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Resumo 

 

PIEDADE NETO, D. (2013). Sobre o Método dos Elementos Finitos Generalizados 

em análises da Mecânica dos Sólidos não-linear. São Carlos. 212p. Tese (Doutorado). Escola 

de Engenharia de São Carlos, Universidade de São Paulo. 

 

O Método dos Elementos Finitos Generalizados (MEFG) é um método numérico 

baseado no conceito de partição da unidade (PU) e inspirado no Método da Partição da 

Unidade (MPU) e o método das Nuvens-hp. De acordo com o MEFG, a PU é obtida por meio 

de funções de interpolação Lagragianas de primeiro grau, definidas sobre uma rede de 

elementos similar àquela do Método dos Elementos Finitos (MEF). De fato, o MEFG pode ser 

considerado uma extensão do MEF para a qual se pode aplicar enriquecimentos em regiões 

específicas do domínio, buscando melhorias na solução. Esta técnica já foi aplicada com 

sucesso em problemas com descontinuidades e singularidades, como os originários da 

Mecânica da Fratura. Apesar disso, a maioria das publicações sobre o método está relacionada 

a análises lineares. A presente tese é uma contribuição aos poucos estudos relacionados a 

análises não-lineares de Mecânica dos Sólidos por meio do MEFG. Um de seus principais 

tópicos é o desenvolvimento de um elemento de contato generalizado do tipo ‘segmento a 

segmento’ baseado no método mortar. Fenômenos não lineares devidos ao material e à 

cinemática também são considerados nos modelos numéricos. Um projeto de orientação a 

objetos para a implementação de uma plataforma de análises não-lineares foi desenvolvido, 

escrito em linguagem de programação Python. Os resultados validam a formulação e 

demonstram os ganhos e possíveis desvantagens da abordagem a problemas não lineares por 

meio do MEFG. 

 

Palavras-chave: Método dos Elementos Finitos Generalizados; Mecânica dos Sólidos; 

análise não-linear; problemas de contato; Programação Orientada a Objetos; linguagem de 

programação Python. 

 





Abstract 

 

PIEDADE NETO, D. (2013). On the Generalized Finite Element Method in nonlinear 

Solid Mechanics analyses. São Carlos. 212p. Thesis (Doctoral) - São Carlos School of 

Engineering, University of São Paulo. 

 

The Generalized Finite Element Method (GFEM) is a numerical method based on the 

Partition of Unity (PU) concept and inspired on both the Partition of Unity Method (PUM) 

and the hp-Cloud method. According to the GFEM, the PU is provided by first-degree 

Lagragian interpolation functions, defined over a mesh of elements similar to the Finite 

Element Method (FEM) meshes. In fact, the GFEM can be considered an extension of the 

FEM to which enrichment functions can be applied in specific regions of the problem domain 

to improve the solution. This technique has been successfully employed to solve problems 

presenting discontinuities and singularities, like those that arise in Fracture Mechanics. 

However, most publications on the method are related to linear analyses. The present thesis is 

a contribution to the few studies of nonlinear analyses of Solid Mechanics by means of the 

GFEM. One of its main topics is the derivation of a segment-to-segment generalized contact 

element based on the mortar method. Material and kinematic nonlinear phenomena are also 

considered in the numerical models. An Object-Oriented design was developed for the 

implementation of a GFEM nonlinear analyses framework written in Python programming 

language. The results validated the formulation and demonstrate the gains and possible 

drawbacks observed for the GFEM nonlinear approach. 

 

Keywords: Generalized Finite Element Method; Solid Mechanics; nonlinear analysis; 

contact problem; Object-Oriented Programming; Python programming language. 
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1 -Introduction 

The quantitative evaluation of the structural behavior of solids is based on the 

concepts of Solid Mechanics, which is a part of Continuum Mechanics. Among its 

fundamental concepts, both solids and fluids are idealized as continuous media, referred to as 

continuum, enabling the application of mathematical modeling tools as the ones arising from 

the differential and integral calculus. By employing such framework, the physical problem 

can be described by a set of differential equations, from which result function fields 

describing the idealized continuous medium behavior. 

The classical solution procedure of the above mentioned systems of Partial 

Differential Equations (PDE) consists in obtaining analytical expressions accounting for 

displacement, stress and strain fields over the problem domain. In general, the solution is 

restricted to some predefined solid shape and to specific boundary conditions, as well to other 

simplifying hypotheses. For instance, a limited magnitude to the displacement and strain 

values and a simplified material response can be assumed at once, aiming to achieve a 

mathematical model describing a linear behavior. Moreover, in some cases, one can assume 

that the loading is applied in a quasi-static procedure, such that the inertial effects can be 

neglected, resulting in a static analysis. 

Although a broad class of problems can be solved by means of such idealized 

conditions, several engineering applications exhibit features clearly distinguished from those 

assumed in the linear static theory. Actually, in real world applications, under certain 

conditions, some structures may exhibit large displacements and strains, such that the changes 

in their configuration influence their structural response. Furthermore, their material can 

present nonlinear behavior, resulting in immediate or time-dependent irreversible strain 

(plasticity or visco-plasticity). Such effects give rise to several nonlinear theories for 

effectively modeling these real world problems. 

Advancing further in the complexity of modeling, the problem can be composed by 

not only a single solid, but by a set of distinct solids, which, during the mechanical process, 

may occupy the same region in the space at the same time. If this situation occurs, a contact 

problem is configured. According to Belystchko, Liu and Moran (2000), due to several 

reasons, contact problems are among the most difficult nonlinear problems and demand 

appropriate methodologies and algorithms for their successful treatment. 
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In fact, contact problems are intrinsically nonlinear, even though a linear behavior is 

assumed for the material and kinematic relations. The nonlinear character of contact problems 

arises from the fact that, in mathematical models, the phenomenon is defined by means of 

changes in the boundary conditions, which can be determined only during the solution 

process. Moreover, several additional mathematical conditions must be verified such that a 

stable solution framework can be achieved. 

Regarding the contact among solids, the first scientist that correctly described 

(quantitatively) the problem was Heinrich Hertz, in 1881, in the article “Über die Berührung 

fester Elasticher Körper”. This contribution is nowadays regarded as the origin of the Contact 

Mechanics. A complete report on the historical aspects of the subject can be found in Kikuchi 

and Oden (1988). 

According to Johnson (2003), after Hertz, new contributions on the subject have been 

made only in the twentieth century, with Signorini’s article “Sopra alcune questioni di 

elastostatica”, presented in 1933, and “Questioni di elasticita nonlinearizzata e semi 

linearizzata”, published in 1959. Both articles are cited by Kikuchi and Oden (1988) as the 

works resuming the subject in the last century. Presently, frictionless contact problems among 

deformable solids and rigid obstacles are often referred to as “Signorini problems”. 

Johnson (2003) also cites the books “Contact Problems in Theory of Elasticity”, 

published by L. A. Galin in 1953, and “Contact Problems in the Classical Theory of 

Elasticity”, published by G.M.L. Gladwell, in 1980. In both cases, the linear elasticity 

theoretical hypotheses are considered. The book by Kikuchi and Oden (1988) can be itself 

considered as an essential reference on the mathematical aspects of Contact Mechanics. 

From the 1950’s, general mechanical problems represented by Partial Differential 

Equations (PDE) have started to be solved numerically and computationally by means of the 

Finite Element Method (FEM). Initially applied only to linear problems, the method proved to 

be very powerful, such that the engineering and scientific community started to develop 

complementary techniques for solving also nonlinear problems. In the late 1960’s nonlinear 

FEM applications quickly started to be published. 

Regarding contact problems, the first FEM approaches date from the late 1970’s and 

the first half of the 1980’s. Some authors have included the subject as part of their general 

nonlinear solid mechanics books, like Bathe (1996) and Belystchko, Liu and Moran (2000), 

mainly presenting the general aspects of the numerical approach for solving contact problems. 

Currently, one finds entire books dedicated to the Computational Contact Mechanics, such as 

Laursen (2002) and Wriggers (2006). 
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One of the greatest difficulties faced in deriving contact element formulation is that 

the FEM treats the continuum as a set of discrete points. Accordingly, the unknowns are nodal 

displacements, from which stress and strain fields can be obtained. For the rest of the domain, 

the displacements, stresses and strains are obtained by means of shape functions associated 

with each finite element. Also, pressures over the elements surfaces are also treated as 

discrete nodal equivalent forces. 

Such discrete characteristic represents a challenge for adequately treating the contact 

among solids. Actually, in the general case, the nodes distribution on the contact surfaces is 

not coincident, requiring additional strategies to enforce the contact forces and to avoid the 

penetration in the contact region. 

Several studies on numerical techniques to enforce the contact conditions over 

contacting solid surfaces can be found in the literature. In general, they are based on the 

control of the so-called Condition of Impenetrability. Specifically for the case of two-

dimensional (2D) problems, the target surface is represented by means of a line segment. 

Since the restrictions due to the contact are applied at solid nodes, these contact elements are 

referred to as node-to-segment contact elements. 

A simple node-to-segment contact element for solving 2D Signorini problems is 

derived in the Master of Science dissertation by Piedade Neto (2009), providing accurate 

results for the tested problems. Even for the case of contact among solids and curved rigid 

obstacles, the penetration observed in the results is almost negligible, contrarily to the 

expectations based on the discrete nature of the displacement enforcement in the solid. 

Laursen (1992) relates that such a discrete approach can lead to errors, especially for 

the case of frictional contact, and cites the work of Pires and Oden (1983), discussing the 

difficulties in proving the existence of solution for a Coulomb model frictional Signorini 

problem treated by a discrete contact strategy. The same authors advocate on the 

ineffectiveness of such a discrete approach for treating frictional contact, by resorting to 

physical arguments and citing the works of Oden and Martins (1985) and Kikuchi and Oden 

(1988). 

Although node-to-segment contact elements lead to good results in some specific 

conditions, taking into account the above mentioned researches, the continuous enforcement 

of the contact conditions over the contacting region seems to be mathematically consistent 

and physically plausible. For a 2D model, this approach gives rise to contact elements 

represented by a line segment, associated with the finite elements’ sides. Hence, such contact 

elements are referred to as segment-to-segment contact element. 
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A segment-to-segment contact element for the Signorini problem is derived in Piedade 

Neto (2009), employing both Lagrange Multipliers and penalty based formulations. The used 

contact detection techniques are based on Fisher and Wriggers (2005), who describe the 

derivation of the mortar contact elements. 

The mortar contact elements are derived on the basis of the work of Bernardi, Maday 

and Patera (2001), which introduced the mortar technique aiming another purpose: the domain 

decomposition for discretization schemes with non-coincident meshes. Due to its efficiency, 

the technique was adapted to be used in contact problems, giving rise to a new class of contact 

elements. The subject is also presented in both computational contact mechanics books 

already cited, i.e., Laursen (2002) and Wriggers (2006). 

The mortar method formulation results from the enforcement of the contact constraints 

over the solids’ surfaces, by performing a numerical integration over the contact element 

domain (a segment in the 2D space). The contact element activation is also detected by means 

of the mean gap value, computed from the gaps observed at the integration points along the 

contact element. Like any other contact element, the element is activated if such gap value 

indicates a violation of the Condition of Impenetrability. Similarly, the traction in the contact 

element domain, which must obey the Traction Condition, is computed by a numerical 

integration, and so represents the mean traction value over the contact element. 

Regarding the advantages of the continuous mortar approach, Laursen (2002) explains 

that, although good convergence results can be achieved by using node-to-segment contact 

elements, optimal convergence rates are obtained only when an integral enforcement of the 

contact is employed. 

The same convergence gains are pointed out by Wriggers (2006) as one of the main 

advantages of the mortar contact element. In fact, the decrease in the number of iterations is 

especially notable for the quadratic interpolation finite element. The same author points out 

that this gain is almost negligible for the linear interpolation finite element. Such fact was also 

observed by Piedade Neto (2009) for the segment-to-segment contact element applied to the 

Signorini problem. 

In spite of this advantage, Piedade Neto (2009) found that the segment-to-segment 

contact elements can present solutions violating the traction condition. According to this 

condition, tensile tractions are not allowed in the contacting surfaces, since the model does 

not consider adherence among the solids’ surface. 

Although physically not coherent with the adopted hypotheses, the mortar 

mathematical formulation in fact allows the occurrence of tensile tractions in part of the 
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contact element. This occurs due to the fact that the method uses the mean value of the 

tractions as the reference for verifying the traction condition in a contact element. Therefore, 

even if tensile tractions arise in part of the contact element, if the mean value still indicates a 

compression tensile, the element remains active. This phenomenon is generally observed in 

contact elements located at the edges of the contact region. 

On the other hand, the global structural behavior is clearly not affected by such 

phenomenon. Even the displacement errors near such regions are small. In fact, the major 

concern is related to errors in the stress and strain fields in the neighboring region this part of 

the contact interface. 

It is worth to mention that the technical literature does not address explicitly 

references of this particular behavior of the mortar contact elements. In this respect, Wriggers 

(2006) reports that if more accurate stress results in the contact surface are necessary, one 

should employ an adaptative strategy in order to improve such results. Clearly, a more careful 

analysis of the theme is important to find out details about such numerical effect. 

The results and the conclusions obtained in the author’s Master of Science dissertation 

have motivated the inclusion of the contact subject as one of the main themes of the present 

thesis. Furthermore, studies on scientific databases have pointed out that the use of other 

nonconventional numerical methods for solving contact problems, as the Generalized Finite 

Element Method (GFEM), has not been sufficiently investigated. 

The Generalized Finite Element Method (GFEM) is a numerical method, based on the 

traditional Finite Element Method (FEM), presenting as its main characteristic the possibility 

of improving the solution in specific regions of the problem’s domain without demanding 

mesh refinement. 

The GFEM has one of its bases in the Partition of Unity Method (PUM), derived by 

Melenk and Babuška (1996), in which the concept of enriching Partial Differential Equations 

(PDE) numerical solutions is introduced. The referred paper also includes the definition of the 

mathematical bases of the method, as well as its convergence proof. The other basis for the 

GFEM is associated to HP-Clouds Method, derived by Duarte and Oden (1996a, 1996b), in 

which the nodal enrichment strategy is presented. 

One of the most notable situations for which the GFEM has shown to be clearly 

powerful is related to Fracture Mechanics problems. For these applications, the traditional 

FEM approach demands a hierarchical strategy, both for updating the crack topology and for 

improving the crack tip solution, in which the stress concentration demands an excessive 



 20 

mesh refinement. Clearly this approach requires the availability of robust generation 

algorithms and leads to a costly numerical simulation. 

On the other hand, a more efficient approach for these problems is achieved by using 

the local enrichment GFEM strategy both to introduce the crack’s discontinuities and to 

improve the stress and strain results in the crack tip region. The discontinuities can be inserted 

in the solid’s domain by means of Heaviside function enrichments, while the stress 

concentration effects in the crack tips can be obtained by special function enrichments based 

on the asymptotic William solution for the two-dimensional crack problem (see Mohammadi 

(2008)). 

In spite of this fact, the GFEM application to nonlinear solid analysis remains poorly 

investigated. For instance, the first publication in periodicals, regarding material nonlinear 

analysis, date from the last decade (Barros (2002) and Torres (2003)). Fewer publications on 

the GFEM application for contact problems are available, and, in general, these papers 

address very specific contact conditions. In fact, the nonlinear solid mechanics analysis by 

means of the GFEM seems to have been little studied and contributions regarding the 

method’s performance in such conditions are still of great interest. 

The effects of the contact on the internal crack surfaces modeled by using the GFEM 

Heaviside enrichment are presented in Dolbow (1999). Although frictional effects over the 

crack’s surfaces is considered, the derived formulation is limited to the contact between a 

given crack’s surfaces, and cannot be directly extended to the general case of contact, in 

which large relative displacements among distinct solids can occur. 

A similar strategy was adopted by Khoei and Nikbakht (2006), who applied the 

formulation to model the contact between sliding surfaces. It is important to mention that 

distancing between the surfaces is not supported by the proposed formulation. Yet, Phadke 

(2005) presents an application of the GFEM to a very simple frictional contact in a truss 

element. 

Taking all the above mentioned facts into account, it is important to underline that the 

derivation of GFEM enriched contact elements for the general contact problems, with no 

restrictions to the relative surface displacements, is a subject not found in the bibliographic 

research. Thus, it represents an original contribution for the contact mechanics and the 

Generalized Finite Element Method. This is true not only for the case of deformable solid 

contact, but also for the Signorini problem. Actually, the derivation of such generalized 

contact elements is the guideline of the contribution hereby presented. 
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Moreover, if one takes into account the reported state of the art on the nonlinear 

analysis using GFEM, a critical analysis of the numerical aspects of the method in such 

conditions seems to be an additional important contribution to emphasize, compatible with a 

doctoral research. Still in the field of nonlinearities, cases of elastoplasticity, dynamic analysis 

and hyperelastic contact solved by means of the GFEM constitute topics also studied in the 

present work. 

Finally, it is also important to highlight a contribution resulting from the present 

research: the GFEM computational implementation and the conceiving of an efficient Object-

Oriented design for the method. 

Even though several research works on the GFEM were performed at the Structural 

Engineering Department of the São Carlos School of Engineering in the past years, the codes 

developed in such works were not conceived aiming expansions, and therefore, did not 

support the implementation of a general nonlinear analysis framework. Besides, since the 

development of a new computational code has shown to be necessary, a natural design choice 

is to conceive a data structure that enables several developers to work collaboratively in the 

same code. In this context, the Object Oriented Programming (OOP) arises as the 

programming paradigm to be employed in the code’s development. 

These OOP technical advantages were perceived by the FEM code developers in the 

1990’s. One of the first references pointing towards this direction is Alves Filho and Devloo 

(1991). In the following year, a more detailed description of the OOP application for the FEM 

was provided by Zimmermann et al (1992) and Dubois-Pélerin et al (1993). Since then, 

hundreds of papers have been published on the application of the OOP to solve PDE, 

regarding both the FEM and the Boundary Element Method (BEM) (Mackerle (2000)). The 

subject worthiness has been established by the development of PhD Theses about the FEM 

OOP, as Hedelal’s (1994) and Archer’s (1996). 

The OOP benefits in the FEM influenced some researchers to employ such 

programming paradigm to implement GFEM codes. However, in contrast to the hundreds of 

papers on the traditional FEM OO programming, the theme has been little published for the 

GFEM. Actually, Pereira’s (2004) dissertation is one of the few texts on the OOP GFEM. 

Regarding publications in periodicals, a description of the eXtended Finite Element 

Method (XFEM) is presented by Bordas et al. (2007). It is important to notice that the XFEM 

is similar to the GFEM, and both can almost be considered the same method, according to 

Belytschko, Gracie and Ventura (2009). 
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Considering those facts, a last (but not less important) contribution of the present work 

is the development of an Object Oriented (OO) class framework suitable for the GFEM, 

designed to achieve the pointed goals for the resulting code. The existing knowledge 

presented in the technical literature was not neglected in the code design, but some original 

design options have been chosen to better support the method’s characteristics. Documenting 

the developed OO framework is also a contribution of the present thesis, evidenced by the 

publication of the proposed OO design for the GFEM in an international journal (Piedade 

Neto, Ferreira and Proença (2013)). 

In what follows, the theoretical foundations of the mechanical problems hereby 

considered are addressed in Chapter 2. First, one presents the Initial Boundary Value Problem 

(IBVP) definition for the kinematically linear model, considering either a linear elastic 

constitutive model or a von Mises based isotropic model. Next, the kinematically nonlinear 

formulation of the IBVP is introduced, defining again two distinct constitutive models: the 

Saint Venant-Kirchhoff and the Neo-Hookean material models. In the following, the weak 

form of the IBVP is briefly presented, based on the Principle of Virtual Work (PVW). Once 

the weak form is presented for the single solid problem, the strong form of the contact IBVP 

is presented, defining the conditions of the frictionless contact problem. Then, the contact 

IBVP weak form is presented. 

In Chapter 3 the numerical approach of the previously described physical problems is 

presented. Following the formulation of the traditional Finite Element Method (FEM), the 

Generalized Finite Element Method (GFEM) is presented as an extension of the previous one. 

The fundamental concepts of Partition of Unity (PU) and nodal enrichment are briefly 

discussed and the enrichment functions used in the present work are defined. Once the GFEM 

is presented, the techniques necessary to solve the nonlinear problems arising from the theory 

presented in Chapter 2 are defined. Special focus is given to the contact numerical approach, 

presenting the definition of the generalized contact elements derived in the present work. 

Finally, the resulting framework for solving generic nonlinear problems is presented, 

encompassing functionalities for solving the entire set of nonlinear models previously 

discussed. 

Chapter 4 is reserved for documenting the Object Oriented Programming adopted 

design. The chapter starts with a brief description of the programming paradigm, pointing out 

its characteristics, benefits and possible drawbacks. The programming language adopted to 

develop the code is also briefly described. The symbols and conventions used in the GFEM 
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OO design, which composes most of the chapter, are also displayed. Frequent references to 

the previous chapter are addressed in order to clarify the overall perspective. 

In Chapter 5 a set of simple numerical examples is provided, in order to assess the 

correctness of both the developed computational framework and the derived formulation. 

Since the use of the GFEM for solving some of the nonlinear problems is original, Chapter 5 

represents more than a simple testing of the computational framework and indeed aims the 

validation of the GFEM formulation applied to nonlinear solid mechanics analysis. 

In Chapter 6 examples of higher complexity are provided. The results achieved by 

means of refined FEM analyses are used as the reference solution, since in general such 

examples do not present analytical solutions, in opposite to what happens for most of the 

examples presented in Chapter 5. These FEM models were also solved using the developed 

computational framework. 

Chapter 7 is dedicated to the discussion of all the aspects treated in the thesis, 

regarding in particular the developed generalized contact element formulation and the 

numerical results associated to them. The numerical results of the other implemented 

nonlinear analysis features are also commented, especially in the cases for which they 

represent original contributions for the GFEM. The chapter also includes a brief general 

conclusion on the conceived OO design for the GFEM. 
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2 -Theoretical foundations 

The present chapter is devoted to the mathematical modeling of the mechanical 

problems hereby considered. Initially, a brief exposition on the theoretical concepts of 

Continuum Mechanics is presented. The general guidelines for such reviewing are the books 

of Laursen (2002), Wriggers (2006) and Bonet and Wood (2008). Following the strong form 

of the Initial Boundary Value Problem (IBVP), its weak form based on the Principle of 

Virtual Works (PVW) is derived, aiming to the numerical approximation to be introduced in 

Chapter 3. 

The first problem to be considered is related to a single solid model under linear 

elastic behavior. Afterwards, by keeping a linear kinematic approach, the small strains 

elastoplastic material model is introduced. The elastoplastic framework is restricted to the von 

Mises stress based model with nonlinear isotropic hardening law. 

Advancing to a more general model, the previous restrictions to the small 

displacement hypothesis are circumvented by adopting a nonlinear kinematical description. 

Accordingly, nonlinear strain and associated stress tensors are presented, and related by the 

Saint Venant-Kirchhoff constitutive model. The occurrence of finite strains is also accounted 

for the work conjugate stress tensor by means of a Neo-Hookean hyperelastic model. 

Next, the hypotheses and mathematical conditions for representing the interaction 

between solids are presented, basing the formulation of the contact problem. 

The option for defining the problem in specific conditions (two-dimensional space and 

specific material models, for instance) is mostly related to the objective of addressing the 

theoretical foundations in a straight and concise fashion. In spite of that, one underlines that 

such specific strategy does not exclude the possibility to extend the numerical approach to 

more general cases, for which an extended modeling follows a similar path. 

2.1. The Initial Boundary Value Problem (IBVP) - linear kinematics 

Let S be a solid idealized as a continuous media, referred to as continuum. To each of 

the continuum’s point corresponds one point defined in an Euclidean space, giving rise to an 

entity referred to as material point. The study of the solid’s behavior relies in the response of 

each of its material points due to the action of mechanical forces. A fixed orthogonal basis of 
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unit vectors 
1
e , 

2
e  and 

3
e  is attached to the Cartesian adopted referential. Although the 

present study is focused on two-dimensional idealizations, one assumes temporarily that the 

solid configuration is positioned in a three-dimensional Euclidean space. This general 

conception is indicated in Figure 2.1. 

 
Figure 2.1. Solid idealized in the three-dimensional Euclidean space. 

By definition, the material points representing the particles of the solid belong to an 

open configuration set named Ω . The boundary of the configuration set is named ∂Ω . The 

union of Ω  and ∂Ω  gives rise to the closed set Ω . Each of the points X  belonging to Ω  can 

be referenced by its initial position vector X , resulting in the following Lagrangian 

description framework: 

( ), ,
T

X Y Z X Y Z= + + =
1 2 3

X e e e .  (2.1) 

During the mechanical process, the continuum points can move from their initial 

position, occupying a new configuration at each time instant t belonging to a time domain 

{ 0 }t t T= ∈ ≤ ≤�IIII . Such position ( ),tϕ=x X  is here referenced as the current position 

of the point X  at a given time t. The current position x is also represented by means of a 

position vector and Cartesian coordinates such that 

( ), ,
T

x y z x y z= + + =
1 2 3

x e e e .  (2.2) 

The difference between the current and the initial position of a given point defines a 

vector field u  representing the point displacement at a given time t, such that 

( ), ( , )t t= −u X x X X .  (2.3) 

The displacement vector components can be directly computed from the initial and 

current position components, resulting in 

( ) ( ) ( ) ( , , )Tx X y Y z Z u v w= − + − + − =
1 2 3

u e e e . (2.4) 

The displacement field encompasses rigid body motions, composed by linear 

displacements of the whole body or its rotation in relation to a given point, and also possible 

S
 

Ω
 

σΓ

uΓ  

3Ω ∈ �
Ω ϵ Rn 

X 

x 
u 

1
e

2
e

3
e
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changes in the solid shape, referred to as deformation. The definition of a measure for the 

strain, valid along the whole solid domain, is fundamental to the study of the solid’s 

deformation. 

An important hypothesis for defining a tensorial quantity representing the strain at a 

given point relies on the magnitude of the displacement field values observed in the 

continuum during the mechanical process. If <<du dX , a linear relation between the 

displacement and the strain can be stated, given rise to the so-called Cauchy strain or linear 

strain tensor, defined as  

( )1
2

: s T= ∇ = ∇ + ∇u u uε ,  (2.5) 

in which s∇  operator represents the symmetric part of the gradient applied over the 

displacement field. Considering the adopted system of reference, a matrix presentation of 

such second order strain tensor is 

1 1

2 2

1 1

2 2

1 1

2 2

xx xy xz

yx yy yz

zx zy zz

u u v u w

X Y X Z X

u v v w v

Y X Y Y Z

u w w v w

Z X Y Z Z

ε γ γ

ε γ ε γ

γ γ ε

    ∂ ∂ ∂ ∂ ∂    + +      ∂ ∂ ∂ ∂ ∂           ∂ ∂ ∂ ∂ ∂     = = + +       ∂ ∂ ∂ ∂ ∂    
       ∂ ∂ ∂ ∂ ∂   + +     ∂ ∂ ∂ ∂ ∂   







 
 
 
 
 
 



. (2.6) 

It is worth of mentioning that the linear strain tensor presented in (2.6) does not fulfill 

the frame invariance requirements, see Spencer (2004). The frame indifference issue is also 

referred to in the technical literature as objectivity. Despite of this fact, for situations in 

accordance with the infinitesimal displacement hypothesis, it represents a suitable strain 

measurement entity. 

Nonzero strain values evidence that the solid’s particles present relative movements 

among each other, which give rise to internal forces. The distribution of such internal forces 

can be represented by defining a stress tensor. 

Moreover, aiming to hereafter focus on a linear relation between the stress and the 

linear strain tensor, giving rise to a linear elastic model, one adopts the Cauchy stress tensor 

σ , which also can be represented by means of a symmetric matrix, defined as 

xx xy xz

yx yy yz

xz yz zz

σ τ τ

τ σ τ

τ τ σ

 
 
 =  
 
  

σ .  (2.7) 
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Further information on the Cauchy stress tensor can be found in Timoshenko and 

Goodier (1970). 

It is important to notice that, on the other hand, the emergence of internal forces is 

caused by external mechanical loads applied over the solid. Part of these loads is acting 

directly in the solid’s domain, being mathematically represented by a vector f of body forces. 

Another group of external loads is applied in specific regions of the solid’s boundary, 

therefore being considered in the model as static boundary conditions. Depending on the way 

one considers the boundary conditions, the set ∂Ω  can be divided into two distinct and 

complementary parts referred to as uΓ  and σΓ , such that 

,

.
u

u

σ

σ

Γ Γ = ∂Ω
Γ Γ = ∅
∪

∩   (2.8)
 

The portion uΓ  is associated with the so-called Dirichlet boundary conditions, in 

which prescribed displacement values are enforced in such region. Dirichlet boundary 

conditions can be summarized as  

, for all ,u t= ∈ Γ ∈u u X IIII .  (2.9) 

The portion σΓ  is associated with the so-called Neumann boundary conditions. 

Prescribed traction values are enforced in such region, and can be summarized as  

, for all ,tσ= ∈ Γ ∈n t X IIIIσ ,  (2.10) 

in which n  is the vector representing the outward unit normal to σΓ . 

Within the classical mechanics framework, the equilibrium of the solid is described by 

the Newton’s law of motion. Accordingly, the inertial forces can play an important role in the 

phenomenon, depending on the velocities and acceleration observed in the body’s particles. In 

this context, the displacement and vector field values over the whole solid’s domain at the 

initial reference constitute important information to mathematical modeling. Hence, the so-

called initial conditions are defined as 

00

00

, for all ,

, for all .
t

t

=

=

= ∈ Ω
= ∈ Ω

�u v X

u u X
  (2.11) 

In the last relation the dot over the displacement u  denotes the first time derivative of 

the displacement field, whereas 0v and 0u  are initial values prescribed for the velocity and 

displacement at the initial time. Likewise, two dots over u  represent the second time 

derivative, resulting in the acceleration field. 
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In order to complete the definition of the Initial Boundary Value Problem (IBVP), the 

linear momentum balance in accordance with the Newton’s Law must be verified at each 

particle of the solid for all time t ∈ IIII  such that 

ρ∇ ⋅ + = ��f uσ .  (2.12) 

Above, ρ  is the mass density of the solid at the given material point. Regarding the 

notation employed in equation (2.12), the dot product (contraction) of the gradient operator 

∇  applied to the Cauchy stress field results in the divergent of such stress tensor. 

In spite of the fact that the real world problems are related to a three-dimensional 

space, some practical problems may be represented only by means of a two-dimensional 

idealization. In the present work one focuses on such applications, so that the presented theory 

is attached to an Euclidean space 2� . 

The idealized two dimensional Euclidean space is placed in the plane defined by the 

unit vectors 
1
e  and 

2
e  indicated in Figure 2.1 (XY  plane). The real solid thickness, in the 

plane stress case, and the member axis, in the plane strain idealization, are associated to the 

Z  coordinate, which is orthogonal to the XY plane. 

In such system of reference, for the plane stress model, it is possible to conclude that 

0.
zy yz z
τ τ σ= = =   (2.13) 

The correspondent conditions for the plane strain state are 

0.
zy yz z
γ γ ε= = =   (2.14) 

Finally, the IBVP definition is completed by the relation between the stress field, 

represented by the second order tensor σ , and the strain field, represented by the second 

order tensor ε. The relationship between the two tensors, expressed in a general form by 

means of the fourth order constitutive tensor C , is given by 

:=σ εC .  (2.15) 

Several different components are defined to the C  tensor, if the general case is 

considered. On the other hand, if simpler conditions are considered, as material isotropy and a 

linear elastic behavior, the number of independent components decreases significantly. 

Further simplifications can be achieved if plane stress and plane strain hypotheses are 

adopted. 

The above presented formulation defines the so-called strong form of the IBVP. 

In what follows, two different constitutive models exploring the linear kinematic 

formulation are addressed. 
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2.1.1. Linear elastic constitutive model 

Considering an isotropic linear elastic material, the stress strain relation presented in 

(2.15) for the plane strain hypotheses is written using matrix notation as 

�

( )( ) ( )
�

1 0

1 0
1 1 2

0 0 1 2 2

x x

y y

xy xy

E
σ υ υ ε

σ υ υ ε
υ υ

τ υ γ

        −           = −       + −     −            ������������������������������������������	
σ εC

, (2.16) 

in which E is the Young modulus and υ  is the Poisson’s ratio. 

For the plane stress, the relation is written as  

�

( ) ( )
�

2

1 0

1 0
1

0 0 1 2

x x

y y

xy xy

E
σ υ ε

σ υ ε
υ

τ υ γ

                   =       −     −            ��������������������������	
σ εC

. (2.17) 

2.1.2. Small strain elastoplastic constitutive model 

Plasticity is a nonlinear phenomenon associated to the material response, for which a 

non unique relation between stress and strain is observed upon loading and unloading above 

certain level of stress state. 

Hence, plasticity appears when the stress state in a given point of the continuum 

exceeds a limit, characteristic of the material. In general, below such limit, a linear elastic 

response of the material prevails. For a stress-based elastoplastic model, the reference initial 

limit is often taken as the one-dimensional (1D) yield stress 
Y
σ . A yield criterion furnishes a 

scalar value equivalent to the local stress state intensity to be compared to the yield stress 

limit. 

When the yield stress is exceeded at a given point, part of the strain components 

observed at that point turns to be irreversible. Therefore, if the load is removed, a residual 

strain state remains in the solid. Consistent to the small strain hypothesis, an additive strain 

relation can be assumed, such that 

e p= +ε ε ε ,  (2.18) 
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in which ε  is the total strain, eε  is the elastic (reversible) strain and pε  is the plastic 

(irreversible) strain. The stress tensor is associated to the elastic counterpart of the strain, such 

that 

( ): :e p= = −σ ε ε εC C .  (2.19) 

The relation shown in (2.19) is also assumed as valid for the stress and strain tensor 

rates. Moreover, in the present work, one considers that the plastic behavior is described by a 

rate-independent plastic model, as shown in Souza Neto, Perić and Owen (2008). 

Besides the occurrence of irreversible strain, the plastic behavior can also incorporate 

a phenomenon denominated hardening. On the contrary to the perfectly plastic case, for which 

no stress increment is admissible beyond the yield stress, in the hardening regime, the 

material is able to sustain stress increments in correspondence to the accumulated plastic 

strain. 

Mathematically, the hardening is described by defining a hardening law. The perfectly 

plastic model can be understood as a particular case for which the hardening is void. For the 

present study, a negative hardening, also referred to as softening, is not considered. 

The yield criterion of the elastoplastic model to be implemented in the computational 

framework is based on the von Mises criterion, according to which the stress state level is 

determinated by the deviatoric part of the stress tensor. Therefore, the yield criterion is 

defined as 

( ) ( )2 2
2 3 3

( ) : 2 ( ) ( )f J K Kα α α= − = −σ, σ σs . (2.20) 

In (2.20) J2 is the second invariant of the deviatoric stress tensor s  and ( )K α  is the 

adopted isotropic hardening law. In our study only an isotropic hardening model is 

considered. For details on isotropic, kinematic or even mixed hardening laws, we refer to 

Proença (2010), Souza Neto, Perić and Owen (2008) and Simo and Hughes (1998). 

The adopted isotropic hardening law is based on the one presented in Simo and 

Hughes (1998), being defined as 

( )( )( ) : 1
Y Y

K k e αωα σ α σ σ −
∞= + + − − , (2.21) 

in which α  is a parameter associated with the local hardening ‘level’ at a given material point, 

whereas k  and ω  are the material parameters respectively associated with the linear and 

exponential components of the hardening law. The yield and ‘infinity’ stress values, 
Y
σ  and 



 32 

σ∞ , are material parameters. It is important to notice that the hardening law presented in 

(2.21) reduces to the classical bi-linear hardening law if σ∞  is equal to 
Y
σ . 

Relation (2.20) is written in such a way that admissible stress states result in non-

positive values for the yield criterion, which is mathematically equivalent to the expression 

( , ) 0f α ≤σ .  (2.22) 

It is important to notice that the inequality (2.22) defines a region in the stress space. 

The stress states for which the yield criterion is negative define an open set referred to here as 

elastic domain. Stress states positioned inside the elastic domain are associated with a linear 

elastic response, resulting in reversible strain increments and a linear stress strain relation, 

according to the constitutive relations in (2.16) and (2.17). 

On the other hand, a zero value for the yield criterion defines geometrically a surface 

in the stress space. Such surface represents the boundaries of the elastic domain. Stress states 

positioned over the surface are related to a plastic material response, and are defined here as 

the plastic domain. For stress states in the plastic domain, three different possible conditions 

can be observed. 

If the load increment is such that the stress state at a given point of the solid tends to 

advance in the elastic domain, one observes the behavior predicted by the linear elastic model, 

with no plastic strain increments, according to the linear elastic constitutive relation. In this 

case, one observes the so-called elastic unloading. 

On the other hand, if the stress state tends to advance beyond the admissible space, 

defined by the yield criterion, one observes a plastic response. Since positive values for f are 

not admissible, the plastic surface changes its configuration, according to the defined 

hardening law, finding an equilibrium configuration different from the one that would be 

predicted by means of the linear elastic model. Irreversible plastic strains are observed, and 

the stress tensor increment is computed according to an elastoplastic constitutive relation. In 

this case, one observes the so-called plastic loading. 

The third possible situation is related to the less trivial case for which the observed 

stress and strain increments lead to a state that lies exactly on the same previous plastic 

domain surface. This case is also referred to as neutral loading. 

Taking all these aspects into account, it becomes clear that the elastoplastic model also 

demands a criterion for the evolution of the plastic strain. For instance, for the adopted von 

Mises stress based yield criterion, the plastic strain increment is associated with the deviatoric 

stress tensor, and is defined as 
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p
λ λ= =� ��
s

N
s

ε .  (2.23) 

In equation (2.23) λ�  is a scalar value defining the magnitude of the plastic strain rate 

at a given point of the solid domain. The reasons for adopting N  in (2.23) are based on 

further mathematical issues which are not discussed in the present text, giving rise to a so-

called associative plasticity model. For the ones interested in the justifications on this theme, 

we reference Simo and Hughes (1998). 

Taking into account that the plastic strain is not reversible, the λ�  scalar must always 

yield non negative values. On the other hand, it presents a zero value if no plastic strain rate is 

observed. So, the following condition is always observed in the elastoplastic model: 

0λ ≥� .  (2.24) 

The phenomenological behavior already discussed and defined by means of the 

conditions stated in (2.22) and (2.24) can be encompassed in the so-called plasticity 

complementarity condition, stated as  

0fλ=� .  (2.25) 

Altogether, the conditions stated in (2.22), (2.24) and (2.25) define the so-called 

Karush-Kuhn-Tucker conditions, which arise from the nonlinear programming, see 

Luenberger (2005). Such conditions appear also in the definition of the contact problem, to be 

discussed later in the present text. 

A fourth condition can be defined by considering the variation rate of the yield 

criterion if one takes into account the expected elastoplastic model behavior. Such a 

condition, referred to as consistency condition, is defined as 

0fλ=� � .  (2.26) 

In order to completely define the mathematical formulation describing the elastoplastic 

constitutive model, one must also define a rule for the evolution of the hardening parameters 

appearing in the hardening law. For models considering both isotropic and kinematic 

hardening, the involved parameters can be arranged as vector components. 

For the particular case in which only isotropic hardening is considered, as hereby 

assumed, by relation (2.21) the hardening involves only the α  parameter. The current value of 

this parameter depends on the stress strain history of a given point of the solid, and defines the 

elastic and plastic domains already mentioned earlier. For the specific case of the adopted 
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model (a ‘strain hardening’ approach), the evolution law is described by means of the 

following relation: 

2

3
α λ= �� .  (2.27) 

Regarding the formulation for computing λ� , it is derived from the consistency 

condition, according to which f�  is void for nonzero values of λ� , which is expressed by the 

equation 

( , )
0

f f f
f f f

t t t α

α α
α

α

∂ ∂ ∂ ∂ ∂
= = + = + =

∂ ∂ ∂ ∂ ∂
� � �

σ

σ σ
σ

σ
. (2.28) 

In (2.28) f
σ

 and f
α

 represent the derivatives of the yield criterion with respect to the 

stress tensor and the isotropic hardening parameter, respectively. By substituting relation 

(2.19) in its time rate ‘version’ and (2.27) in equation (2.28), one obtains 

( ) 2 ( )
: : 0

3
p dK

f f f f f
dα

α
α λ

α

  = − + = + =   
� �� � ��

σ σ σ
ε ε ε− NC C C . (2.29) 

Considering that in the adopted model f
σ
=N , and using the hardening law stated in 

(2.21), the above condition results in  

( )2
3

:

:
Y

k e αω
λ

ω σ σ −
∞

=
 + + −  

�� εN

N N

C

C
. (2.30) 

Finally, it is possible to observe that when λ�  is not equal to zero, i.e., when plastic 

behavior occurs, the general form of the constitutive tensor can be computed by means of the 

relation 

( )2
3

: :

:

ep

Y
k e αωω σ σ −

∞

⊗
= −

 + + −  

N N

N N

C C
C C

C
. (2.31) 

The relation (2.31) is the general form of the fourth-order elastoplastic constitutive 

tensor, also referred to as tangent constitutive tensor. It represents the exact tangent stiffness 

at a given point of the solid, considering the current stress strain rates and the accumulated 

local plastic strain. 

The numerical strategy for solving the elastoplastic problem is presented in Chapter 3. 

Accordingly, the nonlinear constitutive model is considered in an incremental form and 

convergence difficulties can emerge if one adopts directly the tangent constitutive tensor 

presented in (2.31). 
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The consistent computation of the constitutive tensor, to be used in the incremental 

constitutive model, gives rise to the so-called algorithmic tangent constitutive tensor. Such 

tangent constitutive tensor is presented in Chapter 3, both for the plane stress and the plane 

strain model. 

The presented elastoplastic formulation was derived for the three dimensional 

Euclidean space, considering the whole set of stress and strain components. Departing from 

this formulation the particular issues related to the plane stress and plane strain hypotheses 

can be derived. 

Similarly to what happens for the linear elastic model, the plane strain and plane stress 

model relies on the hypotheses that the shear stress and strain components related to the third 

dimension ( , , andxz yz xz yzτ τ ε ε ) are equal to zero. In addition to it, for the plane strain model 

the normal strain component zε  is neglected, being set to zero, whereas for the plane stress, 

such assumption is made for the normal stress component zσ . 

In spite of this similarity, the consequences in the elastoplastic model are not trivial in 

either cases, as it happens for the linear elastic model. Specifically for the plane strain model, 

the resulting model may be derived in a quite simple straightforward manner, by considering 

the hypotheses commented in the last paragraph. 

For the plane stress model, the adopted hypotheses result in major changes in the 

formulation. In fact, the straightforward application of the formulation to plane stress results 

in elastic and plastic strain components for which the zero normal stress component 

hypotheses of the plane stress model is not guaranteed. 

Regarding the plane stress formulation for the elastoplastic problem, Souza Neto, 

Perić and Owen (2008) present several techniques for solving the elastoplastic problem 

consistently accounting for its hypotheses. In the present work, the adopted approach to treat 

the plane stress problems is based on Simo and Hughes (1998). 

Accordingly, the mathematical strategy proposed is based on the definition of 

constrained stress spaces both for the stress field σ  and its deviatoric part s, for which one 

considers the zero components hypothesis of the plane stress model. Departing from those 

constrained spaces, one defines a mapping P  relating the constrained σ  and s fields. A 

mapping P  relating the constrained deviatoric stress and strain fields is also defined. Making 

use of such mappings, the general formulation presented is then particularized for the plane 

stress model. 
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The numerical formulation and the algorithms for solving plane stress and plane strain 

rate independent elastoplastic problems, considering a von Mises isotropic hardening model, 

are presented in Chapter 3. 

2.2. The Initial Boundary Value Problem - nonlinear kinematics 

The fundamental hypothesis assumed for the derivations presented in the previous 

section refers to the small magnitude of the values observed for the deformation fields. 

Although many practical applications can be modeled according to this restriction, many 

others are related to deformations for which the strains cannot be considered infinitesimal 

anymore. For these applications, a finite displacement formulation is necessary. 

Differently from the linear kinematic description, for the finite displacement model, 

the changes in the solid configuration cannot be neglected for accounting the equilibrium. By 

adopting a Lagrangian description framework, the material particles are referenced by their 

position at the initial configuration. 

Aiming to describe these changes, one defines an infinitesimal vector dX  

representing the distance between two neighboring points of the continuum at initial time. At 

time t , the distance between these points may have changed, resulting in a different vector 

( ),tdx X . The relation between these vectors can be defined by means of a second order 

tensor F , resulting that 

( , ) ( , )t t=dx X F X dX .  (2.32) 

The tensor F  represents a mapping between the reference and the current deformed 

configuration. It is a key entity in the finite displacement model, being referred to as the 

deformation gradient. Another expression for the deformation gradient is given by 

( ),t∂ ∂ ∂
= = + = +∇

∂ ∂ ∂

x X X u
F I u

X X X
, (2.33) 

in which I  is the second-order identity tensor and ∇u  is the displacement gradient. 

It is important to notice that for this definition no assumption is made in the magnitude 

of the displacement values. This does not mean at all that no restrictions must be stated on the 

displacement fields. For instance, in order to achieve a consistent mapping, the relation stated 

in (2.32) must be inversible, i.e, there must be a tensor 1−F  such that 

1−=dX F dx .  (2.34) 
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For the reference system adopted (Figure 2.1), the deformation gradient is represented 

by the matrix computed as 

1 0 0

0 1 0

0 0 1

x x x u u u

X Y Z X Y Z
y y y v v v

X Y Z X Y Z
z z z w w w

X Y Z X Y Z

   ∂ ∂ ∂ ∂ ∂ ∂   
    ∂ ∂ ∂ ∂ ∂ ∂    ∂ ∂ ∂ ∂ ∂ ∂    = = +    ∂ ∂ ∂ ∂ ∂ ∂    
    ∂ ∂ ∂ ∂ ∂ ∂    
   ∂ ∂ ∂ ∂ ∂ ∂   

F . (2.35) 

The mathematical condition for the existence and uniqueness of the F  mapping is that 

the determinant of the matrix presented in (2.35) is nonzero. Such determinant is an important 

entity, being referred to as the Jacobian matrix determinant, and represented as J . In fact, J  

can be used for relating the infinitesimal volume in the initial and current configuration at a 

given point, and must be positive in order to exclude the self penetrability of the material. In 

mathematical terms, this condition is expressed as 

0J > .  (2.36) 

Another important property of tensor F  is that it can be decomposed into two 

different components, as 

=F RU ,  (2.37) 

in which R  is a tensor related to the rigid body rotation component of the deformation 

gradient, and U  represents its stretch. Such fact indicates that F  can be used as a 

mathematical entity to measure the deformation. 

However, according to the polar decomposition presented in (2.37), a rigid body 

rotation would result in changes in the value of F  even if no stretch is observed in the given 

point. Moreover, it is clear from relation (2.35) that F  is nonsymmetric, in general. These are 

clearly unfavorable properties for a strain tensor. 

On the other hand, an important property of the rotation tensor R  is that it is 

orthogonal, which means that T =R R I , which can be explored in order to defined a second 

order tensor C  such that 

T T T T= = =C F F U R RU U U .  (2.38) 

The tensor C  is referred to as the right Cauchy-Green tensor. From (2.38) it is 

possible to conclude that it encompasses only terms related to the stretch, such that it can be 

efficiently employed to evaluate the strain at a given point. Despite this fact, if no deformation 

is observed, it is reduced to the second order identity tensor, which, likewise for the 

deformation gradient, results in a nonzero value for no strain. 
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An effective tensor for the finite deformation is the Green strain tensor, which can be 

computed by means of the relation 

( ) ( )1 1
2 2

T= − = −E C I F F I .  (2.39) 

In terms of the displacement field, the Green strain tensor is computed by means of the 

relation 

( ) ( )1 1
2 2

T
T T   = ∇ + ∇ + − = ∇ +∇ +∇ ∇      

E u I u I I u u u u . (2.40) 

Equivalent tensors can be also derived for an Eulerian description framework, in 

which the points are referenced by its position at the current configuration. For this 

description framework, one attains the so-called left Cauchy strain tensor and the Almansi 

strain tensor. The rate of the variation of such entities can also be computed for both 

Lagrangian and Eulerian frameworks by performing time derivatives of such tensors. These 

derivations are found in several Continuum Mechanics text books, as Spencer (2004) and 

Bonet and Wood (2008), being fundamental in order to provide mathematical tools for the 

definition of the equilibrium for the finite displacement problem. 

Likewise for the small displacement model, for the finite motion problem, the 

equilibrium is defined in terms of the force per unit area at the current configuration, resulting 

in the Cauchy stress tensor (see equation (2.12)). Obviously, differently from the infinitesimal 

motion problem, the current configuration cannot be considered essentially similar to the 

initial one. In this context, the objectivity of the Cauchy stress tensor turns fundamental, a fact 

that is demonstrated in Bonet and Wood (2008). In spite of this, the same reference also 

shows that its rate of change within a Lagrangian description does not result in an objective 

tensor. 

At this point, the difference between the complexity found for the infinitesimal and the 

finite deformation problem formulations turns remarkable. The referred complexity relies not 

only in the derivations, but also in other important aspects like the objectivity of the resulting 

tensors, for instance. 

Once a detailed description of the several steps for deriving such formulation is out of 

the objectives of the present text, in what follows, a brief comment on the principal issues 

regarding such theme are presented, focusing the important relations to be used in the 

numerical implementation aspects. 
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One also finds in Bonet and Wood (2008) a complete description of the equilibrium 

condition for the finite motion formulation, resulting, in particular, in the definition of the 

Piola-Kirchhoff stress tensors. 

The first Piola-Kirchhoff stress tensor P  is an unsymmetrical tensor which physically 

allows one to describe the local equilibrium with the force stated in the current configuration, 

and its area of application defined in the initial configuration. Therefore, P  provides a 

Lagrangian description of the equilibrium. 

The first Piola-Kirchhoff tensor relates to the Cauchy stress tensor by 

TJ −=P Fσ .  (2.41) 

The second Piola-Kirchhoff stress tensor S  can be derived by performing a complete 

pull back operation in the Cauchy stress tensor such that it results in  

1 TJ − −=S F Fσ .  (2.42) 

The second Piola-Kirchhoff stress tensor cannot be related to a physical meaning like 

the Cauchy and the first Piola-Kirchhoff stress tensors. However, according to Bonet and 

Wood (2008), ‘… the second Piola-Kirchhoff tensor is intrinsically independent of a possible 

rigid body motion’. 

On the other hand it can be shown that the first Piola-Kirchhoff stress tensor P  is 

work conjugate to the rate of the deformation gradient �F , while the second Piola-Kirchhff 

stress tensor S  is work conjugate with the rate of the Green strain tensor �E . In the present 

work, E  and S  are the conjugate pair of tensors adopted for modeling the finite 

displacement problem. 

It is important to reinforce the fact that due to the nonlinearity of the kinematics 

involved in the formulation, essentially different from the infinitesimal strain model, the 

constitutive relation between the stress and strain tensors must be stated in terms of their rates. 

The formulation hereby adopted considers only materials for which the mechanical 

process can be described by considering the initial and current configuration, regardless of the 

intermediary configuration, given rise to the term ‘path independent’ constitutive relation. 

According to Bonet and Wood (2008), materials for which this behavior is observed can be 

termed as hyperelastic materials. 

The definition of a general hyperlastic material model relies on the definition of a 

function Ψ  representing the stored internal energy. In the total Lagrangian approach hereby 

adopted, the strain energy function is defined in terms of the Green strain tensor, therefore 
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expressed as ( )Ψ E , which must obey several mathematical requirements in order to result in 

a consistent model. 

According to this model, the conjugate stress tensor can be derived from the internal 

specific energy as 

∂Ψ
=

∂
S

E
.  (2.43) 

The resulting fourth order constitutive tensor is then derived as 

∂
=

∂
S

E
C .  (2.44) 

2.2.1. The Saint Venant-Kirchhoff material constitutive model 

The Saint Venant-Kirchhoff material model derives from the strain energy function 

defined as 

( ) [ ]21
: ( ) :

2
tr µΨ = Λ +E E E E ,  (2.45) 

in which ( )tr •  is the trace operator and Λ  and µ  are Lamé material constants to the isotropic 

elastic material, given by the relations 

( )( )

( )

,
1 1 2

.
2 1

υ υ

µ
υ

Λ=
+ −

=
+

E

E
  (2.46) 

By applying (2.43) to (2.45), one achieves the second Piola-Kirchhoff stress tensor 

given as 

( ) 2tr µ=Λ +S E I E .  (2.47) 

Finally applying (2.44) in (2.47), the constitutive model for the Saint Venant-

Kirchhoff material results as 

2µ=Λ ⊗ + II IC .  (2.48) 

In relation (2.48) I  is the forth order identity tensor. It is easy to verify that the 

resulting constitutive tensor for the Saint Venant-Kirchhoff material model is equivalent to 

the constitutive tensor of the kinematically linear elastic model. Moreover, the derivation of 

the particular relations for the plane stress and plane strain states is similar to the ones made 

for that model. 
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Although no restrictions on the magnitude of the displacement gradients are required 

in the definition of the Saint Venant-Kirchhoff material model, in practice, if large strains are 

observed, the nonlinear analysis procedure may fail, as the condition stated in (2.36) does not 

hold anymore. 

2.2.2. The Neo-Hookean material constitutive model 

The Neo-Hookean material model derives from the strain energy function defined as 

( ) ( ) ( )21
: 3 1 ln

2 4 2
tr J Jµ µ

 Λ Λ  Ψ = − + − − +    
C . (2.49) 

It is easy to verify that the strain energy value determined from the function presented 

in (2.49) tends to infinity if the Jacobian matrix determinant tends to zero or to infinity, 

physically meaning that an infinity amount of energy is necessary to reduce the volume of a 

given point to zero or to infinity. 

By applying condition (2.43) to (2.49), one achieves the relation defining the second 

Piola-Kirchhoff stress tensor consistent with the Neo-Hookean material behavior as 

( ) ( )2 1 11
2

J µ− −Λ
= − + −S C I C   (2.50) 

Finally applying (2.44) to (2.50), the constitutive model for the Neo-Hookean material 

results in 

( ) 1

2 1 1 22 1µ −
− −  = Λ ⊗ + −Λ −  J J

C
C C IIIIC . (2.51) 

In (2.51) 1−
C
IIII  is a forth order identity tensor, which is presented in Wriggers (2006) as 

( )1

1 1 1 11

2ABCD AC BD AD BC−
− − − −= +

C
C C C CIIII .  (2.52) 

It is worth to observe that for null deformation, the constitutive tensor C  from relation 

(2.51) coincides exactly to the tensor predicted by relation (2.48). 

2.3. The weak form of the IBVP 

Aiming to develop a numerical approach for the Initial Boundary Value Problem 

(IBVP), the derivation of its weak form is necessary. In order to do so, it is worth to 

mathematically define the involved vector spaces. The definitions hereby presented are based 

on Laursen (2002). 
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The solution of the IBVP is given by the vector field tu  representing the displacement 

at any time t ∈ IIII , and belonging to a space tU  defined as 

{ }2 1: ( ), ( , ) fort t t t ut= Ω→ ∈ Ω = ∈ Γ�u u u uH X XU . (2.53) 

The space of weighting functions V  is defined as 

{ }2 1: ( ), 0 for u= Ω→ ∈ Ω = ∈ Γ�w w wH XV . (2.54) 

In both (2.53) and (2.54), 1( )ΩH  is the Sobolev space, representing the space 

containing all vectorial functions defined in the solid domain Ω , such that its values and first 

derivatives are square integrable. 

In the present study, the Principle of Virtual Work (PVW) is adopted as the weak 

form. Then, the Galerkin approach is assumed to define the weighting functions w , 

representing a field of virtual displacements δu . The virtual displacement field δu is fully in 

accordance with the definition stated in (2.54). The choice for the PVW as a weak form is due 

to the fact that such methodology allows one to naturally consider any constitutive relation, 

even nonlinear, as the elastoplastic model previously presented. 

Taking into account the Dirichlet boundary conditions of the virtual displacement 

fields and the enforcement of the Neumann boundary conditions, according to the PVW, the 

general weak form of the IBVP can be expressed as 

[ ]: d d d

σ

ρ

Ω Ω Γ

+ Ω= Ω+ Γ∫ ∫ ∫�� tu u f u uσ δε δ δ δ . (2.55) 

An alternative presentation of equation (2.55) is given by 

internal external dynamical

internal

external

dynamical

0,

: ,

,

.

σ

δ δ δ

δ

δ

δ ρ

Ω

Ω Γ

Ω

+ + =

= Ω

=− Ω− Γ

= Ω

∫

∫ ∫

∫ ��

W W W

W d

W d d

W d

tf u u

u u

σ δε

δ δ

δ

  (2.56) 

Equation (2.56) obviously states exactly the same variational principle presented in 

equation (2.55), except for the fact that it presents the internal, external and dynamical work 

terms separately. Even though it might seem useless for the moment, such notation proves to 

be useful in the multiple bodies contact problem, in which a virtual work counterpart due to 

contact arises in the resulting variational equation. 
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For the case of the nonlinear kinematics, the internal virtual work, defined in terms of 

the Green strain tensor and its conjugate second Piola-Kirchhoff stress tensor (Lagrangian 

description framework), results in 

internal :δ δ
Ω

= Ω∫W dS E .  (2.57) 

2.4. Contact problem definition 

In all the previously discussed models, conditions (2.9) and (2.10) are used to define 

the boundary conditions by explicitly enforcing displacement and traction values over the 

whole boundary, for all t ∈ IIII . Therefore, this approach assumes the exact knowledge of the 

boundary conditions for the whole mechanical process. However, in the contact problems, the 

conditions in some parts of the boundaries are not known beforehand and depend on the 

structural behavior of the solids encompassed in the mechanical problem. In this case, 

regardless of the adopted kinematic and constitutive model, the IBVP automatically becomes 

nonlinear. 

The contact physical phenomenon is characterized by the interaction between different 

parts of the solids, which, during the mechanical process, may tend to occupy the same 

position in the space at the same time. Since this is not physically admissible, interaction 

forces between the solid’s parts arise and the solids must deform so that no penetration is 

observed. 

In general, the interaction is considered between different solids, however this is not a 

necessary condition, since the contact can also occurs between different parts of the same 

solid, giving rise to the so-called auto-contact. In spite of this fact, the framework for defining 

the contact problem can consider the contact between two different solids without loss of 

generality. The general scheme is depicted in Figure 2.2. 

Similarly to the previously defined single solid problem, parts of the solid’s boundary 

are associated to Dirichlet and Neumann boundary conditions, which, as already discussed, 

are known beforehand. The only difference from the previous case is that such portions are 

defined for each solid separately. 
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Figure 2.2. General contact scheme between solids idealized in a two dimensional Euclidian space. 

On the other hand, a part of the solid’s boundary can contact another one during the 

mechanical process, in a region here referred to as cΓ . Conceptually, this portion contains the 

potential contacting points of the boundary. When such boundary portion is considered, the 

conditions stated in (2.8) must be redefined. For a generic set of two solids, as the one 

presented in Figure 2.2, the boundary conditions are defined as 
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  (2.58) 

Obviously, the generalization to include any number of solids can be naturally 

provided by the extension of the above conditions. 

Differently from the Dirichlet and Neumann boundary conditions, which are explicitly 

defined for each time instant, the contact conditions are defined by a set of rules to be 

observed along the mechanical process. In what follows, these rules are mathematically 

defined considering the expected model’s physical behavior. 

As already discussed, the fundamental aspect regarding contact arises from the 

obvious fact that two different solid portions cannot occupy the same position in space at the 

same time. So, aiming the mathematical definition of the contact problem, an impenetrability 

condition must be defined. 

In order to do so, a pair of contacting points must be identified. Let A
X  be a point 

belonging to A
cΓ . One considers that its contact pair is the point B

X  such that 

{ }( , ) : min ( , ) ( , ) ,= ∈Γ − ∈B A B B A B
ct t t tX X X x X x X IIII . (2.59) 

The contact pair is represented in the scheme depicted in Figure 2.3. 
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Figure 2.3. Contact pair scheme for defining the gap function. 

The definition stated in (2.59) is based on the uniqueness of a minimum value for the 

distance between the points belonging to the contacting surfaces. This assumption cannot be 

assured for all situations, since it depends on the solids topology, as discussed in Laursen 

(2002). However, this issue can be easily circumvented in the numerical approach by defining 

a strategy for dealing with situations in which such uniqueness does not hold. A detailed 

discussion on the approach hereby adopted is presented in Wriggers (2006). 

Once the contact pair has been identified, one defines the gap function ( )g A
X  as 

( ):g = − iA B
x x n .  (2.60) 

The gap function results in a signed scalar value. Negative values indicate that one 

solid penetrates over the other, which, of course, is not feasible, as depicted in Figure 2.3. 

It is worth noticing that the case of contact between a deformable solid and a rigid 

obstacle may be viewed simply as a particular case for which no displacement is observed in 

the second solid, since it is the rigid obstacle. 

The impenetrability condition can be defined by means of the gap function as 

0g ≥ .  (2.61) 

Considering the feasible values of the impenetrability condition, two distinct situations 

can be identified. When the gap function presents a positive value, no contact is observed 

between the pair of points. Accordingly, the interaction forces of both points are zero. 

On the other hand, when the gap function is zero, the pair of points is in contact. 

Interaction forces arise in order to prevent interpenetration. However, the traction values 

depend on several characteristics of the whole structural set, such that they can only be 

achieved during the nonlinear solution process. 

Regarding the interaction forces, obviously they are submitted to the behavior 

predicted by Newton’s third law. Hence, by making use of the Cauchy traction definition, one 

obtains that 
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( ) ( ) ( ) ( )A A A B B B= =− =t X n X t X n Xσ σ , (2.62) 

in which n is the outward unit normal at the contact pair of the boundary. 

At this point, an important assumption is made in order to simplify the contact model. 

It regards the friction between the contacting surfaces. Even though it might be a strong 

hypothesis, in the present work the frictional effects are neglected, such that the traction is 

normal to the contact interface. In this situation, a single scalar parameter tN representing the 

contact pressure is defined as 

: A A B B
Nt = =t n t n .  (2.63) 

The pressure 
N
t  defined in (2.63) presents positive values if tensile tractions occur, 

while negative values are associated to compressive tractions. 

Excluding the occurrence of adhesion between the contacting surfaces, it is possible to 

define the following condition related to the traction observed between the contacting points: 

0Nt ≤ .  (2.64) 

Finally, taking into account the simultaneous values observed for the gap function and 

the contact pressure, a complementarity condition can be stated as 

0g =Nt .  (2.65) 

As it happens for the elastoplastic problem, the conditions stated in (2.61), (2.64) and 

(2.65) are equivalent to the Karush-Kuhn-Tucker conditions, which are used for enforcing 

constraints in the nonlinear programming approach. 

Due to this similarity, the techniques derived for the solution of constrained nonlinear 

optimization problems can be explored for enforcing the contact conditions in the IBVP, and 

also for solving them efficiently. Regarding the constrained nonlinear programming approach, 

a detailed discussion of the subject is presented by Laursen (2002). In the same reference, one 

also finds a discussion on the contact problem treated as variational inequalities, reinforcing 

the consequences of the non-smooth nature aspect of such class of problems in the 

convergence. 

In the hereby presented work we skip from this nonlinear programming approach 

discussion, moving directly to the definition of the contact IBVP weak form, based on the 

Principle of Virtual Work. In particular, the contact constraints are enforced by means of two 

commonly used nonlinear programming techniques: the Lagrange Multipliers and the penalty 

method. 
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2.5. Weak form of the contact problem 

For defining the weak form of the contact IBVP, the schematic two bodies problem 

depicted in Figure 2.2 is considered. The generalization for any number of solids in the 

structural set follows forward from this schematic situation. For any of these cases, a virtual 

work counterpart associated to the contact forces arise, such that the Principle of Virtual 

Work, for the multiple body contact problem, is restated in a general sense as 

internal dynamical external contact 0δ δ δ δ+ + + =W W W W . (2.66) 

The main objective of the current section is to present such contact virtual work term. 

Regarding the vector spaces defined in (2.53) and (2.54), it is clear that similar spaces 

must be defined for both solids. Moreover, such spaces can be used to define single spaces for 

the solutions and weighting functions for the whole structural set, encompassing all solids. By 

employing such approach, the internal, external and dynamical virtual work counterparts, for 

the schematic two body problem, are stated, respectively, as  

internal

dynamical

external

: : ,

,

.
σ σ

δ

δ ρ ρ

δ

Ω Ω

Ω Ω

Ω Γ Ω Γ

= Ω+ Ω

= Ω+ Ω

=− Ω− Γ− Ω− Γ

∫ ∫

∫ ∫

∫ ∫ ∫ ∫

�� ��

A B
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A A B B

W d d

W d d

W d d d dt t

u u u u

f u u f u u

σ δε σ δε

δ δ

δ δ δ δ

 (2.67) 

Obviously, the internal virtual work can be redefined in accordance with (2.57) for the 

finite displacement case. Also, as already mentioned, one observes that the statement for any 

number of solids is a straightforward adaptation, such that no loss of generality results from 

employing the specific case of the schematic two bodies contact problem. 

The contact virtual work is associated to the virtual displacements in the cΓ  part of the 

solid boundary, and results nonzero when the contact pressures arise for avoiding the solids 

interpenetration. In spite of the fact that such work seems similar to the external virtual work 

counterpart associated to the Neumann boundary conditions, it is worth noticing that it is 

considerably more difficult to be stated, since the contact forces are not known a priori, and 

their characteristics depend on the whole structural set behavior. 

Taking this fact into account, the contact tractions must be defined as unknowns, given 

rise to a mixed field contact IBVP, for which both displacement and contact pressure 

constitute fields to be found by solving the contact problem. By employing this strategy, a 

Lagrange multipliers constraint enforcement arises, such that the Lagrange multipliers field 
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N
λ  is associated to the contact pressure, and is used to enforce the gap condition stated in 

(2.61). Within this scheme, the contact virtual work results as 

contact

c

N N
W g g dδ λ δ δλ

Γ

 = + Γ  ∫ .  (2.68) 

One observes that the gap function in (2.60) comes from the displacement fields of 

both contacting surfaces, for which the contact pressure is equal, due to the reasons already 

discussed in the previous section. Due to this fact, the weak enforcement of the contact 

conditions is performed by integrating (2.68) in one of the contact surfaces. In the numerical 

approach, this surface is associated to a mesh of contact elements, to be derived in Chapter 3. 

The mixed displacement and contact pressure fields approach present some 

advantages. One of them is related to the fact that the Lagrange multipliers field allow one to 

directly achieve the value of the contact pressure along 
c

Γ . It is important to remember that 

the definition of the contact problem is conditioned to the value of the contact pressure, 

according to (2.64), such that the knowledge of its value is fundamental in the contact 

problem solution context. 

In spite of this fact, such mixed approach also presents disadvantages. The first of 

them is the obvious fact that the number of unknowns is greater than the ones in the 

displacement based equations. Also, its computational implementation is considerably more 

difficult to conceive. 

However, probably the most remarkable disadvantage of the Lagrange multipliers 

based formulation is related to the stability of the resulting numerical scheme. For the mixed 

field equation, the constrained weak form stability is conditioned to the fulfillment of the 

Babuška-Brezzi condition, as discussed in Wriggers (2006). 

In fact, other techniques coming from the constrained nonlinear programming can be 

used for developing an alternative to the mixed field formulation derived using Lagrange 

multipliers. For instance, a penalty based scheme can also be used to represent the contact 

virtual work. 

According to this approach, the contact virtual works results in 

contact * * *
,  if 0

, :
0,  if 0

c

N

g g
W g g d g

g
δ ε δ

Γ

 ≤= Γ =  >
∫ . (2.69) 
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In (2.69) 
N
ε  is an adopted scalar value, referred to as penalty parameter. The physical 

meaning of such term is attached to the stiffness of an idealized spring that enforces the gap 

value, according to the impenetrability condition stated in (2.61). 

It is important to notice that for the penalty based approach the enforcement is 

approximated, i.e., the accuracy of the enforcement depends on the idealized spring stiffness. 

In this context, small negative gap values can be observed in such approximated numerical 

approach. Therefore, the definition of the modified gap *g  does not constitute a violation of 

the theory (condition of impenetrability). In fact, this definition is made aiming to take into 

account such numerical issue. 

Advancing in this idealization, the term *

N
gε  can be understood as a ‘simulation’ of 

the contact force. In this case, the modified gap function *g , defined in (2.69), completely 

fulfill the other frictionless contact problem conditions stated in (2.64) and (2.65). 

Even though such approach does not result in a mixed field problem, and that no 

additional degrees of freedom are added to the problem, the penalty formulation also present 

its disadvantages. Perhaps the most obvious is that the contact pressure values are not 

available directly, as it happens for the Lagrange multipliers formulation. As already 

discussed, such pressure value may constitute an important information in the contact 

problem solution scheme. 

Probably one of the most unfavorable issues regarding the penalty formulation is the 

necessity of defining an arbitrary value for the penalty parameter 
N
ε . Moreover, in theory, an 

exact enforcement is achieved only when the penalty parameter tends to infinity. However, 

adopting exceedingly high values for 
N
ε  can yield to ill conditioning of the resulting system 

of equation. On the other hand, if it is not sufficiently high, the enforcement is not accurately 

observed. 

Regardless of the employed method, it is known from the nonlinear programming that 

every technique for enforcing constrains presents advantages and disadvantages. The same is 

true for the contact problems. In fact, depending on the problem’s characteristics, one 

formulation may be more efficient and robust than the other one. Taking this fact into 

account, the availability of more than one technique in the same framework proves to be the 

best strategy for efficiently dealing with such class of problems. 

Such as the internal virtual work, the contact virtual work can be nonlinear depending 

on the hypotheses adopted for the model. The numerical solution of the resulting nonlinear 
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problem in the present work relies on the linearization of the nonlinear terms by means of the 

Newton-Raphson’s procedure. Such theme is discussed in the next chapter. 
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3 - The numerical approach 

The present chapter is devoted to detailing the numerical treatment of both linear and 

nonlinear problems of Solid Mechanics in accordance with the theory presented in Chapter 2. 

In section 3.1, the Finite Element Method essentials are briefly introduced. Even 

though the method is not addressed directly in the present work, its issues constitute the basis 

for defining the Generalized Finite Element Method. In Section 3.2, the GFEM formulation is 

presented, highlighting the enrichment feature as its main characteristic. In the same section, 

the enrichment functions used in the present work are also presented. 

In section 3.3, the use of both methods for solving dynamical problems is described. 

The time integration scheme adopted is based on the Newmark Method. Even though only 

linear behavior is considered at this point, one notices that the numerical framework can be 

extended with no major changes to nonlinear problems. 

The general nonlinear problem solution based in the incremental iterative Newton-

Raphson’s method is then introduced. Following a general discussion, the application of the 

method to specific nonlinear problems, such as the small strain elastoplastic and the finite 

strain elastic problem, is then presented in the subsequent sections. 

Next, the constrained nonlinear problem arising from the contact phenomena is 

presented. The solution of such problems by the FEM/GFEM approaches in described, with 

emphasis on the formulation of ‘generalized’ contact elements, formulated to correctly 

enforce the contact constraints in the GFEM model. The generalized segment-to-segment 

contact element, based on the mortar method, probably constitutes one of the main 

contributions of the present work. 

At last, a general nonlinear solution algorithm, putting together all the previously 

discussed nonlinear issues, is presented. Such algorithmic structure constitutes the main core 

of the implemented nonlinear analysis framework. 

3.1. The Finite Element Method (FEM) 

The traditional approach for solving the IBVP is based on finding analytical 

expressions representing the field functions that constitute the solution of its strong form. The 

displacement based Finite Element Method is a numerical technique used to find 
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approximated solutions for problems formulated in a weak form. Basically, the method is 

conceived to provide a strategy for finding the value of the unknown fields in specific points 

of the continuum, called nodes. 

The process of representing the continuum by means of a finite number of nodes and 

elements is referred to as discretization. This strategy is schematically represented in Figure 

3.1. 

continuum discretized model

discretization

node element

Two-dimensional FE idealized modelIdealized continuum discretization

 
Figure 3.1. The continuum discretization in the FEM scheme (2D and 3D models). 

Variables called degrees of freedom (DOF) are attached to the nodes, constituting the 

unknowns of the FEM model. A commonly employed formulation is based on displacement 

fields. 

The regions of the continuum among nodes define finite elements, to which one 

attaches interpolation functions, also referred to as shape functions. These functions are used 

to interpolate the field value in the element’s domain, by performing a linear combination of 

the shape functions and the respective nodal DOF. 

In the present work, the element’s initial configuration geometry, which is in general 

distorted, is described using the same strategy. In this case, the interpolation functions are 

defined using an auxiliary domain called natural coordinate reference domain. Figure 3.2 

illustrates a one-dimensional, a triangular and a quadrilateral domain in the natural coordinate 

system. 

ξ

η

(1,0)

(0,1)

(0,0) ξ

η

(-1,-1) (1,-1)

(-1,1) (1,1)

(0,0) ξ-1 10

(a) (b) (c)  
Figure 3.2. Triagular (a) and quadrilateral (b) domains in the natural coordinates system; one-

dimensional (c) domain in the coordinate system. 
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For the two-dimensional elements, the geometry and displacement interpolations are 

given by the expressions 

( ) ( )

( ) ( )
1 1

1 1

, ( , ), , ( , ),

, ( , ), , ( , ).

nd nd

nd nd

n n

i i i i
i i

n n

i i i i
i i

X X N Y YN

u u N v v N

ξ η ξ η ξ η ξ η

ξ η ξ η ξ η ξ η

= =

= =

= =

= =

∑ ∑

∑ ∑
 (3.1) 

In (3.1) 
nd

n  is the number of nodes in the element, 
i

X  and 
i

Y  are the coordinates of 

the nodes defining the element in the initial configuration, and 
i

u  and 
i

v  are the nodal 

displacement components in the current configuration. Equivalent relations are stated for one-

dimensional shape function, which can be applied, for instance, over the two-dimensional 

element’s boundary lines. 

As already discussed in Chapter 2, the weak form of the IBVP is based on the 

integration of field functions over the whole solid domain. In the FEM, this computation is 

performed in a piecewise approach, i.e., one integrates the functions restricted to the finite 

elements domain. The sum of all these piecewise integrations takes the value of the 

integration over the whole solid domain. 

Lagrangian and Serendipity shape functions were implemented in the computational 

code developed in the present work. The nomenclature, shape and number of nodes of each of 

these elements are presented in Figure 3.3. 

T3 T6 T10

Q4 Q8 Q12 Q9 Q16

L3L2 L4

 
Figure 3.3. Nomenclature, shape and number of nodes of the elements implemented in the present 

work. 

An important property of the set of shape functions 
i

N  is that for any pair ( , )ξ η  in 

the reference domain, the following condition must hold: 

( )
1

, 1
nd

n

i
i

N ξ η
=

=∑ .  (3.2) 
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Due to this fact, this set of interpolation functions is commonly referred to as Partition 

of Unity (PU). In spite of this, one must have in mind that a general PU definition requires 

additional conditions to be verified. For instance, another condition in the PU definition is that 

0 ( , ) 1
i

N ξ η≤ ≤ .  (3.3) 

Consistent with this definition, only the linear Lagrangian shape functions defined 

over the triangular domain, and the bi-linear shape function for the case of quadrilaterals, can 

be considered as partitions of unity, in a strict sense. Even though it is an abuse of 

nomenclature, in the present work, all the previously presented shape functions are referred to 

as PU in the computational implementation. 

Once the displacement field interpolation is defined, it can be used to compute an 

approximation for the strain field. According to the strain tensor definition stated in (2.6), one 

finds that 

x

u u u

X X X

ξ η
ε

ξ η

∂ ∂ ∂ ∂ ∂
= = +

∂ ∂ ∂ ∂ ∂
,  (3.4) 

y

v v v

Y Y Y

ξ η
ε

ξ η

∂ ∂ ∂ ∂ ∂
= = +

∂ ∂ ∂ ∂ ∂
,  (3.5) 

xy

u v u u v v

Y X Y Y X X

ξ η ξ η
γ

ξ η ξ η

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
. (3.6) 

In the FEM, the derivatives presented in relations (3.4) to (3.6) are performed over the 

interpolated values, resulting 

1 1 1 1

1 1 1 1

, , , ,

, , , .

nd nd nd nd

nd nd nd nd
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i i i i
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∑ ∑ ∑ ∑
 (3.7) 

The derivatives relating the global and the natural coordinates are involved in the 

infinitesimal length definitions 

,
X X Y Y

dX d d dY d dξ η ξ η
ξ η ξ η

∂ ∂ ∂ ∂
= + = +

∂ ∂ ∂ ∂
. (3.8) 

The relations stated in (3.8) can be arranged in matrix notation as 

X X
dX d d

dY Y Y d d

ξ ξξ η

η η

ξ η

 ∂ ∂            ∂ ∂      = =           ∂ ∂           
 ∂ ∂ 

J .  (3.9) 

In (3.9) J is the Jacobian matrix. The inverse relation is given by 
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d dX dX
X Y

d dY dY

X Y

ξ ξ
ξ

η η η

 ∂ ∂                 ∂ ∂= =           ∂ ∂            ∂ ∂ 

H .  (3.10) 

Assuming that J  is invertible, one has that 

1 1
, det( )

Y X

J
Y XJ

η η

ξ ξ

−

 ∂ ∂ − ∂ ∂ = = =
 ∂ ∂
− 
 ∂ ∂ 

H J J . (3.11) 

The Jacobian matrix determinant allows one to perform the integration over a plane 

domain in the natural coordinates by means of the relation 

( ) ( ), ,
X Y

W d W X Y dXdY W J d d

ξ η

ξ η ξ η

Ω

Ω = =∫ ∫∫ ∫∫ , (3.12) 

in which W  is a function defined in the two-dimensional domain. 

By grouping the nodal displacements 
i

u  and 
i

v  of a given element in a vector d , one 

can state the relation between the nodal displacements and the strain components by means of 

a matrix of partial derivatives operation B  defined such that 

� �
(3x2 ) (2 x1)nd nd

x

y
n n

xy

ε

ε

γ

     = =      

B dε .  (3.13) 

Following a Galerkin approach, the same relation is employed for the virtual 

displacements and strains 

=B dδε δ .  (3.14) 

Assuming a linear elastic model, for instance, the relations stated in (3.13) and (3.14) 

can be used together with the constitutive relations stated in (2.16) or (2.17) to compute the 

internal virtual work presented in (2.56). The internal virtual work is then given as  

internal : : :W d dδ

Ω Ω

= Ω = Ω∫ ∫σ δε δε εC . (3.15) 

Computing the above term considering a given plane element, the following relation 

results 

� � �
(1x2 ) (2 x1)

(2 x2 )nd nd
nd nd

T

ck

n nX Y n n

t dXdY =∫∫δ δ
l

d B B d d K dC , (3.16) 

in which 
ck
t  is the element thickness and 

l
K  is the element stiffness matrix. 
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The double integral for computing lK  can be evaluated numerically. In general, one 

employs a Gaussian quadrature over the natural coordinate space. Accordingly, the stiffness 

matrix computation is performed as 

( ) ( ) ( )
1

, , ,ξ η ξ η ξ η
=

=∑lK B B
gpn

T
i i i i i i i

i

J wC . (3.17) 

In (3.17) the coordinates ( ),i iξ η  are given by the quadrature rule for gpn integration 

points, and iw  are the weights also given by the same rule for these points. For the 

quadrilateral elements, the integration points and weights are easily obtained from the one-

dimensional Gauss-Legendre quadrature rule. For triangular elements, one can use tables 

specially computed for this kind of domain, as for instance, by Cowper (1972). 

Since each degree of freedom has a unique identification number within a global 

numbering system, it is possible to assemble all the element stiffness matrix in a global 

matrix, representing the stiffness of the whole structural set, hereby referred to as 
g

K . 

Similar computations are performed for the terms related to the external virtual work, 

resulting in a vector representing equivalent nodal forces 
g
F . No further details on theses 

computation are shown here, since they are extensively discussed and presented in the 

technical literature, as Hughes (2000), Zienkiewicz and Taylor (2000), Assan (2003) and 

Savassi (2000), among many others. 

Finally, from these indicated computations, one obtains the following linear system of 

equations 

� � �
(2 x2 ) (2 x 1) (2 x 1)

nd nd nd nd
n n n n

=
g g g

K d F .  (3.18) 

For static analyses, the system indicated in (3.18) demands the enforcement of the 

displacement boundary conditions. Otherwise, it results in a singular system of equation. The 

kinematic boundary conditions impositions can be performed using several techniques, like 

the Lagrange multiplier or the penalty method, for instance. 

The resulting 
g
d  represents the nodal displacement of the whole structure. Once this 

vector is known, one can compute the stress and strain fields using the relations previously 

presented. 
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3.2. The Generalized Finite Element Method (GFEM) 

According to Duarte, Babuška and Oden (2000), the Generalized Finite Element 

Method (GFEM) has been independently developed by Babuška and others, being referred 

also as Special Finite Element Method, and Duarte and Oden, under the denomination hp-

Clouds and Cloud-based hp Finite Element Method. According to Barros (2002), the first use 

of the denomination GFEM was made in Melenk (1995). 

The most fundamental aspect regarding those methods is the enrichment of the 

partitions of unity, aiming to improve the solution. In the GFEM, the PU is given by FEM 

shape functions defined over a mesh of finite elements. 

Specifically for the 2D models hereby presented, the shape functions adopted as PU 

are linear Lagragian functions defined over triangular domains and bi-linear Lagrangian shape 

functions defined over quadrilateral domain. These set of functions are in accordance with the 

conditions stated in (3.2) and (3.3). 

The GFEM enrichment is performed by multiplying the PU functions by conveniently 

adopted functions, referred to as enrichment functions. In theory, any type of function can be 

adopted to enrich the PU. However its convenience is judged according to the expected 

solution. 

The enrichment has a local character, being defined over selected nodes of the mesh 

and applied to all the PU functions associated to such nodes. The associated PU functions 

present nonzero values only at the elements surrounding the node, due to the well known 

compact support characteristic of the FEM. Therefore, the enrichment applied to a given node 

changes the interpolation only over the region defined by the elements sharing the node. This 

region is referred to in the GFEM as cloud. Figure 3.4 illustrates a cloud ω  and the node 

representing its vertex, here referred to as α . 

 
Figure 3.4. A cloud, its center, and its radius. 
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In Figure 3.4 one also finds the indication of an entity called cloud radius. This value 

is the radius of a circle circumscribing the cloud, and it is useful for defining enrichment 

functions, to be presented next. 

Regarding the GFEM shape functions, initially all enrichment functions to be 

multiplied by the PU are arranged in an array { }1 2
, ,...,

l
n

L L L=L . Therefore, the nodal shape 

functions result as 

enr

j j
N N L
α α

= .  (3.19) 

The nodal approximation for a certain displacement component associated to the node 

α  is then given by 

( )

1

l
n

enr enr

j j
j

u N u

α

α α α
=

= ∑ .  (3.20) 

It is important to notice that for the GFEM, the field component in a given node is the 

linear combination of generalized degrees of freedom (GDOF) enr

j
u
α

. In general, the 

component 
1

L  is adopted as the unity, such that if it is the single component of the enrichment 

array, the regular FEM interpolation functions are recovered. 

If one computes the global stiffness matrix 
g

K  following the elemental assemblage 

commented in the previous section, the element stiffness matrix 
l
K  presents a variable size 

from element to element, depending on the number of enrichment functions applied to its 

nodes. This fact is schematically represented in Figure 3.5. 

 
Figure 3.5. The GFEM local stiffness matrix size, depending on the number of enrichment 

functions applied to the element nodes. 

In Figure 3.5, the leftmost scheme represents a triangular constant strain element with 

two DOF per node, resulting in a (6x6) size local stiffness matrix. Such non-enrichment 

condition is graphically represented by the set of blue nodes. The associated stiffness matrix 

terms are schematically represented by blue squares. If the same element has both DOF at one 

of its nodes enriched, additional lines and columns arise in the local stiffness matrix (red 
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squares), resulting in a (8x8) matrix (middle scheme). If the whole set of original DOF are 

enriched by one additional enrichment function, 
l
K  results (12x12). 

In fact, any number of enrichment functions can be applied over each node, such that 

the element stiffness matrix can virtually present any size. Even though the enrichment 

represents a powerful feature of the method, dealing with the variable number of GDOF and 

different types of enrichment functions demands a considerably complex data structure to be 

considered in the computational code. An efficient approach to the GFEM coding is one of 

the main subjects discussed in Chapter 4. 

Still with respect to the enrichment functions, it is worth commenting that a commonly 

employed enrichment scheme is performed using Heaviside functions. This approach allows 

one, for instance, to insert crack discontinuities in the solid’s domain without demanding re-

meshing. In fact, this discontinuous enrichment, coupled to enrichment functions able to 

enhance the stress gradient close to crack tips, makes the GFEM an efficient method to model 

crack mechanics problems. Despite the fact that these enrichment functions are of great 

interest for many simulations, they are not used in the present work, since they have already 

been extensively studied in other research works. 

The major interest in the present research regards the polynomial enrichment. Its 

importance is clearly noticed if one considers the poor quality of the results generally 

obtained by means of the first degree interpolation used as PU in the GFEM. 

The general form of the polynomial enrichment function is 

( )
( , )

m n

m n

X Y
L m n

h
+

= ,  (3.21) 

in which h  is the cloud radius (see Figure 3.4). 

An alternative is the shifted enrichment function, defined as 

( ) ( )
( )( , )

m n

m n

X X Y Y
L m n

h

α α

+

− −
= ,  (3.22) 

in which X
α

 and Y
α

 are the coordinates of the node α  to which the enrichment is applied. 

Generally, these enrichment functions are applied at each of the original displacement 

components of a given node. It is also common to employ an enrichment scheme aiming to 

achieve a given order of polynomial enrichment, which we refer to as first degree enrichment, 

second degree enrichment and so on. Figure 3.6 illustrates these sets of enrichments and the 

nomenclature used to refer to them in the present work. 
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L(1,0) L(0,1)

1

L(2,0) L(1,1) L(0,2)

L(3,0) L(2,1) L(1,2) L(0,3)

1st degree enrichment

2nd degree enrichment

3rd degree enrichment

...  
Figure 3.6. Levels of enrichment resulting from the polynomial functions enrichment. 

One of the contributions of the present work is to assess the results achieved when 

polynomial and shifted enrichment functions are used for improving the linear interpolation 

PU ability for nonlinear problems. 

One of the most remarkable advantages of the shifted enrichment functions is that they 

are zero in the node to which they are applied. Hence, the meaning of the original 

displacement DOF in such node is preserved, like in the FEM. This fact allows one to directly 

enforce the boundary displacement restriction in the same manner as used in the FEM. 

Even though the nodal enforcement of displacement boundary conditions can be easily 

applied in these cases, this approach does not generate accurate results in most of the cases, 

where the element sides should also be restricted. The reason is that the enrichment changes 

the displacement field in the element sides between the nodes. In short, a nodal enforcement 

of the displacement boundary conditions does not guarantee its enforcement over the whole 

element’s side. This numerical aspect is evaluated in one of the examples of Chapter 5. 

Therefore, the correct enforcement of displacement boundary condition in the GFEM 

is a subject that introduces more complexity in the model. This enforcement is hereby 

performed either using Lagrange multipliers or the penalty method, integrating the condition 

over the element’s side. Programming this segment wise enforcement is not a trivial task and 

demands a complex data structure. 

It is important to comment that both polynomial and shifted enrichments can introduce 

linear dependencies in the resulting system of equation, which is an important additional 

difficulty to be circumvented. The usually employed solution method is based in the 

numerical strategy proposed by Babuška, which is detailed in Barros (2002). However, in the 

present work, this problem is automatically solved simply by using the sparse matrix routine 

from NumPy, to be introduced in the next Chapter, which naturally deals with this kind of 

numerical problem. 

Finally, a last type of enrichment is also considered in the present work. In fact, this 

option is employed only in the linear dynamic example presented in Chapter 5, and it is 

referred to as double sine enrichment, being defined as 
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. (3.23) 

In (3.23) 
0

X  and 
0

Y  represent the coordinates in which the sine functions associated 

to the horizontal and vertical directions start, while 
x
l  and 

y
l  allows one to adjust the 

frequency of variation of the sine function value in the horizontal and vertical directions, 

respectively. 

3.3. The dynamical problem analysis 

Recalling the Principle of Virtual Works stated in equation (2.56), one observes the 

existence of a dynamical term arising due to inertial forces. This term is proportional to the 

acceleration of the material points, such that it is common to neglect it if the observed values 

for this field result in forces much smaller than the other forces acting in the solid. The term 

quasi-static problem is used in this situation. 

However, if the velocities and acceleration observed in the phenomenon induce forces 

that are not negligible, the respective dynamical term of the PVW must be considered. In this 

situation, the linear system of equation results in 

� � � � �
(2 x 1) (2 x 2 ) (2 x 1) (2 x 1)(2 x 2 )

nd nd nd nd ndnd nd
n n n n nn n

+ =��
g g g g g

M d K d F . (3.24) 

In (3.24) ��
g
d  is the vector of the nodal accelerations, and 

g
M  is the so-called mass 

matrix, which is assembled by contributions of element local mass matrices given by 

� � �
(1x )( x1)

( x ) dofdof
dof dof

T

nn
n n

dρ

Ω

= Ω∫l
M N N ,  (3.25) 

in which N  is a vector containing all the shape functions associated to the DOF of the 

element nodes. Note that these shape functions are the ones associated to the displacement 

fields, such that they encompass all the enriched interpolation functions enrN  for the GFEM. 

This mass matrix is also known as the consistent mass matrix. A common procedure in 

dynamical analyses is to substitute the consistent mass matrix by another diagonal matrix 

called lumped mass matrix. Several strategies can be used to compute the lumped mass 

matrix. For instance, the lumped mass matrix terms 
ij

M  can be computed by the following 

relation: 
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.  (3.26) 

A numerical solution of (3.24) consists in finding the equilibrium configuration for 

discrete instants of time
n
t , separated by time increments t∆  such that 

1n n
t t t+ = +∆ . In 

this context, equation (3.24) is rewritten as 

( ) ( ) ( ), , ,
n n n
t t t+ = = = =�� �� ��

n n n n n n
Md Kd F d d d d F F . (3.27) 

Such incremental approach is called numerical time integration. According to Hughes 

(2000), the most widely used methods for solving this type of problem belong to the 

Newmark family of methods. This family of methods is defined by equation (3.27) and the 

following equations: 

( )
2

1 2 2
2

t
t β β

∆  = +∆ + − +  
� �� ��

n+1 n n n n+1
d d d d d , (3.28) 

( )1t γ γ = + ∆ − +  
� � �� ��
n+1 n n n+1
d d d d .  (3.29) 

In equations (3.27) to (3.29) the dot over the displacement vector denotes time 

derivative. Therefore, �d  represents the vector of velocities and ��d  represents the vector of 

accelerations. The subscripts in these vectors refer to the time instant (for instance, the current 

time nt  and the next time n+1t ). 

The Newmark family varies depending on the values adopted for the parameters β  

and γ . According to Newmark (1959), in order to avoid spurious dumping, one must adopt 

1
2γ = . 

If 0β = , the displacement at the next time instant depends only on the velocity and 

the acceleration at the current time (which are known). An explicit time integration scheme is 

then configured. In this situation, the numerical time integration is conditionally stable, 

depending on the magnitude of the time increment. 

Another commonly adopted value for β  is 1
4 , resulting in a constant acceleration 

value (average value). An implicit time integration scheme is then achieved. A known 

property of this numerical time integration is its unconditional stability. 
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The displacement and velocity at initial time 0t  constitute necessary information for 

the definition of the IBVP, as already stated in (2.11). The initial acceleration is then 

estimated from (3.27), as indicated 

[ ]1−= −��
0 0 0d M F Kd .   (3.30) 

For the subsequent time instants, these values are taken as the ones computed in the 

previous time step. 

Since the acceleration in the next step is not known a priori for the implicit scheme, 

one departs from explicit predictions for the displacement and velocity at the current time, 

computed respectively as 

∆
= +∆ +� ���

2

4

t
t

n+1 n n n
d d d d ,  (3.31) 

∆
= +� � ���

2

t
n+1 n n
d d d .  (3.32) 

Using the predicted values, equations (3.28) and (3.29) can be rewritten, respectively, 

as 

2

4

t∆
= + ���

n+1 n+1 n+1d d d ,  (3.33) 

2

t∆
= +�� ���

n+1 n+1 n+1d d d .  (3.34) 

From (3.33) one can compute 

( )2

4

t
= −

∆
�� �
n+1 n+1 n+1d d d .  (3.35) 

Finally, by substituting the acceleration from equation (3.35) in (3.27), and after 

rearranging terms, one obtains 

2 2

4 4

t t

    + = +     ∆ ∆ 
�

n+1 n+1 n+1

M M
K d F d .  (3.36) 

This is the system of equations to be solved at each time instant in dynamical analyses. 

Since no assumption is made regarding the stiffness matrix, this formulation can be employed 

also for nonlinear problems. 

The general implicit time integration algorithm for performing dynamical analyses is 

summarized in Figure 3.7. 
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∆t = total_time / number_of_steps

t = 0

while t < final_time:

t=t+∆t

compute displacement and velocity predictions using previous step values

compute inertial terms; add them to the system of equation

solve the system of equation considering inertial terms

compute the actual displacement and velocity at current time step

end of implicit time integration

IMPLICIT TIME INTEGRATION - NEWMARK METHOD - GENERAL ALGORITHM

 
Figure 3.7. General algorithm for the implicit time integration using the Newmark Method. 

3.4. Nonlinear analysis 

Within the numerical solution treated in the previous section, one of the specific 

procedures to be performed in each time step is the solution of the resulting system of 

equation. This means that the problem is solved in an incremental form. 

As already discussed in Chapter 2, several factors can make the resulting system of 

equation nonlinear. The solution of the nonlinear systems of equations is in general based on 

its linearization at each time step of the incremental solution procedure. 

The Newton’s method has proven to be one of the most efficient methods for solving 

nonlinear FEM problems (Wriggers (2006)). Accordingly, the model linearization is derived 

by employing a Taylor series truncated in the first order derivative terms. Departing from this 

form, the method consists of an iterative strategy for successively computing approximate 

solution using this linear approximation. 

For instance, taking an hypothetic scalar valued function ( )f x  of a single scalar 

variable x , its Taylor series expansion at x  is given by 

( )
( ) ( )

x x

df x
f x x f x x

dx
ϑ

=

+∆ = + ∆ + . (3.37) 

If x x+∆  is sufficiently close to x , the residual associated to the higher order terms 

ϑ  tends to vanish, remaining the first order term as significant. Supposing that a root of ( )f x  

is given by the value x x+∆ , one achieves that 

( )
( ) ( ) ( ) 0

x x

df x
f x x f x f x x

dx
=

′+ ∆ = + ∆ ≅ . (3.38) 

The last relation provides a ‘rough’ estimate to the actual x∆  as follows: 
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( )

( )

f x
x

f x
∆ =−

′
.  (3.39) 

Such estimative is more accurate as x  is closer to the solution. According to the 

Newton’s method strategy, one successively computes new values for x  until it converges to 

the root of the nonlinear equation. The root search procedure basically consists of two steps: 

a) Computing 
( )

( )
n

n

n

f x
x

f x
∆ =

′
; 

b) Computing the new value 
1x n

x x x+ = +∆ . 

The procedure is repeated iteratively until a previously established convergence 

criterion to ( ) 0f x =  is fulfilled. From the formulation above one can clearly notice that the 

method is not unconditionally stable. For instance, if ( ) 0
n

f x′ = , the method fails. 

The method is also applicable for the case of nonlinear systems of equations, like the 

ones arising from the FEM and GFEM numerical approaches of the nonlinear problem. For 

this case, many other aspects regarding the method’s stability arise (see, for instance, Marsden 

and Hughes (1994)). In general terms, if the initial guess is close enough to the solution and 

the coefficient matrix of the nonlinear system of equations is positive definite at x , the 

method is robust and stable. Moreover, in this case, the method exhibits a quadratic 

convergence rate. 

Aiming to illustrate the method applied for the FEM/GFEM, let’s take the nonlinear 

system of equations written as 

( ) =K d d F ,  (3.40) 

in which d  is a vector containing the nodal displacement parameters, for the FEM, or the 

GDOF for the GFEM. F  is the equivalent nodal force vector for the FEM and a vector of 

equivalent nodal generalized forces for the GFEM. The matrix ( )K d  represents the 

coefficient matrix. As one can notice, for the nonlinear problem the stiffness matrix K  

depends on the displacements (unknowns), which characterize the nonlinear feature of the 

model. 

Supposing, without loss of generality, that the inertial effects are negligible, and that 

the loads do not depend on the deformed configuration, the nonlinear behavior arises 

essentially from the internal virtual work term. 
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Based in the Newton’s method approach, let’s suppose d  represents one model’s 

deformed configuration, which is close to the equilibrium. In this situation, ( ) ≠K d d F  and 

is possible to evaluate the residual vector 

( ) ( )= −R d F K d d .  (3.41) 

Taking into account that the current deformed configuration is close to the 

equilibrium, it is possible to evaluate a vector of increments ∆d  such that  

( ) ( ) ( )D+∆ ≅ + ⋅∆R d d R d R d d .  (3.42) 

Moreover, since the residual vector vanishes in the equilibrium condition, the 

linearization of the nonlinear system of equations yields to  

( ) ( ) ( )D ⋅∆ = ⋅∆ = −
T

R d d K d d R d .  (3.43) 

In the FEM literature, the matrix 
T
K  is referred to as the tangent stiffness matrix, and 

the vector ( )R d  represents the residual force vector. Following the Newton’s method 

approach one iteratively computes: 

a) The vector∆
n
d , arising from the solution of ( ) ( )⋅ ∆ = −

T n n n
K d d R d ; 

b) The new vector = +∆
n+1 n n
d d d . 

The process is repeated iteratively until the solution convergence criterion is 

considered satisfied or a criterion for stopping, based on the maximum number of iterations, is 

exceeded. Regarding the first case, the definition of the convergence criteria is necessary. The 

second condition is important for avoiding an infinity loop in situations where the solution 

process diverges. 

Probably the most straightforward convergence criterion to be adopted is based on the 

control of the magnitude of the residual force vector, which can be evaluated by computing its 

L2 norm, defined as 

2
= ⋅

n n n
R R R .  (3.44) 

This criterion is also referred to as nodal force L2 norm, and is stated as 

2 f
ε<

n
R ,  (3.45) 

in which 
f
ε  is an adopted positive scalar tolerance to the nodal force L2 norm. Moreover, 

aiming to obtain a criterion less dependent of the scale of the force, one can express this 

criterion as 
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2

2

f
ε<n

R

F
,  (3.46) 

hereby referred to as the relative nodal force L2 norm. 

Considering that the solution is computed in a step-by-step procedure by displacement 

increments, another criterion to be used regards controlling the magnitude of the increment 

displacement vector, as follows: 

2 d
ε∆ <

n
d .  (3.47) 

The criterion stated in (3.47) is also referred to as the displacement increments L2 

norm. The relative displacement increments L2 norm can be stated as 

2

2

d
ε

∆
<n

n

d

d
.  (3.48) 

One third criterion is presented in Bathe (1996), representing the internal energy 

increment during each iteration, being defined as 

e
ε∆ ⋅ <

n n
d R .  (3.49) 

In theory, all the previously presented convergence criteria could be applied to the 

GFEM. However, in such method, the unknowns are not only nodal displacements, as it 

happens for the FEM. In fact, the GDOF values compounding the vector 
n

d  do not have a 

directly associated physical meaning in general, requiring a post-processing scheme in order 

to compute the displacements in the solid. 

Due to this fact, in the present work, we propose a new convergence criterion, based in 

the increment of the post-processed displacements. According to it, these displacement 

increment values are computed in accordance with the GFEM methodology, at all the 

integration points in the mesh, and are grouped in a vector ∆ pp

n
d . 

The criterion is then referred to as post-processed displacement increment L2 norm, 

being defined as 

2 pp
ε<pp

n
d .  (3.50) 

One must observe that there is no restriction on the usage of this norm also for the 

FEM. A brief evaluation of these norms both for the FEM and GFEM is presented in example 

6.2 of the Chapter 6. 
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When the Newton’s method is applied associated to an incremental analysis, as the 

one presented in Section 3.3, it is referred to as Newton-Raphson’s method. Many nonlinear 

problems demand an incremental iterative approach in order to achieve convergence. 

Finally, temporarily ignoring the inertial effect (aiming to simplify the scheme), the 

general algorithm for an incremental iterative Newton-Raphson’s method solution is shown in 

Figure 3.8. 

∆t = total_time / number_of_steps

t = 0

while t < final_time:

t=t+∆t

converged = false

while converged is false:

compute residual and tangent stiffness matrix for the current time

solve Kt (d)∆d = -R to find ∆d 

d=d+∆d

verify convergence criterion; 
if OK, converged = true

verify the number of iterations; 
if it exceeds the maximum defined value, 
stop the solution and inform the process has diverged

end of the incremental iterative solution method

NEWTON-RAPHSON’S METHOD (STATIC) - GENERAL ALGORITHM

 
Figure 3.8. General algorithm scheme for the Newton-Raphson’s Method. 

3.4.1. Small strain elastoplasticity 

In the small strain elastoplastic modeling, the nonlinear behavior results from the 

response of the material, embedded by the constitutive relation. The kinematic relation 

employed in such model is identical to the one used for the linear elastic model. 

In the numerical approach, one initially assumes that the model follows a linear elastic 

response. This prevision hypothesis is referred to as elastic trial state. This assumption is 

actually true for all points of the domain in which the stress state does not exceed the yield 

criterion, i.e., stress states for which the yield function (2.20) results negative. 

On the other hand, it is possible that some points of the domain do not verify yield 

criterion, violating the condition stated in (2.22). In this case, the obtained stress state cannot 

be feasible, and must be corrected, to a level that corresponds to the nullity the yield function. 

Therefore, a new equilibrium configuration, for which the yield criterion is feasible, must be 

searched. In these points, the stress-strain response is given by the elastoplastic constitutive 

tensor. 
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As already commented in Chapter 2, for the Newton-Raphson’s method, the 

elastoplastic constitutive tensor from (2.31) must be replaced by the so-called consistent 

elastoplastic tangent moduli. However, different formulation for this tensor arises whether a 

plane stress or plane strain hypotheses is assumed. For further details in the derivation of such 

tensor, Simo and Hughes (1998) is hereby referenced. 

In what follows, one essentially reproduces the formulation both for the plane stress 

and plane strain hypotheses derived in Simo and Hughes (1998). 

a) Plane strain hypothesis 

After the initial solution for a given iteration is attained, assuming the elastic trial 

scheme, for each of the integration points, one computes the deviatoric strain and stress 

tensor: 

( )1 1 1

1

3n n ntr+ + += −e Iε ε ,  (3.51) 

( )1 12trial p
n n nµ+ += −S e e .  (3.52) 

For these equations, 1n+e is the deviatoric strain for the elastic trial, ( )tr • is the trace 

operator, 1
trial
n+S  is the deviatoric stress for the elastic trial, p

ne  is the plastic strain for the given 

point, accumulated up to the last iteration and µ  is the Lamé parameter, presented in (2.46). 

Once 1
trial
n+S  is achieved, one computes the yield condition for the elastic trial 

( )2
1 1 3:trial trial

n n nf K α+ += −S ,   (3.53) 

in which ( )nK α  is the isotropic hardening function presented in (2.21). 

If 1 0trial
nf + ≤ , the elastic trial hypothesis hold, and the values for the stress and strain 

tensors computed for the current iteration are in fact the trial values. 

On the other hand, if 1 0trial
nf + >  one must compute the λ�  parameter presented in (2.23), 

such that the yield criterion is respected. For the finite time step numerical scheme, we refer 

this parameter as λ∆ . It is computed iteratively using the Newton’s method. 

Within this iterative process, the value for λ∆  before the first iteration is zero 

( (0) 0λ∆ = ), and the hardening parameter value is taken from the last iteration of the Newton-

Raphson scheme, i.e., (0)
1n nα α+ = . The nonlinear equation to be solved is  

( ) ( ) ( )( ) ( ) ( )2
1 13: 2k trial k k

n ng Kλ α µ λ+ +∆ = − − ∆S . (3.54) 

For each iteration k  the new value of ( 1)kλ +∆  is computed as 
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( )
( )

( )

( 1) ( )

( )

k

k k

k

g

Dg

λ
λ λ

λ

+
∆

∆ =∆ −
∆

,  (3.55) 

in which  

( ) ( )( )
1( ) : 2 1

3

α
λ µ

µ

+
 ′ ∆ =− + 
  

k
nk

K
Dg .  (3.56) 

For each of the iterations, the isotropic hardening parameter value must also be 

updated by  

( 1) ( 1)2
1 3

k k
n nα α λ+ +
+ = + ∆ .  (3.57) 

The iterative process is repeated until ( )( )kg λ∆ is less than a previously defined 

tolerance value. After it has converged, one computes: 

1
1

1

:
trial
n

n trial
n

+
+

+

=
S

N
S

,  (3.58) 

2
1 3:n nα α λ+ = + ∆ .  (3.59) 

With these values one can compute the new value of the plastic strain tensor, and the 

actual stress tensor for the point by: 

1 1
p p
n n nλ+ += +∆e e N ,  (3.60) 

( )1 1 12trial
n n ntrκ µ λ+ + += + − ∆I S Nσ ε . (3.61) 

In (3.61) κ  is the bulk modulus, which is computed by 

3(1 2 )

E
κ

υ
=

−
.  (3.62) 

Finally, the consistent elastoplastic tangent moduli is computed by 

1 1 1 1 1

1
2 2

3
κ µθ µθ+ + + + +

 
 = ⊗ + − ⊗ − ⊗
  
I

ep
n n n n nI I I I N NC , (3.63) 

1

1

2
: 1n trial

n

µ λ
θ +

+

∆
= −

S
,  (3.64) 

( )1 1
1

1
: 1

1
3

n n
nK

θ θ

µ

+ +
+

= − −
′

+
.  (3.65) 

b) Plane stress hypothesis 

Like for the plane strain, the first step of the analysis is the elastic trial, in which one 

computes the trial strain and stress states: 
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1

s

n n+ = +∇ε ε u ,  (3.66) 

( )1 1

trial p

n n+ += −σ ε εC   (3.67) 

From the elastic trial stress tensor one computes the deviatoric stress tensor and 

evaluates the yield criterion (equation (3.53)). Like it happens for the plane strain, if 

1 0trial
nf + ≤ , the elastic trial hypothesis hold, and the values for the stress and strain computed 

for the current iteration are in fact the trial values. 

If 
1

0trial

n
f + > , one needs to compute λ∆ . The nonlinear equation to be solved is  

( ) ( ) ( ) ( )2 2 21
: 0

2
g f f Rλ λ λ λ∆ = ∆ = ∆ − ∆ = , (3.68) 

( )
( )

( )

( ) ( )2 2 2
1 1
3 22

2 2

21
:

2 1 2
1

3 1

trial trial trial trial trial

x y x y xy
f

E

σ σ σ σ τ
λ

µ λ
λ

υ

+ − +
∆ = +

      + ∆       + ∆   −     

, (3.69) 

( ) ( )2 21
:

3
R Kλ β∆ = ,  (3.70) 

( )2
3n

fβ α λ λ= + ∆ ∆ .  (3.71) 

The same iterative algorithm presented in (3.55) is used to solve such nonlinear 

equation. For the plane stress, the term Dg  is: 

( ) ( ) ( )2 21
0

2
D Df DRλ λ λ∆ = ∆ − ∆ =g , (3.72) 

( )
( )

( )
( )

( ) ( )

2
1
32

3

2 2
1
2

3

:
3 1

1
3 1

2
2 2

1 2

trial trial

x y

trial trial trial

x y xy

E
Df

v
E

σ σ
λ

λ
υ

σ σ τ
µ

µ λ

 − +  ∆ =  
−          + ∆   −     

− +
 −    + ∆  

, (3.73) 

( ) ( ) ( ) ( )
2 2

:
3

d
DR K K

d

β λ
λ β β

λ

∆
′∆ =

∆
, (3.74) 

( ) ( ) ( )2

3

d df
f

d d

β λ λ
λ λ

λ λ

 ∆ ∆  = ∆ +∆   ∆ ∆  
, (3.75) 
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( )
( ) ( )21 1

2

df
Df

d f

λ
λ

λ λ

∆
= ∆

∆ ∆
.  (3.76) 

When the nonlinear solution converges, one obtains λ∆  and updates the following: 

( )2
1 3n n

fα α λ λ+ = + ∆ ∆ ,  (3.77) 

1 1

1

2 1 0
1

1 2 0
3

0 0 6

trial

x

p p trial p

n n n n y

xy
n

σ

λ λ σ

τ
+ +

+

   −      = +∆ = +∆ −            

ε ε σ εP , (3.78) 

( ) 1

1 1

trial

n n
λ −

+ +
= ∆σ σCΞ ,  (3.79) 

( )
1

1: λ
−

−= +∆ PCΞ ,  (3.80) 

( ) ( ) ( ) ( ) ( )
1 1 1 1 1

p p

z x y x yn n n n nE

υ
ε σ σ ε ε

+ + + + +

−   = + − +     
, (3.81) 

( ) ( ) ( )
1 1 1

p p p

z x yn n n
ε ε ε

+ + +
= − − .  (3.82) 

The tensor Ξ  is referred to as modified algorithmic elastic tangent moduli (see Simo 

and Hughes (1998)). The consistent elastoplastic tangent moduli is 

1 1

1

1 1 1

T

n nep

n T

n n n
β

+ +

+
+ + +

         = −
+

σ σ

σ σ

P P

P P
C

Ξ Ξ
Ξ

Ξ
,  (3.83) 

1 1 1 12
13

2 1

3 1
T

n n n n

n

K
K

β
λ+ + + +

+

′=
′− ∆

σ σP . (3.84) 

3.4.2. Finite displacement elastic analysis 

For the solution of the nonlinear system of equation of the finite displacement elastic 

analysis, one needs to perform the linearization of the internal virtual work from (2.57). 

Both for computing the internal force vector and the tangent matrix, one needs to 

compute the virtual Green strain tensor, which is given by 

1

2
T T = ∇ +∇  

δ δ δE F u u F .  (3.85) 

For its application in the FEM/GFEM, it can be expressed in matrix terms as 
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� �
*

( x1)(4x )
gdofgdof

x

y

nnxy

yx

E

E

E

E

δ

δ

δ

δ

       = =        

δ δE B d ,  (3.86) 

in which δd  is the vector containing the virtual displacement terms, and *B  is computed by 

� � �
* *

(4x4) (4x )(4x4) gdof
n

=
�

B G H B ,  (3.87) 

1 0 0

0 0 1

1 1 1 1
1 1

2 2 2 2

1 1 1 1
1 1

2 2 2 2

u v

X X
u v

Y Y
u u v v

Y X Y X

u u v v

Y X Y X

 ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂=         ∂ ∂ ∂ ∂          + +                ∂ ∂ ∂ ∂       
        ∂ ∂ ∂ ∂          + +                ∂ ∂ ∂ ∂        

G









, (3.88) 

*

T

T

 
 =  
  

0

0

H
H

H
,  (3.89) 

in which TH is the transpose of the matrix presented in (3.11) and 0  is a (2x2) matrix full of 

zeros. The matrix 
�
B contains derivatives of the interpolation function with respect to ξ  and 

η  such that  

T

u u v v

ξ η ξ η

  ∂ ∂ ∂ ∂  =  ∂ ∂ ∂ ∂  

�
δB d .  (3.90) 

The matrix *B  allows one to compute the internal forces contribution for a given 

element by the numerical integration 

�
( )( ) ( ) ( )*

int
1

( x1) (4x1)( x4)

, , ,
gp

gdof
gdof

n
T

elem

i i i i i i i
i

n n

Jξ η ξ η ξ η
=

=∑
��������	������������	

f B S w , (3.91) 

In (3.91), the points ( ),i iξ η  are given by the quadrature rule for gpn integration points, 

iw are the weights for these integration points and S  is a vector containing the current value 

for the second Piolla-Kirchhoff stress components for the point. These stress components are 

computed using expression (2.47) for the Saint Venant-Kirchhoff material and expression 

(2.50) for the Neo-Hookean material. 
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The derivation of the tangent stiffness matrix for an element arise from the 

linearization internal virtual work presented in (2.57), resulting in 

internal

: :
e

elem
D W D D dδ

Ω

 = + Ω  ∫ δ δE S S E . (3.92) 

The linearization of the second Piolla-Kirchhoff stress tensor results in 

( )( ) ( ): ( ) : ( )D E u D u u D u
∂

= =
∂
S

S E E
E

C , (3.93) 

such as the linearization of the Green strain tensor results in 

( ) ( ) ( )1

2

T TD u  = ∆ = ∇ ∆ +∇ ∆  
E E F u u F . (3.94) 

Aiming a FEM/GFEM, the term ∆E  can be expressed in matrix terms as 

� �
*

( x1)(4x )
gdofgdof

nn

∆ = ∆E B d .  (3.95) 

For further details on these derivations, we reference Holzapfel (2000). 

Employing this notation, the first term of (3.92) results in 

( ) � � �
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( x )
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e e
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∫ ∫δ δE E d B B d = d K dC C . (3.96) 

The linearization of the virtual Green strain results in  

( ) ( ) ( )1

2
T TD  = ∇ ∆ ∇ +∇ ∇ ∆  δ δ δE u u u u . (3.97) 

For the plane stress and plane strain, the term :D δS E  can be expressed by 

T
� �
δ S ,  (3.98) 

in which 

T u v u v u v u v

X X Y Y Y Y X X
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�
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. (3.100) 

These vectors can be assembled by 
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δ
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S A H B d . (3.102) 

Employing this notation, the first term of (3.93) results in 
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� �

������	
δ δd B H A A H B d = d K d . (3.103) 

The integral over the element domain presented in (3.96) and (3.103) is performed 

numerically like it happens for the linear case, as already presented in (3.17). 

The tangent stiffness matrix for the element is given by 

1 2

elem elem elem

T T T
= +K K K .  (3.104) 

The computing of the global tangent matrix and the global residual force vector is 

obviously performed by the traditional assembly using the elemental terms of (3.104) and 

(3.91), respectively. 

3.4.3. Contact problem 

For problems related to contact phenomena, the numerical model results in a 

constrained nonlinear system of equations. The contact constraints arise when different parts 

of the solids tend to occupy the same position in the space at the same time. Therefore, the 
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constraints must prevent the interpenetration among the solid. Since the contact conditions 

change during the mechanical process, in accordance with the deformation of the solids, the 

incremental iterative approach demands additional techniques to identify the occurrence of 

penetration and contact. 

In two-dimensional modeling, the contact surface is a line segment. The contact of a 

point lying in a solid’s boundary, at a given time instant, is performed by measuring the 

distance between the point and the other solids boundary lines. This distance is defined as the 

length of the straight segment connecting a point and its normal projection over the boundary. 

Owing to the FEM/GFEM mesh discretization, the boundaries are defined by a set of 

line segments. For the Signorini contact problem, these segments are fixed, and are hereby 

referred to as obstacle. For the contact among deformable bodies, these segments move with 

deformation, and are referred to as targets. The targets are associated to the side of plane 

elements. 

Let us initially consider the possible contact between a point P and a straight line 

segment 1-2, as depicted in Figure 3.9 (a). 

P

N

1

2

(x,y)

(x,y)

(x,y)

(x,y)

P

N

1

2

(x,y)

(x,y)

(x,y)

(x,y)

3

(x,y)

ê

(a) (b)  
Figure 3.9. Computation of the distance between a point P and a line segment (a) defined by first 

degree interpolation (straight line); and (b) second degree interpolation (curved line segment). 

For the straight line segment, the point N is determined by imposing orthogonality 

between the segment P-N and the segment 1-2. Since the tangent vector is constant in the 

segment 1-2, the condition results in a linear equation. 

However, if the target segment is curved, like the one depicted in Figure 3.9 (b), the 

tangent vector changes along it. In this case, the position of N is achieved by finding its 

natural coordinate 
N
ξ  attached to the curved segment such that 

( ) ( )( ) ( ) ( )( ), , 0
P N P N N N

x x y y x yξ ξ ξ ξ′ ′− − =i . (3.105) 
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However, this equation is nonlinear, demanding a numerical iterative solution method. 

The Newton’s method is one possible approach, while a solution search procedure employing 

the ‘Regula Falsi’ method is a second one, see Piedade Neto (2009). 

Once the contact pair is achieved at a given time instant, the occurrence of penetration 

is verified by computing the gap function, expressed in (2.60). If the gap value is positive, the 

points are not in contact. If the value is negative, penetration has occurred for these points. 

If during the incremental iterative solution penetration is detected, constraints must be 

activated in the nonlinear system of equations. These constraints arise from an additional 

contribution to the virtual work expression, named contact virtual work. The additional term 

can be defined either using the Lagrange multipliers, as in (2.68), or the penalty methods, as 

in (2.69). 

Regardless of the adopted approach, once a contact constraint is imposed, it enforces 

values for the displacement field such that the gap is zero. For subsequent time steps, if the 

contacting surfaces tend to interpenetrate, compression tractions are observed in the 

contacting interface. On the other hand, if the surfaces tend to distance one from another, 

tensile tractions arises in the contact surface, contradicting the condition expressed in (2.64). 

Therefore, the solution of the contact problem also demands the verification of the contact 

tractions in each of the iterations. If tensile tractions are observed, the respective contact 

constraint must be deactivated. 

According to the conventional FEM numerical approach, the contact detection, the 

constraint terms computation and the traction verification are tasks assigned to contact 

elements. The general algorithm for the numerical solution of the contact problem is 

presented in Figure 3.10. 

For 2D models, if contact is controlled at nodes in the solid’s boundary, the contact 

element is referred to as node-to-segment contact element. Otherwise, if the contact control is 

performed at a line segment (plane element’s side) the contact element is referred to as 

segment-to-segment contact element. The formulations of node-to-segment and segment-to-

segment contact elements for the GFEM are discussed in the following sections. 
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∆t = total_time / number_of_steps

t = 0

verify contact elements and activate the ones which are already in contact at initial time

while t < final_time:

t=t+∆t

converged = false

while converged is false:

compute residual and tangent stiffness matrix for the current time

apply active contact constraints in the system of equation

solve Kt (d) ∆d = -R to find ∆d 

d=d+∆d

verify convergence criterion; 
if OK then: 

verify if new contact elements have penetrated;

if yes: 
mark such elements as active

if not (i.e.,no new active elements):

verify if traction occured in active elements;
if yes: 

mark such elements as inactive;

if not (i.e., none of the active contact

elements present tensile traction):

converged = true

verify the number of iterations; 

if it exceeds the maximum defined value, 
stop the solution and inform the process has diverged

end of the incremental iterative solution method

CONTACT PROBLEM (STATIC) - GENERAL ALGORITHM

 
Figure 3.10. General algorithm for the contact problem numerical solution. 

a) The node-to-segment contact element 

As already commented, the node-to-segment contact elements are attached to nodes 

positioned in the boundary of the solid, being used to detect the contact, compute the 

constraints to avoid penetration and evaluate the traction condition. 

Let one suppose that a given node-to-segment contact element present a normal 

projection over a curved target, as depicted in Figure 3.11. 

1
2

node-to-segment
contact element

3

target

ξ

 
Figure 3.11. Node-to-segment contact element – normal projection over a target. 
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The position of the point corresponding to the contact pair is defined by solving the 

nonlinear equation arising from equation (3.105), in which 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
1 1

1 1

,

.

nd enr

nd enr

n n

enr enr

i i i i
i i
n n

enr enr

i i i i
i i

x X u X N u N

y Y v YN v N

ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ

= =

= =

= + = +

= + = +

∑ ∑

∑ ∑
 (3.106) 

In (3.106) 
nd

n  is the number of nodes in the target segment whose partition of unity 

(L2, L3 or L4) contains the point ξ  and 
enr

n  is the number of nodal enriched shape functions 

containing that point. If no enrichment is applied to the nodes defining the target, the 

expression (3.106) fall within the FEM interpolation. 

In general, the enrichment functions are defined in the global XY system of reference, 

such that the enrichment shape function is indicated as 

( )( ) ( ) ( ), ( )enrN N L X Yξ ξ ξ ξ= .  (3.107) 

In this case, for computing the derivatives required by (3.105), one has to employ the 

chain rule, as follows 

enrN N L X L Y
L N

X Yξ ξ ξ ξ

 ∂ ∂ ∂ ∂ ∂ ∂ = + + ∂ ∂ ∂ ∂ ∂ ∂ 
. (3.108) 

Once the solution of equation (3.105) is found, one can compute the gap value 

between these points, by means of the relation (2.60). First, the unit normal outward vector 

can be computed by the cross product between the unit tangent vector 
t
a  and the unit vector 

3
-e  (Figure 2.1), such that 

( ) ( )( ) ( ) ( ) ( )( )3
, , 0 0, 0, 1 , , 0x y y xξ ξ ξ ξ′ ′ ′ ′= ×− = × − = −

t
n a e . (3.109) 

With this relation, the gap can be computed as 

( )( ) ( )( ) ( )( ) ( )( ) ( )ns nx ns ns
g x x y y y xξ ξ ξ ξ ξ′ ′= − = − − + −ix x n , (3.110) 

in which ( ),
ns ns ns

x y=x  is the current position of the node-to-segment contact element. 

If the gap is evaluated as a negative value, the contact element must be activated to 

avoid penetration, providing constraint terms to be applied over the system of equations to 

enforce the contact impenetrability condition. 

As already mentioned, the constraint terms derive from the contact virtual work, 

through the Lagrange multipliers method or the penalty method. In either of formulations, the 

expression of the virtual gap term ( gδ ) is necessary, which is given by  
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( ) ( )ns ns
g

ξ

δ δ δ ξ δξ ξ δ
ξ

 ∂   = − − + −    ∂  
i i

x
u u n x x n . (3.111) 

Wriggers (2006) discussed several aspects regarding the terms of (3.111), concluding 

that some of them vanishes, resulting in  

( )ns
gδ δ δ ξ = −  iu u n .  (3.112) 

The node-to-segment contact element formulation is hereby applied only for small 

displacement problems. The key assumption in this case is that the changes in the normal 

vector are negligible (Laursen (2002)). Moreover, one considers that the contacting point at 

the target/obstacle remains unchanged. 

The node-to-segment element contact condition can be enforced by a collocation 

method. Accordingly, the integral terms in (2.68) and (2.69) are substituted by the direct 

enforcement of the contact condition at the nodes where penetration is detected. 

At the contact node, the PU function has unitary value. Due to this fact, the current 

position of this node is given by 

( )

( )
1 1

1 1

, ,

, .

nsx nsx

nsy nsy

n n

enr enr enr

ns ns i i ns i i ns ns
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n n

enr enr enr

ns ns i i ns i i ns ns
i i

x X u N X u L X Y

y Y v N Y v L X Y

= =

= =

= + = +

= + = +

∑ ∑

∑ ∑
 (3.113) 

The Lagrange multiplier 
ns
λ  constitutes a new variable associated to the node. In the 

GFEM, the nodal enrichment feature is applicable for this DOF as well, as indicated below 

( )
1

,
lm

n

enr enr

ns i i ns ns
i

L X Yλ λ
=

=∑ .  (3.114) 

Aiming the FEM/GFEM approach, it is more convenient to adopt the following: 

� �
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x B d ,  (3.115) 
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δ
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ns ns

u B dδ δ ,  (3.116) 
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y Y

ξ
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x B d ,  (3.117) 
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( ) ( )
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δ ξ
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������	 tgt
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ξ

ξ

    =      
n ,  (3.119) 

��
(1x ) ( x1)lm ml

n n

λ =
ns ns

M Λ ,  (3.120) 

��
(1x ) ( x1)

lm lm
n n

δλ =
ns ns

M δΛ .  (3.121) 

In the relations above, 
ns

n  is the number of displacement GDOF considering both 

directions at the node-to-segment contact element. Likewise, 
tgt

n  is the number of 

displacement GDOF associated to the nodes of the target. Finally, 
ml

n  is the number of 

GDOF associated to the Lagrange multiplier attached to the node-to-segment contact element. 

Both displacement and Lagrange multipliers GDOF are then encompassed in a single 

vector  

�
( x1)Lag

ns
n

     =       

ns

Lag

ns tgt

ns

d

d d

Λ

,  (3.122) 

in which Lag

ns ns tgt lm
n n n n= + + . 

According to this notation, the gap value is given by 

���0
(1x2)

(2x ) ( x1)Lag Lag
ns ns

T

n n

g g= + Lag Lag

ns ns
n B d ,  (3.123) 

( )( ) ( )( )0 ns x ns y
g X X n Y Y nξ ξ= − + − , (3.124) 

ns

 = −  0
Lag

ns tgt Bns
B B B ,  (3.125) 

where 0
Bns

 is a ( )2x
lm

n  matrix full of zeros. 

The virtual gap is given by 

���
(1x2)

(2x ) ( x1)Lag Lag
ns ns

T

n n

gδ = Lag Lag

ns ns
n B dδ .  (3.126) 

Now, the Lagrange multiplier is written in terms of the vector Lag

ns
d  as 
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��
(1x ) ( x1)Lag Lag

ns ns
n n

λ  = =   0
Lag Lag Lag

ns ns Mns ns ns
M d dΛ ,  (3.127) 

in which 0
Mns

 is a ( )( )1x
ns tgt

n n+  matrix full of zeros. 

A similar relation is used to write the virtual Lagrange multiplier. 

Employing the matrices just shown, the contact virtual work from (2.68) results as 

contact,LagWδ = +Lag Lag Lag Lag

ns ns ns ns
d K d fδ , (3.128) 
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Lag Lag
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Once Lag

ns
K  is linear, the same matrix can be used within a Newton-Rapshon 

incremental process. In this case, for a deformed configuration of the element given by d , 

one has to consider the contribution Lag

ns
K d  in the residual vector. 

For the penalty based formulation, according to (2.69), one defines the vector of 

elemental unknowns 

�
( x1)pen
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n

   =     

nspen
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d
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d
,  (3.131) 

in which pen

ns ns tgt
n n n= + . 

Performing similar derivations, one obtains 

contact,penWδ = +pen pen pen pen

ns ns ns ns
d K d fδ ,  (3.132) 
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n n

gε=
������	

pen pen

ns ns
f B n .  (3.134) 

For the Lagrange multipliers based node-to-segment contact element formulation, the 

contact traction estimative is given by (3.120), considering the values of the Lagrange 

multipliers GDOF resulting from the system of equations. 



 83

Regarding the penalty based formulation, a rough estimative of the contact traction is 

given by the product of the penalty parameter with the computed gap at the contacting points. 

It is important to remember that the penalty based strategy does not guarantee that the gap is 

null, thus this product does not result as zero. 

One has to bear in mind that the presented formulation is directly applicable to the 

Signorini problem, considered as a particular case in which the target is substituted by a rigid 

obstacle, with no DOF associated to it. The required particularization in the formulation is 

straightforward and is not shown here. In the developed computational code, the contact with 

a rigid obstacle is automatically considered depending if the node-to-segment contact element 

contact a target or a rigid obstacle. 

b) The segment-to-segment contact element 

The segment-to-segment contact element is attached to the side of plane elements. The 

derived formulation for the GFEM is based in the mortar contact elements applied for the 

FEM, see Wriggers (2006) and Fisher and Wriggers (2005). 

Since the contact element is not associated to a single point, the normal gap and the 

traction vary along the line segment of the element. The element geometry and its 

displacement interpolation are defined using one-dimensional partitions of unity (L2, L3 or 

L4). 

According to Fisher and Wriggers (2005), the mortar method is a discretization 

technique based on the Lagrange multipliers method, through which the contact constraints 

are fulfilled in a weak sense. 

In the mortar method, the Lagrange multipliers field is interpolated using a one-

dimensional PU associated to the contact element. For the FEM, it is written as  

( ) ( )
1

nd
n

i i
i

Mλ ζ λ ζ
=

=∑ .  (3.135) 

As for the GFEM, the Lagrange multipliers field can be enriched, resulting that 

( ) ( ) ( ) ( )( )
1 1

,

enr
nd ndi

n n

i

j i j
i j

M L X Yλ ζ λ ζ ζ ζ
= =

=∑∑ . (3.136) 

In the present text we employ the same nomenclature adopted in Wriggers (2006). In 

accordance with it, the contact element is referred to as non-mortar segment, and the target is 
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referred to as mortar segment. In Figure 3.12, both elements are depicted for the first degree 

interpolation (straight element) and higher order interpolation (curved element). 

non-mortar

(target)

A B

1 2
3

non-mortar

mortar

1
2 3 4

5

A B

C
(element)

(element)

mortar
(target)

(a) (b)  
Figure 3.12. Mortar contact element and its target for first degree interpolation (a) and higher 

order interpolation (b). 

Similar interpolations, including enrichment function, can be applied to the 

displacement fields along the mortar contact element and its targets, i.e., 
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 (3.137) 

The integrations arising in the mortar formulation are hereby performed numerically 

by the Gauss-Legendre quadrature. In this context, the gap function is computed in the 

integration points distributed along the contact element (red circles in the non-mortar 

segment), as shown in Figure 3.12. From this figure, one can notice that for the same contact 

element, different targets can be associated. For each integration point 
i
ζ  at the non-mortar 

segment, a corresponding contacting point 
i
ξ  is defined at the mortar segments, in accordance 

with (3.105). 

The normal gap value for the segment-to-segment contact element is computed by the 

numerical integration as well, 
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w w , (3.138) 

in which 
GL

n  is the number of integration points of the Gauss-Legendre quadrature, and 
i

w  

are the weights according to this quadrature rule. Obviously, for the GFEM, one considers the 

enriched displacement field interpolations for computing the current position in both non-

mortar and mortar segments considered in (3.138). 
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If 0
ss

g ≤  in a time instant, the associated contact element is set as active, and the 

resulting system of equations receives contributions of terms associated to the contact virtual 

work of such mortar element. 

Aiming at a formulation applicable for problems presenting displacements of any 

magnitude, the linearization of the contact virtual work employing a Newton-Raphson’s 

method is necessary. For the Lagrange multipliers based mortar contact element, the virtual 

work contribution results as 

,

e
c

contact LagD W D g D g Dg dδ λ δ λ δ δλ

Γ

 = + + Γ  ∫ . (3.139) 

In (3.139) the term D gδλ  is omitted since Dδλ  results null. 

The linearization of the gap present a similar structure with the virtual gap from 

(3.112), resulting as  

( ) ( ) ( )i i i
Dg ζ ξ ξ = ∆ −∆  iu u n .  (3.140) 

The linearization of the Lagrange multipliers field is straightforward, resulting in 
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Certainly the most complex derivation is associated to the linearization of the virtual 

gap (D gδ ), which is discussed in details in Wriggers (2006). After a long sequence of 

derivations, one obtains that 
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in which ( )ξa  is the tangent vector at the contacting point located in the mortar segment 

(target) and ( )ξn  is the unit normal vector at the same point. One must observe that the 
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curvature of the target at the contact pair point also arises in the linearization of the virtual gap 

(second derivative with respect to ξ ). For the FEM, this term vanishes for straight elements. 

For the GFEM this is not true, since the enrichment over the displacement field can result in 

curved geometry of the deformed configuration, even for first degree approximation elements. 

For the GFEM, all these terms must be computed considering the enriched 

interpolations, what turns the computations yet more cumbersome. 

The computation of the tangent matrix and residual vector associated to mortar contact 

element is performed by means of a numerical integration, similar to the one presented in 

(3.138). It results as 
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The computation of the tangent matrix and the residual vector contributions 

( ),
i i
ξ ζ

css
K  and ( ),

i i
ξ ζ

css
f  is more efficiently performed both for the FEM and GFEM using 

matrix terms. In order to do so, one defines the vector 
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in which Lag

ss
n  is the number of GDOF associated to the generalized mortar contact element, 

resulting from the sum of the number of displacement GDOF associated to the non-mortar 

segment (
ss

n ), the number of GDOF associated to the mortar segment (
tgt

n ), and the number 

of GDOF associated to the Lagrange multipliers field (
lm

n ). 

An equivalent vector Lag

ss
dδ  is defined for the virtual GDOF. 

Analogously to the node-to-segment derivations, one defines a matrix 

( ),
i i
ζ ξ=Lag Lag

i
B B  such that 
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One also defines a matrix ( )iξ
ξ=

,

Lag Lag

i,
B B

ξ
 used to compute the derivative of 

( )ξ∆u  with respect to ξ  resulting as  
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in which ( )iξ
ξ

,
B  is a matrix containing the derivatives of the enriched interpolation functions 

of ( )iξB  with respect to ξ . 

Similarly to the node-to-segment contact element, the Lagrange multiplier is written in 

terms of the vector Lag

ss
d  as 

��
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ss ss
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i ss Mss ss ss
M d dΛ ,  (3.152) 

in which 0
Mss

 is a ( )( )1x
ss tgt

n n+  matrix full of zeros. 

One employs the equivalent notation for the following entities: ( )iξ=
i
n n , 

( )iξ=
i
a a , ( )i i

λ λ ζ= , ( ),
i i i

g g ζ ξ=  and ( )iξ=
i
c c  (curvature of the mortar segment, 

given by the second derivative with respect to ξ ). 

Having defined all these matrices, the tangent matrix for the Lagrange multipliers 

formulation is computed by 
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Equivalently, the residual vector contact contribution is computed by 
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in which Lag

ss
d  is a vector containing the current value of the GDOF associated to the element. 
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Even though the method was initially conceived for the Lagrange multipliers, one can 

extend the method’s fundamental ideas to derive a penalty based mortar contact element (in 

the present work, a generalized penalty based mortar contact element). For this case, the 

vector of generalized unknowns is  
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Performing equivalent derivations one obtains 
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Equivalently, the residual vector contact contribution is computed by 
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Regarding the traction condition evaluation, the same strategy applied for the node-to-

segment contact element, both for Lagrange multipliers and penalty based formulation, can be 

adapted for the segment-to-segment contact element. 

For the Lagrange multipliers, the traction can be evaluated by the numerical 

integration 

( ) ( )
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For the penalty, a rough estimative for the mean traction over the contact element is 

given by 
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3.5. The general nonlinear analysis framework 

After the static and dynamic analyses algorithm and all nonlinear phenomena solution 

scheme have been discussed separately, it is possible to define a general purpose analyses 
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algorithm, according to which one can solve linear and nonlinear static and dynamics 

analyses. Such scheme is presented in Figure 3.13. 

According to this algorithm, the lines in purple color are referent to the dynamical 

effects. The tasks included in these lines must be performed only if one intends to consider the 

inertial effects in the analysis. By ignoring these commands, one falls into a static analysis. It 

is important to notice that such dynamical analyses apply both for linear or nonlinear 

analyses. In the first case, the Newton-Raphson method converges after a single iteration for 

each time step performed. 

The magenta color lines are associated with contact problems, and apply only if 

contact elements, targets and/or obstacles are defined for the problem. Like it happens for the 

dynamical tasks, these lines’ tasks must be executed only if a contact analyses is intended to 

be performed. 

∆t = total_time / number_of_steps

t = 0

verify contact elements and activate the ones which are already in contact at initial time

while t < final_time:

t=t+∆t

compute displacement and velocity predictions using previous step values

compute inertial terms; add them to the system of equation

converged = false

while converged is false:

compute residual and tangent stiffness matrix for the current time

apply active contact constraints in the system of equation

solve Kt (d) ∆d = -R to find ∆d 

d=d+∆d

verify convergence criterion; 
if OK then: 

verify if new contact elements have penetrated;

if yes: 
mark such elements as active

if not (i.e.,no new active elements):

verify if traction occured in active elements;
if yes: 

mark such elements as inactive;

if not (i.e., none of the active contact
elements present tensile traction):

converged = true

verify the number of iterations; 
if it exceeds the maximum defined value, 
stop the solution and inform the process has diverged

compute the actual displacement and velocity at current time step

end of the incremental iterative solution method

STATIC/DYNAMIC GENERAL NONLINEAR PROBLEM ALGORITHM

 
Figure 3.13. Static/dynamic general nonlinear problem algorithm. The purple lines must be 

performed only for dynamical analyses; the magenta lines must be performed only for contact analysis. 
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The general algorithm presented in Figure 3.13 was implemented in the developed 

computational framework, more specifically in the structural problem class, to be discussed in 

the next chapter. Only with an exception of the linear elastic static problems, presented in 

Chapter 5, all the problems presented in the present thesis were solved by means of such 

algorithm. 
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4 - Computational Implementation 

The present chapter is devoted to describe the general structure of the developed 

computational framework. Its implementation represents one of the contributions of the 

present research, mainly due to the fact that the developed Object-Oriented (OO) design 

presents original issues related to the GFEM, which allow one to efficiently deal with the 

method’s characteristics. 

The choice of the Object-Oriented Programming (OOP) for developing the code 

comes from several advantages one finds in such paradigm. These advantages are discussed in 

Section 4.1, in which one introduces the OOP particularities. In the same section, the general 

characteristics of the adopted programming language are briefly presented, aiming to allow 

the reader to understand possible notations and data structures employed in the description of 

the developed framework. The arguments presented in this sub-section must be understood 

not as a programming language vindication, but as a justification of the technical choice made 

by the code developer. 

Once the OOP essentials are presented, the general class structure usually adopted for 

developing Finite Element Analysis frameworks is presented. Then, departing from this 

generic class structure, the specific data structure demanded to efficiently deal with the 

GFEM issues is presented. Within this initial description, one focuses in the linear analysis 

framework, which constitutes the basis for developing the nonlinear analysis functionalities. 

Once the computational framework basis is stated, one indicates the demanded 

modification and inclusions in order to introduce nonlinear analysis capabilities in the 

computational program. 

4.1. The Object-Oriented Programming (OOP) 

In general terms, a paradigm is a pattern for guiding a specific activity. When related 

to the programming activity, the paradigm can be understood as a set of concepts and 

programming practices for guiding the design and implementation of a computational code. 

Obviously, each paradigm is conceived aiming specific objectives, presenting advantageous 

characteristics and also some possible disadvantages. According to Tucker and Noonan 
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(2008), in the past decades, four different programming paradigms were conceived: 

Imperative, Object-Oriented, Functional and Logic programming. 

The imperative programming paradigm is the oldest of them, being grounded in the 

classical computational ‘von Neumann-Eckert’ model, as indicated in Tucker and Noonan 

(2008). The paradigm approach is based in the definition of a set of variables and procedures 

aiming a specific objective. The program, in general lines, is a list of tasks to be executed. 

This approach does not exclude the use of flow control structures, which are used for defining 

paths to be followed by the commands defined in the code. Fortran and C ANSI are examples 

of programming languages which support the imperative programming paradigm. 

Due to historical aspects, the imperative programming was broadly applied for 

developing scientific and engineering computational applications, and presents several 

advantages in this situation. On the other hand, along the time, the demand of features for 

such applications changed, and the OOP emerged as an alternative for developing this kind of 

application. 

The Object-Oriented Programming (OOP) is based in a model in which the tasks are 

performed by defining a set of objects interacting one to each other, interchanging messages 

in order to perform the tasks requested by the software user. Such computational objects must 

be understood as abstractions representing real world objects or theoretical entities. 

The OOP provides a logical framework in which the data manipulation is restricted to 

the module in which the data is defined. One consequence of such approach is that a detailed 

knowledge about the module internal implementation is no longer necessary to external 

actors. In this case, only the definition of the module public methods interface is sufficient for 

using it. 

According to Tucker and Noonan (2008), an important difference between the 

imperative programming and the OOP is that the Object-Oriented (OO) data structures are 

less passive than the ones defined in the imperative paradigm, since the message passing 

among objects turn such entities active in the computational framework. Smalltalk, C++ and 

Python are some languages that support the OOP paradigm. 

It is important to mention that a given language is not necessarily attached to a unique 

paradigm. In fact, some programming languages are designed to support more than one 

programming paradigm, as for instance C++, which supports both the imperative and the OO 

programming. These programming languages are also called multi-paradigm programming 

languages. 

On what follows, a brief discussion on the OOP characteristics is presented. 
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4.1.1. The OOP paradigm essentials 

The OOP is a paradigm in which one creates abstractions of real world objects or 

theoretical entities, aiming to represent them within a computational model. These 

abstractions are defined by creating a description of the data structures to represent such 

entities. Such description is named class, consisting in a set of variables definitions 

(attributes) associated procedures (methods). This concept of associating the attributes and 

methods within a single structure is referred in the OOP as encapsulation. 

Once a class is defined, it is possible to create instances according to the class 

definition, generating objects. Metaphorically explaining, the class may be viewed as the 

blueprint, while an object is a product created according to it. 

Within the OO philosophy, all tasks related to a given object must be performed 

following the related class description. This means that changing the value of an object’s 

attribute or performing computations using its values is an exclusive competence of the class. 

Moreover, the internal attributes are protected from actions of other classes’ entities, 

according to the concept of information hiding, which arises in the OOP paradigm. 

In fact, the internal details of the class methods are not known by other classes, which 

can ask tasks for its objects by calling their methods. In this context, an important issue is the 

definition of the class interface, which describes how one must call the methods of the class to 

ask specific tasks. 

This strategy provides modularity to the code, once the class depends only on itself to 

perform tasks strictly associated to its instances. The interest of achieving modularity is that if 

the classes are adequately designed, it is possible to work separately in one class without 

depending in the implementation details of other classes. Of course, the other classes’ 

interface is important, such that one can access their methods. 

Several advantages arise from the modularity. Probably one of the most remarkable is 

that it allows one to easily implement new functionalities in the code, demanding at most little 

changes in the rest of the code. This character is especially important in a context in which a 

group of different developers work over the same computational code, which is also known as 

collaborative programming. 

Within this framework, the computational program can be viewed as a collection of 

objects, acting in accordance with its respective class definition, which, by it turns, is 

designed to perform specific actions. In several situations, a given object needs to require 

actions or information to other objects, which is done by sending messages to them. The 
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characteristics of the relation among different objects take a relevant position in the OOP 

paradigm. 

The simplest relation among objects is the association, in which one object simply 

uses other object to perform a task. In other cases, the relation among objects goes deeper, 

such that an object has other object as an attribute, resulting in a relation named aggregation. 

Moreover, if the ‘owned’ object is indispensable for the existence of the object that ‘owns’ it, 

an especial case of aggregation is configured, which is named composition. 

Going further in the analysis of the objects characteristics, it is possible to notice that, 

likewise in the real world, some objects are special types of others, a fact that can be 

efficiently explored in the OOP design. In this case, a class can be represented in the 

computational model as a special case of another class, inheriting a part of its data structure. 

This situation is known in the OOP paradigm as inheritance. In this case, the resulting 

class, referred as subclass, is defined by changing and extending attributes and methods of the 

other class, which is named super-class. The inheritance is one of the fundamental concepts of 

the OOP, and provides code reuse, improving the efficiency of the computational 

implementation process. 

Yet regarding the inheritance feature, in some cases several classes share similar 

characteristics, but their similar counterpart does not constitute a conventional class in the 

strict sense, since it is not possible to instantiate an object of such generic object. This super-

class, from which one cannot generate objects, is just a definition of a data structure to be 

extended by the subclasses, constituting an abstract class. 

It is also common in OO codes that distinct classes share methods to perform similar 

tasks with different internal implementation, i.e., they share methods with equal name and 

similar signature, but that are essentially different in their internal details. The related classes 

constitute a polymorphic set of classes, which allows one to call generic signature methods 

regardless of which of the classes it belongs. 

In this situation, the computational code can be implemented such that it allows one to 

call a given object’s method without taking into account for which of these classes the object 

belongs. The polymorphism is another essential feature of the OOP, providing flexibility for 

the resulting code. 

As one can observe, the OOP paradigm constitute a considerable complex 

methodology to write a computational code, presenting a higher level of abstraction in 

comparison to the imperative programming paradigm. In spite of this, the resulting code 
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encompasses several advantages if it is properly designed. Specifically for the FEM codes, 

Cross et al (1999) addresses several advantages to be achieved from the OOP paradigm. 

In fact, the OOP demands remarkable time investments in the code design in order to 

achieve such goals. Developing an efficient OO general class design for a specific kind of 

application is an object of study known as Design Patterns. 

The main objective of the present chapter is to present the conceived design for 

implementing a GFEM analysis framework according to the OOP paradigm. Even though the 

OO design is not attached to a specific programming language, a brief discussion of the used 

language allows one to explain the code details in a simpler manner. 

In the present work, the adopted programming language to develop the computational 

code is Python. The next section is devoted to introduce some particularities of the Python 

programming language. 

4.1.2. A brief presentation of the adopted programming language 

Python is a high-level programming language conceived in the late 1980’s by Guido 

von Rossum. It is a multi-paradigm programming language, supporting both the Imperative 

and Object-Oriented Programming paradigms discussed previously. It is a script language, 

which means that the resulting code is interpreted during run-time and not compiled, as 

required by FORTRAN or C languages, for instance. It also presents an interactive mode, 

which allows one to type commands and instantly receive their results. 

According to Langtangen (2008), the higher abstraction level inserted in scripting can 

make programming more convenient since “… scripts are often considerably faster to develop 

than the corresponding programs in traditional languages such as FORTRAN, C or C++, or 

Java, and the code is normally much shorter”. The same author also advocates that “Python 

stands out as the language of choice for scripting in computational science because of its very 

clean syntax, rich modularization features, good support for numerical computing, and rapidly 

growing popularity”. 

Actually, scripting languages allow for connecting different applications, as scripts are 

efficient in receiving inputs and formatting them for generating outputs to another application. 

This explains the observed better interaction achieved when using an interpreter instead of a 

compiler. In fact, these are extremely attractive and desirable characteristics for scientific 

computational purposes. Such use of Python is applied, for instance, by Layman, Missoum 



 96 

and Geest (2010). In fact Python is nowadays being used by many Finite Element Packages 

such as Abaqus, as reported by Kuutti and Kolari (2012). 

Among several advantages, probably the one most relevant for defining Python as the 

programming language to develop the GFEM computational code is related to its dynamic 

nature. First of all, Python is a dynamic typing language. This means that a variable can 

change its type in run-time, depending on the attributed value. 

Python also presents automatic memory management, providing an efficient way to 

develop efficient codes. Memory management is critical task in computational applications, 

demanding great efforts in order to avoid problems like computational performance 

degradation, memory fault and stack overflow. An additional remarkable advantage of Python 

is its multi-platform feature, meaning that a given code can run on different Operating 

System, such as GNU/Linux, Windows and Mac/OS. 

Furthermore, one of the greatest interests in Python is related to its native support for 

several different types of collections, fitting exactly with the GFEM nature, in which the 

number of degrees of freedom and enrichment functions changes considerably in different 

situations. 

The simplest, but yet powerful type of collection in Python is the tuple. A tuple is 

syntactically defined by means of parenthesis, and allows grouping any quantity of variables 

and objects, regardless of their type. A tuple can also contain other tuples. The tuples’ items 

can be referenced by means of a numerical index, starting from zero, according to the 

sequence in which such items were defined in the tuple. In spite of these advantageous 

characteristics, the tuple data structure its static, i.e., once the tuple is defined, their values 

cannot be changed. 

The list is another collection natively support in Python, presenting a dynamic nature, 

in the sense that new items can be inserted in the list. Likewise, items also can be removed 

from it. In addition to this, the list data type is provided with several methods that allows one 

to easily perform operations over it, like concatenations, sorting and many others. The list is 

defined in Python syntax by using square brackets. This syntax is used in the present chapter 

in order to explain the data structure of the conceived GFEM OO framework. 

A third powerful collection data structure is available in Python, being named 

dictionary. In Python, a dictionary is defined syntactically by means of curly brackets. 

Differently from the tuple and list, in the dictionary, the reference to one of its elements is not 

performed by means of the item’s index. In the dictionary, each item is attached to another 

object, named its ‘key’, that must be unique in the dictionary, such that one can access a given 
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item by means of this key. This key can even be an object defined by the user, with the only 

restriction that the key cannot be a mutable variable. As it happens for the list, several native 

methods to efficiently access the dictionary items are available in the language. 

Taking into account the GFEM characteristics presented in the previous chapter, it 

turns clear that the just mentioned characteristics are strongly favorable for programming the 

method. This does not mean at all that any other programming language cannot be employed 

for developing a GFEM computational code. However, we believe that these arguments 

suffice for justifying the author’s technical choice of using Python for developing the code. 

Moreover, another strong argument for using a script language for developing the GFEM 

framework is presented in Section 4.3. 

Despite its flexibility and other additional advantages not mentioned herein, in 

general, script languages present less efficiency in performing computation, when compared 

to compiled languages. It is worth mentioning that the computational performance is 

considered a major requirement for numerical applications. 

Regarding this issue, Python presents a powerful set of available numerical support 

libraries. These libraries are in general created from well consolidated codes written in high 

performance programming languages, like Fortran and C, and allows one to call their routines 

from Python in a direct fashion. 

For instance, the library NumPy (The SciPy Community (2011)), is in practice a 

standard library for performing matrix computations in Python. It is not unusual achieving 

speed ups of tens or hundreds for a computation performed using a NumPy subroutine, when 

compared with the same computation performed in pure Python. 

Moreover, additional numerical applications can be found in other libraries, as SciPy 

(The SciPy community (2010)). For instance, the sparse system of equation resulting from the 

FEM and GFEM models, in the present work, were efficiently assembled and solved by 

means of the subroutines available in the module ‘sparse’ from SciPy. Essentially, it uses the 

UMFPACK solver, written in C language (Davis (2004a), Davis (2004b), Davis and Duff 

(1997) and Davis and Duff (1999)). 

Regarding the results analysis, it is important also to cite matplotlib (Hunter (2007)), a 

Python 2D plotting library providing tools for generating high quality graphics. It is worth to 

mention that all the result graphics and the displacement, stress and strain fields color-maps 

used in the present work were generated by means of matplotlib functionalities. 

In what follows, we advance in the description of the developed code structure. 
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4.2. The traditional OO approach for the FEM programming 

The OOP application for finite element analysis codes started to be presented in the 

technical literature in the beginning of the 1990s, as for instance, in Forde, Foschi and Stiemer 

(1990) and Alves Filho and Devloo (1991). In the first paper, the basic concepts of the OOP 

were introduced, followed by a description of an OO design for the FEM. The described OO 

code is also compared to an equivalent procedural program, identifying the advantages of the 

OO approach. 

Such works were followed by Zimmermann, Dubois-Pérelin and Bomme (1992) and 

Dubois-Pélerin, Zimmermann and Bomme (1992), in which the paradigm is described in 

more details using Smalltalk programming language. Next, Dubois-Pélerin and Zimmermann 

(1993) have published a paper describing an efficient OO implementation using C++. The use 

of advanced features of C++ to implement finite element classes is presented later in 

Bittencourt (2000). 

Many other papers on the use of the OOP for numerical analysis were published, like, 

for instance, Mackie (2000), and the subject has been intensively discussed along the last 

decades. Skipping from a detailed review of the OOP for FEM, which is not the focus of the 

present text, we just refer to Mackerle (2000), which lists hundreds of references on the 

subject, also including a list of OOP applications to the Boundary Element Method (BEM). 

The application and detailed description of the OOP for other variants of non-

conventional numerical methods is clearly limited in the available literature. For instance, 

among the works reviewed regarding exclusively to the GFEM, its implementation by OOP 

was found by the authors only in one dissertation, Pereira (2004), written in Portuguese, and 

in which one finds a description of one possible structure of classes composing this kind of 

computational framework. Regarding technical periodicals, the only reference addressing to a 

closer method to the GFEM, the eXtended Finite Element Method (XFEM), is presented by 

Bordas et al (2007). 

The GFEM OO design conceived during the present research is based in many 

features of the traditional FEM OO design. Figure 4.1 depicts a simple generic class design 

for a finite element linear analysis code. 
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Node

Structure

Force

Pressure

Imposed_displacement

<Element>

Truss_element Beam_element

Material Thickness

Cross section

(and many other elements)  
Figure 4.1. Generic class design for a finite element linear analysis code 

In such scheme, the diamond symbol in the connecting lines indicates a composition, 

relation, while the triangle symbol indicates a relation of inheritance. It is worth noting that in 

the presented scheme, the generic element does not exist in practice, i.e., it is an abstract class, 

which is presented in Figure 4.1 by putting its name between angle brackets (<Element>). 

Regarding the dashed line arrows that connect the element class to the ‘material’, 

‘thickness’ and ‘cross section’ classes, they represent a composition by reference. This 

relation means that the thickness and cross sections instances are not instantiated inside 

element instances, but associated to them by means of a pointer. 

In fact, one can notice that those classes are related to the structure class in a 

composition relation (diamond symbol). This kind of relation is useful when several objects 

share the same object (a given material, for instance), since only one instance of such class 

need to be instantiate. In this case, all the elements made out of such material just point to the 

same instance, instantiated in the structure class object. 

Regarding to the generic FEM OO design of Figure 4.1, within such scheme, the node 

class is one of the main actors, representing the discrete points of the continuum at which the 

desired result is computed. Therefore, each node is represented by its Cartesian coordinates 

and must store the results achieved by means of the numerical method. 

The continuum regions between the nodes constitute finite dimension elements, which 

define another fundamental class in the FEM/OOP approach. Beyond the set of nodes 

defining it, the elements instances must also hold information about the material and 

additional geometric characteristics, such as its thickness (plane and shell elements) or cross 

section data (beam and truss elements). As already mentioned, such characteristics are defined 

by means of additional classes as ‘thickness’/‘cross section’, which also constitute the data 

structure presented in Figure 4.1. 
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Also boundary conditions data are necessary to define the problem, such that classes to 

describe them are demanded. For solid mechanics problems using displacement based 

formulation, classes like ‘force’, ‘pressure’ and ‘imposed displacement’ are related to the 

boundary conditions. 

This basic class framework design is completed by the ‘structure’ class. The structure 

is the main core of the data structure, and constitutes the interface for the rest of the code. In 

fact, it is used to define the finite element model characteristics and to manage the other 

classes’ instances. Nevertheless, depending on the desired usage for the code, a more general 

name for such class is ‘structural set’ or ‘structural problem’. This nomenclature makes sense 

if one thinks about problems treating a set of solids, as, for instance, the contact problems. 

Departing from the general OO design (Figure 4.1), the modifications demanded in order to 

comport the GFEM are presented in the following section. 

4.3. An Object-Oriented class design for the GFEM 

The major changes in the present FEM structure in order to support the GFEM are 

related to the node class. As already discussed, in the GFEM, the number of degrees of 

freedom (DOF) associated to a given node varies according to the number of enrichment 

functions applied to it. Furthermore, for all computations, each specific enrichment data must 

be directly associated to the new DOF. 

In fact, it turns out that the enrichment function, which does not even exists for the 

FEM, is an important actor within this framework. Moreover, given its generic nature, such 

entity can be better described by means of defining an abstract <enrichment> class 

representing the basis for a polymorphic set of different enrichment classes. 

By taking all these aspects into account, in the proposed OO design, a set of classes 

replaces the FEM node class, as indicated in Figure 4.2. 

Node

Generalized_dof

<Enrichment>

id: node identification (int)

* int - integer number; float - floating point number

(polymorphic - data structure depends on function type)

coord: coordinates (float)

gdof: instances of the generalized_dof class

global_index: numbering in the system of equation (int)

value: degree of freedom value (float)
enrichment: instance of the enrichment function class

 
Figure 4.2. Classes for modeling the node and its enriched degrees of freedom in the GFEM. 
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In order to associate a new nodal degree of freedom with enrichment function 

instances, we propose the definition of a ‘generalized degree of freedom’ class. Regarding its 

functionality, this class basically holds: a) the scalar value of the degree of freedom, 

computed by means of the numerical method; b) its numbering in the system of equations 

(global_index); c) an instance of the ‘enrichment function’ class. Obviously, if no enrichment 

is applied, such instance must be null, resulting in a regular FEM degree of freedom. 

Since the new data structure for the node class must be able to hold a variable number 

of generalized degrees of freedom, it demands the usage of a dynamic data structure. Here, we 

have used Python’s list to hold the nodal degrees of freedom. For other programming 

languages, a linked list must be implemented. 

In addition to this variable number of DOF, the ‘node’ class also demands a data 

structure that is capable to hold any type of degree of freedom, such as displacement, 

temperature or magnetic field, for instance. 

In order to do so, the proposed design uses a Python dictionary named ‘gdof’. The 

‘gdof’ dictionary keys represent the type of DOF, while the related value is a Python list in 

which one can insert any number of ‘generalized degree of freedom’ (GDOF) instances, 

depending on the number and type of enrichment defined by the user. Such scheme is 

indicated in Figure 4.3. 

gdof = {‘dx’ :[gdof, gdof ,...], ‘dy’:[gdof, gdof, gdof...], ...}

[ ] – Python’s list { } – Python’s dictionary

dictionary key dictionary value

generalized degree of freedom instances

 
Figure 4.3. The gdof node attribute, defined by means of a Python dictionary. 

In Figure 4.3, ‘dx’ and ‘dy’, for instance, stand for ‘displacement in x direction’ and 

‘displacement in y direction’, respectively. As already mentioned, this allows one to include 

any other type of DOF in such data structure. Specifically, we find out in our implementation 

that such tool is efficient for holding Lagrange multipliers variables used for imposing 

displacements efficiently in the GFEM. Such variables are also used in contact problems. 

The proposed data structure allows that the generalized element’s stiffness matrix and 

load vector computations still being performed by means of the same strategy of the 

traditional FEM, as already discussed in the previous chapter. The enriched terms 

contributions is taken into account in the routine that computes the B matrix, in which it is 
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verified whether the generalized degree of freedom is enriched or not. If none of the DOF of a 

given element is enriched, the FEM B matrix is obtained. 

Finally, an important aspect towards a generic framework is the fact that the 

enrichment function is represented by a set of polymorphic classes. Such an abstract 

representation allows that virtually any type of function can be included in the code. This 

advantage is especially convenient for scripting languages, like Python, since one can include 

new enrichment function without needing to recompile the code. 

Another important aspect focused in the proposed class design is related to the shape 

functions used as partitions of unity. As discussed previously, if one follows strictly the 

definition of partition of unity, only the linear (triangular) or bi-linear (quadrilaterals) 

Lagrangian shape functions can be used as PU for the GFEM. Even though the GFEM 

polynomial enrichment functions improve considerably the accuracy of the results, these 

linear PU are not efficient for describing curved geometries. 

In this context, an aimed feature for a GFEM framework is the capability of using 

different order PU to describe the element’s geometry (initial shape) and physical behavior 

(interpolated fields). In order to do so, the proposed OO design solution is based on the 

definition of a polymorphic class named ‘Partition of Unity’, defining generic partitions of 

unity for any desired domain (one-dimensional, two-dimensional, and so on). 

Such a mixed approximation approach is performed by defining different PU instances 

inside the element data structure, as indicated in Figure 4.4. As it can be noticed, by adopting 

this design, both isoparametric FEM elements and curved geometry linear GFEM PU can be 

supported using the same code framework. 

 
Figure 4.4. Triangular elements using the traditional linear interpolation and an element mixing 

different approximation PU for describing the element’s geometry and its structural behavior. 

When considered altogether, the hereby proposed set of changes in the classical FEM 

OO class design allows that basically the same framework can be efficiently extended to the 

GFEM purposes with no loss for the generality of the original methods. In fact, the other 

classes presented in Figure 4.1 remain practically unchanged, requiring at most little changes 
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in order to support both FEM and GFEM models. Figure 4.5 presents the complete proposed 

OO class design for the GFEM. 

Node

Generalized_dof

<Enrichment>

Shifted_function

Structural_problem

Boundary Conditions

<Element>Material Thickness

T10

<Partition_of_unity> Q8

L2 L4L3

T3 Q4

T6

Q12

Cross section

(and other additional
enrichment function)

(and other additional PU)

 
Figure 4.5. General representation for the proposed OO design for the GFEM. 

As it can be noticed we also propose the union of the force, pressure and imposed 

displacement classes in a single class named ‘boundary condition’, searching to achieve a 

more generic representation of such data. This unification is a straightforward modification 

and present no major details to be described, but improves significantly the code generality, 

especially if one aims to employ the same framework not only for solid mechanics analysis 

code, but also to solve other types of partial differential equation problems. 

4.3.1. Including the nonlinear analysis capabilities 

The OO design presented in the last section can be used as the basis for developing a 

FEM/GFEM nonlinear analysis framework. As already discussed in the previous chapter, the 

adopted nonlinear analysis approach is mainly based on applying load increments along a 

period of time. Obviously the time demands a data structure to represent it within a nonlinear 

context. In fact, if the velocities observed in the model give rise to inertial forces that cannot 

be neglected, even linear analyses demand a control on the model’s characteristics attached to 

the time evolution. 

The ‘time line’ class is conceived to provide capabilities related to time. Beyond a 

simple object to control the evolution of time, other additional features are included, like, for 
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instance, capabilities to define time functions and to store the history of convergence 

parameters. 

The control over the time evolution is simply performed by defining the total time of 

the analysis and the number of load steps in which one intends to discretize the time. The time 

evolution is considered by simply adding time step increments until the total time is reached, 

which configures the end of the analysis. 

According to the current time value, functions resulting in scalar values can be 

defined, aiming to describe the variation of a given load during the solution process. These 

functions are here referred to as time functions. Moreover, aiming to yield a higher flexibility 

in the definition of time functions, the conceived data structure allows the user to define 

functions composed by other piecewise continuous functions, as for instance, the ones 

depicted in Figure 4.6. 

time
0.25 0.75 1.00

1.00

Time function 01
Time function 02

 
Figure 4.6. Example of time functions defined in a time_line object. 

Specifically in the proposed implementation, the piecewise continuous time functions 

are defined by means of Python’s dictionary, in which the time intervals are determined by a 

string describing the time interval, and its associated value is the function in such interval. For 

instance, the time functions indicated in Figure 4.6 would be defined by creating the 

dictionaries shown in Figure 4.7. 

tf1={} # tf1 – time function 01

tf1[“t < 0.25”] = “t/0.25”

tf1[“0.25 <= t <0.75” ] = “1.0”

tf1[“0.75 <= t <1.00”] = “1.0-(t-0.75)/0.25”

tf2={} # tf2 – time function 02

tf2[“t < 0.25”] = “0.0”

tf2[“0.25 <= t < 0.75” ] = “(t-0.25)/0.5”

tf2[“0.75 <= t < 1.00”] = “1.0”

Definition of Time function 01

Definition of Time function 02

 
Figure 4.7. Definition of time functions 01 and 02 using Python’s dictionary. 
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In Figure 4.7 ‘tf1’ and ‘tf2’ are dictionaries representing the time functions. If a given 

key is true for the current time, the associated function is evaluated. These evaluations can be 

easily performed over the strings representing the time interval and time function by means of 

Python’s ‘eval()’ command. Further details on this function are found in Rossum (2011). 

The presented time functions can be applied to the boundary conditions, which are 

designed to be associated with these functions. For instance, the time functions presented in 

Figure 4.6 can be used for defining the illustrative example presented in Figure 4.8. 

dx

dy

Time function 01

Time function 02

 
Figure 4.8. Example of the use of time function associated to displacement boundary conditions. 

In this example, the proposed time functions are associated to displacement boundary 

conditions applied in one of the solids to make it move in the 2D space, sliding over the other 

solid. The resulting deformed configuration in some time instants are presented in Figure 4.9. 

 

(a) 

 

(b) 

 

(c) 

 

                           (d) 

 

                       (e) 

Figure 4.9. Deformed configuration for different time instants of the illustrative example 

indicated in Figure 4.8, for time instants 0.0 (a), 0.25 (b), 0.50 (c), 0.75 (d) and 1.00 (e). 

Once the time line is defined in the structural problem object, some changes in the 

element and material classes are demanded in order to support both the kinematic and 

material nonlinear behavior. 

Probably the nonlinear description of the solid’s kinematic is one of the most 

straightforward adaptations in the linear analysis framework. These changes are mainly 

performed directly in the element class, in which the strain is computed, according to the 
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adopted constitutive model. In this case, the nonlinear kinematic relation presented in 

Chapters 2 and 3 are directly implemented in this class. 

On the other hand, the nonlinear material behavior demands major changes in the 

existing code. In fact, like different behavior materials are supported, the linear elastic 

material class must be extended to generate other material models. In the proposed 

implementation, the set of classes to represent the material models results as depicted in 

Figure 4.10. 

Linear_elastic_material

Von_Mises_plastic_material St_Venant_Kirchhoff_material Neo_Hookean_material
 

Figure 4.10. The material classes in the nonlinear analysis scheme. 

Beyond the methods usually defined in a class to set and get object attributes, the main 

method in these material classes are related to the computing of the tangent constitutive 

tensor. In the case of elastoplastic models, the hardening law and its derivative computation 

are also provided by the respective material class. 

In these cases, the computations also depend on the current strain state at a given point 

of the domain, including information on the evolution of other parameters. As already 

discussed in Chapter 3, these values are computed at integration points of each of the 

elements. This demands a data structure to hold such values, according to the theoretical 

model defined in Chapter 2. 

These functionalities are provided by the ‘stress strain state’ class. For each integration 

point defined in an element, a ‘stress/strain state’ object is instantiated inside element objects, 

when the model is built. Along the solution process, these data is updated for each of the 

iterations. It is worth mentioning that this class is not exclusively employed by elasto-plastic 

models. In fact, it is also useful for conservative models, like for instance, the Neo-Hookean 

material, for which the tangent constitutive tensor depends on the current strain state. 

Regarding the contact problem functionalities, new classes for defining contact 

elements and targets are necessary. Taking into account the 2D idealization adopted for the 

model, these targets are geometrically described by defining line segments. 

The simplest kind of target is related to the Signorini problem, in which it is not 

deformable. Hereby those rigid targets are associated to a class named ‘obstacle’, defined by 

means of one-dimensional partition of unities, resulting in linear, quadratic and cubic 

interpolations geometries. 
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For the case of contact among deformable bodies, a similar class named ‘target’ is 

defined. Targets are also geometrically defined by line segments, being attached to plane 

elements side. Differently from the obstacle, the target instances move and change their shape 

during the solution process. Targets and obstacles perform similar tasks (similar signature 

methods) resulting in a polymorphic set of classes. 

The contact phenomenon is basically considered by means of contact elements, which 

are attached to the deformable solid’s boundaries. Such contact element must perform the 

contact identification and compute the contact constraints, if it is activated in a given instant 

of the solution process. 

The contact identification is based in the condition stated in (2.61). Following the 

numerical solution process discussed in Chapter 3, all elements are initially set as not active. 

These elements remain with this status until it detects penetration. This penetration is 

evaluated by computing the gap value in relation to the target and obstacle objects defined in 

a given model. In this situation, the contact element status is set as ‘activated’. While it is 

active, it returns constraints terms to be accounted in the system of equation, in order to avoid 

the penetration. 

According to the numerical solution strategy presented in Chapter 3, the contact 

element is also responsible for evaluating the tractions at the position in which it is applied, 

which is necessary to verify condition (2.64). If tensile tractions are detected, the contact 

element status is set as ‘deactivated’. 

Since in the conceived code both node-to-segment and segment-to-segment contact 

elements are defined, a set of two different classes are defined: ‘node-to-segment’ and 

‘segment-to-segment’. The first is associated to nodes positioned in the boundary of the 

deformable body, while the second is associated to plane element’s side at such boundary. 

Having briefly discussed the general aspects of the computational implementation, it is 

possible to affirm that the proposed framework supports linear and nonlinear, static and 

dynamic numerical analysis using both the FEM and the GFEM. Some of these analyses 

results are presented in the following two chapters. 
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5 - Numerical validation 

The past chapters were devoted to describe the theoretical foundation, the numerical 

approach and the computational implementation for performing static and dynamic, linear and 

nonlinear solid analysis using the GFEM. Next, we present and analyze numerical examples, 

proposed for validating the implemented formulation, evaluating its efficiency, robustness and 

accuracy. Theoretical and numerical results, computed using the tradition FEM, are used in 

order to achieve such objective. 

5.1. GFEM - enrichment accuracy (linear elasticity) 

In order to evaluate the results achieved both for the polynomial and shifted 

enrichment functions defined in the previous chapters, a 24.0x6.0x1.0 (dimensionless) 

cantilever beam, subjected to a distributed load q=1.0 is stated, as indicated in Figure 5.1. 

Plane stress hypothesis is assumed. The load due to self weight is neglected. 

E=5000.00
v=0.3

q=1.0

24.0

6.0

 
Figure 5.1. Cantilever beam scheme. 

In order to verify the accuracy of the implemented conventional isoparametric finite 

element formulation, the structure is modeled by means of quadrilateral regular meshes 

containing 16 elements (bi-linear, bi-quadratic and bi-cubic). The horizontal stress component 

(Sxx) results are indicated in Figure 5.2. 
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(a) (b) 

 

(c) 

Figure 5.2. Horizontal stress (Sxx) results for bi-linear (a), bi-quadratic (b) and bi-cubic (c) 

isoparametric quadrilateral elements. 

The GFEM results both for the polynomial and shifted enrichment are presented, 

respectively, in Figure 5.3 and Figure 5.4. 

 

(a) 

 

(b) 

Figure 5.3. Horizontal stress component (Sxx) results for first (a) and second (degree) 

‘polynomial’ enrichment. 

 

(a) 

 

(b) 

Figure 5.4. Horizontal stress component (Sxx) results for first (a) and second (degree) ‘shifted’ 

enrichment. 
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The results presented in Figure 5.3 and in Figure 5.4 were achieved by enriching all 

the cantilever nodes, except the ones in which the Dirichlet boundary conditions were applied 

(nodal enforcement of the displacement). The reason for not enriching them is commented at 

the end of the present example. 

As it can be noticed, for the presented field, both polynomial and shifted enrichment 

result in very similar stress distribution. Also, little changes in the results are noticed in the 

field maps of the first and second degree enrichment. 

In order to better evaluate the GFEM stress results, the stress distribution along the 

cross section position, at the middle of the cantilever span, is presented in Figure 5.5. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 5.5. Horizontal ‘Sxx’ (a), vertical ‘Syy’(b) and shear ‘Sxy’ stress components at the cross 

section positioned at the middle of the cantilever beam span. 
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The results presented in Figure 5.5, were achieved for a set of shifted enrichment 

function, both for the first and second degree enrichment. The reference was computed using 

the traditional Euler-Bernoulli beam theory. As it can be noticed, the second degree 

enrichment provides stress results very close to the theoretical reference. Such stress field 

distribution improvement is more noticeable for the vertical (Syy) and shear (Sxy) stress 

components. 

Taking into account that the developed computational framework supports both FEM 

and GFEM analysis, the present example can be used to compare the traditional hierarchic (h) 

and polynomial (p) refinement of the FEM with the enrichment feature of the GFEM, here 

referred as selective (s) refinement. The convergence of the maximum vertical displacement 

of the cantilever beam for the ‘h’, ‘p’ and ‘s’ refinements is presented in Figure 5.6. 

 
Figure 5.6. Maximum vertical displacement convergence for the different refinement strategies. 

The selective ‘refinement’ presents a convergence rate very close to the tradition 

polynomial refinement. The hierarchic refinement demands considerable more degrees of 

freedom (dofs) in order to result in a similar percentage error value. 

Finally, is important to comment the reason for not enriching the nodes in which the 

Dirichlet boundary conditions are applied. 

As already discussed in the previous chapters, one of the difficulties faced in the 

GFEM is the enforcement of displacement (Dirichlet) boundary conditions. This occurs due 

to the fact that, differently of the displacement based FEM, the degrees of freedom in general 

do not represent directly the nodal displacements. On the contrary, the displacement of any 
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point in the problem domain, for a generic enrichment, is obtained by combining several 

degrees of freedom resulting from the enrichment. 

In fact, one of the advantages of the shifted function enrichment is preserving the 

original nodal displacement meaning of the original nodal degree of freedom, since such 

enrichment results as zero at the nodes. In spite of this fact, even this enrichment changes the 

element’s original displacement field in the rest of its domain. Due to this reason, when a 

node at the boundary is enriched, the nodal enforcement of the displacement does not 

guarantee that this value is enforced in between the nodes. 

This effect can be observed if one enriches the nodes at the clamped end of the 

cantilever proposed in the present example. The deformed shape at the clamped region allows 

one to verify that such displacement enforcement is not observed at the element’s face, as 

depicted in Figure 5.7(a). 

 

(a) 

 

(b) 

Figure 5.7. Deformed configuration of the cantilever clamped end when enrichment is applied for 

the nodes in such boundary; nodal enforcement of displacement (a); displacement enforcement along the 

elements’ side (b) (obs.: the deformed configuration in (a) and (b) is scaled by a factor of 10). 

On the other hand, if one intends to enrich such nodes, the displacement enforcement 

must be performed along the whole element’s side. Figure 5.7 (b) depicts the deformed 

configuration in such situation, demonstrating that this approach is able to enforce the 

displacement field along the element side. 

5.2. Distortion and curvature sensibility (linear elasticity) 

It is known that the FEM is sensible to distorted meshes. In the other hand, it is also 

known that the GFEM can circumvent such effects when polynomial enrichments are 
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employed. In order to evaluate the GFEM model sensibility to mesh distortions, the same 

cantilever beam employed in example 5.1 is used to solve the problem proposed in Figure 5.8. 

E=5000.00
v=0.3

q=1.024.0

6.0

 
Figure 5.8. Cantilever beam subjected to a ‘pure’ moment load. 

The FEM horizontal stress component results (Sxx) for different mesh distortions are 

depicted in Figure 5.9. 

  

 
 

 

Figure 5.9. FEM horizontal stress results for different ‘distorted’ meshes. 

Even for the more distorted mesh, both polynomial and shifted enrichment functions 

improve the horizontal stress results in the GFEM model, as depicted in Figure 5.10 and 

Figure 5.11. 

 

(a) 

 

(b) 

Figure 5.10. GFEM horizontal stress results for polynomial enrichment functions; first (a) and 

second (b) degree enrichment. 
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(a) 

 

(b) 

Figure 5.11. GFEM horizontal stress results for shifted enrichment functions; first (a) and second 

(b) degree enrichment. 

Using the developed computational framework capability of mixing different degrees 

partition of unities to describe the element geometry and structural behavior, we advance in 

the present study proposing curved meshes, described by means of second degree serendipity 

partitions of unity (PU), associated to first degree (linear) lagrangian PU to describe the solid 

structural behavior. The achieved horizontal stress results are presented in Figure 5.12. 

  

  

Figure 5.12. FEM horizontal stress results for different ‘curved’ meshes. 

The white nodes in Figure 5.12 do not present degrees of freedom associated to them 

since they are used only by the geometric PU. These nodes are here referred as ‘geometric 

nodes’. 

For the more curved mesh, both polynomial and shifted enrichment function improve 

the horizontal stress results of the GFEM models, as depicted in Figure 5.13 and Figure 5.14. 
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(a) 

 

(b) 

Figure 5.13. Horizontal stress component (Sxx) results achieved using polynomial enrichment 

functions; first (a) and second (b) degree enrichment. 

 

(a) 

 

(b) 

Figure 5.14. Horizontal stress component (Sxx) results achieved using shifted functions; first (a) 

and second (b) degree enrichment. 

Once again, both polynomial and shifted function enrichments result in similar results. 

Due to this fact, in what follows, only the results of one of them will be presented, except for 

the cases in which substantial result differences occur. 

It is important to mention that similar meshes tested for the isoparametric FEM 

elements for equivalent curved meshes do not resulted in similarly good results for the more 

curved meshes, even for bi-cubic isoparametric elements. 

5.3. Linear elastic beam dynamics 

Aiming to evaluate the dynamical behavior of the structures modeled using the 

GFEM, a 2.0 meters cantilever beam is stated, as indicated in Figure 5.15. 

0.05x0.01
2.0

A-BA

B

PE=2.1e11; v=0.3; dens.=7.86e3

 
Figure 5.15. Cantilever beam (dynamics evaluation). 
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As indicated, the beam cross section dimension is 0.05x0.01m (5 centimeters height 

and thickness of 1 centimeter), such that a plane stress model is adopted. Linear elastic 

behavior is assumed, for steel like material properties: 2.1 1011 N/m2 for the Young modulus, 

0.3 for the Poisson’s ratio and 7.86 103 kg/m3 for the density. Even though the density is used 

for computing the inertial terms, the load due to self-weight is not considered for the 

numerical model. 

For the proposed data, natural frequency of vibration of the structure is approximately 

10.4373 Hertz (angular frequency ω equals to 65.5793 radians), and its period (T) is equal to 

0.09581 seconds. 

One supposes that the load P is applied according to the following time history: 

( ) sin( ),  for ;

( ) 0,  for .

t
T

P t P t T

P t t T

π= ≤

= >
 

For these conditions, Warburton (1976) presents the following solution for the vertical 

displacements v(t) at the free edge of the cantilever: 

( )
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1 2 2
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In these equations P is the applied load (here adopted as 100 N), l is the cantilever 

span (2.0 meters), E is the Young modulus, and I is the cross section moment of inertia. Also, 

ω1 and ω2 are, respectively the first and second angular frequencies of the structure. 

Taking this solution as a reference for evaluating the dynamical behavior of the 

proposed structure, several different models are computed using the developed computational 

framework, both for FEM and GFEM. 

5.3.1. FEM - computational code validation 

The first model to be evaluated is defined by means of a regular mesh of 640 (4x160) 

serendipity bi-quadratic quadrilateral elements (Q8), resulting in a FE model containing 4496 

degrees of freedom. The dynamic model is integrated for the total time of 0.5 seconds, within 

300 time steps, resulting in a time increment equals to 0.001667 seconds. The results were 

computed both for consistent and lumped mass matrix. The lumped matrix is computed 

according to the formulation presented in Chapter 3, i.e., proportional to the diagonal terms of 

the consistent mass matrix. 
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The achieved results are depicted in Figure 5.16, in which the theoretical solution 

result is also plotted. As it can be noticed, the results are very close to the theoretical solution, 

what is expected for such a fine mesh model. For this reason, in further analysis of the present 

section, the results obtained for this mesh are considered as a numerical reference. 

 
Figure 5.16. Vertical displacement of the free edge of the cantilever beam, for a 640 bi-quadratic 

(Q8) element model. 

Still for the traditional finite element model, a hierarchical refinement is adopted 

employing meshes of bi-linear quadratric (Q4) elements. Starting from a very coarse mesh of 

40 (2x20) elements, for which the relation between the elements’ sides is 4, one defines other 

meshes of 80, 160 and 640 bi-linear elements. The vertical displacements result for each of 

these meshes is depicted in Figure 5.17. The same time increment of the previous example is 

employed. 

 
Figure 5.17. Vertical displacement of the free edge of the cantilever beam, for several bi-linear 

(Q4) element models (consistent mass matrix). 
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The results achieved for the same meshes, computed using lumped mass matrix are 

practically the same, as shown in Figure 5.18. 

 
Figure 5.18. Vertical displacement of the free edge of the cantilever beam, for several bi-linear 

(Q4) element models (lumped mass matrix). 

5.3.2. GFEM - polynomial and shifted enrichment 

For the evaluation of the GFEM results, the coarser Q4 mesh (40 elements) is used. 

The enrichment is applied over all nodes, except the ones in which Dirichlet boundary 

conditions are applied. For the first degree enrichment, it results in 372 degrees of freedom. 

For the second degree enrichment, the resulting number of degrees of freedom is 732. 

The free edge vertical displacement for the polynomial enrichment are presented in 

Figure 5.19. A consistent mass matrix considering the enriched degrees of freedom is used. 

 
Figure 5.19. displacement of the free edge of the cantilever beam, for polynomial enrichment 

function (consistent mass matrix). 
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Even though remarkable improvements in the solution are observed, one notices that 

the results for the first degree enrichment are available only up to 0.3 seconds, and up to 0.4 

seconds for the second degree. For later time instants, the models have diverged. 

If the same enriched models are computed using a lumped mass matrix, the transient 

analysis do not diverges, but the results are inaccurate, as depicted in Figure 5.20. 

 
Figure 5.20. Vertical displacement of the free edge of the cantilever beam, for polynomial 

enrichment function GFEM model (lumped mass matrix). 

The shifted enrichment function were also evaluated, both for the first and second 

degree enrichment. The shifted enrichment functions results for the consistent mass matrix are 

even less stable than the ones obtained with the polynomial enrichment functions (see Figure 

5.21). 

 
Figure 5.21. Vertical displacement of the free edge of the cantilever beam, for shifted enrichment 

function GFEM model (consistent mass matrix). 



 121

Also for the shifted enrichment functions, the results obtained for the lumped mass 

matrix are more stable, but are also not accurate, especially for the second degree enrichment 

(Figure 5.22). 

 
Figure 5.22. Vertical displacement of the free edge of the cantilever beam, for shifted enrichment 

function GFEM model (lumped mass matrix). 

5.3.3. GFEM - Trigonometric enrichment functions 

As observed in the previous section, the preliminary results of the dynamical behavior 

of the GFEM model are not sufficiently accurate and stable for employing the method to solve 

linear dynamics problems. The present section aims to evaluate the dynamical behavior of the 

GFEM models using trigonometric enrichment functions. 

The referred trigonometric enrichment functions are defined in Chapter 3, in which 

they are referred as ‘double sine’ enrichment functions. Obviously such nomenclature is 

adopted due to the fact that they are computed by performing the product of the sine function 

of the coordinates, both in horizontal and vertical directions. 

In the present section such functions are used to improve the vertical displacements. 

For this reason, they are applied only over the degrees of freedom related to such field. Also, 

taking into account the analytical solution of such kind of problem, the enrichment is only 

computed according to the sine of the horizontal coordinate position, i.e., the sine related to 

the vertical coordinate is computed to the power of zero, such that it results always as one. 

The results of the vertical displacement of the free edge of cantilever beam are 

presented in Figure 5.23, for several different trigonometric enrichment functions. The 

enrichment is applied over all nodes except the ones in which Dirichlet boundary conditions 
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are applied. It was used the same time increment of the previous examples and the results are 

computed using a consistent mass matrix. 

 
Figure 5.23. Vertical displacement of the free edge of the cantilever beam, for several 

trigonometric (double sine) enrichment functions GFEM model (consistent mass matrix). 

As it can be noticed, the vertical displacement results are improved using the proposed 

enrichment, especially when more than one enrichment function is employed (for instance, 

the last enrichments presented in Figure 5.23). On the other hand, one has observed that 

further enrichment schemes (three or more enrichment functions over the same node) do not 

improve the results for the proposed example. 

For the case of lumped mass matrix, one does not observe suitable results. 

5.3.4. Other lumping technique evaluation 

Advancing in the tests of the dynamical behavior of the GFEM model, other numerical 

tests are proposed aiming to improve the unstable and inaccurate results of the previous 

sections. 

The first proposed change is to evaluate the dynamical behavior of the GFEM model 

using a different lumping technique for the mass matrix computation. Here we propose a new 

technique according to which the lumped mass matrix is computed by considering the 

diagonal term of the lumped mass matrix as the sum of all the terms of the respective row of 

the consistent matrix. 

When used for the shifted enrichment functions, such ‘new’ lumping technique does 

not result in stable models, as indicated in Figure 5.24. 
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Figure 5.24 Vertical displacement of the free edge of the cantilever beam, for shifted enrichment 

function GFEM model (lumped mass matrix – new lumping technique). 

In spite of this fact, the results achieved using the ‘new’ lumping technique for the 

polynomial enrichment functions are stable and yet accurate, especially for the second degree 

enrichment, as it can be observed in Figure 5.25. 

 
Figure 5.25. Vertical displacement of the free edge of the cantilever beam, for polynomial 

enrichment function GFEM model (lumped mass matrix – new lumping technique). 

 

For the traditional FEM, the results achieved using the ‘new’ proposed technique are 

very close to the ones obtained previously, as shown in Figure 5.26. 
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Figure 5.26. Vertical displacement of the free edge of the cantilever beam the traditional FEM 

model (lumped mass matrix – new lumping technique). 

5.3.5. GFEM dynamics for not enriched mass matrix 

Advancing in the efforts for efficiently modeling the dynamical behavior of solids 

using the GFEM, numerical tests are processed using mass matrices computed without 

considering the enrichment related degree of freedom. 

For the polynomial enrichment functions the results achieved for the consistent and 

lumped mass matrices are depicted, respectively in Figure 5.27and Figure 5.28. 

 
Figure 5.27. Vertical displacement of the free edge of the cantilever beam, for polynomial 

enrichment function GFEM model (consistent -not enriched - mass matrix). 
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Figure 5.28. Vertical displacement of the free edge of the cantilever beam, for polynomial 

enrichment function GFEM model (lumped -not enriched - mass matrix). 

It is clear that such strategy is not suitable for such kind of enrichment, since the 

structure present no dynamic response. In fact, it behaves like if it was totally dumped. 

Despite of this fact, for the shifted enrichment functions using a consistent mass 

matrix, the results are stable and accurate as shown in Figure 5.29. 

 
Figure 5.29. Vertical displacement of the free edge of the cantilever beam, for shifted enrichment 

function GFEM model (consistent -not enriched - mass matrix). 

 

For the lumped mass matrix, the transient solution diverges for the first degree 

enrichment, but it converges and is stable and accurate for the second degree enrichment (see 

Figure 5.30). 
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Figure 5.30. Vertical displacement of the free edge of the cantilever beam, for shifted enrichment 

function GFEM model (lumped -not enriched - mass matrix). 

5.3.6. Stability after several steps increments 

Once suitable linear dynamic results are achieved for the GFEM, a step forward in the 

validation of the proposed GFEM formulation is to evaluate if it indeed remain stable after a 

considerable number of time increments. In order to perform such test, we extend the previous 

example to longer time integration scheme (3.0 seconds). The time step interval remains the 

same, so that the model is computed in 1800 time steps. 

The GFEM model using consistent enriched mass matrix are accurate at initial 

instants, but unstable after some time steps, as illustrated in Figure 5.31. 

 
Figure 5.31 Vertical displacement of the free edge of the cantilever beam, for shifted enrichment 

function GFEM model (consistent- enriched - mass matrix); 1800 time steps. 
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The trigonometric (double sine) enrichment was also tested, using the enrichment 

scheme represented by red circles in Figure 5.23, i.e., sine(x/4) and sine (x/2). The achieved 

results are presented in Figure 5.32. 

 
Figure 5.32. Vertical displacement of the free edge of the cantilever beam, for trigonometric 

(double sine) enrichment function GFEM model (consistent- enriched - mass matrix); 1800 time steps. 

For the proposed trigonometric enrichment, the transient solution in 1800 time steps is 

stable and remarkable displacement result improvements are observed. In spite of these facts, 

the period of vibration is slightly smaller than the one of the theoretical solution, causing a 

discrepancy after several time steps. 

For the shifted enrichment model employing not enriched mass matrix, the coarser 

mesh (40 elements) is used for the proposed 1800 time steps integration. The results remain 

accurate even at the end of the processing, as it can be observed in Figure 5.33. 

 
Figure 5.33. Vertical displacement of the free edge of the cantilever beam, for shifted enrichment 

function GFEM model (consistent- not enriched - mass matrix); 1800 time steps. 
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Finally, the bi-quadratic (Q8) FEM model with 640 elements is also evaluated. The 

results are accurate and stable, as depicted in Figure 5.34. 

 
Figure 5.34. Vertical displacement of the free edge of the cantilever beam, for FEM - Q8 mesh 

(consistent mass matrix); 1800 time steps. 

5.3.7. GFEM – dynamics for harmonic applied forces 

Advancing in the linear dynamics analysis evaluation, one evaluates the dynamical 

behavior of the GFEM models for structures subjected to harmonic applied forces. 

One proposes to evaluate the vertical displacement of the free edge of the cantilever 

beam for a 10 N force applied at the same position as the one considered in the previous linear 

dynamics examples (see Figure 5.15), oscillating in four different frequencies: 6.0 Hertz, 8.0 

Hertz, 10.2 Hertz and 12.0 Hertz. It is worth to note that the natural frequency of vibration of 

the proposed structure is 10.4373 Hertz, i.e., the third proposed harmonic load is purposely 

close to such value. 

The numerical solutions obtained for the 640 bi-quadratic (Q8) elements are 

considered the reference for comparing the results achieved by means of the GFEM. 

The results achieved for the trigonometric enrichment scheme evaluated in the 

previous section (sine(x/4) and sine(x/2)), for the proposed frequencies, are indicated in the 

following four figures (Figure 5.35 to Figure 5.38). 
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Figure 5.35. Vertical displacement of the free edge of the cantilever beam, for trigonometric 

(double sine) enrichment GFEM model; harmonic load – 6.0 Hertz. 

For the frequencies of 6.0 and 8.0 Hertz the results are, in general, close to the 

reference solution. It is worth mentioning that the results achieved using the same coarse 

mesh, for no enrichment, are very far from the ones of the reference solution. In some time 

instants of the solution, the GFEM solutions differ slightly from the reference solution, but the 

model seems to represent the expected dynamical behavior, in a general sense. 

For the frequency of 10.2 Hertz (close to the proposed structure natural frequency), the 

results are very close to the reference solution (Figure 5.37). At further time instants, the 

GFEM model fails in representing accurately the amplitude of vibration of the reference 

solution. 

 
Figure 5.36. Vertical displacement of the free edge of the cantilever beam, for trigonometric 

(double sine) enrichment GFEM model; harmonic load – 8.0 Hertz. 
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Figure 5.37. Vertical displacement of the free edge of the cantilever beam, for trigonometric 

(double sine) enrichment GFEM model; harmonic load – 10.2 Hertz. 

For the frequency of 12.0 Hertz, the proposed trigonometric enrichment GFEM model 

seems to present the same dynamical behavior observed for the lower frequencies tested 

previously (Figure 5.38). 

 
Figure 5.38. Vertical displacement of the free edge of the cantilever beam, for trigonometric 

(double sine) enrichment GFEM model; harmonic load – 12.0 Hertz. 

Advancing in the GFEM linear dynamics behavior evaluation, one finally tests the 

model subjected to the same frequencies for a first degree shifted enrichment scheme, using 

consistent not enriched mass matrix to represent the structure inertial behavior. The achieved 

results are present in the four following figures (Figure 5.39 to Figure 5.41.) 

 

 

 



 131

 

 
Figure 5.39. Vertical displacement of the free edge of the cantilever beam, for a first degree 

shifted GFEM model (not enriched mass matrix); harmonic load – 6.0 Hertz. 

 

 

 
Figure 5.40. Vertical displacement of the free edge of the cantilever beam, for a first degree 

shifted enrichment GFEM model (not enriched mass matrix); harmonic load – 8.0 Hertz. 
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Figure 5.41. Vertical displacement of the free edge of the cantilever beam, for a first degree 

shifted enrichment GFEM model (not enriched mass matrix); harmonic load – 10.2 Hertz. 

The observed results are very close to the reference solution, for all tested frequencies, 

as it can be observed in the presented results. 

 
Figure 5.42. Vertical displacement of the free edge of the cantilever beam, for a first degree 

shifted enrichment GFEM model (not enriched mass matrix); harmonic load – 12.0 Hertz. 

5.3.8. A brief discussion on the system of equation condition number 

The linear dynamic analysis performed by means of implicit time integration methods 

depends on the equilibrium configuration convergence, which, by it turns, is related to the 

associated system of equation condition number. It is known that the shifted and polynomial 

enrichment functions can introduce linear dependency on the resulting system of equation, 

demanding especial techniques to solve it. 
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The loss of stability of the solution process, observed in the present example, is related 

to such system of equation conditioning. So, an analysis on the resulting condition number of 

the tested models is important to explain the instabilities observed in the previously presented 

results. 

The condition number for the FEM models is presented in Table 5.1. 

Table 5.1. Condition number for the FEM models. 

type n. elements n. dof mass matrix condition number 

Q4 40 126 
consistent 1.296877e+05 

lumped – technic 1 1.294200e+05 

lumped – technic 2 1.294200e+05 

Q4 80 246 
consistent 1.301963e+05 

lumped – technic 1 1.301182e+05 

lumped – technic 2 1.301182e+05 

Q4 160 486 
consistent 1.318546e+05 

lumped – technic 1 1.318233e+05 

lumped – technic 2 1.318233e+05 

Q4 640 1610 
consistent 5.242989e+05 

lumped – technic 1 5.242679e+05 

lumped – technic 2 5.242679e+05 

Q8 640 4498 
consistent 4.319351e+06 

lumped – technic 1 4.319238e+06 

lumped – technic 2 4.319351e+06 

 

In Table 5.1, we refer as lumping technic 1 the one presented in Chapter 3 (the lumped 

terms are computed proportional to the consistent matrix diagonal terms). The lumping 

technic 2 is the one tested in Section 5.3.4, for which the lumped term is computed by the sum 

of the terms of the specific consistent mass matrix row. It is important to mention that the 

presented condition numbers are computed using a NumPy routine (The SciPy Community 

(2011)), in which such number is computed according to Strang (1980). 

It is also important to explain that the presented condition numbers are computed over 

the scaled form of the system of equation matrix K*, computed by 

* 1
,  if ; =0 ifij ij

ij

K DKD D i j D i j
K

= = = ≠ . 

For some of the GFEM models, the observed condition number is clearly much higher, 

as indicated in Table 5.2. 
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Table 5.2. Condition number for the GFEM models. 

enrichment n. dof mass matrix condition number 

shifted – 1st degree 366 

enriched – consistent 3.777804e+17 

enriched – lumped – technic 1 9.263366e+05 

enriched – lumped – technic 2 1.684145e+09 

not enriched – consistent 7.057268e+17 

not enriched – lumped – technic 1 6.142784e+17 

shifted – 2nd degree 726 

enriched – consistent 4.789890e+17 

enriched – lumped – technic 1 1.225849e+06 

enriched – lumped – technic 2 1.066182e+18 

not enriched – consistent 2.103090e+18 

not enriched – lumped – technic 1 2.463852e+18 

polynomial – 1st degree 366 

enriched – consistent 2.160766e+18 

enriched – lumped – technic 1 3.878980e+05 

enriched – lumped – technic 2 3.232698e+05 

not enriched – consistent 1.262585e+08 

not enriched – lumped – technic 1 1.259327e+08 

polynomial – 2nd degree 726 

enriched – consistent 4.570755e+18 

enriched – lumped – technic 1 1.839213e+06 

enriched – lumped – technic 2 6.003907e+05 

not enriched – consistent 4.841566e+18 

not enriched – lumped – technic 1 2.673353e+18 

sine(x/8) 186 enriched – consistent 9.426896e+08 

sine(x/4) 186 enriched – consistent 1.042058e+08 

sine(x/4) and sine(x/2) 246 enriched – consistent 5.108613e+09 

sine(x/8), sine(x/4) and sine(x/2) 306 enriched – consistent 4.943142e+15 

 

It can be found, by comparing the condition number present in Table 5.2 to the results 

presented in the previous sections, that such high values of the condition number are, in 

general, associated to the models for which the dynamic analysis failed to find a solution. In 

spite of that, some GFEM models that present high condition number shown to be stable, as 

for instance, the ones enriched by shifted function, using not enriched consistent mass 

matrices. 

Such a stability issue is also observed in the nonlinear analysis to be presented in the 

following examples, and causes loss of convergence in some of the nonlinear problems. 
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5.4. Cylinder - internal pressure (small-strain plasticity) 

Aiming to evaluate the accuracy of the GFEM model to represent small strain 

elastoplastic material behavior, a simple example of an internally pressurized cylinder is 

proposed, for which an analytical solution derived by Hill (1950) is present in Souza Neto, 

Perić and Owen (2008). The cylinder cross section geometry is presented in Figure 5.43. 

10.0 10.0

E=21000.00
v=0.3

σy=24.00

Y

ε

σ

P

 
Figure 5.43. Internally pressurized cylinder example scheme. 

 

It is assumed a von Mises stress based model for the perfectly plastic behavior 

material. The material properties are: Young’s modulus equal to 21000 kN/cm2, Poisson’s 

ratio equal to 0.3 and uniaxial yield stress equal to 24 kN/cm2. 

The Hill solution relates the internal pressure P to the plastic front radius 
p
r  as  

2

1
2 2

3
ln 1

p p

y i e

r rP

r rσ

     = + −        
, 

in which 
i
r  and 

e
r  are, respectively, the internal and external cylinder radius. 

One finds the position of the plastic front by means of the presented nonlinear 

equation, from which is possible to determine 
p
r . Plastic yield starts when the plastic front 

radius is equal to the cylinder internal radius. For the proposed data, it starts with a pressure 

equals to 10.39 kN/cm2. The limit pressure, for which the cylinder collapses, is determined by 

means of the same equation, by imposing that the plastic yield radius is equal to external 

cylinder radius. For the proposed data, this value is equal to 19.21 kN/cm2. 

Once the elastic front radius is positioned, different expressions describe the stress 

components, in cylindrical coordinate system, i.e., 
r
σ  (radial direction) and 

θ
σ  (normal to the 

radial direction): 
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- For the elastic behavior region: 

2 22 2

2 22 2
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- For the plastic region: 
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. 

The Finite Element (FE) model proposed to solve the problem is defined by a 192 

(12x16) elements mesh of curved (isoparametric) bi-quadratic (Q8) elements, resulting in a 

model with 264 degrees of freedom. Only a quarter of the cylinder is represented in the FE 

model, since the it is symmetric. Plane strain hypothesis is assumed. The stress results along 

the cylinder radius for values of the pressure P equal to 10, 12 and 14 kN/m2 are presented, 

respectively in Figure 5.44, Figure 5.45and Figure 5.46. 

 

 
Figure 5.44. Stresses in the radial and normal to the radial directions along the cylinder radius for 

a pressure P=10 kN/cm2. 

 
Figure 5.45. Stresses in the radial and normal to the radial directions along the cylinder radius for 

a pressure P=12 kN/cm2. 
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Figure 5.46. Stresses in the radial and normal to the radial directions along the cylinder radius for 

a pressure P=14 kN/cm2. 

The GFEM model used to simulate the elastoplastic example is defined by means of a 

mesh of 12 quadrilateral elements. Their geometry is described by means of bi-quadratic (Q8) 

partitions of unity (PU), while the PU used to describe the displacement fields is bi-linear 

(Q4). 

All the nodes are enriched using shifted functions, up to the second degree, resulting in 

120 degrees of freedom. The numerical integration is performed using 6x6 points (Gauss-

Legendre quadrature). The Dirichlet boundary conditions, used to simulate the symmetries, 

are applied by imposing the displacement fields along the whole elements’ sides. 

Some of the displacement, stress and plastic strain fields obtained both for the FEM 

and the GFEM model are presented in the following figures (Figure 5.47 to Figure 5.52). 

 

 

(a) 

 

(b) 

Figure 5.47. Horizontal displacement (dx) results for the FEM model (a) and the GFEM model 

(b). 
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(a) 

 

(b) 

Figure 5.48. Horizontal stress (Sxx) results for the FEM model (a) and the GFEM model (b). 

 

(a) 

 

(b) 

Figure 5.49. Shear stress (Sxy) results for the FEM model (a) and the GFEM model (b). 

 

(a) 

 

(b) 

Figure 5.50. Von Mises stress (Svm) results for the FEM model (a) and the GFEM model (b). 
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(a) 

 

(b) 

Figure 5.51. Plastic strain in horizontal direction (Exxp) results for the FEM model (a) and the 

GFEM model (b). 

 

(a) 

 

(b) 

Figure 5.52. Plastic shear strain component (Exyp) results for the FEM model (a) and the GFEM 

model (b). 

Taking into account the difference in the number of elements in the meshes, one 

observes that the GFEM model represents all the presented fields with sufficient accuracy.  

It is worth to comment that for the GFEM model, the nodes represented in white color 

are only used by the geometric partition of unity. Therefore, this nodes present no degrees of 

freedom related to them. 

5.5. Simple bar (small-strain plasticity) 

Advancing in the elastoplastic material model evaluation, a simple bar example is 

stated, aiming to evaluate the computational code capability of representing both bi-linear and 
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nonlinear hardening laws described in Chapter 3. The ability to correctly model the elastic 

behavior in the unloading stage of cyclic loads is also evaluated. 

The proposed bar length is 5 (dimensionless). A unitary are (1x1) cross section is 

adopted. The proposed mesh is defined by 10 bi-linear (Q4) elements, as indicated in Figure 

5.53. 

5.0

σ

 

(a) 

 

(b) 

Figure 5.53. Simple bar structure (a) and proposed mesh for modelling it (b). 

For the bi-linear hardening material the adopted material properties are indicated in 

Table 5.3. The stress/strain relation both for the FEM and the GFEM model, is indicated in 

Figure 5.54. 

 

Table 5.3. Material properties for the proposed bi-linear hardening material (dimensionless). 

Young’s modulus 7000.00 

Poisson’s ratio 0.3 

Yield stress 10.00 

Infinity stress 10.00 

Isotropic hardening modulus 1.0 

Exponential factor - 

 

 
Figure 5.54. Bi-linear hardening elastoplastic material – stress/strain relation. 
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For the nonlinear hardening material the adopted properties are indicated in Table 5.4. 

The stress/strain relation, both for the FEM and the GFEM model, is indicated in Figure 5.55. 

 

Table 5.4 Material properties for the proposed nonlinear hardening material (dimensionless). 

Young’s modulus 21000.00 

Poisson’s ratio 0.3 

Yield stress 25.00 

Infinity stress 40.00 

Isotropic hardening modulus 2.5 

Exponential factor 20.0 

 

 
Figure 5.55. Nonlinear hardening elastoplastic material – stress/strain relation. 

5.6. Von Mises truss (nonlinear kinematics) 

Aiming to evaluate the solution of nonlinear kinematic stability problems, a simple 

truss example is stated, as indicated in Figure 5.56. 

10.0
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E=21000.0

 

(a) 

dx=0.0
dy=0.0

dx=0.0
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E

10E

10E

 

(b) 

Figure 5.56. Simple truss problem scheme (a) and the respective proposed 2D FE model (b). 
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The proposed example is a limit point instability problem, also referred as von Mises 

truss (Bazant and Cedolin (2010)). The instability occurs due to the fact that an abrupt change 

in the bar configuration is observed, depending on the value of the load P.  

The analytical solution for the problem can be easily derived (see Proença (2010)). 

The nonlinear equation relating the applied force P  and the vertical displacement of the node 

in which such force is applied (v ) is 

( ) ( ) ( )3 2 2 2 2
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 

. 

In such equation, 
0
l  is the initial length of the bar (150.0), h  is the initial vertical 

distance between the bar edges (10.0), and A  is the bar cross sectional area. 

The 2D finite element (FE) model scheme used to model such structure is indicated in 

Figure 5.56 (b). A regular mesh of 120 bi-linear elements (Q4) is used to defined the bar 

geometry. The bar hinges are simulated by imposing displacements at single nodes at the 

edges of the mesh. 

As the problem can present instabilities depending on the applied force, the force is 

applied by imposing displacements at the ‘top hinge’ node, and its value is evaluated by 

computing the vertical reaction observed in such node. 

It is also important to take into account that in some steps of the nonlinear process, the 

forces applied over those nodes is very high, resulting in a crushing zone in their 

‘neighborhood’. This is the reason why the elements positioned near those nodes are defined 

using a Young’s modulus ten times higher than the one defined for the rest of the bar (se 

Figure 5.56 (b)). 

The results obtained for the FE model are presented in Figure 5.57. 

The crushing at the ‘hinge’ nodes is evidenced by analyzing the deviation of the 

numerical solution from the theoretical one, in Figure 5.57 (a). The stress and strain 

concentration at such regions is also noticed by observing the von Mises stress field presented 

in the edge elements, as depicted in Figure 5.58. 

On the other hand, the results present in Figure 5.57 (b) demonstrate that using a 

higher Young modulus at the edge elements allows one to achieve for the 2D FE model 

exactly the same results as the ones predicted by the theoretical solution. 
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(a) 

 

(b) 

Figure 5.57. Vertical force/displacement relation obtained for 2D FE model; (a) theoretical 

solution presenting deviation due to crushing at the ‘simulated’ hinge; (b) solution achieved when 

‘reinforced’ elements are positioned at the edges of the mesh in which the displacements are applied. 

 
Figure 5.58. Von Mises stress resusts for the FE model (stress concentration at the edge elements). 

Since the proposed FEM model already represents exactly the theoretical results, we 

propose a mesh ‘coarsen’ in order to evaluate the GFEM model. 

The proposed mesh for the GFEM model is depicted in Figure 5.59. 

 
Figure 5.59. Eight bi-linear (Q4) element mesh proposed for the GFEM model. 
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The results achieved for both first and second degree shifted enrichment functions 

applied over all nodes, excluding the ones in which the boundary condition is applied, are 

indicated in Figure 5.60. 

 
Figure 5.60. Vertical force/displacement relation obtained for 2D GFEM shifted enrichment 

functions model. 

Figure 5.61 illustrates the GFEM model deformed equilibrium configuration for some 

steps of the proposed nonlinear problem. 

 

(a) 
 

(b) 

 

 (c) 

 

(d) 

Figure 5.61. GFEM model deformed equilibrium configuration at some steps of the solution.  
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5.7. Euler column (nonlinear elastic instability) 

Continuing the evaluation of the GFEM model for the nonlinear kinematic model, one 

proposes the classical Euler column problem (bifurcation stability). The proposed problem 

adopted data and 2D plane model mesh scheme is depicted in Figure 5.62. 
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(b) 

Figure 5.62. Euler column problem proposed data (a) and proposed 2D plane model (b). 

The prismatic bar elastic buckling theory allows one to compute the critical load by 

2

2cr

EI
P

L

π
= , 

in which 
cr

P  is the critical load, E  is the Young’s modulus, I  is the prismatic bar moment of 

inertia and L  is its length (see Timoshenko and Gere (1985)). For the proposed data, the 

computed value for 
cr

P   is 6.9087 (dimensionless). 

Such critical load can be used as a reference for the proposed nonlinear elastic 

instability problem, which occurs when the model presents, for instance, an initial geometric 

imperfection. 

After the critical load is reached, one observes an abrupt lateral displacement 

(equilibrium bifurcation), which can be estimated by means of 

2

8 1
( ) ,cr

P
P

crd P P P
Lπ

−
= > , 

in which, d  is the lateral displacement and P  is the applied force. 

Similarly to the previous example, the 1D model (prismatic bar) hinge is simulated by 

imposing displacements in a single node of the 2D plane model mesh, which can cause 

crushing and demands the same strategy of using a different Young’s modulus for the 



 146 

elements surrounding such nodes (edge of the mesh). Due to stability issues, the force is 

applied by enforcing vertical displacements at the node, and it is evaluated by computing the 

reaction force, in a similar fashion that it was performed for the previous example. 

For the FE model, a 300 (2x150) regular bi-linear (Q4) elements mesh is defined. Such 

mesh is defined such that the initial position of the nodes defines a structural element with a 

deviation ‘ e ’ of the perfectly straight geometric configuration. The graphics relating the 

applied vertical force to the lateral displacement at the middle height of the column, for 

several different values of geometric ‘imperfections’ e , is depicted in Figure 5.63. 

The results of Figure 5.63 demonstrate that the FE model represents the global 

behavior expected for the elastic stability problem, and that the nonlinear kinematic model 

approaches to the results expected by the elastic buckling theory. 

Indeed, the accuracy of the results can be improved by means of a polynomial 

refinement, i.e., defining a FE model of 300 elements bi-quadratic (Q8) elements. Keeping all 

the other parameters already used for the bi-linear elements mesh, the results achieved for the 

Q8 elements mesh are depicted in Figure 5.64. 

 

 
Figure 5.63. Vertical force x horizontal (lateral) displacement at the middle height of the column, 

for several initial geometric ‘imperfections’ e - Q4 (bi-linear) elements. 
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Figure 5.64. Vertical force x horizontal (lateral) displacement at the middle height of the column, 

for several initial geometric ‘imperfections’ e - Q8 (bi-quadratic) elements. 

The data presented in Figure 5.64 reinforces the expectations that for the smaller value 

of geometric imperfection, the results are close to the ones predicted by means of the elastic 

buckling theory. This is the value of imperfection to be used in the GFEM model. 

Advancing for the GFEM model evaluation, the same strategy of mesh ‘coarsen’ is 

applied for the present example, since the bi-linear mesh elements results are already close to 

the theoretical reference ones. 

A mesh of 44 (2x22) bi-linear elements are defined for GFEM model. Shifted 

functions are used for the model enrichment, excluding the nodes in which the displacements 

are applied. Both first and second degree enrichments are tested. 

It is worth to mention that such mesh results in elements measuring 0.5x0.25 length 

units, i.e., the relation of the elements size is 5, which can compromise its performance for the 

FEM. The objective here is to evaluate the GFEM gains in such situation, based on the results 

observed in the linear elastic results presented in the example 5.2. 

The GFEM results are indicated in Figure 5.65. As expected, the not enriched model, 

equivalent to the FEM, presented poor quality results, while both first and second degree 

enrichments presented accurate results. 
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Figure 5.65. Vertical force x horizontal (lateral) displacement at the middle height of the column – 

GFEM model 

It is also worth to observe that the GFEM model present a considerably reduced 

number of degrees of freedom, when compared to the tested FEM models. 

Aiming to illustrate the deformed configuration of the model for a force higher than 

the critical load value, the resulting horizontal and vertical displacement, and the von Mises 

stress field are presented in Figure 5.66. 

 

(a) 

 

(b) 

 

(c) 

Figure 5.66. Deformed equilibrium configuration of the proposed GFEM Euler column model: (a) 

horizontal displacements; (b) vertical displacements; (c) von Mises stress field. 
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5.8. Neo-Hookean solid simple bar (hyperelastic material) 

The problems proposed in the two last examples present relatively large 

displacements. Despite of this fact, the material stress/strain relation considered for the model 

is constant. 

On the other hand, when larger strains are observed, the Saint-Venant Kirchhoff model 

can fail in converging, demanding constitutive model supporting large strains 

(hyperelasticity). The simplest of them is the Neo-Hookean material, already discussed in 

Chapter 3. 

In order to illustrate such hyperlastic behavior, the same mesh employed in example 

5.5 is used to simulate the force and displacement relation for the Neo-Hookean material 

model. The adopted material parameters are: Young modulus equal to 1000.00 and Poisson’s 

ratio equal to 0.499. The computed results are presented in Figure 5.67. 

 

 
Figure 5.67. Force x displacement relation for a simple bar model, for linear elastic, Saint-Venant 

Kirchhoff and Neo-Hookean material constitutive models. 

 

The same model is also used to evaluate Neo-Hooekan material structural response 

when the Poisson ratio’s changes. The results are indicated in Figure 5.68. 
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Figure 5.68. Hyperlastic bar for different values of Poisson’s ratio. 

 

Finally, Figure 5.69 illustrates different deformed configuration of the hyperelastic bar 

model. 

 

(a) 

 

(b) 

 

(c) 

Figure 5.69. Deformed configuration of the hyperlastic bar: (a) small shortening; (b) large 

shortening and (c) large stretching. 
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5.9. Simple Signorini contact test (rigid obstacle contact) 

A simple example of contact between a square shaped 2D solid and a rigid support is 

proposed. The frictional forces observed between the solid and the rigid support are neglected, 

resulting in the so-called Signorini contact problem (Laursen (2002)). The proposed 

geometry, material parameters (dimensionless) and additional data are presented in Figure 

5.70. 

4.0

4.0
E=100.00

v=0.3

q=1

rigid

support
 

Figure 5.70. Proposed simple Signorini contact problem scheme. 

One starts evaluating the node-to-segment contact element derived in Chapter 3, for 

the FE models. The proposed model is a 16 (4x4) quadrilateral elements mesh, defined for bi-

linear (Q4), bi-quadratic (Q8) and bi-cubic (Q12) serendipity elements. The vertical 

displacement results for such models are shown in Figure 5.71. 

 

(a) 

 

(b) 

 

(c)  

Figure 5.71. Vertical displacement field (dy) for (a) bi-linear, (b) bi-quadratic and (c) bi-cubic FE 

elements models - node-to-segment contact elements. 

As it can be noticed, for the Signorini problem, the FEM vertical displacement results 

achieved using node-to-segment contact elements are accurate, for all the tested elements. 
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Also the other fields (displacements and stresses) are regular, as expected for the proposed 

problem. 

On the other hand, for the GFEM, such results are not accurate. Figure 5.72 indicates 

the results for a GFEM model in which first and second degrees shifted enrichment functions 

are applied to all the solids nodes. 

 

(a) 

 

(b) 

Figure 5.72. Vertical displacement field for a first (a) and second (b) degree enrichment function 

GFEM model, using node-to-segment contact elements. 

The field deviations observed in Figure 5.72 is due to penetration in the elements side, 

as it can be observed in a closer view of the contact region, as shown in Figure 5.73. 

 
Figure 5.73. Closer view of the contact region of the GFEM model computed using node-to-

segment contact elements. 

This effect is similar to the one discussed in example 5.1, in which the displacement 

boundary conditions must be imposed over the whole element side if enrichments are applied 

over the boundary nodes. 
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The distribution of gap values and contact tractions along the contact interface are 

depicted in Figure 5.74 and Figure 5.75, respectively. 

 
Figure 5.74. Contact gaps at the contact region for the GFEM model. 

 
Figure 5.75. Contact tractions at the contact region for the GFEM model. 

Like it happens for the displacement boundary conditions, such results enforce the fact 

that for the GFEM, the contact conditions enforcement needs to be performed in an element 

wise fashion, i.e., the conditions must be enforced along the whole element side, when such 

nodes are enriched. In this context, the segment-to-segment contact elements derived in 

Chapter 3 are the ones that must be used for accurately computing GFEM contact models. 

In fact, when applied to the proposed problem, the segment-to-segment contact 

elements resulted in the expected displacement and stresses fields, preventing penetrations at 

the contact region in between nodes, and recovering the contact vertical stress field (Syy). In 

Figure 5.76, a closer view of the same region indicated in Figure 5.73 is illustrated, for the 

case of a shifted second degree enrichment GFEM model, using the derived segment-to-

segment contact element. 
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Figure 5.76. . Closer view of the contact region of the GFEM model computed using segment-to-

segment contact elements. 

It is important to mention that both penalty and Lagrange multipliers based contact 

elements resulted in similarly accurate results. 

For the case o Lagrange multipliers contact elements, for all the tested enrichments, 

the same degree of enrichment was also applied to enrich the Lagrange multipliers field. 

5.10. Contact patch-test (deformable bodies contact) 

Continuing the contact analysis evaluation, a simple patch test of two rectangular 

deformable bodies is proposed, aiming to evaluate the node-to-segment and the segment-to-

segment contact elements, both for the FEM and the GFEM. The contact patch test data is 

presented in Figure 5.77. 
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Figure 5.77. Contact patch test scheme. 
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The proposed example consists of two rectangular solids composed of the same 

material, one positioned over the other, such that contact is observed between them. The 

adopted meshes are defined such that the elements are not coincident at the contact region. 

For the FEM model, the horizontal and vertical displacement fields obtained using 

node-to-segment and segment-to-segment contact elements are presented in Figure 5.78 and 

5.79. 

 

(a) 

 

(b) 

Figure 5.78. Horizontal displacement (dx) field obtained using (a) node-to-segment and (b) 

segment-to-segment (mortar) contact elements. 

 

 

(a) 

 

(b) 

Figure 5.79. Vertical displacement (dy) field obtained using (a) node-to-segment and (b) segment-

to-segment (mortar) contact elements. 
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One observes that the use of the derived node-to-segment contact elements does not 

result in regular displacement fields, as expected for the proposed patch test. In spite of that, 

the mortar contact element results in regular displacement fields and accurate results. 

Obviously the same field perturbations are reflected in the stresses fields. The vertical 

stress (Syy) component fields for both contact elements are depicted in Figure 5.80. 

 

(a) 

 

(b) 

Figure 5.80. Vertical stress field (Syy) obtained using (a) node-to-segment and (b) segment-to-

segment (mortar) contact elements. 

The distribution of gap values and contact tractions along the contact region are 

depicted in Figure 5.81. 

 

(a) 
 

(b) 

Figure 5.81. Contact gaps (a) and traction (b) for model computed using node-to-segment contact 

elements and segment-to-segment (mortar) contact elements – Lagrange multipliers formulation. 
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Regarding the gaps, one observes that, contrary to the mortar contact segment, the 

node-to-segment contact elements model presents variations in the gap along the contact 

interface, especially near the nodes at the position x=1.0 and x=3.0. 

Before advancing, it is important to explain the terms ‘real’ and ‘estimated’ associated 

to the traction results presented in Figure 5.81(b). Here one refers to ‘estimated tractions’ for 

the values computed in the contact elements, in accordance with relations (3.158) and (3.159). 

The term ‘real traction’ refers to the tractions computed along the element side using the 

Cauchy relation. 

As observed, even though the estimated traction varies along the contact interface, the 

computed real tractions are quite constant and close to the value expected for the patch test. 

Since the node-to-segment results are not accurate for the FEM, it is clear that such 

contact elements are not suitable for GFEM models. However, for illustrative purposes, the 

gaps and tractions obtained in such situation, when the nodes at the contact interface are 

enriched, are presented in Figure 5.82. 

 

(a) 
 

(b) 

Figure 5.82. Contact gaps (a) and traction (b) for model computed using node-to-segment contact 

elements – GFEM shifted enrichment functions- penalty formulation. 

Once the node-to-segment is evaluated, the mortar segment-to-segment contact 

elements are also evaluated for the FEM higher order interpolations. For doing so, the patch 

test problem is remodeled for meshes of bi-quadratic (Q8) and bi-cubic (Q12) finite elements. 

The vertical displacement fields are presented in Figure 5.83. 
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(a) 

 

(b) 

Figure 5.83. Vertical displacement (dy) field for bi-quadratic (a) and bi-cubic (b) elements meshes 

– mortar segment-to-segment contact element – Lagrange multipliers formulation. 

In spite of the good displacement results, it is possible to verify that the vertical stress 

component field (Syy) is not constant for the FEM higher order interpolations (Figure 5.84). 

 

(a) 

 

(b) 

Figure 5.84. Vertical component stress field (Syy) for bi-quadratic (a) and bi-cubic element 

meshes (b) – mortar contact element – Lagrange multipliers formulation. 

It is worth mentioning that such oscillations were not caused by poor numerical 

integrations, since several integration schemes containing sufficient points were evaluated for 

these models. 

The contact gaps and tractions distribution along the contact interface, for the mortar 

contact element based on the Lagrange multipliers method, is depicted in Figure 5.85. 

 



 159

 

(a) 

 

(b) 

 

(c) 

Figure 5.85. Contact gaps (a), estimated tractions (b) and real tractions (c) distributions along the 

contact area – mortar segment-to-segment contact element – Lagrange multipliers formulation. 

One observes that the gaps variations over the contact interfaces are larger for the 

higher degrees interpolation, especially the cubic one. Regarding the estimated traction value, 

the same behavior is observed, i.e., its distribution varies more for the cubic interpolation.  

Finally, the evaluation of the results achieved for the proposed enriched mortar contact 

elements is performed, using the bi-linear elements mesh presented at the beginning of the 

current example (see Figure 5.78, Figure 5.79 and Figure 5.80). 

Both the penalty and the Lagrange multipliers based formulation were evaluated. For 

the first one, a 106 value is used for the penalty parameter. For the Lagrange multiplier, the 

same degree employed for enriching the displacement fields is used for enriching the 

Lagrange multipliers field. Likewise in the FEM models, six integration points are used in the 

mortar elements computation. Shifted enrichment functions were applied. The contact gaps 

distribution results are presented in Figure 5.86. 
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(a) 

 

(b) 

Figure 5.86. Contact gaps distribution for shifted enrichment functions GFEM model, both for 

Lagrange multipliers (a) and penalty (b) formulation. 

For the presented example, the enriched mortar contact elements based in the 

Lagrange multipliers formulation seems to results in gaps that oscillate more than the ones 

observed for the penalty formulation. On the other hand, the mean gap value achieved by 

means of the Lagrange multipliers formulation is closer to zero, if compared to the mean gap 

value computed using the penalty method. 

Regarding the estimated traction distribution, the Lagrange multipliers formulation 

seems to be sufficiently representative, especially for the first and second degree enrichments. 

For the penalty formulation, the estimated traction value varies considerably (see Figure 5.87 

(b)). 

 

(a) 

 

(b) 

Figure 5.87. Contact estimated tractions distribution for shifted enrichment functions GFEM 

model, both for Lagrange multipliers (a) and penalty (b) formulation. 

Finally, taking into account the real traction distributions, both formulations presented 

sufficiently accurate results for the proposed patch test (Figure 5.88). 
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(a) 

 

(b) 

Figure 5.88. Contact real tractions distribution for shifted enrichment functions GFEM model, 

both for Lagrange multipliers (a) and penalty (b) formulation. 

It is important to mention that the vertical stress component field, obtained by the 

enriched mortar contact elements, is sufficiently accurate and close to the expected value 

(Figure 5.89), especially if one compares it with ones obtained for higher order mortar contact 

elements of the traditional FEM (Figure 5.84). 

 
Figure 5.89. Vertical stress component field (Syy) obtained for a shifted functions enrichment 

GFEM model (second degree enrichment) - Lagrange multipliers formulation. 
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5.11. Hertz problem (small displacement contact) 

Taking advantage of the existence of an analytical solution of the contact tensile 

distribution for the well-known Hertz problem, we propose the evaluation of the generalized 

segment-to-segment contact element for the problem indicated in Figure 5.90. 
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v=0.2

r=4
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Figure 5.90. Proposed data for a Hertz contact problem scheme. 

The proposed problem simulates the frictionless contact of a deformable cylinder and 

a rigid support, resulting in a Signorini problem. Due to the problem characteristics, a plane 

strain behavior is assumed. A linear elastic model is considered for the cylinder material. No 

dimensions are associated to the data presented in Figure 5.90. 

The theoretical traction values along the contact region are defined by 
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in which r  is the cylinder radius, q  is the distributed load, and b  is half the length of the 

contact area in the idealized 2D model, which, by its turn, is computed by 
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Among other references, such formula is found in Dias (2013). 

For the proposed problem, the value for b  is approximately 0.656, and the maximum 

traction value is circa 85.41. 

Despite it seems simple, this problem present some difficulties in order to result in 

accurate results regarding the traction distributions. After several bad succeeded tests, the 

topology used by Laursen (1992) and Dias (2013) seems to be the best choice for modeling 

such problem. The adopted mesh, based on those ones, is presented in Figure 5.91. 
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Figure 5.91. Bi-linear quadrilateral (Q4) elements mesh proposed for modeling the Hertz contact 

problem. 

First, the problem is computed not enriching the mesh nodes, i.e., resulting in a model 

equivalent to the tradition FEM. The estimated contact tractions results are presented in 

Figure 5.92. 

 
Figure 5.92. Estimated contact tractions results for the Hertz contact problem, both for the 

Lagrange multiplies and penalty formulation – no enrichment model. 

Both Lagrange multipliers and penalty based segment-to-segment contact formulations 

present quite similar results regarding the estimated traction, for the not enriched mesh. It is 

worth to note that the mean value for each of the elements is also plotted in Figure 5.92, and 

they are also close one to each other in both formulations. 
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For the first degree enrichment (shift functions), the estimated traction values oscillate 

around the theoretical expect value, as it is shown in Figure 5.93. 

 
Figure 5.93. Estimated contact tractions results for the Hertz contact problem, both for the 

Lagrange multiplies and penalty formulation – shifted enrichment (first degree enrichment). 

The mean estimated traction value, for each segment-to-segment contact element is 

also plotted in Figure 5.93. Those mean tractions present similar values for both Lagrange 

multipliers and penalty based formulation, and they are close to the theoretical value. 

Such results enforce the expectations that the use of the mean traction value, estimated 

at each segment-to-segment contact element, are sufficiently accurate for the method 

proposes. 

Regarding the real tractions at the contact interface, both first degree enrichment and 

not enriched models presented similar results, as shown in Figure 5.94. On the other hand, the 

stress fields of the enriched model are smoother and more continuous across the elements 

edges, as it can be observed in Figure 5.95. 
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Figure 5.94. Real contact tractions results for the Hertz contact problem, for shifted functions 

first degree enrichment and for not enriched models - Lagrange multiplies formulation. 

 

 

(a) 

 

(b) 

Figure 5.95. Von Mises stress (Svm) field in a closer view next to the contact region: (a) not 

enriched model, (b) first degree shifted functions enrichment. 

In order to illustrate the achieved results, the displacement field results, for the 

enriched model, are presented in Figure 5.96. The stress field results are presented in Figure 

5.97. 
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(a) 
 

(b) 

Figure 5.96. Horizontal (a) and vertical (b) field results for the Hertz contact problem. 

 

 

(a) 

 

(b) 

 

(c) 
 

(d) 

Figure 5.97. Stress field results for the Hertz contact problem: (a) horizontal component stress 

(Sxx), (b) vertical component stress (Syy), (c) shear stress (Sxy) and (d) von Mises stress fields. 
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6 - Numerical examples 

In Chapter 5, several simple examples were proposed both for demonstrating the 

correctness of the developed framework, using the Finite Element Method, and to evaluate the 

accuracy of the nonlinear proposed formulation using the Generalized Finite Element Method. 

Beyond that, several observed characteristics of the methods were commented, constituting 

useful information for solving general nonlinear problem using the GFEM formulation. 

The present chapter is devoted to advance in such direction, proposing more complex 

examples and solving them using the developed GFEM framework. Additional important 

conclusions can be observed by analyzing the achieved results. 

Since no theoretical solutions are available for the following proposed problems, as it 

happens for the most of the problems proposed in Chapter 5, the results achieved for Finite 

Element Method models, computed using very refined mesh models, are used as the reference 

solution. 

6.1. Solids with hole 

The advantage of mixing different order approximation PU for describing the solid 

geometry and structural behavior becomes clear in the following proposed example, in which 

one aims to evaluate the GFEM polynomial and shifted enrichment functions results for 

problems in which the modeled solid present a less trivial geometry than the ones presented in 

the previous examples. In order to do so, two different problems of solids with holes are 

proposed in Figure 6.1. 
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(b) 

Figure 6.1. Solid with holes scheme: circular hole (a) and ‘long’ hole (b). 
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For both solids it is considered a linear elastic behavior material with Young modulus 

7000.00 (dimensionless) and Poisson’s ratio equal to 0.3. The solids geometric characteristics 

(dimensionless) are indicated in Figure 6.1. It is considered plane stress hypothesis and 

unitary thickness. It is considered a distributed force q equals to 10.0 (dimensionless). 

The circular hole solid was modeled taking into account the problem symmetry. The 

considered reference solution is achieved by means of a finite element model containing 4650 

triangular quadratic elements, resulting in 42320 degrees of freedom model. 

The GFEM model contains 24 quadrilateral elements. The elements surrounding the 

hole are defined using serendipity bi-cubic partitions of unity, in order to describe the hole 

geometry. Second degree enrichment using shifted functions is applied to all nodes of the 

solid, including the ones in which Dirichlet boundary conditions are applied to consider the 

symmetry, resulting in 420 degrees of freedom. The Dirichlet boundary conditions are applied 

over the elements’ sides, using penalty method (penalty parameter equals to 1010). 

Both meshes are depicted in Figure 6.2. 

 

(a) 

 

(b) 

Figure 6.2. (a) FEM overkill mesh (reference numerical solution) containing 4650 elements (42320 

dofs); and (b) GFEM solution mesh, containing 24 elements (420 dofs for the applied enrichment). 

 

The displacement and stress fields resulting for both the FEM reference and the 

GFEM model are depicted in the color maps presented from Figure 6.3 to Figure 6.8. 
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(a) 

 

(b) 

Figure 6.3. Horizontal displacement (dx) for: (a) finite element (reference) solution; (b) GFEM 

solution. 

 

(a) 

 

(b) 

Figure 6.4. Vertical displacement (dy) for: (a) finite element (reference) solution; (b) GFEM 

solution. 

 

(a) 

 

(b) 

Figure 6.5. Horizontal stress (Sxx) for: (a) finite element (reference) solution; (b) GFEM solution. 
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(a) 

 

(b) 

Figure 6.6. Vertical stress (Syy) for: (a) finite element (reference) solution; (b) GFEM solution. 

 

(a) 

 

(b) 

Figure 6.7. Shear stress (Sxy) for: (a) finite element (reference) solution; (b) GFEM solution. 

The ‘long’ hole solid is also modeled taking into account the problem symmetry. The 

considered reference solution is achieved by means of a finite element model containing 4028 

triangular quadratic elements, resulting in 36722 degrees of freedom model. Such mesh is 

presented in Figure 6.2 (a). 

The GFEM model contains 33 quadrilateral elements. Two of the four elements 

surrounding the hole are defined using a serendipity bi-cubic partition of unity, in order to 

describe the hole. Second degree enrichment using shifted functions is applied to all nodes of 

the solid, including the ones in which Dirichlet boundary conditions are applied to consider 

the symmetry, resulting in 420 degrees of freedom. The Dirichlet boundary conditions area 

applied over the elements’ sides, using penalty method (penalty parameter equals to 1010). 
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The reason of modeling this second problem is that the mesh proposed for describing 

the ‘long’ hole geometry results in some elements with even less conventional shapes, as 

indicated in Figure 6.8 (b). 

The displacement and stress fields resulting for both the FEM reference and the 

GFEM model are depicted in the color maps presented from Figure 6.9 to Figure 6.13. 

 

(a) 

 

(b) 

Figure 6.8. (a) FEM overkill mesh (reference numerical solution) containing 4028 elements (36722 

dofs); and (b) GFEM solution mesh, containing 24 (552 dofs for the applied enrichment). 

(a) (b) 

Figure 6.9. Horizontal displacement (dx) for: (a) finite element (reference) solution; (b) GFEM 

solution. 
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(a) 

 

(b) 

Figure 6.10. Vertical displacement (dy) for: (a) finite element (reference) solution; (b) GFEM 

solution. 

 

(a) 

 

(b) 

Figure 6.11. Horizontal stress (Sxx) for: (a) finite element (reference) solution; (b) GFEM 

solution. 

 

(a) 
 

(b) 

Figure 6.12. Vertical stress (Syy) for: (a) finite element (reference) solution; (b) GFEM solution. 
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(a) 

 

(b) 

Figure 6.13. Shear stress (Sxy) for: (a) finite element (reference) solution; (b) GFEM solution. 

For both problems, the GFEM results are very close to the ones of reference solution. 

The presented stresses fields are generated computing the specific stress component value for 

several points in each of the elements domain. Due to this reason, such fields can present 

discontinuities in the elements boundaries. Despite of this fact, in general, the stresses fields 

of the GFEM do not present remarkable discontinuities, as one would expect for such a coarse 

meshes. 

After evaluated for the linear elastic material model, the circular hole model is also 

processed using the hyperelastic Neo-Hookean material model, aiming to evaluate if the same 

accuracy is also observed for such nonlinear model. The pressure q is increased to the value of 

100. The results are indicated in the following figures (Figure 5.14 to Figure 5.18). 

 

(a) 

 

(b) 

Figure 6.14. Horizontal displacement (dx) for: (a) finite element (reference) solution; (b) GFEM 

solution (Neo-Hookean material). 
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(a) 

 

(b) 

Figure 6.15. Vertical displacement (dy) for: (a) finite element (reference) solution; (b) GFEM 

solution (Neo-Hookean material). 

 

(a) 

 

(b) 

Figure 6.16. Horizontal stress (Sxx) for: (a) finite element (reference) solution; (b) GFEM solution 

(Neo-Hookean material). 

 

(a) 

 

(b) 

Figure 6.17. Vertical stress (Syy) for: (a) finite element (reference) solution; (b) GFEM solution 

(Neo-Hookean material). 
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(a) 

 

(b) 

Figure 6.18. Shear stress (Sxy) for: (a) finite element (reference) solution; (b) GFEM solution 

(Neo-Hookean material). 

6.2. Beam - plastic hinge 

Testing the performance of the shifted function GFEM model for elastoplastic 

analyses is the objective to be achieved by means of the present proposed example. In order to 

do so, a beam clamped in both side is defined, according to the geometry presented in Figure 

6.19. A vertical displacement is applied at the left clamped edge, such that when the stress 

fields evolve, one can observe a phenomenon similar to the one predicted by the plastic hinge 

theory. 

dx=0.0
-4.0 ≤ dy ≤ 0.0

dx=0.0
dy=0.0

200.0

20.0

 
Figure 6.19. Proposed scheme for the beam clamped at both edges. 

Beyond the beam height (20) and the beam span (200), it is important to inform that its 

thickness is 1 (all dimensionless). The maximum value for the vertical applied displacement is 

4, in downward direction. The material properties used in the model are the one at Table 5.4. 

The loads due to self-weight are neglected. 

The reference solution is computed by means of a FEM model; a 1000 bi-quadratic 

(Q8) elements regular mesh (10x100) is used, resulting in 6442 degrees of freedom. Plane 

stress hypothesis is assumed. The nonlinear incremental solution is performed in 4 time steps 
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increments. Figure 6.20 illustrates the horizontal displacement field (dx) obtained using such 

model. 

 
Figure 6.20. Horizontal displacement (dx) field – numerical reference solution.  

At the end of the process, remarkable plastic behavior is observed at some parts of the 

structure, especially the ones near the clamped edges. Interesting information regarding the 

plastic strains and the stress along the beam cross section at those regions can be obtained 

from the model results. 

For instance, the plastic strain horizontal component (Exxp) along the beam height 

evolves as the imposed displacement increases during the nonlinear analysis. The horizontal 

component of the plastic strain value along the beam cross section positioned 10 length units 

(half of its height) from the left clamped edge is depicted in Figure 6.21. 

 
Figure 6.21. Horizontal plastic strain component (Exxp) values along the cross section positioned 

10 length units from the left clamped edge, for both linear elastic and elastoplastic material model. 

Also, as the plastic strains increase during the structure loading, the stress distributions 

differ considerably from the ones expected for the linear elastic material model. Such 

behavior is depicted in Figure 6.22 and Figure 6.23, in which the horizontal stress component 
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(Sxx) and von Mises stress (Svm) distribution along such cross section is presented. The 

equivalent values for the linear elastic material model, achieved using the same FE model are 

also presented at the same figures. 

 
Figure 6.22. Horizontal stress component (Sxx) values along the cross section positioned 10 length 

units from the left clamped edge, for both linear elastic and elastoplastic material model. 

 
Figure 6.23. Von Mises (Svm) along the cross section positioned 10 length units from the left 

clamped edge, both for linear elastic and elastoplastic material model. 
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For the imposed displacement value equal to 1, the structure, still show, in practice, 

linear elastic behavior in the overall sense, since it presents negligible plastic strains values. 

For the other presented imposed displacement values, the results are clearly associated to an 

elastoplastic model, fact that can be evidenced by verifying the difference between the results 

for the linear elastic and the elastoplastic material model. 

The GFEM model is built by defining a mesh of 160 (8x20) bi-linear (Q4) elements 

mesh, resulting in elements for which the relation between its sides is 4. As already evaluated 

in the previous chapter, such shape ratio is suitable for the shifted and polynomial GFEM 

models. 

First degree shifted enrichment is used for all the nodes of the GFEM model. The 

displacement boundary conditions at the clamped edges are applied along the whole elements 

side, since the nodes at such edge are also enriched. A penalty strategy is used for imposing 

such displacements conditions. For the GFEM model, 8x8 integration points are used for each 

element. The remaining conditions are the same used for the reference solution model. 

The plastic strain horizontal component (Exxp) for the not enriched and the first 

degree enrichment GFEM model is presented in Figure 6.24. The results for the horizontal 

stress (Sxx) and von Mises stress (Svm) is presented in Figure 6.25 and Figure 6.26. 

 

(a) 

 

(b) 

 

(c) 

 
Figure 6.24. Plastic strain horizontal component (Exxp) field; GFEM model, not enriched (a), first 

degree enrichment (b) and FEM reference solution (c). 
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(a) 

 

(b) 

 

(c) 

 
Figure 6.25. Stress horizontal component (Sxx) field; GFEM model, not enriched (a), first degree 

enrichment (b) and FEM reference solution (c). 

 

(a) 

 

(b) 

 

(c) 

 
Figure 6.26. Von Mises stress (Svm) field; GFEM model, not enriched (a), first degree enrichment 

(b) and FEM reference solution (c). 

The GFEM model, when no enrichment is applied over it, results in 414 degrees of 

freedom; the first degree enrichment increases the number of degrees of freedom to 1170. 
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The achieved values for the same fields at the cross section positioned 10 length units 

from the left clamped edge (Figure 6.27) show that the enrichment promotes improvements in 

those values. 

 
Figure 6.27. Horizontal stress (Sxx), horizontal plastic strain (Exxp) and von Mises stress (Svm) 

field values across the cross section positioned 10 length units from the left clamped edge of the beam. 

The history of several convergence parameters associated to the nonlinear solution 

process is presented in Figure 6.28. One observes that the residual force and energy L2 norms 

converges both for the FEM and the GFEM model, while no convergence is observed for the 

norm of the displacement value for the GFEM model.  

As already discussed in Chapter 3, this occurs due to the fact that the displacement 

vector in the GFEM presents both enriched and not enriched degrees of freedom. The 

enriched ones (generalized degrees of freedom) does not represent the displacement value at 

the model points. As observed, the L2 norm computed for this vector does not tend to zero 

like for the other convergence parameters, and so, could not be used as a convergence 

parameter for the GFEM. 

On the other hand, the convergence parameter proposed for the GFEM (Chapter 3), 

indeed represents the convergence, as one can observed in Figure 6.28. For most of the 

nonlinear examples computed in the present work, we observed that such norm indicates the 

GFEM nonlinear model convergence as reliably as the other traditionally used parameters. 
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Figure 6.28. Convergence parameters history obtained in the nonlinear incremental iterative 

solution process – first degree enrichment. 

An important aspect to be discussed for the present example regards the nonlinear 

GFEM models robustness. For the present model, for instance, the first degree enrichment 

GFEM model converged both using the penalty and the Lagrange multipliers techniques for 

imposing the displacement boundary conditions. However, when a second degree enrichment 

scheme is applied, the model for which the penalty method is used did not converge. 

On the other hand, the GFEM model converges also for the second degree enrichment 

if the Lagrange multipliers method is used to enforce the Dirichlet boundary conditions. The 

convergence parameters history observed for such model is presented in Figure 6.29. 

In fact, depending on the nonlinear model complexity and its level of nonlinear 

response, we observed that higher order enrichments can result in a nonlinear model which 

does not converge. The system of equations condition number, already discussed in Section 

5.3.8, is probably one of the causes of such loss of convergence. Numerical stability 

techniques to solve such numerical issues are discussed and proposed for further studies in the 

conclusion chapter. 

It is important to mention that for most of the cases, the first degree enrichment GFEM 

model is accurate, and generally, no remarkable improvements are noted when compared to 

the solution achieved for the second degree enrichment schemes. For instance, the results for 
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the second degree enrichments, depicted in Figure 6.30, are as good as the ones presented in 

Figure 6.27. 

 
Figure 6.29. Convergence parameters history obtained in the nonlinear incremental iterative 

solution process 

 
Figure 6.30. Horizontal stress (Sxx), horizontal plastic strain (Exxp) and von Mises stress (Svm) 

field values across the cross section, position 10 length units from the left clamped, achieved for second 

degree enrichment GFEM model. 

In fact, it seems that the better relation between accuracy and computational cost is 

achieved with the association of an h-refinement (mesh refinement) to the first degree 

enrichment, since in general, the second degree enrichment results computationally costly and 

less stable. 



 183

6.3. Two-layered tube 

The present example is proposed to evaluate the generalized mortar contact element 

formulation. In order to do so, a two-layered tube, loaded by an internal constant pressure is 

modeled. Both tube layers are made of the same material, for which it is considered a linear 

elastic model. The adopted geometry and material characteristics are presented in Figure 6.31. 

4.0 1.0

E=1000.00
v=0.3

q=10

1.0

 
Figure 6.31. Two-layered with internal pressure example - proposed scheme data. 

Due to the problem symmetry, just a quarter of the tube is modeled, assuming plane 

strain theoretical hypothesis for the 2D model. The internal layer is modeled by defining a 

regular mesh of curved quadrilateral elements, while the external layer is defined by a mesh 

of curved triangular elements, resulting in 88 elements, depicted in Figure 6.32 (a). 

 

(a) 

 

(b) 

Figure 6.32. Proposed 2D mesh for the two-layered tube (a). A refined mesh of curved 

quadrilateral elements is defined for an equivalent one layered tube (b), for comparison reasons. 

For the GFEM model, second degree partitions of unity (PU) are used for defining the 

elements geometry (Q8 for the quadrilaterals, T6 for the triangles), while the equivalent first 

degree PU are used for describing the structural behavior of the elements to be enriched (Q4 
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for the quadrilaterals, T3 for the triangles). Also, an isoparametric FEM model is build using 

the same mesh, for comparing the results with the ones achieved using the GFEM model. In 

this case, of course, the structural behavior is defined by the same PU used in the geometry 

description. 

Finally, an equivalent one-layered tube is modeled using 240 isoparametric bi-

quadratic (Q8) elements, aiming to compare the field results of the two-layered GFEM model 

(Figure 6.32 (b)). The results for both first degree shifted functions GFEM model and the 

FEM one-layered model are presented in the following figures (Figure 6.33 to Figure 6.36). 

For the GFEM model, all the nodes are enriched, and the symmetry conditions are applied 

over the whole elements’ sides, using the penalty method. 

 

(a) 

 

(b) 

Figure 6.33. Horizontal displacement (dx) field for the first degree enrichment shifted functions 

GFEM model (a) and the one layered tube isoparametric FEM model (b). 

 

(a) 

 

(b) 

Figure 6.34. Horizontal stress component (Sxx) field for the first degree enrichment shifted 

functions GFEM model (a) and the one layered tube isoparametric FEM model (b). 

 



 185

 

(a) 

 

(b) 

Figure 6.35. Shear stress component (Sxy) field for the first degree enrichment shifted functions 

GFEM model (a) and the one layered tube isoparametric FEM model (b). 

 

 

(a) 

 

(b) 

Figure 6.36. Von Mises stress (Svm) field for the first degree enrichment shifted functions GFEM 

model (a) and the one layered tube isoparametric FEM model (b). 

As it can be observed, the generalized mortar contact elements provided the expected 

field results continuity across the contact interface, resulting in field distributions quite similar 

to the ones of the one-layered model. Similar field results are achieved for the FEM two-

layered tube model. 

Both the Lagrange multiplier and penalty mortar formulation were used to compute 

the FEM and the GFEM model, and the resulting contact gaps, estimated and real traction 

along the contact interface are depicted in Figure 6.37, Figure 6.38 and Figure 6.39, 

respectively. In such graphics, the variable in the horizontal axis is the coordinate S of the 

curved line, starting from the left of the quarter solid model. 
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(a) 

 

(b) 

Figure 6.37. Gaps at the contact interface for the Lagrange multipliers (a) and penalty (b) based 

mortar contact elements formulation. 

For the Finite Element model, the Lagrange multipliers formulation is also evaluated 

using a dual base for describing the Lagrange multipliers field (see Wriggers (2006)). The 

achieved results are also indicated in the graphics. 

It is worth to inform that such dual base did not result in stable models for the GFEM, 

at least for the tested models, since they did not converge. Also, for the present model, the 

FEM Lagrange multipliers based mortar contact element using the dual base resulted in gap 

results worst than the ones achieved using the regular base for the Lagrange multipliers field. 

 

(a) 

 

(b) 

Figure 6.38. Estimated tractions at the contact interface for the Lagrange multipliers (a) and 

penalty (b) based mortar contact elements formulation. 

Regarding the estimated tractions, all models presented similar results for the 

Lagrange multipliers methods. For the penalty method, the estimated tractions presented poor 

quality results, at least regarding the tractions distributions. The real tractions presented 

similarly good traction distribution results for all cases. 
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(a) 

 

(b) 

Figure 6.39. Real tractions at the contact interface for the Lagrange multipliers (a) and penalty 

(b) based mortar contact elements formulation. 

Since the mean values of estimated tractions are used by the method to verify the 

traction condition, it is worth to verify such results for the present example.  

The estimated tractions mean values are shown in Figure 6.40. The mean values of the 

real tractions are also presented in the same figure. The mortar contact elements are associated 

to the internal layer elements’ sides, so they are numbered from the left to the right, starting in 

from zero to eleven. 

 

(a) 

 

(b) 

Figure 6.40. Mean value of the estimated tractions for each of the generalized mortar contact 

elements, both for the Lagrange multiplier (a) and penalty (b) based formulations. 

Finally, regarding the FEM model, it is important to mention that, at least for the 

present model, some of the fields achieved for the dual base Lagrange multiplier mortar 

contact element are less continuous across the contact interface than the ones that use the 

regular base. Such fact can be noted, for instance, in the shear stress field depicted in Figure 

6.41. 
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(a) 

 

(b) 

Figure 6.41. Shear stress field for the dual base (a) and regular base (b) interpolation for the 

Lagrange multipliers field. 

6.4. Beams contact 

A large displacement contact problem is proposed in the present example. The 

structural set is composed by two beams, one positioned over the other, as depicted in Figure 

6.42. A large vertical displacement is imposed at the clamped edge of one of the beams, such 

that it pushes the other beam, resulting in a large sliding contact between the beams surfaces. 

One considers the Saint Venant-Kirchhoff constitutive model for the material. Self weight is 

neglected. 

dx=0.0
dy=0.0

dx=0.0
-12.0 ≤ dy ≤ 0.0

5.0 5.0 5.0

1.0

1.0

0.1

E=1000.0
v=0.3

BA C

 
Figure 6.42. Two beams contact problem proposed data. 

We consider the reference solution for the proposed problem a FEM model defined by 

a regular mesh of 160 (4x40) bi-quadratic (Q8) elements for each of the beams, resulting in 

2274 degrees of freedom for the whole structural set. Taking into account that for the present 

example Lagrange multiplier based mortar contact elements are used, such number is 

increased up to 2329. 
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It is important to mention that the Dirichlet boundary conditions are applied using the 

penalty method, such that no additional degrees of freedom are related to it. 

The proposed mesh for the GFEM model is composed by 40 (2x20) bi-linear (Q4) 

elements for each of the beams, resulting in 252 degrees of freedom for the not enriched 

model. Taking into account the Lagrange multipliers degrees of freedom associated to the 

mortar contact elements, such number increases up to 263. 

The GFEM model is enriched using shifted functions. First degree enrichment is 

applied over the structural set nodes, except the ones in which Dirichlet boundary conditions 

are applied, resulting in 743 degrees of freedom. 

The displacement is imposed up to the value of 12 length units, in downward 

direction. The nonlinear solution is computed in 50 time step increments. The adopted 

convergence criterion is the L2 norm of the post-processed displacement increment at 

integration points. The final equilibrium configuration for the reference solution model is 

presented in Figure 6.43. 

 

(a) 

 

(b) 

Figure 6.43. Final equilibrium configuration of the proposed problem, achieved for the FEM 

reference solution model; von Mises stress (a) and horizontal stress component (b) fields. 

The same stress fields for the GFEM model are presented in Figure 6.44 and Figure 

6.45, both for the not enriched and the first degree enrichment model. As it can be observed, 

the fields observed for the enriched model are smoother and more continuous across the 

elements. 
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(a) 

 

(b) 

Figure 6.44. Von Mises stress (Svm) field for the not enriched (a) and the first degree enrichment 

GFEM model (b). 

 

 

(a) 

 

(b) 

Figure 6.45. Horizontal stress component (Sxx) field for the not enriched (a) and the first degree 

enrichment GFEM model (b). 

Taking into account the considerable change of deformed configuration during the 

proposed nonlinear problem, it is interesting to depict such deformed configurations along the 

whole process. Such set of images is depicted in Figure 6.46. 
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Figure 6.46. Deformed configuration of the structural set along the nonlinear process. 
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The evolution of the von Mises stress (Svm) during the solution process, until the final 

time (1.0), for the points A, B and C indicated in Figure 6.42 are depicted in Figure 6.47, 

Figure 6.48 and Figure 6.49. 

 
Figure 6.47. Von Mises stress value evolution during the nonlinear process, at point A. 

 
Figure 6.48. Von Mises stress value evolution during the nonlinear process, at point B. 

 
Figure 6.49. Von Mises stress value evolution during the nonlinear process, at point C. 

In order to advance in the results analysis, the gaps and real tractions at the contact 

interface are verified in a time step for which a great amount of the beam surfaces remain in 
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contact. Taking the contact gaps results at time step 10 (vertical imposed displacement equal 

to 2.4 length units), one notices that all the models present similar results (Figure 6.50). 

 
Figure 6.50. Gaps at contact region for time step 10/50. 

Even though the gaps results are similar, the real tractions evaluated at the contact 

interface differs considerably from the not enriched and the first degree enrichment GFEM 

model, as depicted in Figure 6.51. 

 
Figure 6.51. Real tractions at contact region for time step 10/50. 

By analyzing those results, one notices that the enrichment benefits goes beyond the 

fields smoothing present in Figure 6.44 and Figure 6.45, since considerable traction error is 

observed for the not enriched GFEM model, while the enriched model is much closer to the 

reference solution. 

In fact, even if one generates a refined mesh of bi-linear elements, the tractions results 

remain not correct. For instance, if one takes a model defined by a bi-linear element mesh, 

similar to the one used for the reference solution (160 elements for each of the beams), the 

tractions results remain not accurate. The traction results for such refined GFEM model are 

presented in Figure 6.52. 
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Figure 6.52. Real tractions at contact region for time step 10/50 – refined mesh GFEM model. 

6.5. Sliding arcs 

A large strain contact problem is proposed in the present example. The structural set is 

composed by two arcs, one positioned over the other, as depicted in Figure 6.53. A large 

horizontal displacement is imposed at the clamped edges of the top arc, such that it slides 

pushing the other’s arc external surface. Large sliding contact between the arcs’ surfaces is 

observed. A Neo-Hookean hyperelastic model is adopted for the arcs’ material. Self weight is 

neglected. The present example is inspired in the one presented by Yang et al (2005). 

2.0 10.0

8.0 2.0

17.0

(-15,17)

(0,0)

E=698.56
v=0.32

A

d d
d

dy =0.0
0.0 ≤ dx ≤ 25.0

 
Figure 6.53. Sliding arcs contact problem proposed data. 

We consider the reference solution for the proposed problem a FEM model defined by 

a regular mesh of 520 bi-quadratic (Q8) isoparametric (curved) elements, resulting in 3795 

degrees of freedom for the whole structural set, already taking into account the ones related to 

the Lagrange multiplier based mortar contact elements. The Dirichlet boundary conditions are 
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applied using the penalty method, such that no additional degrees of freedom are related to 

them. 

The proposed mesh for the GFEM model is composed by 130 elements. For such 

elements, a bi-linear (Q4) PU is defined for describing the structural behavior, while a bi-

quadratic PU (Q8) is used to describe the elements curved geometry. It results in a model 

containing 435 degrees of freedom if no enrichment is applied (including the degrees of 

freedom associated to the Lagrange multipliers contact elements). 

The GFEM model is enriched using shifted functions. First degree enrichment is 

applied over all nodes, except the ones in which Dirichlet boundary conditions are applied and 

the ones positioned on the arcs external surface, resulting in 939 degrees of freedom. 

The displacement is imposed up to the value of 25 length units, in left to right 

direction. The nonlinear solution is computed in 200 time step increments. The adopted 

convergence criterion is the L2 norm of the post-processed displacement increment at 

integration points. The final equilibrium configuration for the reference solution and the 

GFEM models is presented in Figure 6.54 and Figure 6.55. 

 

(a) 

 

(b) 
 

(c) 

Figure 6.54. Final deformed configuration of the sliding arc problem, for (a) the reference 

solution model, (b) the GFEM model, not enriched, and (c) first degree enriched GFEM model. The field 

presented is related to the horizontal stress component (Sxx). 
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(a) 

 

(b) 

 

(c) 

Figure 6.55. Final deformed configuration of the sliding arc problem, for (a) the reference 

solution model, (b) the GFEM model, not enriched, and (c) first degree enriched the GFEM model. The 

field presented is related to the von Mises stress value (Sxx). 

It is important to explain the reason for not enriching the nodes positioned at the 

external boundaries of the arcs. As already mentioned earlier, in the examples computed in 

the present research, we found that, even though better results can be achieved for the GFEM, 

when highly nonlinear behaviors are observed, the enriched model can fail to find 

convergence. This is the case of the present example, in which a remarkable nonlinear 

response is observed in the model. 

On the other hand, the proposed problem complexity demanded several parameters 

adjustments even in the FEM model. In addition to this fact, it is important to inform that the 

solution diverged for the totally enriched GFEM model only at advanced instants of the 

nonlinear analysis. 

Finally, it is important to comment again that one of the advantages of the Generalized 

Finite Element Method is related to the fact that it allows one to enrich only specific nodes, so 

that is possible to avoid enriching regions for which the enrichment may cause undesired 

effects. The present model is a good example in which such characteristic is useful. 

Taking into account the considerable change of deformed configuration during the 

proposed nonlinear problem, it is interesting to depict such deformed configurations along the 

whole process. Such set of images is depicted in Figure 6.56. 
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Figure 6.56. Deformed configuration of the structural set along the nonlinear process. 
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Finally, in order to illustrate the nonlinear behavior observed in the present problem, 

the vertical displacement and the horizontal component of the stress along the whole 

nonlinear process (until the final time equal to 1), in point A (see Figure 6.56), is shown in 

Figure 6.57 and Figure 6.58 , respectively. 

 
Figure 6.57. Vertical displacement (dy) computed at point A along the nonlinear solution process. 

 

 
Figure 6.58. Horizontal stress component (Sxx) computed at point A along the nonlinear solution 

process. 
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7 - Conclusions 

Even though the Generalized Finite Element Method (GFEM) efficiency for solving 

linear crack problems has already been established in the technical literature, its use for 

general nonlinear analysis purposes is still an open subject. The present dissertation has 

studied the method’s application for performing nonlinear analyses of Solid Mechanics. The 

resulting contributions for the theme can be summarized as: 

- One has evaluated the shifted and polynomial enrichment functions efficiency in 

improving the linear partitions of unity interpolation. Despite the fact that such 

functions have already been used in other researches, some of the presented results 

bring new information on the subject; 

- Regarding the dynamical analyses, one has found that remarkable improvements 

can be achieved for some of the employed enrichment schemes, for which the total 

number of DOF was considerably smaller than the ones observed for the FEM 

models. These results were not found in the literature, and might constitute original 

contributions for the theme; 

- The 2D elastoplastic examples confirmed that the enrichment feature can improve 

such problem’s results for coarse meshes, as it was already found in other 

researches; 

- Likewise for the dynamical models, the kinematically nonlinear examples results 

have shown that remarkable benefits can be achieved by means of the GFEM 

enrichment applied for these problems, having enhanced the accuracy of the model 

at a low computational cost. These results might also constitute original 

contributions of the present work; 

- Probably the most relevant contribution is the formulation, the computational 

implementation and the numerical assessment of the segment-to-segment 

frictionless contact elements for the GFEM. The achieved results have shown that, 

in some cases, the generalized contact elements hereby proposed can provide 

results even more accurate than the ones delivered by the FEM; 

- Finally, an indirect but nonetheless important contribution is the conceiving of an 

efficient Object-Oriented design for the GFEM programming. 
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The developed computational code was named SCIEnCE, standing for São Carlos 

Integrated Environment for Computational Engineering. It is important to mention that 

presently it is already being used by other doctoral researches. Moreover, a research group 

having SCIEnCE as its main tool was conceived and registered in CNPq (National Council 

for Scientific and Technological Development). 

Going into more detailed conclusions, regarding the linear elastic model, the 

performed validation examples have shown that both shifted and non-shifted polynomial 

enrichments present similarly accurate results, also demonstrating similar efficiency in 

circumventing errors due to mesh distortion and element side curvatures. Such feature was 

efficiently explored by mixing different partitions of unity for describing the element’s 

geometry and structural behavior. Actually, the use of the GFEM enrichment framework over 

linear approximation curved elements resulted in accurate displacement and stress fields, even 

for very coarse meshes. 

Yet regarding the linear elastic model, it is worth mentioning that bilinear (Q4) 

elements present poor quality results for flexural problems (Wilson et al (1971) apud Brebbia 

and Connor (1973)). In spite of this fact, the polynomial enrichment functions were able to 

improve considerably the results in these cases, circumventing such feature. 

The displacement boundary conditions enforcement along the whole element side was 

adopted and it has shown to be especially consistent when the enrichment is applied at 

boundary nodes. A similar consistency is not observed when the displacement boundary 

conditions are enforced only at the boundary nodes. In spite of that, such element-wise 

enforcement is not trivial, and demands quite sophisticated computational routines. Both the 

Lagrange multipliers and the penalty based formulation allow one to correctly impose such 

conditions over the whole element side for generic enrichment functions. 

In particular, for the Lagrange multipliers based formulation, one can also enrich the 

Lagrange multipliers field. It is worth to mention that the enrichment of the multipliers fields 

with the same degree of the enrichment applied to the displacement field provides more 

accurate results. However, this enrichment feature might be explored carefully since singular 

system of equations can result, depending on the number of degrees of freedom associated to 

the enriched Lagrange multiplier field. On the other hand, the penalty based formulation 

naturally encompasses all the enrichment terms, thus naturally promoting sufficiently accurate 

results. 

Even though just one structural problem was considered in the linear dynamics 

analyses, different enrichment schemes were tested. One concludes that considerably different 
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dynamical behavior can be observed depending on the type of enrichment employed. For 

instance, several proposed enrichment schemes failed, mainly due to the loss of convergence 

during the time integration. Those fails are associated to numerical instabilities, which can be 

explained by the condition number of the resulting system of equations. On the other hand, 

for all the tested enrichment functions leading to favorable condition numbers, accurate and 

stable results schemes were found. Probably, the alternative presenting better compromise 

among computational cost, numerical stability and accuracy was achieved using first degree 

shifted enrichment functions associated to a non enriched consistent mass matrix. This 

alternative successfully passed in tests regarding long time integration models (up to 1800 

time steps) and harmonic load problems. 

Regarding the nonlinear behavior due to contact, both node-to-segment and segment-

to-segment contact elements were derived and implemented for being applied in the GFEM 

framework. In a general sense, one can affirm that those elements verify and impose the 

contact conditions in a node-wise and in an element-wise fashion, respectively. Their 

performance for the FEM was also assessed. In this case, when applied to problems of 

frictionless contact between a deformable solid and a rigid support (Signorini problem), both 

node-to-segment and segment-to-segment contact elements provided similarly accurate 

results. 

In the GFEM framework, the node-to-segment contact elements did not verify the 

impenetrability condition in the regions between nodes, since the contact conditions were 

imposed in a node-wise fashion, generating stress and strain concentration at the nodes. 

On the other hand, the derived enriched segment-to-segment contact elements 

successfully enforced the impenetrability condition along the entire contact element side. 

Both Lagrange multipliers and penalty based contact elements have shown to be accurate and 

stable. The possibility of enriching the Lagrange multipliers field for imposing Dirichlet 

boundary conditions is present as well. 

Differently from the Signorini problem, in problems for which the contact is observed 

among deformable bodies, the nodal enforcement promoted by the node-to-segment contact 

elements does not guarantee accurate solutions, even for the traditional FEM. For such 

problems, the use of segment-to-segment contact elements, based on the so-called mortar 

contact elements formulation, is recommended. Furthermore, when applied to GFEM models, 

the segment-to-segment contact elements, referred to here as generalized mortar contact 

elements, presented accurate results for the proposed problems. In fact, considering a patch 
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test, the vertical stress field provided by the enriched mortar contact elements is even more 

accurate than the ones obtained with higher order FEM mortar elements. 

As it happens for the higher order mortar contact elements, both gap and traction 

values oscillate along the contact element when higher degrees of enrichment are adopted. 

Clearly these oscillations can prejudice the stability of the numerical solution and constitute a 

feature to be improved. Recently, several techniques are being proposed in the literature for 

recovering stress results in the GFEM, since oscillations in such fields are known effects 

observed for shifted and polynomial higher order enrichment schemes. Therefore, following 

this trend, the use of recovering techniques for enhancing the contact tractions is hereby 

suggested as one of the most natural extensions of the current work. 

On the other hand, it is important to bear in mind that one of the advantages of the 

GFEM is the possibility of enriching just a set of nodes (selective enrichment). Therefore it is 

totally possible to avoid the enrichment of nodes in regions that can cause instabilities in the 

model. 

Taking all the above comments into account, it is possible to conclude that the present 

doctoral research has achieved the proposed objective of giving contributions for the solution 

of nonlinear Solid Mechanics problems by means of the GFEM. 

In what follows, one states some suggestions on what we consider subjects that remain 

unsolved or might constitute natural continuations of the present work: 

- The most straightforward continuation of the present work is to advance in the 

assessment of the accuracy, robustness and efficiency of the GFEM for solving 

nonlinear problems. Obviously, this aspect demands many more nonlinear 

analyses for exploring all the nonlinear functionalities implemented; 

- At the current stage of development, the conceived computational code presents a 

nonlinear framework which stands for performing large deformation elastic 

frictionless contact analysis considering dynamical effects. Therefore, this 

framework already allows one to perform elastic impact analysis. Enhancing the 

current computational efficiency is an important demand for solving impact 

problems, which can be performed exploiting the Python language available tools 

(libraries). Moreover, including plasticity constitutive models for large 

deformation problems is a nontrivial but nonetheless natural extension of the 

research work; 

- Taking advantage of the developed OO computational framework, other plasticity 

models and damage analysis functionalities can be inserted in the code; 
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- Following the same direction of the previous comment, the well-known crack 

analyses enrichment features can be implemented in SCIEnCE, aiming to obtain a 

damage and crack evolution analyses GFEM computation framework; 

- The extension of the frictionless contact elements for frictional contact analysis, 

including the slip and stick behavior, would allow one to assess the performance of 

the generalized mortar contact element for frictional contact problems. To the 

author’s knowledge, these results are also not yet available in the literature; 

- Taking into account the numerical instabilities observed in some of the performed 

examples, a deeper study on the resulting system of equations condition number 

and on techniques to overcome such numerical problems is an important matter to 

improve the method stability and robustness. Regarding this subject, studies 

towards this direction are currently being performed in another doctoral research 

using the SCIEnCE computational framework. 

Many other suggestions of future trends can be stated here. One believes that the 

above commented features constitute important additional contributions for efficiently using 

the Generalized Finite Element Method in nonlinear analyses of Solid Mechanics. 
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