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ABSTRACT 

 

 

 

This work is devoted to the numerical analysis of saturated porous media, taking into account 

the damage phenomenon on the solid skeleton. The porous media is taken into poroelastic 

framework, in full-saturated condition, based on the Biot’s Theory. A scalar damage model is 

assumed for this analysis. An implicit Boundary element Method (BEM) formulation, based 

on time-independent fundamental solutions, is developed and implemented to couple the 

fluid flow and the elasto-damage problems. The integration over boundary elements is 

evaluated by using a numerical Gauss procedure. A semi-analytical scheme for the case of 

triangular domain cells is followed to carry out the relevant domain integrals. The non-linear 

system is solved by a Newton-Raphson procedure. Numerical examples are presented, in 

order to validate the implemented formulation and to illustrate its efficiency. 

 

Keywords: Saturated Porous Media, Isotropic Damage, Boundary Element Method. 

 

 

 

 

 

 

 

 

 



RESUMO 

 

 

 

Este trabalho trata da análise numérica de meios porosos saturados, considerando 

danificação na matriz sólida. O meio poroso é admitido em regime poroelástico, em 

condição saturada, com base na teoria de Biot. Um modelo de dano escalar é empregado 

nesta análise. Uma formulação implícita do Método dos Elementos de Contorno (MEC), 

baseada em soluções fundamentais independentes do tempo, é desenvolvida e 

implementada de forma a acoplar os problemas de difusão de fluido e de elasto-dano. A 

integração sobre os elementos de contorno é feita através da quadratura de Gauss. Um 

esquema semi-analítico é aplicado sobre células triangulares para avaliar as integrais de 

domínio do problema. A solução do sistema não linear é obtida através de um procedimento 

do tipo Newton-Raphson. Apresentam-se exemplos numéricos a fim de validar a formulação 

implementada e demonstrar sua eficiência. 

 

Palavras-chave: Meios Porosos Saturados, Dano Isotrópico, Método dos Elementos de 

Contorno. 

 

 

 

 

 

 

 



RÉSUMÉ 

 

 

 

Ce travail est consacré à l'analyse numérique des milieux poreux saturés, en tenant compte 

le phénomène d'endommagement sur le squelette solide. Le milieu poreux est pris dans le 

cadre poro-élastique, dans un état complètement saturé, d'après la théorie de Biot. Un 

modèle scalaire d'endommagement est supposé pour cette analyse. Une formulation 

implicite de la Méthode des éléments de frontière, basée sur des solutions fondamentales 

indépendantes du temps, est développé et implantée numeriquement pour coupler les 

problèmes de l'écoulement de fluide et de l'elasticité endommageable. L'intégration sur des 

éléments de frontière est realisée en utilisant la méthode numérique de Gauss. Un schéma 

semi-analytique pour le cas des cellules triangulaires de domaine est suivie pour évaluer les 

intégrales de domaine pertinentes. Le systéme non-linéaire est résolu par une procédure de 

Newton-Raphson. Des exemples numériques sont présentés, afin de valider la formulation 

implantée et pour illustrer son efficacité. 

 

Mots-clés: Milieux Poreux Saturés, Endommagement Isotropique, Méthode des Éléments 

de Frontière. 
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Introduction 
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1.1. OVERALL CONSIDERATIONS AND OBJECTIVES 

The complexity of the problems currently encountered in engineering leads to a growing 

demand for quality personnel, infrastructure and available analytical methods. In the field of 

structural engineering, there have been several initiatives to improve the theoretical and 

numerical representation of the behavior of structural parts and systems. The development of 

numerical models enables a more realistic evaluation of the in-service behavior of structures 

and failure modes, quantifying the deterioration of components and determining the loading 

threshold limits in projects. 

Among the various topics of interest, the mechanical behavior of porous materials stands 

out. These are multiphase materials, composed of a deformable solid matrix and a porous 

space, which may contain liquid and gas fluids. The interaction between the solid and fluid 

phases defines the mechanical response of the medium to the external forces, through solid 

skeleton deformations and the fluid flow into the pores. This thesis addresses the porous 

media fully saturated by a single fluid. 

The study of porous materials is relevant in several areas, such as soil and rock mechanics, 

diffusion of contaminants, biomechanics and petroleum engineering. 

The cases in which a non-linear mechanical behavior of materials occurs, as for instance 

damage and plasticity, are of great interest to the mechanics of materials and structures. The 

rupture process of a body is progressive, starting with a state of micro-cracking that localizes 

and develops into a state of effective crack opening, which can in fact induce rupture. The 

phenomenon identified between the onset of microcracking and fracture is called damage. 

The damage models predict the gradual loss of strength and stiffness of the material when 

loaded. In its constitutive law, it exhibits regions in which resistant strain levels decrease with 

increasing strain. Under a possible unloading condition, the stiffness loss remains constant, 

so that no residual strain accumulates. 

Considering the increasing complexity of mechanical models developed for engineering 

problems, the constant search for robust numerical formulations is vital, which can provide 

reliable results with the least possible computational effort. Thus in this context, the 

Boundary Element Method (BEM) is an interesting choice to obtain numerical solutions in 

various applications. 

The behavior of a saturated porous medium is sought to be understood from the interaction 

between the mechanical response of the solid phase and the fluid flow through the porous 

space. This work proposes to investigate the degradation of brittle and quasi-brittle materials 

from a known isotropic damage model. Thus, one of the objectives is to incorporate that 

damage law into the solid matrix of the porous medium, in order to analyze the influence of 
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the dissipative phenomena in the global response of the system, including it in the 

mechanical properties. The main objective of this thesis is the development of a nonlinear 

BEM formulation that enables the application of the aforementioned model. 

1.2. METHODOLOGY 

The behavior of a saturated porous medium from the formulation presented in Coussy (2004) 

is described, which is derived from Biot’s work (1941, 1955), taking as state variables the 

strain in the solid matrix and the pore pressure acting on the fluid. A laminar fluid flow is 

assumed, which is governed by Darcy’s law (1856). The Lagrangian kinematic description is 

adopted here. 

The loss of stiffness from the damage process is assessed using an isotropic model, 

applicable to brittle and quasi-brittle materials, proposed by Marigo (1981). The scalar state 

variable is introduced, which represents the deterioration level in the solid matrix. 

The expression for the free energy potential of the poroelastic system is defined, with the 

internal variables as the strain in the solid skeleton and the porosity. The damage scalar 

variable is introduced into this expression, in order to incorporate the damage process to the 

problem. 

A nonlinear transient BEM formulation is developed, by coupling the models of the method 

applied to the fluid diffusion and the plane elasticity in the presence of damage. The Betti’s 

reciprocal theorem is used to obtain the integral equations, using time-independent 

fundamental solutions. The integration on the boundary elements is performed numerically, 

using a Gauss-type procedure and a semi-analytical scheme is used to evaluate the domain 

integrals of the problem. 

The temporal integration of the constitutive equations is carried out implicitly. With the non-

linear damage law, the consistent tangent operator is deduced and the algebraic equilibrium 

equations are evaluated using the Newton-Raphson procedure. 

1.3. BRIEF LITERATURE REVIEW 

1.3.1. Poromechanics and Linear Poroelasticity 

The first studies on the subject are credited to Terzaghi (1923), who described the 

mechanism for transferring an axial load applied to a soil column. This one-dimensional 

model did not foresee the occurrence of lateral strains. In 1936, Rendulic generalized 

Terzaghi’s theory for a three-dimensional case. However, it was Biot (1941) who presented 

the first well-accepted model for settlement, or consolidation, in three-dimensional media, 
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considering isotropic and incompressible fluid.  Biot proposes the analysis of a porous 

medium saturated by the superposition of two continuous media: the solid skeleton and the 

fluid phase that fills the pores. Biot (1955) later improved his own model by extending it to 

compressible fluids, considering anisotropy for both the solid skeleton as well as for the fluid, 

formulating Darcy’s law in a generalized way. 

Several studies emerged in the 1940s that proposed analytical solutions for particular 

geometry problems and loading conditions. Biot and Clingan (1941, 1942), McNamee and 

Gibson (1960, 1963), and Schiffman and Fungaroli (1965) can be cited. The behavior of 

underground aquifers was studied in Verruijt (1969). Rice and Cleary (1976) sought to relate 

the poroelastic parameters proposed by Biot, using concepts of soil and rock mechanics. In 

this work the response differences of a saturated porous medium under drained and 

undrained conditions are discussed. 

Among the more recent works, we highlight those developed by Coussy, presented in a book 

that was published in 1995. In this publication, the poroelastic and poroplastic models are 

described and justified by the rigorous consideration of thermodynamic effects involved. 

Detournay and Cheng (1993), Coussy et al. (1998), Wang (2000) and Coussy (2004) should 

are also mentioned. 

A study on saturated media, alternative to Biot’s work (1941, 1955), was presented in 

Auriault and Sanchez-Palencia (1977). From the hypothesis, inherent in the homogenization 

schemes, that the microscopic structure is periodically reproduced in the domain of the 

problem, the authors proposed a model for a media saturated by a viscous and 

incompressible fluid. Other authors have explored the theme from this micromechanical 

approach, citing Chateau and Dormieux (1998) that addressed partially saturated media, and 

Lydzba and Shao (2000) that examined the role of microstructure to define the material 

properties. 

1.3.2. Strain Localization and Continuum Damage Mechanics 

Kachanov (1958) was the first work that introduced the concept of damage. This work 

investigated a problem of uniaxial creep for metals subjected to high temperatures, and the 

damage variable was introduced to describe the ability of a cross section to transfer a 

load. The continuum damage mechanics (CDM) was formalized based on the 

thermodynamics of irreversible processes, in the works of Lemaitre and Chaboche (1985) 

and Lemaitre (1992). In thermodynamics, a consistent physical meaning emerges for the 

variables that describe the material degradation, always associating them to an energetic 

process. 
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Materials that exhibit softening behavior are subject to the problem of strain localization. 

From a mathematical point of view, this phenomenon leads to some drawbacks regarding the 

existence and uniqueness of a solution to the problem. The topic was addressed in Benallal 

et al. (1991). Comi et al. (1995) presented a study on the strain localization for pure 

compression in brittle materials (concrete).  The different influences of the formulation of 

elasto-plastic damage model on the compression localization are analyzed. Pijaudier-Cabot 

and Benallal (1993) described the localization conditions for a material following a non-local 

damage constitutive relationship. Theoretical studies on localization are also found in 

Benallal et al. (1992) and Jirásek (2002). 

The traditional damage models, formulated under local theory, do not capture the effects 

introduced by the strain localization phenomenon. Thus, some strategies were proposed to 

regularize the solutions obtained with these local models, based on the concept of a 

characteristic length for each material. It is assumed that this length limits the range that is 

subject to localization. 

More robust nonlocal damage theories have also been presented. Bazant (1991) argued, 

based on micromechanics concepts, that at a certain point the damage can be assessed by 

weighting the deformations measured in the vicinity of this point. Pijaudier-Cabot and Bazant 

(1987) discuss, regarding a simplified damage model, the influence of a non-local variable 

calculated as an integral over a representative volume of the same variable defined 

locally. The same authors in Baznt and Pijaudier-Cabot (1988) present the same non-local 

integral, stating that other quantities should be considered besides the deformation, as for 

instance the damage measure. 

1.3.3. Porous Media Subjected to Damage 

Many authors have addressed the effects of micro-cracking and damage in porous media. As 

in damage models for solids, there are energy approaches (CDM) based on thermodynamic 

principles and micromechanical approaches, which usually rely on homogenization 

processes to express the properties of the material at a macroscopic scale. Some works that 

use both methods are mentioned, in addition to experimental studies. 

Cheng and Dusseault (1993) proposed a model based on CDM and on Darcy’s law, and a 

damage evolution law from microscopic and macroscopic experimental results on 

rocks. Bary’s thesis (1996), on the study of concrete dams, presents an anisotropic damage 

model based on thermodynamics, and also a numerical analysis using finite elements, with 

an experimental calibration of material parameters. Shao et al. (1999) and Bart et al. (2000) 

present a damage variable defined in terms of the density of distributed microcracks, using 
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fracture mechanics results to assess the damage evolution. The expressions that measure 

the influence of damage on the material properties are also presented. 

Souley et al. (2001) experimentally measured the permeability changes induced by damage 

on sandstones, incorporating these findings into an anisotropic damage model. Numerical 

analyses related to the experiments of Souley et al. (2001) are presented in Rutqvist 

(2009). Other experimental analyses on the occurrence of damage in porous media and the 

consequent alteration of its mechanical and hydraulic properties are found in Tang et al. 

(2002) and Ghabezloo et al. (2009). 

A viscoelastic model for the stable and unstable damage evolution is presented and 

validated, based on laboratory results of tests conducted on granite and sandstone, by 

Hamiel et al. (2006). Dormieux and Kondo (2004) analyzed changes in the permeability of a 

saturated medium from a self-consistent homogenization scheme. A critical value of 

microfissuration density parameter is defined, besides verifying a sudden increase in the 

permeability coefficient. Dormieux et al. (2006) studied the evolution of anisotropic damage 

in saturated media, also from a micromechanical point of view. Another model regarding 

damage evolution that considers anisotropy is found in Zhou (2006). 

A mixed model of anisotropic damage, based on energy principles and micromechanics 

results is presented in Arson (2009) and Arson and Gatmiri (2009), with applications on 

partially saturated media, considering temperature effects. 

1.3.4. Integral Equations and BEM Applied to Poroelasticity and to Damage Mechanics 

Studies on integral equations are known to exist since the early nineteenth century, which 

are the basis for the Boundary Element Methods. However, the first classical theory of 

integral equations, in which the kernels were defined and integrable, is credited to Fredholm 

(1903). Fredholm (1906) was a pioneer in the solution of boundary value problems in 

elastostatics using the linear integral formulation. From this work, the use of integral 

equations remained limited to theoretical formulations with an indirect approach. In these, the 

solution to the problem was obtained by fictitious sources applied to the contour, which after 

its determination, allowed calculating the physical variables of the problem. In 1967, Rizzo 

presented the first direct formulation for the numerical treatment of integral equations, in 

which the kernels contain the variables of the problem.  

Based on the technique presented by Rizzo (1967), several authors addressed the problem, 

citing the works of Cruse (1969, 1973, 1974) that addressed the general problems of two and 

three-dimensional elasticity, and Rizzo and Shippy (1968 ) that proposed to introduce sub-

regions in the treatment of non-homogeneous areas. 
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The so-called boundary methods made headway after Lachat’s thesis, submitted to the 

University of Southampton in 1975, in which the author introduced the simplicity and 

elegance the method lacked, bestowing upon it a greater generality. With Lachat’s 

developments, the techniques for solving integral equations were then interpreted as a 

numerical method. It is reported that Brebbia (1978a, 1978b) was the first to refer to the 

technique as “Boundary Element Method” in his works. In these studies, obtaining the 

integral equations was performed by using the Weighted Residual Method, with the 

appropriate choice of the weighting function. After the first book, published by Brebbia 

(1978a), the method began to be studied intensively in several research centers. 

Telles and Brebbia (1979, 1980a, 1980b) showed BEM being used in elastic and viscoplastic 

problems, with the introduction of strain or stress fields in the equation. Venturini (1982, 

1984, 1988) and Venturini and Brebbia (1983, 1988) applied the Boundary Element Method 

to geotechnical problems, including in the modeling of materials with discontinuities. 

In the field of porous media, Cleary (1977) can be cited as a pioneering work, presenting the 

first integral equations for poroelasticity, based on the direct formulation, proposed by Rizzo 

(1967). Time-dependent fundamental solutions for soil consolidation were presented in 

Aramaki and Yasuhara (1981) and Kuroki et al. (1982). In 1984a, Cheng and Liggett 

formulated an integral equation for poroelasticity applying the Laplace transform. The authors 

incorporated the propagation of cracks to the problem in Cheng and Liggett (1984b). 

Also in the 1980s and 1990s, there were other important works on the application of direct 

BEM formulations to the problem of poroelasticity, citing Cheng and Predeleanu (1987), 

Nishimura and Kobayashi (1989), Dargush and Banerjee (1989, 1991) and Borba (1992). A 

more complete treatise on the fundamental solutions and integral equations for the 

poroelastic problem was presented by Cheng and Detournay (1998). 

Later, Park and Banerjee (2002) analyzed the three-dimensional problem of soils 

consolidation by developing particular integrals. Cavalcanti and Telles (2003) presented time 

independent fundamental solutions applied to the analysis of saturated media.  As for works 

that address poroplasticity, Wutzow (2008) can be cited, which incorporated stiffeners into 

the solid matrix. Kamalian et al. (2008) and Maghoul et al. (2010) present fundamental 

solutions in time domain for media under saturated and unsaturated conditions. 

Among the earliest known BEM formulations for the analysis of damage mechanics 

problems, Herding and Kuhn (1996), Garcia et al. (1999), Lin et al. (2002) and Sladek et 

al. (2003) are cited. Also cited are Botta et al. (2005), Venturini and Botta (2005) and Benallal 

et al. (2006). Several of these works incorporate strategies to deal with numerical instabilities 

associated with the problem of strain localization. 
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Some studies on numerical analysis of porous media subject to damage, based on the Finite 

Element Method, should be cited.  A damage evolution law for geomaterials was proposed in 

Cheng and Dusseault (1993). Selvadurai (2003) incorporated isotropic damage to saturated 

porous media, presenting empirical expressions for permeability variation due to damage 

process. Selvadurai and Shirazi (2004) addressed the problem of a spherical cavity filled with 

fluid. Vasconcelos (2007) incorporated an isotropic damage formulation to a FEM code 

applied to saturated geomaterials. 

The solution to nonlinear problems from the Newton-Raphson method and the resulting use 

of consistent tangent operators is widespread in the scientific community and can be found in 

Simo and Taylor (1985) and Simo and Hughes (1992). Other works that address BEM 

versions for non-linear models are: Bonnet and Mukherjee (1996), Poon et al. (1998), Fudoli 

(1999) and Benallal et al. (2002). 

1.4. THESIS STRUCTURE 

The items discussed in this thesis are arranged throughout the text as described below: 

Chapter 2 presents a brief review of the poromechanics, showing how the heterogeneous 

medium is described, and also the problem formulation, which is based on the classical 

continuum mechanics. The continuum damage mechanics is considered briefly and the local 

damage model adopted in this work is presented. The strain localization phenomenon is 

commented and, although not addressed in this thesis, a non-local model able to deal with 

the problem is presented. 

Chapter 3 presents the model developed for the damage on the solid matrix of the saturated 

porous media. Expressions to evaluate the influence of the damage process on the 

mechanical and flow properties of the material are proposed. There are some aspects of the 

boundary element method, and the nonlinear formulation of the method developed for the 

computational implementation of the model is presented. The algorithm of damage evolution 

is described, and also the deduction of the consistent tangent matrix is shown. 

Chapter 4 presents some numerical applications in order to validate the model and illustrate 

the operation of the code developed. 

The equations in the text of the thesis are written in indicial or tensorial notation, using the 

one that is more illustrative, depending on the context in which it is inserted. Some equations 

are presented in both notations, when deemed necessary. 
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Continuum Damage Mechanics 
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 2.1. OVERALL CONSIDERATIONS  

The mechanics of porous media addresses materials whose mechanical behavior is 

significantly influenced by the presence of fluid phases. The response of the material is 

defined through its deformations when subject to external actions and pressure changes in 

the fluid. In rocks, for example, two mechanisms have a core importance in this interaction 

process between the phases (Detournay and Cheng, 1993): An increase in the pore 

pressure induces the rock to dilate, whereas a compression in the rock results in increased 

pore pressure, in the case of confined fluid. Considering the non-confinement, the excess 

pore pressure, which is imposed by the compression of the rock, is gradually dissipated 

during the fluid diffusion process and a new deformation distribution is created in the 

body. Thus, it is observed that the rock is more deformable in drained conditions. 

A basic idea to be considered in the study of porous media is that their response to certain 

external actions is not immediate. The deformations occur over time in the phenomenon 

known as settlement or consolidation. The observations and the need to explain this 

phenomenon propel further studies on porous media. 

The damage mechanics predicts the loss of strength and stiffness of a solid, due to 

irreversible microscopic processes, such as: decohesion, relative slipping of crystal structure, 

phase changes, etc. Some of these processes are caused by existing microdefects or 

microcracks in the material, which provide a microstrain concentration in its neighbourhood. 

This chapter presents a brief description of poromechanics, mostly based on the works of 

Coussy (2004) and Wang (2008). Assuming that the solid matrix is subject to a damage 

process, some comments are made about the mechanics of continuous damage, specifying 

how it is considered in the mathematical formulation. For additional details, Lemaitre and 

Chaboche (1985) and Voyiadjis and Kattan (2005) can be referenced. 

2.2. DESCRIPTION OF A SATURATED POROUS MEDIUM 

Let us assume a porous medium, composed of a solid matrix, and a porous space in which 

the pores are interconnected. It is through this connected porous space that the transport of 

fluid mass occurs.  Any two points in its domain can be connected by a generic arc totally 

contained in it, so that the fluid phase in that space can be treated as a continuum. There 

may also be closed pores included in the solid matrix, in which the occurrence of flow is not 

considered, at least not in the timescale considered in this theory. Hence, from this point of 

the text, the term “pore” is applied to the effective pores of the connected space, while the 

disconnected pores will be treated as part of the solid matrix. 
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Therefore, it is understood that the saturated porous medium is described by the 

superposition, temporal and spatial, of two continuous media: The first represents the solid 

skeleton and the second, the fluid phase. Usually, the deformation of the porous media is 

described in relation to the skeleton deformation, which can actually be observed and shows 

a more accessible physical meaning. 

An infinitesimal volume of porous medium can be represented by the composition of two 

elementary material particles (Figure 2.1), one that is solid – which also contains occlusions 

and disconnected pores – and one that is fluid. Considering that the porous medium is 

heterogeneous at a microscopic level, its treatment as a continuous medium requires the 

choice of a macroscopic scale, in which the internal constitution of the material can be 

neglected, when analyzing the physical phenomenon of interest. Therefore, the continuity 

hypothesis admits the existence of an infinitesimal control volume of representative 

dimensions at a macroscopic scale, in the study of all phenomena involved in the intended 

application. 

 
Figure 2.1 – Definition of the porous medium by the superposition of the fluid and solid phases 

2.3. BEHAVIOR OF THE SKELETON 

If there are external forces or pressure variations in the fluid, the solid skeleton deforms.  

This deformation is analyzed according to the classical theory foreseen in the continuum 

mechanics, whose main concepts are briefly described below. 

2.3.1. Motion of a Continuum. Displacement. Deformation Gradient  

Consider a solid body occupying a determined region of space, at a time t 0 . In this initial 

configuration, a particle is represented by its position vector X  of components iX , in a 

Cartesian coordinate system, of orthonormal basis ie  (i 1,2,3) . After deforming, in time t , 

the body is in a current configuration, with its reference particle represented by the position 

vector x  of components i jx (X , t)  as shown in Figure 2.2. One can then write: 

skeleton particle fluid particle
infinitesimal volume
of porous medium
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i i i j iX e  ; x (X , t)e X x  (2.1) 

the displacement vector u of a particle is defined, from its initial position X  to the current 

position x  as: 

x X+u  (2.2) 

Supposing two particles, positions X  and dX + X  in the initial configuration.  After the 

deformation, the infinitesimal material vector dX  becomes dx , and connects the two 

particles in their current positions x  and dx + x .  Any vector material dX  is transported to its 

corresponding deformed dx  by a linear application called the deformation gradient F , as 

follows. 

d d x F X  (2.3) 

i
X ij

j

x
 ; F

X


 


F x  (2.4) 

 
Figure 2.2 - Initial and current configurations 

Note that the operator refers X  to the initial configuration. The inverse and transposed 

forms of tensor F  are written as: 

-1 Td d  ; d d   X F x x X F  (2.5) 

The deformation gradient is expressed in terms of displacement as follows. 

i
X ij ij

j

u
 ; F

X


    


F uI  (2.6) 

X X+dX
x

x+dx

e3

e1 e2



Ph.D. Thesis – Eduardo Toledo de Lima Junior 26 

 

The second-order identity tensor is represented by I , which is equivalent to the kronnecker 

delta ij , in indicial notation. 

Lagrangian and Eulerian kinematic descriptions. A continuum deformation can be described 

in two ways. The first one, called Eulerian or spatial, takes the current position of a particle 

as reference, expressing the variables depending on x  and t . In the Lagrangian, or material 

description, the particles are described as a function of the initial position X  and time t . 

2.3.2. Porosity. Void Ratio 

Let an infinitesimal volume td  of the porous medium, written in the current 

configuration. The volume occupied by the fluid phase equals tdn  , with n  the Eulerian 

porosity. Considering that this reference volume changes with deformation, the Eulerian 

porosity is not well suited to quantify the volume variation withstood by the pore space. 

Therefore, the Lagrangian porosity   is defined, which deals with the current porous volume 

in relation to the initial volume 0d . 

0 t d  dn     (2.7) 

In order to quantify the degree of compactness of a porous material, an Eulerian variable is 

defined, the void ratio e . This is the relationship between the porous volume and the solid 

matrix volume: 

1

n
e

n



 (2.8) 

2.3.3. Strain Tensor 

During the deformation, the infinitesimal vectors in the deformed configuration undergo 

changes in their lengths and angles. These changes can be measured by the Green-

Lagrange strain tensor, identified by  . Take two vectors dX  and dY , taken in dx  and dy  

after deformation, respectively.  The variation of their scalar product is written using (2.3), as 

follows, 

d d d d 2d d     x y X Y X Y  (2.9) 

  can be defined in terms of the deformation gradient, based on equation (2.5): 

 T1

2
  F F I  (2.10) 
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A system of main orthogonal directions is taken to its final configuration, rotated by a tensor 

called the rotation gradient R , which can be isolated in a polar decomposition of tensor F : 

 F D R  (2.11) 

In this decomposition, tensor D contains all information necessary to measure the 

deformation, resulting in another expression of the Green-Lagrange deformation: 

 21

2
 D I  (2.12) 

Using the equation (2.6), tensor   can also be defined as a function of the displacement 

vector, as shown below. 

  ji k k
X X X X ij

j i i j

uu u u1 1
 ; 

2 2 X X X X
     

              
u u u u  (2.13) 

In some problems, one can use a first order approximation, as long as the condition 

1u   of infinitesimal transformation is respected. Thus, the Green-Lagrange tensor is 

reduced to the linear strain deformation : 

  ji
X X ij

j i

uu1 1
 ; 

2 2 X X
  

         
u u   (2.14) 

Since tensor   has the same order as X u , the condition of infinitesimal transformation 

implies infinitesimal strains, expressed by  1 . Note that the application of linear 

measure of strain results in some limitations. As for example, in a rigid body rotation,   is 

null, while  X u  can take any different order of magnitude. 

Under the condition of infinitesimal transformation, the determinant of the deformation 

gradient, also called the Jacobian operator, is written as: 

  i
ii

i

u
det 1  ; 1 1

x


      


F uJ J  (2.15) 

In infinitesimal transformations, the trace of the linear deformation tensor ii , represents the 

volumetric expansion of the porous medium, which is now defined by: 

ii   u  (2.16) 
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The transformation of the initial volume 0d  in td  is performed through the Jacobian 

operator by t 0d d  J . Based on (2.15) and (2.16) we arrive at: 

 t 0d 1 d      (2.17) 

The dilation observed in the porous medium is due to variations in the connected pore space, 

and the volumetric expansion s  experienced by the solid matrix. Analogously to (2.17), 

from s  the relationship is defined as: 

 s s
t 0d 1 d   s   (2.18) 

Based on the concepts of Eulerian and Lagrangian porosity, the volume occupied by the 

solid matrix with the total volume can be related in the initial time ( t 0 ) and current time (

t t ), as follows: 

 
 

s
t t t 0

s
0 0 0

d 1 d d d

d 1 d

       

   





n   

 
  (2.19) 

The balance of the total volume can now be solved, 

0 0(1      s)  (2.20) 

2.4. BEHAVIOR OF THE FLUID PHASE  

In the development of constitutive equations for a porous medium, the description of the fluid 

motion in relation to the initial configuration of the skeleton is necessary. 

2.4.1. Particle Derivative  

As aforementioned in the previous section, the description of the skeleton’s deformation can 

be done as a function of time t  and the position vector X , both referenced in the initial 

configuration of the particle. In this Lagrangian description, the skeleton’s strain kinematics is 

formulated by the derivatives in total time. 

In some cases, it may be of interest to formulate the problem according to an Eulerian 

description, taking into account only the current configuration of the skeleton at a given time 

instant. In this type of approximation, it is necessary to define a velocity field ( t)V x,  of the 

particle, which can be either a fluid particle or a skeleton particle (indicated by f   or s 
, respectively). The particle derivative concept is shown below. 
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In a multiphase domain, the derivatives of any field defined for any domain can be taken in 

relation to one of the phases, separately. In the case of a porous medium, derivatives can be 

taken with respect to the skeleton or the fluid. d dt  is defined as a particle time derivative 

of the field   related to the particle    ( s  or f ). 

For example, we can write the velocity for particle   localized by x : 

d
( t)  ; s  f

dt


  

x
V x, ou  (2.21) 

The particle derivative of a material vector dx  is calculated as:  

   d d
d d ( d t) ( t)

dt dt

 
        x x x x V x x, V x,  (2.22) 

    i
x x ij

j

Vd
d d  ; 

dt x


  

    


x V x V  (2.23) 

For an arbitrary field ( , t) x , we write the particle derivative considering that x  assumes 

successive positions (t)x  occupied by the particle: 

 x
d

dt t


  

   


V  (2.24) 

The acceleration of a particle 
  can be obtained, for example: 

  i i
x i j

j

dV dVd d
; V

dt dt dt dx

   
          

V V
V V  (2.25) 

Taking the integral over the volume td  of any given field  , its particle  derivative is  

 
t t

t t
d d

d d
dt dt 

   
 

   (2.26) 

which can be rewritten as follows, according to (2.24): 

t t

t x t
d

d  d
dt t


 

 

          V  (2.27) 

or, equivalently: 
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 
t t

t x t
d

d  d
dt t


 

 

         V  (2.28) 

Also of interest is the definition of a particle derivative of any material volume td : 

   t x t
d

d d
dt

    V


  (2.29) 

2.4.2. Relative Flow Vector of a Fluid Mass. Filtration Vector. Fluid Mass Content  

Let the mass that flows in the interval between t  and t dt , through the surface da  

according to the normal direction n , be defined by f daJ  (Figure 2.3). One can write 

 da dafJ  w n  (2.30) 

 

Figure 2.3 - Infinitesimal volume flowing through a surface da  in the interval dt  

with ( , t)w x  the Eulerian relative flow vector, defined in the material point considered. In the 

increment dt , the volume that flows through the surface da  is f s( )  da dt n V V n . Then, 

we define the relative flow as a function of the filtration vector  : 

f s
f  ; ( )  w V V  n  (2.31) 

2.5. MASS BALANCE 

2.5.1. Eulerian Continuity Equations  

Let s  and f  be the mass density of the solid matrix and fluid, respectively. Thus, an 

infinitesimal volume td  contains  s t(1 ) d  n  of skeleton mass and a fluid mass 

n (Vf-Vs) n da dt

n da
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equivalent to f t d n .  As long as there is no mass exchange, one can express the mass 

balance for the two continuous media considered, as follows. 

 
t

t

s

s t

f

f t

d
1 d 0

dt

d
d 0

dt





  

 









n

n 

 (2.32) 

Applying equation (2.26), the differential operators above can be included in the kernels of 

their integrals, which imposes the nullities: 

  
s

s t
d

1 d 0
dt

  n  (2.33) 

 
f

f t
d

d 0
dt

 n   (2.34) 

Finally, the Eulerian continuity equations for the fluid and solid phases are written, using 

(2.28) as follows: 

     s s
x s

1
1 0

t

 
   






n
n V  (2.35) 

   ff
x f 0

t


  





n

nV  (2.36) 

Resorting to equation (2.31), we can rewrite the fluid continuity equation (2.36), in order to 

relate the motions of the fluid and of the skeleton. 

 s
sf

f x x

d
0

dt
     




n
n V w  (2.37) 

2.5.2.  Lagrangian Continuity Equations   

The representation of the fluid mass balance for a Lagrangian description is now 

described. We define the Lagrangian fluid mass fm  per unit volume content 0d . Its 

relationship with the Eulerian fluid mass content f n , per unit volume td , is written as: 

f t f 0 d  d  n m  (2.38) 
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Applying equation (2.7), f fm    is obtained, with   the Lagrangian porosity, defined in 

section 2.3.2. 

Take a Lagrangian vector ( , t)M X , which is related to the Eulerian vector by ( , t)w x : 

da dA  w n M N  (2.39) 

With dA  as the surface defined by normal N , in the initial configuration, which corresponds 

to the surface da  in the deformed state. Assuming that the flow of w through da  is 

equivalent to the flow of  M  through dA , we can write: 

1 i
i j

j

i i
x t X 0

i i

X
 ; M w

x

w M
d d  ; 

x X

 
  



 
       

 

M F w

w M 

J J

J

 (2.40) 

The application of (2.38) and (2.40), and the use of the particle derivative of the volume td , 

given in (2.29), allows writing the fluid continuity equation (2.37) for a Lagrangian description: 

f f i i
x

i

d (X , t) M
0 ; 0

dt t X

 
    

 
M

m m
 (2.41) 

Similarly, we write the equation of skeleton mass balance, integrating (2.33) as: 

   0
s t s 0 01 d 1 d    n n   (2.42) 

with 0
s  as the density of the initial mass of the solid matrix, and 0 0n   the initial porosity of 

the medium.  Knowing that t 0d d  J , we arrive at: 

s 0(1 )  0 0
s sm m    (2.43) 

where s s (1 ) m J n  is the solid mass content, in relation to the original volume 0d . The 

equation shows that the mass remains constant and equal to its value in the initial 

configuration. 

Equations (2.41) and (2.43) are the Lagrangian formulation, alternatives to the Eulerian 

equations of continuity, given in (2.35) and (2.36). 
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2.6. MOMENTUM BALANCE 

Now we formulate the momentum balance for a porous medium, still according to the 

hypothesis adopted in the preceding paragraphs, which is treated as a superposition of two 

continuous media, interacting with each other. The momentum balance concept is important 

to obtain the total stress tensors. 

2.6.1. The Hypothesis of Local Forces 

Any material domain t  can be subject to two types of external forces: the body forces and 

the surface forces. Generally, the body forces solicit the skeleton and the fluid in the same 

way. This is the case, for example, of forces due to gravity. An infinitesimal force f  acting 

on the elementary volume td is defined by a volume force density per unit mass f : 

t( , t)d  f f x  (2.44) 

The density of the porous medium  , which includes the matrix and fluid phase, is given by: 

 s f1    n n  (2.45) 

It is assumed that the body force density f  depends only on the current position of particle x

, and time t. Then, the effects caused by the external body forces are assimilated the same 

way by infinitesimal and total domains td  and t . These body forces are local 

forces. Here the non-local body forces, the ones depending on the distance between 

particles, for instance, are not considered. 

The surface forces act on the boundary t  of the domain t . Similarly to what was 

described for the volume forces, we can define an infinitesimal surface force T through its 

density T , as follows: 

( , t, )da T T x n  (2.46) 

Note that T  also depends on n ,  the outward unit normal to the surface da , at the point 

defined by x . It is assumed that the effects of surface forces acting on an infinitesimal region 

of  t  are noticeable in the vicinity of this restricted area. The hypothesis that surface 

forces have a local nature is known as Cauchy’s hypothesis. 
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2.6.2. Momentum Balance 

In a given porous domain t , it follows that the result of all forces must be equal to the rate 

of change of the linear momentum balance, that is:  

   
t t t t

s f
s f

s t f t t
d d

1  d  d , t  d ( , t, ) da
dt dt   

         V V f x T x nn n    (2.47) 

The terms   s
s t1  d  Vn  and f

f td Vn  represent the amount of linear momentum 

balance respectively related to the particles of the skeleton and the fluid contained in td . It 

is considered that the external forces act on all the matter contained in t , without any 

distinction between fluid and skeleton. Note the role of particle derivatives d dt , which 

incorporate the effects of the different motions of the solid and fluid particles in the change of 

the global momentum balance. 

Similarly, we can write the angular momentum balance: 

 

 
t t

t t

s f
s f

s t f t

t

d d
1  d  d

dt dt

, t  d ( , t, ) da

 

 

     

    

 

 

x V x V

x f x x T x n

 



n n

 (2.48) 

2.6.3. The Dynamic Theorem 

The inertial forces generated in the volume td  may be related to the external forces f  

and T, acting in it. Taking the particle derivatives in (2.47), and using the definitions (2.21), 

(2.25), (2.33) and (2.34), the following is written: 

    
t t t

s f
s f t t1 d , t  d ( , t, ) da

  

         n n f x T x n   (2.49) 

The integrand on the left represents the inertial force related to the material contained in td

in a current time t . 

The expression (2.49), also called theorem of the dynamic resultant, is valid for any domain 

t , considering the hypothesis of local forces, which ensures that a body force ( , t)f x  acting 

on volume td  is independent of choosing domain t , which contains it. 

The moments due to inertial forces also correspond with the moments of external forces, so 

that we can equate a theorem similar to (2.49), starting from equation (2.48): 
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    
t t t

s f
s f t t1 d , t  d ( , t, ) da

  

            x x f x x T x nn n   (2.50) 

2.7. STRESS TENSOR 

Based on the momentum balance, one can arrive at a definition of the stress tensor  . Let 

us assume an infinitesimal tetrahedron (Figure 2.4), whose three sides jdS
 
are parallel to 

the plans coordinated and guided by je . The surfaces jdS  are related to the surface base 

area dS  of the normal n : 

j j jdS dS e dSn  n  (2.51) 

Applying the theorem (2.49) to the tetrahedron, the following is obtained: 

  s f
s f j j

i 1 3

hS
O 1 ( )dS ( e )dS

3
  



    f T n T


n n   (2.52) 

with h  as the height of the tetrahedron, its volume is hS 3 . O( )  represents the order of 

magnitude of the field  . Assuming the action-reaction principle ( ) ( )  T n T n , and 

replacing (2.51) in (2.52): 

  s f
s f j j

i 1 3

hS
O 1 ( ) (e )n

3
  



    f T n T


n n   (2.53) 

Letting h 0 , the tetrahedron is degenerated at a point, canceling the term to the left of 

equation (2.53). 

j j
i 1 3

( ) (e )n


 T n T


 (2.54) 

Equation (2.54) defines a linear operator that relates ( , t, )T x n  to normal n , known as the 

Cauchy stress tensor ( , t)x   , with components ij . This relates to the stress vector 

( , t, )T x n  as: 

j j ij j i( , t, e ) n e    T x n n n  (2.55) 

The tensorial nature of tensor   is a direct consequence of the hypothesis of local contact 

forces, in item 2.6.1, expressed by ( , t, )T T x n . 
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Figure 2.4 - Infinitesimal tetrahedron to define the stress tensor 

2.8. EQUILIBRIUM EQUATION 

The equation of motion of the elementary volume td  can be obtained from the theorem 

(2.49), in which the definition given in (2.55) is introduced, obtaining: 

  
t t

s f
s f t1 d  da 0

 

      f n   n n   (2.56) 

The application of the divergence theorem to the surface integral given above allows to 

rewrite the equation as: 

  
t

s f
x s f t1 d 0



       f    n n   (2.57) 

The dynamic theorem, written above, should also be valid for any domain t . Then we arrive 

to the local equation of equilibrium: 

    
    

s f
x s f

ji s f
s i i f i i

i

1 0 ;

1 f f 0 
x

  

    

      


    



f f n n

n n

 
  (2.58) 

Similarly, we can rewrite the dynamic moment theorem (2.50), as follows. 

  
t t

s f
s f t1 d  da 0   

 

        x f x nn n    (2.59) 

Based on the divergence theorem, we have: 

e3

e1

e2

n

T(n)

dS2

dS3

dS1
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 
t t

as
x t da 2 d

 

       x n x    (2.60) 

where as  is the anti-symmetric portion of the stress tensor, defined below in Cartesian 

coordinates. 

as
23 32 1 13 31 2 12 21 32 ( )e ( )e ( )e             (2.61) 

Then, equation (2.59) is: 

  
t

s f as
s f x t1 2 d 0   



          x f n n     (2.62) 

The observation of the nullity in the equilibrium equation (2.58) allows to write: 

t

as
td 0



    (2.63) 

Equation (2.63) is valid for any volume t , which implies as 0 . Then, based on (2.61), the 

symmetry of the stress tensor is verified. 

ij ji ;       (2.64) 

The symmetry is valid in the absence of external moments distributed in volume t . 

2.9. PARTIAL STRESS TENSOR 

The tensor   includes the stress related to the skeleton and the fluid, without any 

distinction. In order to identify their respective contributions, the hypothesis of local contact 

forces (2.46) for each phase is written, such as: 

s s f f( , t, )da ; ( , t, )da   T T x n T T x n  (2.65) 

Equating the momentum balance separately, for the skeleton and for the fluid, one can 

define the partial stress tensors s  and f , respectively. 

s s f f( , t, ) (1 )  ; ( , t, )    T x n n T x n nn n   

The symmetry defined in (2.64) should also be seen in the partial tensors, as well as 

satisfying the equilibrium equation, as follows: 



Ph.D. Thesis – Eduardo Toledo de Lima Junior 38 

 

    
 

s s s
x s int

f f f
x f int

1 1 0

0





         
       





n n

n n





f f

f f




 (2.66) 

The volume strength int
f  represents the interaction force experienced by the medium  , 

due to the other medium. The action and reaction principle foresees the balance of the 

interaction forces, that is; s f
int int 0  f f . 

The balance can be restored in its original form (2.58), from the sum of equations (2.66), 

resulting in: 

s f s f ; (1 )    T T T n n    (2.67) 

At a mesoscopic scale, the partial tensors can be interpreted as the tensors which contain 

the average stress values, in each phase. For the fluid, it is reasonable to approximate the 

stresses through a spherical tensor, defined as a function of pore pressure to which the fluid 

is subject to. 

f p  I  (2.68) 

then the stress partition (2.67) results in: 

  s1 p  n n  I  (2.69) 

and the equilibrium equation of the fluid in (2.66) can be rewritten as: 

   f f
x f intp 0n n     f f  (2.70) 

2.10. ASPECTS ON THE CONTINUUM DAMAGE MECHANICS 

The rupture process of a body is progressive, starting with a microcracking state that 

localizes and develops into a state of effective opening of cracks, which can in fact induce to 

rupture. The phenomenon identified between the onset of micro-cracking and cracking is 

called damage. 

Thus, the damage theory is no longer valid to the effective crack opening, a state described 

by fracture mechanics. According to Janson and Hult (1977) apud Proença (2001), one can 

differentiate the two theories as follows: 

- In damage mechanics the strength of a loaded structure is determined by the evolution of a 

defect field (microcracks or microvoids) considered continuously distributed; 
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- In the fracture mechanics, the strength of a loaded structure is determined by the evolution 

of a single defect, such as a pre-defined oriented crack in a sound medium. 

In the continuum damage mechanics, the damage assessment is conducted by checking the 

strength or stiffness decrease in the solid. This is because one cannot directly quantify the 

damage, but can measure the damage undergone by their overall mechanical properties. 

2.10.1. Damage Variable and Effective Stress  

Consider a damaged solid body, from which an infinitesimal volume is isolated. Let  dS  be 

the surface area of this volume defined by the normal n . The microcracks and voids in this 

section occupy an area ddS .  Then, the effective resistant area is ddS dS dS  . The 

representative damage variable is defined by: 

d

n
dS

dS
D  (2.71) 

From a physical point of view, the damage variable  nD
 is the relative value of the damaged 

section area, cut by a plane normal to n . 

Note that by assuming isotropy, the variable has a scalar nature D . 

Let   be the stress normal to the surface dS  in the presence of any normal force 

applied. The resistant area of the section can be written as 

ddS dS dS dS(1 D)     (2.72) 

which allows to define the effective portion of the stress: 

ef dS

1 DdS


   


 (2.73) 

In the case of isotropic damage, the effective stress concept can be extended to two-

dimensional and three-dimensional problems, where it is valid to write the tensor ef . 

The effective stress concept is common to both the study of porous media and the study of 

damaged solid media. It represents the stress portion that effectively acts on the solid 

skeleton, excluding the stress portions associated with the fluid pore pressure (2.68), and 

with the dissipative damage process. This partition of the total stress tensor will become 

clearer in the presentation of the constitutive equations of the coupled problem, in the 

following chapter. 
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2.10.2. Isotropic Local Damage Model (Marigo, 1981) 

Let us assume the free energy associated with a solid, written as: 

 jk jklm jk lm
1

( ,D) 1 D E
2

       (2.74) 

with jk  and jklmE  the strain and elastic tensors of the intact material, respectively. The mass 

density is indicated by  . Let D  be the only internal scalar damage variable. It is 

understood that  D  assesses the state of degradation of the material, taking values between 

zero and one. The variable D  that is null indicates intact material, while the unit value is 

associated with complete degradation. 

One should note the correspondence between this energy expression and equation (3.1), 

which represents the free energy potential associated with the saturated porous 

medium. Equation (2.74) shows only the dissipation portion related to the strain tensor in a 

solid, penalized by the damage variable.  

The derivatives of the energy potential with respect to the state variables jk  and D  lead to 

define the associated variables, which are the total stress 

 jk jklm lm
jk

1
1 D E

2


    


  (2.75) 

and the thermodynamic force Y conjugated to damage: 

jklm jk lm
1

E
D 2


    


Y  (2.76) 

In addition to the state laws given above, it is necessary to define a damage criterion. In this 

model, it takes the form: 

( , D) (D)  F Y Y  (2.77) 

The term (D)  stores the maximum value reached during the loading history, adopted in its 

linear form 0(D) D  Y A , where 0Y  and A  are material dependent. The damage evolution 

becomes from the consistency condition ( ,D) 0F Y , resulting in  

D  Y A   (2.78) 
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2.10.3 Comments on Strain Localization  

Brittle or quasi-brittle materials – bones and rocks, for example – in some parts of its 

deformation process, may show a progressive loss of strength, in a behaviour called 

softening. This is induced by the damage process. Depending on the material’s constitutive 

model, this softening can also cause a loss of stiffness in the system. This is the case of the 

continuous damage models. 

The localization phenomenon occurs in materials that undergo softening, and is 

characterized by large discontinuities in the strain field. Small localized regions of the body 

dissipate more energy, hence showing much greater strain values than those measured in 

other parts of the body. The onset of localization can be caused by geometric imperfections, 

by the presence of heterogeneities of the material, by boundary conditions or by loading 

conditions. 

Mathematically, the ellipticity loss of the local equilibrium equations indicates the occurrence 

of strain localization. Thus, the boundary value problem becomes ill-posed, leading to the 

loss of solution uniqueness. 

To avoid this problem, one can resort to the concept of the material’s characteristic 

length. Some non-local damage theories take this concept into account. One of them is 

briefly described here. 

The strategy presented here is based on the concept of non-local integral proposed by 

Pijaudier-Cabot and Bazant (1987), which consists in considering a non-local thermodynamic 

force Y . The value of the force Y  is weighted with a function defined over the whole domain 

  or in part of it, evaluated in the neighbourhood of the point of interest. This function Y  

has a radial character, depending on the distance between the base point s  and the mapped 

point q. The non-local force is defined by the integral: 

 1
(s) s q (q) dq

(s) 

   YY Y
V

 (2.79) 

where (s)V  is 

 (s) s q  dq


   YV  (2.80) 

The following weight function is chosen, for example: 

 
2

s q
s q exp

2

 
   
 
 

Y 2l
 (2.81) 
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With l  as the characteristic length of the material. It is seen that, in the condition 0l  the 

weight function tends to the Dirac distribution (s q)  , which refers to the local model. The 

function takes higher values as the points s  and q approximate each other, and tends to 

lower values for points further away from each other. 

The damage criterion is rewritten as ( ,D) (D) F Y Y , and the evolution law results: 

D
Y

A



  (2.82) 

Note that the stresses are still calculated locally, according to (2.75). The non-local 

thermodynamic variable is responsible for the evolution of the damage process, that is, there 

is the contribution of values Y(q)  from the whole domain. 
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Chapter 3 

Poro-damage Formulation and 

BEM Implementation 
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3.1. OVERALL CONSIDERATIONS 

The concepts of poromechanics and continuum damage mechanics presented herein enable 

developing a formulation for poroelasticity taking into account damage in the solid matrix, a 

behavior that from this point of the text will be identified as poro-damage. The coupled 

problem is defined from the free energy potential in the system, from which the constitutive 

equations are obtained. The field equations, which complement the formulation, are those 

already defined in the previous chapter. 

The damage process of the skeleton induces changes in the mechanical properties of the 

porous material. This chapter presents the expressions for the evolution of these parameters 

according to the deterioration level on the skeleton. 

Given the difficulties in obtaining analytical solutions for modeling problems in general, the 

so-called numerical methods emerge, based on approximate solutions calculated at discrete 

points in the domain under analysis. Among the known methods, the boundary element 

method appears as a good alternative to obtain numerical answers to several problems. 

The integral formulation of the coupled model is written, and the corresponding nonlinear 

BEM formulation is then developed, enabling the computational implementation of the 

referred model. 

3.2. PORO-DAMAGE FORMULATION 

Let us assume a poroelastic system, under quasi-static linear regime. The description of the 

mechanical behavior of this system requires the following set of equations: 

- Constitutive laws for porous solid and for the fluid 

- Balance equation of the porous medium 

- Fluid continuity equation  

- Fluid transport law 

The consideration of the damage process in the poroelastic system incurs changes at two 

points of the aforementioned equations. The constitutive law that governs the solid considers 

the gradual degradation undergone by the material, through the stress part associated with 

the damage, which leads to changes in the porous medium equilibrium. 

3.2.1. Constitutive Laws 

Let us assume the free energy potential per unit volume of a saturated porous medium 

subject to damage, written as: 
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 

     

2dr 2
kj 0 kj kjlm lm kj

2
0 0 kj

1 1
(ε , ,D) (1- D)ε : E : ε Tr ε

2 2
1

Tr ε
2

  

   

      

   

b M

M bM  (3.1)
   

in which the constants M  and b  represent the Biot modulus and the Biot coefficient of the 

effective stress, respectively. In saturated condition, the Lagrangian porosity   measures the 

variation of fluid content, that is, the variation of fluid volume per unit volume of porous 

medium.  The mass density of the porous medium is described by  . The tensor kj  

contains the solid skeleton strains. The internal damage variable, represented by D , 

assesses the deterioration state of the material, taking values between zero and one. The 

null variable D  indicates sound material, while the unit value is associated with complete 

degradation.  

dr
kjlmE  represents the isotropic elastic tensor of the material under drained conditions, defined 

by:  

dr dr
kjlm kj lm kjlm

2G
E K 2G

3
      
 

I  (3.2) 

The bulk modulus drK  and the shear modulus G  refer to the drained material and can be 

obtained experimentally. The fourth order identity tensor is represented by kjlmI . It can be 

observed that one of the possible sets of parameters for the characterization of porous 

material is formed by M , b , drK  and G . 

The derivatives of the energy potential (3.1) with respect to the internal variables of the 

system, kj ,   and D  give rise to its conjugate pairs, in other words, they define the 

associated variables, which are the total stress kj , pore pressure p  and the thermodynamic 

force associated with damage Y : 

   dr
kj kjlm lm kj 0 kj

kj

(1 D)E ε Tr ε
ε

            
bM b  (3.3) 

       0 0 kj
0

p p Tr ε  
 
        

M b  (3.4) 

dr
kj kjlm lm

1
ε E ε

D 2
 

  


Y  (3.5) 
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Considering  0   and  0p p  allows to observe the presence of initial fields of pore 

pressure and porosity, better defining the boundary value problem. Thus, the terms in 

brackets can be interpreted as the evolution of the variable along the loading process. 

Substituting  (3.4) in (3.3), we arrive at the following expression:   

 dr d
kj kjlm lm kjlm lm 0 kjE DE p p        b  (3.6) 

in which it can be seen that the total stress tensor is composed of three parts. The first one 

depends on the elastic properties of the solid phase, called effective stress. The second, also 

related to the solid, includes the non-linear effects of the damage process. The last part is 

related to pore pressure p . Note that the p  values are taken with a positive value, by 

convention. Then, equation (3.6) can be expressed as:  

 ef d
kj kj kj 0 kjp pb        (3.7) 

with d
kj  as the stress part associated with damage. 

It can be seen that the pore pressure affects only the hydrostatic components of the total 

stress. It is known that at any point of a fluid, the pressure measured has a normal 

component, with the same value in all directions, and a tangential component, related to 

viscosity. For non-viscous fluid, an accepted condition in this work, that tangential part is 

neglected. 

With the stress and strain tensors, the material parameters under undrained condition, 

expressed by 0 , are also defined. The undrained bulk modulus uK  and the Skempton 

coefficient B  are: 

 
 

 

kju

kj
0

kj
0

Tr1

3 Tr

p
3

Tr









 
  

 


 

 
B

 (3.8) 

It is found that uK  relates the volumetric strain with the hydrostatic stress, while B  relates 

this stress to the pore pressure p . 

These parameters can be related to the ones defined in drained condition, as follows: 
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 

u dr

u

22 u

u dr

 






 

b
B

B
M

 (3.9) 

3.2.2. Fluid Transport Law  

The transport of a fluid in an interstitial space is described by a flow law, derived from the 

fluid dissipation equation. Let us consider the dissipation equation below: 

 f x f fp        f    (3.10) 

Overall, it is written as: 

f     (3.11) 

 f s
x f f( ) ; p      V V fn    (3.12) 

with   as the vector that represents the filtration - as defined in 2.4.2 – and   the force that 

induces the filtration. Assuming a laminar flow of the fluid through the porous space, a linear 

relationship between the two quantities can be considered. Darcy’s Law, in its linear classic 

version, uses the permeability tensor k : 

 f s
x f f( ) p      n V V k f   (3.13) 

which is defined by 




k
k

 (3.14) 

due to the intrinsic permeability of the skeleton k  and to the fluid viscosity  . In the case of 

partially saturated domains, there is also the influence of relative permeability corresponding 

to each fluid phase in this value. Note that this coefficient is taken as the scalar kk  in this 

study, on account of the admitted isotropy. In a more general law, it is necessary to use the 

anisotropic permeability tensor. 

In this work, we will use a Lagrangian description of the variables. In the Lagrangian 

description, the flow and filtration vectors result as: 

f s
f  ; ( )    M V V  lag lag  (3.15) 
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Darcy’s linear Law, which relates the pore-pressure gradient and relative velocity of the fluid 

in relation to the skeleton, is written as: 

 f s
x f f( ) k p      V V f    (3.16) 

From this point of the text, the total force over the fluid, including its acceleration, will be 

represented by  f f f f . 

   x k ,k kk p  ; k p f       f  (3.17) 

3.2.3. Fluid Continuity Equation 

The lagrangian fluid continuity equation, neglecting a possible source of fluid is written as: 

f
x

d
0

dt
  

m
M  (3.18) 

Applying the definition f fm    and equation (3.15), another form is admitted for equation 

(3.18): 

   f
f k ,k

d
0

dt

 
    (3.19) 

The fluid mass density depends on the pressure and temperature. Considering an isothermal 

process, there is only the influence of pressure, which can be represented by f
f fK

p

 



, 

with the bulk modulus of the fluid represented by fK . The derivatives in (3.19) lead to the 

equation: 

 f
k,k k ,kK p p         (3.20) 

Inserting Darcy’s Law definition into equation (3.20), an function in terms of pore-pressure p  

is obtained: 

 f 2
k,k ,k k ,kK p k p pf         

   (3.21) 

The consideration of fK  introduces a nonlinearity into the problem, associated with the term 

2
,kp . In the equation (3.21) this parameter is not taken into account. However, the fluid 

compressibility is implicitly (or partially) considered, using fK  in the calculation for the 

mechanical properties of the material. 
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3.2.4. Equilibrium Equation 

As presented in 2.8, the local equilibrium for the porous medium can be written as follows: 

    s f
x s f1 0      n nf f      (3.22) 

From this point of the text, a simple notation will be used to represent the volume forces 

acting on the porous medium, with no distinction between forces in the fluid or solid phase. 

This is to achieve greater clarity in the exposition of the integral formulations of the problem. 

Therefore, we have the equilibrium written due to tensor b , as follows. 

x kj, j k0 ; b 0      b  (3.23) 

Equations (3.7), (3.17), (3.21) and (3.23), complemented by the strain-displacement relation  

   X X kj k, j j,k
1 1

 ; u u
2 2

     u u  (3.24) 

define the poro-damage problem, in a quasi-static regime. 

3.2.5. Rates of the Variables 

Given the transient nature of the problem, the following rates of the variables should be 

defined: 

dr
kj kjlm lm lm kj

1
(1 D)E D bp

2
          (3.25) 

kj
1

Tr( ) pb
M

       (3.26)   

kjp Tr( )M b    
   (3.27) 

3.3. INFLUENCE OF DAMAGE ON THE POROELASTIC PARAMETERS 

The damage process evolution can be measured through the gradual deterioration in the 

mechanical properties of the solid skeleton. Thus, the mechanical parameters of the porous 

material, dependent on the parameters of the solid matrix, also undergo the influence of the 

damage. The Biot coefficient of the effective stress is defined by 

dr

s

K
1

K
 b  (3.28) 
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with sK  as the bulk modulus of the solid constituent, with a value that is higher than the 

modulus drK . This latter is calculated with the values of modulus G  and Poisson’s ratio   

measured under a drained condition:  

dr 2G(1 )
K

3(1 2 )

 


 
 (3.29) 

Introducing the damage effect directly on the drained modulus, one obtains 

dr dr2G(1 )
K (D) (1 D) (1 D)K

3(1 2 )

 
   

 
 (3.30) 

which can be applied over time in expression (3.28). The Biot modulus M  is calculated 

using the expression:  

u dr

2

K K
M

b
 (3.31) 

which can also be written with the damaged values. An expression to calculate the undrained 

modulus can be defined based on its drained equivalent (Detournay and Cheng, 1993): 

u
u

u

2G(1 )
K

3(1 2 )

 


 
 (3.32) 

in which Poisson’s undrained ratio u  is determined experimentally.  

3.4. ASPECTS ON THE BOUNDARY ELEMENT METHOD 

The numerical methods are alternatives for the mathematical solutions to study engineering 

problems. The latter are usually limited by difficulties in obtaining analytical solutions to more 

or less complex problems that include general geometries and non-linear behaviors. 

One of the areas in engineering research is the development of suitable numerical methods 

to solve these problems. In the case of this work, the numerical method to be used is the 

boundary element method. This method applies, as the weighting function, an analytical 

solution of a problem that is similar to that which is sought to be resolved, but with particular 

boundary conditions. This function is called a fundamental solution. 

When the physical properties of the domain, for which the fundamental solution was 

calculated, correspond exactly to the properties of the domain analyzed, it is not necessary 

to use any domain discretization. This usually occurs for linear problems. However, when 
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there is some limitation in the fundamental solution, the domain discretization to consider the 

residual quantities is then necessary.  

Nevertheless, the fact that many of the unknown variables, usually the most important, 

belong exclusively to the boundary, the mesh density used in the domain is considerably 

reduced when compared to the domain methods, as for instance the finite element method. 

This section provides, in general, some principles of the method. The symbols used herein 

do not retain any correspondence with the variables already defined in previous chapters. 

3.4.1. Boundary Elements and Discretization 

Considering the integral formulation of a problem, written for the boundary points, its 

treatment depends on the clear description of this boundary. The main objective of BEM is, 

based on the integral formulation, the assembly of an algebraic system, which allows to 

directly determine the approximate boundary values and, from these, the other values of 

interest for the analysis. Clearly, there are endless possible equations to be written, since the 

integral formulation can be applied to the infinite points of the boundary of the domain or to 

the external points. 

The equivalent representation of the boundary, in a finite dimension, is done by defining the 

nodes that delimit the so-called boundary elements. This boundary parametrization can 

result as exact or approximate, depending on the domain geometry under analysis and the 

type of parameterization used. Figure 3.1 illustrates the two situations, using linear elements. 

Besides the geometric characterization of the element, the variables of interest to the 

problem must be evaluated from a finite number of values associated with the discretization 

nodes. It is common to use polynomial functions to interpolate the variables along the 

boundary elements, that is, between the discretization nodes. 

 
Figure 3.1 – Exact and approximate boundary discretizations  
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The shape functions to approximate the boundary geometry and the variables involved can 

be chosen freely, depending on the type of problem studied and the required accuracy of the 

results. The combination of two equal interpolation functions gives rise to the isoparametric 

element. In this study, the linear isoparametric element is used, as illustrated below. 

 
Figure 3.2 – Linear isoparametric element  

In which 1  and 2  are the functions that compose the linear distribution f ( ) , defined on 

the local dimensionless coordinate [0,1]  .  Then, the coordinates of a point S  or an 

unknown evaluated at this point can be written according to the same approximate form, 

respectively 

n
m n mx (S) (S)x   (3.33) 

n
m n ma (S) (S)a   (3.34) 

The subscript m  refers to the direction and n  to the node considered in the element. 

Based on equation (3.34), displacements and tractions on a generic element can be 

represented in a matrix form. For a two-dimensional problem, we have: 

1
1

1
1 1 2 2

2
2 1 2 1

2
2

u

u 0 0 u

u 0 0 u

u

 
 

      
           

 
 

u  (3.35) 

1
1

1
1 1 2 2

2
2 1 2 1

2
2

t

t 0 0 t

t 0 0 t

t

 
 

      
           

 
 

t  (3.36) 

Similarly for the coordinates: 

1

1

2

1

S

f( )
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1
1

1
1 1 2 2

2
2 1 2 1

2
2

x

x 0 0 x

x 0 0 x

x

 
 

      
           

 
 

x  (3.37) 

In some problems it is necessary to represent discontinuities on boundary conditions 

between adjacent elements. In such cases, one can apply the discontinuous element 

concept (Figure 3.3), together with the definition of double nodes, which are nodes with the 

same coordinates, but with different associated values. In order to write two different 

equations for these nodes, the collocation point is moved along the element axis, at a 

distance corresponding to 1/4 of its length, as suggested in Venturini (1988). 

 
Figure 3.3 – Discontinuous adjacent elements, with double node; Interpolation functions in a 

discontinuous element 

3.4.2. Domain Discretization 

As will be seen in this section, the integrals over the domain, which are in the proposed 

formulation, can be subdivided into two basic classes. In the first one, the kernel, which 

consists of a fundamental solution or its derivatives, multiplies a term of known value over 

the domain (3.38), as in the case of body force integrals. Another situation is that in which 

the term multiplied is a system unknown, as in equation (3.39). In this section, the notations 

*X  and T  are used to represent a generic fundamental solution and any given variable, 

respectively. When the variable has its value known, a bar on its representation is used. 

*  d


X T  (3.38) 

*  d


X T  (3.39) 

In the case of integrals (3.38), the objective is to transfer the domain integral to the boundary, 

so that it can be evaluated in the usual way, as well as the other terms over the boundary. 

Let us assume the existence of a primitive of the fundamental solution: 

1

1

2

1double single
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2 * L X  (3.40) 

The integral can then be rewritten as: 

2 2
* 2

2 2
1 2

 d  d  d
x x  

  
         

  
L L

X T LT T  (3.41) 

Making an integration by parts, we have: 

2 2

1 22 2
1 2 1 2 1 1 2 2

 d  d  d
x x x x x x x x  

           
                        

  
L L L L L T L T

T T  (3.42) 

A second integration by parts leads to 

2 2

1 2 1 2 2 2
1 2 1 2 1 2

 d  d  d
x x x x x x  

         
                       

  
L L T T T T

T L L  (3.43) 

Finally, the original integral in the domain results as: 

2 2 d  d  d  d
   

   
              
   

L T
L T T L T L  (3.44) 

Note that successive integrations can be made in order to cancel the remaining integral 

domain in the last term of the evolution. After two integrations, as shown above, it is possible 

to treat integrals whose term T  has a constant or linear distribution, since its Laplacian is 

zero. This technique is known as multiple reciprocity. 

One may use different methodologies to treat the type of domain terms (3.39). A semi-

analytical procedure to calculate these integrals is shown herein, from the definition of the 

variable of interest in discrete regions of the domain. 

Consider a portion of the domain  , discretized in cells m , as illustrated below. 

 
Figure 3.4 – Division of the domain into cells; linear approximation of variables in the cell 

m

1

2

3

f 1 f 2

f 3

q

m
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Approximating the value of f (q)  in each cell m  by a function l (q) , we have: 

m m
l lf (q) (q)f   (3.45) 

Thus, an integral containing the term in f (q)  can be written as a sum of the integrals in each 

cell, for example: 

cel

m

N
* * m

l m l
m 1

u (S,q)f (q)d u (S,q) (q)d f
 

      (3.46) 

The integration of a domain term in the cells results in a matrix of coefficients, which 

represents the influence of the nodal values lf . 

In this work, triangular cells with linear approximation are used for the variables.  For the 

cells whose nodes belong to the boundary, a procedure to move the collocation point into the 

cell, along the corresponding bisector, is adopted. 

The linear shape function is given by: 

 l 0 0 0
c

1
x y

2A
       (3.47) 

With cA  as the cell area, and the terms 0 , 0  and 0  defined by cyclic notation, with 

i, j, k 1 3  , as follows: 

0 j k k j

0 j k

0 k j

x y x y

y y

x x

  

  

  

 (3.48) 

The approximations of the variables over the cell are integrated according to a semi-

analytical procedure, which can be found in Botta (2003) and which is briefly described 

below. First, let us assume an integral domain, written as a sum of integrals over the cells: 

cel

m

N
* * m

l m l
m 1

u f  d u  d  f
 

      (3.49)  

the summation is written in polar coordinates, obtaining: 

celN
* m

l l
m 1 r

u  r dr d  f
 

     (3.50)  
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Performing an analytical integration with respect to r , we arrive at the expression below. 

celN
m
l

m 1

 d  f
 

    (3.51)  

An equivalent expression, represented over the boundary of a cell m  is: 

cel

m

N
m

m l
m 1

1 r
 d  f

r n 

    
   (3.52)  

Depending on the natural coordinates of the cell boundary, we obtain  

cel

m

N
m

p m l
m 1

1 r
J  d  f

r n 


 

   (3.53)  

this expression can be integrated by any given numerical procedure.  

3.5. BEM FORMULATION 

Using the boundary element method requires developing the integral formulation of the 

problem in question. Also, it is necessary to define the fundamental solutions for the 

variables involved. 

As already stated, the poroelastic system can be described by superposition of the fluid and 

solid phases. Thus, in the formulation there are equations related to the fluid pore-pressure, 

as well as the ones from elasto-damage problem, to which terms that reflect the effect of 

pore-pressures are incorporated. Thus, there is a set of integral equations that represent the 

coupling between the mechanical behaviors of the phases. 

We seek herein to present the integral equations for both the solid and fluid phases. 

3.5.1. Integral Formulation for the Solid Phase 

Fundamental Solutions. To characterize the fundamental problem, an infinite domain *  is 

considered subject to a unit force acting at point s  (source point), in the direction i . The point 

where the effects due to that force are measured is called the field point and is represented 

by q . In order to represent the unit force of the fundamental problem, we consider the term 

kb (q) , from the equilibrium equation of elastostatics ef
kkj, j b 0   , as a Dirac delta 

distribution, weighted by a Kronnecker delta that establishes the directions i  and k , as 

follows: 
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 ik ikb (q) (s,q)    (3.54)  

The Dirac distribution, commonly used in the representation of concentrated loads in 

elasticity, assumes zero values or tends to infinite, as follows: 

,s q
(s,q)

0,s q

 
   

 (3.55) 

An important property of this function is the following: 

(y) (x, y)d (y) (x)


   f f  (3.56) 

The equilibrium equation of elastostatics, for the purpose of a fundamental solution, can then 

be written as: 

ef *
ikj, j ik(s,q) (s,q) 0      (3.57) 

In which ef *
ikj  is the effective stress tensor in the fundamental state. All the quantities in the 

text referring to the fundamental state are indicated with an asterisk ( * ). 

Hooke’s Law, which is the constitutive relationship for only the solid phase, relates the strain 

tensor with the effective stress, as follows: 

ef
kj kjlm lm kj mm kj

2G
(q) E (q) (q) 2G (q)

(1 2 )


       

 
  (3.58) 

From the strain-displacement relation, Hooke’s Law is written in terms of displacements. 

Differentiating it with respect to jx , we obtain the first term of the equilibrium equation (3.57), 

which results as: 

ij,kj

* *
ik, jj ik

1 1
u (s,q) u (s,q) (s,q) 0

1 2 G
    

 
 (3.59) 

in which *u (s,q)  represents the displacement field in the fundamental state. 

The solution to equation (3.59), for the two-dimensional case is 

*
ik ik i ,k

1
u (s,q) (3 4 )ln(r) r r

8 (1 )G
        

 (3.60) 

with r  as the distance between the source and field points s  and q , respectively. 
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Differentiating equation (3.60) with respect to jx , and using the strain-displacement relation, 

we obtain the strain tensor in the fundamental problem: 

*
ijk ,k ij , j ik ,i jk ,i , j ,k

1
(s,q) (1 2 )(r r ) r 2r r r

8 (1 )Gr
             

 (3.61) 

From Hooke’s law, the fundamentals effective stresses can be written as follows: 

ef*
ijk ,k ij , j ik ,i jk ,i , j ,k

1
(s,q) (1 2 )(r r r ) 2r r r

4 (1 )r
             

 (3.62) 

Also of interest is the fundamental solution for a Traction defined by the normal  , on a point 

Q  of the boundary. From expression (3.62), and using Cauchy’s formula 

ef
k jk jt (Q) (Q)    (3.63) 

we arrive at 

 *
ik ik ,i ,k , ,i k ,k i

1
t (s,q) (1 2 ) 2r r r (1 2 )(r r )

4 (1 )r               
 (3.64) 

Boundary Integral Equations. First, the equilibrium equation (3.23) is written in its expanded 

form, containing the nonlinear and pore-pressure terms at the source point s , as follows: 

ef d
kj, j k kj, j kj, j kj , j k(s) b (s) (s) (s) p (s) b (s) 0b          (3.65) 

The tractions at point S  of boundary  , are given by: 

ef d
k kj j kj kj, j kj jT (S) (S) (S) (s) p(S)b            (3.66) 

The total stress equation is written as 

d d
kj kj mm ll kj kj kj

2G
(s) (s) (s) 2G (s) (s) p(s)

(1 2 )
b

                  
 (3.67) 

which can be written in terms of displacements: 

kj kj m,m k, j j,k

d d
kj ll kj kj

2G
(s) u (s) G u (s) u (s)

(1 2 )

2G
(s) 2G (s) p(s)

(1 2 )
b

        


      
 

 (3.68) 
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Applying the boundary element method to a particular body requires its equilibrium 

representation in the integral form, which can be obtained from weighted residual methods, 

defining as weighting function the fundamental solution to the basic variable of the problem. 

Although the procedure via weighted residuals is well established, an alternative approach, 

proposed by Somigliana (1886), is used herein, based on Betti reciprocal theorem. The 

theorem is based on the principle of energy conservation and defines that for a solid volume 

V  between any two states, exists the relationship: 

1 2 1 2
V V

(q) (q)dV (q) (q)dV       (3.69) 

It should be noted that for applying the principles of reciprocity, such as Betti’s one, it is 

necessary that the two fields involved keep a linear and proportional relationship between 

them. Therefore, the theorem will be written in terms of effective stress, which is linear and 

proportional to the strain tensor. 

Thus, let us assume a finite domain  , delimited by the boundary  , which represents the 

body under analysis, inserted in an infinite medium * . Consider the existence of two loads, 

with one of them acting in region  , corresponding to the real problem. The second one, 

related to the fundamental problem, acts on the infinite domain 
* . Based on the 

aforementioned theorem, it is possible to write 

ef * *
kj ijk kj ijk(q) (s,q)d (q) (s,q)d

 

         (3.70) 

in which the definition of effective stresses can be inserted: 

 d * *
kj kj kj ijk kj ijk(q) (q) p(q) (s,q)d (q) (s,q)d

 

           b  (3.71) 

From the strain-displacement relation, the expression (3.71) takes the form of  

 d * *
kj kj kj ik, j k, j ijk(q) (q) p(q) u (s,q)d u (q) (s,q)db

 

           (3.72) 

Integrating it by parts, we get: 

* * d *
kj ik j kj, j ik kj ijk

* * *
kj ijk ijk k j ijk, j k

(Q)u (s,Q) d (q)u (s,q)d (q) (s,q)d

p(q) (s,q)d (Q)u (Q) d (q)u (s,q)d

  

  

        

          

  

  b
 (3.73) 

Based on Cauchy’s formula, we can write 
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* * *
k ik kj, j ik kj ijk

d * * *
kj ijk ik k ijk, j k

T u (s,Q)d (q)u (s,q)d p(q) (s,q)d

(q) (s,q)d T u (Q)d (q)u (q)d

  

  

      

        

  

  

b

 (3.74) 

The derivatives of the stresses that appear in the domain integrals can be replaced by the 

corresponding load values, according to equations (3.57) and (3.65), leading to: 

* * *
k ik k ik kj ijk

d * *
kj ijk ik k ik k

T u (s,Q)d b (q)u (s,q)d p(q) (s,q)d

(q) (s,q)d T u (Q)d (s,q) u (q)d

  

  

     

         

  

  

b

 (3.75) 

Using the Dirac delta property shown in equation (3.56), the equation above is organized as 

follows: 

* * *
i k ik ik k kj ijk

d * *
kj ijk k ik

u (s) T (Q)u (s,Q)d T (s,Q)u (Q)d p(q) (s,q)d

(q) (s,q)d b (q)u (s,q)d

  

 

       

    

  

 
 (3.76) 

Equation (3.76) defines the displacement field for any source point s  within the domain, from 

the displacements and forces measured in the boundary points. 

In order to use BEM, it is necessary to represent the displacement field for the points on the 

boundary. In this way, it is introduced a semi-circular complementary region, with radius  , 

around the placing point S  (Figure 3.5), so that it can be treated as an internal point by the 

known equation  (3.76). 

 
Figure 3.5 – Inclusion of the infinitesimal complementary domain 

Redefining (3.76), considering the inclusion of the infinitesimal domain, we obtain 

S

Q
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* * *
i k ik k ik ik k

* * *
ik k jk ijk jk ijk

* *
k ik k ik

u (S) T (Q)u (S,Q)d T (Q)u (S,Q)d T (S,Q)u (Q)d

T (S,Q)u (Q)d p(q) (S,q)d p(q) (S,q)d

b (q)u (S,q)d b (q)u (S,q)d



 



 

  

 

     

         

  

  

  

 

 (3.77) 

To characterize S  as a boundary point, we evaluate the equation (3.77) considering the limit 

as   tends to zero. Applying the limit, the integral containing the fundamental solution *
iku  

over    is regular, however, the one that contains *
ikT  should be evaluated in a Cauchy 

principal value sense. The integrals over   and   vanishe to zero, except the one that 

contains the displacements on the infinitesimal boundary, which has a singularity of 1 r and 

should be evaluated in the sense of Cauchy principal value. Thus, the Somigliana equation 

adapted to the boundary points results in 

* * *
ik k k ik ik k jk ijk

d * *
kj ijk k ik

C u (S) T (Q)u (S,Q)d T (S,Q)u (Q)d p(q) (S,q)d

(q) (S,q)d b (q)u (S,q)d

  

 

       

    

  

 

b

 (3.78) 

The evaluation of the free-term ikC  depends on the geometry of the boundary where the 

source point is located. Consider the possibilities of a soft boundary, defined by with a unique 

tangent through the point, and angular boundary (see Figure 3.6). The values are defined as: 

ik ik
1

C
2

   (soft) (3.79) 

ik

cos(2 )sen( ) sen(2 )sen( )

2 4 (1 ) 4 (1 )
C

sen(2 )sen( ) cos(2 )sen( )

4 (1 ) 2 4 (1 )

             
             

 (angular) (3.80) 

 

Figure 3.6 – Points 1S  and 2S  in soft and angular boundary, respectively 

S2

S1
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Analysis at Internal points. Based on the calculated values on the boundary, the 

displacements and stresses at internal points can be evaluated. Equation (3.76) provides the 

displacement values at any given point in the domain. Substituting this integral definition of 

dislocations in Hooke’s law, the stress equation is obtained: 

 

ij ijk k ijk k ijk k

d d
ijkl kl ij kl kl ijkl ij kl

(s) S (s,Q)u (Q)d D (s,Q)T (Q)d D (s,q)b (q)d

R (s,q) (q)d TL (s) R (s,q)p(q)d TL p(s)b b

  

 

       

         

  

 
 (3.81) 

in which the tensors
 ijkS , ijkD  and ijklR  are: 

    
ijk ij ,k jk ,i ik , j ,i , j ,k2

i , j ,k j ,i ,k k ,i , j i jk j ik k ij

G r
S 2 (1 2 ) r ( r r ) 4r r r

2 (1 )r n

2 r r r r (1 2 ) 2 r r (1 4 )

                

                
 (3.82) 

ijk ik , j jk ,i ij ,k ,i , j ,k

1
D (1 2 )( r r r ) 2r r r

4 (1 )r
          

 (3.83) 

ijkl il jk jl ik ij kl ij ,k ,l2

ik , j ,l jl ,i ,k il , j ,k jk ,i ,l kl ,i , j ,i , j ,k ,l

1
R (1 2 )( 2 r r )

4 (1 )r

2 ( r r r r r r r r ) 2 r r 8r r r r

            

            

 (3.84) 

and the free terms are written as: 

    ij kl ij ij

1
TL p(s) 2 p(s) (1 4 ) 2p(s)

8(1 )
         

b  (3.85) 

 d d d
ij kl ij ij mm

1
TL (s) 2 (s) (1 4 ) (s)

8(1 )
            

 (3.86) 

3.5.2. Integral Formulation for the Fluid Phase 

Fundamental Solutions. The equation that defines the problem of fluid conduction, written in 

the fundamental state, is as follows: 

*
,ii

1
p (s,q)

k
   (3.87) 

with k  as the permeability coefficient, already defined in the previous chapter. The solution 

of equation (3.87) is given by: 
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* 1
p (s,q) ln(r)

2 k



 (3.88) 

In which r  represents the distance between the points s  and q . With the pore-pressure 

fundamental solution, we can write the corresponding solution to the flux: 

,i*
i

r
(s,q)

2 r


 


 (3.89) 

Boundary Integral Equation. Similarly to what was presented in 3.5.1, we deduce the integral 

equation of the pore-pressures from the Betti's reciprocal theorem. The governing equation 

used is Darcy’s law, 

 k ,k kk p    f  (3.90) 

which relates the relative flow with the pore-pressure gradient. It can be seen in the equation 

above that k  and ,kp  have a linear but not proportional relationship, due to the presence of 

the part kkf . Then the proportional flow is defined pr
k : 

pr
k k k ,kk kpf       (3.91) 

It should be noted that the use of this proportional flow is associated to considering a 

homogeneous transport law, with the constant permeability coefficient k , for the sake of 

simplicity. 

The reciprocity law is written as: 

pr * *
k ,k k ,k(q)p (s,q)d (s,q)p (q)d

 

       (3.92) 

replacing the definition of the proportional flow, we have 

  * *
k k ,k k ,kk p (s,q)d (s,q)p (q)df

 

        (3.93) 

in which proceeding the integration by parts, the following expression is reached: 

* * *
k k k k k,k

* *
k,k ,k k

p (s,Q) (Q) d (s,Q)p(Q) d p (s,q) (q)d

(s,q)p(q)d p (s,q)k (q)d 0f

  

 

         

     

  

 
 (3.94) 
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Considering the identity *
k,k (s,q)   , and Dirac’s delta property given in (3.56), the integral 

equation of the pore-pressures is reached: 

* *

* *
k,k ,k k

c(s)p(s) (s,Q)p(Q)d p (s,Q) (Q)d

p (s,q) (q)d p (s,q)k (q)d

 

 

    

   

  

  f
 (3.95) 

The continuity equation (3.19), is considered here in its simplified version, ignoring the fluid 

bulk modulus, in other words: 

k,k      (3.96) 

Rewriting the integral containing k,k , results in: 

* *

* *
k ,k

c(s)p(s) (s,Q)p(Q)d p (s,Q) (Q)d

p (s,q) (q)d k (q)p (s,q)d
 

 

    

  

  

  f
 (3.97) 

The term c(s)  depends on the position of the source point s .  

For sake of convenience, the problem is formulated in terms of the variables kj  and p , for 

the solid and fluid, respectively. Then, using equation (3.4), we can write: 

     0
0 kj

p p
Trb

M
 


     (3.98) 

Taking the porosity derivative with respect to time, 

 kj
1

p Trb
M

       (3.99) 

equation (3.97) results as follows: 

 

* *

* *
k ,k

c(s)p(s) (s,Q)p(Q)d p (s,Q) (Q)d

1
p (s,q) p(q) Tr (q) d k (q)p (s,q)d

 

 

    

      

  

  b f
M


 (3.100) 

3.5.3. Time-dependent Integral Formulation 

The system that defines the pore-damage problem is formed by equations (3.78), (3.81) and 

(3.100). From this point on, the volume forces acting on the solid matrix and on the fluid are 
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disregarded. Considering the transient nature of the problem, which is governed by the 

evolution of different variables over time, it is necessary to write the equations in rates, then 

we have: 

* * *
ik k k ik ik k jk ijk

d *
jk ijk

C u (S) T (Q)u (S,Q)d T (S,Q)u (Q)d p(q) (S,q)d

(q) (S,q)d

b
  



       

   

  



  


 (3.101) 

 

d
ij ijk k ijk k ijkl kl

d
ij kl kl ijkl ij kl

(s) S (s,Q)u (Q)d D (s,Q)T (Q)d R (s,q) (q)d

TL (s) R (s,q)p(q)d TL p(s)b b

  



        

       

  



  

 
 (3.102) 

 

* *

* *

c(s)p(s) (s,Q)p(Q)d p (s,Q) (Q)d

1
p (s,q)p(q)d p (s,q)Tr (q) d

 

 

    

  

  

  b
M


 (3.103) 

Let us admit two time instants, 1t  and 2t , separated by a time step 2 1t = t t  . The 

integration of the equations throughout this interval is written as: 

2 2 2

1 1 1

2 2

1 1

t t t
* *

ik k k ik ik k
t t t

t t
* d *

jk ijk jk ijk
t t

C u (S)dt T (Q)u (S,Q)d dt T (S,Q)u (Q)d dt

p(q) (S,q)d dt (q) (S,q)d dtb

 

 

   

       

    

   

 

 

 (3.104) 

 

2 2 2

1 1 1

2 2

1 1

2 2

1 1

t t t

ij ijk k ijk k
t t t

t t
d d

ijkl kl ij kl
t t

t t

kl ijkl ij kl
t t

(s)dt S (s,Q)u (Q)d dt D (s,Q)T (Q)d dt

R (s,q) (q)d dt TL (s) dt

R (s,q)p(q)d dt TL p(s) dtb b

 





     

      

    

    

  

  

 

 

 

  (3.105) 

 

2 2 2

1 1 1

2 2

1 1

t t t
* *

t t t

t t
* *

t t

c(s) p(s)dt (s,Q)p(Q)d dt p (s,Q) (Q)d dt

1
p (s,q)p(q)d dt p (s,q)Tr (q) d dt

 

 

    

   

     

    b
M



 (3.106) 
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With a generic finite interval given by n n+1 nt = t t  , the evolution of any given variable 

associated with nt , in finite step, is expressed as n+1 n( ) =     Thus, the system (3.104) 

- (3.106) results as follows. 

* * *
ik k k ik ik k jk ijk

d *
jk ijk

C u (S) T (Q)u (S,Q)d T (S,Q) u (Q)d p(q) (S,q)d

(q) (S,q)d

b
  



           

   

  


 (3.107) 

 

d
ij ijk k ijk k ijkl kl

d
ij kl kl ijkl ij kl

(s) S (s,Q) u (Q)d D (s,Q) T (Q)d R (s,q) (q)d

TL (s) R (s,q) p(q)d TL p(s)b b

  



        

         

  


 (3.108)  

 

* *

* *

c(s)p(s) (s,Q)p(Q)d p (s,Q) (Q)d

1 1 1
p (s,q) p(q)d p (s,q)Tr (q) d

t t

 

 

    

    
 

  

  b
M


 (3.109) 

This system of equations results nonlinear, due to the presence of the damage correction 

term, which is calculated at each increment. 

3.5.4. Algebraic System 

For purposes of using the Boundary Element Method, the system presented above must be 

discretized, in order to obtain the approximate values of the variables in question at the 

boundary points and inside the domain. 

Based on the concepts presented in the previous section, concerning the Boundary Element 

Method, system (3.107) - (3.109) is written in a discrete way, on the boundary elements and 

the domain cells, as follows:  

e e

e e

c c

c c

N N
* n * n

ik k ik n k e ik n k e
e 1 e 1

N N
* n * d n
ijk n jk c ijk n jk c

c 1 c 1

C u (S) u (S,Q) (Q) T d T (S,Q) (Q) u d

(S,q) (q) p d (S,q) (q) db

  

  

        

          

  

  
 (3.110) 
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e e

e e

c

c

c

c

N N
n n

ij ijk n k e ijk n k e
e 1 e 1

N
d n d s

ijkl n kl c ij kl
c 1

N
n s

kl ijkl n c ij kl
c 1

(s) S (s,Q) (Q) u d D (s,Q) (Q) T d

R (s,q) (q) d TL

R (s,q) (q) p d TL pb b

  

 

 

         

       

         

  

 

 

 (3.111) 

 

e e

e e

c c

c c

N N
* n * n

n e n e
e 1 e 1

N N
* n * n

n c n c
c 1 c 1

c(s)p(s) (s,Q) (Q)p d p (s,Q) (Q) d

1 1 1
p (s,q) (q) p d p (s,q) (q)Tr d

t t

  

  

      

       
 

   

   b
M



 (3.112) 

The indices e  and c  are associated with the boundary elements and internal cells, 

respectively, so that eN  and cN  represent the number of elements and cells. The 

interpolations are made by the functions n , for the node n  of the element or cell. 

To follow, the algebraic representation of the aforementioned equations is presented. Let nN  

be the number of boundary nodes and iN  the number of internal nodes. The dimensions of 

the matrices and vectors used are indicated. Considering the two degrees of freedom in 

displacements for the two-dimensional problem, we write n2N  algebraic equations based 

on (3.110), that is: 

                
n nn n n n n i n i i i ii

d
(i)

2N ,1 2N ,12N ,2N 2N ,2N 2N ,3N 2N ,3N 3N ,N N ,13N ,1

H u G T Q Q IK p      b  (3.113) 

Matrix  IK  corresponds to the Kronnecker delta. 

The stress equations (3.111) give rise to i3N  algebraic equations, as follows: 

                 
i n ni n i n i i i i i i ii

d
(i)

3N ,1 2N ,1 2N ,13N ,2N 3N ,2N 3N ,3N 3N ,3N 3N ,N N ,13N ,1

HL u GL T QL QL IK p         b  (3.114) 

Additionally, i2N  equations of displacements in the internal points are written as: 

          
n n i ii i n i n i i i i ii

d
(i) (i) (i) (i) (i) (i)

2N ,1 2N ,1 3N ,N2N ,1 2N ,2N 2N ,2N 2N ,3N 2N ,3N N ,13N ,1

u H u G T Q Q IK p                       b  (3.115) 
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With the inclusion of boundary conditions referring to  u  and  T , it is convenient to 

rearrange the matrix of the three equations, so that the unknown and prescribed values are 

isolated. Rearranging the matrices columns, the equations can be rewritten as: 

              
n nn n n i n i i i ii

d
(i)

2N ,1 2N ,12N ,2N 2N ,3N 2N ,3N 3N ,N N ,13N ,1

A xu yu Q Q IK p      b  (3.116) 

               
i n ii n i i i i i i ii

d
(i)

3N ,1 2N ,1 3N ,13N ,2N 3N ,3N 3N ,3N 3N ,N N ,13N ,1

AL xu ys QL QL IK p         b  (3.117) 

          
n i ii i n i i i i i ii

d
(i) (i) (i) (i) (i) (i)

2N ,1 3N ,N2N ,1 2N ,2N 2N ,1 2N ,3N 2N ,3N N ,13N ,1

u A xu yu Q Q IK p                   b  (3.118) 

In which  xu  is the vector of unknown boundary values and  yu  and  ys  group the 

prescribed boundary values in the equations of displacements and stresses, respectively. 

Isolating  xu  in equation (3.116), we have: 

                  
n nn n n n n i n n n i i i ii

1 1 1d
(i)

2N ,1 2N ,12N ,2N 2N ,2N 2N ,3N 2N ,2N 2N ,3N 3N ,N N ,13N ,1

xu A yu A Q A Q IK p
        b  (3.119) 

which can be replaced in the other two equations, resulting in: 

 

                   

          
i n ii n n n i n n n n i i i i

i n n n n i i i i i i

1 1 d

3N ,1 2N ,1 3N ,13N ,2N 2N ,2N 3N ,2N 2N ,2N 2N ,3N 3N ,3N 3N ,1

1

(i)
3N ,2N 2N ,2N 2N ,3N 3N ,3N 3N ,N N ,1

AL A yu ys AL A Q QL

AL A Q QL IK p

 



 
         

 

 
   

 
b

 (3.120) 

             

      

nn n n n n ii i n i i n i i i

n n n i i ii n i i i

1 1 d
(i) (i) (i) (i) (i)

2N ,12N ,2N 2N ,2N 2N ,3N2N ,1 2N ,2N 2N ,1 2N ,2N 2N ,3N 3N ,1

1

(i) (i) (i)
2N ,2N 2N ,3N 3N ,N2N ,2N 2N ,3N N ,1

u A A yu yu A A Q Q

A A Q Q IK p

 



 
                   

  
 
         
  

b

 (3.121) 

Simplifying equation (3.120), we obtain: 

            
i i i i i i i i ii

d
(i)

3N ,1 3N ,1 3N ,3N 3N ,3N 3N ,N N ,13N ,1

Ns QS QS IK p      b  (3.122) 

whose terms are: 
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         

         
i n ii n n n

i i i n n n n i i i

1

3N ,1 2N ,1 3N ,13N ,2N 2N ,2N

1

3N ,3N 3N ,2N 2N ,2N 2N ,3N 3N ,3N

Ns AL A yu ys

Qs AL A Q QL





     

  
 (3.123) 

The equation of the pore-pressures (3.112) written for the boundary points leads to nN  

algebraic equations, as follows: 

             
n n in n n n n i n i i ii

(i)
N ,1 N ,1 3N ,1N ,N N ,N N ,N N ,N N ,3NN ,1

1
HP p GP V QP p QP Tr

t t
    

 
b

M
 (3.124) 

and for internal points, 

          
n n ii ii i n i n i i i i i

(i) (i) (i) (i) (i) (i)
N ,1 N ,1 3N ,1N ,3NN ,1 N ,N N ,N N ,N N ,1 N ,N

1
p HP p GP V QP p QP Tr

t t
                     

b

M
 (3.125) 

matrix  Tr  plays as the operator trace of a tensor. 

Rearranging the columns of  HP  and  GP  in (3.124) and of (i)HP    and (i)GP    in (3.125), 

leads to: 

            
n n in n n i n i i ii

(i)
N ,1 N ,1 3N ,1N ,N N ,N N ,N N ,3NN ,1

1
AP xp yp QP p QP Tr

t t
    

 
b

M
 (3.126) 

          
n ii ii i n i i i i i i

(i) (i) (i) (i) (i) (i)
N ,1 3N ,1N ,3NN ,1 N ,N N ,1 N ,N N ,1 N ,N

1
p AP xp yp QP p QP Tr

t t
                 

b

M
 (3.127) 

The vector  xp  can then be written as 

                 
n n in n n n n i n n n i i ii

1 1 1

(i)
N ,1 N ,1 3N ,1N ,N N ,N N ,N N ,N N ,N N ,3NN ,1

1
xp AP yp AP QP p AP QP Tr

t t

      
 

b

M
 (3.128) 

being replaced in the pore-pressure equation at the internal points (3.127): 

           

        

nn n n n n ii i n i n i i i

in n n i i ii n i i i

1 1

(i) (i) (i) (i) (i)
N ,1N ,N N ,N N ,NN ,1 N ,N N ,N N ,N N ,1

1

(i) (i) (i)
3N ,1N ,N N ,N N ,3NN ,N N ,N N ,1

1
p AP AP yp AP AP QP QP p

t

AP AP QP QP Tr yp
t

 



 
                   

 
              

M

b
 (3.129) 

The condensation of the terms in equation (3.129) allows writing: 
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     

  

ii ii i

ii ii i

(i)(i) (i)
N ,1N ,1 N ,1N ,N

(i)
3N ,1N ,3NN ,N

1
p Np QP p

t

QP Tr
t

    

   

M

b
 (3.130) 

with: 

       

     
i nn ni n i

n n n ii n i ii i

1

(i) (i)
N ,1 N ,1N ,NN ,N N ,1

1

(i) (i) (i)
N ,N N ,NN ,N N ,NN ,N

Np AP AP yp yp

QP AP AP QP QP





    

        
 (3.131) 

Thus, the poro-damage problem is defined by equations (3.122) and (3.130). Based on 

these, it is appropriate to explain the unknowns   and (i)p , in order to condense the 

system into a single equation, which will done to follow. 

The stress tensor of the problem, written algebraically in rates, is given by 

               
i ii i i i i i i i i i

(i)
3N ,1 3N ,13N ,3N 3N ,3N 3N ,3N 3N ,1 3N ,N N ,1

E D E IK p      b  (3.132) 

which is modified by defining the stress associated with damage: 

           
i ii i i i ii

d
(i)

3N ,1 3N ,13N ,3N 3N ,N N ,13N ,1

E IK p      b  (3.133) 

Replacing this in (3.122) leads to 

                  
i ii i i i i i i i i i i i ii

d
(i)

3N ,1 3N ,13N ,3N 3N ,3N 3N ,3N 3N ,3N 3N ,3N 3N ,N N ,13N ,1

E Ns QS I QS I IK pb
   

           
   

 (3.134) 

the simplification    
i i i ii i

3N ,3N 3N ,3N3N ,3N

QS QS I
 

     
 

 is introduced. 

Using the time discretization, the equation of the fluid (3.130) takes the following form. 

        (i) (i)(i) (i)n nn n
n n

1
p Np QP p QP Tr

t t
           

b

M
 (3.135) 

The pore-pressure value in the previous step  (i) n 1
p


 can be subtracted, on both sides of the 

equation: 
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       

    

(i) (i) (i)nn n 1 n 1

(i) (i)(i) nn
n n

p p Np p

1
QP p QP Tr

t t

 
  

          
b

M

 (3.136) 

which allows to express the unknown of interest
 (i)p , as shown below: 

        
ii ii ii i i ii

(i ) (i )(i) (i )
3N ,1N ,3NN ,1 N ,1N ,N N ,NN ,1

1
p Np QP p QP Tr

t t
            

b

M
 (3.137) 

being      
i ii

(i)
N ,1 N ,1N ,1 n 1

Np Np p


    
  

. 

Rearranging equation (3.137), we arrive at: 

        
ii iii i i ii

(i) (i)(i)
3N ,1N ,3NN ,1N ,N N ,NN ,1

1
I QP p Np QP Tr

t t

 
              

b

M
 (3.138) 

Finally, the system is composed by equations (3.134) and (3.138). It may be appropriate to 

formulate the problem in terms of a single equation, depending only on   and d . 

Substituting the definition of (i)p  in (3.134).  

       
ii ii i i ii

d

3N ,13N ,1 3N ,13N ,3N 3N ,3N3N ,1

E Ns Np QS             (3.139) 

with the condensed terms defined below: 

       

       

i ii i i i ii

i i i i i ii i i i i i i i

1

(i)
3N ,N3N ,3N N ,N N ,13N ,1

1

(i) (i)
3N ,3N 3N ,N N ,3N3N ,3N 3N ,3N N ,N N ,N

1
Np QS IK I QP Np

t

1
E E QS IK I QP QP Tr

t t





 
          

  
                       

2

b
M

b

M

 (3.140) 

3.5.5. Solution Procedure 

Equation (3.139) represents the balance of the body under analysis, also implicitly 

considering the compatibility conditions of the problem. The equation is written in terms of 

the rates of the variables involved, which should be evaluated over time t , by an incremental 

schema in terms of t . Due to the presence of the correction terms associated with damage, 

the equation is non-linear at each increment t . Thus, it is used an incremental-iterative 
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solution procedure, based on a Newton-Raphson technique. It basically consists of 

successive prediction and correction stages, which aim to verify, in an approximate way, the 

body equilibrium in a time step: 

           
i i ii i i ii

d
n n n

3N ,1 3N ,1 3N ,13N ,3N 3N ,3N3N ,1

Y E Ns Np QS 0                 (3.141) 

Let us define the strain increment, for an iteration i +1, in the form: 

     i 1 i i
n n n
      (3.142) 

The evaluation of  i
n  is done through a Taylor expansion about    i

nY   in equation 

(3.141), truncated at the first-order term, in other words: 

       
   

i
ni i

n ni
n

Y
Y 0

 
   

 
 (3.143) 

Calculating the first variation, we obtain 

   
 

 
 

i di
n n

i i
n n

Y
E QS

   
           

 (3.144) 

which allows writing the expansion (3.143) as follows: 

     
   

di
ni i

n ni
n

Y E QS 0
 

            
 (3.145) 

The matrix that multiplies  i
n  is called consistent tangent operator.  Usually, this is 

written with respect to i
n . We decided to keep it explicitly written as a function of di

n , 

which does not alter in any way its role in the equilibrium equation. 

It can be seen that this operator contains the derivatives with respect to the strain increment 

 
 

di
n

i
n

 

 
, and thus consistent with the algorithm of the problem, incremental in nature. This 

operator degenerates into a continuous tangent operator if  0  is considered, resulting 

in 
 
 

di
n

i
n

 

 
. 
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Deduction of the Consistent Tangent Operator. From the incremental form of the constitutive 

damage model, the derivative of damage stress with respect to the strain increment can be 

obtained, as described below. 

Let the total stress rate, written in algebraic form, be given by 

          (i)(1 D) E D E IK p        b  (3.146) 

from which the stress increment in n  is defined as: 

             n n n 1 n n 1 n nE D E E D IK p          b  (3.147) 

Considering an evolution in a finite step governed by n+1 n( ) =    , we have: 

             n n n n n n n n nE (D D ) E E D IK p           b  (3.148) 

in which one can identify the increment of the stress associated to damage: 

         d
n n n nE IK p      b  (3.149) 

        d
n n n n n n nD E D E 2 D E         (3.150) 

The differentiation of (3.150) with respect  to the strain increment leads to: 

 
             

d
n n n

n n n n
n n n

D D
D E E 2 D E 2 E

   
      

     
 (3.151) 

The definition of nD  is obtained directly from the incremental equations obtained from 

Marigo’s model (1981).  The damage evolution is defined by equation D 
 Y

A
, which can be 

written as follows: 

n
nD


 

Y

A
 (3.152) 

The increment of the thermodynamic force associated to damage can be calculated by the 

variation n n 1 n  Y Y Y , which leads to the following expression: 

       n n 1 n 1 n n
1 1

E E
2 2       Y  (3.153) 

whose expansion leads to the following result: 
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           n n n n n n n
1 1 1

E E E
2 2 2

         Y  (3.154) 

Considering the symmetry of the elastic tensor, due to isotropy, allows writing: 

       n n n n n
1

E E
2

      Y  (3.155) 

The increment of the damage variable is then defined by (3.152), and its derivative with 

respect to n  is: 

 
        n

n n
n

D 1
E


   

  A
 (3.156) 

Thus, the difference in (3.151) can be explained as: 

 
          

         

d
n

n n n n
n

n n n n

1
D E 2 D E E E

3 2
E E E E

 
     

 

     

A

A A

 (3.157) 

3.5.6. Algorithm to Evaluate the Damage Level 

The incremental-iterative procedure seeks, at every step of the analysis, a configuration in 

equilibrium with the damage level calculated in this step. In the case of the coupled model 

proposed herein, an analysis step of the damage model can be taken to correspond to a time 

step of the poroelastic problem, if deemed appropriate. 

The algorithm calculates the variables in n +1  considering their known values from the 

previous step n . The variable that controls the algorithm is the strain increment  n   and, 

consequently, the strain in the current step n 1 . 
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Table 3.1 –Algorithm to evaluate the damage level 

I. ELASTIC PREDICTION  

calculates  1
n   

   
     

1
1
n1 1

n n1
n

Y
Y


  
       
 

 

from 
   
 

 
 

1 d
n n

1
nn

Y
E QS

   
           

,        1
nY Ns Np     

updates  1
n , 1

n 1  

II. DAMAGE MODEL VERIFICATION 

calculates n 1F   n 1 n 1 0 nDF Y Y A      

tests 

if n 1 0F    nD 0   

if n 1 0F    calculates nD  

from  n 1 n 1 0 n nD D 0F Y Y A       

updates  d
n  (3.150) 

III. EQUILIBRIUM VERIFICATION 

tests 

if    nY tol   (3.141) updates n 1D  ,  d
n 1 ,  n 1  

end of step n +1  goes to I 

if    nY tol   (3.141) goes to IV 

IV. CORRECTION 

calculates   i 1
n
   

   
     

1
i 1
ni 1 i 1

n ni 1
n

Y
Y




 


  
       
 

 

from 
   
 

 
 

i 1 di 1
n n

i 1 i 1
n n

Y
E QS

 

 

   
           

    i 1
nY    (3.141) 

updates  i 1
n
 , i 1

n 1

  goes to II 
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4.1. OVERALL CONSIDERATIONS 

This chapter presents some applications for the formulations developed and implemented 

computationally. First, some examples on poroelasticity and elasticity with damage are 

examined in order to validate the implementation carried out for the uncoupled problems. 

Section 4.4 addresses the coupled problem, which is the objective of this work. It should be 

mentioned that this formulation was implemented in FORTRAN®. 

4.2. LINEAR POROELASTICITY EXAMPLES  

The poroelastic model implemented in this work is applied to the analysis of classical 

problems of soil and rock mechanics with known analytical solution, in order to validate its 

operation. A verification of the model response under different loading conditions is also 

conducted.  

4.2.1. One-dimensional Consolidation 

Let us consider the classic problem of one-dimensional consolidation proposed by Terzaghi, 

which consists of a soil column on a rigid impermeable base (Figure 4.1). A constant 

heaviside-type unit load is applied to the upper drainage surface and maintained for 100 s. 

Take a column of 10 m in height, consisting of Berea sandstone, completely saturated by 

water. The material parameters are defined in Detournay and Cheng (1993). The 

discretization of the problem includes 44 boundary elements and 40 domain cells. 

 
Figure 4.1 - Problem definition, adopted cells mesh 

From Figure 4.2, we can observe that the response at the initial times is characterized by the 

highest pore-pressure values, indicating that the fluid phase is highly requested, while the 

10 m

1 m

draining surface
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solid skeleton does not undergo all the loading action. Throughout the fluid draining process 

there is an increased level of effective stress, accompanied by a proportional pore-pressure 

decrease, until it vanishes at 100 s. 

Table 4.1 - Parameters of the Berea sandstone 

Parameter Value
G  6000 MPa 
 0.2 

u  0.33 

sK  36000 MPa 

0  0.19 

k  1.9 x 10-13 m2 

 1 x 10-9 MPa.s 
 

 
Figure 4.2 - Pore-pressures and vertical effective stress at 0.1 s; 1s; 5s; 10s; 20s; 50s; 100s 

Figure 4.3 shows the pore-pressure values at the base of the column over time. Figure 4.4 

shows the displacement evolution at the top of the column. Both results indicate the 

correlation of values obtained with the formulation developed in this work, based on BEM, 

with the analytical response presented in Detournay and Cheng (1993). 
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Figure 4.3 - Pore-pressure evolution at the base of the column 

 
Figure 4.4 - Displacement evolution at the top of the column 

It should be noted that in columns of lower height the draining process, and consequently the 

dissipation of pore-pressures, occurs more rapidly, as shown in Figure 4.5, for a column 3 m 

in height. 

 
Figure 4.5 - Pore-pressure evolution at the base of the column, for different heights 
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The stability of this example was analyzed using the meshes shown in Figure 4.6, varying 

the number of internal cells, from 4 to 40. It was observed that the largest fluctuations occur 

along the first 5 s, being this interval the critical one for the mesh convergence. By perfoming 

this study, it was found a stable boundary mesh containing 44 elements. 

 
Figure 4.6 - Meshes used in the convergence analysis 

The mesh convergence is illustrated by the pore-pressure values kept at 3 s and 40 s, in the 

Figures 4.7 and 4.8. 

 
Figure 4.7 - Pore-pressure values at the base, on 3 s 

In a general way, the poroelastic problem has not a pronounced instability, presenting fast 

convergence. As mentioned earlier in this subsection, the mesh 2x5 is adopted. In the 

problems involving damage, which will be shown in the next two sections, the convergence 

analysis is not described. The damage model used is local, not avoiding the occurrence of 

strain localization and a consequent strong mesh-dependence. Therefore, for this kind of 

problem, the meshes are defined based on stable results for the poroelastic case. 
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Figure 4.8 - Pore-pressure values at the base, on 40 s 

4.2.2. Plane Consolidation 

The problem consists of a semi-infinite plane, saturated by water, subject to a uniform load 

strip of width 2a. Due to the symmetry of the problem, only half of the domain is analyzed, as 

shown in Figure 4.9. 34 boundary elements are used, of which 12 are on the symmetry axis, 

and 161 cells. The loading is applied according to a heaviside function, at t=0, and 

maintained for 100 s. An analytical solution was proposed in Schiffman et al. (1969), in terms 

of an adjusted time factor, and of the dimensionless values of pore-pressure and total and 

effective stresses in both coordinate directions: 
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Figure 4.9 - Problem definition, adopted cells mesh 
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These dimensionless values, measured at point O (0,a/2), are shown in Figure 4.10. The 

results obtained with the proposed model are compared with those calculated analytically. As 

in the case of one-dimensional consolidation, the initial slow flow of the fluid induces the 

largest pore-pressure, while the solid skeleton did not yet undergo significant strain. 

Also during the early-time response, the occurrence of the Mandel-Cryer effect (Mandel, 

1950, 1953; Cryer, 1963) apud Schiffman et al. (1969) should be noted, characterized by an 

increased pore-pressure level, over the initial value. At this stage, the areas next to the 

surface are quickly drained, undergoing increase in the strain fields and effective stresses. 

 
Figure 4.10 - Dimensionless values of pore-pressure, total and effective stress 

The volumetric reduction due to this quasi-instantaneous consolidation induces an additional 

compression in the most inner regions of the body, which then develops additional pore-

pressures in the saturating fluid. The effect in question manifests itself at point O (0,a/2), 

since this is distant from the draining face. During the drainage process, the dissipation of 

pore-pressure gives rise to increased levels of effective stress, as shown in Figure 4.12. 

The normalized values of total and effective stress in the horizontal direction, defined by,
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, are also defined in the reference analytical solution for the 

point O (0,a/2). The results obtained using the BEM formulation are in agreement, as shown 

in Figure 4.11. 
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Figure 4.11 - Dimensionless values of pore-pressure and stresses in the horizontal direction 

Next are the response in effective stress and pore-pressure for the whole domain of the 

problem. In order to illustrate the distribution of these variables on the domain over time, take 

hypothetical values for some input parameters of the problem, as follows: 

Table 4.2 - Hypothetical parameters adopted in example 4.2.2 

Parameter Value
a 1 m 
G  0.5 MPa 
 0 
b  1 
M 100 

k  1 
 

It is assumed that the load has a unit value. The boundary mesh is refined, now containing 

136 elements, in order to get a better view of the quantities shown in Figure 4.12. The 

drainage process is well defined by the equilibrium between pore-pressures and effective 

stresses on the domain. The loading effects are manifested within a limited area, adjacent to 

it, in accordance with the Saint-Venant principle. 

Note that the pore-pressure levels tend to remain close to zero in the region close to the 

draining surface, in agreement with the pore-pressure concept placed here, which is related 

to the differential pressure value compared to the ambient pressure. 

The poroelasticity formulation is not very sensitive to the time step adopted. Choosing 

smaller increments only depends on the interest in quantifying the variables in the initial 

analysis times. This confirms the fact that the poroelastic problem can be interpreted as a 

usual elastic problem, to which additional stiffness and damping are incorporated due to the 

presence of the fluid phase. 
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Figure 4.12 - Evolution of pore-pressure and vertical effective stresse at 0.001s; 0.01s; 0.2s; 2s; 100s 
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4.2.3. Poroelastic Response under Different Loading Conditions 

Usually, the problems on poroelasticity are characterized by applying an instantaneous 

loading, with heaviside-type distribution (Figure 4.13). Thus, it is possible to reproduce a 

condition that does not allow pore-pressure dissipation during the loading process. 

Consider a monotonic loading condition, uniformly distributed over a time interval, as 

illustrated in Figure 4.13. 

 
Figure 4.13 - Loading profiles 

 

 
Figure 4.14 - Response at the base of the column for the instantaneous and monotonical loading over 

1s, 10s and 100s - a) pore-pressure as a function of vertical strain b) pore-pressure evolution   c) 

vertical effective stress evolution. 
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The problem of poroelastic column is taken up with a load applied over 1 s, 10 s and 100 s, 

which is the total time of analysis. According to section 4.2.1, under the instantaneous 

loading condition, this time is sufficient to dissipate the pore-pressures and for the effective 

stress to reach its final value, equal to the total stress applied, over the entire domain. Figure 

4.14 shows the responses for the different loading application times, compared with the 

instantaneous application case, at a point at the base of the column. 

For the non-instantaneous loadings, the initial values of pore-pressure and effective stress 

are zero. For loading cases over 1 to 10 s, these values evolve over time, tending to the 

response for instantaneous loading. However, this is not true for the load distributed over the 

total time of 100s. In this situation, at the end of the loading process, the drainage is not yet 

completed, therefore there is residual pore-pressure along the column height, and the 

effective stress levels have not reached the value of the applied load, as shown in Figure 

4.15. However, if the load is kept constant from 100 s on in this monotonic case, the pore-

pressure will fall to zero as for the other cases. 

 
Figure 4.15 - Pore-pressure and effective stress at the end of 100s 

4.3. EXAMPLES ON THE ISOTROPIC DAMAGE MODEL 

The behavior predicted by Marigo’s model (1981) is illustrated, applying the program 

developed to some simple problems, highlighting the influence of the material parameters in 

the formulation. The response of the algorithm is treated in load control and displacement 

control conditions. 
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4.3.1. Characterization and Parametric Analysis of the Model 

As presented in Chapter 2, Marigo’s model (1981) represents the behavior of a brittle or 

quasi-brittle material in the elastic regime subject to damage. The damage criterion is defined 

by two constants dependent on the material, with a scalar-valued variable that represents the 

degradation level. Moreover, the model is symmetric with respect to the type of solicitation, 

providing the same answer to each strain level, whether it is tensile or compressive. 

In order to describe the model, let us consider a hypothetical material with a unit longitudinal 

modulus of elasticity and nil Poisson’s coefficient. The damage parameters are taken with 

the values Y0=0.05 and A=0.3. Imposing any loading, which induces an evolution of strain at 

a point, the predicted constitutive answer for the damage model is presented in Figure 4.16. 

 
Figure 4.16 - Characteristic curve of the damage constitutive law  

The first branch, with linear behavior, corresponds to the elastic regime, in which the total 

stresses are equal to the effective stresses, and the stresses for the damage are nil. Once 

the damage process begins, these damage stresses start to evolve, reaching the peak value, 

corresponding to the state of complete degradation, where D=1. Figure 4.17 illustrates the 

evolution of the damage variable. 

 
Figure 4.17 - Damage variable evolution  
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Based on the damage criterion equation, 0(Y,D) D  F Y Y A , it can be seen that 

Parameter 0Y  defines the start of the damage process, with A responsible for the 

intensity of the damage evolution. Figures 4.18 and 4.19 describe the influence of these 

parameters in the constitutive response. 

 
Figure 4.18 - Influence of Y0, on A=0.3 

The analysis of the curves shows that for lower values of Y0, the damage begins earlier, at 

lower strain values. In the limiting case where Y0=0, the damage occurs since the beginning 

of the strain evolving. The smaller values of Parameter A correspond to a more pronounced 

damage effect, with a higher loss of stiffness. 

 
Figure 4.19 - Influence of A, on Y0=0,05 
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40 cells and 14 boundary elements. Increments of value 0.1 are adopted over the analysis 

time. 

 
Figure 4.20 - Problem definition, adopted cells mesh 

 
Figure 4.21 - Applied displacement profile  

Given that it is a homogeneous solid, with equal elastic and damage parameters on the 

whole domain, the damage occurs uniformly over the body. Taking any given point, its 

response is shown in Figure 4.22. 

 
Figure 4.22 - a) Total stress vs. strain, in vertical direction b) damage parameter evolution  
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Figure 4.22b shows the symmetrical nature of the damage model. At each loading cycle, 

when there is a change in the sign of the applied displacement, the damage variable evolves. 

In the unloading cycles, the damage level remains stable. 

4.3.3. Solid with Defect under Uniaxial Tension 

The rectangular domain shown in Figure 4.23, which has 150 mm in width and 10 mm in 

height, is subjected to a horizontal displacement of 0.1 mm at its ends. The constituent 

material has a linear elastic behavior, except for the central region, 30 mm wide, whose 

material obeys the isotropic damage law. Table 4.3 presents the material parameters. This is 

a problem in which the phenomenon of localization occurs due to the presence of the 

defect. The discretization is performed with 64 boundary elements and 60 cells. 

 
Figure 4.23 - Problem definition, adopted cells mesh 

 

Table 4.3 - Parameters adopted in example 4.3.3 

Parameter Value
G  15000 MPa 
 0 

0Y  0.0016667 MPa

A  0.025 MPa 
 

The displacement is applied gradually, in this case in 1000 steps, and the solid deforms 

uniformly, until the damage begins in the central region, which starts to develop greater 

strains than the rest of the body, under the same level of stress (Figure 4.24). 
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Figure 4.24 - Constitutive response in the elastic and defective regions 

As indicated in green in Figure 4.24, from the peak of the stress-strain curve related to the 

fault, an unloading process begins in the elastic region. This region is proportionally relieved, 

as the strains in the central defect grow governed by the occurrence of damage. 

The loss of convergence of the algorithm (Figure 4.25) can be associated with the 

localization occurrence, which was intentionally induced in this example, by the introduction 

of  a weak region. 

 
Figure 4.25 - Relationship between the displacement applied and the reaction at the end of the body 
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Figure 4.26 - Horizontal strain along the width 

 

Figure 4.27 - Damage parameter along the width 

4.4. EXAMPLES ON POROELASTICITY COUPLED TO DAMAGE 

The overall behavior of the porodamage problem is illustrated, identifying the influences of 

damage in the poroelastic problem, as well as, inversely, regarding the presence of a fluid in 

a damaged solid problem. To this end, examples inspired from the consolidation problems 

discussed in Section 4.2.1 are presented. 

4.4.1. Poroelastic Column Subject to Damage 

Let us consider a column of 10 m in height, unitary width (Figure 4.1), consisting of Berea 

sandstone, whose parameters are presented in Table 4.1. A distributed loading equal to 15 

MN/m is progressively applied over 200 s, on the upper drainage face. The damage 

parameters estimated for the material are of Y0=0.001 MPa and A=0.02 MPa.  The problem 

in question is explored by varying the drainage conditions. The incorporation of the effects 

resulting from the damage process to calculate the mechanical properties of the porous 

medium, is also considered. The mesh adopted is the one already described in 4.2.1. 

The responses regarding the four possible behaviors of the material are presented: elastic, 

poroelastic, elastic with damage and poroelastic coupled to damage (porodamage). It can be 

seen that the highest pore-pressure levels develop at the base of the column, hence strongly 

manifesting the problem of fluid diffusion, while, at the top of the column the damage problem 

is prevalent. Figure 4.28 shows the vertical strain curves over time at the base of the column. 
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Figure 4.28 - Vertical strain evolution at the base of the column 

In the elastic and poroelastic cases, the strains exhibit a similar behavior, except for the non-

linearity  induced by the flow in the poroelastic case. The difference between these two 

curves represents the contribution of stiffness of the fluid phase. From the comparison 

between the cases of damage and porodamage in Figure 4.28, one notes that the presence 

of the fluid slows the damage process, which can also be seen in Figure 4.29. 

 
Figure 4.29 - Damage parameter evolution at the base of the column 
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Figure 4.30 - Load-displacement curve at the top of the column 

It is interesting to note in Figure 4.31 the pore-pressure increase in the presence of damage, 

beyond the threshold defined in the poroelastic problem. Note in Figure 4.31 that the pore-

pressure values are in the order of ten times smaller than the effective stress values at the 

base of the column. 

 
Figure 4.31 - Pore-pressure evolution at the base of the column 

 
Figure 4.32 -Vertical effective stress evolution at the base of the column. 
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The overall behavior of the column essentially follows the profiles presented here for a base 

point, emphasizing that since the areas closer to the top of the column are examined, the 

damage effects prevail over the effects induced by the fluid flow . 

In order to illustrate this general behavior, the distribution of the damage variable at the last 

instant of the analysis, at around 140 s, is shown in cases of damage and porodamage 

(Figure 4.33). In the same figure, the pore-pressure distribution in the poroelastic and 

porodamage case is shown, at the same instant. 

 
Figure 4.33 - Damage and pore-pressure values (MPa) at 140 s, for different regimes 

 

Damage influence in the poroelastic parameters. In the analysis presented so far, the 

poroelastic parameters were kept at their nominal values, b=0,7778 and M=12641 MPa, 

calculated from the properties in Table 4.1. 

Using the expressions proposed in Section 3.3, the influence of the material damage level in 

these parameters is evaluated. Figure 4.34, shows the variations of the parameters with 

damage at a point on the top of the column, where the damage level is maximum. 
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Figure 4.34 - Evolution of poroelastic parameters with the damage at the top of the column 

There is a linear increase of the Biot coefficient with the damage parameter, and also a 

quasi-linear decrease of the Biot modulus. Figure 4.35 exhibits the distribution of the 

parameters over the column at the end of the analysis. 

 
Figure 4.35 - Distribution of the poroelastic parameters at the end of the analysis, considering damage 
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very sensitive to the Biot parameter values. In the case of instantaneous loading, the 

influence of these parameters is somewhat more pronounced. This is illustrated in Figure 

4.36, for the poroelastic case, comparing the responses obtained with the nominal values of 

the parameters, and with the penalized values. 

  
Figure 4.36 - Evolution of pore-pressures for a) monotonic loading and b) instantaneous loading 

The analyses presented from this point forward include the updating of poroelastic 

parameters according to the damage state, along the time. 

 

Analysis of the problem under undrained conditions. Now the analysis of the problem initially 

presented is proposed, impeding the fluid flow at the top of the column, that is, under 
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fluid stiffness throughout the whole loading process. 
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Figure 4.37 - Vertical strain evolution in the column 

The smoothing of the damage process over time is seen in Figure 4.38, where the evolution 

of the state of damage is described, considering or not the presence of the fluid. The level of 

damage reached at the end of 200 s, around 15%, is similar to the lowest value of damage 

found in the column in drained conditions (Figure 4.33), within a time of around 140 s. 

 
Figure 4.38 - Evolution of the damage variable in the column 

It is interesting to note how much higher the values of pore-pressure shown in Figure 4.39 

are, when compared to the equivalent under drained conditions, the data is in Figure 4.31. 
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Figure 4.39 - Pore-pressure evolution in the column 

4.4.2. Poroelastic Plane Domain  subjected to Damage 

It is proposed to analyze a plane problem, presented in Figure 4.40. It consists of a 

rectangular area, with 2 m wide and 1 m in height. A load of 20 MN is applied monotonically 

over 2 s, on impermeable plates placed on the top and bottom faces. The flow occurs only 

through the lateral faces. The boundary conditions of the problem are inspired by the 

problem of consolidation proposed by Mandel (1953). The constituent material is the 

sandstone already defined in section 4.4.1. The discretization used contains 24 boundary 

elements and 32 domain cells. 

 
Figure 4.40 - Problem definition, adopted cells mesh 

The central point of the domain is taken as reference for the analysis of the problem. Initially, 

we observe the behavior in the vertical direction along which the load is applied. Based on 

the graphs concerning to damage and porodamage regimes in Figure 4.41, it can be seen 

the influence of the fluid as mitigation in the evolution of the strains on the solid skeleton, in 

the presence of damage. 
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Figure 4.41 - Vertical strain evolution at the central point 

The analysis of Figure 4.42 allows to visualize that the coupled behavior (porodamage) is 

governed initially by the poroelastic regime, going to suffer the effects of damage, which 

starts at around 0.6 s analysis (see Figure 4.44). 

 
Figure 4.42 - Vertical effective stress evolution at the central point 

From around 0.6 s the pore-pressure starts to evolve coupled to the damage level on the 

material, as shown in Figures 4.43 and 4.44 in which it can be seen that the damage 

initiation, as well as its intensity, are delayed along the time, in the porodamage regime 
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Figure 4.43 – Pore-pressure evolution at the central point 

 
Figure 4.44 – Damage parameter evolution at the central point 

Consider now the problem response along the horizontal direction, also measured at the 

center of the domain. Figure 4.45 shows the evolution of horizontal strain over time, 

considering the different material behaviors. 

 
Figure 4.45 – Horizontal strain evolution at the central point 
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Considering that this is not the direction of load application, the effects of loading are 

manifested only partially in the horizontal direction, due to Poisson's effect. However, the 

fluid flows preferentially along horizontal direction, due to the imposed boundary conditions. 

The comparison between the strain curves regarding the damage and porodamage regimes 

in Figure 4.45, allows the verification of the predominance of the effects due to the presence 

of fluid. The horizontal strains induced in the poroelastic case are higher than those caused 

in the damage case over the major part of the analysis. 

The values of effective stress in horizontal direction are negligible, considering the boundary 

conditions of the problem. From Figure 4.46 we observe the increase in effective stress 

caused by the consideration of the damage in poroelastic problem. 

 
Figure 4.46 – Horizontal effective stress evolution at the central point 

In order to illustrate conclusively the difference between the measured responses in the 

central point along the two coordinate directions, it is presented in Figures 4.47 and 4.48 the 

evolution of the parts of stress tensor, admitting the porodamage coupled regime. The 

predominance of the poroelastic behavior along the horizontal direction becomes clear. 
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Figure 4.47 – Stress balance in the horizontal direction, at the central point 

 
Figure 4.48 – Stress balance in the vertical direction, at the central point 

4.4.3. Brief Comments on Shallow and Deep Foundation Structures 

Based on Schiffman’s problem, presented in 4.2.2, it is proposed here to analyze that semi-

infinite domain, subject to a loading of 10 MN / m, applied monotonically over 100 s, 

considering the effects of damage on the solid matrix. It is assumed that the constituent 

material is Berea sandstone, and that the domain is saturated by water. It is admitted that 

this problem reasonably reproduces the conditions of service of a shallow foundation 

structure along the construction of a building, in a reduced timescale. 

A second problem concerning to a deep foundation structure dug in Berea sandstone is also 

analyzed in order to compare the responses of rock mass in both situations. It is assumed 

that a single pile transmits the loading at 10 m deep. Analogously to the shallow foundation 

problem, the simulation is carried out over the half-space, due to the simmetry. Figure 4.49 

illustrates the proposed problems. 
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Figure 4.49 - Problem definition for a) shallow foundation and b) deep foundation 

The material is considered in the porodamage regime. The points A (0.5,9.75) and B (0,10) 

are taken as reference. The damage evolution curves of these points are plotted in Figures 

4.50 and 4.51, corresponding to the different foundations. 

 
Figure 4.50 - Damage evolution at the point A 

It can be noted that the damage levels at the both points are higher on the shallow 

foundation case. The fluid remains more time trapped in the domain corresponding to deep 

foundation, smoothing the damage process along the time. 
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Figure 4.51 - Damage evolution at the point B 

The point B undergoes the critical level of damage, as can be seen in Figure 4.52, which 

shows the damage field on the affected region, in the load vicinity, for the two cases 

considered. From the Figure, it can be note that the damage process starts around 50 s, and 

reaches the peak value at 91.7 s in the shallow foundation case. At this instant, the damage 

level induced by the pile, on deep foundation problem, is around 22%. In this case, the peak 

value of damage parameter is reached at around 95 s of analysis. 

 
Figure 4.52 - Damage evolution in deep and shallow foundations at 50 s; 80 s; 91.7 s 
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A linear poroelastic modelling provides good results for the pore-pressure variation and 

accurately assesses the displacements in a porous medium, under instantaneous loading 

conditions. However, as shown in experimental studies of rocks and soils, in a loading 

condition over time (monotonic), the stress-strain relationship is not well represented in the 

linear poroelasticity theory. Thus, the interest arises to incorporate models of plasticity and/or 

damage on the poroelastic formulation. 

A boundary element method formulation for the analysis of saturated porous media subject 

to an isotropic damage process was presented. Considering the abundant number of 

experimental and theoretical studies on the subject, it is understood that one of the 

contributions of this work was to develop a computational tool that can be applied to the 

simulation of various engineering problems. 

The results show that the presence of fluid in a porous solid matrix subject to damage 

induces a degree of delay and attenuation in the evolution of the degradation levels. 

However, considering the damage occurrence in the solid skeleton of the poroelastic 

problem substantiates increasing the pore-pressure values. 

In this study, the damage process in the porous medium was dealt with in a simplistic way, in 

order to safely perform the coupling technique. Thus, the procedure of how to carry out the 

coupling between models for poroelasticity and isotropic damage in a BEM formulation was 

accurately illustrated. 

According to the literature, the damage occurs quite differently in various porous materials. 

For future works, studies on specific classes of materials are indicated, in order to better 

understand the mechanisms of deformation and rupture of these materials, adopting or 

proposing suitable nonlinear constitutive models. Throughout this text, some works that can 

serve as a basis for this purpose were listed, especially those relating to the experimental 

behavior of soils and rocks. 

One of the important features to be explored is the variation of permeability observed during 

the occurrence of damage. Therefore, another line to be explored in future initiatives is the 

detailed study and implementation of evolution laws for permeability based on experimental 

results, giving rise to more complete coupled poro-damage models. 

It should be noted that the code generated indicates interesting applications, such as the 

analysis of the mechanical behavior of building foundations, which are influenced not only by 

the stiffness of the skeleton, but also by the permeability of the support medium (soil or rock). 
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