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RESUMO 

 

 

LINS, R. L. (2015). Estimativas de erro a posteriori para o método dos 

elementos finitos generalizados e versões modificadas. Tese (Doutorado), 

Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos. 

 

Esta tese investiga dois estimadores de erro a posteriori, baseados na recuperação do 

gradiente, visando preencher o hiato das estimativas de erro para o Generalized FEM 

(GFEM) e, sobretudo, suas versões modificadas denominadas Corrected XFEM (C-XFEM) e 

Stable GFEM (SGFEM). De modo a alcançar este objetivo, primeiramente, breves revisões 

a respeito do GFEM e suas versões modificadas são apresentadas, onde as principais 

vantagens atribuídas a cada método são destacadas. Em seguida, alguns importantes 

conceitos relacionados ao estudo do erro são apresentados. Além disso, algumas 

contribuições envolvendo estimativas de erro a posteriori para o GFEM são brevemente 

descritas. Posteriormente, os dois estimadores de erro propostos neste trabalho são 

abordados focando em problemas da mecânica da fratura elástico linear. O primeiro 

estimador foi originalmente proposto para o C-XFEM e por este meio é estendido para o 

âmbito do SGFEM. O segundo é baseado em uma divisão do campo de tensões 

recuperadas em duas partes distintas: singular e suave. A parte singular é calculada com o 

auxílio da integral J, enquanto que a suave é calculada a partir da combinação entre as 

técnicas Superconvergent Patch Recovery (SPR) e Singular Value Decomposition (SVD). 

Finalmente, vários exemplos numéricos são selecionados para avaliar a robustez dos 

estimadores de erro considerando diferentes tipos de enriquecimento, versões do GFEM, 

modos solicitantes e tipos de elemento. Aspectos relevantes tais como índices de 

efetividade, distribuição do erro e taxas de convergência são usados para descrever os 

estimadores de erro. As principais contribuições desta tese são: o desenvolvimento de dois 

eficientes estimadores de erro a posteriori para o GFEM e suas versões modificadas; uma 

comparação entre o GFEM e suas versões modificadas; a identificação das características 

positivas de cada estimador de erro e um estudo detalhado sobre a questão dos elementos 

de mistura. 

 

Palavras-chave: Estimativa de erro, Generalized FEM, Extended FEM, Elementos de 

mistura, Índice de efetividade, Fratura. 

  



  



ABSTRACT 

 

 

LINS, R. L. (2015). A posteriori error estimations for the generalized finite 

element method and modified versions. Thesis (Doctoral), São Carlos School of 

Engineering, University of São Paulo, São Carlos. 

 

This thesis investigates two a posteriori error estimators, based on gradient recovery, 

aiming to fill the gap of the error estimations for the Generalized FEM (GFEM) and, 

mainly, its modified versions called Corrected XFEM (C-XFEM) and Stable GFEM 

(SGFEM). In order to reach this purpose, firstly, brief reviews regarding the GFEM 

and its modified versions are presented, where the main advantages attributed to 

each numerical method are highlighted. Then, some important concepts related to 

the error study are presented. Furthermore, some contributions involving a posteriori 

error estimations for the GFEM are shortly described. Afterwards, the two error 

estimators hereby proposed are addressed focusing on linear elastic fracture 

mechanics problems. The first estimator was originally proposed for the C-XFEM and 

is hereby extended to the SGFEM framework. The second one is based on a splitting 

of the recovered stress field into two distinct parts: singular and smooth. The singular 

part is computed with the help of the J integral, whereas the smooth one is calculated 

from a combination between the Superconvergent Patch Recovery (SPR) and 

Singular Value Decomposition (SVD) techniques. Finally, various numerical 

examples are selected to assess the robustness of the error estimators considering 

different enrichment types, versions of the GFEM, solicitant modes and element 

types. Relevant aspects such as effectivity indexes, error distribution and 

convergence rates are used for describing the error estimators. The main 

contributions of this thesis are: the development of two efficient a posteriori error 

estimators for the GFEM and its modified versions; a comparison between the GFEM 

and its modified versions; the identification of the positive features of each error 

estimator and a detailed study concerning the blending element issues. 

 

Keywords: Error estimation, Generalized FEM, Extended FEM, Blending elements, 

Effectivity index, Fracture. 
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1. INTRODUCTION 

 

 

1.1 Preliminary considerations 

 

 

In recent years, Partition of Unity Finite Element (PUFEM) (Babuŝka and 

Melenk; 1997) based methods, such as the Generalized FEM (GFEM) (Duarte et al.; 

2000 and Strouboulis et al.; 2001) or Extended FEM (XFEM) (Belytschko and Black; 

1999 and Moës et al.; 1999), have been successfully applied to linear fracture 

mechanics problems providing accurate solutions due to their special features. The 

GFEM, for example, can improve local approximations by means of a priori selected 

enrichment functions, therefore not requiring mesh fitting at interfaces or crack 

surfaces.  

On the other hand, despite these attractive features, the GFEM/XFEM may 

face difficulties in some problems. Two of these shortcomings are hereby discussed. 

The first shortcoming, which may reduce the convergence rates, is the so-called 

blending elements effect (elements presenting nodes with different levels or types of 

enrichment attached). The second one is the ill-conditioning of the stiffness matrix, 

which may lead to a numerical solution polluted by round-off errors. More recently, 

researchers have sought to address these drawbacks by developing modified 

versions of the GFEM/XFEM, such as, the Corrected XFEM (C-XFEM) (Fries; 2008) 

and the Stable GFEM (SGFEM) (Babuŝka and Banerjee; 2012).     

As is known, due to the enrichments, the GFEM/XFEM and its modified 

versions, in general, provide higher accuracy in the results compared to the standard 

FEM. However, even in these methods, the so-called discretization error remains. 

This kind of error arises since the discretized model attached to the numerical 

method cannot simulate the continuum model perfectly. Therefore, by definition, the 

discretization error is the difference between a solution considered exact and a 

solution computed by means of a numerical method. This definition includes different 

fields, such as: displacements, strains or stresses. For instance, the error of the 

approximate stress field σ̂  with respect to the exact stress field σ  can be defined as: 
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ˆe = σ -σ   (1.1) 

 

It is fundamental to mention that Equation (1.1) represents exclusively 

discretization errors, therefore, numerical integration errors, round-off errors or even 

errors related to geometry and/or loading representation are not hereby considered.      

A major drawback in (1.1) is that often an exact solution is not available for 

most of the problems. Consequently, it is of interest to find a strategy to estimate the 

error. One possibility is to compute the error using an enhanced solution to be 

considered in place of the exact one. In the literature, this enhanced solution is 

referenced as the recovered solution. Hence, the estimated error for the stress field 

can be defined as: 

 

* * ˆe = σ -σ   (1.2) 

 

where *σ  is the recovered stress field, which is hereby obtained by a recovery 

procedure. 

 

 

1.2 Main objectives and justifications 

 

 

Despite the benefits demonstrated recently by the improved versions of the 

GFEM/XFEM, namely the C-XFEM and the SGFEM, a detailed investigation into the 

discretization errors associated to these methods is still missing. In particular, a 

posteriori error estimators for the SGFEM are not available. This thesis is primordially 

focused on this key aspect and aims to give a contribution to this field. 

Two a posteriori error estimators are hereby investigated aiming to fill the gap 

of the error estimations for both the C-XFEM and the SGFEM. The first a posteriori 

error estimator hereby considered was originally presented in Prange et al. (2012) for 

the C-XFEM. This estimator is hereby extended to the SGFEM framework. The 

second estimator to be addressed is based on the ideas presented in Ródenas et al. 

(2008) to deal with fracture mechanics problems. However, a different approach is 
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proposed, based on the use of the Singular Value Decomposition (SVD) (Quarteroni 

et al.; 2000) for computing the smooth part of the recovered stresses. 

As a secondary aim of this research, the author seeks to demonstrate the 

efficiency of the C-XFEM and the SGFEM, indicating the benefits reached by using 

these methods. By doing so, some examples comparing the GFEM/XFEM and those 

modified versions are presented. In particular, a comparison between SGFEM and 

GFEM/XFEM is presented aiming to highlight the benefits of the SGFEM, among 

them the improvement of the approximation in the blending elements. 

Both investigated estimators are applied in fracture mechanics problems 

involving different enrichment strategies, boundary conditions and element types in 

order to provide a more complete study. The positive features of each estimator are 

indicated. The error estimators are compared considering different aspects, such as: 

effectivity, rate of convergence, CPU time and accuracy of recovered stresses. The 

effectiveness and flexibility of the error estimators are demonstrated by the numerical 

results. 

Finally, it must be pointed out that this thesis not only presents a new set of 

results confirming the efficacy of SGFEM, but also introduces two efficient a 

posteriori error estimators which can be used as error indicators, mainly for problems 

without analytical solutions. These indicators, built considering the local error, would 

have the function to point out the domain regions where refinement is needed. 

 

 

1.3 Outline of the thesis 

 

 

Besides the introduction, there are six more chapters and two appendices. A 

short description of the contents of each chapter is given below. 

Chapter 2 focuses on GFEM/XFEM and its modified versions. Firstly, the 

formulation and the main features of the GFEM/XFEM are reviewed. Then, two 

shortcomings related to the GFEM/XFEM applications are addressed: the blending 

elements and the ill-conditioning. Short descriptions concerning some studies dealing 

with these drawbacks are presented. In this same part, two modified versions of the 

GFEM receive more attention: the C-XFEM and the SGFEM. Finally, some numerical 
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aspects are discussed and two examples are used to highlight the benefits of each 

method (C-XFEM and SGFEM) in comparison with the original GFEM/XFEM. 

Chapter 3 initially reviews important concepts associated to error estimations. 

Afterwards, some a posteriori error estimators developed for the GFEM/XFEM are 

described. Finally, some definitions related to the assessment of the error are 

presented. 

Chapter 4 addresses the first error estimator hereby evaluated. It is hereafter 

denoted ZZ, since this estimator incorporates concepts originally presented in 

Zienkiewicz and Zhu (1987). 

Chapter 5 deals with the second estimator hereby proposed. It is hereafter 

denoted SPR/SVD because this estimator is based on a combination between the 

Superconvergent Patch Recovery (SPR) (Zienkiewicz and Zhu; 1992a and 1992b) 

and SVD techniques.  

Chapter 6 shows a series of examples aiming to demonstrate the qualities of 

each error estimator. A comparison between the estimators ZZ and SPR/SVD is 

presented. Another interesting point discussed in this chapter is the improvement 

caused by the SGFEM in the accuracy of the blending elements. 

Finally, Chapter 6 includes the main findings and conclusions of this work, as 

well as suggestions for future studies. 

Following the references, two appendices concerning two subjects, which are 

generally not addressed with further details in the literature, are presented. Appendix 

A aims to clarify some programming aspects of the branch functions used as 

enrichment. Appendix B attempts to explain in detail the implementation of the 

triangularization process used in the numerical integration. 
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2. GFEM/XFEM: ADVANTAGES AND SHORTCOMINGS 

 

 

Initially in this chapter, a short review concerning the GFEM/XFEM is 

presented. The main features of the formulation of the method, as well as some of its 

shortcomings are described. Regarding the shortcomings, two of them, i.e., the 

blending elements and the ill-conditioning, are discussed in more details. Aiming to 

overcome the drawbacks, two modified versions of the GFEM/XFEM are presented 

called the C-XFEM and SGFEM. Next, some numerical aspects related to the 

application of the methods (GFEM, C-XFEM or SGFEM) are discussed. Finally, two 

examples aiming to emphasize the benefits of the modified versions are shown. 

 

 

2.1 A brief review of GFEM/XFEM 

 

 

2.1.1 Formulation 

 

The main difference between the standard FEM and the GFEM/XFEM is in the 

definition of the shape functions. In GFEM/XFEM, the shape functions ( i ) are 

defined locally in a domain   called a cloud or patch (the set of elements that have 

a common vertex node). Inside of each cloud, the shape functions are constructed by 

the product between the so-called enrichment functions ( iL ) and the linear partition 

of unity (PU) functions belonging to the elements in the cloud and attached to the 

vertex   (  ). Therefore, 

 

i iL      (2.1) 

 

where   identifies the nodal cloud and 1, ,i nl   and nl  is the total number of 

enrichment functions adopted for each cloud. 

Figure 2.1 illustrates the construction of a GFEM/XFEM shape function in a 

two-dimensional domain. 
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Figure 2.1 – Representation of a GFEM/XFEM shape function. Here the FEM shape function, 

 , is the function at the top and the enrichment function, iL , is the function in the middle. 
The picture on the left depicts a polynomial enrichment function and the picture on the right 
depicts a non-polynomial enrichment function. The GFEM/XFEM shape function, i , is the 
resulting shape function shown at the bottom. 

Adapted: Kim, Duarte and Proença, (2009) 

 

The partition of unity concept can paste together the cloud approximations to 

build a continuous global one. The GFEM/XFEM approximation for each component 

of the displacement field, restricting only to 2-D problems, is given by the following 

relations: 

 

1 1 2

ˆ
n n nl

i i
i

u u b   
 

 
  

     (2.2) 

1 1 2

ˆ
n n nl

i i
i

v v c   
 

 
  

     (2.3) 

 

where u  and v  are parameters associated with usual degrees of freedom of finite 

elements, b  and c  are additional nodal parameters introduced by enrichment. 

 

2.1.2 Main features 

 

The GFEM/XFEM inherits positive features of the standard FEM and also of 

the meshfree methods. The following positive characteristics are inherited from the 

FEM (Torres; 2003): 
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 Simplicity in the PU generation due to the use of the Lagragian 

interpolation; 

 The element mesh itself provides the numerical integration domain; 

 Facility to impose the essential boundary conditions. 

On the other hand, the same reference suggests that the following good 

quality properties are inherited from the meshfree methods: 

 Possibility of capturing displacement discontinuities caused by the 

existence of a crack using Heaviside enrichment functions; 

 More accurate representation of the singularity in the vicinity of the crack tip 

provided by branch function enrichments; 

 Possibility of improving the approximation locally by restricting the 

enrichments to a specific region of the domain. 

Nevertheless, the benefits of the enrichment functions in the GFEM/XFEM 

may be followed by some numerical drawbacks, such as: numerical integration, 

presence of blending elements and ill-conditioning of the system of equations. In the 

next two sections, the last two negative points are addressed with more attention. 

Further comments on the GFEM/XFEM are available in recent reviews found 

in Belytschko et al. (2009) and Fries and Belytschko (2010). 

 

 

2.2 The blending elements 

 

 

As already pointed out, the GFEM/XFEM can capture local features, such as 

singularities and discontinuities, by exploring enrichments locally applied. However, 

in this situation, three distinct element types depicted in Figure 2.2 may arise: the 

reproducing elements, the standard elements and the blending elements. In the 

reproducing elements, all nodes are enriched with the same functions, whereas in 

the standard elements, no node is enriched. Nevertheless, in the blending elements, 

the element nodes are not enriched likewise, thus, the enrichment function can no 

longer be reproduced. This drawback can cause some numerical problems.  
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Figure 2.2 – Different element types classified by enrichment quantity. 
 

According to Fries and Belytschko (2010), the shortcomings associated to the 

blending elements have been pointed out in the GFEM/XFEM framework since the 

first papers concerning this method. Nevertheless, in the opinion of the same 

authors, the negative effect on the approximation caused by the presence of these 

elements is not easily predicted. However, according to Fries (2008), the type of 

enrichment applied may a priori alert about a negative effect. For instance, abs-

enrichments may reduce the convergence rate, whereas crack tip enrichments may 

only increase the absolute error, while keeping the convergence rate unchanged. 

Conversely, the constant enrichments, such as Heaviside functions, do not introduce 

drawbacks into the blending elements. 

Different approaches can be found in the literature aiming to diminish the 

harming effects associated to the blending elements. According to Fries and 

Belytschko (2010), these approaches can be divided into: 

a) Use of a ramp function: In this approach, the reproducibility is ensured by 

means of a product between the original enrichment function and the ramp 

function. In Fries (2008), this ramp function varies linearly between 0 and 1 

in the blending elements. This strategy is called Corrected XFEM (C-

XFEM) and is described in detail next. In Ventura et al. (2009), in turn, the 

ramp function is called weight function, once again varying between 0 and 

1, however, nonlinearly. Afterwards, in Loehnert et al. (2011) the concepts 

presented in Fries (2008) are extended to 3-D domains. 

b) Suppressing blending elements by coupling enriched and standard 

regions: The aim of this technique is to eliminate the blending elements 

coupling the areas formed by reproducing elements with the areas without 

any enrichment. The continuity between these two regions can be ensured 

in different ways. Laborde et al. (2005), for instance, enforces the 

continuity point-wise at nodes and significant results are provided. In 

Enriched nodes

Standard elements

Reproducing elements

Blending elements
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Gracie et al. (2008), in turn, the coupling between areas is ensured using 

interior penalty terms in a discontinuous Galerkin method. 

c) Assumed strain blending elements: The focus in this case is to eliminate 

the unwanted terms in the approximation of the blending elements by 

introducing an enhanced strain formulation in the blending elements. This 

enhanced strain is assumed as linear in Chessa et al. (2003), where 

problems involving weak discontinuities are addressed, as well as in 

Gracie et al. (2008), where crack tip enrichments are used. 

d) Use of hierarchical shape functions in blending elements: In this approach, 

once again the intention is to reduce the effect of the unwanted terms. 

However, the number of degrees of freedom may be increased due to the 

hierarchical shape functions added to the standard FE part of the 

approximation. This procedure is applied for linear triangular elements in 

Chessa et al. (2003) and, afterwards, for higher-order elements in 

Tarancon et al. (2009). It is important to state that, according to Fries and 

Belytschko (2010), good results are not always ensured by this approach. 

e) Use of spectral functions: The use of this type of function was proposed in 

Legay et al. (2005) for modeling discontinuities. It is shown that spectral 

elements with approximations higher than the linear are not affected by 

problems related to the blending elements. 

 

2.2.1 Corrected XFEM (C-XFEM) 

 

The C-XFEM was chosen among the above mentioned approaches to be 

implemented and tested, aiming to tackle the negative effects associated to the 

blending elements.  The main reason for the choice of the C-XFEM was the facility to 

incorporate its formulation in an available GFEM code. The C-XFEM presents two 

important differences in relation to the GFEM/XFEM: 

a) All the nodes in the blending elements are enriched, therefore, more 

degrees of freedom are introduced; 

b) The enrichment function is replaced by a new function, the so-called 

modified enrichment function, which can be written as: 

 
 mod

i iL L R    (2.4) 
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with R  being the ramp function given by 

 

 
1

ne

R 





  (2.5) 

 
In Equation (2.5), ne  refers to the number of enriched nodes of the 

element. In Figure 2.3, a graphical representation of the ramp function 

considering a one-dimensional domain is shown. 

 

 

Figure 2.3 – Graphical representation of the ramp function for one-dimensional domain 
 

Clearly, in the reproducing elements, the ramp function is equal to the unity, 

whereas in the standard elements, the ramp function is null. Consequently, the ramp 

function acts exclusively in blending elements, varying continually between 0 and 1. 

In the C-XFEM, the reproducibility of the enrichment in the blending elements 

is recovered by means of the ramp function. However, the enrichment function 

reproduced in the blending elements is the modified one. The original enrichment 

function continues being reproduced only in the reproducing elements. The higher 

accuracy in the reproducing elements is justified by this feature. 

It is important to emphasize that, as more nodes are enriched, beforehand, the 

C-XFEM is naturally expected to be more accurate than the GFEM/XFEM. 

Nevertheless, the effectiveness of this method derives from the treatment of the 

blending elements, and not simply due to the greater number of enriched nodes. 

Complementary results can be found in Fries (2008) supporting this affirmation. 

1

ne






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Blending elements

Enriched nodes
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GFEM/XFEM: Advantages and Shortcomings 

37 

 

 

2.3 On the numerical conditioning 

 

 

In the GFEM/XFEM, any type of function can be used for enrichment of the 

approximation. However, the numerical conditioning of the solving system of 

equations is directly affected by this feature. In general, this conditioning is worse 

when polynomial enrichments are used, since this type of enrichment may introduce 

linear dependencies. However, other enrichment types, such as the crack tip 

enrichments, also affect the conditioning negatively. An ill-conditioned stiffness matrix 

may lead to results polluted by round-off errors. 

Techniques aiming to overcome the ill-conditioning of the stiffness matrix in 

the GFEM/XFEM have been proposed since the first developments of this method. In 

Strouboulis et al. (2000), for instance, the original stiffness matrix (ill-conditioned) is 

replaced by a scaled stiffness matrix.  This scaled matrix is then slightly perturbed in 

its main diagonal giving rise to an iterative process, which converges to the solution 

with very few iterations. 

In Béchet et al. (2005) and later in Menk and Bordas (2011) the numerical 

conditioning is improved through preconditioning techniques. In Béchet et al. (2005), 

Cholesky decompositions are applied in submatrices of the stiffness matrix 

associated to each enriched node. In Menk and Bordas (2011), several Cholesky 

decompositions and a LQ decomposition are used aiming to assemble the matrix 

used in the preconditioning. This preconditioning is based on domain decomposition 

facilitating the computational parallelization. Some other procedures that explore the 

preconditioning to tackle the problem of the ill-conditioning can be found, for 

instance, in Schweitzer (2011) and Loehnert (2014). 

Recently, a modified version of the GFEM, created to correct the ill-

conditioning of the stiffness matrix, was presented in Babuŝka and Banerjee (2012). 

As already mentioned before, this method is called the Stable Generalized Finite 

Element Method (SGFEM). The authors applied this method to interface problems, 

problems with singular solutions and problems with discontinuous solutions. 

However, in all cases, only one-dimensional domain is considered. 
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In Gupta et al. (2013), the SGFEM is extended to a 2-D fracture mechanics 

problem. The accuracy and conditioning provided by the GFEM/XFEM and the 

SGFEM are compared. Two enrichment strategies are analyzed. In the first one, only 

branch functions are used as enrichment. In the second one, besides the branch 

functions, the Heaviside functions are also used as enrichment. In both strategies, it 

is shown that the SGFEM, with an appropriate set of enriched nodes and selection of 

enrichment functions, is significantly more accurate than the GFEM/XFEM. 

Regarding the conditioning of the system of equations, it is pointed out that in the 

SGFEM, it is comparable to FEM. 

A modified version of the SGFEM is proposed in Zhang et al. (2014). In this 

version, called the Higher Order SGFEM, polynomials of degree p > 1 are used as 

enrichment. Numerical experiments, limited to one-dimensional domain, indicate that 

the Higher Order SGFEM can yield optimal higher order rates of convergence. 

However, the authors suggest a local modification of the enrichments based on a flat-

top PU to prevent the ill-conditioning. 

An extension of the SGFEM to 3-D fracture mechanics problems is presented 

in Gupta et al. (2015). Once again, the GFEM/XFEM and the SGFEM are compared. 

This comparison is based on results obtained using different types of 3-D singular 

enrichment bases. Moreover, two enrichment strategies are also investigated: 

geometrical and topological. Another aspect studied is the quality of the stress 

intensity factor (SIF) computed by both methods. It is shown that the SGFEM 

provides results considerably more accurate than the GFEM/XFEM for both 

geometrical and topological enrichments. Nevertheless, the authors state that this 

behavior is ensured only when in the SGFEM, a specific enrichment scheme based 

on singular bases and linear polynomials is used. It is also indicated that the 

condition number of the SGFEM is of the same order as in the standard FEM. Finally, 

it is shown that the SGFEM can deliver more accurate SIFs than the GFEM/XFEM. 

More recently, a new modified version of the GFEM/XFEM was presented in 

Sillem et al. (2015). As well as in the SGFEM, this modified version, called the 

Orthonormalized Generalized Finite Element Method (OGFEM), was created aiming 

to improve the conditioning of the GFEM/XFEM. The OGFEM uses 

orthonormalization and scaling techniques to build new basis functions from linear 

combinations of the original basis functions. The OGFEM is then compared with the 

FEM, GFEM and the SGFEM. Conditioning, which is significantly better than the 
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SGFEM and the FEM, is reached with the OGFEM for the one-dimensional modified 

Helmholtz and Poisson equations. Despite the good results, the major drawback 

regarding the OGFEM is the cost related to the procedure used to construct the 

orthonormal enriched basis functions. 

 

2.3.1 Stable GFEM (SGFEM) 

 

In order to reduce the effects resulting from the ill-conditioning, the SGFEM 

was selected to be implemented and tested. The simplicity of its formulation and 

effective numerical results presented in Babuŝka and Banerjee (2012) and Gupta et 

al. (2013) motivated the choice of using the SGFEM. Another aspect that 

corroborated for this choice is that, according to its idealizers, the SGFEM does not 

require any treatment in the blending elements. 

Essentially, the basic difference between GFEM/XFEM and SGFEM is 

characterized by a modification of the enrichment functions. More precisely, in the 

SGFEM, the cloud enrichment functions are constructed by the difference between 

the original enrichment function ( iL ) and its piecewise linear or bilinear finite element 

interpolant function ( I


). In other words, 

 

 mod
i i iL L I L

       (2.6) 

 

The interpolant function can be written as: 

 

 
1

,
ne

j i j j
j

I L x y
 



   (2.7) 

 

where ( ,j jx y ) are the coordinates of node j  of the current element and ne  refers to 

the number of element nodes. 

The same procedure for constructing the GFEM/XFEM shape functions is 

used to define the SGFEM shape functions ( mod
i ). Hence, 

 

mod mod
i iL      (2.8) 
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The interpolant function and the resulting shape function considered in 

SGFEM are highlighted in Figure 2.4 below. 

 

 

Figure 2.4 – Construction of an enrichment function and a shape function used in SGFEM.  
The illustration on the left features the original enrichment function, iL , at the top, the 

piecewise linear finite element interpolant is in the middle,  iI L
  , and the modified 

SGFEM enrichment function, mod
iL , is shown at the bottom. The picture on the right depicts 

the construction of a SGFEM shape function, mod
i . 

Adapted: Gupta el al., (2013) 

 

Regarding the numerical implementation of SGFEM, when compared to 

GFEM/XFEM, the evaluation of the finite element interpolant  iI L
   is the main 

aspect to be noted. However, the related computation is straightforward. In fact, only 

the computation of the FE shape functions and their gradient values on the 

integration points, as well the GFEM/XFEM enrichment function iL  values at nodes 

of elements are included in the interpolant evaluation. The derivatives of the 

GFEM/XFEM enrichment at the nodes are not required. Further details on the 

numerical implementation of SGFEM and an efficient evaluation of its enrichment 

functions can be found in Gupta et al. (2013). 

The mathematical and numerical experiments presented respectively in 

Babuŝka and Banerjee (2012) and Gupta et al. (2013) show that the SGFEM may 

improve the conditioning and the accuracy when used instead of the GFEM/XFEM. 

However, it is clearly stated in Gupta et al. (2013) that a straightforward extension of 

ideas from 1-D problems presented in Babuŝka and Banerjee (2012) to higher 

dimensions may lead to inaccurate results. In such cases, it is recommended to use 

different enrichment strategies aiming to ensure optimal convergence rates. For 

iL

 iI L
 

mod
iL



mod
iL

mod
i
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instance, in some cases it is required to explore linear Heaviside enrichments or to 

apply the enrichment functions to an additional set of nodes (Babuŝka and Banerjee; 

2012). 

 

 

2.4 Some numerical aspects 

 

 

This section aims to focus on some essential aspects that were considered 

when using the GFEM/XFEM, the C-XFEM or the SGFEM in the examples discussed 

next. 

 
2.4.1 Enrichment functions 

 

Only complete polynomials are hereby adopted as enrichment. These 

polynomials can be divided into two sets indicated below: 

 

      

1

2 2

2 2 2 2

1, ,

1, , , , ,
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p
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h h

x x y y x x y yx x y y
Quadratic L

h h h h h
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 

    

    





  
   

 
         
  

(2.9) 

 
where x  and y  are global coordinates and h  is a scaling factor given by the 

diameter of the largest element sharing node  . In this text, conventional polynomial 

enrichments without shifting and with degrees 2p   are not considered, since, as 

well known, both of these features corroborate significantly to the ill-conditioning. 

Furthermore, it is highlighted that the FE interpolant is not considered in the SGFEM 

for the linear terms of the polynomial enrichments. 

Besides the polynomial enrichments, two more different types of enrichment 

functions are hereby adopted: branch functions and Heaviside functions. The branch 

functions are used to represent the singular stress behavior at the crack tip and the 

Heaviside functions are used to capture displacement discontinuities in the crack 

faces. Two sets of branch functions are considered. The first set, introduced in Oden 
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and Duarte (1997) (these functions are hereafter denoted OD), is represented as 

follows: 

 

1 1 3 3 1 3
cos cos , sin sin

2 2 2 2 2 2 2 2

1 1 3 3 1 3
sin sin , cos cos

2 2 2 2 2 2 2 2

OD x

OD y

L r r

L r r

    

    





                         
                         

(2.10) 

 

where r  and   are polar coordinates attached to the crack tip (see Figure 2.5), 

     ,   is a material constant  3 4 , and   is the Poisson ratio. The 

OD xL   branch functions are used for enrichment of the approximation along the local 

x  direction and the OD yL   branch functions are used for enrichment along the local 

y  direction. Therefore, the OD branch functions introduce four additional DOFs per 

node. 

The second set of branch functions, introduced by Belytschko and Black 

(1999) (these functions are hereafter denoted BB), are written as 

 

sin , cos , sin sin , cos sin
2 2 2 2BBL r r r r
       

 
 (2.11) 

 

All the BB branch functions are used for both the x  and y  directions yielding eight 

additional DOFs per node. Further details regarding the implementation of the branch 

functions can be found in Appendix A at the end of this text. 

 

 

Figure 2.5 – Description of the coordinate systems attached to crack tip 
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y
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The Heaviside function used as enrichment is given by 

 

1 0

0 0

if y
H

if y


  

  (2.12) 

 

To ensure accurate results of 2-D problems when using Heaviside functions in 

the SGFEM, some requirements must be observed. The reasons for this are 

discussed in detail in Gupta et al. (2013). The main requirement is the use of the 

linear Heaviside enrichment functions. Therefore, the linear Heaviside is also 

considered in this work, as indicated below: 

 

   
, ,L

x x y y
H H H H

h h
 

 
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  
 

  (2.13) 

 

2.4.2 Enrichment strategies 

 

In order to ensure the optimal convergence rate, a fixed region regardless of 

the size of the elements is hereby adopted, where the enrichment branch functions 

are used. This strategy is also employed in Laborde et al. (2005) and Ródenas et al. 

(2008) showing remarkable results. The enrichment region is circular with a radius 

defined as a percentage of the crack length. All nodes inside the region are enriched 

by branch functions. Optionally, a node is also enriched when placed on the circle 

boundary, i.e., the distance between the node and the crack tip is equal to the radius 

considering a certain tolerance. Figure 2.6 depicts an example of the enrichment 

area where the radius adopted corresponds to half of the crack length. 
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Figure 2.6 – Example of the enrichment area used in GFEM/XFEM and SGFEM. The red 
nodes inside of the enrichment area (shaded region) are enriched with the branch functions. 
The green nodes outside of the circle are enriched with Heaviside function. 
 

2.4.3 Numerical integration 

 

In the GFEM/XFEM and SGFEM, the Heaviside functions used as enrichment 

aim to incorporate jumps caused by the existence of a crack. However, as well 

known, standard quadrature rules, such as Gauss-Legendre or Dunavant, are not 

appropriate to be used with discontinuous functions. To deal with this issue, the 

strategy for numerical integration indicated in Laborde et al. (2005) is adopted. 

Accordingly, both subdomains of the elements crossed by the crack are 

triangularized. This procedure is described in detail in Appendix B at the end of this 

text. The same strategy is adopted in the presence of singularity. Moreover, a large 

number of integration points is hereby used in the element containing the crack tip. 

Alternatively, special quadrature rules for singular functions can be adopted (Park et 

al.; 2009). 

 

 

2.5 Illustrative examples 

 

 

This section presents two examples which were chosen to emphasize the 

efficacy of the C-XFEM and SGFEM methods.  

 

2.5.1 GFEM versus C-XFEM – Cantilever beam 

 



GFEM/XFEM: Advantages and Shortcomings 

45 

In this example, a cantilever beam (see Figure 2.7) is evaluated to compare 

the accuracy obtained from the GFEM and C-XFEM. The mesh adopted for this 

problem, composed by linear triangular elements, is depicted in Figure 2.7. In this 

mesh, the red nodes are enriched using a linear polynomial, whereas the blue ones 

are only enriched in the C-XFEM aiming to improve the accuracy in the blending 

elements. The parabolic loading on the free end is given by 21.5 6q y  . The 

Dirichlet boundary conditions are imposed via penalization. The Young’s Modulus is 

taken as 100  and a Poisson’s ratio value of 0.30  is adopted. In addition, plane 

stress conditions are assumed. The exact solution of this problem is indicated in the 

relations (2.14) below. 
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where b  corresponds to half of the height beam and  
b

b

F q y dy


  . 

 

Figure 2.7 – Cantilever beam (at the top) and the adopted mesh (at the bottom). The red 
nodes are enriched with a linear polynomial, whereas the blue ones are only enriched in the 
C-XFEM.  

 

In Figure 2.8, a comparison based on Von Mises stresses computed by the 

GFEM and C-XFEM is presented. Clearly, the C-XFEM is more accurate than the 

GFEM, especially in the reproducing elements. However, this improvement is 

considerably less in the blending elements (elements with red and blue nodes in 

q
x

y

10

1
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Figure 2.7). The performance of the C-XFEM in the blending elements is not 

surprising, since such elements can reproduce mod
iL , and no more iL .  

As already highlighted before, the C-XFEM presents more degrees of freedom 

than the GFEM, however, this feature is not responsible for its higher accuracy. 

Chapter 6 demonstrates this affirmation. 

 

 

Figure 2.8 – Von Mises stresses computed from different approaches. 
 

2.5.2 GFEM versus SGFEM – Single edge notch tension 

 

In this example, a single edge notch tension (see Figure 2.9) is assessed 

aiming to compare the GFEM and the SGFEM. The scaled condition number (SCN) 

and the stress intensity factor obtained from each method are compared. In this 

problem, the applied axial tension   is 1  and the plane strain conditions are 

assumed. Furthermore, Young’s Modulus of 710  and Poisson’s ratio of 0.30  are 

adopted as elastic parameters. Regarding the geometrical parameters, the following 

values are selected: 10W  , 20h   and 5a  .  

According to Ewalds and Wanhill (1984), the SIF ( IK ) for this problem can be 

determined using the following expression: 

 

(a) Reference

(b) GFEM – 216 DOFs

(c) C-XFEM – 248 DOFs
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2 3 4

1.12 0.23 10.56 21.74 30.42I

a a a a
K a

W W W W


                    
         

 (2.15) 

 

Hence, the exact IK  replacing a  and W  in (2.15) is 11.21. 

Four uniform and structured meshes composed by bilinear quadrilateral 

elements are used in this case. These meshes present the following grid sizes: 10 x 

20, 20 x 40, 40 x 80 and 80 x 160. In all cases, the crack surfaces lie along element 

boundaries and the singularity lies at a node. The radius which defines the circular 

enrichment zone is equal to a half of the crack length. Only OD branch functions are 

tested as enrichment. Optionally, outside the circular enrichment zone, in addition to 

the crack line, the line below and the line above it are also enriched. The 10 x 20 

mesh with its enriched nodes is depicted on the right in Figure 2.9. 

 

 

Figure 2.9 – Single edge notch tension (on the left) and a 10 x 20 mesh (on the right). The 
red nodes are enriched with OD branch functions. The blue line represents the crack. 

 

Figure 2.10 compares the scaled condition number against the number of 

degrees of freedom when only OD branch functions are used as enrichment. The 

computation of the SCN is described in Gupta et al. (2013). As can be seen, the 

SCNs are significantly lower in the SGFEM case. Furthermore, through the 

parameter   (convergence rate), it can be observed that the growth of the SCN 



h

W

a
x

y
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using the SGFEM is about two orders slower than the GFEM. This growth is 

comparable to the standard FEM, as predicted in Babuŝka and Banerjee (2012). 

 

 

Figure 2.10 – Scaled condition number plotted against the number of degrees of freedom for 
both GFEM and SGFEM. Only OD branch functions are used as enrichment. In the figure,   
denotes the convergence rate. 

 

Figure 2.11 presents values of stress intensity factors computed in several 

circular patches in the four meshes considered. Optionally, these values were 

calculated in 30 different circles, centered on the crack tip, using the J integral (Rice; 

1968).  The radii of these circles varied between 0.20 and 0.50 of the crack length. 

Beforehand, the GFEM provides the SIFs with lower precision. However, on average, 

both methods may yield good precision. For instance, the highest error with respect 

to the exact value considering the GFEM is around 1.3%. On the other hand, as can 

be seen, the values computed by the SGFEM, for all cases, are significantly better-

behaved. This feature suggests that any analyzed circle by the SGFEM could provide 

an accurate IK , whereas certain circles could provide a considerably inaccurate IK  

using the GFEM. 
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Figure 2.11 – Stress intensity factors provided by the GFEM and SGFEM using the J integral 
for the four meshes considered. These values are computed in 30 different circles, centered 
on the crack tip, for each mesh. 
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3. AN OVERVIEW OF ERROR ESTIMATIONS 

 

 

Firstly, this chapter addresses some definitions related to error estimations. 

Thereafter, some contributions involving a posteriori error estimations in the 

GFEM/XFEM are briefly discussed. Finally, some concepts associated to the 

assessment of the error are indicated. 

 

 

3.1 Some essential definitions of error estimations 

 

 

The discretization error presented in an approximate solution can be estimated 

using two distinct approaches: a priori and a posteriori. The a priori approach 

explores the generic features of the analytical solution of a certain problem for the 

estimation of the error. These estimations may provide information about the 

expected rate of convergence considering a refinement strategy of the type h or p. 

However, this type of estimation can not quantify the error associated to an 

approximate solution. Nevertheless, according to Ewing (1990), effective results can 

be reached when the a priori estimations are combined with extrapolation 

techniques. 

On the other hand, the a posteriori approach makes use of the solution 

obtained from a certain numerical method to define an improved approximate 

solution, then used in place of the exact solution for estimating the error. These 

estimations can be used to guide the adaptive process, since they enable to assess 

the local errors. 

In Ainsworth and Oden (1997), the a posteriori error estimators are classified 

in: residual-based estimators and recovery-based estimators. The model problem 

described below aims to explain the difference between them. 

Let us consider a linear elastic solid occupying a two dimensional domain 

2     . The aim is to find a displacement field u  which verifies the 

following conditions: 

 Equilibrium: 
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  σ 0   (3.1) 

 

 Constitutive relations: 

 

σ : ε   (3.2) 

 

 Strain-displacement relations: 

 

sε u   (3.3) 

 

 Boundary conditions: 

 

on

on
N

D

  

 

σ n t

u 0
  (3.4) 

 

where   is Hooke’s tensor, σ  denotes the Cauchy stress tensor and ε  is the small 

strain tensor. N  and D  denote the Neumann and Dirichlet boundaries with 

N D     and N D    . s u  is the symmetric gradient tensor of the 

displacements, n  is the outward unit normal vector to  and t  are prescribed 

tractions. The Dirichlet boundary condition in (3.4) is assumed to be homogeneous 

for the sake of simplicity. 

Equations (3.1)-(3.4) provide the strong form of governing equations and 

boundary conditions. On the other hand, the weak form of the problem above can be 

given by the Principle of Virtual Work, which reads: Find Vu  such that for V v  

 

   ,B Fu v v   (3.5) 

 

where 
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     

 

, :

N

T

B d

F v d





 

  





u v σ u ε v

t v
 

 

and V  is the standard space of trial and test functions for the elasticity problem given 

by 

  1 : on DV H    v v 0   (3.6) 

 

An approximate solution of Problem (3.5) can be computed using 

discretization spaces provided by a certain numerical method such that 

 

   ˆ ˆ ˆ,B Fu v v   (3.7) 

 

Due to the approximation aspect, a discretization error can be defined by the 

difference between the exact solution (u) and the approximate one ( û ). Therefore, 

from (3.5) and the error definition, the equation characterizing the residue can be 

written as follows 

 

         ˆ ˆ, , , ,R B B B F B V      e v u v u v v u v v  (3.8) 

 

Returning to the classification of the a posteriori error estimators, essentially, 

the residual-based estimators use the result of (3.8) aiming to improve the quality of 

the approximation. On the other hand, the recovery-based estimators seek better 

approximate solutions without direct use of (3.8). 

Residual-based error estimators are mathematically more complete and 

rigorous, however, in general, a higher computational cost is required. In contrast, 

the recovery-based error estimators, despite their heuristic character, can be 

considered more efficient from the practical viewpoint, when compared to the 

residual-based estimators. Ultimately, the choice of the type of estimator will always 

depend on the interests at stake. 
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3.2 A posteriori error estimators in GFEM/XFEM framework 

 

 

A posteriori error estimations for the FEM have been studied since the end of 

the 1970’s. Broad reviews regarding this theme can be found, for instance, in 

Ainsworth and Oden (1997) and in Babuška et al. (2011). However, error estimations 

associated to the GFEM/XFEM can be considered incipient, especially when 

considering the recent proposed modifications to this method as, for example, the 

SGFEM. 

The first contributions related to error estimations in the GFEM/XFEM context 

are attributed to Babuška et al. (1998) and Strouboulis et al. (2001). To be more 

specific, in Babuska et al.1 (1998 apud Barros; 2002, p. 97), the efficiency of two 

distinct estimators is discussed without incorporating them to an adaptive procedure. 

In Strouboulis et al. (2001), an error estimator is constructed based on the extension 

to the GFEM context of ideas originally proposed for the standard FEM by 

Zienkiewicz and Zhu (1992a, 1992b) and Wiberg and Abdulwahab (1993). 

One of the first investigations of the residual-based error estimations in the 

GFEM/XFEM framework was presented in Barros et al. (2004b), where the 

equilibrated element residual method (ERM) is used to define global and local errors. 

The local measures are used to control a refinement procedure. This same approach 

based on ERM is extended to a nonlinear analysis in Barros et al. (2004a), 

considering a reinforced concrete beam with progressive damage. 

More recently, Barros et al. (2013) investigated the behavior in the 

GFEM/XFEM context of error estimators developed originally for the FEM in 

Prudhomme et al. (2004), Mariné (2005) and Strouboulis et al. (2006). These three 

estimators are compared to the ERM. The point in common among these three 

approaches is the use of a subdomain strategy. This strategy aims to overcome the 

necessity of equilibrating the residue. In this investigation, two-dimensional elasticity 

problems involving singularities are evaluated. 

                     
1 BABUSKA, I. et al. A posteriori error estimation for finite element and 
generalized finite element method. Technical Report 98-01, TICAM, 
University of Texas in Austin. 
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Further residual-based error estimators applied to linear elastic fracture 

mechanics using the GFEM/XFEM can be found in Stein et al. (2011) and Gerasimov 

et al. (2012). 

According to Fries and Belytschko (2010), the recovery-based error estimators 

are the most explored in the GFEM/XFEM framework. Some of the related 

references are worth mentioning and its main features are described briefly below. 

 Xiao and Karihaloo (2006): a moving least squares fit is applied at sampling 

points aiming to recover a statically admissible stress field near the crack 

tips. 

 Bordas and Duflot (2007) and Bordas et al. (2008): both studies propose an 

error estimator based on the difference between an enhanced strain field, 

computed by extended moving least squares (XMLS), and the GFEM/XFEM 

strain field. In this technique, branch functions are included as shape 

functions in the XMLS. In addition, the presence of the crack is considered 

in the XMLS using the diffraction method. 

 Ródenas et al. (2008): a technique called SPRXFEM is proposed. The key 

idea is to split the stress field into a smooth and a singular part. The smooth 

field is defined applying the SPR, whereas the singular field is defined by 

means of the branch functions from fracture mechanics. The splitting 

technique is used only in a circular region at the vicinity of the crack tip. The 

key idea presented in this work is hereby explored in the error estimator 

SPR/SVD detailed later.  

 Prange et al. (2012): the error estimator proposed in this work extends the 

ideas presented in Zienkiewicz and Zhu (1987) for the C-XFEM. In this 

case, the recovered stress field is calculated by means of a least squares 

fit. Arbitrarily distributed cracks, as well as material with generally inelastic 

behavior can be modeled using this approach. The ZZ estimator, as 

explained in the next chapter, tailors this error estimator for the SGFEM 

context from a slight change in its formulation. 

 

 

3.3 Error assessment 
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Due to the enrichment functions, the discretization error may decrease 

significantly in comparison to the standard FEM when a certain problem is analyzed 

by GFEM/XFEM or its modified versions. However, some amount of error still 

remains. This error can be computed exactly if there is an analytical solution to the 

problem. Hence, once an analytical solution is available in each element, the energy 

norm of the exact error is defined as 

 

   

1

2
1ˆ ˆ

e

e

T

ee d





 
    
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 σ σ D σ σ  (3.9) 

 

where D  is the elasticity matrix.  

Nevertheless, often an analytical solution is not available. Consequently, 

finding a strategy for estimating the error is important, in which the recovered 

stresses play a fundamental rule. Therefore, still considering the energy norm, the 

estimated error can be defined in each element as 

 

   
1

2
* * 1 *ˆ ˆ

e

e

T

ee d





 
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 σ σ D σ σ  (3.10) 

 

Moreover, for problems presenting an analytical solution, it is also possible to 

calculate the error associated to the recovered stresses. This error is useful, for 

instance, when the purpose is to compare two distinct estimators and can again be 

computed in each element by the energy norm as 

 

   
1

2
* 1 *

e

e

Trec
ee d






 
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  
 σ σ D σ σ  (3.11) 

 

The effectiveness of the estimated discretization error can be evaluated by the 

ratio between equations (3.10) and (3.9). This ratio is called the effectivity index and 

can be written in each element as 
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*
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

    (3.12) 

 

Obviously, the closer to the unity the effectivity index is, the more accurate the 

estimated error is. 

All the previous four equations (3.9, 3.10, 3.11 and 3.12) are defined for one 

element. However, global measures can be computed from the contributions of each 

element of the mesh as indicated by the following equations: 
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where the index K  denotes the element and m is the total number of elements. 
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4. THE ZZ ERROR ESTIMATOR 

 

 

As already stated, this first a-posteriori error estimator hereby considered was 

originally proposed in Prange et al. (2012) for the C-XFEM. The main aim of this 

thesis is to adapt this estimator to the SGFEM context. Considering this, the initial 

purpose of this chapter is to review the technique proposed in Prange et al. (2012). 

After that, the modifications introduced for adapting it to the SGFEM are described in 

detail. 

In Prange et al. (2012), the classic estimator presented in Zienkiewicz and Zhu 

(1987), known as the ZZ estimator, is tailored to fracture mechanics using the C-

XFEM. In the ZZ approach, the recovered stresses are defined by a linear 

interpolation of nodal values of enhanced stresses using the element shape 

functions. Obviously, some adjustments are required in order to include the 

singularities at crack tips, as well as possible discontinuities due to crack opening. 

Such adjustments are characterized by new shape functions introduced for improving 

the accuracy of the recovered stresses.        

In short, in Prange’s procedure, the recovered stresses consist of three 

different parts. The first part is related to the recovery of the standard FEM solution 

(original ZZ estimator). The second one is used to account for the displacement 

jumps associated to the existence of the crack. The last one aims to improve the 

representation of singularities at the crack tip. Taking all the contributions into 

consideration, the recovered stresses are given by 
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 (4.1) 

 

In (4.1), n  represents the total number of nodes, nh  denotes the number of 

nodes enriched by the Heaviside function e nb  indicates the number of nodes 
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enriched by branch functions. The values *
,pq ia , *

,pq jb  and *
,pq kc  can be interpreted as 

nodal parameters associated to the recovered stresses. The functions ,pq mg  are 

related to the pure mode I and II stress components. Additionally, in Prange et al. 

(2012) these functions depend on a parameter   created in order to account for the 

plasticity constitutive behavior. However, only the linear elastic model is hereby 

considered, thus leading to 0.50  . Then, the functions ,pq mg  can be written as 

 

     0.5
,1 cos 0.5 1 sin 0.5 sin 1.5xxg r        (4.2) 

     0.5
,2 sin 0.5 2 cos 0.5 cos 1.5xxg r         (4.3) 

      0.5
,1 cos 0.5 1 sin 0.5 sin 1.5yyg r      (4.4) 

     0.5
,2 sin 0.5 cos 0.5 cos 1.5yyg r     (4.5) 

     0.5
,1 sin 0.5 cos 0.5 cos 1.5xyg r     (4.6) 

     0.5
,2 cos 0.5 1 sin 0.5 sin 1.5xyg r        (4.7) 

 

where r  and   are related to the cylindrical coordinate system attached to the crack 

tip (see Figure 2.5). 

However, due to the possible introduction of the linear Heaviside enrichment 

function when adapting the procedure to the SGFEM, as well as the polynomial 

enrichments, it is convenient to rewrite Equation (4.1) as 
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(4.8) 

 

where nh  now denotes the number of nodes enriched by the linear Heaviside and 

np  expresses the number of nodes enriched by polynomial functions. Furthermore, 

nt  is related to the number of terms of the polynomial (for instance, the linear 
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polynomial have three terms as can be seen in Equation 2.9). The values *
,pq ld  can 

also be interpreted as nodal parameters associated to the recovered stresses. In 

order to calculate all nodal parameters, a component-by-component minimization of 

the following functional can be done: 

 

   ˆ ˆ
T

d


     * *σ σ σ σ   (4.9) 

 

The minimization of the functional shown in (4.9) can be obtained by means of 

a least square fit leading to a linear system of equations. This system can be written 

as 

 

*Aσ b   (4.10) 

 

where: 

 

T
ij j iA d 



    (4.11) 

ˆj jb d 


    (4.12) 

 

In (4.10), vector *σ  gathers the nodal parameters *
,pq ia , *

,pq jb , *
,pq kc  and *

,pq ld  

related to recovered stresses. The enriched shape functions are indicated by i  and 

j , where i  and j  are nodal indices. The stresses computed by GFEM/XFEM or 

SGFEM are represented by ̂ . Note that in the numerical integration of (4.12), ̂  

denotes the stress component at the integration point. 

It is important to point out that Equation (4.8) replaces (4.1) aiming to take into 

account the linear Heaviside functions used in the SGFEM and the polynomial 

enrichments. It is essential to highlight also that in Equation (4.8) the finite element 

interpolant function used in the SGFEM is not considered. A similar assumption is 

adopted in Prange et al. (2012) where the ramp function is not applied in the C-
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XFEM framework. In fact, such assumptions are reasonable since the interpolant 

function and ramp function were originally conceived in order to improve the 

displacements and not the stresses.  

Finally, the concept presented in (4.8) can be applied to GFEM/XFEM, C-

XFEM or SGFEM demonstrating the flexibility of this approach. 

A step-by-step scheme indicating how this technique was implemented is 

shown below: 

Step 1 – Degrees of freedom associated to the recovered stresses are 

created. 

Step 2 – Matrices elemA  and vectors elemb  defined by (4.11) and (4.12), 

respectively, are assembled for each element of the mesh. Note that, indeed, there 

are three distinct vector elemb , one for each stress component. 

Step 3 – From local matrices and vectors, the global entities A  and b  are built 

yielding the linear system represented in (4.10). 

Step 4 – The linear system (4.10) is solved for each stress component using 

an iterative algorithm applied to the perturbed and scaled matrix A , as described in 

Strouboulis et al. (2000). 

Step 5 – The values associated to the degrees of freedom ( *
,pq ia , *

,pq jb , *
,pq kc  

and *
,pq ld ) are replaced enabling the use of (4.8) to define the recovered stresses at 

any point of the mesh. 
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5. THE SPR/SVD ERROR ESTIMATOR 

 

 

The second recovery-based error estimator hereby proposed is based on 

some ideas originally presented in Ródenas et al. (2008). The main idea used by 

Ródenas et al. (2008) is the splitting of the recovered stress field into two fields: a 

singular field *
singσ  and a smooth field *

smoσ . This decomposition is applied only near 

the crack tip, since the singular field becomes negligible once far from the singularity. 

The computation of each part defining the recovered stresses is described below. 

Finally, it is explained how the PU can be used aiming to build a global recovered 

approximation joining the two fields.  

 

 

5.1 The singular field 

 

 

As well-known, the stress field in the vicinity of the crack tip can be expressed 

through the first terms of Mode I and II asymptotic expansions (Szabó and Babuŝka; 

1991). Hence, 
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 (5.1) 

 

Following Ródenas et al. (2008), Equation (5.1) is adopted in this work to 

represent the recovered singular field *
singσ . This assumption is reasonable since 

*
singσ  can be estimated by means of approximate SIFs, computed using σ̂  in a post-

processing (recovery). The J integral is hereby chosen to determine them. When 

mixed mode of opening is considered, a decomposition of the J integral proposed by 

Ishikawa et al. (1980) is hereby adopted. The SIFs result from an average of values 
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computed with respect to 30 different circular paths, whose radii are defined by ratios 

between 0.20 and 0.50 of the crack length. This strategy was adopted due to a series 

of numerical tests. It must be pointed out that a different methodology, called 

interaction integral (Yau et al.; 1980 and Shih and Asaro; 1988), was adopted in 

Ródenas et al. (2008) aiming to define the SIFs. 

 

 

5.2 The smooth field 

 

 

Regarding the recovered smooth stress field *
smoσ , it is computed using the 

smooth part of the approximate stress field σ̂ . However, as the enrichments include 

branch functions, σ̂  gathers two distinct parts: a singular part singσ̂  and a smooth part 

smoσ̂ . Therefore, its smooth part can be written as 

 

smo singˆ ˆ ˆ σ σ σ   (5.2) 

 

A key assumption in (5.2) is to assume *
singσ  in place of singσ̂ , and *

singσ  is 

obtained from (5.1) using the J integral to compute the SIFs. This assumption 

essentially stems from the consideration that the enrichment by branch functions 

already provides a good approximation to the singular field near the crack tip. 

Once smoσ̂  is defined, the SPR and SVD techniques are hereby combined 

aiming to calculate *
smoσ .  

A brief review on each technique is presented below. Afterwards, the 

SPR/SVD combination in the GFEM/XFEM framework is presented. 

 

5.2.1 Superconvergent Patch Recovery (SPR) 

 

In the SPR technique, the recovered stress field is described by a polynomial 

of the same degree as the displacement approximation field. The polynomial 

parameters are computed by means of a least squares fitting of the solutions for the 

stress field at the superconvergent points in each cloud. Once polynomial 
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approximations of the recovered stresses are calculated in each cloud, nodal values 

at the cloud vertices are obtained by replacing the coordinates of the vertex node in 

the respective polynomial approximations. As a final step, the global recovered stress 

field is determined by pasting together the recovered nodal stress using the 

displacement shape functions. 

In order to describe the SPR procedure in detail for an arbitrary cloud in the 

2D domain, the polynomial approximation mentioned previously can be written for 

each stress component i  as 

 

 *
, ,p i ix y P a   (5.3) 

 

where  ,x yP  is a polynomial expansion of a certain degree and ia  is the set of 

unknown coefficients to be determined. For example, considering a bilinear 

polynomial approximation, then:    , 1, , ,x y x y xyP  and  1, 2, 3, 4,, , ,
T

i i i i ia a a aa . 

 Aiming to compute ia  at each cloud, a functional defined as the sum of the 

distances between the recovered stress ( *
,p i ) and the approximate stress ( ˆ i ) at n  

superconvergent points is minimized. Such minimization yields the following linear 

system: 

 

1
i i

a A b   (5.4) 

 

where 

   
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ˆ, ,
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T
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T
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k

x y x y

x y x y













A P P

b P
  (5.5) 

 

In (5.5),  ,k kx y  corresponds to the coordinates of the superconvergent point 

k . Matrix A  and vector ib  result from the sum of n  square matrices kA  and n  

vectors ,i kb  associated to each superconvergent point k . Thus, the matrix A  is of 
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order  ,m m  and the vector ib  is of order  ,1m , and m is the number of 

coefficients in the approximating polynomial. 

Once the unknown coefficients of the polynomial approximation have been 

calculated for each stress component, the recovered nodal values *
iσ  can be 

obtained by replacing the coordinates of the vertex node of the cloud in (5.3). From 

the vertices values, the recovered stress distribution in the whole domain can be 

constructed element by element by using element shape functions as follows: 

 

* *
i i Nσ   (5.6) 

 

where N  gathers the shape functions ( ) adopted for the element displacement 

interpolation. 

It is appropriate to advance at this point that the recovery procedure used in 

the hereby proposed SPR/SVD estimator presents an important difference with 

respect to the standard SPR. In the SPR/SVD, the polynomial approximation 

indicated in (5.3) is directly identified by means of the SVD, without imposing any 

functional minimization. Precisely the SVD technique, as well as the reasons that 

justify its choice, are discussed next. 

 

5.2.2 Singular Value Decomposition (SVD) 

 

Aiming to better contextualize the role of the SVD, it is appropriate to 

summarize the problem under discussion. Essentially, the purpose of it is to identify 

from stress values ˆ iσ  at superconvergent points a smooth polynomial approximation 

*
,p i , defined over the entire cloud. Indeed, this approximation was already indicated 

in (5.3), but for the sake of convenience, it is rewritten as 

 

 *
, ,

1

,
m

p i j j i
j

P x y a


   (5.7) 
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In order to determine the coefficients ia , the following linear system is 

constructed: 

 

ˆi iAa σ   (5.8) 

 

where 
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 (5.9) 

 

Essentially, the system imposes the equality among the values  *
, ,p i k kx y  

provided by the polynomial approximation and the values  ˆ ,i k kx yσ  at 

superconvergent points. 

In accordance with the SVD procedure, the determination of coefficients ia  is 

guaranteed if, and only if, the number of optimal sampling points is greater than or 

equal to the number of coefficients. However, such a condition may not be satisfied 

in the clouds located close to the boundary due to the insufficient number of 

superconvergent points. Later, the strategy hereby adopted for overcoming this 

hindrance at boundary clouds is presented. 

If matrix A  is square, the resulting polynomial performs an interpolation of the 

prescribed values at the superconvergent points. However, when the number of the 

superconvergent points is greater than the number of coefficients, matrix A  is 

rectangular. Consequently, the aim in this case attempts to find a solution 

representing the best fitting to the values at superconvergent points. Indeed, the 

motivation for applying the SVD derives from its efficiency to perform such a fitting. 

Furthermore, this approach provided by the SVD technique can be considered more 

straightforward than the original SPR, since it does not use any functional. 

According to SVD, the matrix of the system (5.8) can be decomposed in the 

following form: 
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TA U Σ V   (5.10) 

 

where U  and TV  are matrices built from vector bases, such that: 

 

andT T U U I VV I   (5.11) 

 

Matrix U  is composed by the eigenvectors of matrix TAA  arranged in its 

columns. Matrix V , in turn, consists of the eigenvectors of matrix TA A  arranged in 

its rows. 

Matrix Σ  is usually rectangular, gathering in its main diagonal the square roots 

of the eigenvalues of matrix TAA  sorted in descending order. The remaining 

components of this matrix are null. 

From the decomposition of matrix A , the so-called pseudoinverse A can be 

calculated, as indicated in the next equation: 

 

T A VΣ U   (5.12) 

 

In the above relation, Σ  is formed, in general terms, by transposing Σ  and 

taking the inverse of the values of its non-zero terms. 

Using the pseudoinverse, the linear system indicated in (5.8) can then be 

solved. Therefore, the coefficients defining the recovered stresses inside of each 

cloud using the SVD technique are given by:  

 

ˆi i
a A σ   (5.13) 

 

5.2.3 The combination of SPR and SVD for the GFEM/XFEM 

 

As well known, polynomial enrichments may be used in the GFEM/XFEM 

aiming to improve the accuracy of the solution. However, this feature may require 

some adjustments in the original SPR. For instance, when exploring different 

polynomial enrichments, different displacement fields may result inside a cloud. 
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Therefore, the premise assumed in the SPR, where the smooth recovered stress field 

is represented by a polynomial with the same degree used to approximate the 

displacement field may no longer be valid. Hence, a criterion should be chosen for 

defining the degree to be adopted for the smooth recovered stresses in the clouds. 

In the SPR/SVD estimator hereby proposed, it is assumed that the polynomial 

degree adopted for the smooth recovered stresses is equal to the highest among 

complete polynomials approximating the displacements of the elements of the cloud. 

It is worth mentioning that this polynomial has to be complete in order to prevent the 

appearance of unwanted terms in the approximation. This criterion is exemplified by 

the cloud represented in Figure 5.1, where only two nodes (the green ones) are 

enriched using linear polynomials. 

In Figure 5.1, only the horizontal component of the displacement is indicated, 

however, the vertical component is approximated by a polynomial with the same 

degree. In fact, the recovery technique was hereby developed considering 

exclusively isotropic polynomial enrichments. 

An additional assumption, implicit in Figure 5.1, is related to the integration 

points taken as superconvergent points in the triangular element. Indeed, such points 

do not exist in triangular elements (Zienkiewicz et al.; 2005). Nevertheless, in the 

recovery technique hereby described, it is considered that the superconvergent 

points coincide with the numerical integration points, even in the triangular elements. 

Moreover, Lobatto’s quadrature rule is responsible for providing these points. 

 

 

Figure 5.1 – Criterion used to define the polynomial approximating the smooth recovered 
stress field in an arbitrary cloud submitted to polynomial enrichments. 

A

C

B

D

Cloud ABCD:

→ vertex node (center of the cloud formed by elements ABCD)

→ enriched nodes using linear polynomial functions

→ “superconvergent” points (Lobatto’s point for triangle)

Label:

2 2 2 2
1 2 3 4 5 6 7 8Au A A x A y A xy A x A y A x y A xy       

1 2 3Bu B B x B y  

1 2 3 4Cu C C x C y C xy   
2 2 2 2

1 2 3 4 5 6 7 8Du D D x D y D xy D x D y D x y D xy       

Horizontal component of the displacement in elements:

* 2 2
, 1 2 3 4 5 6p i a a x a y a xy a x a y       Pa



The SPR/SVD Error Estimator 

70 

There are some features introduced in the SPR/SVD procedure when 

combined with GFEM/XFEM. These features are listed below. 

1) The number of superconvergent points of each element of the cloud is 

defined by the polynomial degree used to approximate the displacement in 

that element squared. For instance, if the displacements are approximated 

by a polynomial of second degree, this element would have four 

superconvergent points. This premise was adopted from numerical 

experiments performed preliminarily. 

2) The smooth part of the recovered stresses is obtained by means of the 

SVD technique. 

3) When the vertex of the cloud is enriched by branch functions or Heaviside 

functions, vector ˆ iσ , presented in Equation 5.13, is replaced by smo,ˆ iσ  

(Equation 5.2).  

4) As already commented, clouds localized on the boundary vicinity may not 

have a minimum number of superconvergent points required by the 

procedure. Aiming to handle this situation in the SPR/SVD, the recovered 

stress field attached to the nearest cloud to the boundary one and 

presenting a sufficient number of superconvergent points is extrapolated to 

the boundary cloud. This strategy aims to preserve the straightforward 

character of the recovery technique hereby proposed. 

 

 

5.3 A global recovered stress field combining the singular and smooth 

fields 

 

 

In general, a point inside the domain, covered by different clouds, is 

overlapped by different recovered stress fields. Therefore, it is necessary to define a 

procedure for pasting the recovered stress fields, element by element, in order to 

build a global unique response. Considering this, an idea is to use the partition of 

unity concept attached to each element. Accordingly, in each element, the recovered 

stress for each stress component i  can be written as: 
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 * * *
sing, smo,i i i  N σ σ   (5.14) 

 

It must be emphasized that *
sing,iσ  in (5.14) is only considered when one or 

more nodes of the element are enriched with branch or Heaviside functions. This 

feature enables us to represent the recovered stresses close to the crack tip 

accurately, as well as to capture the discontinuity of the solution introduced by the 

crack. 

Figure 5.2 aims to illustrate the use of (5.14). The purpose in this case is to 

compute the component *
xx  of the recovered stress field at points A  and B . 

According to (5.14), the component *
xx  in these points is given by: 
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(5.15) 

 

where j  refers to the element node. Note that in (5.15), the smooth fields are 

computed by Equation (5.7), whereas the singular fields are computed by Equation 

(5.1). 

 

 

Figure 5.2 – Arbitrary mesh used to illustrate the use of Equation (5.14). The crack is 
represented by the blue line. The red nodes are enriched with the branch functions. The 
green nodes are enriched with the Heaviside function. 

A

y

x

B

1 2

34



The SPR/SVD Error Estimator 

72 

 

The use of Equation (5.14), as exemplified by (5.15), ensures some 

advantages. First of all, the fact that only internal points and not nodes are involved 

in the calculation of recovered stresses prevents two different stress states from 

being associated to the same point located on the crack. Furthermore, due to the 

triangularization process (see Appendix B) used, even when the crack crosses the 

elements, no integration point will coincide with the crack tip in the computation of the 

estimated error. 

A step-by-step scheme, analogous to that shown for the ZZ estimator, 

indicating how the calculation of the recovered stresses, used in the SPR/SVD 

estimator, was implemented and is presented below: 

Step 1 – The SIFs are computed by means of the J integral decomposition 

(Ishikawa et al.; 1980). 

Step 2 – The type of the polynomial approximating the smooth recovered 

stresses inside the clouds is identified using the criterion explained in item 5.2.3.  

Step 3 – The number and location of the superconvergent points for each 

element of the clouds are determined. 

Step 4 – The polynomials used for approximating the smooth recovered 

stresses are calculated using (5.13) in all clouds containing a sufficient number of 

superconvergent points. This computation is performed with the assistance of the 

SVD and considering the decomposition singular + smooth. 

Step 5 – The polynomials calculated in Step 4 are extrapolated for the clouds 

where a minimum quantity of the superconvergent points does not exist. These 

clouds, in general, are located close to the boundary. 

Step 6 – From Equation (5.14), the recovered stress field is obtained, 

considering once again the splitting singular + smooth, at any point of the mesh. 
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6. NUMERICAL RESULTS AND DISCUSSION 

 

 

In this chapter, the performance of the error estimators ZZ and SPR/SVD are 

evaluated considering three 2D benchmark problems. In all problems, different 

aspects are investigated, such as: blending element drawbacks, rate of convergence, 

effectivity index and accuracy of the recovered stresses. The error estimators are 

compared using the effectivity index, the error in the recovered stresses and the CPU 

time. Different versions of the GFEM, element types and enrichment strategies are 

applied in order to assess the robustness of each error estimator. All the numerical 

examples analyzed in this chapter were computed using an object-oriented 

programming toolkit for GFEM called the SCIEnCE, described in Piedade Neto et al. 

(2013). 

 

 

6.1 Simply supported beam 

 

 

This problem represented in Figure 6.1 is solved using two distinct 

approaches: the GFEM and the C-XFEM. All nodes enclosed by the shaded region 

depicted in Figure 6.1 are enriched by linear polynomials. In the C-XFEM analysis, 

the length of the shaded region is slightly reduced aiming to preserve the same 

number of degrees of freedom involved in the GFEM analysis. A traction q  of 1  is 

applied on the upper boundary and Dirichlet boundary conditions are imposed via 

penalization. In addition, the Young’s Modulus is 100 , the Poisson’s ratio is 0.30  

and plane stress conditions are assumed. 

The exact solution of this problem is given by: 

 

 

 

 

2 3 2 2
3

3 2 3
3

2 2
3

15 10 15 6
20

3 2
4
3

4

xx

yy

xy

q
x y y a y b y

b
q

y b y b
b
qx

b y
b







   

  

 

 (6.1) 



Numerical Results and Discussion 

74 

 

where a  refers to half of the beam length and b  refers to half of the beam height. 

In order to verify the rate of convergence, four structured meshes composed 

by bilinear quadrilateral elements are used. These meshes present the following grid 

sizes: 4 x 10, 8 x 20, 16 x 40 and 32 x 80. 

 

 

Figure 6.1 – Simply supported beam. The shaded region encloses nodes enriched by linear 
polynomial. 

 

Figure 6.2 compares the estimated and exact error in energy norm with the 

number of the degrees of freedom. The estimated error, on the left side, is computed 

by the ZZ estimator, whereas the estimated error, on the right side, is computed by 

the SPR/SVD estimator. It is important to highlight that the indicated errors were 

computed neglecting the first column of elements close to the supports. This 

assumption is reasonable, since the exact solution (Equation 6.1) does not consider 

the stress concentration close to supports. As can be seen, both estimators yield 

accurate results, however, in both cases the exact and estimated error do not match 

closely in the first mesh. Nevertheless, this difference is expected, as the first mesh is 

very coarse. 

In addition, it is remarkable in the same Figure 6.2 that the rates of 

convergence for both GFEM and C-XFEM are in general close to the optimal 

convergence rate (0.50), even considering the estimated errors. Discordances in the 

convergence rates are noted only in the neighborhood of the ends of the DOFs 

interval considered. Moreover, it can be observed from both errors (exact and 

estimated) that the C-XFEM is always more accurate than the GFEM. 
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Figure 6.3 presents the effectivity indexes computed for both error estimators 

considering linear polynomial enrichments. Both estimators show a satisfactory 

performance with a reasonable advantage in favor of SPR/SVD, mainly in the C-

XFEM case. Indeed, the ZZ estimator starts better than the SPR/SVD, but from the 

second mesh this situation inverts. This behavior is directly influenced by the 

accuracy of each estimator in different types of elements (standard, blending and 

reproducing). For instance, the ZZ estimator is more precise in the blending elements 

(see Table 6.1), whereas the SPR/SVD is more accurate in the remaining elements, 

especially in the reproducing ones (see Figure 6.4). Hence, in the first mesh, where 

the quantity of the blending elements is larger in relation to the total number of 

elements, the ZZ estimator ends up taking advantage. 

 

Figure 6.2 – GFEM and C-XFEM convergence calculated considering the exact error and the 
estimated error. On the left, the estimated error is computed by the ZZ estimator, whereas on 
the right, the estimated error is computed by the SPR/SVD estimator. Only linear polynomial 
functions are used as enrichment. 

 

Figure 6.3 – GFEM and C-XFEM effectivity index using the ZZ and SPR/SVD estimators. 
Only linear polynomial functions are used as enrichment. 
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It must be emphasized that the effectivity indexes associated to the last mesh 

represented in Figure 6.3 are polluted by elements close to the supports. This 

happens due to the refinement of the mesh and, consequently, does not affect the 

efficacy of the error estimators. 

 

Table 6.1 – Error associated to the recovered stresses computed by both estimators 
exclusively in blending elements using linear polynomial enrichments. 

ZZ SPR/SVD ZZ SPR/SVD
(4 x 10) 1.420182 1.904692 0.971901 1.233122
(8 x 20) 0.347013 0.719168 0.252941 0.503344
(16 x 40) 0.074707 0.257754 0.063930 0.190346
(32 x 80) 0.017220 0.091792 0.018733 0.069711

Mesh
GFEM C-XFEM

 

 

 

Figure 6.4 – Errors associated to the recovered stresses computed by both estimators in part 
of the reproducing elements (shaded region on the top) for the 16 x 40 mesh. These results 
correspond to the C-XFEM case. Only linear polynomial functions are used as enrichment. 

 

Figures 6.5 and 6.6 depict the Von Mises stress and the local error distribution 

for the 8 x 20 mesh. GFEM results are shown in Figure 6.5, whereas C-XFEM results 

are presented in Figure 6.6. It is clearly shown that the C-XFEM is more accurate 

than the GFEM. As expected, this feature can be observed from the estimated error, 

x
y

4

(a) ZZ estimator

(b) SPR/SVD estimator
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which in this case was computed by means of the SPR/SVD estimator. Nevertheless, 

it is needed to emphasize that the error estimator presents some inaccurate results in 

the blending elements. This issue shall be addressed in future studies. 

 

 

Figure 6.5 – Von Mises stresses calculated via exact and GFEM solutions (on the top) and 
local error (exact and estimated) distributions (on the bottom) for the 8 x 20 mesh. Only linear 
polynomial functions are used as enrichment. 

 

(a) Exact Solution

(b) GFEM Solution

(c) Exact Error

(d) Estimated Error – SPR/SVD
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Figure 6.6 – Von Mises stresses calculated via exact and C-XFEM solutions (on the top) and 
local error (exact and estimated) distributions (on the bottom) for the 8 x 20 mesh. Only linear 
polynomial functions are used as enrichment. 

 

 

6.2 Edge-crack panel 

 

 

The two-dimensional linear elastic fracture problem shown in Figure 6.7 is 

dealt with in this example. This problem is also considered in Gupta et al. (2013), 

however focusing on other quantities of interest. The exact solution of this problem is 

provided by the first terms of Mode I and II asymptotic expansions written as follows: 

Mode I: 

 

(a) Exact Solution

(b) C-XFEM Solution

(c) Exact Error

(d) Estimated Error – SPR/SVD
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Mode II: 
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Figure 6.7 – Two-dimensional edge-crack panel. 
Adapted: Gupta el al., (2013) 

 

In the numerical analysis, expressions (6.2) and (6.3) provided the Neumann 

boundary conditions depending on the opening mode (I, II or Mixed) imposed. The 

Young’s Modulus is taken as a unity and a Poisson’s ratio value of 0.30 is adopted. 

Moreover, plane strain conditions are assumed. 

1

1
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Four types of enrichment strategies are considered in this example. In the first 

one, only branch functions are explored. In the second strategy, in addition to the 

branch functions, linear polynomial functions are employed in all nodes. In the third 

case, besides the branch functions, linear Heaviside functions are used. The last 

strategy gathers all the enrichments previously used, that is, branch functions, linear 

Heaviside functions and linear polynomial functions (once again used in all nodes). In 

all cases, the radius of the circular region (dashed circle depicted in Figure 6.8) 

including exclusively enrichment by branch functions is equal to a half of the crack 

length. 

In addition to the adopted enrichment possibilities, two distinct opening modes 

are also considered. Meshes composed by quadrilateral elements are used when the 

problem is submitted to Mode I while meshes of triangular elements are adopted 

when the crack is under Mixed Mode. Therefore, the following subsections are 

defined according to the solicitant mode type. 

The main aspects evaluated are: rate of convergence, effectivity indexes, error 

distribution and accuracy of recovered stresses. All these features, including the 

comparative performance in the blending elements, are discussed considering both 

the GFEM and SGFEM approximations in order to highlight the robustness of the 

error estimators. 

 

6.2.1 Mode I – Quadrilateral meshes 

 

Four uniform and structured meshes composed by bilinear quadrilateral 

elements are used to analyze the convergence of GFEM and SGFEM 

approximations. These four meshes present the following grid sizes: 10 x 10, 20 x 

20, 40 x 40 and 80 x 80. In all cases, the crack surfaces lie along element boundaries 

and the singularity lies at a node. The radius which defines the circular enrichment 

zone is equal to a half of the crack length. The discontinuity in the displacement 

introduced by the crack is captured only by branch functions as no Heaviside 

functions are considered. Although outside the enriched circle, just one line of 

enriched nodes below the crack line provides good results, as indicated in Gupta et 

al. (2013), optionally also the line above was hereby enriched. This enrichment zone 

is illustrated for 10 x 10 mesh in Figure 6.8. 
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Figure 6.8 – Illustration of the circular enrichment zone (dashed line) and the additional 
enriched nodes in a 10 x 10 mesh. The red nodes are enriched with branch functions. 

 

a) Enrichment Strategy 1: Only branch functions 

Figure 6.9 compares the estimated and exact error in energy norm with the 

number of the degrees of freedom obtained using OD and BB enrichments. In this 

case, the estimated error was computed using the ZZ estimator. As expected, the 

convergence plots of the exact error show an optimal convergence rate (0.50) for 

both methods (GFEM and SGFEM). This optimal convergence rate is also reached 

using the estimated error, therefore demonstrating its accuracy. 

In addition, in the same Figure 6.9, it can be observed that the SGFEM is 

always more accurate than the GFEM. However, when the type of enrichment is 

compared in each method, it can be seen that BB enrichments are more accurate 

than the OD enrichments in the GFEM. On the other hand, OD enrichments are 

slightly more accurate than the BB enrichments in the SGFEM. 

 

 

Figure 6.9 – GFEM and SGFEM convergence calculated considering the exact error (left 
side) and the estimated error (right side). The estimated error was computed by the ZZ 
estimator. Only branch functions are used as enrichment. In the figure,   denotes the 
convergence rate. 
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Figure 6.10 clearly shows that the effectivity indexes of the SGFEM are closer 

to the unity than the ones for the GFEM case for both error estimators. In fact, the 

behavior indicated in this figure can be directly associated to the behavior presented 

in Figure 6.9. In other words, the more accurate the method is, the more accurate the 

error estimator is. In conclusion, the best effectivity index is obtained by using the 

SGFEM with OD enrichments, whereas the GFEM with OD enrichments provides the 

worst effectivity index. 

Regarding the comparison between ZZ and SPR/SVD, it is indicated by 

means of Figure 6.10, that the SPR/SVD provides better accuracy to the estimated 

errors than the ZZ. This difference is directly connected to the error associated to 

recovered stresses used in each estimator, as depicted in Figure 6.11. Figure 6.11 

also points out that the error in the recovered stresses computed by SPR/SVD, in 

general, decreases slightly faster than the ZZ case (see parameter   in the legend). 

Figure 6.12 presents the demanded CPU time for each error estimator 

considering only the strategy of branch functions taken as enrichment. As can be 

seen, the ZZ estimator requires much more CPU time than the SPR/SVD, especially 

with the SGFEM. This behavior of the ZZ estimator is associated to the computation 

of local matrices and vectors used in the assembly of the global matrix and vector 

that defines the recovered stresses. In general, the ZZ estimator requires around 3 

times more CPU time than the SPR/SVD. 

 

 

Figure 6.10 – GFEM and SGFEM effectivity index for both error estimators. Only branch 
functions are used as enrichment. 
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Figure 6.11 – Errors associated to recovered stresses computed by both error estimators 
using the GFEM and the SGFEM. Only branch functions are used as enrichment. In the 
legend,   denotes the average convergence rate. 

 

Figure 6.12 – GFEM and SGFEM CPU time required for each error estimator. Only branch 
functions are used as enrichment. 

 

Figure 6.13 depicts the local error distribution considering OD enrichments for 

the 20 x 20 mesh. The estimated error represented in this figure was calculated using 

the SPR/SVD estimator. As can be seen, there is a significant difference in accuracy 

between GFEM and SGFEM. The enrichment in the region enclosed by the circle is 

considerably more efficient in the SGFEM than in the GFEM. For instance, 

comparing Figures 6.13(b) and 6.13(d), the four elements near the crack tip present 

an exact error of approximately 0.0180 in the GFEM, while an exact error of 

approximately 0.0015 is obtained in the SGFEM. Therefore, the error using the 

GFEM is 12 times bigger. Regarding the error estimator, the error values obtained 

are, in general, very close to the exact values. 
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Figure 6.13 – Local error distributions for the 20 x 20 mesh considering OD enrichments. The 
estimated error was computed using the SPR/SVD estimator. 

 

Figure 6.14 compares the accuracy of the stress component in a vertical 

direction considering the OD enrichments. This component is obtained in a vertical 

cross section close to the crack tip. In the graph showing the GFEM results, the 

smoothing effect of the recovered stresses can be observed, therefore reducing the 

oscillations between the elements. However, this smoothing effect is reduced when 

the SGFEM is chosen, since the numerical solution provided by this method is 

already accurate. Despite the pointed out differences, in both cases the recovered 

stresses matches the analytical solution, as can be seen by the curves in the graphs. 

The recovered stresses were calculated through the ZZ estimator in both GFEM and 

SGFEM cases. 

 

(a) Mesh (the shaded region indicates
the area shown in (b)-(e) and the red
region is the enriched area)

(b) Exact error for GFEM (c) Estimated error for GFEM

(e) Estimated error for SGFEM(d) Exact error for SGFEM



Numerical Results and Discussion 

85 

 

Figure 6.14 – Stresses in vertical direction obtained by different approaches in a vertical 
cross section through the whole domain. In the graph at the top, the GFEM is considered and 
in the graph at the bottom, the SGFEM is considered. The recovered stresses were 
computed using the SPR/SVD estimator. Only OD branch functions are used as enrichment. 

 

Table 6.2 shows the accuracy improvement in the blending elements 

introduced by the SGFEM when compared to the GFEM results. In this first table, 

where only BB enrichments are used, this improvement is of less significance, but 

still effective. In fact, the accuracy in blending elements with the SGFEM increases 

on average by approximately 7.4%, considering the exact error. When the estimated 

error is considered, this enhancement is around 4.1% when using the ZZ estimator 

and 7.5% when using the SPR/SVD estimator. Therefore, such numbers indicate that 

the SPR/SVD is more precise than the ZZ in the blending elements. 

Table 6.3 is similar to Table 6.2, however the difference is that in this case, 

only OD enrichments are used. The higher accuracy introduced by SGFEM in this 

type of enrichment is much more significant. For instance, the precision increases on 

Cross section 
indication

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

35.0000

‐0.5000 ‐0.4000 ‐0.3000 ‐0.2000 ‐0.1000 0.0000 0.1000 0.2000 0.3000 0.4000 0.5000

St
re
ss
es
 in
 V
e
rt
ic
al
 D
ir
ec
ti
o
n

Coordinate Y

reference stresses

GFEM stresses

recovered stresses

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

35.0000

‐0.5000 ‐0.4000 ‐0.3000 ‐0.2000 ‐0.1000 0.0000 0.1000 0.2000 0.3000 0.4000 0.5000

St
re
ss
es
 in
 V
e
rt
ic
al
 D
ir
ec
ti
o
n

Coordinate Y

reference stresses

SGFEM stresses

recovered stresses



Numerical Results and Discussion 

86 

average around 40.8% if we consider the exact error. According to the estimated 

error, this improvement is approximately 36.6% using the ZZ estimator and 39.4% via 

the SPR/SVD estimator. Once again, the SPR/SVD presents the best performance. 

This more accentuated difference between the GFEM and the SGFEM partially 

justifies the curves depicted in Figure 6.9, since the SGFEM, in addition to the 

benefits in the blending elements, also improves the accuracy in the reproducing 

elements considerably. 

Another important measure reported in Tables 6.2 and 6.3 is the effectivity 

index. It can be seen that the values are near to the unity in both tables. However, 

with the SPR/SVD estimator, this index is slightly better when compared to the ZZ 

estimator. The performance of the SPR/SVD estimator demonstrates the difficulty to 

predict the effects associated to the blending elements, since some results presented 

in the previous example (simply supported beam) indicate exactly the opposite, that 

is, the ZZ estimator is more accurate than the SPR/SVD estimator in the blending 

elements. 

 

Table 6.2 – Error and effectivity index exclusively in blending elements using BB 
enrichments. 

 

Table 6.3 – Error and effectivity index exclusively in blending elements using OD 
enrichments. 

 

 

b) Enrichment Strategy 2: Branch and linear polynomial functions 

Figure 6.15 compares the estimated and exact error in energy norm against 

the number of the degrees of freedom. In this case, the estimated error was 

computed using the SPR/SVD estimator. In this figure, the dashed lines consider 

only branch functions as enrichment, whereas the continuous lines explore branch 

ZZ SPR/SVD ZZ SPR/SVD ZZ SPR/SVD ZZ SPR/SVD
(10 X 10) 0.0520 0.0515 0.0486 0.0527 0.0506 0.0501 0.9350 1.0150 0.9819 0.9736
(20 X 20) 0.0236 0.0209 0.0225 0.0237 0.0205 0.0211 0.9532 1.0054 0.9848 1.0116
(40 X 40) 0.0086 0.0077 0.0082 0.0086 0.0075 0.0078 0.9494 1.0051 0.9808 1.0205
(80 X 80) 0.0030 0.0028 0.0028 0.0030 0.0027 0.0028 0.9526 1.0071 0.9790 1.0253

Mesh
Exact Error Estimated Error Effectivity Index

GFEM SGFEM
GFEM SGFEM

GFEM SGFEM

ZZ SPR/SVD ZZ SPR/SVD ZZ SPR/SVD ZZ SPR/SVD
(10 X 10) 0.0799 0.0527 0.0727 0.0777 0.0514 0.0518 0.9097 0.9728 0.9758 0.9820
(20 X 20) 0.0366 0.0214 0.0335 0.0365 0.0210 0.0217 0.9146 0.9972 0.9825 1.0172
(40 X 40) 0.0138 0.0079 0.0126 0.0138 0.0077 0.0081 0.9160 1.0005 0.9784 1.0291
(80 X 80) 0.0052 0.0029 0.0047 0.0052 0.0028 0.0030 0.9110 0.9990 0.9755 1.0353

GFEM SGFEM GFEM SGFEMMesh
Exact Error Estimated Error Effectivity Index

GFEM SGFEM
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and linear polynomial functions as enrichment. As can be seen, the linear polynomial 

enrichment decreases the error, however, again this is followed by a reduction in the 

rate of convergence, especially with BB enrichments. To explain the reason for such 

behavior is not essential to the purpose of this example. However, it is possible to 

speculate that this reduction is probably associated to round-off errors introduced by 

ill-conditioning. In addition, the combination of OD branch functions and linear 

polynomial functions is more accurate than the combination of BB branch functions 

and linear polynomial functions, even in the GFEM case. Certainly, this feature is 

also related to the round-off errors. As desired, all previous conclusions can also be 

recovered from the estimated error. 

 

 

Figure 6.15 – GFEM and SGFEM convergence calculated considering the exact error (left 
side) and the estimated error (right side). The estimated error was computed by the 
SPR/SVD estimator. Only branch functions are used as enrichment for dashed lines, 
whereas branch and linear polynomial functions are used as enrichment for continuous lines. 
In the legend,   denotes the average convergence rate. 

 

Figure 6.16 shows the effectivity indexes obtained from the ZZ and SPR/SVD 

error estimators, considering branch and linear polynomial functions as enrichment. 

Clearly, the SPR/SVD is much more efficient than the ZZ estimator. Figure 6.17 

corroborates with this characteristic, indicating the error associated to the recovered 

stresses computed by each error estimator. This behavior should be related to the 

higher performance of the SPR/SVD faced with the linear polynomial enrichments.  

The decreasing tendency of the effectivity index curve associated to the 

combination OD and linear polynomial enrichments, represented in Figure 6.16, can 

be justified by error levels obtained in this case. Errors of low values may perturb the 
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effectivity index, since this parameter is defined in an inverse proportion to the error 

level (see Equation 3.12). 

 

Figure 6.16 – GFEM and SGFEM effectivity index for both error estimators. Branch and 
linear polynomial functions are used as enrichment. 

 

Figure 6.17 – Errors associated to recovered stresses computed by both error estimators 
using the GFEM and the SGFEM. Branch and linear polynomial functions are used as 
enrichment. In the legend,   denotes the average convergence rate. 

 

6.2.2 Mixed Mode – Triangular meshes 

 

In this second case, once again, four uniform and structured meshes are used 

in order to assess the convergence of the GFEM and SGFEM approximations. 

However, the meshes are now formed by linear triangular elements. The meshes 

present the following grid sizes: 10 x 10, 20 x 20, 40 x 40 and 80 x 80, where each 

quadrilateral element defined in the previous case is divided into four triangular 

elements. Once again, the crack surfaces lie along element boundaries and the 
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singularity lies at a node. The circular region enriched by the branch functions is 

defined by a circle with a radius equal to a half of the crack length. The discontinuity 

introduced by the crack is now captured using linear Heaviside functions exclusively 

outside the branch function circular enrichment zone. The nodes enclosed by the two 

lines below the crack line, as well the crack line itself, are hereby enriched by linear 

Heaviside. The 10 x 10 mesh with its enriched nodes is depicted in Figure 6.18. 

 

 

Figure 6.18 – Illustration of the circular enrichment zone (dashed line) and the additional 
enriched nodes in a 10 x 10 mesh. The red nodes are enriched with branch functions and the 
yellow nodes are enriched with linear Heaviside functions. 

 

c) Enrichment Strategy 3: Branch and linear Heaviside functions 

Figure 6.19 compares the estimated and exact error in energy norm with the 

number of the degrees of freedom using branch functions and linear Heaviside as 

enrichment. The estimated error was computed using the SPR/SVD estimator. The 

convergence rate obtained with GFEM is slightly lower than that obtained with 

SGFEM. However, both methods demonstrate, on average, a convergence rate 

close to 0.50 (optimal convergence rate), as expected. The errors computed by the 

error estimator are very close to the exact errors, once again indicating that the 

recovered stresses are accurate regardless of the enrichment type. Regarding the 

difference in accuracy between GFEM and SGFEM, it is clearly more accentuated in 

this case. The main reason for this behavior is related to the blending elements. 

Additional details on this issue are presented later. 
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Figure 6.19 – GFEM and SGFEM convergence calculated considering the exact error (left 
side) and the estimated error (right side). The estimated error was computed by the 
SPR/SVD estimator. Branch and linear Heaviside functions are used as enrichment. In the 
figure,   denotes the convergence rate. 

 

Figure 6.20 illustrates the performance of the error estimators through the 

effectivity index for the branch functions and linear Heaviside functions enrichments. 

In this case, the ZZ estimator presents indexes closer to the unity than the SPR/SVD 

estimator in the SGFEM framework. However, this situation inverts in the GFEM 

case. An explanation for this behavior of the SPR/SVD using the SGFEM may be 

associated to the absence of the superconvergence in the triangular elements. Of 

course, more results are needed for confirming this explanation. Furthermore, this 

same figure points out that for both estimators, the combination of BB with linear 

Heaviside is more efficient for the GFEM. Conversely, the combination of OD with 

linear Heaviside is slightly more efficient for the SGFEM. As desired, in general, the 

error estimators show a tendency towards the unity of the whole set of curves 

demonstrating their flexibility. 

Figure 6.21 shows the errors associated to the recovered stresses calculated 

by each error estimator. Indeed, this figure complements the previous figure, where 

the effectivity indexes are represented. For example, the ZZ estimator provides more 

accurate recovered stresses than the SPR/SVD in the SGFEM case, thus, its 

effectivity index will be closer to unity. Moreover, the errors of the recovered stresses 

obtained from the ZZ estimator decrease a little faster than those obtained from the 

SPR/SVD estimator in the SGFEM case. 
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Figure 6.20 – GFEM and SGFEM effectivity index for both error estimators. Branch and 
linear Heaviside functions are used as enrichment. 

 

 

Figure 6.21 – Errors associated to recovered stresses computed by both error estimators 
using the GFEM and the SGFEM. Branch and linear Heaviside functions are used as 
enrichment. In the legend,   denotes the average convergence rate. 

 

Figure 6.22 indicates the required CPU time by each error estimator 

considering branch and linear Heaviside functions as enrichment. Once again, the ZZ 

estimator demands much more CPU time than the SPR/SVD, mainly with the 

SGFEM. The fact of computing the recovered stresses in the clouds without 

assembling any global system leads to a higher speed in the SPR/SVD estimator. In 

this case, on average, the ZZ estimator requires approximately 3.5 times more CPU 

time than the SPR/SVD. 
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Figure 6.22 – GFEM and SGFEM CPU time required for each error estimator. Branch and 
linear Heaviside functions are used as enrichment. 

 

Figure 6.23 illustrates the local error distribution obtained with a 20 x 20 mesh 

when considering BB and linear Heaviside enrichments. The estimated error was 

computed using the ZZ estimator. Surprisingly, the GFEM shows the highest error 

values in some blending elements and not in the elements containing the singularity, 

as would be expected. However, the SGFEM is noticeably more accurate than the 

GFEM, mainly in the blending elements. Therefore, distinct labels are used for each 

method in order to highlight this difference. Finally, for both GFEM and SGFEM, the 

estimated error distribution is very similar to the one obtained with the exact error, 

particularly when the SGFEM is used. 

Figure 6.24 depicts, for the 40 x 40 mesh, the Von Mises stress provided by 

GFEM and SGFEM using BB and linear Heaviside enrichments. The respective 

recovered stresses, calculated by means of the SPR/SVD estimator, are shown in 

the same figure. Once again, it can be observed that the accuracy obtained from the 

SGFEM is higher than the one obtained with the GFEM. The recovered stresses are 

very close to the exact solution in both methods. Due to the higher accuracy of the 

SGFEM, the improvement produced by the recovery procedure is more significant in 

the GFEM. 
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Figure 6.23 – Local error distributions for the 20 x 20 mesh considering BB and linear 
Heaviside enrichments. The estimated error was computed using the ZZ estimator. 

 

 

Figure 6.24 – Von Mises stress calculated by the GFEM and by the SGFEM and their 
respective recovered stresses computed by the SPR/SVD estimator. BB branch functions 
and linear Heaviside functions are used as enrichment. The values out of scale are plotted in 
white. 

 

(a) Mesh (the red region indicates the
enriched area by branch functions and
the yellow region indicates the
enriched area by linear Heaviside
functions)

(b) Exact error for GFEM (c) Estimated error for GFEM

(e) Estimated error for SGFEM(d) Exact error for SGFEM

(b) Exact solution

(c) GFEM solution (e) Recovered solution using the GFEM

(d) SGFEM solution (f) Recovered solution using the SGFEM

(a) Mesh (the shaded region indicates the area
shown in (c)-(f), the red region and yellow region
are the enriched areas by branch functions and
linear Heaviside, respectively)
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Tables 6.4 and 6.5 aim to explain the significant difference observed in Figure 

6.19 between the GFEM and SGFEM when branch functions and linear Heaviside 

functions are used as enrichment. As can be seen in both tables, the accuracy of the 

SGFEM is remarkable. Indeed, the exact error decreases on average around 67.8% 

when the SGFEM is used instead of the GFEM. In this case, the difference between 

BB and OD becomes negligible. If we consider the estimated errors, the 

improvement caused by SGFEM, on average, is approximately 63.3%, using the ZZ 

estimator, and 65.9%, using the SPR/SVD estimator. These numbers are significantly 

higher compared to those found in the previous case, where only branch functions 

were considered. Therefore, in the blending elements involving the specific 

enrichments of this example, the errors are pointedly lower in the SGFEM. 

Regarding the effectivity indexes shown in Tables 6.4 and 6.5, once again, the 

values provided by the SPR/SVD are closer to the unity that those obtained from the 

ZZ estimator. This higher accuracy of the SPR/SVD is clearly more accentuated in 

the GFEM case, probably due to the inaccuracy of the blending elements. 

 

Table 6.4 – Error and effectivity index exclusively in blending elements using BB and linear 
Heaviside enrichments. 

 

Table 6.5 – Error and effectivity index exclusively in blending elements using OD and linear 
Heaviside enrichments. 

 

 

d) Enrichment Strategy 4: Branch, linear Heaviside and linear polynomial 

functions 

Figure 6.25 shows a comparison between the convergence reached with the 

estimated and exact errors in energy norm. In this case, the estimated error was 

calculated by means of the SPR/SVD estimator. In this figure, the dashed lines 

ZZ SPR/SVD ZZ SPR/SVD ZZ SPR/SVD ZZ SPR/SVD
(10 X 10) 0.1857 0.0884 0.1492 0.1749 0.0777 0.0847 0.8036 0.9417 0.8789 0.9588
(20 X 20) 0.1090 0.0328 0.0848 0.1009 0.0294 0.0297 0.7783 0.9253 0.8960 0.9041
(40 X 40) 0.0550 0.0137 0.0425 0.0506 0.0123 0.0139 0.7718 0.9189 0.9009 1.0181
(80 X 80) 0.0273 0.0080 0.0210 0.0250 0.0074 0.0084 0.7671 0.9156 0.9276 1.0515

Mesh
Exact Error Estimated Error Effectivity Index

GFEM SGFEM
GFEM SGFEM GFEM SGFEM

ZZ SPR/SVD ZZ SPR/SVD ZZ SPR/SVD ZZ SPR/SVD
(10 X 10) 0.2012 0.0905 0.1608 0.1856 0.0790 0.0865 0.7993 0.9225 0.8735 0.9555
(20 X 20) 0.1164 0.0341 0.0913 0.1065 0.0304 0.0308 0.7842 0.9147 0.8909 0.9045
(40 X 40) 0.0594 0.0141 0.0462 0.0539 0.0126 0.0142 0.7777 0.9078 0.8932 1.0110
(80 X 80) 0.0299 0.0081 0.0230 0.0269 0.0075 0.0085 0.7692 0.9020 0.9241 1.0474

GFEM SGFEMMesh
Exact Error Estimated Error Effectivity Index

GFEM SGFEM
GFEM SGFEM
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explore branch and linear Heaviside functions as enrichment, whereas the 

continuous lines consider branch, linear Heaviside and linear polynomial functions as 

enrichment. Once again, the presence of the linear polynomial enrichment reduces 

the error, nevertheless, in this case, the rate of convergence is not affected when the 

GFEM is enriched using OD branch functions (continuous blue lines on the graphs). 

In addition, it increases on average. In addition, the introduction of the linear 

polynomial enrichments makes the SGFEM less accurate than the GFEM. This 

behavior may be associated to the combination of the linear Heaviside and linear 

polynomial, which apparently is more efficient in the GFEM context. However, more 

results are required for confirming this justification. 

Regarding the estimated errors depicted in Figure 6.25, it can be seen that, in 

general, they are close to the exact ones, despite a certain inaccuracy when the OD 

branch functions are adopted, especially in the GFEM case. 

 

Figure 6.25 – GFEM and SGFEM convergence calculated considering the exact error (left 
side) and the estimated error (right side). The estimated error was computed by the ZZ 
estimator. Branch and linear Heaviside functions are used as enrichment for dashed lines, 
whereas branch, linear Heaviside and linear polynomial functions are used as enrichment for 
continuous lines. In the legend,   denotes the average convergence rate. 

 

Figure 6.26 presents the effectivity indexes obtained with the ZZ and 

SPR/SVD error estimators considering branch, linear Heaviside and linear polynomial 

functions as enrichment. Once again, the SPR/SVD estimator provides values much 

closer to the unity than the ZZ estimator. Moreover, the presence of the linear 

polynomial enrichment makes the SPR/SVD more efficient, even in the case of 

SGFEM. This advantage did not appear when this enrichment was not adopted (see 
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Figure 6.20). Low error values once more hinder the convergence towards the unity 

when OD enrichments are used in the GFEM case. 

Figure 6.27 show the errors associated to the recovered stresses computed by 

each error estimator using branch, linear Heaviside and linear polynomial functions 

as enrichment. It clearly points out that the SPR/SVD is more accurate than the ZZ 

estimator, however this difference is accentuated in the SGFEM case due to lower 

convergence attributed to the SPR/SVD. 

 

Figure 6.26 – GFEM and SGFEM effectivity index for both error estimators. Branch, linear 
Heaviside and linear polynomial functions are used as enrichment. 

 

 

Figure 6.27 – Errors associated to recovered stresses computed by both error estimators 
using the GFEM and the SGFEM. Branch, linear Heaviside and linear polynomial functions 
are used as enrichment. In the legend,   denotes the average convergence rate. 
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6.3 Edge-crack panel under axial traction 

 

 

In this section, an edge crack panel under axial tension is evaluated aiming to 

assess the behavior of the error estimators when the exact solution is unknown. Two 

distinct orientations of the edge crack are considered. When the crack is horizontally 

oriented, different radii for defining the circular enrichment zone are tested in order to 

verify the convergence rate. This case is shown on the left side of Figure 6.28. In the 

second case, the crack is inclined, as depicted on the right side in Figure 6.28. In this 

situation, a comparison between the GFEM and SGFEM based on the estimated 

errors is presented. In both problems, the applied axial tension   is 60  and plane 

strain conditions are assumed. Moreover, Young’s Modulus of 310  and Poisson’s 

ratio of 0.25  are adopted as elastic parameters. Regarding the geometrical 

parameters, the following values are selected: 1a   and 4b  . Finally, the angle   

of 45  is defined for the crack inclination. No units are hereby adopted for the sake of 

simplicity. 

 

 

Figure 6.28 – Crack under axial traction. 
 

6.3.1 Horizontal Crack – Quadrilateral meshes 

 

Four uniform and structured meshes composed by bilinear quadrilateral 

elements are used in this case. These meshes present the following grid sizes: 19 x 

39, 39 x 79, 79 x 159 and 159 x 319. In all of them, the crack split the crossed 

elements into two equal areas. Moreover, the crack tip locates at the geometric 
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center of one element. Only OD branch functions are tested as enrichment. Outside 

the circular enrichment zone, this enrichment is imposed to the nodes of elements 

cut by the crack. 

The main aim in this example is to evaluate the behavior of the error 

estimators when different radii defining the circular enrichment zone are adopted. 

Therefore, five percentage values of the crack length (10%, 20%, 30%, 40% and 

50%) are defined in order to compute the radii. For instance, since the crack length is 

2.0, the value of 30% corresponds to a circle with a radius equal to 0.6. The 19 x 39 

mesh with its several circular enrichment zones defined according to the crack length 

percentage mentioned above is shown in Figure 6.29. 

 

 

Figure 6.29 – Illustration of the various enrichment zones (dashed lines) in 19 x 39 mesh. 
The crack is represented by a blue line. 

 

Figures 6.30 and 6.31 compare the estimated error in energy norm against the 

number of the degrees of freedom. In both cases, the estimated error was computed 

using the ZZ estimator. GFEM results are presented in Figure 6.30, while the SGFEM 

results are shown in Figure 6.31. As expected, the error estimator is able to capture 

the known fact that the enrichment benefit is located nearby the crack tip. Indeed, the 

enrichment effectiveness decreases when the radius grows, and as a consequence, 

the curves in the graphs tend to become closer to each other. Another important 

feature that must be pointed out in both figures is that the convergence rate (   in the 

graph legends) in each radius is very close to 0.50 (optimal rate), therefore once 

again demonstrating the robustness of the recovery technique. 
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Figure 6.30 – GFEM convergence calculated considering the estimated error for different 
enrichment radii. The estimated error was computed by the ZZ estimator. Only OD branch 
functions are used as enrichment. In the legend,   denotes the average convergence rate. 

 

 

Figure 6.31 – SGFEM convergence calculated considering the estimated error for different 
enrichment radii. The estimated error was computed by the ZZ estimator. Only OD branch 
functions are used as enrichment. In the legend,   denotes the average convergence rate. 

 

Figure 6.32 combines the graphs of Figures 6.31 and 6.30. It is clearly shown 

in Figure 6.32 that the SGFEM is more accurate than the GFEM. In fact, the relative 

improvement in accuracy is on average around 34%, considering the whole set of 

radii tested. 

It must be emphasized that in this example no result from the SPR/SVD 

estimator is presented only for the sake of convenience. However, the conclusions 

indicated above in this example are also valid for the SPR/SVD estimator. 
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Figure 6.32 – GFEM and SGFEM convergence calculated considering the estimated error for 
different enrichment radii. The estimated error was computed by the ZZ estimator. Only OD 
branch functions are used as enrichment. 

 

6.3.2 Inclined Crack – Triangular meshes 

 

Four uniform and structured meshes composed by linear triangular elements 

are used in order to assess the convergence of the GFEM and SGFEM 

approximations. The meshes are formed from quadrilateral elements presenting grid 

sizes: 10 x 20, 20 x 40, 40 x 80 and 80 x 160, which are uniformly divided into four 

triangular elements. In association to the crack orientation, purposely the crack 

surfaces lie along the element boundaries and the crack tip coincides with a node. 

Only BB branch functions are used as enrichment. The circular enrichment zone is 

defined by a radius equal to a half of the crack length. In addition, the nodes outside 

the circular enrichment zone, which are enclosed by the line immediately below the 

crack line, as well as the crack line itself, are also enriched. The 10 x 20 mesh with its 

enriched nodes is depicted in Figure 6.33. 

Figure 6.34 shows the estimated error in energy norm for both the GFEM and 

SGFEM. The better performance of the SGFEM compared to the GFEM is 

remarkable. Moreover, in the SGFEM, on average, the convergence rate is closer to 

the optimal rate (0.50) than in the GFEM. However, the optimal rate cannot be 

reached by both methods. A possible explanation is connected to the errors of 

approximation introduced by the blending elements in this example. For instance, 

regarding the GFEM, the errors measured in the blending elements are responsible 
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for around 55% on average of the global error according to both error estimators. 

However, in the SGEM, this influence is less significant. 

 

 

Figure 6.33 – Illustration of the circular enrichment zone (dashed line) and the enriched 
nodes in a 10 x 20 mesh. The red nodes are enriched with BB branch functions. The blue 
dashed line represents the crack. 

 

 

Figure 6.34 – GFEM and SGFEM convergence calculated considering the estimated error. 
Only BB branch functions are used as enrichment. 

 

Figures 6.35 and 6.36 depict the Von Mises stresses and the estimated error 

distribution for the GFEM and the SGFEM, respectively, considering the 20 X 40 

mesh. In both cases, the estimated error was calculated by means of the ZZ 

estimator. These figures focus on a region extremely close to the crack tip. The error 

estimator can identify where the higher errors are. For example, in Figure 6.35, on 
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the right, the error levels are clearly higher in the region below the crack tip, thus 

reflecting what is depicted on the left for the Von Mises stresses. 

 

 

Figure 6.35 – Von Mises stress calculated by the GFEM (left side) and the respective local 
estimated error distribution (right side). The estimated error was computed by the ZZ 
estimator. This zoom is given in the 20 x 40 mesh close to the crack tip and only BB branch 
functions are used as enrichment. The values out of scale are plotted in white. 

 

 

Figure 6.36 – Von Mises stress calculated by the SGFEM (left side) and the respective local 
estimated error distribution (right side). The estimated error was computed by the ZZ 
estimator. This zoom is given in the 20 x 40 mesh close to the crack tip and only BB branch 
functions are used as enrichment. The values out of scale are plotted in white. 
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7. CONCLUDING REMARKS 

 

 

This work aimed to provide a contribution to the study of the a posteriori error 

estimators, based on gradient recovery, when applied to the GFEM/XFEM and its 

modified versions called the C-XFEM and SGFEM. In order to fulfill this purpose, 

firstly, brief reviews regarding the GFEM/XFEM and its modified versions were 

presented. The main advantages associated to the use of the C-XFEM and the 

SGFEM were highlighted. Afterwards, two a posteriori error estimators hereby 

considered were addressed focusing on linear elastic fracture mechanics problems. 

The first estimator was originally proposed in Prange et al. (2012). This estimator, 

hereby called the ZZ estimator, was extended to the SGFEM framework. Next, also 

as an original contribution of this work, a second a posteriori error estimator was 

proposed. Basically, this second estimator, hereby called the SPR/SVD, assumes a 

splitting of the recovered stress field into two distinct parts: singular and smooth. 

Finally, various numerical examples were proposed aiming the assessment of the 

error estimators in situations involving different enrichment strategies, versions of the 

GFEM/XFEM and element types. 

As a general conclusion, it can be affirmed that both error estimators hereby 

developed can provide accurate results for the GFEM/XFEM, the C-XFEM and the 

SGFEM.  

The main findings of this work are summarized below. 

GFEM versus C-XFEM: In comparison with the GFEM when using only 

polynomial enrichments and focusing mainly on the accuracy in the reproducing 

elements, the efficacy of the ramp function introduced by the C-XFEM was 

confirmed. This feature was reached even when the two methods presented the 

same number of DOFs. As expected, this higher accuracy attributed to the C-XFEM 

was identified by both error estimators hereby dealt with. 

GFEM versus SGFEM: In most studied examples throughout Chapter 6, the 

SGFEM accuracy was higher than the GFEM considering the different types of 

enrichment functions tested. The SGFEM offered almost the same error level 

regardless of the class of branch functions (BB or OD) used as enrichment. On the 

other hand, BB enrichments were more accurate than OD enrichments when the 
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GFEM was used. This behavior is partially explained as a consequence of the 

accuracy in the blending elements of each method. When linear polynomial 

enrichments were introduced, both methods presented a reduction in the error levels. 

However, this reduction was often followed by a decrease in the convergence rate. 

These conclusions could also be drawn by means of the error estimators, hence 

demonstrating their efficacy. 

Blending Elements: The error in the blending elements revealed itself as the 

key factor for the major difference in the accuracy between the GFEM and SGFEM. 

For instance, the error levels in the GFEM blending elements were more accentuated 

when using OD enrichments in comparison with BB enrichments. Nevertheless, this 

difference did almost not exist in the case of the SGFEM. The scenario was shown to 

be of poorer quality for the GFEM when, in addition to the branch functions, linear 

Heaviside functions were also used as enrichment. However, in this case, the 

accuracy of the SGFEM was clearly better than the GFEM, probably due to the good 

behavior of the blending elements containing the linear Heaviside. Interestingly, the 

above mentioned conclusions can be provided by the estimated error, therefore 

proving once again the accuracy of the recovered stress strategies adopted. 

Enrichment radius: When an analytical solution was not available, distinct 

radii were tested to define the circular enrichment zone around the crack tip. 

Furthermore, this procedure was able to assess the behavior of the GFEM and the 

SGFEM under different enrichment strategies. As conclusions, one can mention that 

the size of the enrichment zone did not affect the optimal convergence rate and the 

higher accuracy demonstrated by the SGFEM was also maintained. 

Element Type: The behavior of the error estimators, in general, was not 

influenced by the element type since the same findings, when using quadrilateral 

elements, were also found with triangular elements. This independence with respect 

to the element type illustrates once again of the robustness of the error estimators. 

However, the absence of the superconvergence in the triangular elements may affect 

the SPR/SVD estimator negatively, as demonstrated in one of the examples.  

ZZ versus SPR/SVD: Both a posteriori error estimators present some positive 

characteristics, which are listed below: 

a) ZZ estimator: 

 The SIFs are not required; 
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 The superconvergence is not explored and, therefore the ZZ for 

triangular elements can be used without any restriction; 

 The implementation used in the GFEM/XFEM can be explored to 

support the assembly of the matrices and vectors constructed for 

defining the recovered stresses, since we can consider that the 

recovered stress field is “enriched” in this approach; 

 The higher accuracy in blending elements formed by polynomial 

enrichments in comparison to the SPR/SVD. 

b) SPR/SVD estimator: 

 The reduced CPU time. More precisely, the SPR/SVD is on average 

around three times faster than the ZZ; 

 The recovered stresses provided by SPR/SVD are, in general, more 

accurate than those obtained with the ZZ, especially when only 

polynomial enrichments are explored; 

 The higher accuracy in blending elements formed by branch functions 

and/or linear Heaviside functions in comparison to the ZZ. 

Regardless of the novelties implicit to the comparison between GFEM and 

SGFEM, most of the results hereby obtained essentially corroborate the related 

conclusions already cited in Babuŝka and Banerjee (2012), Gupta et al. (2013) and 

Gupta et al. (2015). Moreover, the computed effectivity indexes show that the error 

estimators constructed using the SGFEM often present values closer to the unity 

than using the GFEM. A possible explanation for this behavior is related to the better 

accuracy provided by the SGFEM. 

Finally, it must be emphasized that the errors obtained from the GFEM/XFEM, 

the C-XFEM and the SGFEM can be quantified and compared to each other using 

the a posteriori error estimators ZZ or SPR/SVD, even when an exact solution is not 

available. This feature not only demonstrates the flexibility of the error estimators, but 

it also improves the reliability of the GFEM/XFEM and its modified versions. 

Regarding suggestions for future studies, some options can be enumerated in 

what follows: 

Extension for 3D domain: A posteriori error estimators considering plane 

problems can be found easily in the literature, however, when the domain is 3D, this 

availability is sharply reduced, even in the standard FEM. 
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Development of adaptive algorithms: Once the local errors are provided, the 

next step would be to use them as indicators to refine the mesh aiming to optimize 

the convergence. 

Computation of the SIFs using the recovered stresses: In general, the 

recovered stresses are more accurate than the approximate stresses computed by 

the GFEM/XFEM and its modified versions, therefore, an interesting option would be 

to calculate the SIFs using these enhanced stresses. 

Improvement of the recovered stresses in blending elements: When only 

polynomial enrichments were used in the first example evaluated in Chapter 6, it was 

demonstrated that both a posteriori error estimators, mainly the SPR/SVD estimator, 

showed a certain difficulty in the blending elements. Consequently, these transition 

regions must be better investigated. 

Application for nonlinear problems: All the results hereby presented were 

obtained focusing on linear elastic problems. However, nonlinear problems involving 

plasticity, geometrical nonlinearity, contact, etc. can also be solved using the 

GFEM/XFEM and its modified versions. Therefore, error estimations associated to 

nonlinear problems will be increasingly required in the near future. 

Enhanced ZZ Estimator: The ZZ estimator requires a high CPU time, mainly in 

comparison with the SPR/SVD, therefore, to improve this aspect can be an 

interesting idea. 
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APPENDIX A – Programming Aspects of the Branch Functions 

 

 

As already commented before, one of the main advantages of the 

GFEM/XFEM is the possibility of improving the solution near to the crack tip using the 

branch functions as enrichment. Nevertheless, these functions are written in 

cylindrical coordinates (r  and  ) attached to a Cartesian local system, originating at 

the crack tip and axes x  and y  (see Figure A.1). However, in 2D problems, the 

configuration of the solid, in general, is described by means of a Cartesian system of 

coordinates associated to a Euclidian global referential X-Y with arbitrary origin (see 

Figure A.1). Therefore, the shape functions and their derivatives, involved in the 

computation of the stiffness matrix and vector of equivalent nodal forces, must be 

calculated considering the system X-Y. Consequently, a sequence of transformations 

should be conducted. 

 

 

Figure A.1 – Illustration used to explain the computations associated to the branch functions. 
 

The first transformation consists of calculating the local coordinates x  and y  

from global coordinates X  and Y . Hence, 
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where cX  and cY  are the crack tip coordinates and   is the angle of the crack (see 

Figure A.1). 

From local coordinates (Equation A1), the cylindrical coordinates r and   are 

then computed using the following relations: 

 

 2 2 ; arctgr x y y x     (A.2) 

 

Finally, the values of the OD and BB branch functions are obtained replacing 

the cylindrical coordinates, respectively, in equations (2.10) and (2.11), indicated in 

Chapter 2. 

Besides the branch function values, their partial derivatives in relation to the 

global coordinates should be calculated as they are used in the computation of the 

stiffness matrix. However, as known, these functions are written using cylindrical 

coordinates, thus, the chain rule needs to be explored. Therefore, for one of the 

branch functions L , these derivatives can be written as: 

 

L L r x L r y L x L y

X r x X r y X x X y X

L L r x L r y L x L y

Y r x Y r y Y x Y y Y

 
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 
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            
   

            
            

   
            

 (A.3) 

 

For sake of convenience, the previous relations (Equation A.3) can be 

represented through Jacobian matrices. The first matrix gathers the partial 

derivatives of the cylindrical coordinates in relation to local coordinates attached to 

the crack tip. The second matrix, in turn, gathers the partial derivatives of local 

coordinates in relation to global coordinates. Hence, 

 

r

r r

x y
J

x y

  

  
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   

  (A.4) 
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Using the matrices (A.4) and (A.5), equation (A.3) can be rewritten as: 

 

 1 T

r XY

L L

X rJ J
L L

Y







    
              
       

  (A.6) 

 

Finally, equations (A.1) and (A.2) can be replaced in (A.6). Thus, 
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 (A.7) 

 

The partial derivatives in relation to cylindrical coordinates for all branch 

functions are written below. 

OD branch functions: 
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BB branch functions: 
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APPENDIX B – The Triangularization Process 

 

 

Another interesting feature of the GFEM/XFEM is the possibility of modelling 

cracks without requiring mesh fitting at their interfaces. However, this characteristic 

requires a suitable numerical integration aiming to capture the displacement 

discontinuities. Otherwise, inaccurate results can be provided, and even integration 

points can coincide with the crack. A usual rule used for dealing with this drawback is 

to split the elements intersected by the crack into triangles, so that the resulting set of 

triangles does not cross the crack (see Figure B1). This procedure can be done using 

different techniques and the strategy hereby adopted is described below. As already 

mentioned, this strategy is based on techniques presented by Park et al. (2009). 

 

 

Figure B.1 – Illustration indicating the resulting set of triangles created aiming to improve the 
numerical integration. The blue line represents the crack. 

 

As can be seen in Figure B1, each element fully crossed by the crack is 

subdivided into two subdomains: one above the crack and the other below the crack. 

These subdomains, in turn, are subdivided into triangles. The number of triangles is 

equal to the number of vertices of the subdomain. The centroid of each subdomain is 

used as the intersection point of the triangles. 

A special strategy is hereby adopted for the elements that contain the crack tip 

due to the singularity. In this case, the crack tip is virtually extended to the other edge 

of the element. Consequently, now we can subdivide the element using the same 

procedure previously explained, as shown in Figure B1. However, the crack tip is 
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now considered a vertex of the subdomain. This assumption aims to increase the 

number of integration points near the crack tip. 

Some quadrature rules can be found in the literature aiming to improve the 

numerical integration on the sub-triangles having the crack tip, however, for the sake 

of convenience none of them were hereby assumed. This work simply adopted a 

large number of integration points in these sub-triangles. 

Once all sub-triangles were defined, the next step is to use them in the 

numerical integration, however, some new computations are required. For instance, 

when the stiffness matrix is calculated, firstly, the determinant of the Jacobian matrix, 

which relates the sub-triangle domain with the global domain, is computed for each 

integration point (see Figure B2). Then, the strain-displacement matrix is calculated 

(see Figure B3). Finally, the stiffness matrix is assembled from the contribution of all 

integration points. 

 

 

Figure B.2 – Scheme showing the steps involved in the calculation of the determinant of the 
Jacobian matrix when the triangularization process is used for computing the stiffness matrix. 

 

 

Figure B.3 – Scheme showing the steps involved in the calculation of strain-displacement 
matrix when the triangularization process is used for computing the stiffness matrix. 
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