and the references 

therein). This is achieved by the consideration of a damage variable that characterises the 

concrete cracking. Therefore, after those studies, the lumped plasticity models became 

lumped damage models and, consequently, the plastic hinges became inelastic hinges. 

In the light of the foregoing, in this appendix a lumped plasticity model is presented 

in order to study the plastic collapse of RC slabs. This lumped plasticity model is a simple 
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reduction of the lumped damage model proposed in chapter 5. Comparisons with 

experimental and theoretical results show the good accuracy of the model.  

It is noteworthy that a previous model considering plastic collapse of plates was 

presented by Armero and Ehrlich (2006). Such model is also based on lumped plasticity 

concepts. However, Armero and Ehrlich (2006) have focused only on numerical studies for 

thick plates, presenting notorious results on that approach. Then, the research frontier 

presented here also aims for a model that characterises the behaviour of RC slabs in a 

realistic way. Therefore, now only the lumped plasticity model is presented. Note that the 

procedure presented here is applied for thin plates. 

In future works, the main objective must be a generalisation of the lumped damage 

model proposed in chapter 5 that accounts for concrete cracking and yielding of 

reinforcement. Such generalisation may present a more realistic behaviour of collapsed RC 

slabs. 

Brief review on the yield-line theory for RC slabs 

The yield-line theory is still used in engineering design of RC slabs. Usually, this theory 

is simplified for usual geometries and applied to RC buildings and bridges. The yield-line 

theory consists in an application of the upper bound limit theorem of plasticity limit analysis.  

In conventional RC slabs undergoing proportional loads there are three different 

phases of behaviour (PINHEIRO, 1988): elastic phase (OA), cracking phase (AC), and plastic 

phase (CD).  

 

 

Figure B.1 – Phases of behaviour for an RC slab. [After Pinheiro (1988)] 
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For small loads the RC slab presents an elastic behaviour (OA) i.e. there are no cracks 

and the concrete resists to tension. The cracking threshold (point A) is trespassed by 

increasing the load, resulting in nucleation and propagation of cracks at the most loaded 

sections. Bending moments, at the non-cracked sections, increase due to such cracks. This 

process results in nucleation and propagation of new cracks (AB). Once the reinforcement 

trespasses the elastic threshold (BC) the deflection increases rapidly. Finally, the plastic 

phase (CD) occurs when the reinforcement yields in the most loaded sections. Analogously, 

bending moments at non-yielded sections increase due to such process. This results into 

reinforcement yielding at such sections and, as a consequence, the propagation of the yield-

lines in the RC slab. Therefore, The RC slab is assumed as collapsed when the yield-lines 

complete the propagation process. At this point, the load level that ensures such condition is 

called as ultimate load or collapse load. 

The yield-line theory is an upper bound limit analysis approach. Thus, it is considered 

that the RC slab is rigid for loads smaller than the collapse load and immediately collapses 

when the collapse load is achieved (Figure B.2). In other words, the RC slab is considered as a 

rigid-plastic material (Figure B.2) in the yield-line theory (see e.g. Johansen (1932), Jones and 

Wodd (1967) and van Langendonck (1970, 1975) for a detailed review). 

 

 

Figure B.2 – Rigid-plastic material. 

The reduced lumped damage model 

The numerical modelling of plastic collapse of RC slabs based on the yield-line theory 

must fulfil some conditions in order to reproduce the aforementioned theoretical behaviour. 

Considering a finite element analysis, for instance, the rigid-plastic behaviour is modelled 

using an elastic-plastic curve. Note that an elastic-perfectly plastic curve is suitable due to 
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the behaviour hypothesis of the yield-line theory (Figure B.2). Therefore, the lumped 

damage model for bending plates proposed in chapter 5 degenerates in an elastic-perfectly 

plastic model if �S → ∞ (Figure B.3).  

According to Chamecki (1948), the yield-line theory presents three main hypotheses:  

• The rupture lines are considered straight;  

• The slab parts, which are limited by the yield lines and the slab borders, are 

considered plains;  

• Along and in the neighbourhood of each yield line, the specific bending 

moment (moment per length unit) is considered constant and equal to the 

maximum bending moment that the slab can resist in this direction. 

Considering the first hypothesis, in the lumped damage model applied to the finite 

element known as the constant moment triangle (CMT), proposed by Morley (1971) and 

presented in chapter 5, the damage rotations occur only in the element sides, which are 

straight lines. The CMT element is an acceptable approximation for the second hypothesis, 

once the element presents constant curvature. The third hypothesis is fulfilled once the 

collapse mechanism is completed, once the CMT element presents constant bending 

moments. Thus, the degenerated (Figure B.3) lumped damage model for bending plates 

proposed in chapter 5 is a reasonable approximation to analyse plastic collapse of RC slabs.  

Regarding the model degeneration, the finite element is now considered as a result 

of the assemblage of an elastic CMT element with three plastic hinge-lines located at its 

sides (Figure B.4). Note that the damage deformations originally proposed (chapter 5) 

become now plastic deformations: 

 ��Y�. = V�?R ��R �CRXj (B.1) 

 

which contains the plastic rotations of the hinge-lines at the sides 
�, �� and �
, respectively. 

Then, the hypothesis of strain equivalence is rewritten as: 

 

���. = ��U�. + ��Y�. (B.2) 

 

and the model formulation is rewritten as: 
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���. = #&�%.���. �d�. = #&�%.j�0�. �� ��Y�. = #67%.�0�. 
(B.3) 

 

where the definition of such variables is found in chapter 5. 

According to the model degeneration (Figure B.4), �CD takes the value of the plastic 

bending moment �R (�CD ← �R), calculated from the yield-line theory. Then, the plastic 

evolution law results: 

 

â������ â � �R Û 0 

â������ â � �R Û 0 

������� � � �R Û 0 

(B.4) 

 

 

Figure B.3 – Lumped damage model: (a) original model; (b) model reduction to lumped plasticity. 

 

 

Figure B.4 – Lumped plasticity model. 
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Practical applications in RC slabs 

In order to evaluate possible practical applications of the aforementioned reduced 

lumped damage model, two RC slabs where analysed (SAWCZUK; JAEGER, 1963). Despite the 

simplicity of the examples, the potentialities and limitations of the proposed model are 

highlighted. It is noteworthy that, according to Sawczuk and Jaeger (1963), the Poisson’s 

ratio is 0.3 in both examples. Once the Young’s modulus is not given and the proposed 

lumped plasticity model intends to reproduce the theoretical solutions given by the yield-

line theory, such parameter is taken as a very large value. 

The first example addresses to a four-sided simply supported square isotropic RC slab 

tested by Sawczuk and Jaeger (1963). Such RC slab presents side length of 150	cm, thickness 

of 6	cm (Figure B.5a) and an isotropic yield moment equal to 464	kgf. If plastic hardening is 

neglected, this example has a well-known analytical solution obtained with the yield-line 

theory (Figure B.5a). Figure B.5b shows the fracture pattern of the tested plate, which was 

loaded up to a center deflection of 5.4	cm. Figure B.5c-e shows the numerical hinge-line 

pattern, obtained through the proposed hinge-line procedure. Figure B.6 presents graph 

representations of load-displacement responses for the simulated meshes. 

Note the good agreement of the numerical analyses with the theoretical plastic 

hinge-lines. Regarding the numerical responses, there are two patterns of hinge-lines: an X-

shaped mechanism, in red, and a cross-shaped mechanism, in green. Notice that the X-

shaped mechanism is equal to the theoretical collapse mechanism and also presents plastic 

rotations with 0.10 � 0.13	rad of magnitude; the cross-shaped mechanism extends itself 

only in the central region of the slab and presents plastic rotations with 0.0001 −
0.0012	rad of magnitude. Therefore, it can be stated that only the X-shaped mechanism 

leads the structure to collapse. It is noteworthy that the theoretical calculation and the 

numerical analyses achieved a collapse load z of 3712	kgf while the test carried out by 

Sawczuk and Jaeger (1963) reached 3900	kgf (this is probably an approximated value). 
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Figure B.5 – Four-sided simply supported square RC slab: (a) geometry and theoretical collapse mechanism 

(Sawczuk and Jaeger, 1963); (b) actual collapse mechanism (Sawczuk and Jaeger, 1963); and numerical 

solutions for (c) 64 (4×4), (d) 256 (8×8) and (e) 1024 (16×16) elements. 

 

 

Figure B.6 – Load-displacement responses for numerical analyses. 

The second example addresses to a four-sided simply supported rectangular RC slab 

(224	cm ô 150	cm ô 6	cm) tested by Sawczuk and Jaeger (1963). Such RC slab presents 

orthotropic index about 0.92 i.e. �R- = 455	kgf and �Rb = 417	kgf (SAWCZUK; JAEGER, 

1963). Figure B.7a presents the geometry of the problem and also the adopted theoretical 
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collapse mechanism, and Figure B.7b shows the actual crack pattern experimentally 

observed (Sawczuk and Jaeger, 1963). Figure B.7c-e depicts the numerical collapse 

mechanisms obtained with different meshes and Figure B.7f shows the magnitude of the 

numerical plastic rotations. Figure B.8 presents graph representations of load-displacement 

responses for the simulated meshes. 

In the numerical procedure, since this slab is orthotropic, for each side of an element 

a yield bending moment is calculated based on its direction and the theoretical yield bending 

moments i.e. �R- and �Rb. As observed in the previous example, notice the good 

agreement of the numerical analyses with the theoretical plastic hinge-lines. Again, there 

are two numerical patterns of hinge-lines: an X-shaped mechanism, in red, and a cross-

shaped mechanism, in green (Figure B.7c-e). Analogously as discussed in the previous 

example, only the X-shaped mechanism leads the structure to collapse (see plastic rotations 

magnitude in Figure B.7f). It is noteworthy that the theoretical calculation and the numerical 

analyses achieved a collapse load z of 3982	kgf while the test carried out by Sawczuk and 

Jaeger (1963) reached 4200	kgf (this is probably an approximated value). 

 



187 

 

 

Figure B.7 – Four-sided simply supported rectangular RC slab: (a) geometry and theoretical solution; (b) 

experimental response; (c-e) numerical responses for meshes (c) 04×04, (d) 08×08 and (e) 16×16; (f) magnitude 

of the numerical plastic rotations. 

 

 

Figure B.8 – Load-displacement responses for numerical analyses. 

Concluding remarks and suggestions for future works 

Considering the analysed examples, the proposed lumped plasticity model, which is a 

particular case of the lumped damage model presented in chapter 5, presents good 

accuracy. It is emphasised that, unlike the limit analysis procedure (yield-line theory), no 
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mechanism is a priori imposed as input i.e. the collapse mechanism is a result of the 

computation. On the other hand, choosing meshes that include the actual mechanism allows 

for very good results even with coarse meshes (Figure B.5c and Figure B.7c). For meshes that 

do not include the collapse mechanism, the simulation will probably need finer meshes in 

order to achieve acceptable results.  

For future works, the first objective should be a formulation that allows the hinge-

lines to appear inside the finite element. This update may imply in good results even for 

coarse meshes that do not contain the collapse mechanism. Another suggestion is the 

development of a lumped damage model for RC slabs similar to the one presented for RC 

frames (see chapter 2). Such new model may be able to reproduce a more realistic 

behaviour of RC slabs. 
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APPENDIX C – Matrices of the LDM four-node element 

In this appendix, some of the matrices of the LDM four-node element � are 

presented in the global Cartesian system. Note that in the main body of the thesis, such 

matrices were presented in the reference system. This was made due to a simple 

presentation of the new concepts proposed in this thesis. 

The kinematic transformation matrix #&%� in Cartesian coordinates is given by: 

 

#&%� �
®̄̄
°̄C33 C3� C3� C34 0 0 0 0C�3 C�� 0 0 C�D C�- 0 0C�3 C�� 0 0 0 0 C�õ C�÷0 0 C4� C44 C4D C4- 0 00 0 0 0 CDD CD- CDõ CD÷²³

³³́ (C.1) 

 

where 

 

C33 = �� � ��
E~�� � ���� + ~�� � ���� 

(C.2) 

C3� = �� � ��
E~�� � ���� + ~�� � ���� 

(C.3) 

C3� = �� � ��
E~�� � ���� + ~�� � ���� 

(C.4) 

C34 = �� � ��
E~�� � ���� + ~�� � ���� 

(C.5) 

C�3 = �� � ��Í��� � ���� + ��� � ���� (C.6) 

C�� = �� � ��Í��� � ���� + ��� � ���� (C.7) 

C�D = �� � ��Í��� � ���� + ��� � ���� (C.8) 

C�- = �� � ��Í��� � ���� + ��� � ���� (C.9) 



191 

 

C�3 = �� � ��Í��� � ���� + ��� � ���� (C.10) 

C�� = �� � ��Í��� � ���� + ��� � ���� (C.11) 

C�õ = �� � ��Í��� � ���� + ��� � ���� (C.12) 

C�÷ = �� � ��Í��� � ���� + ��� � ���� (C.13) 

C4� = �� � ��
E~�� � ���� + ~�� � ���� 

(C.14) 

C44 = �� � ��
E~�� � ���� + ~�� � ���� 

(C.15) 

C4D = �� � ��
E~�� � ���� + ~�� � ���� 

(C.16) 

C4- = �� � ��
E~�� � ���� + ~�� � ���� 

(C.17) 

CDD = �� � ��Í��� � ���� + ��� � ���� (C.18) 

CD- = �� � ��Í��� � ���� + ��� � ���� (C.19) 

CDõ = �� � ��Í��� � ���� + ��� � ���� (C.20) 

CD÷ = �� � ��Í��� � ���� + ��� � ���� (C.21) 

 

The matrix #$%� is obtained through a simple matrix manipulation. For this purpose, 

the first relation of (5.43), and the equations (5.45) and (5.47) are rewritten here just for 

convenience: 

 

���� = #�%����� 

���� = #&%����� 

���� = #$%����� 

(C.22) 
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The following relation is a result of some matrix manipulation: 

 

#�%����� = #$%�#&%����� (C.23) 

 

where ���� contains the degrees of freedom of the four-node element �. Note that #�%� is 

the well-known transformation matrix from the classic four-node finite element and #&%� 

was already presented in this appendix. Therefore, the terms of the matrix #$%� are easily 

obtained by the following equation: 

 

#�%� = #$%�#&%� (C.24) 

 

Finally, the matrix of generalised deformations ���� is also presented in Cartesian 

coordinates on what follows (see also Figure C.1). 

 

 

Figure C.1 – (a) Localisation bands in a four-node element; (b) thickness of the bands 
� and ��. 
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(C.25) 

 


