UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA DE ESTRUTURAS

Análise teórica e experimental de conectores de cisalhamento e vigas mistas constituídas por perfis de aço formados a frio e laje de vigotas pré-moldadas

Daniela Lemes David

Orientador: Prof. Associado Maximiliano Malite

Tese apresentada à Escola de Engenharia de São Carlos da Universidade de São Paulo, como parte dos requisitos para obtenção do Título de Doutor em Engenharia de Estruturas.

São Carlos 2007

AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica preparada pela Seção de Tratamento da Informação do Serviço de Biblioteca – EESC/USP

D249a

David, Daniela Lemes Análise teórica e experimental de conectores de cisalhamento e vigas mistas constituídas por perfis de aço formados a frio e laje de vigotas pré-moldadas / Daniela Lemes David ; orientador Maximiliano Malite. --São Carlos, 2007.

Tese (Doutorado-Programa de Pós-Graduação e Área de Concentração em Engenharia de Estruturas) -- Escola de Engenharia de São Carlos da Universidade de São Paulo, 2007.

 Vigas. 2. Estruturas mistas. 3. Estruturas de aço.
 Análise experimental de estruturas. 5. Análise numérica. I. Título.

FOLHA DE JULGAMENTO

Candidata: Engenheira DANIELA LEMES DAVID

Tese defendida e julgada em 17/08/2007 perante a Comissão Julgadora:

Prof. Associado MAXIMILIANO MALITE (Orientador) (Escola de Engenharia/de São Catlos/USP)

Prof. Dr. JORGE MUNAIAR NETO (Escola de Engenharia de São Carlos/USP)

Prof⁸. Dr⁸. ANA LUCIA HOMCE DE CRESCE EL DEBS (Escola de Engenharia de São Carlos/USP)

appovada

APROVADA

Prof^a. Dr^a. ARLENE MARIA SARMANHO FREITAS (Universidade Federal de Ouro Preto/UFOP)

411102

Prof. Dr, GILSON QUEIROZ (Universidade Federal de Minas Gerais/UFMG)

APROVADA

Prof. Associado MARCIO ANTONIO RAMALHO Coordenador do Programa de Pós-Graduação em Engenharia Civil (Engenharia de Estruturas)

Prof. Associado GERALDO ROBERTO MARTINS DA COSTA Presidente da Comissão da Pós-Graduação da EESC

Aos meus pais com muito amor

AGRADECIMENTOS

A Deus, meu pai bondoso sempre presente.

Aos meus pais, exemplos de vida, coragem e amor.

Aos meus irmãos, Carol e Rafael.

Ao meu esposo, pelo carinho e apoio.

Ao professor Maximiliano Malite, pela orientação e dedicação.

A todos os professores do Departamento de Engenheira de Estruturas da EESC-USP como também aos queridos professores da Universidade Federal de Goiás, em especial ao Prof. Ronaldo Gomes, Orlando Gomes e Daniel Araújo.

Aos colegas do Departamento, por todos os momentos de estudo e diversão, em especial (em ordem alfabética): Adilson Takeuti, Alice Baldiserra, Cilmar Baságlia, Gustavo Chodraui, Sandra Almeida, Tatianne Kotinda entre outros.

Ao pessoal do Laboratório de Estruturas, todos essenciais para execução da parte experimental.

Aos funcionários do Departamento.

À Concrenasa e ao engenheiro civil José Carlos D'Ambrósio da Silva, pela doação das vigotas pré-moldadas treliçadas e também pelo grande interesse por essa pesquisa.

À FAPESP – Fundação de Amparo à Pesquisa do Estado de São Paulo, e também a CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, pela concessão da bolsa de estudos.

Aos meus amigos de Goiânia, Myrelle Cintra e Rodrigo Cavalcante, que mesmo distante permaneceram sempre perto.

A minha prima Luciana Lemes Fernandes, pelo incentivo constante e pela grande amizade.

Aos meus amigos da Igreja Presbiteriana de São Carlos: Salete, Marina, Jamim, e tantos outros que fizeram parte da minha vida durante os anos que morei em São Carlos e vão continuar sempre no meu coração.

RESUMO

DAVID, D. L. Análise teórica e experimental de conectores de cisalhamento e vigas mistas constituídas por perfis de aço formados a frio e laje de vigotas prémoldadas. 256 p. Tese (Doutorado) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2007.

No Brasil, a pequena gama disponível de perfis laminados e o custo relativamente elevado dos perfis soldados, têm impulsionado o emprego dos perfis formados a frio nos edifícios de pequeno porte, em associação com as tradicionais lajes de vigotas pré-moldadas, constituindo um sistema misto cujo comportamento estrutural ainda é pouco conhecido. Embora haja similaridades com as clássicas vigas mistas em perfis laminados e soldados e laje maciça, é fundamental investigar o comportamento estrutural das vigas mistas em perfis formados a frio, uma vez que (i) os conectores de cisalhamento devem apresentar compatibilidade estrutural e construtiva com as vigas as quais serão concectados, (ii) pela reduzida capacidade de rotação das vigas de aço, comprometendo os modelos de cálculo que admitem, por hipótese, a plastificação total da seção mista para a determinação do momento fletor resistente e (iii) pela dificuldade de posicionamento da armadura transversal (armadura de costura). Neste trabalho foi desenvolvido um estudo teórico e experimental sobre conectores em perfil U formado a frio e vigas mistas constituídas por perfis formados a frio e laje de vigotas pré-moldadas. O estudo dos conectores, por meio de ensaios de cisalhamento direto, permitiu a avaliação da influência da altura e espessura na resistência e rigidez, e ainda permitiu ajustar a expressão da norma americana AISC:2005, estabelecida para cálculo da resistência de conectores em perfil U laminado, aos perfis formados a frio. Da análise das vigas mistas simplesmente apoiadas, por meio de simulações numéricas e ensaios experimentais, verificou-se a influencia da: armadura de costura, do posicionamento dos conectores em relação às vigotas trelicadas e do deslizamento na interface e suas implicações principalmente na determinação do deslocamento vertical. Os resultados indicaram que se deve adotar um momento fletor resistente inferior ao momento de plastificação total da seção mista, e que a posição e taxa de armadura transversal interferem no panorama de fissuração da laje, mas têm pequena influência na resistência da viga mista.

Palavras-chave: Vigas. Estruturas mistas. Estruturas de aço. Análise experimental de estruturas. Análise numérica.

ABSTRACT

DAVID, D. L. Theoretical and experimental analysis of shear connectors and composite beams constituted of cold-formed steel beams and floor system with lattice girder beams. 256 p. Thesis (Doctoral) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2007.

In Brazil, the lack of hot-rolled members and high cost of welded steel beams have increased the use of composite beams made of cold-formed steel beams and floor system with lattice girder beams, whose structural behavior is not perfectly understood. Although this system is similar to the one composed of hot-rolled steel beams and concrete slabs, it is important to study its structural behavior due to some reasons: (i) the shear connectors must have structural and constructive compatibility with the beams they are connected. (ii) the small rotations of the steel beams jeopardize the concept of total yielding of composite section, which is currently used to evaluate the resistant moment, (iii) the complexity in placing the conventional shear reinforcement. This work presents an experimental and theoretical analysis on channel cold-formed connectors and composite beams made of cold-formed steel beams and concrete slabs with lattice girder beams. The push out tests of shear connectors evaluated the influence of their height and thickness on strength and stiffness of the system, and made possible to adjust the empiric expression of AISC:2005, originally developed for hot-rolled channel connectors, to fit the behavior of cold-formed connectors. Additionally, the influence of transverse reinforcement, relative position of connectors to lattice girder beams and interface slippage on vertical displacements were evaluated through numerical and experimental analysis. The results showed that the resistant moment is smaller than the calculated considering total yielding of the cross section. Besides this, the position and amount of transverse reinforcement amount have strong influence on crack configuration but not on the strength of the system.

Key-words: Beams. Composite structures. Steel structures. Experimental structural analysis. Numerical analysis.

SÍMBOLOS

Letras romanas minúsculas

- *a* espessura da região comprimida da laje ou, para interação parcial, a espessura considerada efetiva
- *a*¹ fator que leva em consideração a distância entre painéis alveolares e conectores,
- *a*₂ fator que leva em consideração o diâmetro das barras da armadura transversal
- *a*₃ fator que leva em consideração a altura do painel alveolar
- *b*_c distância do centro do vão a uma força concentrada
- *b* largura efetiva da laje de concreto
- b_0 largura da nervura e não deve ser menor que h_F .
- *b*₁ largura efetiva da laje no lado onde se analisa a resistência à fissuração longitudinal
- *b*₂ largura efetiva da laje no outro lado da viga mista
- *b*_F largura média da mísula ou da nervura situada sobre a viga
- d diâmetro do conector
- *d*₁ distância do centro geométrico da seção da viga de aço até a face superior dessa viga;
- *d*_f diâmetro dos furos
- *e*_{mh} distância da borda do fuste do conector à alma da nervura da fôrma de aço, medida à meia altura da nervura e no sentido da força cortante que atua no conector
- *f_c* tensão no concreto
- *f_{cd}* resistência de cálculo do concreto à compressão
- *f_{ck}* resistência característica do concreto à compressão
- *f*_{cm} resistência média à compressão do concreto
- *f_{cp}* média da resistência à compressão do concreto de preenchimento e do concreto do painel alveolar

f _{ctk,inf}	resistência à tração inferior do concreto
f _{ctm, sp}	resistência à tração superior do cocnreto
f _{cv}	tensão de cisalhamento convencional
$f_{\rm sd}$	resistência de cálculo ao escoamento do aço da armadura
<i>f</i> _u	resistência à ruptura especificada para o material do conector
<i>f</i> _{ucs}	resistência à ruptura do aço do conector
<i>f</i> _u	resistência à ruptura do conector obtida no ensaio experimental
f_y	resistência ao escoamento do aço
f _{yd}	resistência de cálculo ao escoamento do aço
$f_{ m yFd}$	resistência de cálculo ao escoamento do aço da fôrma
f _{yr}	resistência ao escoamento da armadura
g	distância entre os painéis alveolares
h	altura do conector como também altura total da seção mista e ainda altura da laje
h _F	espessura da pré-laje pré-moldada de concreto ou das nervuras da laje com fôrma de aço incorporada
hs	altura da viga de aço
<i>m, n</i>	constante de ajuste da curva
n	número de furos do <i>perforbond</i>
n _r	número de conectores por nervura
p	espaçamento entre os conectores, perímetro da vigota em contato com o concreto lançado na obra ou espaçamento entre conectores
q	resistência dos conectores obtida experimentalmente
qs	fluxo de cisalhamento na interface
S	deslizamento relativo
t	espessura do perfil
t _c	espessura da laje de concreto (se houver pré-laje de concreto pré- moldada, é a espessura acima desta pré-laje e, se houver laje com fôrma de aço incorporada, é a espessura acima das nervuras)

*t*_f espessura da mesa superior do perfil metálico

- *t*_{fcs} espessura da mesa do conector, tomada a meia distância entre a borda livre e a face adjacente da alma
- *t*_{wcs} espessura da alma do conector
- *y*_c distância do centro geométrico da parte comprimida da seção da viga de aço até a face superior dessa viga
- y_{cb} distância da face inferior da laje à sua linha neutra
- y_p distância da linha neutra da seção plastificada até a face superior da viga de aço
- y_{st} distância da face superior da viga à sua linha neutra
- *y*_t distância do centro geométrico da parte tracionada da seção da viga de aço até a face inferior dessa viga

Letras romanas maiúsculas

- *A*_a área da seção transversal da viga de aço
- *A*_{af} área da mesa superior da viga de aço
- A_{aw} área da alma da viga de aço
- *A_{blc}* área da seção transversal da região comprimida da laje de concreto entre o plano de cisalhamento considerado e a linha de centro da viga
- *A_c* área de concreto
- *A*_{cs} área da seção transversal do conector
- *A_{cv}* área de cisalhamento do concreto no plano considerado, por unidade de comprimento da viga
- *A_F* área da fôrma de aço incorporada no plano de cisalhamento, por unidade de comprimento
- *A*_{long} área da armadura longitudinal tracionada entre o plano de cisalhamento considerado e a linha de centro da viga
- As área da armadura transversal disponível na seção da laje considerada, por unidade de comprimento da viga, incluindo qualquer armadura prevista para flexão da laje e armaduras transversais adicionais, desde que devidamente ancoradas além da seção considerada
- *A*_s área de da viga de aço

- *A_{tr}* área total da armadura transversal
- C força de compressão na laje
- *C*_{ad} força resistente de cálculo da região comprimida do perfil de aço
- *C*_{cd} força resistente de cálculo da espessura comprimida da laje de concreto
- *C_y* fator de deformação a compressão
- au tensão de cisalhamento vertical na alma
- *E, E_a* módulo de elasticidade do aço
- *E*_{sec,0.3} módulo de elasticidade secante a 30% da resistência do concreto
- *E_c* módulo de elasticidade do concreto
- *E_{ci}* módulo de elasticidade, considerado como o módulo de deformação tangente inicial
- E_{cp} média do módulo de elasticidade do concreto de preenchimento e do concreto do painel alveolar
- *E*_{cs} módulo de elasticidade secante
- *I_a* momento de inércia da viga metálica
- *I_{ef}* momento de inércia efetivo da seção mista
- K rigidez do conector
- L vão da viga bi-apoiada
- *L*_{cs} comprimento do conector
- *L_e* comprimento do trecho de momento positivo (distância entre pontos de momento nulo)
- *M_c* momento fletor no concreto
- *M*_{dist} momento distorcional
- *M*_s momento estático em relação a posição da roseta ou momento fletor no aço
- $M_{Sd,Ga}$ momentos fletores solicitantes de cálculo devido às ações atuantes antes da resistência do concreto atingir a $0,75f_{ck}$
- $M_{Sd,L}$ momentos fletores solicitantes de cálculo devido às ações depois da resistência do concreto atingir a 0,75 f_{ck}
- *P_{rk}* menor resistência encontrada dos três ensaios de modelos idênticos

reduzida em 10%

- Q_{máx} força máxima resistida pelo conector
- *R*_g coeficiente para consideração do efeito de atuação de grupos de conectores
- *R*_p coeficiente para consideração da posição do conector
- *T* força de tração no perfil
- T_{ad} força resistente de cálculo da região tracionada do perfil de aço
- V força cortante
- *V_c* força de cisalhamento no concreto
- *V_d* esforço cortante de cálculo
- *V*_s força de cisalhamento no aço
- *W*_a módulo de resistência elástico inferior da seção da viga de aço
- $W_{c,ef}$ módulo de resistência elástico da seção efetiva, em relação à fibra comprimida, calculado com base nas larguras efetivas dos elementos
- *W_{ef}* módulo de resistência elástico da seção efetiva calculado com base nas larguras efetivas dos elementos
- W_{ef} módulo de resistência elástico da seção efetiva, calculado com a fibra mais tracionada ou comprimida em f_v
- $(W_{tr})_i$ módulo de resistência elástico inferior da seção mista
- (*W*_{tr})_s módulo de resistência elástico superior da seção mista
- $\sum Q_{Rd}$ somatório das forças resistentes de cálculo individuais Q_{Rd} dos conectores de cisalhamento situados entre a seção de momento positivo máximo e a seção adjacente de momento nulo
- $\sum Q_{Rd,m}$ somatório das resistências de cálculo individuais dos conectores de cisalhamento situados no trecho de comprimento L_m (se $\sum Q_{Rd,m}$ for maior que a resistência de cálculo necessária para interação total, usar esta no lugar de $\sum Q_{Rd,m}$)

Letras gregas minúsculas

$ ho_c$	massa específica do concreto
Ic	momento de inércia da laje
Is	momento de inércia da viga de aço
δ_u	deslizamento máximo
δ_{uk}	valor característico do deslizamento máximo
E0	deformação específica correspondente à tensão de 0,5 MPa
E _{0,3}	deformação correspondente à $\sigma_{0,3}$
Ecb	deformação na face superior da laje
E _{cu}	deformação última do concreto (0,35%)
\mathcal{E}_{S}	deformação de deslizamento na interface
Est	deformação na face inferior da viga
ε	deformação máxima do concreto (0,2%)
\mathcal{E}_{0}	deformação do concreto ou a deformação específica correspondente à tensão de 0,5 MPa.
ϕ	curvatura entre a laje e a viga metálica
γc	coeficiente de ponderação da resistência do concreto
γcs	coeficiente de ponderação da resistência do conector, igual a 1,25 para combinações últimas de ações normais, especiais ou de construção e igual a 1,10 para combinações excepcionais
γv	coeficiente de ponderação da resistência, igual a 1,25
γ	coeficiente de ponderação da resistência
$ ho_{\sf FL}$	fator de redução associado à flambagem lateral com torção
σ	tensão normal na interface aço-concreto
σ_{dc}	tensão de compressão de cálculo na face superior da laje de concreto
σ_{dt}	tensão de tração de cálculo na mesa inferior da viga de aço

SUMÁRIO

1	INTRODUÇÃO	21
2	REVISÃO BIBLIOGRÁFICA	27
2.1	CONECTORES DE CISALHAMENTO	27
2.1.1	Histórico	27
2.1.2	Classificação dos conectores	34
2.1.3	Ensaios em conectores segundo o eurocódigo 4:2001	36
2.1.4	Ensaios em conectores em modelos não usuais	38
2.1.5	Expressões para cálculo da resistência de conectores	40
2.2	VIGA MISTA	48
2.2.1	Histórico	48
2.2.2	Características das vigas mistas	52
2.2.3	Comportamento da viga mista em relação ao cisalhamento na interface	54
2.2.4	Transferência de forças de cisalhamento na interface aço-concreto	55
2.2.5	Largura efetiva	59
2.2.6	Dimensionamento de vigas mistas biapoiadas	61
2.3	ANÁLISE DE CONECTORES E VIGAS MISTAS CONSTITUÍDAS E PERFIS DE AÇO FORMADOS A FRIO	POR 62
2.4	PERFIS FORMADOS A FRIO SUBMETIDOS A FLEXÃO SIMPLES	68
2.5	LAJE DE VIGOTAS PRÉ-MOLDADAS TRELIÇADAS	72
2.5.1	Contexto nacional dos tipos de lajes utilizadas em estruturas metálicas	72
2.5.2	Laje com nervura pré-moldada do tipo treliçada	73

2.5.3	Ligação da laje com vigota treliçada ao apoio	77
3	PROGRAMA EXPERIMENTAL	81
3.1	DESCRIÇÃO DOS ENSAIOS	81
3.2	CARACTERIZAÇÃO DOS MATERIAIS	83
3.2.1	Concreto	83
3.2.2	Aço	83
3.3	DETALHAMENTO DOS CORPOS-DE-PROVA PARA O ENSAIO CISALHAMENTO DIRETO	DE 84
3.3.1	Dimensões	84
3.3.2	Concretagem	85
3.3.3	Instrumentação e aplicação do carregamento	87
3.4	DETALHAMENTO DAS VIGAS	88
3.4.1	Dimensões	88
3.4.2	Concretagem	91
3.4.3	Instrumentação e aplicação do carregamento	91
4	MODELAGEM NUMÉRICA	. 95
4.1	ELEMENTOS FINITOS UTILIZADOS	.95
4.1.1	Solid 65	95
4.1.2	Elemento Shell 181	96
4.1.3	Elemento Link 8	97
4.1.4	Ttarget 170 e Contact 173	97
4.1.5	Combin 39	98
4.2	MALHA, CONDIÇÕES DE CONTORNO E APLICAÇÃO DA SOLICITAÇÃ PARA CADA ESTRATÉGIA	.O 98
4.2.1	Estratégia 1	99
4.2.2	Estratégia 2	99
4.2.3	Estratégia 3	100
4.3	RELAÇÕES COSTITUTIVAS UTILIZADAS	102
4.3.1	Aço da armadura	102
4.3.2	Aço do perfil	102
4.3.3	Concreto	103
4.4	CARACTERÍSTICAS DO CONTATO	105
4.5	ANÁLISE NÃO-LINEAR	106
5	RESULTADOS OBTIDOS	107
5.1	MATERIAIS	107

5.1.1	Concreto	107
5.1.2	Aço dos perfis formados a frio1	09
5.2	RESULTADOS EXPERIMENTAIS DOS ENSAIOS DE CISALHAMEN DIRETO	ТО 109
5.2.1	Influência do tipo de carregamento1	109
5.2.2	Influência da altura do conector1	10
5.2.3	Influência da espessura do conector1	12
5.2.4	Influência da armadura transversal adicional	113
5.2.5	Força máxima1	14
5.2.6	Modo de falha1	18
5.3	RESULTADOS EXPERIMENTAIS E NUMÉRICOS DOS ENSAIOS FLEXÃO1	DE 19
5.3.1	Força máxima e modo de falha	119
5.3.2	Deformações longitudinais na seção transversal no meio do vão1	25
5.3.3	Deformações das rosetas1	31
5.3.4	Deslocamentos verticais1	33
5.3.5	Deslizamento relativo na interface1	43
5.3.6	Avaliação teórica da resistência	145
6	CONCLUSÕES FINAIS1	51
6.1	ENSAIOS DE CISALHAMENTO DIRETO1	52
6.2	ENSAIOS DAS VIGAS MISTAS1	53
6.3	SIMULAÇÕES NUMÉRICAS DAS VIGAS MISTAS1	54
6.4	SUGESTÕES PARA FUTUROS TRABALHOS1	156
7		50
1		59
APÊNCICE A169		
APÊNCICE B177		
APÊNCICE C		

CAPÍTULO

INTRODUÇÃO

As pesquisas em estruturas mistas de aço e concreto, na EESC-USP, iniciaram em 1990, época em que foi iniciada propriamente a pós-graduação na área de estruturas metálicas, com o desenvolvimento de vários trabalhos inspirados na então recente NBR 8800:1986 – Projeto e execução de estruturas de aço de edifícios, norma essa que trouxe significativas mudanças conceituais e de procedimentos em relação à antiga NB-14:1958 (revisada em 1968). Nessa mesma época também foram iniciados os estudos sobre os perfis de aço formados a frio, fruto da crescente demanda do mercado por esse produto, aliado à obsolescência da norma brasileira NB-143:1967 e a conseqüente escassez de informações técnicas para projeto.

O interesse da área pelas estruturas mistas com perfis formados a frio veio como conseqüência natural das duas linhas de pesquisa então iniciadas, com o objetivo de investigar o comportamento estrutural de vigas mistas constituídas por perfis formados a frio e conectores também em perfis formados a frio, uma vez que os conectores destinados aos perfis laminados e soldados não são, em geral, compatíveis do ponto de vista estrutural e construtivo, com os perfis de parede fina.

Devido à pequena gama de perfis laminados e ao custo relativamente elevado dos perfis soldados, o emprego de perfis formados a frio em edifícios de pequeno porte (até quatro ou cinco pavimentos) tem representado uma solução economicamente viável e, portanto, bem aceita no ramo da construção metálica.

Entretanto, como tal concepção não é usual em outros países, as normas estrangeiras não trazem procedimentos específicos para o dimensionamento dessas vigas mistas, o mesmo acontecendo com a recente norma brasileira de dimensionamento de perfis formados a frio - NBR 14762:2001, que por falta de informações técnicas, também não aborda o assunto.

As vigas mistas em perfis formados a frio apresentam particularidades em relação às vigas mistas em perfis laminados e soldados, que vão desde os conectores de cisalhamento até a pequena capacidade de rotação da viga de aço, inclusive em

seções compactas, limitando assim o momento fletor resistente à plastificação parcial da seção mista, tema ainda pouco pesquisado.

Outra questão relevante consiste nos tipos de lajes usualmente empregadas nos edifícios de pequeno porte, em geral lajes pré-moldadas, como por exemplo, as lajes de vigotas treliçadas preenchidas com EPS (poliestireno expandido) ou lajotas cerâmicas, o que dificulta construtivamente a adoção da taxa de armadura transversal recomendada pelas normas, precipitando a ocorrência de fissuras, portanto merecendo também detalhada investigação.

As dimensões escolhidas para as vigas mistas tiveram como objetivo representar uma estrutura real. Para isso, foi escolhido como referência o projeto arquitetônico de um edifício para habitação popular desenvolvido pela USIMINAS (Detalhes Técnicos 2 - Solução USIMINAS para habitação popular). Este edifício possui quatro unidades habitacionais por pavimento e a planta do pavimento tipo está ilustrado na FIGURA 1.1.

FIGURA 1.1 - Planta pavimento tipo Fonte: Detalhes Técnicos 2 - Solução USIMINAS para habitação popular

O modelo estrutural é bastante simples e segue uma modulação de 3m x 4m.

O cálculo da laje pré-moldada com vigotas treliçadas foi feito pelo fabricante das vigotas treliçadas, sendo:

Peso próprio	1,41 kN/m²
Vão livre	3,00 m
Intereixos das treliças	50 cm
Material de enchimento	EPS
f _{ck}	30 MPa

Com esses dados foram definidos a altura da laje, o tipo de treliça e a armadura adicional.

O presente trabalho consiste na continuidade dos trabalhos desenvolvidos em Malite (1993) e em David (2003) e tem como objetivo desenvolver uma investigação teórica e experimental sobre os conectores de cisalhamento constituídos por perfis formados a frio (perfil U) e sobre vigas mistas constituídas por perfis formados a frio (seção I e seção caixão) e laje pré-moldada de vigotas treliçadas.

a) Conectores de cisalhamento

Para o estudo dos conectores de cisalhamento foi realizada uma investigação experimental, por meio de ensaios de cisalhamento direto (*push-out tests*) conduzidos com controle de deformação, em conectores constituídos por perfil U formado a frio, complementando os ensaios já realizados por Malite (1993) e David (2003).

Pela expressão do AISC:2005, as variáveis que interferem na resistência do conector são: espessura (*t*), comprimento (L_{cs}), resistência à compressão do concreto (f_{ck}) e módulo de elasticidade do concreto (*E*). O comprimento do conector está limitado à largura da mesa superior da viga e, portanto, na prática, apresenta pequena possibilidade de variação, o mesmo ocorrendo com a resistência à compressão e módulo de elasticidade do concreto em obras usuais.

Assim, pretende-se avaliar a influência da espessura do conector, bem como sua altura, na resistência e na rigidez (comportamento força-deslocamento) da conexão, e propor uma expressão para cálculo da sua resistência com base em ajustes na expressão do AISC:2005, desenvolvida originalmente para conector em perfil U laminado e laje maciça.

b) Vigas mistas de aço e concreto

Para o estudo das vigas mistas de aço e concreto, foi realizada uma análise numérica empregando o programa ANSYS, visando analisar o comportamento das

vigas mistas ensaiadas. Os conectores presentes nas vigas foram modelados de forma discreta, utilizando elemento de casca, e também em forma de mola, usando para isso a relação força *versus* deslizamento encontrada nos ensaios de cisalhamento direto.

Na parte experimental foram analisadas vigas mistas de aço e concreto simplesmente apoiadas, constituídas por perfis formados a frio, laje pré-moldadas de vigotas treliçadas e preenchidas com EPS, e conectores de cisalhamento em perfil U formado a frio.

Os principais parâmetros avaliados foram:

- grau de interação: consiste na capacidade total da conexão de cisalhamento em relação às máximas resultantes de tensão que podem ser mobilizadas pela viga de aço ou pela laje de concreto. O grau de interação, completa ou parcial, influencia a rigidez e a resistência da viga mista e é função da resistência e espaçamento dos conectores. No caso de laje pré-moldadas com vigotas treliçadas, objeto desse trabalho, o espaçamento foi definido em função do intereixo das vigotas (em torno de 500 mm). Como o espaçamento entre conectores foi o mesmo em todas as vigas, o grau de interação variou devido às espessuras diferentes desses conectores, o que resultou em diferentes resistências.

- taxa e disposição da armadura transversal: responsável pela eficiência da transmissão do fluxo de cisalhamento da laje para os conectores (mecanismo bielatirante). Em geral, a taxa de armadura transversal nesse tipo de laje é inferior à taxa mínima recomendada pelas normas, o que implica em fissuração excessiva e redução da capacidade resistente da viga mista.

Avaliou-se as situações de vigas mistas sem armadura transversal adicional e com armadura transversal adicional posicionada nas vigotas, sendo a vigota treliçada não contínua sobre a viga. A FIGURA 1.2 ilustra uma vigota contínua e a FIGURA 1.3, uma interrompida.

FIGURA 1.2 - Vigota treliçada contínua FIGURA 1.3 - Vigota treliçada interrompida

- capacidade de rotação: as vigas mistas constituídas por perfis laminados e soldados, com seção compacta, possuem suficiente capacidade de rotação e os

procedimentos de norma para determinação do momento fletor resistente admitem a plastificação total da seção mista.

Para as vigas mistas em perfis formados a frio, mesmo com seção compacta, os estudos realizados em Malite (1993) indicam que a capacidade de rotação da viga de aço é limitada, o que implica em redução no momento resistente, correspondendo assim a uma situação de plastificação parcial da seção mista. O momento resistente nesse caso está compreendido entre o momento de início de escoamento e o momento de plastificação total. Foram ensaiadas vigas com seção I e seção caixão, com diferentes relações b/t dos elementos, para avaliar o comportamento da viga mista em relação à citada capacidade de rotação.

CAPÍTULO

REVISÃO BIBLIOGRÁFICA

2.1 CONECTORES DE CISALHAMENTO

2.1.1 Histórico

O comportamento de vigas mistas depende da ação conjunta entre a viga de aço e a laje de concreto. Como a aderência natural entre os dois materiais e as forças de atrito presentes não são, normalmente, consideradas no cálculo, torna-se necessário o uso de conectores de cisalhamento para transmitir o cisalhamento na interface.

Os estudos a respeito de conectores de cisalhamento iniciaram em 1933 na Suíça, Swiss Federal Institute for Testing Materials, em parceria com o projeto chamado Sistema Alpha. O conector analisado era formado por meio de barras redondas com formato em hélice, denominado conector espiral. Para tal estudo foram realizados ensaios de cisalhamento direto e ensaios de flexão em vigas mistas, Voellmy e Brunner (1933) apud Viest (1960).

Voellmy realizou ensaios experimentais neste tipo de conector até 1936, analisando principalmente a influência do diâmetro da barra, o diâmetro da espiral, e a resistência do concreto, chegando a expressões para cálculo de sua resistência.

Em 1943, na Universidade de Lehigh e Illinois, foram realizados ensaios experimentais não só em conectores espirais como também em conectores formados por perfis laminados em forma de U, cantoneiras e seções H.

Pelos ensaios de flexão em vigas mistas constatou-se que no conector U a maior parte da força é transmitida pela mesa do conector soldada à viga, e uma pequena parte é transmitida pela alma, sendo que as tensões mais altas ocorrem na região próxima à solda. No concreto, ocorrem elevadas tensões de compressão na região de contato.

Os ensaios de cisalhamento direto mostraram que o deslizamento permitido pelo conector tem uma fase retornável e outra não. Essa fase não retornável, deslizamento residual, permanece baixa até que a máxima tensão no conector alcance a tensão de escoamento do aço. Após ter atingido esta tensão, o deslizamento residual aumenta rapidamente.

O comportamento dos conectores em ensaios de flexão de vigas mistas e cisalhamento direto possuem algumas diferenças. Em vigas mistas os conectores são solicitados indiretamente, sendo que a força no conector não é proporcional à força aplicada à viga, pois depende da rigidez dos vários componentes. Além disso, as tensões residuais no aço e a não linearidade do concreto tornam praticamente impossível determinar a força no conector por meio da medição das deformações longitudinais do aço e concreto, Bradford e Oehlers (1995).

Com base nos dois tipos de ensaios, em Slutter e Driscol (1965) é proposto a equação empírica (2.1) para o cálculo da resistência de conectores U laminados embutidos em concreto de densidade normal.

$$Q_{R} = 0,116(t_{fcs} + 0,5t_{ws})L_{cs}(f_{ck})^{1/2}$$
(2.1)

Onde:

 Q_R é a resistência do conector U laminado em kN;

 t_{fcs} é a espessura da mesa do conector, tomada a meia distância entre a borda livre e a face adjacente da alma em mm;

 t_{wcs} é a espessura da alma do conector em mm;

 L_{cs} é o comprimento do conector em mm;

 f_{ck} é a resistência característica do concreto à compressão em MPa.

Nesta mesma época, décadas de 50 e 60, pesquisadores europeus direcionaram suas pesquisas para os conectores feitos com barras em forma de ganchos e conectores rígidos constituídos por barras de aço retangulares e perfis laminados, Meier-Leibnitz (1941), Manning (1946), Graf (1951) apud Viest (1960)

Os estudos referentes aos conectores tipo pino com cabeça foram iniciados em 1954. Em Viest (1956) foram realaizados ensaios em conectores tipo pino com cabeça com o objetivo de investigar a influência da resistência do concreto, o espaçamento e o diâmetro dos conectores. Com esses ensaios notou-se que a resistência do conector aumenta proporcionalmente à raiz quadrada da resistência do concreto. Para conectores com diâmetro maior que 1" a resistência é proporcional ao seu diâmetro, caso contrário a resistência é proporcional ao quadrado do diâmetro do conector. Com essas observações foram propostas expressões empíricas para cálculo da resistência de conectores pino com cabeça.

Após 1960 as pesquisas a respeito dos conectores pino com cabeça continuaram, tendo como variáveis de interesse o tipo de concreto, por exemplo, o concreto leve, tipos de laje, tipo de carregamento, número de conectores, entre outras.

Através dos ensaios experimentais foi possível propor expressões empíricas para o cálculo da resistência de conectores pino com cabeça e perfil U laminado. Essas expressões podem ser encontradas em várias normas, BS 5400:1979, NBR 8800:2007, CAN/CSA-S16.1:1994, AASHTO:1996, EUROCÓDIGO 4:2001 e AISC:2005.

Em Leonhardt et al (1987) é apresentado um novo tipo de conector denominado *perfobond*. Esse conector é constituído de uma chapa de aço retangular com vários furos, apresenta grande resistência à fadiga e por isso é indicado para uso em pontes. Uma desvantagem desse conector é a dificuldade para o posicionamento da armadura inferior da laje, quando as barras de aço têm que passar por dentro das aberturas. As pesquisas sobre esse conector continuam em andamento principalmente no Departamento de Transporte da Universidade de Lowa e na Universidade das Forças Armadas de Munique (Universitat der Bundeswehr Munchen).

Em Veríssimo et al (2006) é apresentado o projeto e os resultados de ensaios de cisalhamento direto em um conector formado por uma chapa endentada, denominado CR, que se constitui em uma alternativa interessante ao perfobond, pois permite a passagem com facilidade das barras de armadura da laje. A FIGURA 2.1 ilustra esses dois tipos de conectores.

FIGURA 2.1 – Conector *perfobond* e conector em chapa endentada Fonte: VERÍSSIMO et al (2006)

Os resultados dos ensaios dos conectores em chapa endentada demonstraram que sua capacidade de carga é menor que um conector perfobond de dimensões similares. Tanto o perfobond como o conector CR possibilitam aumentar a capacidade resistente da conexão mediante a colocação de uma maior quantidade de armadura transversal. Em geral, os conectores em chapa contínua apresentam maior rigidez para cargas de serviço do que os *studs*.

A complexidade da análise multiaxial de tensões dificulta a elaboração de formulações analíticas referentes ao ensaio de cisalhamento direto, provável razão da utilização de expressões empíricas para representar o comportamento dos conectores de cisalhamento.

Com a evolução dos microcomputadores e dos códigos de cálculo, a tentativa da análise multiaxial para as estruturas de um modo geral deixou de ser um problema, porém continua com algumas dificuldades.

Em Kalfas et al (1997) é proposto um modelo numérico para simular os ensaios de cisalhamento direto, com base no método dos elementos finitos, por meio de um programa computacional denominado COSMOS/M. Neste modelo utilizou-se elementos sólidos na laje, elementos de barras rígidas na viga metálica e elementos de viga nos conectores. Os nós da base da laje foram impedidos de se movimentarem na direção Y e os nós da barra rígida, na direção Z. Foram criados nós duplos na laje de concreto na direção do conector, os nós da parte inferior do conector foram unidos à laje e os nós da parte superior do conector não foram unidos, simulando a separação do concreto. O concreto e os conectores foram modelados com um comportamento elasto-plástico bilinear, o encruamento do aço, a armadura da laje e a resistência à tração do concreto estão apresentados na FIGURA 2.2

Não foi mencionado o modo de ruptura e nem o critério de resistência adotado, de acordo com o deslizamento relativo pode-se ver que o modelo representa bem o trecho inicial e logo em seguida se mostra menos rígido.

FIGURA 2.2 - Discretização dos modelos de cisalhamento direto e curva força versus deslocamento.Fonte: KALFAS et al (1997).

Em Oguejiofor e Housain (1997) foi desenvolvido um estudo numérico sobre o comportamento de conectores *perfobond* com a utilização do programa ANSYS. Os objetivos foram, obter a resistência desses conectores variando as características que

mais influenciam seu comportamento, deduzir uma expressão para o cálculo de sua resistência e verificá-la. Para a modelagem foram utilizados os elementos, Solid 65 para a laje, com armadura em forma de taxa, e Shell 41 para o perfil e conector.

Foi modelado apenas um quarto do modelo real como ilustra a FIGURA 2.3, os nós coincidentes que possuíam os mesmos deslocamentos foram unidos, conector e perfil, laje e conector, já os nós coincidentes do perfil e laje foram acoplados apenas nas direções x e y.

FIGURA 2.3 - Geometria dos modelos de cisalhamento direto. Fonte: Oguejifor e Housain (1997).

Para simular o comportamento do concreto foi utilizado o modelo *Concrete* associado a uma curva não-linear elástica formada por um trecho linear, até um terço da resistência à compressão com módulo de elasticidade dado pela equação (2.2) em seguida um trecho curvo, até a deformação máxima do concreto, equação (2.3), e um trecho linear até a deformação última do concreto, equação (2.4).

$$E_c = 5000\sqrt{f_{ck}} \tag{2.2}$$

$$f_{c} = f_{ck} \left[2 \left(\frac{\varepsilon}{\varepsilon_{0}} \right) - \left(\frac{\varepsilon}{\varepsilon_{0}} \right)^{2} \right] \text{ para } 0 < \varepsilon \le \varepsilon_{0}$$
(2.3)

$$f_{c} = f_{ck} - 0,15f_{ck} \left[\frac{\varepsilon - \varepsilon_{0}}{\varepsilon_{cu} - \varepsilon_{0}} \right] \text{ para } \varepsilon_{0} < \varepsilon \le \varepsilon_{cu}$$
(2.4)

Onde:

*E*_c é o módulo de elasticidade do concreto;

 f_c é a tensão no concreto;

f_{ck} é a resistência à compressão do concreto;

 ε_0 é a deformação do concreto;

ε é a deformação máxima do concreto (0,2%);

 ε_{cu} é a deformação última do concreto (0,35%).

As análises foram conduzidas variando a resistência à compressão e tração do concreto, a taxa e resistência ao escoamento da armadura, espessura e altura do conector e o diâmetro e quantidade de furos no conector.

A resistência dos conectores obtida numericamente foi próxima à experimental, em média 17% inferior, porém, o deslizamento relativo entre a laje e o perfil não foi apresentado, ficando a dúvida a respeito da confiabilidade da modelagem em relação ao comportamento do conector.

Em Kim, Wright e Cairns (2001) é apresentado um estudo sobre o comportamento de conectores de cisalhamento, tipo pino com cabeça, embutidos em laje com fôrma de aço incorporada, por meio da utilização de um programa de cálculo, LUSAS, baseado no método dos elementos finitos.

Os modelos foram analisados com elementos finitos bidimensionais e tridimensionais. Na primeira análise a viga metálica, a laje de concreto e o conector foram modelados usando elementos planos de tensão e a fôrma de aço, usando elementos de barra. As condições de contorno foram, restrição horizontal no perfil e vertical na laje, como ilustra a FIGURA 2.4.

FIGURA 2.4 - Discretização dos modelos bidimensionsias. Fonte: Kim, Wright e Cairns (2001)

O critério de von Mises foi utilizado no conector e na fôrma de aço. Para o perfil foi utilizada a propriedade linear do material já que suas tensões não alcançavam a tensão de escoamento do aço. O concreto foi modelado como não-linear levando em consideração o amolecimento devido às fissuras (*strain-softening mode*). Nos modelos tridimensionais foi adotado o comportamento elástico linear para materiais. A viga e a fôrma de aço foram modeladas com elemento de casca, os conectores com elemento de viga e a laje com elementos sólidos.

Como se pode ver na FIGURA 2.5 a rigidez obtida pela análise tridimensional foi mais satisfatória, porém em ambos os casos o trecho não-linear da curva teórica se afastou da experimental.

FIGURA 2.5 - Curvas obtidas. Fonte: Kim, Wright e Cairns (2001)

Para simulação da laje de concreto foi utilizado o elemento Solid 65. Para a simulação do perfil metálico, incluindo o conector de cisalhamento, foi utilizado o elemento Solid 45 e para a simulação das barras de armaduras, dispostas na laje de concreto, foi utilizado o elemento *Link* 8.

Para os perfis metálicos adotou-se o comportamento elasto-plástico multilinear com encruamento isótropo e critério de plastificação de von Mises. Para a armadura foi utilizado o mesmo critério, porém, adotou-se o comportamento elasto-plástico bilinear com encruamento isótropo. Para representar o comportamento do concreto utilizou-se o modelo de material denominato *Concrete* cujo critério de resistência é Willam-Warnke. A FIGURA 2.6 ilustra a malha do modelo com perfil U e a curva teórica e experimental.

A consideração do contato entre a superfície do conector e do concreto foi feita por meio da associação dos elementos *Target 170*, superfície alvo, e *Contac 173*, superfície de contato.O *Contac 173* apresenta vários parâmetros que definem seu comportamento e podem ser modificados pelo usuário. Após vários testes utilizou-se como rigidez normal de contato, FKN, o valor absoluto igual a 500, sendo os demais parâmetros mantidos de acordo com o padrão do programa.

As curvas de deslizamentos obtidas por Tristão (2002) foram semelhantes às curvas experimentais, porém, a não convergência do modelo impediu a continuação

do processamento. Infelizmente não foi possível obter o modo de falha, e a calibração do elemento de contato é algo que necessita de melhor compreensão.

Em Marecek, Samec e Studnicka (2005) foram desenvolvidos modelos numéricos para a simulação de conectores *perfobond* por meio do programa ANSYS. Os elementos utilizados foram, para a laje de concreto, *Solid 65*, para a armadura, *Link 8*, e para a viga e conector, *Shell 41*. Para o comportamento do concreto adotouse o modelo *Concrete* e para o aço adotou-se uma curva tensão-deformação multilinear. Não foram utilizados elementos de contato, e para garantir apenas o deslocamento vertical, direção y, os nós coincidentes da laje e da viga foram acoplados nas demais direções.

A força máxima obtida pela simulação numérica foi 93% da força máxima experimental, porém o deslocamento último foi apenas 4% do deslocamento último experimental.

Pelas pesquisadas realizadas percebe-se que a calibração deste tipo de ensaio não é simples, sendo ainda impossível a análise puramente numérica descartando os ensaios experimentais.

2.1.2 Classificação dos conectores

Os conectores de cisalhamento são classificados em flexíveis e rígidos, essa classificação é obtida por meio da relação entre a força no conector e o deslizamento relativo aço-concreto, FIGURA 2.8, que surge em resposta ao fluxo de cisalhamento longitudinal gerado pela transferência de força entre laje de concreto e perfil de aço. A

força no conector e o deslizamento relativo podem ser obtidos por meio de ensaios de cisalhamento direto.

Os conectores flexíveis apresentam uma menor relação força versus deslizamento, menor rigidez. Conectores flexíveis e rígidos podem ser considerados dúcteis. Entende-se aqui que ductilidade é a capacidade de deslizamento do conector após ter atingido sua resistência máxima.

Com base na recomendação do EUROCÓDIGO 4:2001, o conector é classificado como dúctil se o valor característico da capacidade de deformação (deslizamento relativo último convencional) δ_{uk} for igual ou superior a 6 mm, FIGURA 2.9.

FIGURA 2.8 - Classificação dos conectores e suas curvas características

FIGURA 2.9 - Curva força versus deslizamento

Em vários trabalhos experimentais os deslizamentos últimos dos conectores ensaiados resultam inferiores à 6mm, isso pode ser explicado pelo tipo de controle do ensaio. A medição dos deslizamentos próximos à força máxima do conector como também após à força máxima, ramo descendente da curva, é possível apenas em ensaios de cisalhamento direto com controle de deslocamento, o que não ocorria há algum tempo atrás onde os equipamentos permitiam apenas o controle de força.

A ductilidade dos conectores não afeta o comportamento da viga em regime de utilização (fase elástica).

No regime último (fase pós-elástica), entretanto, permite a redistribuição do fluxo de cisalhamento longitudinal entre os conectores. Isto significa que sob carregamento crescente um conector dúctil pode continuar a deformar-se com solicitações próximas à sua ruptura e com isto permitir que os conectores seguintes absorvam maior força de cisalhamento e atinjam sua resistência. Isso uniformiza o

fluxo de corte, permitindo espaçar igualmente os conectores, otimizando a execução da viga mista.

Em Ollgaard, Slutter e Fisher (1971) é proposta a eq. (2.5) para representar a curva força-deslizamento para o conector tipo pino com cabeça.

$$Q = Q_{m\acute{a}x} (1 - e^{-ms})^n$$
(2.5)

Onde:

Q é a força em kN;

 Q_{max} força máxima resistida pelo conector em kN;

s é o deslizamento relativo em mm;

m e <u>*n*</u> são constantes de ajuste da curva.

Em Aribert A. K. et al (1982) e Fabbrocino et al (1999), são encontrados alguns valores usuais de m e n:

Curva A: 0,558 e 1 mm⁻¹, Curva B: 0,989 e 1,535 mm⁻¹, Curva C: 0,8 e 0,7 mm⁻¹.

2.1.3 Ensaios em conectores segundo o EUROCÓDIGO 4:2001

Quando se deseja determinar as propriedades de um determinado tipo de conector que não esteja previsto nas normas, pode-se utilizar ensaios padronizados de cisalhamento direto (*push-out tests*)

Várias normas prescrevem esse ensaio. No ensaio recomendado pelo EUROCÓDIGO 4:2001, um perfil laminado é conectado a duas lajes de concreto armado por meio dos conectores que se pretende analisar. As lajes são apoiadas na parte inferior e o carregamento é aplicado na extremidade superior do perfil de aço. O escorregamento relativo entre o perfil de aço e as duas lajes de concreto é medido em cada lado da laje. O dispositivo utilizado neste ensaio é mostrado na FIGURA 2.10.

O ensaio deve ser realizado da seguinte maneira:

i) inicialmente, aplicam-se incrementos de força até atingir 40% da força máxima esperada;

ii) em seguida, aplicam-se 25 ciclos de carregamento com força variando entre 5% e 40% da força máxima;

 iii) os incrementos de força após a fase cíclica devem ser aplicados de modo a não provocar ruptura antes de um período de 15 minutos;
iv) o deslocamento relativo entre laje de concreto e viga de aço deve ser monitorado em todo o ensaio, desde o início do carregamento até que a força decresça em 20% do valor máximo.

 v) deve-se também monitorar, próximo de cada grupo de conectores, a separação transversal entre mesa e laje.

FIGURA 2.10 - Esquema de ensaio de conectores. Fonte: EUROCÓDIGO 4:2001

Para análise dos resultados dos ensaios de três modelos nominalmente idênticos, cujas diferenças entre o resultado individual de cada modelo com os resultados médios não excedam a 10%, a resistência de cálculo do conector pode ser determinada pela eq. (2.6)

$$\boldsymbol{q}_{rd} = (f_u/f_{ut})(\boldsymbol{P}_{rk}/\gamma_v) \leq \boldsymbol{P}_{rk}/\gamma_v$$
(2.6)

Onde:

 f_u é a resistência à ruptura especificada para o material do conector;

 f_{ut} é a resistência à ruptura do conector obtida no ensaio experimental;

 γ_{ν} é o coeficiente de ponderação da resistência, igual a 1,25;

 P_{rk} é a menor resistência encontrada dos três ensaios de modelos idênticos reduzida em 10%.

O valor característico do deslizamento máximo (δ_{uk}) é o menor dos valores de deslizamento máximo (δ_u) obtidos nos ensaios e reduzido em 10%, conforme já mostrado na FIGURA 2.9.

A preparação dos protótipos deve seguir rigorosamente o previsto pelas normas, mas algumas recomendações devem ser frisadas:

- para que os resultados não sejam afetados pela aderência química entre o perfil de aço e o concreto, a superfície de contato deve ser engraxada;

- o concreto dos modelos deve sofrer cura ao ar;

- a resistência ao escoamento do aço do conector deve ser determinada.

Mesmo seguindo todas as prescrições normativas os resultados dos ensaios podem apresentar significativa variabilidade devido a diversos fatores. Cita-se, por exemplo, o número de conectores no modelo de ensaio, as tensões longitudinais médias na laje de concreto em torno dos conectores, o tamanho, arranjo, e resistência da armadura da laje na vizinhança dos conectores, a espessura do concreto junto aos conectores, a aderência na interface aço-concreto, a resistência à compressão do concreto, o adensamento do concreto e o arranjo das partículas do agregado junto aos conectores. Além disso, a vinculação lateral na base das lajes, também influencia os resultados, pois deslocamentos laterais da laje podem provocar forças de arrancamento no conector.

2.1.4 Ensaios de conectores em modelos experimentais não usuais

De acordo com o EUROCÓDIGO 4:2001 os ensaios de cisalhamento direto podem ser conduzidos com características diferentes do corpo-de-prova padronizado, entretanto as seguintes prescrições devem se atendidas:

- os modelos de ensaio deverão ser similares ao apresentado na FIGURA 2.10.

- a laje e a armadura deverão ter dimensões compatíveis com as das vigas para as quais os ensaios estão sendo feitos,

- o comprimento da laje não excederá o espaçamento longitudinal mínimo dos conectores na viga mista,

- a largura da laje será menor ou igual à largura efetiva da laje na viga mista e a espessura da laje não excederá a espessura mínima da laje na viga mista.

Alguns ensaios de cisalhamento direto não seguem as prescrições da norma européia devido às particularidades construtivas em função dos parâmetros que se pretende analisar.

Em Lam, Elliot e Nethercot (1998) foram realizados ensaios de cisalhamento direto em conectores tipo pino com cabeça embutidos em lajes formadas por painéis

alveolares protendidos, com o objetivo de avaliar o comportamento dos conectores mediante três variáveis: o espaçamento entre os painéis e os conectores (g), a taxa de armadura transversal e a resistência do concreto de ligação dos painéis.

Os ensaios não foram realizados de maneira convencional, os corpos-de-prova possuíam apenas uma laje posicionada na horizontal, sendo o carregamento aplicado na laje e não na viga. Segundo os autores, o carregamento aplicado na laje torna o ensaio mais semelhante a um ensaio de viga mista.

A FIGURA 2.11 ilustra o esquema de ensaio e a seção transversal do modelo.

FIGURA 2.11 - Carregamento aplicado na laje formada por painéis alveolares. Fonte: Lam, Elliot e Nethercot (1998).

Ensaios de cisalhamento direto em modelos não usuais também estão descritos em Topkaya, Yura e Williamson (2004). Nestes ensaios os corpos-de-prova eram constituídos por apenas uma laje sendo os conectores fixados a uma chapa metálica, por meio de solda, e esta a uma estrutura de reação, por meio de parafusos. Para reduzir o atrito entre o concreto e a placa metálica e entre o concreto e a fôrma inferior, foi utilizada uma placa plástica.

O objetivo destes ensaios foi analisar o comportamento dos conectores com concreto entre 3 e 48 horas de idade.

O carregamento foi aplicado na laje em posição horizontal por dois motivos: devido à baixa resistência do concreto os corpos-de-prova não poderiam ser transportados, ou seja, foram concretados e ensaiados no mesmo local, além disso, a laje em posição horizontal não se separa do perfil, o que ocorre na posição convencional. A FIGURA 2.12 ilustra o esquema de ensaio utilizado.

Atuador hidráulico

2.1.5 Expressões para cálculo da resistência de conectores

Alguns tipos de conectores são amplamente utilizados, quer em edifícios ou em pontes, sendo que as normas relativas às construções mistas apresentam valores da resistência nominal ou expressões para cálculo desta resistência, com base em extensivos programas de ensaios.

Além das expressões normalizadas existem outras deduzidas por pesquisadores, que ainda não fazem parte de normas, talvez, devido à necessidade de mais ensaios ou talvez devido a serem restritas a certos tipos de laje, armaduras ou outras características que restringem sua utilização. A seguir estão algumas expressões encontradas na bibliografia pesquisada.

a) NBR 8800:2007 e AISC:2005

As normas NBR 8800:2007 e AISC:2005 apresentam expressões para cálculo da resistência de conectores tipo pino com cabeça e perfil U laminado, embutidos em lajes maciças ou com fôrma de aço incorporada. As expressões são idênticas, porém,

a norma americana desconsidera o coeficiente de ponderação da resistência (γ_{cs}), ou seja, os valores das resistências dos conectores obtidos pela norma brasileira são valores de cálculo (Q_{Rd}) já os da norma americana, são valores nominais (Q_n).

a.1) Pinos com cabeça

A resistência de cálculo de um conector de cisalhamento tipo pino com cabeça, totalmente embutido na laje maciça é dada pelo menor dos seguintes valores:

$$Q_{Rd} = \frac{1}{2} \frac{A_{cs} \sqrt{f_{ck} E_c}}{\gamma_{cs}}$$
(2.7)

$$Q_{Rd} = \frac{R_g R_p A_{cs} f_{ucs}}{\gamma_{cs}}$$
(2.8)

Onde:

 γ_{cs} é o coeficiente de ponderação da resistência do conector, igual a 1,25 para combinações últimas de ações normais, especiais ou de construção e igual a 1,10 para combinações excepcionais;

 A_{cs} é a área da seção transversal do conector;

 $f_{\rm ucs}$ é a resistência à ruptura do aço do conector;

f_{ck} é a resistência característica à compressão do concreto;

E_c é o módulo de elasticidade do concreto;

 R_{g} é um coeficiente para consideração do efeito de atuação de grupos de conectores R_{p} é um coeficiente para consideração da posição do conector;

Segundo a NBR 8800:2007 as propriedades do concreto de densidade normal devem obedecer à NBR 6118:2003. Assim, a resistência característica à compressão desse tipo de concreto, f_{ck} , deve situar-se entre 20 MPa e 50 MPa e os seguintes valores devem ser adotados:

$$E_{ci} = 5600\sqrt{f_{ck}}$$
 (2.9)

$$E_{cs} = 0.85E_{ci}$$
 (2.10)

Onde:

 E_{ci} é o módulo de elasticidade, considerado como o módulo de deformação tangente inicial, onde E_{ci} e f_{ck} são dados em megapascal (para a situação usual em que a verificação da estrutura se faz em data igual ou superior a 28 dias);

 E_{cs} é módulo de elasticidade secante, a ser utilizado nas análises elásticas de projeto, especialmente para determinação de esforços solicitantes e verificação de estados limites de serviço.

Ainda segundo a NBR 8800:2007 as propriedades do concreto de baixa densidade, com massa específica mínima de 1500 kg/m³ e máxima de 2200 kg/m³ sem armadura, o módulo de elasticidade secante, em megapascal, deve ser tomado igual a:

$$E_{cs} = E_c = 40.5 \left(\frac{\rho_c}{100}\right)^{1.5} \sqrt{f_{ck}}$$
 (2.11)

Segundo a AISC:2005 o módulo de elasticidade do concreto, com massa específica mínima de 1500 kg/m³ e máxima de 2500 kg/m³ é dado pela eq. (2.12).

$$E_{c} = 0.043 \rho_{c}^{1.5} \sqrt{f_{ck}}$$
 (2.12)

Onde:

 ρ_c é a massa específica do concreto;

 f_{ck} é a resistência característica à compressão do concreto, em megapascal.

Para ambas as normas, deve-se tomar para o coeficiente R_g os seguintes valores:

a) 1,00, para um conector soldado em uma nervura de fôrma de aço perpendicular ao perfil de aço; para qualquer número de conectores em uma linha soldados diretamente no perfil de aço; para qualquer número de conectores em uma linha soldados através de uma fôrma de aço em uma nervura paralela ao perfil de aço e com relação b_F/h_F igual ou superior a 1,5;

b) 0,85, para dois conectores soldados em uma nervura de fôrma de aço perpendicular ao perfil de aço; para um conector soldado através de uma fôrma de aço em uma nervura paralela ao perfil de aço e com relação b_F/h_F inferior a 1,5

c) 0,70, para três ou mais conectores soldados em uma nervura de fôrma de aço perpendicular ao perfil de aço.

Onde:

 $b_{\rm F}$ é a largura média da mísula ou da nervura situada sobre a viga;

 h_F é a altura das nervuras da fôrma de aço. A Figura FIGURA 2.13 ilustra b_F e h_F .

Para ambas as normas, deve-se tomar para o coeficiente R_p os seguintes valores:

a) 1,00, para conectores soldados diretamente no perfil de aço e, no caso de haver nervuras paralelas a esse perfil, pelo menos 50% da largura da mesa deve estar em contato direto com o concreto;

b) 0,75, para conectores soldados em uma laje mista com as nervuras perpendiculares ao perfil de aço e e_{mh} igual ou superior a 50 mm; para conectores soldados através de uma fôrma de aço e embutidos em uma laje mista com nervuras paralelas ao perfil de aço;

c) 0,60, para conectores soldados em uma laje mista com nervuras perpendiculares ao perfil de aço e e_{mh} inferior a 50 mm.

Onde e_{mh} é a distância da borda do fuste do conector à alma da nervura da fôrma de aço, medida à meia altura da nervura e no sentido da força cortante que atua no conector, conforme ilustra a FIGURA 2.14.

FIGURA 2.13 – Lajes de concreto com forma de aço incorporada Fonte: NBR 8800:2007

a. 2) Perfil U

A resistência de cálculo de um conector de cisalhamento U laminado, totalmente embutido na laje maciça é :

$$Q_{Rd} = \frac{0.3(t_{fcs} + 0.5t_{ws})L_{cs}\sqrt{f_{ck}E_c}}{\gamma_{cs}}$$
(2.13)

Onde:

 t_{fcs} é a espessura da mesa do conector, tomada a meia distância entre a borda livre e a face adjacente da alma;

 t_{wcs} é a espessura da alma do conector;

 L_{cs} é o comprimento do conector;

 f_{ck} é a resistência característica do concreto à compressão;

 γ_{cs} é o coeficiente de ponderação da resistência do conector, igual a 1,25.

Segundo a NBR 8800:2007 a altura da seção transversal do conector U deve ser igual ou superior a 75 mm e ainda, a força resistente de cálculo de um conector de cisalhamento de perfil U formado a frio deve ser determinada com a eq. (2.13) tomando-se as espessuras da mesa e da alma iguais à espessura da chapa do mesmo (cuidados especiais devem ser tomados para se evitar o aparecimento de trincas na região das dobras e da chapa para formação do conector).

A especificação AISC:2005 não faz referência ao caso de perfis formados a frio, e utiliza como resistência dos conectores os valores nominais e não de cálculo.

b) EUROCÓDIGO 4:2001

Segundo o EUROCÓDIGO 4:2001 a resistência de cálculo de conectores tipo pino com cabeça é dada pelo menor dos seguintes valores:

$$Q_{\rm Rd} = \frac{0.8 f_{\rm ucs} \, \pi \, d^2 \, / \, 4}{\gamma_{\rm cs}} \tag{2.14}$$

$$Q_{\rm rd} = \frac{0.29 \,\alpha d^2 \sqrt{f_{\rm ck} E_{\rm cs}}}{\gamma_{\rm cs}} \tag{2.15}$$

Onde:

$$lpha = 0,2(h_{
m sc}/d+1) ext{ para } 3 \le rac{h_{
m sc}}{d} \le 4 ;$$
 $lpha = 1 ext{ para } rac{h_{
m sc}}{d} > 4 ;$

 γ_{cs} é o coeficiente de ponderação da resistência do conector, igual a 1,25;

d é o diâmetro do conector, 16 mm \leq *d* \leq 25 mm,

 f_{ucs} é a resistência à ruptura do aço do conector (\leq 500MPa);

 f_{ck} é a resistência do concreto, com massa específica \geq 1750kg/m³;

 E_{cs} é módulo de elasticidade secante encontrado pela eq. (2.16), sendo f_{ck} em MPa e E_{cs} em GPa.

$$E_{cs} = 22 \left(\frac{f_{ck} + 8}{10}\right)^{0.3}$$
(2.16)

Quando os conectores estão embutidos em lajes com forma de aço incorporada com nervuras paralela à viga, a resistência dos conectores é obtida pelas eq.(2.14) ou (2.15) multiplicada por um fator de redução, $k_{\rm l}$.

$$k_{I} = 0, 6 \frac{b_{0}}{h_{F}} \left(\frac{h_{sc}}{h_{F}} - 1 \right) \le 1, 0$$
(2.17)

As variáveis da eq.(2.17) estão todas identificadas na FIGURA 2.13 porém, h_{sc} não pode ser maior que h_{F} + 75 mm.

Quando os conectores estão embutidos em lajes com forma de aço incorporada com nervuras transversais à viga, a resistência dos conectores é obtida pelas eq.(2.14) ou (2.15) multiplicada por um fator de redução, k_t , sendo que f_{ucs} deve ser menor ou igual a 450 MPa.

$$k_{t} = \frac{0.7}{\sqrt{n_{r}}} \frac{b_{0}}{h_{F}} \left(\frac{h_{sc}}{h_{F}} - 1\right)$$
(2.18)

Onde:

n_r é o número de conectores por nervura;

 h_F é a altura da nervura e não deve ser maior que 85 mm;

 b_0 é a largura da nervura e não deve ser menor que h_F .

Os valores de k_t não podem ultrapassar os limites apresentados na TABELA 2.1.

Número de conectores por nervura	Espessura da forma de aço (mm)	Conectores com d ≤ 20 mm e soldados na forma de aço	Forma de aço perfurada e conectores com d = 19 mm ou 22 mm
n _r = 1	≤ 1,0	0,85	0,75
	> 1,0	1,0	0,75
n _r = 2	≤ 1,0	0,70	0,60
	> 1,0	0,8	0,60

TABELA 2.1- Limites máximos de k_t

c) BS 5400:1979

Segundo a norma britânica BS 5400:1979, a resistência de cálculo dos conectores em lajes maciças, Q_{Rd} , é dada por:

Sob momento positivo:

$$Q_{Rd} = 0.8Q_n$$
 (2.19)

Sob momento negativo:

$$Q_{Rd} = 0.6 Q_n$$
 (2.20)

Os valores das resistências nominais dos conectores, Q_n , são tabelados conforme a TABELA 2.2 e a

TABELA 2.3.

TABELA 2.2 - Res	sistência norr	inal de o	conectores	tipo	pino	com	cabeça	em	lajes
	maciças	, segund	do a BS 54	00:1	979				

Dimensões do conector		Resistência nominal do conector (kN)					
Diâmetro	Altura	Resistência característica do concreto f _{ck} (MPa)					
(mm)	(mm)	25	30	35	40		
25	100	146	154	161	168		
22	100	119	126	132	139		
19	100	95	100	104	109		
19	75	82	87	91	96		
16	75	70	74	78	82		
13	65	44	47	49	52		

- Para concretos com f_{ck} > 40MPa, utilizar os valores para f_{ck} = 40MPa.

- Para conectores com alturas maiores que as tabeladas, utilizar o valor correspondente à maior altura tabelada.

- O material do conector deve ter tensão de ruptura (mín.) = 450 MPa e alongamento (mín.) = 15%.

TABELA 2.3 - Resistência nominal de conectores tipo perfil "U" laminado segundo a BS 5400:1979

Porfil tipo "Il" (mm)	Material do conector	Resistência nominal do conector (kN)				
		Res. característica do concreto f _{ck} (MPa)				
		25	30	35	40	
127 x 64 x (14,90) x 150	Grau 43 da	351	397	419	442	
102 x 51 x (10,42) x 150	1972	293	337	364	390	
76 x 38 x (6,70) x 150	_	239	283	305	326	

d) Expressões propostas por Ogueijiofor e Housain (1997) para o cálculo da resistência de conectores *perfobond*

Baseado em ensaios de cisalhamento direto e modelagens numéricas Ogueijiofor e Housain (1997) propuseram a eq. (2.21) para cálculo da resistência de conectores *perfobond*,

$$Q_n = 4.5htf_{ck} + 3.31nd_f^2 \sqrt{f_{ck}} + 0.19A_{tr}f_{yr}$$
(2.21)

Onde:

h é a altura do conector em mm;

t é a espessura do conector em mm;,

*f*_{*ck*} é a resistência à compressão do concreto em MPa;

n é o número de furos;

 d_f é o diâmetro dos furos em mm^{2;}

 A_{tr} é a área total da armadura transversal em mm²;

 f_{yr} é resistência ao escoamento da armadura em MPa.

Esse tipo de conector é soldado em todo o comprimento da viga, provavelmente a resistência obtida pela eq. (2.21) deve ser por unidade de comprimento, assim como o número de furos e a área total da armadura, porém os autores não fazem essa observação.

e) Expressões propostas por Lam, Elliot e Nethercot (1998) para o cálculo da resistência de conectores pino com cabeça embutidos em lajes com painéis alveolares

A equação (2.22) deduzida em Lam, Elliot e Nethercot (1998) é aplicada para cálculo da resistência de conectores tipo pino com cabeça, embutidos em lajes formadas por painéis alveolares com armadura transversal espaçada a cada 300 mm, conforme já foi mostrado na FIGURA 2.11.

$$\mathbf{Q}_{Rd} = \frac{0.29a_1a_2a_3d^2\sqrt{\omega f_{cp}E_{cp}}}{\gamma_{cs}}$$
(2.22)

Onde:

 a_1 é o fator que leva em consideração a distância entre painéis e conectores, sendo g>30mm, $a_1 = 0.5(g/70 + 1)<1.0$, g em mm;

 a_2 é o fator que leva em consideração o diâmetro das barras da armadura transversal, sendo ϕ >8mm, a_2 =0,5(ϕ /20+1)<1,0, ϕ em mm;

 a_3 é o fator que leva em consideração a altura do painel, $a_3 = 0,5(h/600+1)$, sendo *h* a altura do painel em mm;

 f_{cp} é a média da resistência à compressão do concreto de preenchimento e do concreto do painel alveolar, em MPa;

 E_{cp} é a média do módulo de elasticidade do concreto de preenchimento e do concreto do painel alveolar, em MPa;

d é o diâmetro do conector;

 γ_{cs} é o coeficiente de ponderação da resistência do conector, igual a 1,25.

2.2 VIGA MISTA

2.2.1 Histórico

Segundo Viest (1960) as investigações sobre o comportamento de vigas mistas iniciaram entre as décadas de 20 e 30. Nesses trabalhos o grande interesse era reproduzir apenas a ligação natural (aderência) existente entre os materiais aço e concreto, por meio de ensaios em vigas de aço totalmente ou parcialmente embutidas no concreto.

Os primeiros ensaios relacionados às vigas mistas sem conectores de cisalhamento foram realizados na Inglaterra em 1914, pela empresa Radpath Brow and Company. Em 1922, mais ensaios foram feitos, desta vez no Canadá, supervisionados pela Dominium Bridge Company.

A carência do aço após a II Guerra Mundial levou os engenheiros europeus a utilizar a laje de concreto como parte componente das estruturas em aço, iniciando-se pesquisas sistemáticas que esclareceram o comportamento da viga mista para esforços estáticos e cíclicos, Pfeil (2000).

Estudos teóricos com referência ao comportamento e resistência de vigas mista de aço e concreto foram desenvolvidos e basicamente seguiam as teorias aplicadas ao concreto armado.

A primeira teoria com base na análise elástica de vigas mistas se consolidou na Inglaterra e foi publicada em Andrews (1912) apud Kirchhof (2004). Andrews apresentou equações para calcular as tensões na seção de aço e na seção de concreto, considerando-se apenas as tensões referentes à flexão. As equações eram fundamentadas na teoria da seção transformada admitindo-se que o concreto não resistia aos esforços de tração. Essa teoria era feita com base na distribuição linear de tensões na seção mista e na desconsideração de deslizamento relativo entre aço e concreto.

Após ensaios em vigas mistas com conectores de cisalhamento, concluiu-se que o deslizamento que ocorria na interface aço-concreto era uma característica do comportamento do sistema, ou seja, a interação entre os materiais não era completa. Portanto, a partir dessa consideração, várias teorias elásticas foram desenvolvidas e publicadas levando-se em conta o efeito do escorregamento na distribuição de tensões e de deformações.

Além de teorias elásticas, foram também desenvolvidas teorias com referência a resistência última. Em Slutter e Driscoll (1965) é apresentado um método de cálculo baseado na plastificação da seção transversal e no equilíbrio estático das forças internas, para o caso de interação completa e parcial.

Na década de 60, vários trabalhos com base em ensaios experimentais foram realizados e publicados com referência ao elemento estrutural viga mista açoconcreto.

Em Chapman e Balakrishnan (1964) foram analisados o comportamento de dezessete vigas mistas, sob carregamento concentrado no meio do vão e uniformemente distribuído, variando o número de conectores ao longo do vão. Deste trabalho concluí-se que a utilização do diagrama retangular de tensões para cálculo do momento fletor resistente se mostrou adequado; a ruptura dos conectores ocorreu somente nas vigas onde a interação foi considerada parcial; o efeito do escorregamento relativo na interface aço concreto durante a fase elástica foi pequeno; os conectores devem ser devidamente ancorados na região comprimida da laje de concreto devido à existência de forças axiais consideráveis nos mesmos; a consideração da capacidade última dos conectores em projeto é razoável; a distribuição uniforme dos conectores se mostrou satisfatória inclusive no caso de carga uniformemente distribuída.

Davies (1969) realizou ensaios em sete vigas mistas simplesmente apoiadas, com carga centrada no meio do vão, analisou o efeito do espaçamento entre conectores e a taxa de armadura transversal na laje de concreto. Por meio dos ensaios concluiu-se que o espaçamento entre os conectores praticamente não influencia o comportamento da viga mista, e que taxas inadequadas de armadura transversal permitem a ocorrência de fissuração por fendilhamento ao longo da linha de conectores.

Com o decorrer dos anos e a conseqüente evolução dos micro-computadores e dos programas de cálculo para análise estrutural, muitos trabalhos foram e continuam

sendo desenvolvidos com base na análise da resposta numérica. Alguns desses serão brevemente descritos a seguir.

Análises analíticas e computacionais foram realizadas em Yam e Chapman (1968) com o objetivo de estudar os efeitos que interferiam diretamente no comportamento inelástico de vigas mistas simplesmente apoiadas, tanto na interação entre viga e laje como no seu comportamento último, tais como as propriedades da seção transversal, o vão, a distribuição dos conectores, resistência e rigidez do sistema, o tipo de carregamento, entre outros. Os resultados numéricos obtidos foram comparados com os resultados experimentais apresentados em Chapman e Balakrishnan (1964).

Em Hirst e Yeo (1980) foram desenvolvidos elementos finitos equivalentes, a partir de modificações feitas nas propriedades dos elementos finitos encontrados em programas comerciais, com vistas a representar simplificadamente a conexão existente entre viga de aço e laje de concreto em sistemas mistos. O método foi aplicado tanto para analisar o comportamento estrutural elástico como para analisar o comportamento inelástico de vigas mistas, os resultados foram comparados com os resultados analíticos e numéricos obtidos em Yam e Chapman (1968)

Foi apresentado em Arizumi e Hamada (1981) um modelo simplificado com base no método dos elementos finitos, para análise de vigas mistas com interação parcial. O método proposto considerou um comportamento elasto-plástico para os elementos aço, concreto e conectores de cisalhamento, com vistas a reduzir o número de equações envolvidas na resolução. Segundo o autor, as vantagens de utilização deste método recaíram diretamente na redução dos graus de liberdade do modelo e a facilidade de manipulação quando se considerou a não linearidade dos materiais.

Em Razaqpur e Nofal (1989) é apresentado o desenvolvimento de um elemento de barra tridimensional, desconsideração da rigidez à torção e à flexão, para modelar o comportamento não linear dos conectores de cisalhamento em vigas mista de aço e concreto.

Em Salari, Scapone, Shing, e Frangopol (1998) é desenvolvido um modelo analítico para descrever o comportamento de vigas mistas com conectores flexíveis. As equações utilizadas tinham a finalidade de desenvolver um novo elemento para viga mista com base no método das forças. Os resultados obtidos foram comparados com resultados numéricos que utilizavam elementos finitos com base no método dos deslocamentos. Nesse estudo, concluiu-se que os elementos finitos com base no método das forças apresentaram resultados numéricos com desempenho superior, principalmente em níveis de carregamentos elevados. Em Porco, Spadea e Zinno (1994), Oven et al (1997), Gattesco (1999), Fabbrocino et al (1999) entre outros, foram desenvolvidos procedimentos numéricos para avaliar o comportamento de vigas mistas considerando o deslizamento na interface. Comparações entre resultados obtidos pelos modelos propostos e dados experimentais confirmam a eficácia dos procedimentos.

Em Seracino, Oehlers e Yeo (2001) foi desenvolvido o conceito de ponto focal de interação parcial e estendeu a teoria clássica linear elástica para interação parcial desenvolvido por Newmark em 1951. O modelo foi deduzido para uma viga mista com conectores uniformemente distribuídos e uma carga concentrada, considerando o aço e o concreto elástico linear. Através dos pontos focais, pontos onde as deformações considerando interação total e nula se cruzam, pode-se traçar o diagrama de deformações de uma seção transversal com interação parcial. A partir das deformações podem ser obtidas as tensões e, portanto, o momento resistente da viga mista. A resistência da viga, neste caso, é diretamente influenciada pela rigidez da ligação e pelo deslizamento na interface.

Em Nie e Cai (2003) é investigado o efeito do deslizamento na interfase açoconcreto na deformação de vigas mistas, os resultados dessa investigação foram expressões para cálculo desses deslocamentos verticais considerando três tipos de carregamento. Comparações com ensaios experimentais validam essas expressões. Essas expressões serão apresentadas no Capítulo 5.

Atualmente no Brasil a utilização de vigas mistas vem crescendo consideravelmente, assim como as pesquisas sobre o assunto em questão. No Departamento de Engenharia de Estruturas da EESC/USP, vêm sendo desenvolvidos trabalhos relacionados à modelagem numérica de vigas mistas, como os trabalhos de Kirchhof (2004) e Kotinda (2005).

Em Kirchhof (2004) foram realizadas simulações numéricas de vigas mista de aço e concreto por meio de modelos tridimensionais elaborados com base no Método dos Elementos Finitos, utilizando-se do código de cálculo ABAQUS, com o objetivo de avaliar o comportamento global da viga mista, em temperatura ambiente e em situação de incêndio, contemplando apenas a interação total entre viga e laje.

Em seu trabalho foram analisados dois tipos de elementos para representar o concreto, o C3D8R (sólido) e o S4R (casca). O modelo com laje representada por elementos do tipo sólido se mostrou bastante instável, não atingindo os níveis de carregamento desejados. Os problemas de instabilidade ocorreram quando da consideração da não-linearidade do concreto associada ao uso de elementos do tipo sólido. Já no modelo com laje discretizada por meio de elementos do tipo casca, a convergência se deu de forma satisfatória.

Dando continuidade à pesquisa anterior, o trabalho de Kotinda (2005) teve como objetivo analisar a interface laje-viga, por meio de modelos numéricos que permitam simular satisfatoriamente o comportamento global das vigas mistas, considerando interação completa e parcial e, ainda, obter resultados referentes a aspectos localizados como, por exemplo, concentração de tensões nos conectores de cisalhamento e na região da laje próxima aos conectores.

Kotinda utilizou o programa ANSYS e os seguintes elementos: Shell 43, para discretizar a viga de aço, Beam 189, para os conectores, Solid 65 para a laje, Contact 173 e Target 170, para representar o contato na interface entre a laje e o perfil.

O modelo constitutivo para o aço foi elasto-plástico com encruamento isótropo, multilinear para o perfil e bilinear para os conectores, e critério de von Mises. O comportamento do concreto à tração foi representado pelo modelo concrete, disponibilizado pelo programa, (critério de ruptura de Willam-Warnke), e para a compressão admitiu-se o critério de plastificação de von Mises.

Os resultados numéricos foram comparados aos resultados de Chapman e Balakrishnan (1964) e mostraram-se satisfatórios. Duas conclusões importantes foram:

- a utilização do modelo de Mohr-Coulomb (coesão e atrito) no par de contato possibilitou recuperar a ação da aderência existente entre viga de aço e laje de concreto na interface, impedindo a ocorrência de escorregamento entre laje e viga, até um nível de carregamento a partir do qual a aderência em questão é vencida, e em concordância com os ensaios experimentais.

 - a estratégia de modelagem adotada, com a representação dos conectores por elementos de viga (e não por molas) e uso de elementos sólidos na laje, possibilitou a visualização da concentração de tensões na região de transferência de esforços entre os elementos em questão, com configuração semelhante ao descrito nas referências estudadas.

Estratégias semelhantes às apresentadas em Kotinda (2005) também foram utilizadas neste trabalho e serão posteriormente descritas.

2.2.2 Características das vigas mistas

A NBR 8800:2007 trata das vigas mistas de aço e concreto que consistem de um componente de aço simétrico em relação ao plano de flexão, que pode ser um perfil I, um perfil caixão, um perfil tubular retangular ou uma treliça, com uma laje de concreto acima de sua face superior. Deve haver ligação mecânica por meio de conectores de cisalhamento entre o componente de aço e a laje de tal forma que ambos funcionem como um conjunto para resistir à flexão. Em qualquer situação, a flexão ocorrerá no plano que passa pelos centros geométricos das mesas ou dos banzos superior e inferior do componente de aço. A FIGURA 2.15 ilustra algumas seções transversais de vigas mistas.

FIGURA 2.15 - Tipos de seções transversais de vigas mistas. Fonte: EUROCÓDIGO 4 (2001)

O benefício de se usar o aço estrutural juntamente com o concreto é claro, pois o primeiro tem um ótimo desempenho à tração e o segundo a compressão, formando assim um sistema mais eficiente se comparado à viga somente de aço. Algumas vantagens da consideração da ação mista em vigas de aço e lajes de concreto são:

- redução no peso global da estrutura e consequente alívio nas fundações,
- diminuição da altura dos perfis metálicos,
- possibilidade de vencer maiores vãos,
- redução de flechas,
- redução de custos.

As vigas mistas podem ser simplesmente apoiadas ou com continuidade nos apoios. As simplesmente apoiadas contribuem para a maior eficiência do sistema misto, pois a viga de aço trabalha predominantemente à tração e a laje de concreto à compressão, embora não seja muitas vezes a solução mais econômica.

O método construtivo da laje influencia o comportamento estrutural da viga mista. Quando as lajes são escoradas no momento da construção, as vigas não recebem o carregamento da laje durante a fase construtiva, caso usual em lajes maciças moldadas *in loco*. Quando as lajes não são escoradas, por exemplo, em lajes com forma de aço incorporada, as vigas de aço recebem todo o carregamento da fase construtiva, inclusive o peso da laje. Neste momento, como o concreto ainda não apresenta resistência, o sistema misto não está constituído e, portanto, a viga de aço responde isoladamente. Neste caso, as verificações de flechas e da estabilidade lateral das vigas podem ser determinantes.

Outros fatores que influenciam o comportamento das vigas são a fluência e a retração do concreto. Ambas conduzem a deformações por carregamentos de longaduração maiores que a deformação inicial.

2.2.3 Comportamento da viga mista em relação ao cisalhamento na interface

A ação mista é desenvolvida quando dois elementos estruturais são interconectados de tal forma a se deformarem como um único elemento como, por exemplo, o sistema da FIGURA 2.16 formado por uma viga de aço biapoiada suportando uma laje de concreto em sua face superior.

Não existindo qualquer ligação na interface, os dois elementos se deformam independentemente e cada superfície da interface estará submetida a diferentes deformações, o que provocará um deslizamento relativo entre elas. Considerando que o elemento de aço esteja interligado ao elemento de concreto por meio de conectores de cisalhamento, com resistência suficiente para resistir ao fluxo de cisalhamento gerado na interface, os dois elementos tenderão a se deformar como um único elemento.

A ligação entre o aço e o concreto é dimensionada em função do diagrama de esforços cortantes longitudinais por unidade de comprimento, conhecido como fluxo de cisalhamento longitudinal. A resultante do diagrama do fluxo de cisalhamento longitudinal é dada em função da máxima força cortante que se pode transmitir através da ligação.

O índice que permite avaliar o grau de interação entre laje e perfil, $\eta_{i,.}$ é determinado pela relação entre o somatório das resistências individuais dos conectores situados entre uma seção de momento fletor máximo e a seção adjacente de momento nulo, e a resultante do fluxo de cisalhamento, sendo esse valor igual a

menor resistência oferecida pela laje ou pelo perfil. Quando $\eta_i \ge 1$ a interação é completa e quando $\eta_i < 1$ a interação é parcial.

2.2.4 Transferência de forças de cisalhamento na interface aço-concreto

Conforme mencionado em OEHLERS (1989), o fluxo de cisalhamento longitudinal que se gera na interface entre a laje de concreto e a viga de aço, em vigas mistas, é transferido por meio de um número discreto de pontos, representados pelos conectores de cisalhamento. No caso do conector pino com cabeça (stud), as forças de cisalhamento longitudinal são transferidas da laje de concreto para a viga de aço, conforme ilustra a FIGURA 2.17.

FIGURA 2.17 - Transferência de forças de cisalhamento longitudinal por meio de conectores do tipo pino com cabeça.

Segundo Oehlers e Park (1992), o fuste do conector é submetido à força de cisalhamento (F_{sh}), distante da mesa do perfil metálico de uma distância *z*. O produto da força F_{sh} pela correspondente excentricidade *z* gera um momento M_{sh} . Logo, essas forças atuantes resultam em tensões de cisalhamento e normais aplicadas ao corpo do conector.

A magnitude dessas tensões não depende somente da força de cisalhamento F_{sh} , mas também da excentricidade *z* que é função da rigidez relativa entre o concreto e o conector. Se a rigidez do concreto é muito maior que a rigidez apresentada pelo conector, a excentricidade *z* tenderá a zero, caso contrário, *z* tenderá a metade da altura do conector pino com cabeça.

Com base na FIGURA 2.17 a zona de concreto que se encontra imediatamente em frente ao conector de cisalhamento, denominada zona de compressão triaxial, está sujeita a elevadas tensões de compressão. Segundo os mesmo autores, existem diversos mecanismos que levam à ruptura do conector pino com cabeça quando da transferência das forças de cisalhamento longitudinal da laje para a viga:

 a) quando o concreto for menos rígido quando comparado ao conector, o concreto começa a fissurar antes que o conector plastifique, proporcionado assim o aumento da excentricidade z. Conseqüentemente, as tensões normais no pino do conector aumentarão mais rapidamente que as tensões de cisalhamento, conduzindo o conector à ruptura.

b) se o conector for menos rígido que o concreto, *z* diminui, reduzindo assim o momento (M_{sh}) no conector. Além disso, a zona de compressão triaxial se reduzirá, já diminuí a altura efetiva do conector, ocasionando assim a ruptura do concreto na zona de compressão triaxial e, conseqüentemente, o aumento de *z*, já que a rigidez do concreto diminui. A partir daí, retorna-se ao mecanismo de ruptura descrito no item a.

Outro fato importante que deve ser mencionado é com referência aos modos de fissuração que ocorrem na laje, associados à ruptura do conector de cisalhamento, por conseqüência da redução gradual da resistência e rigidez do concreto na zona de compressão triaxial.

Segundo Oehlers (1989), podem ocorrer três tipos de fissuração na laje: fissuração perpendicular à direção longitudinal da viga, fissuração que se propaga na direção das bielas de compressão e fissuração longitudinal à viga, sendo essa a mais nociva ao concreto, tendo como conseqüência a ruptura do conector. Segundo essa mesma referência, a armadura transversal não impede a ruptura do concreto, porém limita a propagação das fissuras. Os tipos de fissuração estão ilustrados na FIGURA 2.18.

FIGURA 2.18 - Tipos de fissuração na laje

Ensaios descritos em Davies (1969), Lema (1982), Lam, Elliot e Nethercot (2000) mostraram que em vigas mistas simplesmente apoiadas com variações na taxa

de armadura transversal, quanto maior for a taxa de armadura transversal na laje de concreto (dentro de uma quantidade tolerável), maior será a resistência última à flexão alcançada pela viga mista.

Desta forma, recomenda-se que sejam colocadas armaduras transversais com o objetivo de se limitar a propagação da fissura longitudinal na região onde se encontram as linhas de conectores de cisalhamento. Esta armadura deverá ser uniformemente distribuída ao longo do vão da viga, posicionada na face inferior da laje e calculadas de acordo com o modelo de treliça de Morsh.

A vista superior de uma laje está ilustrada na FIGURA 2.19. O modelo de treliça, para o cálculo da armadura transversal, está representado pelo triângulo 123, no qual 23 representa a armadura por unidade de comprimento da viga, e C representa a força de cisalhamento, também, por unidade de comprimento da viga. A força C é resistida pelas diagonais comprimidas 12 e 13, que formam um ângulo de aproximadamente 45° com o eixo da viga. Por equilíbrio, as forças de compressão em 2 e 3 são equilibradas pelas forças de tração na armadura e compressão no concreto. A falha neste modelo ocorre quando a armadura entra em escoamento.

FIGURA 2.19 - Vista superior de uma laje mostrando a formação de fissuras

De acordo com a NBR 8800:2007 a fissuração da laje, causada por cisalhamento, na região adjacente à viga de aço, paralelamente a esta, deve ser controlada por armadura adicional, transversal à viga, a não ser que se demonstre que as armaduras necessárias para outros fins, devidamente ancoradas, sejam suficientes para esta finalidade. A referida armadura, denominada armadura de costura, deve ser espaçada uniformemente ao longo do comprimento L_m , distância entre as seções de momento máximo positivo e momento nulo nas regiões com momento positivo, ou entre as seções de momento máximo negativo e momento nulo nas regiões com momento nulo nas regiões com

A área da seção dessa armadura, A_s , não pode ser inferior a 0,2% da área da seção de cisalhamento do concreto por plano de cisalhamento (plano a-a na FIGURA 2.20) no caso de lajes maciças ou de lajes mistas com nervuras longitudinais ao perfil de aço e 0,1% no caso de lajes mistas com nervuras transversais, não sendo em nenhum caso inferior a 150 mm²/m. Deve-se ainda atender, para cada plano de cisalhamento longitudinal, tanto nas regiões de momentos positivos quanto nas de momentos negativos, à seguinte condição:

 $V_{Sd} \leq V_{Rd}$,

Onde:

$$V_{Sd} = \frac{\left(\sum_{Rd,m} \frac{b_1}{b_1 + b_2} - 0.85f_{cd}A_{blc} - A_{long}f_{yd}\right)}{L_m} \ge 0$$
(2.23)

$$V_{Rd} = 0.04\eta A_{cv} \frac{f_{ctk,inf}}{\gamma_c} + A_s f_{sd} + A_F f_{yFd} \le 0.2\eta A_{cv} f_{cd} + 0.6A_F f_{yFd}$$
(2.24)

Onde:

 $\sum Q_{Rd,m}$ é o somatório das resistências de cálculo individuais dos conectores de cisalhamento situados no trecho de comprimento L_m (se $\sum Q_{Rd,m}$ for maior que a resistência de cálculo necessária para interação total, usar esta no lugar de $\sum Q_{Rd,m}$;

 b_1 é a largura efetiva da laje no lado onde se analisa a resistência à fissuração longitudinal;

b₂ é a largura efetiva da laje no outro lado da viga mista;

A_{blc} é a área da seção transversal da região comprimida da laje de concreto entre o plano de cisalhamento considerado e a linha de centro da viga;

 A_{long} é a área da armadura longitudinal tracionada entre o plano de cisalhamento considerado e a linha de centro da viga,

 f_{yd} é a resistência de cálculo ao escoamento do aço;

 $f_{ctk,inf}$ é a resistência à tração inferior do concreto dada por $0,21f_{ck}^{2/3}$ sendo f_{ck} a resistência característica do concreto a compressão, dada em MPa;

 γ_c é o coeficiente de ponderação da resistência do concreto;

 $A_{\rm s}$ é a área da armadura transversal disponível na seção da laje considerada (corte aa da FIGURA 2.20), por unidade de comprimento da viga, incluindo qualquer armadura prevista para flexão da laje e armaduras transversais adicionais, $A_{\rm sa}$, desde que devidamente ancoradas além da seção considerada;

 f_{sd} é a resistência de cálculo ao escoamento do aço da armadura;

 A_F é a área da fôrma de aço incorporada no plano de cisalhamento, por unidade de comprimento, caso esta fôrma seja contínua sobre a viga e as nervuras estejam

dispostas perpendicularmente ao perfil de aço (nas demais situações, $A_F = 0$);

 f_{yFd} é a resistência de cálculo ao escoamento do aço da fôrma;

 η = 0,3+0,7($\rho_c/2400$) sendo ρ_c a massa específica do concreto, em quilograma por metro cúbico, não podendo ser tomado valor superior a 2400 kg/m³;

 A_{cv} é a área de cisalhamento do concreto no plano considerado, por unidade de comprimento da viga;

f_{cd} é a resistência de cálculo do concreto à compressão;

a) Laje maciça

2.2.5 Largura efetiva

Na análise de vigas mistas, assume-se que as deformações têm uma distribuição uniforme ao longo da largura da laje, porém isso não ocorre. Na FIGURA 2.21 está representada a variação das tensões normais ao longo da largura da laje, as tensões são máximas sobre as vigas e decrescem à medida que vão se distanciando.

FIGURA 2.21 - Distribuição de tensões na laje

Para que se possa calcular uma viga mista admitindo que as seções permaneçam planas após a flexão, é necessário que se calcule uma largura fictícia, b_{ef} , que, multiplicada pela tensão máxima, $\sigma_{máx}$, forneça a mesma resultante dada pela distribuição não uniforme das tensões. Essa largura fictícia é denominada largura efetiva.

Devido aos vários fatores que influenciam a determinação exata da largura efetiva da laje, as normas de dimensionamento fornecem expressões simplificadas.

Para o caso de vigas mistas biapoiadas a NBR 8800:2007 e a AISC: 2005 recomendam que a largura efetiva da mesa de concreto, de cada lado da linha de centro da viga, deve ser igual ao menor dos seguintes valores:

- 1/8 do vão da viga mista, considerado entre linhas de centro dos apoios;
- metade da distância entre a linha de centro da viga analisada e a linha de centro da viga adjacente;
- distância da linha de centro da viga à borda de uma laje em balanço.

No caso de vigas mistas contínuas e semicontínuas, as larguras efetivas podem ser determinadas como no caso das vigas mistas biapoiadas, tomando-se em lugar dos vãos da viga as distâncias entre pontos de momento nulo, FIGURA 2.22. Admite-se, simplificadamente, a adoção dos seguintes valores para tais distâncias:

Para região de momento fletor positivo:

- 4/5 da distância entre apoios, no caso de vãos extremos;
- 7/10 da distância entre apoios, no caso de vãos internos.
 Para região de momento fletor negativo:
- 1/4 da soma dos vãos adjacentes.

FIGURA 2.22 - Pontos de momento fletor nulo em viga contínua e semicontínua Fonte: Projeto de revisão da NBR 8800 (2007)

2.2.6 Dimensionamento de vigas mistas biapoiadas

O dimensionamento de vigas mistas esteve associado durante um longo período de tempo a uma análise elástica de tensões, na qual os valores extremos das tensões solicitantes eram comparados com valores admissíveis, ou seja, tensões resistentes reduzidas por um coeficiente de segurança (Método das Tensões Admissíveis). Em meados da década de 80, algumas normas começaram a adotar uma nova metodologia de cálculo denominada Método dos Estados Limites. Este novo procedimento estabelece condições de colapso da estrutura, baseado em critérios de resistência última ou instabilidade, citando-se a hipótese de plastificação da seção e através de critérios de utilização, determinado por um limite de deslocamento excessivo.

Os procedimentos para cálculo do momento resistente das vigas mistas são semelhantes nas normas brasileira, americana e européia.

Neste item são apresentadas as formulações normativas, segundo a NBR 8800:2007, utilizadas na determinação das tensões através do método elástico simplificado, utilizado para avaliar o comportamento da viga em situações de serviço onde as tensões no aço e no concreto estão abaixo do limite de proporcionalidade, e do método plástico, utilizado para se determinar o momento resistente último desta seção.

A norma brasileira apresenta seus procedimentos para cálculo de vigas mistas de acordo com a classe da seção de aço referente à flambagem local da alma (FLA), pois a mesa comprimida (mesa superior) é contida pela laje e, portanto, não sujeita à flambagem local (FLM).

Para seções com relação $h/t_w \leq 3,76\sqrt{E/f_y}$, pode ser admitida a plastificação total da seção mista. Esta análise é baseada em relações tensão-deformação do tipo rígido-plástico com deformações ilimitadas para o aço e o concreto desconsiderando a resistência do concreto à tração. Sendo assim, esta análise só se aplica aos casos onde não há problemas de instabilidade local ou global. De maneira geral, esta análise se divide em três casos, interação completa e linha neutra plástica na laje, interação completa e linha neutra plástica na viga de aço e interação parcial.

Para seções com relação $3,76\sqrt{E/f_y} < h/t_w \le 5,70\sqrt{E/f_y}$, o momento fletor resistente deve ser calculado em regime elástico e para $h/t_w > 5,70\sqrt{E/f_y}$ não se admite a consideração da ação mista.

2.3 ANÁLISE DE CONECTORES E VIGAS MISTAS CONSTITUÍDAS POR PERFIS DE AÇO FORMADOS A FRIO

A utilização de vigas mistas em estruturas formadas por perfis laminados e soldados já é bem difundida e várias são as normas que prescrevem sua forma de dimensionamento e limitações de uso. Tratando-se de perfis formados a frio, poucas informações existem a respeito de sua utilização em vigas mistas. Entretanto, observase que hoje esses perfis não são utilizados exclusivamente em estruturas de coberturas e galpões, mas também em sistemas de pisos, como, por exemplo, pisos industriais, pequenos edifícios residenciais e pequenas pontes.

Devido aos procedimentos normativos do sistema misto estarem restritos às estruturas de perfis soldados e laminados, tem-se observado que as estruturas de perfis formados a frio vêm sendo projetadas desprezando-se qualquer contribuição do concreto na resistência dos elementos, ou baseando-se em extrapolações e adaptações do que existe para estruturas mistas em perfis soldados e laminados. Dentre os poucos trabalhos sobre vigas mistas em perfis formados a frio, pode-se citar Malite (1993), Malite (1998), Hanaor (1999), Erdélyi e Dunai (2002), Oliveira (2001) e David (2003).

Em Malite (1993) foram realizados ensaios de cisalhamento direto e de vigas mistas simplesmente apoiadas submetidas à flexão simples. Foram ensaiados três tipos de conectores: cantoneira simples, cantoneira enrijecida e perfil U, todos em perfil formado a frio com duas espessuras de chapa, 2,66 mm e 4,76mm. As dimensões dos conectores estão apresentadas na FIGURA 2.23. A laje era maciça com resistência à compressão média de aproximadamente 30MPa.

FIGURA 2.23 - Conectores ensaiados em MALITE (1993)

Foram observados dois modos de ruptura nos ensaios de cisalhamento direto: ruptura do aço do conector junto à solda, para conectores com espessuras de 2,66mm, e ruptura no concreto, para espessura de 4,76mm, FIGURA 2.24. O comportamento dos três tipos de conectores, com a mesma espessura, foram semelhantes. Em relação às forças de ruptura, estas foram maiores que os valores obtidos pela expressão da NBR 8800:1986 destinada aos conectores em perfil U laminado.

FIGURA 2.24 - Falha no conector e falha no concreto. Fonte: MALITE (1993)

Malite (1998) propõem que a resistência dos conectores em perfil U formado a frio seja calculada com a mesma expressão descrita na norma Americana AISC:1993 para perfis U laminados.

Além dos ensaios de cisalhamento direto, em Malite (1993) foram realizados ensaios de vigas mistas em perfil I formado a frio, 2U 250x75x3,8, laje maciça e conector tipo cantoneira, também em perfil formado a frio. As variáveis foram: forma de carregamento, distribuído e concentrado, e grau de interação, completa e parcial.

Sob o ponto de vista estrutural, enquanto houve aderência entre o concreto e o aço ao longo da mesa superior do perfil não houve diferenças significativas de comportamento entre as vigas mistas com interação total e parcial. Após a perda desta aderência houve uma diminuição na rigidez à flexão nas vigas com interação parcial, como se pode ver na FIGURA 2.25.

Em todas as vigas mistas percebeu-se que os conectores passaram a ser solicitados após a perda de aderência entre os dois materiais, sendo este efeito de aderência desprezado no cálculo. De maneira geral concluiu-se que as vigas mistas constituídas de perfis formados a frio são viáveis sob o ponto de vista estrutural, não apresentando diferenças significativas de comportamento se comparadas às vigas mistas tradicionais, porém, recomenda-se uma investigação mais detalhada para avaliar a reduzida capacidade da rotação da viga de aço, o que conduz a uma situação de plastificação parcial no estado limite último.

FIGURA 2.25 - Gráfico força-deslocamento

Em Hanaor (2000) foram estudados vários tipos de conectores que fossem compatíveis com vigas em perfis formados a frio associados com lajes maciças, com forma de aço incorporada e com painéis pré-moldados.

Para as lajes maciças, os conectores utilizados foram perfis formados a frio, Ue 120x33x12x2, sendo fixados de duas maneiras: por solda ou quatro parafusos autoatarrachantes com 6mm de diâmetro.

Para as lajes com fôrma de aço incorporada o conector utilizado também foi o perfil U enrijecido, fixado por meio de quatro parafusos auto-atarrachantes que atravessavam a fôrma metálica.

Foram também realizados ensaios de vários tipos de conectores para a ligação da viga com os painéis pré-moldados. Estes conectores eram em forma de parafusos ou chumbadores, que eram colocados perfurando tanto a viga como o painel.

Os resultados destes ensaios confirmaram a eficiência desses conectores, não só em relação à sua resistência como também em relação ao modo de fixação. Na FIGURA 2.26 e FIGURA 2.27 são apresentados alguns conectores ensaiados em HANAOR (2000).

FIGURA 2.26 - Conectores tipo pinos utilizados em lajes com painéis pré-moldados. Fonte: Hanaor (2000)

FIGURA 2.27 - Conectores utilizados em perfil formado a frio fixados por parafusos e solda. Fonte: Hanaor (2000).

Em Oliveira (2001) foram realizados ensaios de cisalhamento direto em dois tipos de conectores, perfil U 50x25x3,00 e pino com cabeça utilizando-se rebite com rosca interna RIVKLE M 14 x 1,5 PO 300 e parafuso sextavado DIN 960 M14x1,5x100, classe 8.8, FIGURA 2.28.

As lajes dos ensaios de cisalhamento direto eram maciças, com resistência à compressão média de aproximadamente 30 MPa, armadas e não armadas.

Os modelos constituídos por conectores em perfis U formados a frio tiveram seu modo de ruptura iniciado por escoamento do conector seguido de ruptura do concreto. Este tipo de ruptura se deu segundo dois modos distintos:

• nos modelos sem armadura no concreto, o colapso ocorreu inicialmente com escoamento do aço do conector e posterior ruptura frágil do concreto.

 nos modelos em concreto armado, mesmo após o escoamento do conector, os mesmos absorveram carga até o aparecimento de fissuras nas lajes, posteriormente se deu o rompimento do concreto.

FIGURA 2.28 - Conector pino com cabeça utilizando-se rebite com rosca interna e parafuso sextavado. Fonte: Oliveira (2001) Em relação às forças de ruptura, estas foram maiores que os valores obtidos pela expressão da NBR 8800:1986 para o conector U laminado. Nos modelos constituídos por rebite com rosca interna, a falha se deu devido à ruptura frágil do concreto nos modelos sem armadura, ou devido ao esmagamento, sem rasgamento da chapa da viga, nos modelos com armadura.

Em Oliveira (2001) também foram realizados ensaios de vigas mista de aço e concreto, sendo as vigas em perfil formado a frio e as lajes em concreto pré-moldado (pré-laje) com capeamento *in loco*. As variáveis foram: forma de carregamento, distribuído e concentrado, e tipo da seção transversal, em forma de I e caixão. O conector utilizado foi o perfil U formado a frio, com as mesmas dimensões do ensaio de cisalhamento direto, sendo o grau de conexão total.

Em todas as vigas mistas o estado limite último foi caracterizado pela ocorrência, quase que instantânea, de fissuração longitudinal ao longo do modelo e da ruína do concreto por esmagamento junto a alguns conectores. Este tipo de ruptura pode ser explicado pela falta de continuidade da armadura positiva da pré-laje, que desempenharia também função de armadura de cisalhamento transversal à viga mista. Foi verificado que, quando próximo da ruptura, o capeamento da laje se desprendia da pré-laje. O modo de falha por flambagam lateral com torção observado no modelo de viga I de aço não ocorreu nos ensaios de vigas mistas, confirmando a hipótese de que o concreto confere travamento contínuo à mesa superior (comprimida) do perfil.

David (2003) realizou ensaios de cisalhamento direto em conectores tipo U em perfil formado a frio embutidos em laje de vigotas treliçadas pré-moldadas, tendo como variáveis a altura e a espessura do conector, além da resistência do concreto. Foram também realizados ensaios em quatro vigas, sendo uma metálica e três mistas. O objetivo dos ensaios das vigas foi estudar o comportamento de vigas mistas constituídas por perfis formados a frio e laje de vigotas treliçadas e compará-las com vigas mistas constituídas por laje maciça.

Os resultados mostraram que a espessura do conector é a variável que mais influencia a resistência da ligação, seguida pela altura do conector e pela resistência do concreto.

Dos ensaios das vigas mistas verificou-se que o tipo de laje, maciça ou treliçada, não afetou a resistência das vigas, visto que a linha neutra nos ensaios situava-se na capa de concreto. A ausência da armadura transversal posicionada na face inferior da laje nas vigas mistas com laje treliçada causou a formação de uma fissura longitudinal na face superior da laje, FIGURA 2.29.

FIGURA 2.29 - Fissura longitudinal nas vigas mistas com laje treliçada Fonte: DAVID (2003)

O deslizamento na interface foi um dos principais fatores que influenciou o comportamento das vigas mistas, sendo conseqüência da baixa rigidez dos conectores utilizados. As vigas apresentaram uma curvatura acentuada, o que resultou em elevadas flechas.

Foi observado também que não houve plastificação total da seção transversal de aço, porém as resistências das vigas mistas foram superiores às teóricas, calculadas pelo método plástico, visto que a região mais tracionada do perfil entrou em encruamento.

Erdélyi e Dunai (2002) realizaram ensaios de cisalhamento direto em corposde-prova constituídos por perfis C formados a frio, laje com forma de aço incorporada e conectores de cisalhamento constituídos por parafusos auto atarrachantes, FIGURA 2.30. As variáveis analisadas foram: posição da cabeça do parafuso, dentro da laje ou fora, número de parafusos e espessura da fôrma de aço.

FIGURA 2.30 - Alguns conectores ensaiados por Erdélyi e Dunai Fonte: Erdélyi e Dunai (2002)

Devido às características de cada conector, vários modos de ruptura ocorreram. Pela quantidade de ensaios não foi possível propor alguma expressão para cálculo da resistência, porém o estudo mostrou que eles são eficientes em pisos mistos leves podendo ser utilizados como conectores de cisalhamento. Dentre todos os conectores ensaiados os mais favoráveis foram os que apresentaram comportamento mais dúctil tendo como modo de falha a combinação de cisalhamento e tração do parafuso, sendo esses os modelos com parafusos com cabeças embutidas na laje e comprimento igual a 45 e 65 mm, e também com comprimento de 30 mm porém sendo dois parafusos e não um.

Diante do exposto, observa-se que, em relação às vigas mistas constituídas por perfis formados a frio, poucas informações estão disponíveis e as pesquisas são recentes. Existe, portanto, muitas dúvidas a respeito do comportamento de vigas mistas, como, por exemplo, o uso de lajes pré-moldadas, a taxa de armadura transversal adequada, tipos de conectores mais adequados e modelos de dimensionamento que consideram a rigidez do conector.

2.4 PERFIS FORMADOS A FRIO SUBMETIDOS À FLEXÃO SIMPLES

Segundo a própria definição presente na norma NBR 14762:2001, perfil estrutural de aço formado a frio é aquele obtido por dobramento, em prensa dobradeira, de lâminas recortadas de chapas ou tiras, ou por perfilagem, em mesas de roletes, a partir de bobinas laminadas a frio ou a quente, sendo ambas as operações realizadas com aço em temperatura ambiente.

Os perfis de aço formados a frio apresentam algumas características que os diferenciam dos perfis laminados e soldados.

A maneira como o perfil é fabricado, ou seja, o trabalho a frio, causa alterações nas características mecânicas do aço virgem como o aumento da resistência ao escoamento e da resistência à ruptura, diminuição da ductilidade e surgimento de tensões residuais. Esses efeitos são mais evidentes nas partes curvas dos perfis, nas quais o trabalho a frio é mais intenso.

Normalmente a espessura desses perfis são bem reduzidas, menores que 6,35mm. Sua grande vantagem está relacionada à diversidade geométrica e à eficiência estrutural, medida pela boa relação massa/resistência, porém, a elevada relação largura/espessura dos elementos planos pode provocar instabilidades.

O uso de barras formadas por perfis de paredes finas obriga a análise prévia da estabilidade desses elementos estruturais. Sempre que possível, pode-se recorrer a soluções analíticas diretas.

O dimensionamento prescrito em vários procedimentos normativos inicia-se pelo cálculo da largura efetiva dos elementos que compõem os perfis, ficando as flambagens localizadas já embutidas nesta verificação.

As barras submetidas à flexão simples devem ser dimensionadas quanto ao momento fletor e ao esforço cortante. O momento fletor resistente de cálculo, M_{rd} , deve ser tomado como o menor valor calculado considerando o início do escoamento da seção efetiva, a flambagem lateral com torção e a flambagem por distorção da seção transversal.

O momento fletor resistente considerando o escoamento da seção efetiva é dado por:

$$M_{Rd} = W_{ef} f_{y} / \gamma \tag{2.25}$$

Onde:

γ é o coeficiente de ponderação da resistência;

 W_{ef} é o módulo de resistência elástico da seção efetiva calculado com base nas larguras efetivas dos elementos;

 f_{γ} é a resistência ao escoamento do aço.

O momento fletor resistente de flambagem lateral com torção, tomando-se um trecho compreendido entre seções contidas lateralmente, deve ser calculado por:

$$M_{Rd} = \rho_{FLT} W_{c,ef} f_{V} \tag{2.26}$$

Onde:

 ρ_{FLT} é o fator de redução associado à flambagem lateral com torção,

 $W_{c,ef}$ é o módulo de resistência elástico da seção efetiva, em relação à fibra comprimida, calculado com base nas larguras efetivas dos elementos;

Vigas caixão têm alta rigidez à torção quando comparadas à vigas I, U e Z. Segundo Winter apud Yu (2000), as vigas caixão com relação comprimento da viga e largura entre almas menor à 100 não são afetadas pela flambagem lateral com torção.

Para seções transversais susceptíveis à flambagem distorcional o momento distorcional, M_{dist} , é função do módulo de resistência elástico da seção bruta em relação à fibra comprimida e o índice de esbestez reduzido devido a distorção, sendo o momento fletor resistente de cálculo igual à:

$$M_{Rd} = M_{dist} / \gamma \tag{2.27}$$

Os perfis formados à frio quando associados à laje, formando uma viga mista, provavelmente não estarão sujeitos aos fenômenos de instabilidade aqui descritos, podendo apresentarem reserva de resistência inelástica, como já observado por Malite (1993) e David (2003).

A reserva de resistência inelástica em perfis formado a frio é raramente considerada no dimensionamento, isso porque as relações largura/espessura dos perfis, normalmente, excedem ao valor limite para cálculo no regime plástico.

Pesquisas realizadas na Universidade de Cornell mostraram que a reserva de resistência inelástica de vigas em perfis formados a frio, devido à plastificação parcial da seção transversal e a redistribuição de momentos em vigas hiperestáticas, pode ser significante. Com devidos cuidados, essa reserva de resistência pode ser utilizada para se alcançar dimensionamentos mais econômicos, Yu (2000).

A norma americana para dimensionamento de perfis formados a frio AISI:2001 permite calcular o momento resistente, M_R , considerando a reserva de resistência quando as seguintes condições são satisfeitas:

- o perfil não pode estar sujeito à instabilidade torcional, lateral ou por flexo torção;

- o efeito do trabalho a frio não deve ser considerado;

- a relação entre a altura da parte comprimida da alma e a sua espessura não deve exceder λ_1 , eq. (2.33);

- a força cisalhante não deve exceder 60% da área da alma (isso para LRFD),

- o ângulo entre qualquer alma e a vertical não deve excede 30°.

O momento resistente, M_R, não deve, exceder o valor da eq.(2.28) ou causar uma deformação específica máxima de compressão, ε_{cu} , igual à deformação específica de escoamento, ε_{y} , multiplicada por um fator de deformação, eq.(2.29), não havendo limites para a deformação de tração.

$$M_R = 1,25W_{ef}f_v$$
 (2.28)

$$\varepsilon_{cu} = C_{y} \varepsilon_{y} \tag{2.29}$$

Onde:

 W_{ef} é o módulo de resistência elástico da seção efetiva, calculado com a fibra mais tracionada ou comprimida em f_y,

 f_y é a tensão de escoamento do aço,

 C_{ν} é o fator de deformação a compressão,

Através dos ensaios realizados em perfis cartola sob flexão pura, também na Universidade de Cornell, foram estabelecidos os seguintes valores para o fator de deformação à compressão:

a) Elementos comprimidos enrijecidos sem enrijecedores intermediários:

- Quando $w/t \leq \lambda_1$

$$C_y = 3$$
 (2.30)

- Quando
$$\lambda_1 < w/t < \lambda_2$$

 $C_y = 3 - 2[(w/! - \lambda_1)/(\lambda_2 - \lambda_1)]$ (2.31)

- Quando
$$w/t \ge \lambda_2$$

$$C_y = 1$$
 (2.32)

Onde:

$$\lambda_1 = 1, 11/(f_v/E)^{0.5} \tag{2.33}$$

$$\lambda_2 = 1,28/(f_y/E)^{0.5} \tag{2.34}$$

b) Elementos comprimidos não enrijecidos:

$$C_y = 1$$
 (2.35)

c) Elementos comprimidos com enrijecidos múltiplos e elementos com enrijecidores de borda:

$$C_y = 1$$
 (2.36)

Com base na máxima deformação de compressão, a linha neutra pode ser localizada pela eq. (2.37) e o momento resistente determinado pela eq. (2.38).

$$\int \sigma \, dA = 0 \tag{2.37}$$

$$\int \sigma_y dA = M_R \tag{2.38}$$

Onde σ é a tensão na seção transversal.

2.5 LAJE DE VIGOTAS PRÉ-MOLDADAS TRELIÇADAS

2.5.1 Contexto nacional dos tipos de lajes utilizadas em estruturas metálicas

O sistema de viga mista pode interagir com vários tipos de lajes que variam de acordo com a preferência do projetista, a economia, a rapidez, a viabilidade, entre outros fatores. As variedades de lajes têm gerado pesquisas com o intuído de se ter mais conhecimento sobre seu comportamento estrutural, incluindo a interação destas com o restante da estrutura.

Em estruturas metálicas são utilizados, normalmente, três tipos de lajes: lajes com forma de aço incorporada, lajes maciças moldadas in loco ou lajes com painéis pré-fabricados.

As lajes com formas de aço incorporadas têm grandes vantagens em relação às lajes maciças, pois, não há necessidade da utilização de formas de madeira como também de escoramento, porém devido à questão econômica, essa laje tem sido utilizada no Brasil apenas em obras de grande porte, sendo inviável para pequenas obras.

Ainda no contexto nacional, as lajes nervuradas com vigotas pré-moldadas, preenchidas com EPS (poliestireno expandido, conhecido como ispor) ou blocos cerâmicos, têm sido amplamente empregadas em estruturas metálicas, FIGURA 2.31.

FIGURA 2.31 - Execução de uma laje com vigotas pré-moladas em um edifício em estrutura metálica

Neste tipo de laje o concreto abaixo da linha neutra é eliminado, reduzindo o peso próprio e proporcionando um melhor aproveitamento da armadura e do concreto. A resistência à tração é concentrada nas nervuras, e os materiais de enchimento têm como função única substituir o concreto, sem colaborar na resistência.

Essas reduções propiciam uma economia de materiais, de mão-de-obra e de formas, aumentando assim a viabilidade do sistema construtivo.
Em contradição às vantagens, no Brasil, essas lajes são produzidas por empresas que nem sempre têm capacitação técnica suficiente para projetar, produzir os elementos e prestar assistência aos construtores. Aliado a isso, os estudos teóricos e experimentais são limitados, resultando num pequeno número de trabalhos técnicos.

Esses fatores comprometem a segurança da estrutura, propiciando problemas estruturais usualmente observados em obras, tais como flechas excessivas, fissurações, e desabamentos.

2.5.2 Laje com nervura pré-moldada do tipo treliçada

As nervuras pré-moldadas podem ser de concreto armado, concreto protendido e vigotas treliçadas, FIGURA 2.32.

a) Concreto armado b) Concreto protendido c) Vigotas treliçadas FIGURA 2.32 - Tipos de nervuras pré-moldadas

A armação treliçada das vigotas treliçadas é uma estrutura formada por sistema de eletrofusão, de modo a formar duas treliças unidas pelo vértice. Essa armação treliçada é solidarizada a uma placa retangular de concreto que envolve as barras inferiores da treliça, que irão compor a armadura da face tracionada, FIGURA 2.33.

FIGURA 2.33 - Seção transversal da vigota treliçada

Caso as barras inferiores da treliça não sejam suficientes para resistir aos esforços de tração, pode-se adicionar armadura na placa de concreto. Esta armadura é denominada armadura adicional e pode ser composta do mesmo tipo de aço utilizado na treliça, fios de aço CA-60, ou ainda de barras de aço CA-50

De acordo com a disposição das vigotas treliçadas, essas lajes podem ser classificadas como lajes unidirecionais, FIGURA 2.34, ou bidirecionais, FIGURA 2.35. As unidirecionais possuem nervuras em uma única direção e as bidirecionais possuem nervuras resistentes em duas direções ortogonais entre si.

Na montagem ou execução da laje, as vigotas são colocadas espaçadamente, sendo que o enchimento desses espaços é feito por elementos leves, normalmente o EPS ou lajotas cerâmicas.

Esses elementos de preenchimento têm como função substituir parte do concreto da região tracionada das lajes, bem como servir de forma para o concreto moldado in loco.

FIGURA 2.34 - Laje treliçada unidirecional

FIGURA 2.35 - Laje treliçada bidirecional

Além da armadura da treliça são dispostas também armaduras de distribuição em forma de malha na face superior da laje e armaduras negativas na face superior da laje sobre as nervuras.

A armadura de distribuição tem por objetivo promover um comportamento conjunto mais efetivo da laje com a estrutura; reduzir os efeitos da retração diferencial entre o concreto moldado no local e o concreto pré-moldado; reduzir a abertura de fissuras devido à retração e aos efeitos térmicos; propiciar melhor distribuição transversal de cargas localizadas e propiciar um comportamento mais efetivo de diafragma, na transferência de ações horizontais.

A armadura negativa faz a ligação entre lajes e vigas proporcionando rigidez, combatendo as fissuras, e nos casos de engaste, combatendo as tensões de tração oriundas da flexão gerada por momentos fletores negativos, o que não ocorre nos apoios simples.

Para dar maior estabilidade lateral às vigotas, travando o painel da laje e aumentando assim a rigidez do conjunto, são utilizadas nervuras de travamento. Em lajes unidirecionais, as nervuras de travamento são colocadas na direção perpendicular às nervuras principais, quando o vão teórico for superior a 4 m, exigindo no mínimo duas nervuras se esse vão ultrapassar 6 m. Essas nervuras também são indicadas sempre que houver cargas concentradas a distribuir entre as nervuras principais.

Em casos onde o esforço cortante for elevado, e o sinusóide não for suficiente para resistir a esse esforço, devem-se utilizar estribos adicionais.

A armadura de distribuição, armadura negativa, nervura de travamento e estribos adicionais estão ilustrados na FIGURA 2.36.

Para solidarizar todos esses elementos, dando-lhes função estrutural, o concreto moldado in loco é colocado sobre as treliças e o EPS, não só preenchendo os espaços como também formando a capa de concreto que servirá como mesa de compressão.

Em geral os comprimentos das treliças são padronizados em 8, 10 e 12 m e com altura variando de 80 a 250 mm. A armação treliçada pode ser classificada mediante um código correspondendo à altura da treliça (H), à bitola da armadura do banzo superior (BS), das diagonais (D) e do banzo inferior (BI). Na TABELA 2.4 estão mostradas as dimensões usuais das armaduras treliçadas.

Designação Gerdau	Kg/m	Altura (cm)	Banzo superior (mm)	Diagnonal (mm)	Banzo inferior (mm)
TG 8 L	0,735	8	6	4,2	4,2
TG 8 M	0,821	8	6	4,2	5
TG 12 M	0,886	12	6	4,2	5
TG 12 R	1,016	12	6	4,2	6
TG 16 L	1,032	16	6	4,2	5
TG 16 M	1,084	16	6	4,2	6
TG 16 R	1.168	16	7	4,2	6
TG 20 L	1,111	20	7	4,2	5
TG 20 R	1,446	20	7	5	6
TG 25 L	1,602	25	7	5	6
TG 25 R	1,855	25	8	5	7

TABELA 2.4 - Treliças usuais

Fonte: Catálogo Gerdau

As armaduras podem ser classificadas mediante outros códigos, sendo característico de cada empresa que as fabricam.

Os parâmetros principais que definem o projeto da laje são, FIGURA 2.37:

- Vão a ser vencido;
- Sobrecarga (carga/área);
- Cargas lineares ou pontuais (ex: paredes de alvenaria);
- Altura total da laje (h);
- Espessura da capa de concreto (h_c);
- Resistência característica à compressão do concreto (f_{ck});
- Intereixo de nervuras (i);
- Largura da nervura (b_v);
- Tipo de material de enchimento;
- Altura da vigota treliçada (h_e);

FIGURA 2.37 - Dimensões principais da seção transversal da laje treliçada

Pode-se arbitrar a altura total da laje a ser usada fixando o vão e o valor da sobrecarga, sendo esse valor tabelado e obtido a partir de manuais de dimensionamento

A norma brasileira de dimensionamento de concreto armado NBR 6118:2000 impõe algumas restrições para o cálculo das lajes nervuradas:

- A espessura da mesa, quando não houver tubulações horizontais embutidas, deve ser maior que ou igual a 1/15 da distância entre nervuras, e não menor que 3 cm.

- O valor mínimo absoluto deve ser 4 cm quando existirem tubulações embutidas com diâmetro máximo de 12,5 mm.

- A largura das nervuras não deve ser inferior a 5 cm.

- Não é permitido o uso de armadura de compressão em nervuras de espessura inferior a 8 cm.

 Para lajes com espaçamento entre eixos de nervuras menor ou igual a 60 cm, pode ser dispensada a verificação da flexão da mesa, e para a verificação do cisalhamento da região das nervuras permite-se a consideração dos critérios de laje maciça;

 Para lajes com espaçamento entre eixos de nervuras entre 60 cm e 110 cm, exige-se a verificação da flexão da mesa e as nervuras devem ser verificadas ao cisalhamento como vigas;

Para lajes nervuradas com espaçamento entre eixos de nervuras maiores que
 110 cm, a mesa deve ser projetada como laje maciça, apoiada sobre grelha de vigas,
 respeitando-se os seus limites mínimos de espessura.

- Nas lajes nervuradas atuando numa só direção é importante que existam nervuras transversais convenientemente distribuídas quando existirem cargas concentradas. Isso promove uma suavização da variação das flechas ao longo da direção transversal às nervuras principais e diminui os danos na interface entre elementos de concreto e materiais inertes, decorrentes de variações volumétricas diversas.

2.5.3 Ligação da laje com vigota treliçada ao apoio

As ligações em estruturas pré-moldadas devem atender a diferentes critérios de projeto e de desempenho. A função principal das ligações é a transferência das forças entre as interfaces dos elementos pré-moldados, de forma que os elementos pré-moldados interajam entre si como um único sistema estrutural. Em pisos, as ligações existentes estão nos apoios, nas juntas longitudinais, e nas laterais nas bordas não apoiadas dos pisos, sendo que os principais objetivos das ligações nos apoios são:

• Conectar os elementos com a estrutura de apoio;

Transferir as forças de tração para os sistemas de estabilização;

• Estabelecer integridade estrutural e tornar possível a ação de diafragma e distribuição das ações horizontais;

• Acomodar os efeitos da fluência, da retração, das mudanças de temperatura e dos recalques diferenciais.

Segundo El Debs (2000) no detalhamento da armadura longitudinal da vigota treliçada deve-se dedicar especial atenção à ancoragem das armaduras nos apoios, principalmente nos apoios externos. Na falta de estudos e resultados experimentais, devem em princípio, serem atendidas as indicações das correspondentes estruturas moldadas no local.

Ainda segundo El Debs (2000), para possibilitar melhores condições de ancoragem da armadura, pode-se tornar maciça a laje junto ao apoio, com a retirada do material de enchimento ou colocar armadura adicional transpassando a armadura longitudinal.

A norma espanhola EF-96:1997, Instruções para o projeto e a execução de lajes unidirecionais de concreto armado e concreto protendido, apresenta três tipos de ligações entre as vigotas e os apoios, sendo elas:

a) Por aderência

Nesta ligação a vigota (com ou sem armação treliçada) penetra no interior do concreto da viga de apoio, como ilustra FIGURA 2.38. Essa ligação se dá pela aderência entre esses elementos.

a) Vigota em viga de extremidade

b) Vigota em viga interna

FIGURA 2.38 - Ligação por aderência. Fonte: EF-96:1997 Neste caso a vigota deve penetrar na viga de apoio, no mínimo, uma distância I_1 , dada por:

$$I_{1} = \frac{V_{d}s}{20pf_{cv}} > 10cm$$
(2.39)

$$f_{cv} = 0.13\sqrt{f_{cd}}$$
 (2.40)

Onde:

 V_d é o esforço cortante de cálculo em kN/m;

s é o intereixo, em m;

p é o perímetro da vigota em contato com o concreto lançado na obra, em m;

 f_{cv} é a tensão de cisalhamento convencional, referente ao concreto de preechimento, em MPa;

 f_{cd} é a resistência a compressão do concreto em MPa.

b) Por prolongamento

A armadura inferior da vigota deve prolongar-se com um comprimento I para o interior do apoio. Os valores mínimos para esses prolongamentos levam em consideração o tipo de apoio:

 no caso de apoios externos, o prolongamento mínimo deve ser igual ao comprimento de ancoragem necessário para absorver uma tração de igual valor ao esforço cortante,

 no caso de apoios internos, submetidos à momentos negativos, o prolongamento mínimo deve ser igual à metade do comprimento de ancoragem necessário para absorver uma tração de igual valor ao esforço cortante.

A prolongamento se medirá a partir da face do apoio, no caso de apoios diretos, e do estribo da viga, nos casos de apoios indiretos, devendo ser maior que 10 cm nos apoios externos e maior que 6 cm, nos apoios internos.

Se vigota, armação treliçada ou armadura transversal (estribos), esta chegará pelo menos até a face do apoio, no caso de apoio direto ou até o estribo da viga plana ou mista, se o apoio é indireto.

c) Por sobreposição

No caso de vigotas cuja armadura longitudinal não penetra nos apoios, deverá ser colocada uma armadura adicional capaz de absorver os esforços definidos na ligação por prolongamento. Essa armadura deverá penetrar no interior do apoio com a mesma distância I definida no item b, e no interior da vigota, com uma distância I₁, maior que ou igual a I. A FIGURA 4.42 ilustra a ligação por prolongamento e por armadura adicional.

FIGURA 2.39 - Ligação por prolongamento e armadura adicional Fonte: EF-96:1997

CAPÍTULO

PROGRAMA EXPERIMENTAL

3.1 DESCRIÇÃO DOS ENSAIOS

Foram realizados, no Laboratório de Estruturas da Escola de Engenharia de São Carlos - USP, ensaios de cisalhamento direto em conectores U formados a frio e ensaios em vigas mistas de aço e concreto, constituídas de perfis metálicos formados a frio e laje pré-moldada com vigotas treliçadas.

A nomenclatura dos corpos-de-prova, destinados aos ensaios de cisalhamento direto, leva em consideração as variáveis analisadas e tem por função facilitar a comparação dos resultados.

As variáveis dos ensaios de cisalhamento direto, e a identificação dessas variáveis na nomenclatura dos corpos-de-prova estão descritas na TABELA 3.1.

	А	- conector com altura igual a 75 mm - laje com altura igual a 100 mm
Altura do conector e da laje	В	- conector com altura igual a 100 mm - laje com altura igual a 120 mm
	С	- conector com altura igual a 125 mm - laje com altura igual a 160 mm
	22	espessura nominal igual à 2,25 mm
Espessura do conector	3	espessura nominal igual à 3,75 mm
	4	espessura nominal igual à 4,75 mm

TABELA 3.1 – Variáveis e nomenclatura

Quando houver ensaios repetidos estes serão indicados por -1 e -2

Na TABELA 3.2 estão descritos todos os corpos-de-prova dos ensaios de cisalhamento direto:

Corpos de prova	Conector (mm)	Espessura da laje (mm)	
CP A22*	U 75x50x2,25	120	
CP A22-1	U 75x50x2,25	120	75
CP A22-2	U 75x50x2,25	120	
CP A3	U 75x50x3,75	120	
CP A3**	U 75x50x3,75	120	
CP A4*	U 75x50x4,75	120	
CP A4-1	U 75x50x4,75	120	
CP A4-2	U 75x50x4,75	120	100
CP B22	U 100x50x2,25	140	
CP B3*	U 100x50x3,75	140	
CP B3	U 100x50x3,75	140	
CP B3**	U 100x50x3,75	140	
CP B4	U 100x50x4,75	140	
CP C22	U 125x50x2,25	160	12
CP C3	U 125x50x3,75	160	
CP C3**	U 125x50x3,75	160	
CP C4	U 125x50x4,75	160	
* Carregamento r	nonotônico		

TABELA 3.2 -	Corpos-de-	prova para	ensaios d	e cisalhamento	direto
		prova para	chibaloo a	c olouniunionto	anoto

** Presença de armadura transversal adicional

Comprimento do conector igual a 100mm

As variáveis dos ensaios das vigas foram: grau de interação, posição dos conectores em relação às vigotas, taxa e posição da armadura transversal, altura e espessura do conector. As características dos modelos ensaiados estão resumidamente descritas na TABELA 3.3

TABELA 3.3 - Descrição das vigas

Vigas	Perfil da viga (mm)	Conector (mm)	Grau de interação	Posição do conector	Posição da armadura adicional transversal			
VM1	2Ue 200x75x25x4,75	U 75x50x2,25	0,31	Vigotas	Sem			
VM2	2Ue 200x75x25x4,75	U 75x50x2,25	0,31	Vigotas	Vigotas			
VM3	2Ue 200x75x25x2,25	U 75x50x3,75	0,85	Vigotas	Vigotas			
VM4	2Ue 200x75x25x2,25	U 75x50x3,75	0,86	EPS	Vigotas			
VM5	2Ue 200x75x25x3,75	U 100x50x3,75	0,82	Vigotas	Sem			
VM6	2Ue 200x75x25x3,75	U 100x50x3,75	0,76	Vigotas	Vigotas			
VM7	2Ue 200x75x25x3,75	U 100x50x3,75	0,77	EPS	Vigotas			
VM8	2Ue 200x75x25x3,75	U 100x50x3,75	0,79	Vigotas	Vigotas			
V	2Ue 200x75x25x3,75	-	-	-	-			
	VM8 : Viga metálica em seção transversal I, as demais vigas em seção caixão							

3.2 CARACTERIZAÇÃO DOS MATERIAIS

3.2.1 Concreto

Para determinação das propriedades mecânicas do concreto foram moldados corpos-de-prova cilíndricos de dimensões 15 x 30 cm, referentes a cada laje, sendo três para ensaio de resistência à tração por compressão diametral e três para ensaio de módulo de elasticidade e resistência à compressão. Os CPs cilíndricos foram moldados e curados segundo as especificações da NBR 5738:1984, e para o ensaio foi utilizada a máquina de ensaios *ELE Autotest 2000*.

O cimento empregado foi de alta resistência inicial (ARI), e o traço do concreto em massa, igual a 1:2,7:3,7:0,6 com consumo de cimento de 313 kg/m³.

3.2.2 Aço

Os perfis empregados foram fabricados com o aço de qualidade estrutural, USI-SAC 300. Suas propriedades mecânicas foram determinadas por meio de ensaios de tração direta, seguindo as prescrições da ASTM A 370 (1989). Foram retirados três corpos-de-prova, para cada espessura empregada, dos seguintes locais:

Aço virgem;

-Perfis das vigas, nas posições ilustradas a FIGURA 3.1;

-Perfil U 100x50x4,75 como ilustra a FIGURA 3.2.

FIGURA 3.2 - Posição dos corpos-de-prova retirados das vigas

3.3 DETALHAMENTO DOS CORPOS-DE-PROVA PARA O ENSAIO DE CISALHAMENTO DIRETO

3.3.1 Dimensões

Os corpos-de-prova dos ensaios de cisalhamento foram formados por um perfil central em seção caixão, 2Ue 250x75x25x4,75, conectores U e lajes pré-moldadas com vigotas treliçadas. As figuras 3.3 e 3.4 ilustram a parte metálica do corpo-de-prova.

A laje possuía 900 mm de largura e 800mm de altura, sendo formada por seis vigotas treliçadas e preenchimento em placas de EPS. A mesa de compressão possuía 40 mm de espessura e nela era disposta a armadura de distribuição, barras de 5mm, distribuídas a cada 165mm. As dimensões das lajes estão apresentadas na FIGURA 3.5.

FIGURA 3.5 - Dimensões da laje dos ensaios de cisalhamento direto

Os corpos-de-prova, CP A3**, CP B3** e CP C3**, possuíam armadura transversal (\ophi8mm), posicionadas próximas ao conector como ilustra a FIGURA 3.6.

FIGURA 3.6 - Detalhe dos corpos-de-prova sem e com armadura transversal

3.3.2 Concretagem

A concretagem de cada corpo-de-prova foi feita em duas etapas. Primeiro foi concretada uma laje e após 24 horas a segunda laje.

Para analisar apenas a eficiência do conector, a superfície do perfil em contato com o concreto foi engraxada, eliminando-se portanto a aderência e força de atrito. A FIGURA 3.7 ilustra a seqüência de concretagem.

b) Segunda laje

FIGURA 3.7 - Sequência da concretagem dos corpos-de-prova de cisalhamento direto

Dois dias antes do ensaio, a base da laje foi regularizada com argamassa. Para essa regularização, foram utilizadas fôrmas de madeira com largura e comprimento um pouco maior que as dimensões da base das lajes e altura interna igual a 15 mm, como pode ser visto na FIGURA 3.8.

FIGURA 3.8 - Regularização da base das lajes

3.3.3 Instrumentação e aplicação do carregamento

O deslocamento relativo entre o perfil metálico e as lajes e a separação horizontal entre os mesmos foram medidas por meio de transdutores de deslocamento fixados na região próxima aos conectores.

Foram também medidas as deformações nos conectores dos corpos-de-prova CP B3* e CP B3, sendo para isso instrumentados com quatro extensômetros elétricos de resistência, marca KYOWA. A FIGURA 3.9 ilustra a instrumentação utilizada.

As peças foram ensaiadas em posição normalizada, conforme o EUROCÓDIGO 4:2001 prescreve. O carregamento foi aplicado por uma máquina universal de ensaio, servo-hidráulica, marca INSTRON, com controle de deslocamento, mediante dois procedimentos: carregamento monotônico até o colapso dos corpos-de-prova CP A22* e CP A4*, e carregamento com fase cíclica (25 ciclos com força entre 5% e 40% da força máxima prevista) e em seguida carregamento monotônico até o colapso, para os demais corpos-de-prova. A FIGURA 3.10 ilustra o ensaio de um corpo-de-prova.

FIGURA 3.10 – Ensaio de cisalhamento direto

3.4 DETALHAMENTO DAS VIGAS

Foram ensaiadas oito vigas mistas aço-concreto e uma viga de aço isolada, como referência, conforme descrito na TABELA 3.3

3.4.1 Dimensões

As vigas mistas foram constituídas por perfil duplo Ue formado a frio, laje prémoldada constituída por vigotas treliçadas e preenchimento de EPS e conectores em perfil U formado a frio

Os perfis da viga metálica eram Ue 250x75x25x___, com espessura variável, e comprimento total igual a 3.650mm. Na região dos apoios foram soldados enrijecedores, com a função de evitar a ocorrência de efeitos localizados na alma e na mesa.

As lajes possuíam 900mm de largura e 120mm de altura. As vigotas treliçadas foram iguais às do ensaio de cisalhamento direto, com altura igual a 80mm. As figuras 3.11 à 3.19 ilustram as dimensões das vigas relacionadas na TABELA 3.3, e o detalhe da armadura transversal adicional.

FIGURA 3.11 - Posição dos conectores nas oito vigas mistas

FIGURA 3.13 - Posição das vigotas treliçadas nas vigas mistas VM4 e VM7

2Ue 200x75x25x4,75 para VM1 e VM2 2Ue 200x75x25x2,25 para VM3 e VM4 2Ue 200x75x25x3,75 para VM5, VM6 e VM7

2Ue 200x75x25x3,75 para VM8

FIGURA 3.15 - Seção Transversal da viga VM8

FIGURA 3.16 - Lajes apenas com armadura de distribuição nas vigas mistas VM1 e VM5

FIGURA 3.17 - Posição das armaduras nas vigas mistas VM4 e VM7

FIGURA 3.18 - Posição das armaduras nas vigas VM2, VM3, VM6, VM8

FIGURA 3.19 - Posição da armadura transversal adicional

3.4.2 Concretagem

As lajes foram concretadas duas a duas e, diferentemente dos ensaios de cisalhamento direto, a superfície do perfil em contato com o concreto não foi engraxada. A FIGURA 3.20 ilustra as fôrmas utilizadas e a concretagem.

FIGURA 3.20 – Fôrmas e concretagem das vigas mistas

3.4.3 Instrumentação e aplicação do carregamento

As vigas foram apoiadas em dois aparelhos de apoio, um móvel e outro fixo, de forma a ficarem bi-apoiadas, resultando 3.500mm entre eixos.

Nos apoios foram colocadas contenções laterais simulando um vínculo de garfo e garantindo a estabilidade da viga.

Foram aplicadas duas forças concentradas por meio de um atuador servohidráulico, com capacidade 500 kN.

A instrumentação utilizada teve como função medir deformações específicas, deslocamento vertical e deslizamento na interface entre o perfil e a laje. Para isso foram utilizados extensômetros elétricos de resistência, uniaxiais e rosetas, e transdutores de deslocamento.

Os extensômetros uniaxiais foram posicionados na seção transversal a meio vão, tanto no perfil como na laje.

As rosetas foram posicionadas a meia altura da alma do perfil, do lado direito e esquerdo, a 320mm da extremidade do apoio fixo.

Os transdutores de deslocamento foram colocados na parte inferior das vigas, próximos à região dos conectores.

A instrumentação e aplicação do carregamento estão indicadas nas figuras 3.21 e 3.22.

FIGURA 3.21 - Instrumentação e aplicação do carregamento

a) Apoio móvel

c) Extensômetros e defletômetros

e) Sistema de aquisição de dados

b) Apoio fixo

d) Roseta e defletômetro

f) Contenção lateral no apoio

FIGURA 3.22 – Detalhes dos ensaios das vigas

CAPÍTULO

MODELAGEM NUMÉRICA

No presente trabalho foram desenvolvidos modelos numéricos tridimensionais, com consideração da não linearidade física e geométrica, correspondentes às vigas ensaiadas, descritas no Capítulo 3. A simulação numérica foi realizada por meio do código de cálculo ANSYS.

A interface entre a laje e o perfil foi simulada por meio de três estratégias:

Estratégia 1: nós da interface acoplados em todas as direções;

• Estratégia 2: conectores modelados com elementos de casca juntamente com o par de contato,

• Estratégia 3: conectores simulados como molas e os nós da interface acoplados na direção vertical e transversal ao eixo da viga.

O objetivo da modelagem foi propor uma estratégia que representasse bem o comportamento das vigas ensaiadas, sendo possível assim, avaliar seu comportamento em regiões não instrumentadas.

4.1 ELEMENTOS FINITOS UTILIZADOS

Os modelos numéricos propostos foram elaborados a partir de seis tipos de elementos finitos disponibilizados na biblioteca interna do código de cálculo ANSYS, os quais são apresentados a seguir.

4.1.1 Elemento Solid 65

O elemento concreto armado tridimensional *Solid* 65 foi utilizado para a discretização da laje de concreto. Este elemento é constituído por oito nós e cada nó possui três graus de liberdade, no caso, translações em x, y e z, FIGURA 4.1.

O Solid 65 permite simular fissuração na tração (nas três direções ortogonais) e esmagamento na compressão, bem como um comportamento com não-linearidade física.

Possibilita também a inclusão das barras de armadura na forma de taxas, denominada armadura dispersa, as quais são resistentes apenas a esforços de tração e de compressão. No entanto, caso seja de interesse, o elemento *Solid 65* permite ainda a introdução de barras de armadura na forma discreta, procedimento adotado neste trabalho.

FIGURA 4.1 - Elemento Solid 65 Fonte: Manual do ANSYS

4.1.2 Elemento Shell 181

O elemento *Shell 181* foi utilizado para discretizar o perfil de aço e os conectores. Trata-se de um elemento plano, com quatro nós e seis graus de liberdade por nó, três translações e três rotações, FIGURA 4.2.

O elemento em questão permite a consideração de não-linearidade do material, além de outras características não utilizadas nesta análise.

FIGURA 4.2 - Elemento Shell 181 Fonte: Manual do ANSYS

4.1.3 Elemento Link 8

As barras de armaduras dispostas na laje de concreto são discretizadas com o elemento barra tridimensional *Link 8*, o qual é constituído por dois nós (I e J), FIGURA 4.3, um em cada extremidade, em que cada nó possui três graus de liberdade, referentes às translações segundo x, y e z. Vale ressaltar que o elemento em questão não permite a consideração de esforços de flexão. No entanto, o mesmo elemento disponibiliza ao usuário a possibilidade de se admitir a ocorrência de deformação plástica.

FIGURA 4.3 - Elemento Link 8 Fonte: Manual do ANSYS

4.1.4 Target 170 e Contact 173

A consideração do contato entre a superfície do perfil e da laje, foi feita através da associação dos elementos *Target 170*, superfície alvo, e *Contact 173*, superfície de contato. A superfície alvo é aquela mais rígida, e a superfície de contato a mais deformável. Nas simulações considerou-se como superfície alvo a laje de concreto e como contato, o perfil metálico.

FIGURA 4.4 - Elementos *Target 170* e *Contact 173* Fonte: Manual do ANSYS

Esses elementos foram utilizados com contato do tipo superfície-superfície, capazes de simular a existência de pressão entre os elementos, quando há contato, e a separação entre os mesmo elementos, quando não há contato.

O par de contato permite ainda a consideração de atrito e coesão (adesão) entre as partes. As características geométricas dos elementos Contact 173 e Target 170 variam de acordo com o tipo de elemento sobre o qual eles são aplicados.

4.1.5 Combin 39

Uma das estratégias de modelagem foi substituir o conector por molas. Para isso foi utilizado o elemento *Combin39*. Esse elemento é unidirecional, com capacidade não-linear de força-deslocamento, tanto para translação como rotação.

4.2 MALHA, CONDIÇÕES DE CONTORNO E APLICAÇÃO DA SOLICITAÇÃO PARA CADA ESTRATÉGIA

Os modelos desenvolvidos foram constituídos pelos seguintes conjuntos de elementos: laje de concreto, viga de aço, conectores de cisalhamento, armadura, par de contato na interface laje-viga, blocos de EPS e molas.

Cada conjunto foi discretizado separadamente, porém de forma a coincidir os nós da interface, possibilitando o acoplamento entre tais conjuntos por meio destes nós. A FIGURA 4.5 ilustra os elementos empregados.

FIGURA 4.5 - Conjunto de elementos utilizados nas vigas mistas

Fez-se uso da simetria, aplicada aos nós pertencentes à seção central da viga mista, segundo o plano que contém esta mesma seção.

Nos nós correspondentes ao apoio foram restringidos todos os graus de liberdade exceto a translação em x e a rotação em z, com vistas a reproduzir um apoio do tipo móvel.

A solicitação foi aplicada na forma de pressão em alguns elementos da face superior da laje simulando o carregamento aplicado no ensaio.

4.2.1 Estratégia 1

Dentre as três estratégias, a estratégia 1 foi a mais simples, em que os nós da interface entre a laje e o perfil foram acoplados, permitindo os mesmos deslocamentos de translação nas direções x, y e z.

Essa estratégia impediu completamente o deslizamento longitudinal, transversal e a separação vertical entre a laje e o perfil. Com isso pôde-se avaliar principalmente a influência da ausência do deslizamento longitudinal no comportamento na viga mista.

A FIGURA 4.6 ilustra está estratégia, assim como as condições de contorno e aplicação do carregamento.

FIGURA 4.6 Estratégia 1: condições de contorno e carregamento

4.2.2 Estratégia 2

Os grupos de elementos finitos, como já mencionado, foram acoplados entre si por meio dos nós coincidentes, de acordo com os procedimentos descritos a seguir:

 Perfil e conectores: os nós da base de cada conector foram acoplados aos nós correspondentes da mesa superior do perfil, compatibilizando-se todos os graus de liberdade, o que incluiu as rotações e as translações. Laje e conectores: os nós dos conectores foram acoplados aos nós da laje, exceto os nós da base do conector, que já estavam acoplados aos nós do perfil. Os acoplamentos dos nós da laje e conectores se deu pela compatibilização das translações referentes aos eixos x, y e z.

• Perfil e laje: o contato existente entre laje de concreto e viga de aço foi estabelecido por meio dos elementos Contact 173, presente na mesa superior do perfil e Target 170, presente na face inferior da laje.

A FIGURA 4.7 ilustra a estratégia 2.

FIGURA 4.7 - Estratégia 2:condições de contorno, carregamento e detalhe do conector

A resposta das vigas mistas utilizando a estratégia 2 foi comparada aos resultados experimentais das vigas ensaiadas neste trabalho, bem como a vigas com interação total apresentadas em Malite (1993). As vigas ensaiadas por Malite (1993) foram denominadas VM-M1 e VM-M2.

4.2.3 Estratégia 3

Nessa estratégia os conectores foram retirados e nos dez nós da laje, correspondentes aos nós das extremidades da mesa inferior do conector, foram colocadas molas que ligavam a laje ao perfil e simulavam a rigidez do conector na direção longitudinal. A FIGURA 4.8 ilustra o detalhe da posição das molas em relação aos conectores.

Cada conector foi então substituído por dez molas. O comportamento, força *versus* deslizamento das molas foi obtido pelos ensaios de cisalhamento direto, porém o valor da força foi divido pelo número de molas de cada conector. As Figuras 4.9 e 4.10 ilustram as curvas força versus deslizamento das molas.

Nas demais direções, vertical e transversal, os nós da interface entre a laje e perfil foram acoplados.

FIGURA 4.8 – Posição das molas

FIGURA 4.9 - Curvas obtidas dos ensaios de cisalhamento direto

4.3 RELAÇÕES COSTITUTIVAS UTILIZADAS

O programa ANSYS possibilita, por meio de alguns elementos finitos, a consideração da não-linearidade dos materiais, com base em alguns critérios de resistência. Nos modelos numéricos estudados, para o aço do conector e do perfil adotou-se o comportamento elasto-plástico multilinear com encruamento isótropo. Já para o aço da armadura, considerou-se o comportamento elasto-plástico perfeito. Para o concreto foi adotado o modelo *concrete*, desabilitado para o esmagamento. As propriedades dos materiais foram as mesmas obtidas experimentalmente, exceto para a armadura.

4.3.1 Aço da armadura

O comportamento elasto-plástico perfeito adotado para a armadura é associado ao critério de von Mises, com base na comparação entre a tensão equivalente de Mises (σ_e) e a tensão de escoamento do aço (f_y). A FIGURA 4.11 ilustra as curvas tensão-deformação da armadura.

FIGURA 4.11 - Tensão versus deformação para o aço da armadura

4.3.2 Aço do perfil

O comportamento adotado para perfis, conectores e vigas, é também associado ao critério de von Mises, para a qual adotou-se uma curva multilinear, obtida experimentalmente.

Quando a tensão equivalente (σ_e) for menor que a tensão de escoamento (f_y), o comportamento do material terá correspondência com o trecho elástico-linear da relação tensão-deformação. No caso da tensão equivalente ser maior que ou igual à tensão de escoamento, o material desenvolverá deformações plásticas.

A FIGURA 4.12 ilustra as curvas tensão-deformação do aço para cada

espessura.

FIGURA 4.12 – Tensão versus deformação do aço dos perfis

4.3.3 Concreto

O comportamento do concreto à tração foi representado por meio do modelo *Concrete* disponibilizado pelo ANSYS, que tem como base o modelo de Willan-Warnke e permite simular a fissuração do concreto quando submetido a tensões de tração.

Os parâmetros necessários para utilização deste modelo são apresentados na TABELA 4.1.

TABELA 4.1	-	Parâmetros	do	modelo	Concrete	disp	onibilizado	pelo	ANS	YS
------------	---	------------	----	--------	----------	------	-------------	------	-----	----

Descrição dos Parâmetros
Coeficiente de transferência de cisalhamento para fissura aberta
Coeficiente de transferência de cisalhamento para fissura fechada
Resistência última uniaxial à tração (f _t)
Resistência última uniaxial à compressão (f _c)
Resistência última biaxial à compressão (f _{cb})
Estado de tensão hidrostática ambiente (σ_{ha})
Resistência última biaxial à compressão sob o estado de tensão hidrostático ambiente (f_1)
Resistência última uniaxial à compressão sob o estado de tensão hidrostático ambiente (f ₂)
Coeficiente multiplicador de rigidez para condição fissurada na tração

Com base em Canha (2004), foram adotados para os dois primeiros parâmetros da TABELA 4.1 os valores 0,9 e 0,95 respectivamente.

As resistências à compressão e tração uniaxial foram obtidas experimentalmente.

Os últimos cinco parâmetros foram omitidos, permitindo ao ANSYS adotar valores pré-estabelecidos para os mesmos. Maiores informações sobre o modelo *Concrete* podem ser encontradas no Apêndice B.

A resposta do concreto ao esmagamento, disponibilizada pelo modelo *Concrete,* foi desabilitada, estipulando-se para tanto neste modelo f_c igual a -1. Admitiu-se, nesse caso, o critério de plastificação de von Mises para o concreto sob compressão. Tal estratégia foi adotada em razão de instabilidades numéricas ocorridas quando da utilização do modelo *Concrete* de forma integral.

Apesar de ser um critério normalmente utilizado para materiais dúcteis, em Chen e Han (1988) cita-se que critérios como von Mises e Tresca são geralmente utilizados em análises preliminares em elementos finitos para o concreto sob tensões de compressão. Tal estratégia tem sido utilizada também em outros trabalhos como por exemplo, Leonel, Ribeiro e de Paula (2003), Queiroz, Vellasco e Nethercot (2005) e Kotinda (2006).

A curva tensão-deformação para o concreto foi feita com base nas equações (4.1) e (4.2) obtidas na NBR6118:2003, substituindo $0.85f_{cd}$ pelo valores experimentais das resistências médias à compressão do concreto (f_{cm}).

$$\sigma_{c} = f_{cm} \left[1 - \left(1 - \frac{\varepsilon_{c}}{0, 2\%} \right)^{2} \right] \text{ para } 0 \le \sigma_{c} \le 0, 2\%$$

$$(4.1)$$

$$\sigma_c = f_{cm} \text{ para } 0,2\% < \sigma_c \le 0,35\%$$
 (4.2)

A FIGURA 4.13 ilustra as curvas tensão-deformação do concreto referente às lajes das vigas mistas.

FIGURA 4.13 - Curvas tensão-deformação do concreto referente às lajes das vigas

4.4 CARACTERÍSTICAS DO CONTATO

O elemento de contato entre a laje e o perfil teve por finalidade permitir o surgimento de tensões normais de compressão quando o contato é estabelecido, e ao mesmo tempo permitir a separação entre tais elementos. Foram estabelecidos ainda valores de atrito e coesão para o par de contato, com escorregamento regido pela Lei de Coulomb, descrita pelas equações (4.3) e (4.4) apresentadas a seguir:

$$\tau_{\rm lim} = \mu P + c \tag{4.3}$$

$$\left|\tau\right| \le \tau_{\rm lim} \tag{4.4}$$

Onde:

 τ_{lim} é a tensão cisalhante limite;

τ é tensão cisalhante equivalente;

μ é o coeficiente de atrito;

P é a pressão normal;

c é a coesão.

Uma vez excedida a tensão cisalhante limite, as superfícies de contato passam a deslizar entre si. Vale mencionar que por coesão entende-se aqui uma resistência ao escorregamento exercida, mesmo que não haja pressão normal à superfície.

O coeficiente de atrito entre aço e concreto foi adotado como 0,4. Já para coesão foi estimado um valor de 0,18 kN/cm². Valores estes utilizados em Kotinda (2005)

O método de solução adotado para o contato foi o *Pure Lagrange Multiplier*. Esse método impõe penetração nula quando o contato está *fechado* (existe o contato entre as partes) e escorregamento nulo enquanto não se atinge a tensão cisalhante limite.

O status do contado, fechado ou aberto, é estabelecido nesse método com base em dois parâmetros de controle, FTOLN e TNOP.

O parâmetro FTOLN se refere a um valor mínimo de penetração para que o contato seja considerado como fechado. No presente trabalho adotou-se um valor de - 0,01 cm (o sinal negativo indica um valor absoluto).

O parâmetro TNOP se refere a uma valor mínimo de tração, normal à superfície de contato, para que o status se altere para aberto. Tendo em vista que, dentre as referências coletadas na pesquisa bibliográfica, não foi encontrado nenhum valor mais adequado, adotou-se para o parâmetro em questão o mesmo valor utilizado para a coesão, 0,18 kN/cm².

4.5 ANÁLISE NÃO-LINEAR

O carregamento foi aplicado de forma incremental, devido à consideração da não linearidade física. O incremento de carga foi controlado utilizando-se o recurso do ANSYS denominado *Automatic Load Stepping*.

De acordo com a documentação do ANSYS, o recurso citado reduz o valor do incremento quando a previsão do número de iterações ultrapassa o limite estabelecido (no caso, 100), caso se obtenha incrementos de deformações plásticas maiores que 15% ou ainda deslocamentos excessivos. O valor do incremento pode também ser aumentado, caso o processo venha a convergir de forma sistemática na primeira iteração.

O método para resolução do sistema não linear utilizado foi o de *Newton Raphson Pleno*, caracterizado pela atualização da matriz de rigidez tangente a cada iteração.

O critério de convergência foi estabelecido com base no vetor de resíduo de forças e momentos $\{R\}$, sendo satisfeito quando a norma deste vetor, $||\{R\}||$, atinge valores menores ou iguais à tolerância estabelecida, no caso dez por cento da norma do vetor de forças e momentos aplicados $(0,1\cdot ||\{F^a\}||)$. A norma utilizada foi a

quadrática, $\left\|\left\{\boldsymbol{R}\right\}\right\|_{2} = \left(\boldsymbol{\Sigma}\boldsymbol{R}_{j}^{2}\right)^{\frac{1}{2}}$.

Para solução dos sistemas de equações lineares, utilizou-se o método denominado no ANSYS como *Direct Sparse*, recomendado pelo mesmo pacote para problemas não lineares, principalmente quando se tem vários tipos de elementos no mesmo modelo.

Tal método consiste em um processo de eliminação direta, envolvendo a decomposição da matriz de rigidez em matrizes triangulares, superior e inferior (K=LU). Porém, partindo do princípio que a matriz de rigidez é do tipo esparsa (o que geralmente ocorre no método dos elementos finitos), é realizada uma reordenação das linhas da matriz K antes de sua decomposição em LU, de forma a minimizar o número de operações, otimizando o processo.

Para melhorar o processo de convergência, foi habilitado ainda o procedimento *Line Search*, que consiste em multiplicar o vetor de incremento de deslocamentos por um fator s (0,05 < s < 1,0), determinado pela minimização da energia do sistema.

CAPÍTULO

RESULTADOS OBTIDOS

5.1 MATERIAIS

5.1.1 Concreto

O concreto tem uma estrutura heterogênea e complexa, o que dificulta a compreensão do seu comportamento.

A resistência à compressão do concreto, obtida por ensaio de compressão uniaxial, é a propriedade mais fácil de ser avaliada, sendo as demais propriedades muitas vezes deduzidas dos dados da resistência à compressão como, por exemplo, o módulo de elasticidade, resistência à tração dentre outros.

O módulo de elasticidade (*E*) é fundamental na análise das deformações e tensões das estruturas de concreto, sabendo-se que, para tensões relativamente baixas, o concreto obedece com boa aproximação a lei de Hooke.

A NBR 8522:1984 prescreve o método de determinação dos módulos de elasticidade, tangente e secante.

Neste trabalho o módulo de elasticidade utilizado foi o secante, Equação (5.1), medido pela inclinação da reta secante ao diagrama tensão *versus* deformação, definida pelo valor mínimo de tensão igual a 0,5 MPa e 30% da tensão de ruptura do concreto, ou seja:

$$E_{\text{sec},30\%} = \frac{\sigma_{0,3} - \sigma_{\text{inf}}}{\varepsilon_{0,3} - \varepsilon_0}$$
(5.1)

Onde:

 $\sigma_{0,3}$ é a tensão correspondente a 30% da resistência média a compressão do concreto (f_{cm}) ;

 σ_{inf} é a tensão igual 0,5 MPa;

 $\mathcal{E}_{0,3}$ é a deformação correspondente a $\sigma_{0,3;}$

 ε_0 é a deformação específica correspondente à tensão de 0,5 MPa.

Os valores médios das propriedades do concreto, resistência à compressão (f_{cm}) , resistência à tração obtida por ensaios de compressão diametral $(f_{ctm, sp})$ e módulo de elasticidade secante a 30% da resistência do concreto ($E_{sec,0.3}$), para os ensaios de cisalhamento direto, estão apresentados na TABELA 5.1 e para o ensaios das vigas mistas, TABELA 5.2.

Corpos- de-Prova	Resistência à compressão ABNT NBR-5739:1994 <i>f_{cm}</i> (MPa)			Resistência à tação ABNT NBR-7222:1994 f _{ctm, sp} (MPa)			Módulo ABI Es	Módulo de Elasticidade ABNT 8522:1984 E _{sec,0.3} (MPa)		
	Laje A	Laje B	Média	Laje A	Laje B	Média	Laje A	Laje B	Média	
CP A22*	42,10	41,36	41,73	2,60	2,91	2,75	38.587	38.959	38.773	
CP A22-1	42,10	41,36	41,73	2,60	2,91	2,75	38.587	38.959	38.773	
CP A22-2	48,19	48,47	48,33	3,24	3,13	3,18	35.989	35.581	35.785	
CP A3	38,96	42,90	40,93	2,27	2,84	2,55	34.697	39.061	36.879	
CP A3**	38,96	42,90	40,93	2,27	2,84	2,55	34.697	39.061	36.879	
CP A4 *	33,20	40,68	36,94	2,05	2,08	2,06	32.113	36.169	34.141	
CP A4-1	33,20	40,68	36,94	2,05	2,08	2,06	32.113	36.169	34.141	
CP A4-2	47,61	39,02	43,31	3,64	3,22	3,43	39.556	36.321	37.938	
CP B22	48,19	48,47	48,33	3,24	3,13	3,18	35.898	35.581	35.739	
CP B3*	42,69	42,24	42,46	3,01	2,95	2,98	35.310	35.936	35.623	
CP B3	42,69	42,24	42,46	3,01	2,95	2,98	35.310	35.936	35.623	
CP B3**	47,61	39,02	43,31	3,64	3,22	3,43	39.556	36.321	37.938	
CP B4	47,61	39,02	43,31	3,64	3,22	3,43	39.556	36.321	37.938	
CP C22	45,30	45,70	45,5	2,00	3,35	2,67	37.726	40.030	38.878	
CP C3	45,30	45,70	45,5	2,00	3,35	2,67	37.726	40.030	38.878	
CP C3**	48,19	48,47	48,33	3,24	3,13	3,18	35.898	35.581	35.739	
CP C4	38,96	42,90	40,93	2,27	2,84	2,55	34.697	39.061	36.879	

TABELA 5.1 - Valores médios das propriedades mecânicas do concreto de cada laje dos corpos-de-prova para o ensaio de cisalhamento direto

TABELA 5.2 - Valores médios das propriedades mecânicas do concreto das lajes das vigas mistas

Vigas	Resistência à compressão ABNT NBR-5739:1994 <i>f_c</i> (MPa)	Resistência à tração ABNT NBR-7222:1994 <i>f_{ctm, sp}</i> (MPa)	Módulo de Elasticidade ABNT 8522:1984 <i>E_{sec,0.3}</i> (MPa)
VM1	40,26	3,06	30.960
VM2	38,21	2,56	31.537
VM3	41,04	3,30	32.885
VM4	40,88	3,12	33.834
VM5	48,45	3,44	35.571
VM6	41,74	3,20	35.777
VM7	41,69	3,21	37.363
VM8	44,62	3,65	36.559
5.1.2 Aço dos perfis formados a frio

Na TABELA 5.3 é apresentada o alongamento, a tensão média de escoamento (f_y) e a tensão média de ruptura (f_u) para os aços utilizados na confecção dos conectores e das vigas. As propriedades, referentes a cada espessura, correspondem ao valor médio de três corpos-de-prova ensaiados.

	СР	t (mm)	A (%)	<i>f_y</i> (MPa)	<i>f_u</i> (MPa)
	-	2,37	31	378	511
Aço virgem	-	3,91	33	275	411
	-	4,88	34	362	502
Aço retirado do	А	4,79	34	346	481
perfil	M1	4,86	29	357	495
U100x50x4,75	M2	4,84	37	355	495
Aço retirado da	-	2,41	32	363	495
alma dos perfis	-	3,91	37	282	420
das vigas	-	4,88	38	358	505
t = espessura, A	= alongar	nento na ru	uptura		

TABELA 5.3 - Propriedades mecânicas médias do aço empregado nos ensaios

5.2 RESULTADOS EXPERIMENTAIS DOS ENSAIOS DE CISALHAMENTO DIRETO

Os resultados dos ensaios de cisalhamento direto estão apresentados em forma de gráficos e tabelas. Em todos os gráficos a força se refere a um conector, ou seja, a força aplicada foi dividida por dois. No Apêndice B estão relacionados todos os resultados.

Para facilitar as comparações, as análises serão feitas em subitens, sendo eles: influência do tipo de carregamento, influência da espessura do conector, influência da altura do conector, influência da resistência à compressão do concreto, influência da armadura transversal, força máxima e modo de ruptura.

5.2.1 Influência do tipo de carregamento

Como já mencionado no Capítulo 3, alguns corpos-de-prova foram ensaiados com carregamento monotônico, e outros com carregamento cíclico como sugere o EUROCÓDIGO 4.

Os resultados obtidos por esses ensaios apresentaram significativa variabilidade causada principalmente pela resistência à compressão do concreto,

adensamento e arranjo das partículas do agregado junto ao conector.

Levando em consideração essa variabilidade, presente até mesmo nos ensaios com conectores idênticos, percebe-se que não houve alterações significativas no comportamento dos conectores ensaiados com carregamento monotônico e cíclico, sendo possível a comparação de todos os corpos-de-prova, inclusive os ensaiados por Malite (1993) e David (2003).

A FIGURA 5.1 ilustra a curva força *versus* deslizamento dos corpos-de-prova semelhantes com carregamentos diferentes. Os corpos-de-prova anotados com asterisco correspondem a carregamento monotônico.

FIGURA 5.1 - Curvas força-deslizamento relativas à influência do tipo de carregamento

5.2.2 Influência da altura do conector

A altura do conector é uma variável que não é levada em consideração nas expressões para cálculo da resistência de conectores U.

Pelos resultados percebeu-se que para a espessura de 2,25 e 3,75 mm o aumento da altura não mostrou ter influência significativa no aumento da resistência. Nos modelos com espessura igual a 4,75 mm, quanto mais alto o conector maior foi a resistência.

As FIGURAS 5.2, 5.3 e 5.4 ilustram o comportamento força-deslizamento relativo à espessura.

FIGURA 5.2-Curvas força-deslizamento relativas a conectores de espessura 2,25mm

FIGURA 5.3 - Curvas força-deslizamento relativas a conectores de espessura 3,75mm

FIGURA 5.4 - Curvas força-deslizamento relativas a conectores de espessura 4,75mm

Apesar da altura não ter grande participação na resistência, notou-se que a relação altura (h) /espessura (t) dos conectores está associada à sua ductilidade. Para a maioria dos conectores com relação h/t maior que ou igual à 25, o valor característico da capacidade de deformação, δ_{uk} , (definição dada pelo EUROCÓDIGO 4, ver Capítulo 2), foi superior a 6mm, já para os conectores com relação h/t menor a 25, o valor característico da capacidade de deformação foi inferior a 6mm, ou seja, os conectores com relação h/t \geq 25 podem ser considerados dúcteis.

FIGURA 5.5 - Curva força-deslizamento relativo aos corpos-de-prova sem armadura transversal

5.2.3 Influência da espessura do conector

A espessura do conector é uma variável importante, pois analisando a resistência dos corpos-de-prova percebe-se claramente que quanto mais espesso for o conector, maior é sua resistência, como pode ser observado nas FIGURAS 5.6 a 5.8.

FIGURA 5.6 - Comportamento força-deslizamento relativo a conectores com 75mm de altura

FIGURA 5.7 - Comportamento força-deslizamento relativo a conectores com 100mm de altura

FIGURA 5.8-Comportamento força-deslizamento relativo a conectores com 125mm de altura

5.2.4 Influência da armadura transversal adicional

A influência da armadura transversal foi avaliada nos corpos-de-prova com conectores de espessura igual a 3,75mm.

Os resultados mostraram que os modelos que possuíam armadura apresentaram resistência superior aos que não possuíam, talvez devido ao maior confinamento do concreto na região do conector.

Nos modelos com altura igual a 75 mm (CP A3**) e 125mm (CP C3**) e presença de armadura, FIGURA 5.9, o deslizamento característico foi bem superior aos modelos sem armadura, mostrando que sua presença pode aumentar a ductilidade.

Em relação às fissuras, não foi observada nenhuma influência.

FIGURA 5.9 - Comportamento força-deslizamento relativo a influência da armadura transversal

5.2.5 Força máxima

Complementando este trabalho serão utilizados os resultados de ensaios de cisalhamento direto obtidos por Malite (1993) e David (2003).

Malite (1993) realizou seis séries de ensaios (A a F). Na série A foram ensaiados 3 corpos-de-prova, e nas demais séries, seis corpos-de-prova. Os conectores foram em perfis formados a frio, com seção em forma de cantoneira, cantoneira enrijecida e U, com espessuras de 2,66 e 4,76mm, embutidos em lajes maciça.

David (2003) realizou ensaios de cisalhamento direto em conectores, também em perfis U formados a frio, com espessuras de 2,00 e 3,75mm, embutidos em lajes com vigotas pré-moldadas.

Nas TABELAS 5.4 e 5.5 são apresentadas as características dos corpos-deprova ensaiados em Malite (1993) e David (2003).

IABELA 5.4 - Características dos corpos-de-prova ensaiados por Malite (199
--

		Corpos de prova	Perfil utilizado no Conector	Espessura da laje (mm)	f _{cm} ¹⁾ (MPa)	E _{cm} ²⁾ (MPa)
	o to)	Série A	L 50x2,66	100	30,40	39.755
Malite (1993) arregaement sem controle deslocameni	ole	Série B	L 50x4,76	100	24,80	33.065
	em ontr	Série C	U 75x40x2,66	100	25,90	35.575
	Série D	U 75x40x4,76	100	26,70	32.934	
	sen	Série E	L enrijecida 50x20x2,66	100	23,00	39.545
_	o " e	Série F	L enrijecida 50x20x4,76	100	26,60	35.759

 f_{cm} : valores médios da resistência à compressão do concreto E_{cm} : valores médios do módulo de elasticidade tangente inicial

		Corpos	Perfil utilizado no	Espessura	f _{cm} 1)	E _{cm} ²⁾
		de prova	Conector	da laje (mm)	(MPa)	(MPa)
		CP a2-1*	U 75x50x2,00	120	25,32	25.036
	ole	CP a2-2*	U 75x50x2,00	120	37,87	22.323
David(2003) regaemento sem contr de deslocamento)) ontr	CP a3-1*	U 75x50x3,75	120	24,76	23.912
	n co into	CP a3-2*	U 75x50x3,75	120	34,69	25.131
	ser	CP b2-1*	U 100x50x2,00	120	20,88	23.448
	oca	CP b2-2*	U 100x50x2,00	120	28,21	20.370
	esl	CP b3-1*	U 100x50x3,75	120	21,54	21.607
	aer e d	CP b3-2*	U 100x50x3,75	120	24,18	21.738
	d d	CP b3-3*	U 100x50x3,75	120	27,69	24.983
	Car	CP b2-1*	U 100x50x2,00	120	30,40	39.755
	•	CP a3-2*	U 75x50x3,75	120	24,80	33.065

TADELA 5.5 - GATACIETISIICAS UUS CUIDUS-UE-DIUVA ETISAIAUUS DUI DAVIU (200	TABELA 5.5 -	Características do	os corpos-de-prova	ensaiados po	or David (2003
--	--------------	--------------------	--------------------	--------------	------------	------

f_{cm} : valores médios da resistência à compressão do concreto

 \boldsymbol{E}_{cm} : valores médios do módulo de elasticidade tangente inicial

Comparando a resistência experimental dos conectores em perfil formado a frio com a resistência obtida pela expressão empírica do AISC:2005 percebe-se que:

 para os conectores com espessuras menores (2,00mm e 2,25mm) os valores experimentais foram em média superiores aos teóricos;

 para as espessuras intermediárias (2,65mm e 3,75mm) os valores experimentais e teóricos foram semelhantes;

• para a espessura maior (4,75mm), os valores experimentais foram em média inferiores aos teóricos.

Com base nesta observação, aliada ao fato da espessura ser umas das variáveis mais importantes, foi feita uma análise paramétrica da resistência dos conectores através de gráficos, onde o eixo das abscissas corresponde à espessura do conector e o eixo das ordenas corresponde à relação $Q_{máx}/L_{cs}(E_{cs}f_{cm})^{1/2}$. Onde:

Q_{máx} é a resistência dos conectores obtida experimentalmente,

 L_{cs} é o comprimento dos conectores, para este caso igual à 100 mm,

 E_{cs} é o módulo de elasticidade secante, como já mencionado, tomado a 0,3 da resistência média à compressão do concreto,

 f_{cm} é a resistência média à compressão do concreto.

Três situações foram analisadas, a primeira com todos os resultados, a segunda, com os conectores em perfil U, e a terceira, apenas com os conectores considerados dúcteis.

A FIGURA 5.10 ilustra esses gráficos juntamente com a regressão linear obtida separadamente para cada situação.

FIGURA 5.10 - Situações analisadas e regressão linear obtida

Com base na análise das três situações anteriores, foi proposta a equação (5.2) que melhor se ajusta ao conjunto dos resultados experimentais.

$$Q_{R} = (0,0003t + 0,0005) L_{cs} (E_{cs} f_{ck})^{1/2}$$
(5.2)

Na TABELA 5.6 estão, resumidamente, os resultados experimentais obtidos, assim como a comparação da resistência experimental com a resistência teórica obtida pela expressão da norma americana e também com a equação (5.2).

	Cornos do	0	\$	0	0 0	0	0 0	Mada da
	prova	Q _{máx} (kN)	o _{uk} (mm)	(kN)	Qmáx / QR AISC (kN)	QR Prop. (kN)	Qmáx/ QR Prop. (kN)	falha
	Série A	124,17	2,23	131,59	0,94	142,69	0,87	3
93)	Série B	177,92	2,20	193,97	0,92	174,59	1,02	1
(19	Série C	122,92	2,45	114,90	1,07	124,59	0,99	3
Malite	Série D	185,83	2,38	200,86	0,93	180,79	1,03	1
	Série E	118,33	2,20	114,16	1,04	123,79	0,96	3
	Série F	170,00	1,76	208,91	0,81	188,04	0,90	1
	CP a2-1*	77,00	6,55	72,06	1,07	87,58	0,88	1
	CP a2-2*	79,00	2,30	107,79	0,73	101,14	0,78	1
<u>(</u>	CP a3-1*	126,50	7,03	183,52	0,69	125,04	1,01	1
ö	CP a3-2*	131,22	3,35	185,12	0,71	151,73	0,86	1
q (2	CP b2-1*	87,50	9,60	59,43	1,47	76,97	1,14	3
avic	CP b2-2*	94,00	9,10	80,29	1,17	83,39	1,13	3
õ	CP b3-1*	137,00	-	114,94	1,19	110,86	1,24	1
	CP b3-2*	141,00	4,39	129,03	1,09	117,81	1,20	1
	CP b3-3*	155,50	6,70	147,76	1,05	135,16	1,15	1
-	CP A22*	126,73	6,70	135,66	0,93	154,04	0,82	3
	CP A22-1	148,94	4,80	135,66	1,10	154,04	0,97	3
	CP A22-2	142,27	10,80	140,17	1,01	159,16	0,89	1
	CP A3	187,55	4,40	216,17	0,87	205,54	0,91	3
	CP A3**	198,30	11,50	216,17	0,92	205,54	0,96	1
	CP A4*	164,70	2,50	246,61	0,67	220,56	0,75	1
S	CP A4-1	158,71	2,90	246,61	0,64	220,56	0,72	1
o inte	CP A4-2	224,94	1,50	281,52	0,80	251,78	0,89	1
alho	CP B22	162,41	9,80	140,17	1,16	159,16	1,02	1
ref rab	CP B3*	176,00	9,10	216,42	0,81	205,78	0,86	1
dos te t	CP B3	148,49	11,80	216,42	0,69	205,78	0,72	1
es	CP B3**	188,31	4,30	225,56	0,83	214,48	0,88	1
esu à	CP B4	227,30	2,30	281,52	0,81	251,78	0,90	2
Ŕ	CP C22	166,15	-	141,85	1,17	161,07	1,03	3
	CP C3	179,65	4,30	234,02	0,77	222,51	0,81	2
	CP C3**	225,40	9,20	231,25	0,97	219,88	1,03	1
	CP C4	259,70	6,40	269,80	0,96	241,30	1,08	1
		Média	а		0,94		0,95	
		Desvio Pa	adrão		0,19		0,13	
		Coeficiente de	· Variação		20,22%		14,10%	

TABELA 5.6 – Resultados experimentais e teóricos

Para os corpos-de-prova da Série A a F e CP a2-1* a CP b3-3*, os valores δ_{uk} se referem a q_{max}

- : não medido,

1 : deslizamento excessivo,

2 : ruptura na solda,

3 : ruptura do conector na região da dobra, próxima a solda

5.2.6 Modo de falha

Foram observadas fissuras em quase todos os modelos, sendo basicamente dois tipos:

fissuras verticais que se iniciavam na base das lajes e com o incremento da força abriam e se espalhavam, CP A4*, CP A4-1, CP A22*, CP A22-1, CP B3*, CP B3, CP A22-2, CP C3**, CP C4, CP B4, como pode ser visto na FIGURA 5.11(a)

fissura horizontal próxima ao conector, CP B3** e CP A4-2, FIGURA 5.11(b). Os corpos-de-prova CP B22 e CP A3** não apresentaram fissuras.

a) Fissuras espalhadas b) Fissura horizontal FIGURA 5.11 - Esquema típico das fissuras observadas

O modo de falha não ficou nítido em todos os corpos-de-prova. Nos corpos-deprova com conectores menos espessos, CP A22*, CP A22-1 e CP C22 foi observada a ruptura do conector na região da dobra do perfil U, como pode ser visto na FIGURA 5.12(a). Nos corpos-de-prova CP B3**, CP B4, CP A3 e CP C3 foi observada a ruptura da solda, FIGURA 5.12(b).

a) Ruptura do conector

FIGURA 5.12 - Modos de ruptura

Esses dois tipos de ruptura ocorreram em apenas uma laje de cada modelo e não simultaneamente. Nos demais corpos-de-prova a falha ocorreu provavelmente por ruptura do concreto após um excessivo deslizamento do conector.

5.3 RESULTADOS EXPERIMENTAIS E NUMÉRICOS DOS ENSAIOS DE FLEXÃO

Os resultados das nove vigas ensaiadas estão apresentados em forma de gráficos e tabelas, sendo divididos em: carga e modo de falha, deslocamento vertical, deslizamento relativo na interface, deformações na seção transversal e deformações nas rosetas.

Os resultados experimentais serão confrontados com os obtidos nas modelagens numéricas e também com os obtidos analiticamente, tentando assim explicar da melhor maneira o comportamento dessas vigas mistas.

No Apêndice C encontram-se todos os resultados obtidos nesses ensaios.

5.3.1 Força máxima e modo de falha

De acordo com os valores obtidos pela instrumentação, a força máxima resistida pela viga metálica, V, foi de 86 kN. O modo de falha foi por perda de estabilidade local da mesa superior e da alma, na região sob a carga concentrada.

Pela modelagem numérica a força máxima resistida pela viga foi de 66,04 kN. O aspecto final da viga, obtido experimentalmente e numericamente, está apresentado na FIGURA 5.13.

FIGURA 5.13 - Aspecto final da viga metálica

As vigas mistas VM1 e VM2 possuíam grau de interação bem reduzido, da ordem de 0,30. Essas vigas romperam com uma força média igual a 225 kN, devido à ruptura dos conectores.

Na viga VM2, a armadura adicional colocada na face inferior da laje, na região das vigotas, proporcionou um leve aumento da resistência e um retardamento no surgimento das fissuras longitudinais, sendo essas fissuras acompanhadas por fissuras em escamas. Ou seja, a armadura proporcionou o mecanismo biela-tirante.

A FIGURA 5.14 e a FIGURA 5.15 ilustram o panorama de fissuração observado nas lajes com e sem armadura transversal adicional.

FIGURA 5.14 - Aspecto final da laje sem F armadura transversal adicional - VM1

FIGURA 5.15 - Aspecto final da laje com armadura transversal adicional - VM2

As vigas mistas VM3 e VM4, com grau de interação igual a 0,85, romperam com uma força média igual a 161,50 kN. A posição dos conectores em relação às vigotas não apresentou influência quanto ao comportamento global da viga, porém os estados limites últimos foram diferentes.

Em VM3 o modo de falha foi por esmagamento do concreto e fissuração semelhante a FIGURA 5.15.

Em VM4, o modo de falha se deu por uma excessiva separação vertical entre a laje e o perfil. Essa separação excessiva ocorreu porque os conectores não estavam situados na região de maior inércia, junto às treliças, e sim entre o material de enchimento, FIGURA 5.16.

As vigas mistas, VM5, VM6, VM7 e VM8, com grau de interação entre 0,76 e 0,82, romperam com uma força média igual à 195 kN.

O modo de falha da viga mista VM7 foi semelhante à VM4, porém, a separação vertical entre a laje e o perfil não foi acentuada quanto em VM4. Isso talvez tenha ocorrido pelo fato dos conectores em VM7 terem uma altura maior, 100 mm. Com essa altura parte do conector fica embutido na capa de concreto e torna-se mais eficiente no combate da separação vertical.

De maneira geral o comportamento das vigas VM3 a VM8 foram semelhantes.

FIGURA 5.16 - Aspecto final da viga com conectores na região do EPS, VM4

A viga mista com perfil em seção I, VM8, não mostrou diferença em relação à seção caixão.

De maneira geral, nas vigas mistas VM3 à VM8, a falha se deu quase simultaneamente pela deformação excessiva da viga metálica e dos conectores, seguida do elevado aumento do deslocamento vertical e conseqüente ruptura da laje e dos conectores.

Cabe ressaltar que o ensaio da viga VM1 foi interrompido ainda na fase elástica, por problemas no atuador hidráulico. Essa viga foi novamente ensaiada até que se atingisse a ruptura, porém já não existia aderência química entre a laje e o perfil como nos demais ensaios. A falta de aderência não influenciou a resistência máxima, porém influenciou o comportamento nos primeiros estágios de carregamento, esse fato será discutido nos próximos itens.

Em relação aos modos de falhas obtidos pela modelagem numérica observouse que:

• A estratégia 1 resultou em tensões na laje superiores às tensões de ruptura do concreto e plastificação total do perfil. Comparando a força máxima atingida por cada

viga e a força máxima experimental, observa-se que os resultados numéricos são superiores aos resultados experimentais mesmo para as vigas com interação completa, sugerindo que o deslizamento na interface reduz a resistência da viga mista.

A FIGURA 5.17 ilustra as tensões de von Mises na laje e as tensões longitudinais no perfil referentes à viga VM3 para o último passo de carregamento, igual a 240 kN, lembrando que f_{cm} é 41,04 MPa e f_y é 282 MPa.

a) Tensões de von Mises em na laje da viga VM3 pela estratégia 1, (kN/cm²)

b) Tensões longitudinais (em x) no perfil da viga VM3 pela estratégia 1, (kN/cm²)
 FIGURA 5.17 - Tensões em VM3 segundo a estratégia 1

 A estratégia 2 não apresentou boa convergência comparado aos resultados experimentais, diferentemente dos resultados obtidos pela modelagem das vigas com interação completa apresentadas em Malite (1993). A provável causa dessa diferença talvez seja o grau de interação e o espaçamento entre os conectores. Mesmo os resultados não apresentando boa convergência, na viga VM2, com interação igual a 0,3; as tensões de von Mises nos conectores foram superiores às tensões no perfil, o que indica que a ruptura será no conector.

Na viga VM3 as tensões de von Mises no perfil foram superiores às tensões nos conectores.

Experimentalmente o perfil da viga VM3 permaneceu tracionado durante todo o carregamento, o que indica que a resistência dos conectores pode ser um pouco superior ao calculado pela expressão 5.2, permitindo assim uma interação completa.

O comportamento da viga VM3, obtido numericamente, pôde então ser explicado pelo comportamento experimental, ou seja, as tensões de von Mises foram superiores no perfil e não nos conectores porque a resistência dos conectores permitiu uma interação completa, o que indica que a ruptura não ocorrerá no conector.

As deformações longitudinais experimentais serão apresentadas no item 5.3.2.

A FIGURA 5.18 ilustra as tensões de von Mises no perfil e nos conectores referentes às vigas VM2 e VM3, para o último passo de carregamento.

 a) Tensões de von Mises nos conectores e perfil da viga VM2 (160,80kN) pela estratégia 2, (kN/cm²)

FIGURA 5.18 - Tensões de von Mises em VM2 e VM3 segundo a estratégia 2

 Dentre as três estratégias, a estratégia 3 (utilização de molas em substituição aos conectores) apresentou os melhores resultados.

Por essa estratégia foi observado que a capacidade das molas foi totalmente utilizada nas vigas VM1, VM2 e VM5 a VM8, indicando ruptura do conector.

Nas vigas VM3 e VM4 foi observado que a capacidade total das molas não foi atingida.

O gráfico da FIGURA 5.19 ilustra o comportamento das molas, situadas entre a extremidade e o ponto de aplicação da força, pertencentes às vigas VM1, VM4 e VM5.

Na TABELA 5.7 estão apresentadas os valores da força máxima resistida por cada viga e a força máxima de convergência obtida pelas três estratégias.

Vigas	Força máx. exp. (kN)	Estratégia 1 (kN)	Estratégia 2 (kN)	Estratégia 3 (kN)	F.máx Est.1	F.máx Est.2	F.máx Est.3
V	86,00	-	-	66,02	-	-	1,30
VM1	221,00	375,80	210,00	239,40	0,59	1,05	0,92
VM2	229,50	370,00	160,80	232,50	0,62	1,43	0,99
VM3	164,50	240,02	215,00	165,34	0,69	0,77	0,99
VM4	158,50	235,84	240,36	185,00	0,67	0,66	0,86
VM5	196,50	301,62	160,00	225,20	0,65	1,23	0,87
VM6	201,00	309,22	214,00	215,22	0,65	0,94	0,93
VM7	193,50	300,96	145,06	220,00	0,64	1,33	0,88
VM8	189,00	326,06	125,44	225,00	0,58	1,51	0,84

TABELA 5.7 - Força máxima experimental e numérica

5.3.2 Deformações longitudinais na seção transversal no meio do vão

Os extensômetros elétricos colados na viga e na laje, tiveram como objetivo obter as deformações e, conseqüentemente, avaliar a interação das vigas mistas através das descontinuidades das deformações como também verificar a plastificação da seção.

As deformações na viga metálica correspondem à média das deformações obtidas pelos extensômetros colados em cada lateral da viga, assim como na mesa superior e inferior.

No concreto, as deformações correspondem aos valores registrados pelo extensômetro colado na face superior da laje, LC, e pelas médias dos valores obtidos pelos extensômetros colados nas armaduras, AE e AD, FIGURA 5.20.

FIGURA 5.20 – Indicação da posição dos extensômetros nas vigas mistas

A FIGURA 5.21 ilustra o diagrama de deformações longitudinais da viga VM2 para várias etapas de carregamento. Por este diagrama pode-se ver a presença de duas linhas neutras, uma na laje e outra no perfil, indicando interação parcial. Considerando que a deformação de escoamento do aço é aproximadamente 1800με percebe-se que a plastificação do perfil foi próxima à total.

As FIGURAS 5.24 e 5.25 ilustram o diagrama de deformação das vigas ensaiadas com o carregamento máximo resistido por cada viga.

FIGURA 5.23 - Deformações longitudinais em VM5, VM6, VM7 e VM8

Pelos diagramas percebe-se que os perfis das vigas VM3 e VM4 estão totalmente tracionados, contrariando a análise teórica, que, de acordo com a resistência dos conectores, a interação seria parcial e a mesa superior do perfil deveria estar comprimida.

Nas vigas VM1, VM2 e VM5 a VM8 percebe-se que a face superior do perfil encontra-se comprimida, indicando que a interação foi parcial como foi previsto teoricamente.

As deformações teóricas, admitindo comportamento elástico e linear, podem ser obtidas de acordo com a seguinte expressão:

$$\varepsilon = \frac{M}{E J_{ef}}.y \tag{5.3}$$

Onde:

ε é a deformação na fibra de ordenada y;

M é o momento fletor na seção analisada, neste caso no meio do vão;

E é módulo de elasticidade do aço, para a viga metálica, ou do material para qual a seção foi homogeneizada, para as vigas mistas;

I_{ef} é o momento de inércia efetivo;

y é a ordenada da fibra correspondente, com origem na linha neutra da seção.

Nas FIGURAS 5.24 e 5.25 são apresentadas as deformações médias, de VM2 e VM4, obtidas pelos extensômetros posicionados na face superior e inferior do perfil e na face superior da laje, como também as deformações teóricas obtidas pela equação (5.3).

FIGURA 5.24 - Deformações longitudinais em VM2

FIGURA 5.25 - Deformações longitudinais em VM4

A redução da rigidez proveniente do deslizamento na interface foi também percebida nas deformações.

A simulação numérica, de acordo com a estratégia 3, representou de forma satisfatória as deformações longitudinais. A FIGURA 5.26 ilustra a deformação experimental e numérica, na face inferior do perfil, das vigas VM3 e VM7.

FIGURA 5.26 - Deformações longitudinais em VM3 e VM4

As FIGURAS 5.29 a 5.36 ilustram as tensões longitudinais obtidas pela estratégia 3. Pelas tensões é possível identificar a posição da linha neutra na laje e no perfil, indicando interação parcial.

FIGURA 5.27 - Tensões longitudinais em kN/cm² na laje e no perfil da viga VM1

FIGURA 5.28 - Tensões longitudinais em kN/cm² na laje e no perfil da viga VM2

FIGURA 5.29 - Tensões longitudinais em kN/cm² na laje e no perfil da viga VM3

FIGURA 5.30 - Tensões longitudinais em kN/cm² na laje e no perfil da viga VM4

FIGURA 5.31 - Tensões longitudinais em kN/cm² na laje e no perfil da viga VM5

FIGURA 5.32 - Tensões longitudinais em kN/cm² na laje e no perfil da viga VM6

FIGURA 5.33 - Tensões longitudinais em kN/cm² na laje e no perfil da viga VM7

FIGURA 5.34 - Tensões longitudinais em kN/cm² na laje e no perfil da viga VM8

Teoricamente para as vigas com grau de interação mais baixo, VM1 e VM2, a linha neutra no perfil, deveria estar na alma, em uma cota inferior aos enrijecedores de borda. Para as demais vigas, a linha neutra no perfil deveria estar localizada na mesa superior. As FIGURAS 5.29 a 5.36 indicam que a estratégia 3 representou com coerência a posição das linhas neutras tanto na laje como no perfil.

5.3.3 Deformações das rosetas

Pelas deformações obtidas por meio das rosetas foi possível calcular as tensões e direções principais e a tensão máxima de cisalhamento, admitindo regime elástico.

A tensão de cisalhamento vertical foi comparada ao valor teórico calculado pela expressão:

$$\tau = \frac{V \times M_s}{I_a \times t} \tag{5.4}$$

Onde:

 τ é a tensão de cisalhamento vertical na alma,

V é o força cortante,

*M*_s é o momento estático em relação à posição da roseta,

*l*_a é o momento de inércia da viga metálica,

t é a espessura da alma.

Na FIGURA 5.35 são apresentados os gráficos força *versus* tensão de cisalhamento, experimental e teórica, para a viga VM8.

FIGURA 5.35 - Tensões cisalhantes em VM8

Nota-se que as tensões teóricas foram maiores que as experimentais, mostrando que parte do esforço cisalhante pode ter sido resistida pela laje.

As tensões cisalhantes obtidas pela estratégia 3 foram próximas às experimentais. A FIGURA 5.36 ilustra as tensões cisalhantes obtidas pela simulação numérica da viga VM8. Apesar da força última ter sido um pouco maior que a experimental, os valores das tensões cisalhantes, no ponto onde estava colada a roseta, foram semelhantes.

FIGURA 5.36 - Tensões cisalhantes, em kN/cm², em VM8 obtidas pela estratégia 3 com uma força de F=225kN

5.3.4 Deslocamentos verticais

O deslocamento vertical de vigas depende principalmente da rigidez e do tipo de carregamento. Para as vigas mistas ensaiadas neste trabalho, com perfis idênticos, os deslocamentos verticais foram semelhantes, como se pode ver na FIGURA 5.37, comparando VM1 e VM2, VM3 e VM4, VM5, VM6, VM7 e VM8.

O ganho de rigidez das vigas mistas também fica bem nítido ao comparar seus deslocamentos verticais com os deslocamentos verticais da viga metálica.

FIGURA 5.37 - Deslocamento vertical no meio do vão

Por meio de uma análise elástica, FIFURA 5.25 e equação (5.5), foi possível obter os deslocamentos teóricos, *y*.

$$y = \frac{Pa}{24EI_{ef}} (3L^2 - 4a^2)$$
 (5.5)

Onde:

P é a força aplicada;

L é o vão da viga;

E é o módulo de elasticidade do material para qual a seção foi homogeneizada;

I_{ef} é o momento de inércia efetivo da seção mista;

Os momentos de inércia efetivos das vigas mistas, foram calculados de acordo com a equação (5.6), estão apresentados na TABELA 5.8.

$$I_{ef} = I_s + \sqrt{\frac{\sum Q_R}{F_h}} \left[\left(I_{tr} - I_s \right) \right]$$
(5.6)

Onde:

 I_s é o momento de inércia da viga de aço;

*I*_{tr} é o momento de inércia da viga mista considerando interação completa;

 $\sum Q_R$ é o somatório das forças resistentes de cálculo individuais Q_R dos conectores de cisalhamento situados entre a seção de momento positivo máximo e a seção djacente de momento nulo;

 F_{hd} é a força de cisalhamento de cálculo entre o componente de aço e a laje, igual ao menor valor entre $A_a f_{yd}$ e $f_{cd} t_c$).

Vigas	Grau de interação	Momento de inércia efetivo (cm ⁴)	Seção considerada		
V	-	7.451			
VM1	0,31	6.993			
VM2	0,31	6.991			
VM3	0,85	6.293			
VM4	0,86	6.361			
VM5	0,82	9.031			
VM6	0,76	8.780			
VM7	0,77	8.953	A região de concreto entre o permi e a capa de		
VM8	0,79	8.987	concreto foi desconsiderada no cálculo.		

TABELA 5.8 - Momento de inércia das vigas

As FIGURAS 5.26 à 5.28 ilustram o deslocamento no meio do vão obtidos experimentalmente e por meio da equação (5.5).

FIGURA 5.39 - Deslocamento vertical no meio do vão de V

FIGURA 5.40 - Deslocamento vertical no meio do vão de VM1 e VM2

FIGURA 5.41 - Deslocamento vertical no meio do vão deVM3 e VM4

FIGURA 5.42 - Deslocamento vertical no meio do vão de VM5 a VM8

Como se pode ver o deslizamento relativo tem enorme influencia na rigidez das vigas mistas.

Nas vigas mistas com grau de interação próximo a 0,3; o momento de inércia efetivo é bem menor que o momento de inércia considerando interação completa, para essas vigas o deslocamento teórico e experimental foram próximos até certo limite de proporcionalidade.

Nas vigas mistas com grau de interação superior a 0,72; o deslocamento teórico foi inferior ao experimental.

Em Johnson (1975) é citado que, mesmo para interação completa, o cálculo do deslocamento vertical desconsiderando o deslizamento na interface é subestimado quando comparado aos resultados experimentais. Em Grant *et al* (1977) a explicação para essa redução de rigidez pode ser atribuída ao fato dos conectores de cisalhamento apresentarem elevada flexibilidade, permitindo significativo deslizamento relativo, mesmo sendo suas resistências suficientes para garantir a interação completa.

De acordo com os procedimentos normativos, no cálculo do momento de inércia transformado das vigas mistas com interação parcial há uma redução da inércia devido ao grau de interação. Para as vigas mistas com interação completa não existe redução.

Em Nie (2003) é apresentado um método de cálculo de deslocamento vertical, em regime elástico, que leva em consideração o deslizamento na interface laje-perfil. Neste método assume-se que a tensão cisalhante na interface é proporcional ao deslizamento na interface, perfil e laje possuem a mesma curvatura e a seção é simétrica em relação ao eixo vertical. Pela primeira consideração tem-se que:

$$q_{s}p = Ks \tag{5.7}$$

Onde:

 q_s é o fluxo de cisalhamento na interface;

p é o espaçamento entre os conectores;

K é a rigidez do conector;

s é o escorregamento entre o perfil e a laje.

Para uma viga simplesmente apoiada, o equilíbrio na direção horizontal de um elemento infinitesimal de comprimento dx, FIGURA 5.43, é dado pela equação (5.8), já o equilíbrio na direção vertical é dado pela equação (5.9).

$$\frac{dC}{dx} = \frac{dT}{dx} = -q_s \tag{5.8}$$

$$V_c + V_s = \frac{P}{2} \tag{5.9}$$

Onde:

C é a força de compressão na laje;

T é a força de tração no perfil;

 V_c é a força cortante no concreto;

 V_s é a força cortante no aço;

P é a força concentrada aplicada.

Pelo equilíbrio de momento da laje e do perfil tem-se:

$$\frac{dM_c}{dx} = -V_c + \frac{q_s y_{cb}}{2} - \sigma dx$$
(5.10)

$$\frac{dM_s}{dx} = -V_s + \frac{q_s y_{st}}{2} + \sigma dx$$
(5.11)

Onde:

 M_c é o momento fletor no concreto;

*M*_s é o momento fletor no aço;

 σ é a tensão normal na interface aço-concreto;

 y_{cb} é a distância da face inferior da laje à sua linha neutra;

 y_{st} é a distância da face superior da viga à sua linha neutra.

Pela compatibilidade de curvatura entre a laje e o perfil tem-se:

$$\phi = \frac{M_s}{E_s I_s} = \frac{M_c}{E_c I_c} \tag{5.12}$$

Onde:

 ϕ é a curvatura entre a laje e a viga metálica;

 E_s é o módulo de elasticidade do aço da viga;

 E_c é o módulo de elasticidade do concreto;

*I*s é o momento de inércia da viga de aço;

Ic é o momento de inércia da laje;

FIGURA 5.43 – Deformações do elemento infinitesimal

Substituindo as equações (5.8) a (5.11) em (5.12) tem-se:

$$\frac{d\phi}{dx} = \frac{-0,5P + q_s d_c}{E_s I_s + E_c I_c}$$
(5.13)

$$d_c = y_{cb} + y_{st} \tag{5.14}$$

As deformações na face inferior da laje (ϵ_{cb}) e na face superior do perfil (ϵ_{st}) são calculadas pelo momento e pela força axial:

$$\varepsilon_{cb} = \frac{M_c y_{cb}}{E_c I_c} - \frac{C}{E_c A_c} = \phi y_{cb} - \frac{C}{E_c A_c}$$
(5.15)

$$\varepsilon_{st} = -\frac{M_s y_{st}}{E_s I_s} + \frac{T}{E_s A_s} = -\phi y_{st} + \frac{T}{E_s A_s}$$
(5.16)

A deformação relativa de escorregamento na interface é dada por:

$$\frac{ds}{dx} = \varepsilon_s = \varepsilon_{cb} - \varepsilon_{st} = \phi d_c - \frac{T}{E_s A_s} - \frac{C}{E_c A_c}$$
(5.17)

Onde:

 ε_{cb} é a deformação na face inferior da laje;

 ε_{st} é a deformação na superior do perfil;

A_c é a área de concreto;

A_s é a área da viga de aço;

 ε_s é a deformação de deslizamento na interface;

Derivando a equação (5.17) em relação à x e utilizando as equações (5.7), (5.8) e (5.13) tem-se a equação diferencial:

$$\frac{d^2s}{dx^2} = \alpha^2 s - \frac{\alpha^2 \beta P}{2}$$
(5.18)

Onde:

$$\beta = \frac{A_1 d_c p}{K} \tag{5.19}$$

$$\alpha^2 = \frac{K}{A_1 E_s I_0 p} \tag{5.20}$$

$$n = E_s / E_c \tag{5.21}$$

$$I_0 = \frac{I_c}{n} + I_s \tag{5.22}$$

$$A_{0} = \frac{(A_{s}A_{c})}{(nA_{s} + A_{c})}$$
(5.23)

$$A_{1} = \frac{A_{0}}{I_{0} + A_{0}d_{c}^{2}}$$
(5.24)

Resolvendo a equação diferencial e utilizando as condições de contorno, s=0 no meio do vão (x=0), e ds/dx =0 nos apoios (x=L/2), para $0 \le x \le L/2$, tem-se:

$$\mathbf{s} = \frac{\beta P(1 + e^{-\alpha L} - e^{\alpha x - \alpha L} - e^{-\alpha x})}{2(1 + e^{-\alpha L})}$$
(5.25)

A deformação de escorregamento é dada por:

$$\varepsilon_{s} = \frac{\alpha\beta P(e^{-\alpha x} - e^{\alpha x - \alpha L})}{2(1 + e^{-\alpha L})}$$
(5.26)

A curvatura adicional devida ao escorregamento é dada por:

$$\Delta \phi = \frac{\varepsilon_{cs}}{h_c} = \frac{\varepsilon_{ss}}{h_s} = \frac{\varepsilon_s}{h}$$
(5.27)

Onde:

L é o vão da viga bi-apoiada;

 h_c é a altura da laje;

 h_s é a altura da viga de aço;

h é a altura total da seção.

Para o caso de uma viga bi-apoiada, com duas cargas concentradas, a flecha adicional é dada pela equação (5.28) e a flecha total, pela equação (5.29).

$$\Delta f_2 = \beta P \left(\frac{L - 2b}{4h} + \frac{e^{\alpha b_c} - e^{\alpha L - ab_c}}{2\alpha h(1 + e^{\alpha L})} \right)$$
(5.28)

$$f_{2} = f_{e2} + \Delta f_{2} = \frac{P}{12EI} \left[2 \left(\frac{L}{2} - b_{c} \right)^{3} + 3b_{c} \left(\frac{L}{2} - b_{c} \right) (L - b_{c}) \right] \dots$$
$$\dots + \beta P \left(\frac{L - 2b_{c}}{4h} + \frac{e^{\alpha b_{c}} - e^{\alpha L - ab_{c}}}{2\alpha h (1 + e^{\alpha L})} \right)$$
(5.29)

$$EI = E_{s} \left(I_{0} + A_{0} d_{c}^{2} \right) = \frac{E_{s} A_{0}}{A_{1}}$$
(5.30)

Onde:

P é o somatório das duas forças concentradas;

 b_c é a distância do centro do vão a uma força concentrada.

Na TABELA 5.9 estão apresentados os valores do deslocamento vertical obtidos pela equação (5.5), do deslocamento vertical obtido pela equação (5.29), e do deslocamento experimental, todos para um carregamento com duas forças concentradas iguais a 50kN, posicionadas como as dos ensaios.

A rigidez do conector, K, foi tomada como a inclinação do trecho linear da curva força *versus* deslocamento, obtida dos ensaios de cisalhamento direto, e está indicada na tabela abaixo.

Vigas	Equação (5.5)	Equação (5.29)	Experimental	Equação (5.5)/Exp	Equação (5.29)/Exp
VM1	6,27	6,85	6,85	0,92	1,00
VM2	6,28	6,83	7,64	0,82	0,89
VM3	6,98	9,32	11,55	0,60	0,81
VM4	6,90	9,29	12,43	0,56	0,75
VM5	4,86	6,14	7,40	0,66	0,83
VM6	5,00	6,13	7,50	0,67	0,82
VM7	4,90	6,10	8,03	0,61	0,76
VM8	4,88	6,11	8,31	0,59	0,74

TABELA 5.9 – Deslocamento vertical, em cm, com uma força total de 100kN¹)

¹⁾ 100kN, força de serviço

K = 1.666,65 kN/cm => VM1 e VM2

K = 1.714,18 kN/cm => VM3 e VM4

K = 2.857,14 kN/cm => VM5 a VM8

A influência do deslizamento também foi observada nas simulações numéricas. As FIGURAS 5.27 a 5.34 ilustram os deslocamentos verticais experimentais, numéricos, segundo as estratégias 1 e 3, e analíticos, segundo a equação (5.29)

FIGURA 5.44 - Deslocamento vertical no meio do vão de VM1 e VM2

FIGURA 5.45 - Deslocamento vertical no meio do vão de VM3 e VM4

FIGURA 5.46 - Deslocamento vertical no meio do vão de VM5 e VM6

FIGURA 5.47 - Deslocamento vertical no meio do vão de VM7 e VM8

Pela TABELA 5.9 e pelos gráficos pôde-se observar que os deslocamentos calculados com equação (5.29) são mais próximos aos experimentais do que os deslocamentos calculados pela equação (5.5).

Pelas simulações utilizando molas, os deslocamentos foram semelhantes aos experimentais durante grande parte do carregamento, mostrando assim a influência da rigidez dos conectores, quando comparadas ao modelo com os nós da interface acoplados.

Como foi comentado no item 5.3.1, a estratégia 2 não se mostrou adequada para as modelagens das vigas desse trabalho, diferentemente das vigas apresentadas em Malite (1993).

A FIGURA 5.48, ilustra os deslocamentos experimentais e numéricos, segundo a estratégia 2, para as vigas VM2, VM3, VM6, VM-M1 e VM-M2.

FIGURA 5.48 - Deslocamento vertical de VM2, VM3, VM6, VM-M1 e VM-M2 segundo a estratégia 2

Os gráficos da FIGURA 5.48 indicaram que para as vigas deste trabalho as variáveis do contato tornaram as vigas mais rígidas. Uma alternativa para melhorar esses resultados é alterar os valores dos coeficientes de atrito e coesão.

5.3.5 Deslizamento relativo na interface

Os deslizamentos relativos medidos pelos transdutores mais próximos ao apoio do móvel, para todas as vigas, estão ilustrados na FIGURA 5.49.

Pelas curvas da FIGURA 5.49 percebe-se que o deslizamento relativo entre a laje e o perfil foi nulo enquanto houve aderência entre eles. A força para a qual essa aderência foi rompida variou de viga para viga.

FIGURA 5.49 - Deslizamento relativo medido pelo defletômetro mais próximo ao apoio móvel para todas as vigas ensaiadas

A curva referente ao deslizamento relativo da viga VM1, curva azul clara, mostrou-se mais abatida que as demais curvas. Isso ocorreu devido ao ensaio desta viga ter sido interrompido e iniciado após a perda de aderência.

Na FIGURA 5.50 são apresentados os deslizamentos medidos ao longo da viga VM2.

Por essa figura percebe-se que os valores medidos do lado direito das vigas foram bem similares aos valores medidos do lado esquerdo. Percebe-se também que os transdutores posicionados entre os pontos de aplicação das forças concentradas praticamente não registraram deslocamentos, pois estavam posicionados em uma região onde o fluxo de cisalhamento é menor.

FIGURA 5.50 - Deslizamento relativo ao longo de VM2
As simulações numéricas das vigas, etratégia 3, também indicaram deslizamentos relativos compatíveis com os experimentas, FIGURA 5.51 e FIGURA 5.52.

FIGURA 5.51 - Deslizamento relativo, experimental e numérico, ao longo de VM1

FIGURA 5.52 - Deslizamento relativo, experimental e numérico, ao longo de VM1

5.3.6 Avaliação teórica da resistência

Neste item são apresentados os momentos resistentes elásticos e plásticos, teóricos e experimentais.

Na TABELA 5.10 estão apresentadas as propriedades de cada viga e em seguida é demonstrado o cálculo do momento resistente elástico e plástico da viga mista VM1.

				I	5			
	VM1	VM2	VM3	VM4	VM5	VM6	VM7	VM8
<i>E</i> _c (MPa)	30.960	31.537	32.885	33.834	35.570	35.777	37.363	36.559
f _c (MPa)	40,26	38,21	41,04	40,88	48,45	41,74	41,69	44,62
E (MPa)	205.000	205.000	205.000	205.000	205.000	205.000	205.000	205.000
f _y (MPa)	361,63	361,63	377,70	377,70	275,30	275,30	275,30	275,30
<i>I_a</i> (cm ⁴)	2.120,94	2120,94	1122,42	1122,42	1757,7	1757,7	1757,7	1757,7
A_a (cm ²)	35,93	35,93	18,22	18,22	29,26	29,26	29,26	29,26
∑Q _n (kN)	405,60	398,81	583,07	590,27	659,99	610,03	623,03	637,58

TABELA 5.10 - Propriedades das vigas mistas

Onde:

 \sum Qn é o somatório das resistências dos conectores situadas entre o apoio e o meio do vão da viga. A resistência dos conectores foi calculada pela equação (5.2).

a) Momento resistente elástico

VM1

$$n = \frac{E}{E_c} = \frac{205000}{30960} = 6,62$$

Posição do centro de gravidade da seção transformada, a partir da face superior da laje:

$$y = \frac{A_a y}{A_a + \frac{bt_c}{n}} = 9,96cm$$

$$I_{tr} = I_a + A_a ((d_1 + h_F + t_c) - y)^2 + \frac{bt_c^3}{12n} + (bt_c)(y - \frac{t_c}{2})^2 = 10.846,79cm^4$$

$$(W_{tr})_i = \frac{I_h}{(d + h_{F+}tc) - y} = 492,10cm^3$$

$$W_a = \frac{I_a}{d/2} = 212,09 cm^3$$

$$F_h = f_v A_a = 1299 kN$$

$$W_{ef} = W_a + \sqrt{\frac{\sum Q_n}{F_h}} \left[\left(W_{tr} \right)_i - W_a \right] = 368,40 \text{ cm}^3$$

 $M_y = W_{ef}f_y = 13.335,80$ kN.cm

b) Momento resistente plástico

VM1

 $f_c b t_c = 1.449,36 \ kN$ $(A f_y)_a = 1.299,34 \ kN$ $C_c = \sum Q_n = 405,60 \ kN$

Grau de interação:

$$\eta = \frac{405,60}{1.299,34} = 0,31$$

Posição na linha neutra na laje:

$$a = \frac{C_c}{bf_c} = 1,12cm$$

Posição na linha neutra no perfil a partir da mesa superior:

 $A.f_y$ (mesa superior.) = 238,40 kN

A.f_v (almas+enrijecedores) = 146,65 kN

A.f_y (região da alma sem enrijecedores) = 529,97 kN

$$y_{p} = \left(\frac{C_{c} - (A_{mesasup}, f_{y} + A_{alma+enr}, f_{y})}{2tf_{y}}\right) + 2,5 = 4,26cm$$

 y_c = 1,0852cm (a partir da mesa superior do perfil) yt = 5,2333cm (a partir da mesa inferior do perfil)

Momento resistente plástico

 $Mp = C_c[h_F+t_c+d-(a/2 + y_t)]+C_a(d_1-y_c)=16.747,53 \ kN.cm$

Seguindo o mesmo procedimento, foram calculados os momentos resistentes elásticos e plásticos para as demais vigas mistas. A TABELA 5.11 resume os valores encontrados, e a TABELA 5.12, a relação entre valores teóricos e experimentais.

Para os cálculos dos momentos resistentes, a resistência do concreto não levou em consideração o 0,85; por ser um fator de redução devido ao carregamento ao longo do tempo.

Vigas	M _y Experimental (kN.cm)	M _v Teórico (kN.cm)	M _p Experimental (kN.cm)	M _p Teórico (kN.cm)
V	5.625	4.848	6.450	5.714
VM1	12.900	13.336	16.575	16.748
VM2	12.225	13.299	17.213	16.553
VM3	7.763	9.634	12.338	13.412
VM4	7.459	9.651	11.888	13.490
VM5	12.863	10.796	14.738	15.429
VM6	11.895	10.584	15.075	14.854
VM7	11.700	10.681	14.513	14.991
VM8	11.550	11.462	14.175	15.180

TABELA 5.11 - Momentos resistentes elásticos e plásticos, experimentais e teóricos

Vigas	M _y experimental / M _y teórico	M _p experimental / M _p teórico	M _p experimental / M _y experimental	M _p experimental / M _y teórico
V	1,16	1,13	1,15	1,33
VM1	0,97	0,99	1,28	1,24
VM2	0,92	1,04	1,41	1,29
VM3	0,81	0,92	1,59	1,28
VM4	0,77	0,88	1,59	1,23
VM5	1,19	0,96	1,15	1,37
VM6	1,12	1,01	1,27	1,42
VM7	1,10	0,97	1,24	1,36
VM8	1,01	0,93	1,23	1,24
Média das vigas mistas	0,99	0,96	1,34	1,30

TABELA 5.12 - Relações entres os momento experimentais e teóricos

Pelos dados da TABELA 5.12 observa-se que, para a viga metálica, o momento resistente experimental foi superior ao teórico, tanto para a análise elástica quanto a plástica. Isto indica que perfis formados a frio com $\lambda_p \leq 0,673$ possuem reserva de capacidade inelástica, que não é considerada na norma brasileira NBR 14762:2001.

Em relação às vigas mistas, pelos dados da TABELA 5.12, observa-se que a relação entre o momento resistente experimental e o momento resistente teórico variou entre 0,88 e 1,04, cuja média foi 0,99. Isto indica que o modelo de cálculo considerando a plastificação total representa bem o comportamento das vigas mistas com perfis formados a frio.

CAPÍTULO

CONCLUSÕES FINAIS

Este trabalho teve como objetivo geral desenvolver uma investigação teórica e experimental sobre os conectores de cisalhamento constituídos por perfis formados a frio (perfil U) e sobre vigas mistas constituídas por perfis formados a frio (seção I e seção caixão) e laje pré-moldada de vigotas treliçadas.

Como existem poucas informações técnicas a respeito de vigas mistas em perfis formados a frio e lajes pré-moldadas de vigotas treliçadas, este trabalho teve como objetivos específicos responder as seguintes questões:

• Qual a resistência dos conectores U em perfil formado a frio e laje com vigotas treliçadas?

• Qual a melhor posição dos conectores em relação as vigotas pré-moldadas treliçadas?

• Onde posicionar a armadura de costura?

• É necessário retirar o material de enchimento na região da viga metálica e considerar uma laje maciça?

Como avaliar o momento resistente dessas vigas mistas?

A revisão bibliográfica mostrou que o estudo das vigas mistas com perfis laminados iniciou na década de 30 por meio de ensaios em vigas mistas sem a presença de conectores. Em seguida se viu a necessidade de uma conexão mecânica entre o perfil e a laje, começando assim os estudos dos diversos tipos de conectores. Por meio dos ensaios foram desenvolvidas as equações empíricas para cálculo da resistência dos conectores. Em 1964 foi proposto o método de cálculo do momento fletor resistente das vigas mistas, baseado na plastificação total do aço e concreto considerando o grau de interação.

Em seguida iniciaram os trabalhos analíticos e computacionais e com o avanço dos microcomputadores e dos códigos de cálculo para análise estrutural, muitos trabalhos foram e continuam sendo desenvolvidos com base na análise da resposta numérica. Percebeu-se que o estudo das vigas mistas em perfis laminados não é atual, porém, continua a ser uma linha de pesquisa muito estudada. Em se tratando de vigas mistas em perfis formados a frio, poucos estudos foram realizados, por ser uma solução pouco utilizada nos países desenvolvidos.

6.1 ENSAIOS DE CISALHAMENTO DIRETO

Foram realizados ensaios de cisalhamento direto em conectores em perfil U formados a frio. Os parâmetros analisados foram o tipo de carregamento, a espessura e altura do conector e a taxa de armadura transversal.

Para que o cobrimento do conector fosse aproximadamente constante a altura da laje variou de acordo com a altura do conector.

O carregamento aplicado foi com controle de deslocamento, sendo realizados ensaios com carregamento monotônico e ensaios com carregamentos cíclicos e em seguida monotônico até a ruptura, como descreve o EUROCÓDIGO 4. Devido à grande variabilidade dos resultados, não foi possível identificar diferença significativa na resposta dos conectores frente aos dois tipos de carregamento.

A variabilidade dos resultados é ocasionada principalmente pela resistência à compressão do concreto, adensamento e arranjo das partículas do agregado junto ao conector.

Dentre as variáveis analisadas, a espessura do conector apresentou maior importância em sua resistência. O comprimento do conector também é relevante, porém foi mantido constante neste trabalho.

Os corpos-de-prova com armadura transversal adicional tiveram um leve aumento na resistência e ductilidade do conector.

Os conectores com relação altura/espessura acima de 25 apresentaram maiores deslizamentos característicos, podendo ser considerados dúcteis segundo critérios do EUROCÓDIGO 4.

O modo de falha dos conectores mais espessos, 4,75mm, foi por esmagamento do concreto, dos intermediários, 3,75mm, foi por ruptura da solda, e dos mais esbeltos, 2,25mm, ruptura do conector na região da dobra próxima à solda. Mesmo tendo modos de falhas distintos o comportamento força *versus* deslizamento foi semelhante.

Com base nos ensaios deste trabalho juntamente com os resultados dos ensaios realizados por Malite (1993) e David (2003), foi proposta uma modificação da atual expressão das normas AISC:2005 e NBR 8800:2007 para cálculo da resistência

de conectores em perfil U laminado com o intuito de se avaliar melhor a resistência dos conectores U em perfil formado a frio. A equação proposta se ajusta melhor aos resultados experimentais, porém, apresenta pouca diferença em relação aos resultados obtidos pela equação normatizada.

6.2 ENSAIOS DAS VIGAS MISTAS

As oito vigas mistas ensaiadas possuíam as mesmas dimensões e tipo de carregamento, variando a espessura dos perfis, tanto da viga como dos conectores, posição da vigota treliçada e taxa de armadura transversal adicional.

A variação no grau de interação foi obtida pela variação da espessura dos perfis. Para elevar o grau de interação, foi utilizaddo um perfil mais esbelto e um conector mais espesso. Assim a posição dos conectores foi mantida constante em todas as vigas e pôde-se variar o grau de interação.

A viga de aço isolada serviu como referencia para os demais ensaios.

A armadura transversal adicional colocada na face inferior da laje, na região das vigotas, proporcionou um leve aumento da resistência da viga e um retardamento no surgimento das fissuras longitudinais na face superior da laje.

Com a armadura, o surgimento das fissuras longitudinais foi progressivo ao longo do comprimento da laje e acompanhado por fissuras em escamas. Na viga mista sem armadura adicional a fissura longitudinal surgiu rapidamente em todo o comprimento da laje e não foram desenvolvidas fissuras em escamas. A armadura transversal adicional proporcionou o mecanismo biela-tirante.

Em ambos os casos a fissura longitudinal surgiu em etapas de carregamento já elevadas. Durante a fase de serviço não foram observadas fissuras na face superior da laje.

É importante deixar claro que nos casos estudados a armadura principal da vigota treliçada estava corretamente ancorada e por isso pôde ser considerada como parte da armadura de costura. Caso isso não seja observado a armadura transversal deverá ser adicionada na região da vigota de acordo com a NBR 8800:2007.

A posição dos conectores em relação às vigotas não apresentou influência quanto ao comportamento global da viga, porém o estado limite último foi diferente. Na viga onde as treliças não coincidiram com a posição dos conectores foi observado uma excessiva separação vertical entre a laje e o perfil na região da vigota treliçada. Isso demonstra que a posição dos conectores em relação às vigotas não influencia a resistência das vigas mistas.

O deslizamento na interface mostrou ter grande influência na rigidez das vigas mistas. Nas vigas com grau de interação próximo a 0,3; VM1 e VM2, o deslocamento vertical foi semelhante ao deslocamento teórico, considerando a análise elástica, até o limite de proporcionalidade.

Nas vigas mistas com interação superior a 0,72; VM3 a VM8, o deslocamento teórico, considerando a análise elástica, foi aproximadamente 60% inferior ao experimental até o limite de proporcionalidade.

Calculando o deslocamento vertical, considerando a redução da rigidez devido ao deslizamento na interface, os valores teóricos e experimentais se aproximam.

Em relação ao deslizamento na interface notou-se que o deslizamento relativo entre a laje e o perfil é nulo enquanto existe aderência química entre eles e a força na qual essa aderência é rompida varia de viga para viga.

A redução da rigidez proveniente do deslizamento na interface foi também notada nas deformações.

Pelo diagrama de deformações obteve-se a posição das linhas neutras e a verificação do grau de interação e da plastificação da seção transversal.

Por meio das deformações verificou-se a presença de apenas uma linha neutra na laje das vigas VM3 e VM4, indicando que nestas vigas a interação foi completa

Pelos resultados obtidos das rosetas observou-se que as deformações cisalhantes teóricas foram maiores que as experimentais, refletindo a contribuição da laje na resistência à força cortante.

Em relação às vigas mistas, observou-se que a relação entre o momento resistente experimental e o momento resistente teórico variou entre 0,88 e 1,04, cuja média foi 0,99. Assim, como nas vigas em perfil laminado e soldado, conclui-se que o modelo de plastificação total pode ser considerado também satisfatório para as vigas em perfis formados a frio de seção compacta.

6.3 SIMULAÇÕES NUMÉRICAS DAS VIGAS MISTAS

Foi um dos objetivos desse trabalho desenvolver uma estratégia de modelagem numérica para simulação do comportamento estrutural de vigas mistas aço-concreto simplesmente apoiadas, com vistas principalmente à representação da interface entre laje de concreto e viga de aço. Optou-se por desenvolver os modelos por meio do pacote ANSYS versão 8.0, adotando para tanto elementos finitos disponibilizados na biblioteca do programa em questão.

Nesse trabalho foi utilizado o modelo concrete, para representar o comportamento do concreto quando submetido a tensões de tração, o qual foi associado ao critério de plastificação de von Mises para representação do concreto sob tensões de compressão. Tal procedimento mostrou-se eficaz, permitindo aos modelos numéricos alcançar níveis de carregamento próximos aos identificados experimentalmente como, por exemplo, referente à ruptura.

As simulações numéricas consideraram a não linearidade física e geométrica.

Foram utilizadas três estratégias de modelagem, a seguir estão algumas conclusões de cada estratégia.

a) Estratégia 1: nós da interface acoplados em todas as direções.

A estratégia 1 simulou uma interação completa e sem deslizamento da interface, isso resultou em resistências superiores às experimentais.

Comparando a força máxima atingida por cada viga e a força máxima experimental, observou-se que os resultados numéricos são superiores aos resultados experimentais mesmo para as vigas VM3 e VM4, que experimentalmente mostraram possuir interação completa.

Os deslocamentos verticais obtidos na simulação foram bem semelhantes aos deslocamentos obtidos analiticamente, de acordo com a equação para cálculo do deslocamento vertical em regime linear sem a consideração do deslizamento na interface.

No último estágio de carregamento as tensões na laje foram superiores às tensões de ruptura do concreto e houve plastificação total do perfil, o que não ocorreu nas vigas ensaiadas

 b) Estratégia 2: conectores modelados com elementos de casca juntamente com o par de contato.

A utilização do modelo de Mohr-Coulomb (coesão e atrito) no par de contato visou recuperar a ação da aderência existente entre viga de aço e laje de concreto na interface, impedindo a ocorrência de escorregamento entre laje e viga, até um nível de carregamento a partir do qual a aderência em questão é vencida.

O comportamento numérico das vigas mistas, apresentadas em MALITE (1993), ajustou-se bem às curvas experimentais e atingiu níveis de carregamento próximos aos alcançados experimentalmente.

Em relação à modelagem das vigas ensaiadas neste trabalho os resultados não foram satisfatórios, em alguns casos o processamento foi interrompido prematuramente devido a instabilidades numéricas e em outros casos o par de contato representou uma aderência maior que a experimental causando, por exemplo, menores deslizamentos na interface e diminuição dos deslocamentos verticais.

Apesar dessa estratégia não ter obtido muita concordância com os resultados experimentais, a representação dos conectores por elementos de casca e uso de elementos sólidos na laje, possibilitou a visualização da concentração de tensões na região de transferência de esforços entre os elementos em questão, com configuração semelhante à obtida experimentalmente.

As diferenças de resultados entre as vigas deste trabalho e as vigas de Malite (1993) podem ter sido causadas pelo espaçamento dos conectores e o grau de interação.

Calibrando o par de contato corretamente essa estratégia tende a representar de forma mais real o comportamento das vigas mistas.

 c) Estratégia 3: conectores simulados como molas e os nós da interface acoplados na direção vertical e transversal ao eixo da viga.

Dentre as três estratégias, a estratégia 3 apresentou os melhores resultados.

Por essa estratégia foi possível identificar a falha dos conectores pela deformação excessiva das molas.

Os resultados se mostraram satisfatórios, porém podem ser ainda melhores com a calibração da curva das molas, pois as curvas obtidas pelos ensaios de cisalhamento direto não correspondem ao comportamento real dos conectores nas vigas.

A análise da distribuição de tensões na seção transversal localizada no meio do vão demonstrou que nos modelos numéricos, assim como nos experimentais, não ocorreu plastificação total da seção mista.

6.4 SUGESTÕES PARA TRABALHOS FUTUROS

O escopo do presente trabalho foi estudar o comportamento de vigas mistas simplesmente apoiadas, em perfil formado a frio, com laje de vigotas pré-moldadas treliçadas e conectores em perfil U formado a frio.

A partir dos resultados dos ensaios e da simulação numérica, várias conclusões foram obtidas e algumas dúvidas surgiram. Ficam como sugestões para futuros trabalhos:

 Ensaiar vigas mistas com conectores em perfil U formado a frio com o mesmo grau de interação, porém, com espaçamentos diferentes, utilizando para isso conectores com diferentes espessuras;

- Aprofundar a pesquisa em relação à ancoragem das vigotas pré-moldadas (treliçadas ou não) em estruturas metálicas;

- Ampliar esse trabalho para vigas contínuas e semicontínuas;

- Aprimorar a estratégia 2 através da utilização de elementos de contato com características diferentes.

- Utilizar a estratégia 3 em vigas mistas constituídas por perfis formados a frio, variando a espessura do perfil.

CAPÍTULO

ALVA, G. M. S. (2000). Sobre o projeto de edifícios em estrutura mista aço-concreto. 277f. Dissertação (Mestrado em Engenharia de Estruturas). Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2000.

AMADIO C.; FRAGIOCOMO M. (2001). Effective width evaluation for steel-concrete composite beams. Journal of Constructional Steel Research. v.1, p.1-16.

AMADIO C.; FEDRIGO C.; FRAGIACOMO M.; MACORINI L. (2004). Experimental evaluation of effective width in steel-concrete composite beams. Journal of Constructional Steel Research. v. 60, p.199-220.

AMERICAN IRON AND STEEL INSTITUTE (2001). AISI: North American Specification for the Design of Cold-Formed Steel Structural Members. Washington.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION - AISC (2005): Specification for Structural Steel Buildings. Chicago.

AN, L; CEDERWALL, K. (1996). Push-out tesys on studs in high strength and normal strength concrete. Journal of Constructional Steel Research. v.36, p.15-29.

ANSOURIAN, P.; AUST, M.I.E. (1983) The effective with of continuous composite beams. Civil Enginnerin transactions, v.25, p. 63-69.

ANSYS Versão 8.0 Documentation. ANSYS, Inc.

ARIZUMI, Y.; HAMADA, S. (1981). Elastic-plastic analysis of composite beams with incomplete interaction by finite element method. Computers and Structures, v.14, n.5-6, p.453-62.

ASTA A. D.; ZONA A. (2004). Slip locking in finite elements for composite beams with deformable shear connection. Finite Elements in Analysis and Design. v. 40 p. 1907-1930.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (1984). NBR 8522 – Concreto, Determinação do Módulo de Deformação Estática e Diagrama Tensão-Deformação. Rio de Janeiro.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (1992). NBR 6152 - Determinação das Propriedades Mecânicas a Tração. Rio de Janeiro.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (1994). NBR 5739 - Ensaio de Compressão de Corpos de Prova. Rio de Janeiro.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (1994). NBR 7222 - Ensaio de tração de Corpos de Prova. Rio de Janeiro.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2003). NBR 6118 - Projeto de estruturas de concreto - Procedimento. Rio de Janeiro.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2001). NBR 14762 - Dimensionamento de estruturas de aço constituídas por perfis formados a frio. Rio de Janeiro.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2003). NBR 6355 - Perfis estruturais de aço formados a frio. Rio de Janeiro.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2007). PROJETO DE REVISÃO 8800, MAIO:2007. Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edifícios.

ASTM Designation: E8-69, Standard Methods of Tension Testing of Metallic Materials", Annual Book of Standards, American Society for Testing and Materials, 1986.

AUSTRALIAN/NEW ZEALAND STANDART (1996) AS/NZS 4600:1996 - Cold Formed Steel Structures

AVERY, P.; MAHENDRAN, M.; NASIR, A. (2000). Flexural capacity of hollow flange beams . Journal of Constructional Steel Research. v.53, p.201-223.

ARIZUMI, Y.; HAMADA, S. (1981). Elastic-plastic analysis of composite beams with incomplete interaction by finite element method. Computers and Structures, v.14, n.5-6, p.453-462.

BARNARD, P.R.; JONHSON R.P. (1965). Plastic behaviour of continuous composite beams. Inst. Civ. Engr. Proc. v.32, p.180-197.

BERNARD, E. S.; BRIDGE, R. Q.; COLEMAN, R. (1999). Measurament and assessment og geometric imperfections in thin-walled panels. Thin Walled Structures. v.33, p. 103-126.

BRADFORD, M. A.; OEHLERS, D. J.(1995). Composite Steel and Concrete Structural Members. 1. ed. Great Britian: Pergamon, 549 p.

BRADFORD, M. A. (2000). Strenght of compact steel beams with partial restraint. Journal of Constructional Steel Research. v.53, p.183-200.

BRADFORD, M. A.; Ge X. P. (1997). Elastic distortional buckling of continuous Ibeams. Journal of Constructional Steel Research. v.41, n.2/3, p.249-266.

BRITISH STANDARDS INSTITUTION (1979). BS-5400, part 5: Steel, concrete and composite bridges: code of practice for design of composite bridges. London.

CANADIAN STANDARDS ASSOCIATION (1984). Cold-formed steel structural members - CAN3-S136-M84. CSA, Toronto.

CANADIAN STANDARDS ASSOCIATION (CSA). CAN/CSA–S16.1–M89 (1986). Limit States Design of Steel Structures. Toronto.

CARLSSON M.L.R.; HAJJAR J.F.(2000) Fadigue of stud shear connectors in the negative region of steel girder brigdes: a synopsis of experimental results snd design recommendations. Final Report. Departament of Civil Engineering. Institute of Techonoly, University of Minesota.

CHAPMAN, J. C. (1964). Composite construction in steel and concrete – The behaviour of composite beams. The Structural Engineer, v. 42, n. 4, p. 115 - 125.

CHAPMAN, J. C., BALAKRISHNAN, S. (1964). Experiments on composite beams. The Structural Engineer, v. 42, n. 11, p. 369 - 383.

CHEN, W. F., HAN, D. J. (2001) Plasticity for structural engineers. 1. ed., New York, Springer-Verlag.

CANHA, R. M. F.(2004) Estudo teórico-experimental da ligação pilar-fundação por meio de cálice em estruturas de concreto pré-moldado. Tese. (Doutorado em Engenharia). Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2004.

CLARK, J. W.; HILL, H. N. (1960). Lateral buckling of beams. Journal of the Structural Division, ASCE, v.86, n.ST7, p.175-196.

DAVID, D.L. (2003). Vigas mistas com laje treliçada e perfis formados a frio: análise do comportamento estrutural. 218f. Dissertação (Mestrado em Engenharia Civil). Escola de Engenharia Civil, Universidade Federal de Goiás, Goiânia,2003.

DAVIES, C. (1969). Tests on half-scale steel-concrete composite beams with welded stud connectors. The Structural Engineer, v.47, n.1, p. 29-40.

DAVIES, J. M. (2000). Recent research advances in cold-formed steel structures. Journal of Constructional Steel Research. v.55, p.267-288.

DROPPA, A J. (1999). Análise estrutural de lajes formadas por elementos prémoldados tipo vigota com armação treliçada. 177 f. Dissertação (Mestrado em Engenharia de Estruturas). Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 1999.

EL DEBS, M. K. (2000). Concreto pré-moldado: Fundamentos e Aplicações. São Carlos. Projeto REENGE. EESC - USP.

ERDÉLYI, S.; DUNAI, L. (2002). Experimental Study on Connection of Composite Light-Gauge Floor System. Composite Estructures. In: 3rd European Conference on Steel Structures EUROSTEEL, 2002, Coimbra. p.441-450.

European Committee for Standardization (2002). Eurocode 4 - (Final Draft of prEN 1994-1-1). Design of composite steel and concrete structures - Part 1.1: General rules and rules for buildings. Bruxelles.

European Committee for Standardization (2002). Eurocode 4 - (Final Draft of prEN 1992-1-1). Design of concrete structures - Part 1.: General rules and rules for buildings. Bruxelles.

FABBROCINO. G et al. (1999). Non-linear análisis of composite beams under positive bending. Computer & Structures . n. 70. p. 77-89.

FRANGI, A.; FONTANA, M. (2003) Elasto-Plastic Model for Timber-Concrete Composite Beams with Ductile Connection, Structural Engineering International, vol. 13. n. 1, p.47-57.

FRUCHTENGARTEN, J. (1995). Sobre a estabilidade de perfis de seção aberta. São Paulo. Tese (Doutorado) - Escola Politécnica, Universidade de São Paulo, São Paulo, 1995.

GALAMBOS, T.V. (1998) Guide to stability design criteria for metal structures. New York:. John Wiley & Sons, 911p.

GATTESCO, N. (1999) Analytical modeling of nonlinear behavior of composite beams with deformable connection. Journal of Constructional Steel Research. n. 52, p. 195-218.

Grant, J. A., Fisher, J. W. and Slutter, R. G, Composite Beams with Formed Steel Deck, Engineering Journal, AISC, 14(1), 1977, pp. 24-43.

HANCOCK, G. J. (1978). Local, distortional, and lateral buckling of I-beams. Journal of the Structural Division, ASCE, v.113, n.5, p.1063-1079.

HANCOCK, G. J. (1997). Light gauge construction. Progress in Structural Engineering and Materials, v.1, n.1, p.25-30.

HANCOCK, G. J. (1997). Design for distortional buckling of flexural members. Thin Walled Structures. v.27, n.1, p. 3-12.

HANAOR, A. (2000). Tests of composite beams with cold-formed sections. Journal of Constructional Steel Research. n. 54, p. 245-264.

HAUSLLER, R. W. (1964) Strength of elastically stabilized beams. Journal of the Structural Division, ASCE, v.90, n.ST3, p.219-263.

HIRST, M.J.S.; YEO, M.F. (1980). The analysis of composite beams using standard finite element programs. Computers and Structures, v.11, n.11, p.233-37.

Instrucción para el proyecto y la ejecución de forjados unidireccionales de hormigón armado o pretensado (1997). EF-96

JOHNSON, R.P. (1975). Composite structures of steel and concrete. London: Granada Publishing Limited, 210p.

KALFAS, C. et al. (1997). Inelastic behaviour of shear connection by a method based on FEM. Journal of Constructional Steel Research, v. 44, p.283-304.

KAVANAGH, K. T.; ELLIFRITT, D. S. (1994). Design strengths of cold-formed channels in bending and torsion. Journal of Structural Enginnering, ASCE, v.120, n.5, p.1599-1607.

KIM B., WRIGHT H. D., CAIRNS R. (2001). The behaviour of through-deck welded shear connectors: an experimental and numerical study. Journal of Constructional Steel Research. v. 57, p1359-1380.

KIRCHHOF, L. D. (2004) Uma contribuição ao estudo de vigas mistas aço-concreto simplesmente apoiadas em temperatura ambiente e em situação de incêndio.

Dissertação (Mestrado em Engenharia de Estruturas). Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2004.

KLAIBER, F.W.; WIPF T.J. (2000) An alternate shear connector for composite actionc. Mid-Continent transportation symposium proceedings. Journal of Constructional Steel Research. v.44, p.107-114.

KOTINDA T. I. (2005) Modelagem numérica de vigas mistas aço-concreto simplesmente apoiadas: ênfase ao estudo da interface laje-viga. Dissertação (Mestrado em Engenharia de Estruturas). Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2005.

KOTINDA, T. I.; MUNAIAR, J. N.; MALITE, M. (2005) Modelagem numérica de vigas mistas aço-concreto simplesmente apoiadas: ênfase ao estudo da interface laje-viga. In: V Congresso de Construção Metálica e Mista, 2005, Lisboa, Portugal. Anais do V Congresso de Construção Metálica e Mista. P II 485-II 494.

LAM, D., ELLIOT, K.S., NETHERCOT, D.A. (2000) Experiments on composite steel beams with precast concrete hollow core floor slabs. Proc. Inst. Civil Eng. Struct. & Build, 140, p. 127-138.

LAM D., ELLIOTT K. S., NETHERCOT D. (1999) A. Parametric study on composite steel beams with precast hollow-cored floor slabs. Journal of Constructional Steel Research, 54, p. 283-304.

LAM D., ELLIOT K. S., NETHERCOT D. A. (1998) Push-off tests on shear studs with hollow-cored floor slabs. The Structural Engineer, v.79, n.9, p.167-174.

LAM D., Uy, B. (2003) Recent research and developmente im composite steel beams with precast hollow-cored floor slabs. Journal of the Australian Steel Institute, v.37, n.2, p. 1-14.

LEMA, L.G. (1982). Comportamento em Carga Última de Vigas Mistas com Conectores Rígidos e Flexíveis. 269 f. Dissertação (Mestrado em Ciências de Engenharia Civil – Estruturas). Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 1982.

LEONEL, E.D.; RIBEIRO, G.O.; DE PAULA, F. A. (2003). *Simulação numérica de estruturas de concreto armado por meio do MEF/ANSYS*. In: V Simpósio EPUSP sobre Estruturas de Concreto Armado.

LEONHARDT, F.; et al. Neues vorteilhaftes verbundmittel für stahlverbund-tragwerk mit höher dauerfestigkeit (New advantageous shear connection for composite structures with high fatigue strength). *Beton und Stahlbetonbau*, Berlim, 1987, n.12, p. 325-331.

MACKERLE, J. (1996). Finite element and boundary element analyses of beams and thin-walled structures – A bibliography (1994-1995). Finite Elements in Analysis and Design. v.23, p.77-89.

MACKERLE, J. (1997). Stability problems analysed by finite element and boundary element techniques – A bibliography (1994–1996). Finite Elements in Analysis and Design. v.26, p.337-353.

MAGNUS, L. R. C.; JEROME, K. H. (2000). Fatigue of stud shear connectors in the negative moment region of steel girder bridges: a synopsis of experimental results and design recomendations. Institute of Technology, University of Minnesota. Minneapolis, Minnesota. June, 2000.

MALITE, M. (1990). Sobre o Cálculo de Vigas Mistas Aço-Concreto: Ênfase em Edifícios. 144f .Dissertação (Mestrado em Engenharia de Estruturas). Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 1990.

MALITE, M. (1993). *Análise do comportamento estrutural de vigas mistas aço-concreto constituídas por perfis de chapa dobrada*. 2 v. Tese. (Doutorado em Engenharia). Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 1993.

MALITE, M.; NIMIR, W.A.; SÁLES, J.J.; GONÇALVES, R.M. (1998). Cold-formed shear connectors for composite constructions. In: 14th INTERNATIONAL SPECIALTY CONFERENCE ON COLD-FORMED STEEL STRUCTURES, St. Louis – USA, 15-16 October 1998. p.409-421.

MALITE, M.; SÁLES, J.J. (1993) Estruturas de aço constituídas por perfis de chapa dobrada: dimensionamento de barras. São Carlos, EESC-USP, 1993. 97p. (Publicação 015/93)

MALITE, M; NIMIR, W.A.; GONÇALVES, R.M; SÁLES, J.J. (2000). On the structural behavior of composite beams using cold-formed shapes. In: 15th INTERNATIONAL SPECIALTY CONFERENCE ON COLD-FORMED STEEL STRUCTURES, St. Louis – USA, 19-20 October 2000. p.307-319.

MARECEK, J.; SAMEC, J.; STUDNICKA, J. (2005) Perforbond shear connector behaviour. Proceedings of Eurosteel 5, v.b.

MENKULASI F.(2002) Horizontal shear connectors for precast prestressed bridge deck panels. 145f. Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University .Blacksburg, Virginia, 2002.

MENZIES, J. B. (1971). CP 117 and shear connectors in steel concrete composite beams made with normal-density or lightweigh concrete. The Structural Engineer. v. 49, n.3. p.137-154.

NETHERCOT, D. A. (1983). Elastic lateral buckling of beams. In: NARAYANAN, R. Beams and beam-columns: stability and strenght. Barking, UK: Applied Science. p.1-34.

NEVES, A. S.; ROLO, P. B.; FIGUEIRAS, J. A. (2000). O uso de vigotas préesforçadas com aços à vista. Nota Técnica. Universidade do Porto. Faculdade de Engenharia. 8 de abril de 2000.

NIE, J.; CAI C. S. (2003). Steel-Concrete Composite Beams Considering Shear Slip Effects. Journal of Structural Engineering, v.129, p.495-506.

OEHLERS, D.J. (1989). Splitting induced by shear connectors in composite beams. Journal of Structural Engineering, v.115, p.341-362.

OEHLERS, D. J.; NGUYEN, N. T.; AHMED, M.; BRADFORD, M. A. (1997). Partial Interaction in Composite Steel and Concrete Beams with Full Shear Connection. Journal of Constructional Steel Research. n.41, v.2/3, p.235-248.

OEHLERS, D.J.; PARK, S.M. (1992). Shear connectors in composite beams with longitudinally cracked slabs. Journal of Structural Engineering, v.118, p.2004-2022.

OEHLERS, D.J.; SVED, G. (1995). Composite beams with limited-slip-capacity shear connectors. Journal of Structural Engineering, v.121, p.932-938.

OGUEIJIOFOR, E.C.; HOUSAIN, M.U. (1997). Numerical analysis of push-out specimens with perfobond rib connectors. Computers & Structures, v.62, p.617-624.

OLIVEIRA, L. A. F. (2001). Estudo do comportamento e da resistência das vigas mistas aço-concreto constituídas por perfis formados a frio e lajes pré-fabricadas. 92 f. Dissertação (Mestrado em Engenharia de Estruturas) - Universidade Federal de Minas Gerais, Belo Horizonte, 2001.

OLLGAARD J. G.; SLUTTER R. G.; FISHER J. W. (1971). Shear Strength of Stud Connectors in Lightweight and Normal-Weight Concrete. AISC Engineering Journal, p. 55-64.

OVEN, et al. (1997). An analytical model for the analysis of composite beams with partial interaction. Computer & Structures . v. 62, n 3, p. 493-504.

PANDEY, M. D. SHERBOUNE, A. N.; (1989). Unified v. integrated approaches in lateral-torsional buckling of beams. The Structural Engineer, v.67, p.245-249.

PEKÖZ, T. (1983). Diaphram-braced thin-walled channel and Z-section beams. In: NARAYANAN, R. Beams and beam-columns: stability and strength. Barking, UK: Applied Scisence. p.161-184.

PEKÖZ, T.; SCHAFER, B. W. (1998). Computational modeling of cold-formed steel: characterizing geometric imperfections and residual stresses. Journal of Constructional Steel Research. v.47, p.193-210.

PFEIL, W., PFEIL, M. (2000). Estruturas de aço: dimensionamento prático segundo as normas brasileiras. 7a ed. Rio de Janeiro: Livros Técnicos e Científicos.

PORCO, G.; SPADEA, G.; ZINNO, R. Finite Element Analysis and Parametric Study of Steel-Concrete Composite Beams. Cement and Concrete Composities. n.16. p.261-272.

PROENÇA, S.P.B. (1988). Sobre modelos matemáticos do comportamento não-linear do concreto: análise crítica e contribuições. São Carlos. 163p. Tese (Doutorado) – Escola de Engenharia de São Carlos, Universidade de São Paulo,1998.

QUEIROZ, G.; PIMENTA, R. J.; MATA. L. A C. (2001). Elementos das estruturas mistas aço-concreto. Belo Horizonte: Editora O Lutador.

QUEIROZ, F.D.; VELLASCO, P.C.G.S.; NETHERCOT, D.A. (2005). Structural assessment of composite beams using the finite element method. Proceedings of Eurosteel 5, v. B, s. 4.3, p.49-59.

RAZAQPUR, A.G; NOFAL, M. (1989). A finite element for modeling the nonlinear behavior of shear connectors in composite structures. Computers and Structures, v.32, n.1, p.169-74.

RHODES, J. (1991). Some interesting phenomena which can occur in light gauge steel members. Proceedings of the International Conference on Steel and Aluminium Structures, ICSAS 91, Singapore, May.

RHODES, J. (1997). Research into thin-walled structures at the University of Strathclyde - a brief history. Thin Walled Structures. v.28, n.3/4, p. 201-212.

ROGERS, C. A.; SCHUSTER, R. M. (1997). Flange/Web distortional buckling of coldformed steel sections in bending. Thin Walled Structures. v.27, n.1, p. 13-29.

RONDAL, J. (2000). Cold-formed steel members and structures. General Report. Journal of Constructional Steel Research. v.55, n.1-3, p.155-158.

SALARI, M.R.; SCAPONE, E.; SHING, P.B.; FRANGOPOL, D.M. (1998). Nonlinear analysis of composite beams with deformable shear connectors. Journal of Structural Engeneering, v.124, n.10, p.1148-58.

SALVADORI, M. G. (1955). Lateral buckling of I beams. Transactions, ASCE, v.120, p.1165-1177.

SCHAFER, B. W.; PEKÖZ, T. (1999). Laterally braced cold-formed steel flexural members with edge stiffened flanges. Journal of Structural Engineering, ASCE, v.125, n.2, February, p.118-127.

SERACINO, R.; OEHLERS, D. J.; YEO, M. F. (2001). Partial interaction flexural stress in composite steel and concrete bridge beams. Engineering Structures. n. 23. p.1186-1193.

SLUTTER, R. G.; DRISCOLL, G. C. (1965). Flexural strength of steel-concrete composite beams. Journal of Structural Engineering, ASCE, v.91 n.ST2, p.71-99.

Topkaya C.; Yura J. A.; Williamson E. B. (2004). Composite shear stud strength at early concrete ages. Journal of Structural Engineering, ASCE, v.130, n.6, p.952-960.

THURLIMANN, B. (1959). Fatigue and static strength of stud shear connectors. Journal of the Americam Concrete Institute, v. 30, n.12, p.1287-1302.

TIMOSHENKO, S. P.; GERE, J. M. (1961). Theory of elastic stability. 2th.ed. New York: McGraw-Hill.

TRAHAIR, N. S. (1996). Laterally unsupported beams. Engineering Structures. v.18, n.10, p.759-768.

TRISTÃO, G. A. (2002). Comportamento de conectores de cisalhamento em vigas mistas aço-oncreto com análise da resposta numérica. 126f. Dissertação (Mestrado em Engenharia de Estruturas). Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2002.

VASCONCELLOS, A L. (2001). Análise de estruturas de edifícios de andares múltiplos em aço, constituídos de lajes com elementos pré-moldados. Anais do I Congresso Internacional da Construção Metálica, (I CICOM). São Paulo, 2001. (em CD-ROM)

VALENTE, I.; CRUZ, P. J. S. (2004). Experimental analysis of perforbond shear connection between steel and lightweight concrete. Journal of Constructional Steel Research. v.60, p.465-479.

VERÍSSIMO, G.S. (1996). Análise e comportamento de vigas de aço e vigas mistas com aberturas na alma. Belo Horizonte-MG, 1v. 265p. Dissertação (Mestrado) - Universidade Federal de Minas Gerais, 1996.

VERÍSSIMO, G. S.; VALENTE, I.; PAES, J. L. R.; CRUZ, P. J. S.; FAKURY R. H. (2006). Análise experimental de um conector de cisalhamento em chapa de aço endentada para estruturas mistas de aço e concreto. In: XXXII Jornadas Sulamericanas de Engenharia Estrutural, 2006, Campinas-SP. Anais das XXXII Jornadas Sulamericanas de Engenharia Estrutural p. 410-419

VIEIRA, F. J. R. (2001). Estudo teórico-experimental de vigas-mistas constituídas por perfis de aço preenchidos com concreto armado. 110f. Dissertação (Mestrado em Engenharia Civil - Estruturas Metálicas). Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 2001.

VIEST, I. M. (1956). Investigation of stud shear connectors for composite concrete and steel T-beams. Journal of the Americam Concrte Institute, v. 27, n. 8. p.875-891.

VIEST, I. M. (1960). Review of research on composite steel-concrete beams. Proc. ASCE, v. 86, p. 1-21.

VLASOV, B. Z. (1962) Pièces longues en voiles minces. Paris: Eyrolles. 655p.

WENG, C.C.; PEKÖZ, T. (1990). Residual stresses in cold-formed steel members. Journal of Structural Engineering, ASCE, v.116, n.6, May. p.1230-1246

WINTER, G. (1959). Cold-formed, light-gage steel construction. Journal of the Structural Engineering, ASCE, v.85, n.ST9, p.151-173.

YAM, L.C.; CHAPMAN, J.C. (1968). The inelastic behaviour of simply supported composite beams of steel and concrete. Inst. Civ. Engr. Proc. v.41, p.651-83.

YU, W. W. (2000). Cold-formed steel design. New York: John Wiley & Sons, 756p.

APÊNDICE A

O modelo concrete disponibilizado pelo ANSYS versão 8.0

Segundo a documentação do ANSYS verão 8.0, *modelo concrete* se baseia na equação a seguir.

$$\frac{F}{f_c} - S \ge 0$$

Na equação anterior, F é uma função que transforma as tensões principais (σ_1 , $\sigma_2 e \sigma_3$) em uma tensão equivalente, f_c é a resistência à compressão uniaxial do concreto e S representa a superfície de falha, definida pelas tensões principais e outros cinco parâmetros (f_t , f_c , f_{cb} , $f_1 e f_2$, Tabela 4.1).

Os três últimos parâmetros (f_{cb} , f_1 e f_2), entretanto, podem ser obtidos de acordo com as seguintes relações:

$$f_{cb} = 1, 2f_c$$

 $f_1 = 1, 45f_c$
 $f_2 = 1, 725f_c$

Vale salientar que tais valores são válidos apenas para estados de tensão com $|\sigma_h| \le \sqrt{3} f_c$, sendo $\sigma_h = (\sigma_1 + \sigma_2 + \sigma_3)/3$, tensão hidrostática.

A falha do concreto é caracterizada em quatro domínios, sendo a função F e a superfície de falha S, definidas em cada um destes domínios de forma independente. Tais domínios dependem das tensões principais (com $\sigma_1 \ge \sigma_2 \ge \sigma_3$) e se referem aos seguintes regimes:

1)
$$0 \ge \sigma_1 \ge \sigma_2 \ge \sigma_3$$
 (compressão – compressão – compressão);

- 2) $\sigma_1 \ge 0 \ge \sigma_2 \ge \sigma_3$ (tração compressão compressão);
- 3) $\sigma_1 \ge \sigma_2 \ge 0 \ge \sigma_3$ (tração tração compressão);
- 4) $\sigma_1 \ge \sigma_2 \ge \sigma_3 \ge 0$ (tração tração tração).

Nestes domínios, caso a equação inicial não seja satisfeita, o concreto permanecerá íntegro. Caso contrário o material fissura se uma das tensões principais for de tração (domínios 2, 3 e 4), ou ainda, rompe por esmagamento se as três tensões principais forem de compressão (domínio 1).

DOMÍNIO 1 (compressão – compressão – compressão, $0 \geq \sigma_{_1} \geq \sigma_{_2} \geq \sigma_{_3}$)

Neste domínio a tensão equivalente F assume o valor da tensão cisalhamento média (τ_m), de acordo com a equação:

$$F = F_1 = \frac{1}{\sqrt{15}} \left[\left(\sigma_1 - \sigma_2 \right)^2 + \left(\sigma_2 - \sigma_3 \right)^2 + \left(\sigma_3 - \sigma_1 \right)^2 \right]^{1/2}$$

A superfície de falha S, ilustrada na Figura 1, é definida pelo modelo de cinco parâmetros de Willan-Warnke e pode ser descrita em função dos parâmetros $\rho_t e \rho_c$, de acordo com a equação a seguir:

$$S = S_{1} = \frac{2\rho_{c} \left(\rho_{c}^{2} - \rho_{t}^{2}\right) \cos \theta + \rho_{c} \left(2\rho_{t} - \rho_{c}\right) \left[4\left(\rho_{c}^{2} - \rho_{t}^{2}\right) \cos^{2} \theta + 5\rho_{t}^{2} - 4\rho_{t}\rho_{c}\right]^{1/2}}{4\left(\rho_{c}^{2} - \rho_{t}^{2}\right) \cos^{2} \theta + \left(\rho_{c} - 2\rho_{t}\right)^{2}}$$

Sendo:

$$ho_t={m a}_{_0}+{m a}_{_1}\,{m \xi}+{m a}_{_2}\,{m \xi}^2\,$$
 (meridiano de tração, $\, heta=0^{
m o}$)

 $\rho_{\rm c} = b_0 + b_1 \xi + b_2 \xi^2$ (meridiano de compressão, $\theta = 60^{\circ}$)

$$\cos \theta = \frac{2\sigma_1 - \sigma_3 - \sigma_3}{\sqrt{2} \left[\left(\sigma_1 - \sigma_2\right)^2 + \left(\sigma_2 - \sigma_3\right)^2 + \left(\sigma_3 - \sigma_1\right)^2 \right]^{1/2}}$$

$$\xi = \frac{\sigma_h}{f_c} = \frac{\sigma_1 + \sigma_2 + \sigma_3}{f_c}$$

$$\xrightarrow{-\frac{\sigma_1}{f_c}} \xrightarrow{-\frac{\sigma_1}{f_c}} \xrightarrow{-\frac{\sigma_3}{f_c}} \xrightarrow{-\frac{\sigma_3}{f_c}$$

FIGURA 1 - Superficie definida pelo modelo de cinco parâmetros de Willan-Warnke. Fonte: documentação do ANSYS versão 8.0

Como nota-se pela Figura 2, a seção transversal ao eixo octaédrico é constituída por partes de uma curva elíptica em cada setor de 120°, sendo que em cada setor se configura uma simetria em 60°.

FIGURA 2 - Seção vista no plano de Nadai, relativa ao modelo de Willan-Warnke. Fonte: documentação do ANSYS versão 8.0

Os meridianos de tração e compressão são definidos ajustando-se os coeficientes a_0 , a_1 , a_2 , b_0 , b_1 e b_2 , de forma que f_t , f_c , f_{cb} , f_1 e f_2 pertençam à superfície de falha, FIGURA 3.

Sendo assim, os coeficientes em questão são determinados por meio da resolução dos sistemas de equações a seguir.

$$\begin{cases} \frac{F_{1}}{f_{c}}(\sigma_{1}=f_{t},\sigma_{2}=0,\sigma_{3}=0)\\ \frac{F_{1}}{f_{c}}(\sigma_{1}=0,\sigma_{2}=\sigma_{3}=-f_{cb})\\ \frac{F_{1}}{f_{c}}(\sigma_{1}=-\sigma_{h}^{a},\sigma_{2}=\sigma_{3}=-\sigma_{h}^{a}-f_{1}) \end{cases} = \begin{bmatrix} 1 & \xi_{t} & \xi_{t}^{2}\\ 1 & \xi_{cb} & \xi_{cb}^{2}\\ 1 & \xi_{1} & \xi_{1}^{2} \end{bmatrix} \begin{bmatrix} a_{0}\\ a_{1}\\ a_{2} \end{bmatrix} \\ \begin{cases} \frac{F_{1}}{f_{c}}(\sigma_{1}=\sigma_{2}=0,\sigma_{3}=-\sigma_{h}^{a}-f_{1})\\ \frac{F_{1}}{f_{c}}(\sigma_{1}=\sigma_{2}=-\sigma_{h}^{a},\sigma_{3}=-\sigma_{h}^{a}-f_{2})\\ 0 \end{bmatrix} = \begin{bmatrix} 1 & \xi_{c} & \xi_{c}^{2}\\ 1 & \xi_{2} & \xi_{2}^{2}\\ 1 & \xi_{0} & \xi_{0}^{2} \end{bmatrix} \begin{bmatrix} b_{0}\\ b_{1}\\ b_{2} \end{bmatrix}$$

Partindo da equações anteriores, têm-se nas equações dos sistemas:

$$\xi_{c} = -\frac{1}{3}; \ \xi_{t} = \frac{f_{t}}{3f_{c}}; \ \xi_{cb} = -\frac{2f_{cb}}{3f_{c}}; \ \xi_{1} = -\frac{\sigma_{h}^{a}}{f_{c}} - \frac{2f_{1}}{3f_{c}}; \ \xi_{2} = -\frac{\sigma_{h}^{a}}{f_{c}} - \frac{f_{2}}{3f_{c}}$$

Considerando ainda que os meridianos interceptam o eixo hidrostático em ξ_0 (Figura 3), têm-se que:

$$a_0 + a_1 \xi_0 + a_2 \xi_0^2 = 0$$

Como a superfície de falha deve se manter convexa, a razão ρ_t / ρ_c limita-se a um valor inferior de 0,5 (no qual a seção transversal ao eixo octaédrico é triangular) e um valor superior de 1,25. É interessante mencionar que para $\rho_t / \rho_c = 1$, a seção transversal ao eixo octaédrico é circular.

Além disso, os coeficientes a_0 , a_1 , a_2 , b_0 , b_1 e b_2 devem satisfazer as seguintes condições:

$$a_0 > 0$$
 , $a_1 \le 0$, $a_2 \le 0$ e $b_0 > 0$, $b_1 \le 0$, $b_2 \le 0$

Dessa forma, a superfície de falha é fechada e considera ruptura do material para tensões hidrostáticas elevadas ($\xi > \xi_2$), fato que não se verifica experimentalmente.

FIGURA 3 - Meridianos da superfície de falha de Willan-Warnke. Fonte: Documentação do ANSYS verão 8.0

DOMÍNIO 2 (tração – compressão – compressão, $\sigma_1 \ge 0 \ge \sigma_2 \ge \sigma_3$)

Neste domínio a tensão equivalente F é calculada como no domínio 1, desconsiderando-se, porém, a tensão de tração σ_1 , de acordo com a equação:

$$F = F_2 = \frac{1}{\sqrt{15}} \left[\left(\sigma_2 - \sigma_3 \right)^2 + \sigma_2^2 + \sigma_3^2 \right]^{1/2}$$

A superfície de falha S utilizada no domínio 1 é aqui minorada devido à existência de uma tensão de tração, de acordo com a equação:

$$\mathbf{S} = \mathbf{S}_2 = \left(\mathbf{1} - \frac{\sigma_1}{f_t}\right) \mathbf{S}_1$$

Os valores de ρ_t e ρ_c , presentes na expressão de S₁, assim como os valores dos coeficientes a₀, a₁, a₂, b₀, b₁ e b₂, devem ser calculados como no domínio 1, porém, desconsiderando-se a tensão de tração σ_1 na expressão de ξ .

$$\xi = \frac{\sigma_h}{f_c} = \frac{\sigma_2 + \sigma_3}{f_c}$$

Se o critério de falha for satisfeito, ocorrerá uma fissura no plano perpendicular à tensão principal de tração σ_1 .

DOMÍNIO 3 (tração – tração – compressão, $\sigma_1 \ge \sigma_2 \ge 0 \ge \sigma_3$)

Neste domínio a verificação do critério é realizada para cada tensão principal de tração, separadamente. Sendo assim, a tensão equivalente F se torna a própria tensão principal analisada.

$$F = F_3 = \sigma_i; i = 1, 2$$

A superfície de falha se resume à resistência uniaxial de tração (adimensionalizada pela resistência uniaxial de compressão) majorada devido existência de uma tensão de compressão σ_3 .

$$S = S_3 = \frac{f_t}{f_c} \left(1 + \frac{\sigma_3}{f_c} \right); i = 1, 2$$

Caso o critério de falha seja satisfeito para ambos os casos (i = 1,2), ocorrerão duas fissuras, uma perpendicular à tensão principal σ_1 e a outra perpendicular à tensão principal σ_1 . Caso o critério de falha seja satisfeito apenas para i = 1, ocorrerá apenas uma fissura, perpendicular a σ_1 .

DOMÍNIO 4 (tração – tração – tração, $\sigma_1 \ge \sigma_2 \ge 0 \ge \sigma_3$)

Neste domínio, assim como no domínio 3, a verificação do critério é realizada para cada tensão principal de tração. A tensão equivalente F é dada por:

$$F = F_4 = \sigma_i; i = 1, 2, 3$$

A superfície de falha é tomada como a própria resistência uniaxial de tração, adimensionalizada pela resistência uniaxial de compressão.

$$S = S_3 = \frac{f_t}{f_c}; i = 1, 2, 3$$

Para cada caso analisado (i = 1,2,3), caso o critério de falha seja satisfeito ocorrerá uma fissura segundo o plano perpendicular à tensão principal correspondente.

A Figura 4 ilustra a superfície de falha para um estado de tensão aproximadamente biaxial.

FIGURA 4 - Superfície de falha para um estado de tensão aproximadamente biaxial. Fonte: Documentação do ANSYS verão 8.0

APÊNDICE B

Resultados dos ensaios de cisalhamento direto

O Apêndice B complementa os resultados contidos na tese, apresentando, através de tabelas e gráficos, todos os resultados obtidos nos ensaios de cisalhamento direto. As figuras 1, 2 e 3 ilustram a posição da instrumentação utilizada, juntamente com a legenda que será utilizada nos gráficos.

FIGURA 1 - Posição dos transdutores de deslocamento utilizados para medir o deslocamento vertical da laje e do perfil

FIGURA 2 - Posição dos transdutores de deslocamento utilizados para medir a separação entre a laje e o perfil

Conector U75x50x2,25 - laje h =120mm (carregamento monotônico)									
Forca					·				
por	Desl. do pistão	1V	2V	3V	4V	1H	2H	3H	4H
conector									
kN	mm	mm	mm	mm	mm	mm	mm	mm	mm
0	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10	1,47	-0,01	0,02	0,00	0,04	0,00	-0,04	-0,09	0,01
20	2,11	-0,01	0,04	-0,01	0,08	0,03	-0,05	-0,11	0,04
30	2,54	0,00	0,07	0,00	0,13	0,05	-0,06	-0,14	0,06
40	2,89	0,04	0,09	0,00	0,18	0,07	-0,08	-0,16	0,08
50	3,18	0,10	0,12	0,01	0,25	0,09	-0,10	-0,17	0,09
60	3,45	0,17	0,15	0,01	0,33	0,11	-0,12	-0,17	0,10
70	3,72	0,26	0,20	0,02	0,43	0,13	-0,16	-0,17	0,09
80	4,02	0,38	0,25	0,04	0,55	0,14	-0,21	-0,19	0,09
90	4,32	0,53	0,31	0,07	0,72	0,17	-0,25	-0,19	0,09
100	4,75	0,80	0,43	0,16	1,02	0,20	-0,30	-0,16	0,09
120	6,68	2,37	1,47	1,28	2,56	0,26	-0,34	-0,03	0,09
127	11,87	7,00	6,36	6,27	7,15	0,78	0,27	0,48	0,09
120	12,51	7,57	7,11	7,02	7,66	0,84	0,35	0,58	0,10
100	12,78	7,76	7,82	7,78	7,88	0,96	0,53	0,71	0,10
70	13,04	7,93	9,07	9,10	8,13	1,34	1,26	1,00	0,09
46	13,14	8,01	11,38	11,17	8,11	1,48	3,16	1,15	0,29

TABELA 1 - Deslocamento relativo e	e separação horizontal,	CP A22*
------------------------------------	-------------------------	---------

TABELA 2 - Deslocamento relativo e separação horizontal, A22-1 (continua)

Conector U 75x50x2,25- laje h=120mm (carregamento cíclico)											
Força											
por	Desl. do pistão	1V	2V	3V	4V	1H	2H	3H	4H		
conector											
kN	mm	mm	mm	mm	mm	mm	mm	mm	mm		
0	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
10	1,77	-0,04	0,22	-0,12	0,07	0,25	-0,25	-0,24	0,47		
20	2,79	-0,06	0,54	-0,31	0,17	0,65	-0,57	-0,71	1,10		
30	3,41	-0,10	0,78	-0,42	0,24	0,93	-0,79	-1,06	1,49		
40	3,88	-0,14	0,97	-0,46	0,31	1,12	-0,97	-1,34	1,74		
50	4,53	-0,19	1,32	-0,50	0,42	1,48	-1,35	-1,82	2,25		
60	4,71	-0,19	1,36	-0,49	0,44	1,50	-1,38	-1,89	2,27		
	Conector U 75x50x2,25- laje h=120mm (carregamento cíclico)										
--------------------------	--	-------	------	-------	------	------	-------	-------	------	--	--
Força por conector	Desl. do pistão	1V	2V	3V	4V	1H	2H	3H	4H		
kN	mm	mm	mm	mm	mm	mm	mm	mm	mm		
70	4,95	-0,19	1,46	-0,45	0,49	1,54	-1,42	-1,99	2,31		
80	5,27	-0,19	1,64	-0,35	0,57	1,60	-1,50	-2,16	2,41		
90	5,57	-0,18	1,81	-0,24	0,64	1,64	-1,58	-2,31	2,51		
100	5,88	-0,17	2,02	-0,10	0,72	1,68	-1,66	-2,47	2,59		
120	6,67	-0,04	2,58	0,38	0,93	1,71	-1,83	-2,79	2,67		
130	7,20	0,09	2,98	0,76	1,09	1,69	-1,91	-2,89	2,71		
140	7,86	0,38	3,48	1,27	1,29	1,67	-2,00	-2,89	2,89		
149	9,03	1,22	4,41	2,24	1,84	1,69	-2,09	-2,89	2,84		
140	11,86	4,04	6,98	4,83	4,43	1,96	-1,95	-2,44	3,04		
135	12,11	4,30	7,29	5,16	4,70	1,96	-1,94	-2,40	3,04		
36	12,16	4,27	-	-	4,97	1,82	4,19	0,49	5,13		

	Conector U	75x50x2	,25 - laje	h =120m	nm (carre	gamento	o cíclico)		
Força						-			4H
por conector	Desl. do pistão	1V	2V	3V	4V	1H	2H	3H	
kN	mm	mm	mm	mm	mm	mm	mm	mm	mm
0	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
11	0,56	0,08	0,31	-0,09	0,20	0,48	-0,27	-0,41	0,66
20	0,63	0,08	0,33	-0,08	0,21	0,49	-0,27	-0,40	0,68
30	0,73	0,10	0,35	-0,07	0,22	0,50	-0,26	-0,40	0,70
40	0,92	0,13	0,44	0,00	0,37	0,64	-0,36	-0,48	0,92
50	0,99	0,15	0,46	0,00	0,39	0,64	-0,37	-0,48	0,91
60	1,05	0,16	0,49	0,03	0,41	0,64	-0,38	-0,49	0,91
71	1,16	0,20	0,54	0,07	0,47	0,65	-0,40	-0,51	0,90
80	1,31	0,27	0,63	0,13	0,57	0,69	-0,45	-0,58	0,90
90	1,47	0,35	0,74	0,22	0,71	0,74	-0,51	-0,66	0,90
100	1,68	0,47	0,87	0,33	0,88	0,80	-0,58	-0,75	0,93
110	1,90	0,61	1,04	0,48	1,07	0,85	-0,67	-0,87	0,93
120	2,21	0,84	1,26	0,67	1,37	0,87	-0,76	-0,94	0,91
130	2,66	1,24	1,62	1,01	1,83	0,93	-0,88	-1,01	0,89
130	2,68	1,25	1,63	1,02	1,84	0,94	-0,88	-1,01	0,89
130	2,67	1,26	1,63	1,02	1,85	0,94	-0,88	-1,01	0,89
130	2,70	1,27	1,64	1,03	1,87	0,94	-0,88	-1,01	0,89
140	9,98	8,73	9,06	8,35	9,27	2,14	-1,02	-0,16	1,38
143	11,55	10,27	10,66	9,93	10,88	2,28	-1,03	-0,05	1,45
130	12,94	11,66	12,25	11,47	12,29	2,46	-1,05	0,04	1,69
120	13,11	11,80	12,56	11,76	12,44	2,57	-0,93	0,16	1,86
114	13,69	12,38	13,29	12,46	13,02	2,67	-0,76	0,35	2,03
102	13,74	12,46	13,37	12,52	13,01	3,06	0,16	0,84	2,01

TABELA 3 - Deslocamento relativo e separação horizontal, CP A22-2

TABELA 4 - Deslocamento relativo e separação horizontal, CP A3

	Conector U	75x50x3,	75 – laje	h = 120i	mm (carr	egament	to cíclico)		
Força por conector	Desl. do pistão	1V	2V	3V	4V	1H	2H	3H	4H
kN	mm	mm	mm	mm	mm	mm	mm	mm	mm
0	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10	0,19	-0,01	0,03	0,00	0,03	0,05	-0,03	0,00	0,07
22	0,35	-0,01	0,08	0,03	0,07	0,08	-0,05	0,00	0,14
30	0,44	-0,03	0,12	0,06	0,10	0,12	-0,06	0,00	0,19
41	0,60	-0,05	0,19	0,09	0,14	0,18	-0,10	0,00	0,28
50	0,75	-0,09	0,26	0,14	0,25	0,27	-0,18	0,00	0,41
61	1,03	-0,18	0,41	0,20	0,41	0,49	-0,33	0,00	0,64
71	1,10	-0,17	0,44	0,22	0,44	0,50	-0,34	0,00	0,65
80	1,18	-0,16	0,48	0,25	0,47	0,51	-0,38	0,00	0,66
90	1,27	-0,14	0,54	0,29	0,51	0,51	-0,42	0,00	0,67
100	1,39	-0,11	0,61	0,35	0,55	0,51	-0,46	0,00	0,67
110	1,51	-0,06	0,70	0,41	0,60	0,51	-0,51	0,00	0,67
120	1,67	-0,01	0,80	0,50	0,69	0,51	-0,54	0,00	0,67
130	1,87	0,07	0,93	0,62	0,77	0,51	-0,56	0,00	0,64
140	2,08	0,16	1,09	0,76	0,88	0,51	-0,66	0,00	0,62
150	2,38	0,28	1,31	0,96	1,03	0,50	-0,77	0,00	0,56
160	2,66	0,42	1,53	1,15	1,19	0,47	-0,86	0,00	0,50
170	3,08	0,68	1,88	1,46	1,44	0,45	-0,99	0,00	0,45
180	3,80	1,24	2,54	2,11	1,98	0,45	-1,12	0,00	0,41
188	5,63	2,87	4,30	3,86	3,67	0,51	-1,28	0,00	0,36
180	6,57	3,87	5,26	4,81	4,68	0,64	-1,27	0,00	0,37
170	6,69	4,11	5,40	4,95	4,92	0,70	-1,21	0,00	0,46
135	6,73	4,62	5,49	5,01	5,38	1,11	-0,90	0,20	0,82

TABELA 5 - Deslocamento relativo e separação horizontal, CP A3** (continua)

Con	Conector U125x50x4,75 - laje h =160mm (armadura adiciona e carregamento cíclico)								
Força por conector	Desl. do pistão	1V	2V	3V	4V	1H	2H	3H	4H
kN	mm	mm	mm	mm	mm	mm	mm	mm	mm
0	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
11	0,21	0,01	0,02	0,00	0,03	0,03	-0,01	-0,03	0,03
21	0,35	0,02	0,04	0,01	0,07	0,05	0,01	-0,03	0,04
29	0,48	0,04	0,07	0,00	0,10	0,08	0,03	-0,04	0,06
40	0,63	0,07	0,12	0,01	0,16	0,14	0,02	-0,06	0,11
49	0,74	0,09	0,16	0,00	0,23	0,20	0,02	-0,08	0,17
52	0,78	0,10	0,17	0,00	0,25	0,22	0,01	-0,09	0,19
61	0,92	0,13	0,23	0,01	0,33	0,28	-0,02	-0,14	0,25
69	1,02	0,17	0,28	0,01	0,40	0,34	-0,06	-0,20	0,30

Con	Conector U125x50x4,75 - laje h =160mm (armadura adiciona e carregamento cíclico)								
Força por conector	Desl. do pistão	1V	2V	3V	4V	1H	2H	3H	4H
kN	mm	mm	mm	mm	mm	mm	mm	mm	mm
81	1,32	0,30	0,53	0,00	0,62	0,64	-0,25	-0,47	0,56
91	1,41	0,34	0,57	0,01	0,67	0,64	-0,28	-0,50	0,56
101	1,52	0,40	0,64	0,02	0,74	0,65	-0,31	-0,54	0,57
120	1,83	0,64	0,86	0,05	1,01	0,76	-0,44	-0,65	0,60
130	2,05	0,83	1,02	0,11	1,20	0,82	-0,53	-0,69	0,64
140	2,30	1,04	1,21	0,20	1,42	0,90	-0,62	-0,76	0,66
150	2,60	1,29	1,44	0,33	1,67	0,96	-0,70	-0,82	0,68
160	2,99	1,65	1,75	0,57	2,01	0,99	-0,80	-0,90	0,68
170	3,53	2,17	2,19	0,93	2,48	1,00	-0,89	-1,00	0,61
180	4,41	3,01	2,95	1,61	3,27	1,01	-1,02	-1,05	0,47
190	6,22	4,72	4,58	3,23	4,98	1,01	-1,20	-1,06	0,34
198	9,39	7,79	7,56	6,37	7,93	0,94	-1,30	-0,99	0,25
190	14,08	12,41	12,43	11,15	11,50	0,98	-1,10	-0,55	0,52
180	14,96	13,10	13,42	12,07	11,81	1,16	-0,94	-0,20	0,66
170	15,63	13,60	14,21	12,82	12,37	1,36	-0,74	0,16	0,87
160	16,22	14,00	14,94	13,46	12,79	1,58	-0,53	0,54	1,15
155	16,45	14,15	15,20	13,68	12,94	1,70	-0,42	0,72	1,17

TABELA 5 - Deslocamento	relativo e separação	horizontal, CP A3*	** (conclusão)
	1 3	,	· · · · · · · · · · · · · · · · · · ·

TABELA 6 - Deslocamento relativo e separação horizontal, CP A4*

	Conector U75	5x50x4,75	5- laje h =	=120mm	(carrega	mento m	onotônico))	
Força por conector	Desl. do pistão	1V	2V	3V	4V	1H	2H	3H	4H
kN	mm	mm	mm	mm	mm	mm	mm	mm	mm
0	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10	0,82	-0,01	-0,01	0,02	0,04	0,04	-0,04	-0,03	0,04
20	1,61	-0,01	-0,01	0,04	0,06	0,06	-0,04	0,00	0,04
30	2,33	0,01	0,00	0,04	0,07	0,07	-0,05	0,01	0,02
40	3,01	0,03	0,01	0,06	0,08	0,09	-0,04	0,03	0,02
50	3,60	0,04	0,01	0,07	0,10	0,11	-0,03	0,04	0,01
60	4,11	0,05	0,03	0,09	0,13	0,13	-0,03	0,05	0,01
70	4,55	0,07	0,05	0,12	0,17	0,14	-0,03	0,06	0,00
80	4,96	0,09	0,07	0,15	0,19	0,17	-0,02	0,07	0,01
90	5,33	0,11	0,09	0,19	0,23	0,21	-0,01	0,07	0,03
100	5,67	0,14	0,11	0,23	0,28	0,21	0,01	0,07	0,04
110	6,03	0,20	0,16	0,28	0,38	0,20	0,01	0,07	0,04
120	6,41	0,29	0,21	0,35	0,51	0,23	0,03	0,05	0,08
130	6,79	0,42	0,32	0,42	0,67	0,29	0,03	0,04	0,12
140	7,20	0,59	0,46	0,51	0,87	0,29	0,06	0,02	0,20
150	7,71	0,83	0,70	0,62	1,14	0,24	0,13	0,01	0,31
160	8,37	1,23	1,08	0,77	1,54	0,23	0,34	0,02	0,46
165	9,06	1,71	1,58	0,93	2,03	0,37	0,57	0,00	0,66
160	10,11	2,53	2,46	1,15	2,73	0,71	1,00	0,10	0,99
150	10,84	3,10	3,36	1,33	3,16	1,01	1,42	0,33	1,38
140	11,48	3,64	4,32	1,39	3,46	1,26	1,84	0,64	1,85

TABELA 7 - Deslocamento relativo e separação horizontal, CP A4-1

	Conector U	75x50x4	,75- laje	h = 120m	ım (carre	gamento	cíclico)		
Força por conector	Desl. do pistão	1V	2V	3V	4V	1H	2H	3H	4H
kN	mm	mm	mm	mm	mm	mm	mm	mm	mm
0	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10	0,95	0,00	0,01	-0,01	0,02	0,05	-0,01	0,05	-0,02
20	1,72	0,00	0,03	-0,01	0,04	0,06	-0,01	0,05	-0,02
30	2,40	0,00	0,04	0,00	0,05	0,06	0,01	0,04	-0,01
40	3,08	0,00	0,05	0,02	0,07	0,06	0,01	0,04	-0,01
50	3,63	0,00	0,06	0,01	0,08	0,06	0,01	0,04	0,00
60	4,17	0,00	0,08	0,03	0,13	0,07	0,01	0,04	0,00
70	4,85	0,00	0,13	0,03	0,19	0,10	-0,05	0,05	-0,01
80	5,08	0,00	0,15	0,03	0,21	0,10	-0,05	0,07	-0,01
90	5,47	0,00	0,20	0,04	0,27	0,10	-0,06	0,08	-0,01

	Conector U	75x50x4	,75- laje	h = 120m	nm (carre	gamento	cíclico)		
Força por conector	Desl. do pistão	1V	2V	3V	4V	1H	2H	3H	4H
kN	mm	mm	mm	mm	mm	mm	mm	mm	mm
100	5,86	0,00	0,24	0,05	0,34	0,09	-0,09	0,08	0,00
110	6,29	0,00	0,30	0,06	0,56	0,05	-0,13	0,07	0,02
120	6,76	0,00	0,37	0,12	0,81	0,03	-0,18	0,07	0,04
130	7,24	0,00	0,45	0,22	1,07	0,01	-0,18	0,06	0,07
140	7,77	0,18	0,55	0,34	1,31	0,02	-0,15	0,09	0,18
150	8,56	0,78	0,75	0,62	1,77	0,04	-0,09	0,17	0,45
159	9,94	1,98	1,47	1,32	2,98	0,14	0,12	0,41	0,96
150	11,11	3,26	2,10	2,06	4,38	0,68	0,37	0,91	1,57
140	11,63	3,81	2,22	2,46	5,03	1,12	0,59	1,45	1,96
130	12,16	4,31	2,26	2,88	5,75	1,57	0,83	1,83	2,34
125	12,29	4,42	2,26	3,00	5,93	1,69	0,91	1,91	2,44

TABELA 7 - Deslocamento relativo e separação horizontal, CP A4-1

	Conector U ²	100x50x4	1,75 - laje	e h =140r	nm (carre	egament	o cíclico)		
Força por conector	Desl. do pistão	1V	2V	3V	4V	1H	, 2Н	3H	4H
kN	mm	mm	mm	mm	mm	mm	mm	mm	mm
0	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
11	0,37	0,06	0,06	0,02	0,11	0,00	-0,07	-0,12	0,13
20	0,44	0,06	0,07	0,03	0,12	0,00	-0,08	-0,13	0,13
30	0,52	0,07	0,08	0,04	0,13	0,00	-0,08	-0,14	0,11
40	0,57	0,08	0,09	0,06	0,13	0,00	-0,08	-0,14	0,11
50	0,64	0,09	0,11	0,08	0,14	0,00	-0,09	-0,16	0,09
60	0,70	0,10	0,12	0,07	0,14	0,00	-0,10	-0,16	0,07
71	0,77	0,11	0,13	0,08	0,15	0,00	-0,11	-0,17	0,05
80	0,82	0,12	0,14	0,10	0,16	0,00	-0,12	-0,18	0,04
90	0,87	0,12	0,15	0,10	0,16	0,00	-0,12	-0,19	0,04
101	0,92	0,14	0,16	0,11	0,17	0,00	-0,12	-0,19	0,03
120	1,06	0,19	0,20	0,14	0,20	0,00	-0,14	-0,21	-0,02
131	1,16	0,22	0,24	0,17	0,23	0,00	-0,16	-0,25	-0,07
140	1,24	0,26	0,28	0,19	0,26	0,00	-0,18	-0,28	-0,12
150	1,33	0,29	0,33	0,21	0,30	0,00	-0,19	-0,31	-0,18
160	1,47	0,34	0,39	0,26	0,34	0,00	-0,23	-0,35	-0,25
170	1,58	0,39	0,46	0,29	0,39	0,00	-0,27	-0,39	-0,32
180	1,74	0,47	0,55	0,34	0,46	0,00	-0,31	-0,42	-0,41
190	1,90	0,57	0,66	0,38	0,54	0,00	-0,38	-0,44	-0,49
200	2,13	0,69	0,79	0,46	0,65	0,00	-0,46	-0,47	-0,68
210	2,38	0,82	0,90	0,58	0,79	0,00	-0,54	-0,56	-0,84
220	2,74	1,01	1,00	0,69	0,97	0,00	-0,64	-0,58	-1,09
225	3,28	1,30	1,22	0,92	1,26	0,00	-0,77	-0,55	-1,41
220	3,78	1,59	1,41	1,12	1,53	0,00	-0,78	-0,38	-1,61
210	4,09	1,80	1,46	1,23	1,72	0,00	-0,67	-0,23	-1,67
200	4,35	1,96	1,54	1,33	1,91	0,00	-0,60	-0,04	-1,63
190	4,68	2,16	1,63	1,45	2,11	-0,01	-0,46	0,20	-1,48
180	5,06	2,38	1,80	1,56	2,33	0,00	-0,24	0,52	-1,26
176	5,26	2,48	1,87	1,62	2,43	0,00	-0,16	0,67	-1,16

TABELA 8 - Deslocame	ento relativo e sep	aração horizontal	. CP A4-2

TABELA 9 - Deslocamento relativo e separação horizontal, CP B22

	Conector U100x50x2,25 - laje h =140mm (carregamento cíclico)														
Força por conector	Desl. do pistão	1V	2V	3V	4V	1H	2H	3H	4H						
kN	mm	mm	mm	mm	mm	mm	mm	mm	mm						
0	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00						
10	0,34	0,05	0,08	-0,02	0,12	0,16	-0,12	-0,17	0,20						
21	0,44	0,05	0,10	-0,03	0,14	0,20	-0,11	-0,18	0,23						
30	0,53	0,08	0,13	-0,01	0,17	0,23	-0,12	-0,20	0,26						
40	0,58	0,08	0,14	-0,01	0,18	0,24	-0,13	-0,22	0,28						
49	0,67	0,09	0,20	0,02	0,21	0,35	-0,20	-0,37	0,41						
61	0,74	0,11	0,23	0,04	0,24	0,35	-0,21	-0,37	0,41						
70	0,81	0,14	0,27	0,07	0,27	0,36	-0,21	-0,40	0,42						
80	0,94	0,19	0,34	0,11	0,33	0,39	-0,22	-0,43	0,44						

	Conector U100x50x2,25 - laje h =140mm (carregamento cíclico)													
Força														
por	Desl. do pistão	1V	2V	3V	4V	1H	2H	3H	4H					
conector														
kN	mm	mm	mm	mm	mm	mm	mm	mm	mm					
90	1,07	0,26	0,42	0,17	0,42	0,43	-0,23	-0,48	0,44					
100	1,21	0,34	0,50	0,24	0,50	0,47	-0,24	-0,53	0,43					
111	1,37	0,44	0,61	0,33	0,62	0,50	-0,26	-0,59	0,41					
120	1,56	0,56	0,75	0,45	0,76	0,53	-0,29	-0,64	0,41					
130	1,83	0,77	0,96	0,65	0,99	0,55	-0,31	-0,71	0,37					
140	2,19	1,04	1,26	0,93	1,28	0,58	-0,32	-0,71	0,36					
150	3,77	2,53	2,84	2,50	2,85	0,59	-0,40	-1,05	0,14					
160	9,89	8,49	8,92	8,64	8,97	0,72	-1,01	-1,58	-0,25					
162	11,35	9,90	10,36	10,11	10,43	0,72	-1,08	-1,73	-0,28					
149	11,98	10,63	10,97	10,70	11,20	0,73	-1,09	-1,78	-0,03					
121	12,25	11,11	11,30	11,13	11,80	1,08	-0,62	-0,84	0,66					

TABELA 9 - Deslocamento relativo	e separação	horizontal,	CP B22
----------------------------------	-------------	-------------	--------

	Conector U100x50x3,75 - laje h =140mm (carregamento monotônico)												
Força por conector	Desl. do pistão	1V	2V	3V	4V	1H	2H	3H	4H				
kN	mm	mm	mm	mm	mm	mm	mm	mm	mm				
0	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00				
10	0,88	0,00	0,00	0,02	0,01	-0,02	-0,02	-0,01	-0,01				
20	1,27	0,01	0,00	0,04	0,03	-0,02	-0,03	-0,01	-0,01				
30	1,81	0,02	0,01	0,06	0,06	-0,01	-0,03	-0,01	0,00				
40	2,37	0,03	0,02	0,07	0,08	0,00	-0,03	0,01	0,00				
50	2,93	0,05	0,04	0,10	0,11	0,00	-0,02	0,03	0,00				
60	3,45	0,08	0,08	0,14	0,14	0,01	-0,02	0,04	0,00				
70	3,94	0,10	0,13	0,18	0,18	0,02	-0,02	0,06	0,00				
80	4,38	0,14	0,19	0,24	0,22	0,03	-0,02	0,08	-0,01				
90	4,80	0,18	0,27	0,31	0,27	0,03	-0,02	0,10	0,00				
100	5,19	0,22	0,36	0,38	0,32	0,05	-0,03	0,12	0,00				
110	5,59	0,28	0,48	0,48	0,40	0,05	-0,02	0,14	0,00				
120	6,01	0,36	0,61	0,59	0,49	0,06	-0,02	0,16	0,00				
130	6,49	0,49	0,82	0,75	0,61	0,05	-0,02	0,18	0,03				
140	6,95	0,67	1,05	0,92	0,75	0,06	-0,02	0,21	0,07				
150	7,66	1,02	1,43	1,20	1,01	0,09	0,01	0,25	0,15				
160	8,74	1,60	2,12	1,81	1,61	0,11	0,11	0,35	0,24				
170	10,75	3,03	3,63	3,31	2,97	0,34	0,36	0,47	0,56				
176	17,12	8,75	9,16	8,93	8,64	0,95	0,97	0,94	1,12				
170	18,06	9,76	9,99	9,76	9,57	1,06	1,01	1,02	1,18				
160	18,26	10,13	10,15	9,92	9,86	1,06	1,04	1,06	1,22				
148	18,50	10,59	10,35	10,12	10,25	1,09	1,10	1,12	1,25				
140	18,78	11,08	10,57	10,36	10,73	1,12	1,20	1,19	1,29				
135	18,84	11,21	10,60	10,40	10,86	1,13	1,24	1,21	1,30				

TABELA 10 - Deslocamento relativo e separação horizontal, CP B3*

TABELA 11 - Deformações, CP B3*

	Conector U100x50x3,75 - laje h =140mm (carregamento monotônico)												
Força por conector	AI	AS	BI	BS		Força/2	AI	AS	BI	BS			
kN	με	με	με	με		kN	με	με	με	με			
0	0	0	0	0		130	2248	-456	5634	-666			
10	67	-20	74	-23		140	2768	-341	7682	-143			
20	137	-27	149	-32		150	3653	92	11415	620			
30	215	-31	232	-39		160	-	1635	-	1908			
40	286	-35	313	-41		170	-	6139	-	4977			
50	331	-35	396	-51		176		10448	10493	10643			
60	408	-55	540	-96		170	-	12187	-	11543			
70	505	-83	766	-174		160	-	11913	10296	11661			
80	634	-120	1109	-297		148	-	11374	10862	11853			
90	782	-159	1584	-459		140	-	11023	-	12052			
100	985	-215		-640		135	-	10945	-	12077			
110	1299	-299		-807									
120	1700	-391		-886									

193

Conector U100x50x3,75 - laje h =140mm (carregamento cíclico)												
Força									4H			
por	Desl. do pistão	1V	2V	3V	4V	1H	2H	3H				
conector												
kN	mm	mm	mm	mm	mm	mm	mm	mm	mm			
0	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
10	0,53	0,01	0,02	0,00	0,04	0,01	0,02	0,02	0,01			
20	1,03	0,03	0,04	0,02	0,08	0,03	0,04	0,03	0,02			
30	1,58	0,05	0,05	0,03	0,13	0,04	0,05	0,04	0,03			
40	2,09	0,07	0,07	0,05	0,18	0,05	0,05	0,04	0,04			
50	2,58	0,10	0,09	0,07	0,22	0,06	0,06	0,04	0,05			
60	3,14	0,13	0,17	0,10	0,33	0,00	0,16	0,10	0,01			
70	3,54	0,15	0,21	0,12	0,39	0,01	0,16	0,11	0,02			
80	3,94	0,18	0,28	0,16	0,46	0,00	0,16	0,11	0,01			
90	4,37	0,22	0,36	0,19	0,55	0,00	0,15	0,13	0,00			
100	4,86	0,28	0,43	0,23	0,71	0,00	0,15	0,15	0,00			
110	5,45	0,43	0,53	0,34	0,95	0,02	0,13	0,12	-0,01			
120	6,06	0,62	0,63	0,55	1,22	0,10	0,11	0,09	0,10			
130	6,99	1,00	0,94	1,21	1,63	0,20	-0,01	0,21	0,34			
140	7,99	1,52	1,39	2,01	2,17	0,28	-0,01	0,48	0,53			
150	14,50	7,45	5,47	7,79	8,10	1,03	0,91	1,90	1,61			
140	21,28	13,54	9,86	12,01	13,90	1,52	1,66	2,81	2,53			
130	22,76	14,66	10,91	12,91	14,61	1,69	2,19	2,96	2,74			
120	23,94	15,49	11,78	13,75	15,12	2,03	2,73	3,03	2,82			

TABELA 12 - Deslocamento relativo e separação horizontal, CP B3

TABELA 13 - Deformações, CP B3

Conector 100x50x3,75 -h laje=140mm (carregamento cíclico)													
Força por conector	AI	AS	BI	BS		Força/2	AI	AS	BI	BS			
kN	με	με	με	με		kN	με	με	με	με			
0	0	0	0	0		110	2240	-351	2416	-225			
10	46	-12	45	0		120	3051	-281	3384	-57			
20	149	-32	126	0		130	5139	309	6522	1268			
30	263	-67	210	4		140	9303	1526	11380	3770			
40	369	-81	268	21		150	-	1957	-	2763			
50	492	-105	337	38		140	-	1084	-	1554			
60	699	-160	579	5		130	-	1019	-	1484			
70	814	-160	718	-3		120	-	937	-	1660			
80	990	-170	980	-45									
90	1215	-198	1327	-104									
100	1610	-274	1775	-169									

Conector U100x50x3,75 - laje h =140mm (armadura adicional e carregamento cíclico)											
Força											
por	Desl. do pistão	1V	2V	3V	4V	1H	2H	3H	4H		
conector											
kN	mm	mm	mm	mm	mm	mm	mm	mm	mm		
0	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
8	0,06	0,00	0,00	0,00	0,00	0,00	-0,01	-0,02	0,00		
21	0,19	0,00	0,02	0,01	0,02	0,00	-0,01	-0,02	0,01		
29	0,27	0,01	0,03	0,02	0,03	0,01	-0,01	-0,01	0,02		
42	0,39	0,03	0,05	0,04	0,05	0,02	0,00	0,00	0,03		
51	0,47	0,04	0,06	0,05	0,06	0,02	0,01	0,01	0,04		
60	0,55	0,06	0,07	0,07	0,08	0,03	0,01	0,03	0,06		
71	0,66	0,10	0,10	0,09	0,12	0,03	0,01	0,04	0,06		
100	1,06	0,32	0,26	0,24	0,33	0,03	-0,08	-0,06	0,04		
110	1,22	0,41	0,34	0,33	0,43	0,00	-0,13	-0,10	-0,01		
120	1,39	0,52	0,44	0,41	0,54	-0,01	-0,17	-0,13	-0,04		
130	1,57	0,65	0,55	0,51	0,68	-0,01	-0,19	-0,15	-0,07		
140	1,80	0,82	0,69	0,65	0,86	-0,04	-0,21	-0,19	-0,11		
150	2,08	1,04	0,88	0,84	1,10	-0,06	-0,25	-0,21	-0,13		
160	2,47	1,34	1,15	1,11	1,41	-0,08	-0,27	-0,24	-0,16		
170	2,94	1,70	1,50	1,46	1,82	-0,09	-0,26	-0,25	-0,18		
180	3,80	2,48	2,25	2,19	2,63	-0,12	-0,28	-0,35	-0,23		
188	5,36	3,97	3,70	3,62	4,15	-0,13	-0,37	-0,44	-0,35		
180	6,10	4,73	4,49	4,38	4,92	-0,13	-0,39	-0,48	-0,40		
170	6,22	4,87	4,68	4,57	5,07	-0,08	-0,34	-0,45	-0,40		
160	6,46	5,12	5,02	4,91	5,34	-0,03	-0,29	-0,38	-0,39		
151	6,55	5,21	5,17	5,07	5,43	0,02	-0,24	-0,33	-0,33		
141	6,58	5,27	5,32	5,21	5,49	0,07	-0,15	-0,26	-0,24		
81	0,89	0,22	0,19	0,17	0,23	0,05	-0,04	-0,02	0,08		
90	0,95	0,25	0,21	0,20	0,26	0,04	-0,04	-0,03	0,07		

TABELA 14 - Deslocamento relativo e separação horizontal, CP B3**

TABELA 15 - Deformações, CP B3**

Conector 100x50x3,75 -h laje=140mm (armadura adicional e carregamento cíclico)												
Força por conector	AI	AS	BI	BS		Força/2	AI	AS	BI	BS		
kN	με	με	με	με		kN	με	με	με	με		
0	0	0	0	-		130	2663	-404	1801	-		
8	2	1	0	-		140	3759	-436	2095	-		
21	23	6	22	-		150	5954	-344	2386	-		
29	54	8	77	-		160	9167	-155	3880	-		
42	134	15	150	-		170	13317	400	4065	-		
51	194	19	209	-		180	6883	2235	4302	-		
60	259	24	275	-		188	8018	3094	-	-		
71	335	25	388	-		180	9065	4792	8753	-		
81	618	-77	734	-		170	8869	5285	8854	-		
90	704	-86	786	-		160	8778	5558	10012	-		
100	954	-128	944	-		151	8090	5488	9667	-		
110	1366	-213	1202	-		141	8552	5340	9952	-		
120	1901	-312	1502	-								

TABELA 16 - Deslocamento relativo e separação horizontal, CP B4 (continua)

Conector U100x50x4,75 - laje h =140mm (carregamento cíclico)													
Força por conector	Desl. do pistão	1V	2V	3V	4V	1H	2H	3H	4H				
kN	mm	mm	mm	mm	mm	mm	mm	mm	mm				
0	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00				
10	0,32	-0,03	0,04	-0,01	0,04	0,11	-0,08	-0,13	0,15				
22	0,48	-0,03	0,07	-0,01	0,07	0,18	-0,07	-0,18	0,22				
31	0,56	-0,03	0,09	-0,01	0,09	0,20	-0,06	-0,19	0,27				
42	0,63	-0,03	0,11	-0,01	0,10	0,23	-0,06	-0,20	0,30				
51	0,71	-0,02	0,14	0,00	0,12	0,26	-0,05	-0,20	0,34				
60	0,80	-0,01	0,17	0,02	0,15	0,28	-0,05	-0,20	0,37				
68	0,87	0,01	0,20	0,02	0,18	0,31	-0,06	-0,21	0,41				
81	1,00	0,03	0,25	0,03	0,22	0,34	-0,10	-0,24	0,46				
89	1,09	0,06	0,30	0,04	0,28	0,38	-0,14	-0,29	0,49				
100	1,32	0,12	0,44	0,07	0,39	0,54	-0,35	-0,47	0,69				
110	1,38	0,13	0,47	0,08	0,41	0,54	-0,35	-0,47	0,70				
120	1,48	0,15	0,51	0,11	0,46	0,53	-0,37	-0,49	0,69				
130	1,58	0,18	0,56	0,14	0,51	0,53	-0,39	-0,52	0,69				
140	1,69	0,21	0,62	0,17	0,58	0,53	-0,43	-0,56	0,68				
150	1,82	0,26	0,69	0,22	0,65	0,54	-0,46	-0,60	0,65				
160	1,95	0,31	0,75	0,26	0,73	0,55	-0,50	-0,65	0,63				
170	2,09	0,39	0,82	0,32	0,82	0,54	-0,54	-0,71	0,61				
180	2,24	0,47	0,92	0,38	0,92	0,53	-0,58	-0,78	0,58				
190	2,40	0,55	1,01	0,46	1,03	0,52	-0,63	-0,86	0,55				
200	2,60	0,63	1,13	0,56	1,16	0,50	-0,69	-0,96	0,44				
210	2,91	0,78	1,32	0,73	1,38	0,50	-0,72	-1,12	0,32				
219	3,40	1,05	1,62	1,04	1,77	0,49	-0,78	-1,35	0,23				
219	3,41	1,06	1,62	1,05	1,77	0,48	-0,78	-1,36	0,23				

Conector U100x50x4,75 - laje h =140mm (carregamento cíclico)													
Força por conector	Desl. do pistão	1V	2V	3V	4V	1H	2H	3H	4H				
kN	mm	mm	mm	mm	mm	mm	mm	mm	mm				
220	3,43	1,07	1,63	1,06	1,79	0,49	-0,78	-1,36	0,23				
220	3,43	1,07	1,64	1,06	1,80	0,49	-0,78	-1,37	0,21				
219	3,44	1,08	1,64	1,06	1,80	0,49	-0,78	-1,37	0,21				
220	3,45	1,09	1,65	1,07	1,81	0,49	-0,78	-1,38	0,21				
220	3,45	1,09	1,65	1,08	1,82	0,49	-0,78	-1,38	0,21				
220	3,46	1,10	1,65	1,08	1,82	0,49	-0,78	-1,38	0,22				
220	3,46	1,10	1,66	1,09	1,83	0,49	-0,78	-1,39	0,21				
220	3,49	1,10	1,66	1,09	1,84	0,49	-0,78	-1,39	0,20				
227	4,09	1,50	2,07	1,50	2,35	0,46	-0,85	-1,62	-0,01				
220	4,77	2,17	2,62	2,04	3,00	0,39	-0,94	-1,82	-0,18				
197	4,82	2,42	2,66	2,09	3,23	0,45	-0,86	-1,71	-0,11				
186	4,88	2,64	2,71	2,13	3,40	0,50	-0,79	-1,63	-0,03				
161	4,91	3,00	2,75	2,16	3,70	0,68	-0,62	-1,37	0,22				

TABELA 16 -	Deslocamento	relativo e	separação	horizontal,	CP B4	(conclusão))
-------------	--------------	------------	-----------	-------------	-------	-------------	---

TABELA 17 - Deslocamento relativo e separação horizontal, CP C22

	Conector U125x50x2,25- laje h =160mm (carregamento cíclico)											
Força									4H			
por	Desl. do pistão	1V	2V	3V	4V	1H	2H	3H				
conector												
kN	mm	mm	mm	mm	mm	mm	mm	mm	mm			
0	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
11	0,16	0,01	0,02	0,03	0,01	-0,01	0,01	0,02	0,00			
19	0,32	0,03	0,05	0,05	0,02	0,00	0,03	0,05	0,00			
31	0,48	0,05	0,09	0,07	0,04	0,00	0,04	0,08	0,00			
40	0,61	0,07	0,13	0,10	0,05	0,00	0,05	0,10	0,00			
50	0,95	0,19	0,38	0,29	0,10	-0,02	0,16	0,18	-0,01			
60	1,01	0,21	0,39	0,30	0,11	-0,03	0,15	0,18	0,00			
70	1,11	0,23	0,43	0,34	0,14	-0,04	0,15	0,18	0,00			
80	1,24	0,28	0,50	0,43	0,17	-0,06	0,16	0,18	0,00			
90	1,40	0,35	0,64	0,55	0,23	-0,08	0,21	0,18	0,00			
100	1,63	0,45	0,84	0,73	0,30	-0,11	0,23	0,18	0,00			
110	1,89	0,60	1,10	0,98	0,43	-0,14	0,26	0,18	0,00			
120	2,24	0,83	1,43	1,29	0,63	-0,16	0,31	0,19	0,00			
130	9,10	7,30	8,55	8,41	7,08	-0,36	0,72	-0,03	0,29			
140	11,28	9,38	10,67	10,56	9,19	-0,40	0,54	-0,12	0,43			
150	12,30	10,32	11,64	11,53	10,13	-0,44	0,46	-0,18	0,45			
160	14,54	12,46	13,78	13,70	12,24	-0,64	0,30	-0,12	0,50			
166	15,99	13,88	15,11	15,13	13,71	-0,72	0,18	-0,17	0,46			
160	17,07	14,99	-	16,18	14,86	-0,70	0,19	-0,19	0,46			
150	17,22	15,24	-	16,34	15,12	-0,65	0,24	-0,16	0,46			
143	17,39	15,47	-	16,50	15,34	-0,61	0,30	-0,11	0,47			

75 ·

Ò

Força por conector (kN)

Deslizamento relativo (mm)

TABELA 18 - Deslocame	nto relativo e separação	o horizontal, CP C3 ((continua)
-----------------------	--------------------------	-----------------------	------------

Conector U125x50x3,75- laje h =160mm (carregamento cíclico)											
Força por conector	Desl. do pistão	1V	2V	3V	4V	1H	2H	3H	4H		
kN	mm	mm	mm	mm	mm	mm	mm	mm	mm		
0	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
10	0,24	0,02	0,03	0,05	0,04	0,03	-0,01	-0,09	0,00		
20	0,35	0,03	0,05	0,08	0,07	0,05	-0,01	-0,15	0,00		
33	0,47	0,05	0,07	0,10	0,11	0,05	-0,01	-0,21	0,00		
42	0,55	0,06	0,09	0,12	0,12	0,05	-0,01	-0,23	0,00		
50	0,68	0,07	0,13	0,17	0,19	0,11	-0,02	-0,31	0,00		
64	0,76	0,09	0,15	0,19	0,20	0,08	-0,03	-0,33	-0,01		
70	0,79	0,10	0,16	0,19	0,21	0,07	-0,03	-0,34	0,00		
80	1,01	0,14	0,22	0,29	0,34	0,14	-0,11	-0,50	0,00		

	Conector U125x50x3,75- laje h =160mm (carregamento cíclico)												
Força por conector	Desl. do pistão	1V	2V	3V	4V	1H	2H	3H	4H				
kN	mm	mm	mm	mm	mm	mm	mm	mm	mm				
90	1,10	0,17	0,25	0,33	0,37	0,09	-0,14	-0,55	0,00				
100	1,24	0,22	0,31	0,40	0,44	0,02	-0,19	-0,65	0,00				
110	1,44	0,32	0,39	0,50	0,56	-0,05	-0,24	-0,77	-0,08				
120	1,66	0,45	0,42	0,59	0,70	-0,11	-0,31	-0,90	-0,22				
130	1,92	0,61	0,49	0,71	0,88	-0,19	-0,39	-1,04	-0,39				
140	2,19	0,80	0,60	0,85	1,09	-0,27	-0,48	-1,19	-0,55				
150	2,56	1,06	0,79	1,08	1,39	-0,38	-0,59	-1,37	-0,73				
160	3,11	1,50	1,13	1,49	1,85	-0,54	-0,75	-1,62	-1,00				
170	3,98	2,25	1,78	2,17	2,64	-0,75	-0,97	-2,01	-1,37				
180	5,76	3,84	3,38	3,83	4,30	-0,97	-1,21	-2,47	-1,88				
171	6,53	4,53	4,27	4,73	5,02	-0,90	-1,24	-2,46	-1,88				
160	6,64	4,61	4,49	4,98	5,11	-0,78	-1,15	-2,32	-1,72				
149	6,73	4,69	4,73	5,22	5,21	-0,62	-1,06	-2,16	-1,46				
144	6,77	4,71	4,81	5,31	5,23	-0,55	-1,02	-2,08	-1,33				
127	6,78	4,75	5,09	5,59	5,26	-0,28	-0,81	-1,79	-0,88				
54	6,81	4,91	7,39	-1,48	5,35	0,14	0,99	-0,38	0,05				

TABELA 19 - Deslocamento relativo e separação horizontal, CP C3**

Con	Conector U125x50x3,75 - laje h =160mm (armadura adicional e carregamento cíclico)											
Força									4H			
por	Desl. do pistão	1V	2V	3V	4V	1H	2H	3H				
conector												
kN	mm	mm	mm	mm	mm	mm	mm	mm	mm			
,												
0	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
10	0,39	0,04	0,13	0,00	-0,08	0,30	-0,08	-0,18	0,29			
20	0,48	0,05	0,14	0,00	-0,06	0,30	-0,06	-0,17	0,29			
30	0,55	0,06	0,16	0,01	-0,04	0,32	-0,04	-0,15	0,32			
40	0,63	0,08	0,18	0,02	-0,03	0,33	-0,03	-0,13	0,34			
50	0,69	0,09	0,19	0,04	-0,01	0,34	-0,02	-0,11	0,36			
60	0,75	0,11	0,21	0,06	0,00	0,35	0,00	-0,09	0,38			
71	0,81	0,12	0,22	0,07	0,01	0,36	0,02	-0,07	0,40			
81	0,87	0,13	0,23	0,08	0,03	0,38	0,03	-0,05	0,40			
90	0,94	0,15	0,25	0,10	0,05	0,39	0,04	-0,03	0,40			
100	1,03	0,18	0,28	0,14	0,09	0,40	0,05	-0,03	0,40			
110	1,13	0,22	0,32	0,17	0,14	0,42	0,06	-0,02	0,40			
120	1,24	0,26	0,36	0,20	0,19	0,44	0,07	-0,02	0,40			
130	1,35	0,32	0,41	0,24	0,25	0,47	0,09	-0,02	0,40			
140	1,49	0,39	0,47	0,30	0,32	0,50	0,10	-0,02	0,40			
150	1,65	0,50	0,55	0,39	0,44	0,55	0,12	-0,03	0,40			
160	1,92	0,65	0,70	0,55	0,61	0,60	0,15	-0,04	0,40			
170	2,23	0,88	0,90	0,79	0,86	0,64	0,19	-0,03	0,40			
180	2,67	1,23	1,22	1,15	1,21	0,57	0,24	-0,02	0,40			
190	3,18	1,66	1,62	1,56	1,64	0,55	0,28	0,00	0,40			

TABELA 20 - Deslocamento relativo e separação horizontal, CP C4 (continua)

	Conector U	125x50x4	I,75 - laje	e h =160r	nm (carr	egament	o cíclico)		
Força	Deel de sistão	417	0)/	2)/	4) /	411	011	211	41.1
por	Desi, do pistao	ΊV	2V	3V	4V	ΊΗ	ZH	ЗH	4H
conector									
kN	mm	mm	mm	mm	mm	mm	mm	mm	mm
0	0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10	0,43	-0,04	0,09	-0,02	0,08	0,18	-0,06	-0,09	0,00
20	0,95	-0,13	0,26	-0,11	0,21	0,53	-0,22	-0,29	0,00
31	1,18	-0,15	0,37	-0,14	0,26	0,67	-0,30	-0,38	0,00
41	1,35	-0,15	0,46	-0,16	0,30	0,74	-0,35	-0,44	0,00
51	1,47	-0,14	0,53	-0,15	0,35	0,78	-0,41	-0,51	0,00
62	1,59	-0,13	0,59	-0,14	0,39	0,82	-0,46	-0,55	0,00
69	1,66	-0,12	0,64	-0,13	0,42	0,83	-0,49	-0,58	0,00
80	1,89	-0,08	0,81	-0,07	0,52	0,98	-0,64	-0,72	0,00

Conector U125x50x4,75 - laje h =160mm (carregamento cíclico)									
Força									
por	Desl. do pistão	1V	2V	3V	4V	1H	2H	3H	4H
conector									
kN	mm	mm	mm	mm	mm	mm	mm	mm	mm
90	1,96	-0,07	0,83	-0,05	0,54	0,96	-0,64	-0,72	0,00
100	2,02	-0,06	0,86	-0,04	0,56	0,93	-0,66	-0,73	0,00
110	2,11	-0,04	0,90	-0,01	0,60	0,90	-0,68	-0,74	0,00
120	2,21	-0,02	0,95	0,02	0,65	0,85	-0,70	-0,75	0,00
130	2,32	0,02	1,01	0,07	0,71	0,79	-0,72	-0,77	0,00
140	2,43	0,07	1,08	0,13	0,77	0,73	-0,73	-0,77	0,00
150	2,56	0,14	1,16	0,17	0,82	0,67	-0,77	-0,81	0,00
160	2,69	0,21	1,24	0,23	0,88	0,60	-0,78	-0,84	0,00
170	2,85	0,30	1,35	0,31	0,96	0,54	-0,81	-0,88	0,00
180	2,99	0,37	1,46	0,40	1,03	0,47	-0,84	-0,92	0,00
190	3,17	0,47	1,58	0,49	1,12	0,41	-0,89	-0,95	0,00
200	3,38	0,62	1,74	0,61	1,23	0,33	-0,95	-0,99	0,00
210	3,64	0,82	1,95	0,75	1,37	0,26	-1,02	-1,13	0,00
220	3,91	1,02	2,14	0,94	1,52	0,18	-1,08	-1,23	-0,01
230	4,25	1,28	2,41	1,18	1,72	0,09	-1,17	-1,35	0,00
240	4,65	1,59	2,71	1,48	1,97	-0,03	-1,27	-1,47	0,00
250	5,15	2,00	3,10	1,84	2,29	-0,18	-1,43	-1,62	0,00
260	7,08	3,90	4,74	3,48	3,57	-0,64	-1,77	-1,94	-0,51
250	9,17	5,45	6,56	5,21	5,10	-0,81	-1,91	-1,78	-0,78
240	10,39	6,52	7,57	5,92	6,19	-0,86	-1,90	-1,66	-0,70
230	11,52	7,57	8,44	6,34	7,20	-0,84	-1,84	-1,55	-0,33
220	13,20	9,10	9,74	6,93	8,70	-0,75	-1,67	-1,26	-0,24
210	14,68	9,85	10,80	7,47	9,94	-0,58	-1,32	-0,84	-0,23
203	15,70	10,58	11,47	7,85	10,76	-0,43	-1,08	-0,55	-0,24

TABELA 20 - Deslocamento relativo e separação ho	orizontal, CP C4	(conclusão)
--	------------------	-------------

APÊNDICE C

Resultados experimentais dos ensaios das vigas

O apêndice C complementa os resultados contidos na tese, apresentando em forma de gráficos e tabelas os resultados obtidos nos ensaios das vigas.

A aquisição dos dados foi feita a cada dois segundos, porém nas TABELAs os resultados são apresentados a cada 10kN. A nomenclatura da instrumentação está na figura abaixo.

Viga metálica: V

TABELA 1 - Deslocamento vertical - V

TABELA 2 - Deformações longitudinais nos	perfis -	٠V
--	----------	----

Força	PD	4D	5D	6D	7D	8D	PE	4E	5E	6E	7E	8E
(kN)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)
0	0	0	0	0	0	0	0	0	0	0	0	0
10	- 118	- 122	- 43	42	134	214	- 144	- 117	- 51	30	115	215
20	- 258	- 245	- 93	88	282	402	- 306	- 232	- 106	66	251	440
30	- 428	- 368	- 143	135	436	576	- 495	- 352	- 163	111	411	674
40	- 635	- 498	- 197	188	611	750	- 722	- 482	- 229	158	601	901
50	- 954	- 636	- 252	258	827	929	- 1067	- 630	- 304	215	833	1118
60	- 1525	- 788	- 307	363	1110	1139	- 1674	- 805	- 389	292	1124	1353
70	- 2641	- 978	- 367	520	1458	1431	- 2760	- 1024	- 484	413	1490	1678
80	- 4477	- 1318	- 450	790	1927	2080	- 4531	- 1366	- 628	614	2060	2309
85	- 5547	- 1715	- 554	1027	2364	2924	- 5512	- 1753	- 789	793	2599	3004
86	- 5823	- 1841	- 604	1098	2515	3277	- 5754	- 1882	- 862	840	2779	3236
80	- 5806	- 1828	- 682	1019	2461	3552	- 5772	- 1850	- 943	731	2729	3347
70	- 5670	- 1598	- 634	913	2254	3414	- 5714	- 1595	- 858	634	2523	3221
60	- 5502	- 1478	- 593	868	2116	3185	- 5534	- 1467	- 807	601	2398	2997
50	- 5335	- 1357	- 553	822	1979	2956	- 5355	- 1342	- 755	565	2274	2771
40	- 5161	- 1237	- 513	773	1836	2721	- 5167	- 1216	- 702	531	2145	2541

TABELA 3 - Deformações obtidas pelas rosetas - V

Força	1D	2D	3D	1E	2E	3E
(kN)	(με)	(με)	(με)	(με)	(με)	(με)
0	0	0	0	0	0	0
10	- 3	- 33	- 3	1	- 24	- 4
20	- 6	- 66	- 6	2	- 46	- 5
30	- 8	- 100	- 8	5	- 69	- 6
40	- 10	- 132	- 10	6	- 93	- 8
50	- 14	- 164	- 13	9	- 117	- 11
60	- 16	- 197	- 13	11	- 141	- 14
70	- 18	- 227	- 13	15	- 166	- 17
80	- 21	- 257	- 15	18	- 193	- 19
85	- 23	- 271	- 16	18	- 209	- 21
86	- 24	- 273	- 18	19	- 212	- 22
80	- 24	- 257	- 16	15	- 203	- 22
70	- 25	- 227	- 16	11	- 183	- 22
60	- 23	- 197	- 15	7	- 161	- 20
50	- 23	- 167	- 15	3	- 137	- 18
40	- 22	- 136	- 16	- 2	- 115	- 17

Viga mista : VM1

FORÇA (kN)	A (mm)	B (mm)	C (mm)
0	0,00	0,00	0,00
10	0,44	0,62	0,46
20	1,02	1,41	1,01
30	1,59	2,08	1,49
40	2,06	2,74	1,94
50	2,52	3,49	2,44
60	3,00	4,04	2,85
70	3,41	4,74	3,24
80	3,82	5,27	3,68
90	4,30	5,95	4,05
100	4,85	6,86	4,71
110	5,46	7,82	5,35
120	6,09	8,85	6,01
130	6,87	9,99	6,74
140	7,74	11,27	7,63
150	8,78	12,79	8,64
160	9,94	14,53	9,74
170	11,35	16,54	11,06
180	12,93	19,07	12,66
190	14,93	22,19	14,63
200	18,09	27,19	17,69
210	23,37	35,97	23,15
220	33,46	53,60	33,73
221	35,19	56,55	35,40

TABELA 4 - Deslocamento vertical - VM1

FORÇA	11D	12D	13D	14D	15D	16D	17D	18D	12E	17E
(kN)	(mm)									
0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10	0,01	0,00	0,00	0,00	0,00	0,03	0,03	0,01	0,03	0,03
20	0,05	0,05	0,01	0,00	0,00	0,06	0,08	0,04	0,08	0,06
30	0,07	0,08	0,02	0,00	0,00	0,08	0,11	0,07	0,11	0,08
40	0,09	0,10	0,02	0,00	0,00	0,11	0,13	0,09	0,14	0,09
50	0,10	0,12	0,03	0,00	0,00	0,14	0,16	0,10	0,17	0,11
60	0,11	0,14	0,04	0,00	0,00	0,16	0,18	0,12	0,19	0,13
70	0,12	0,16	0,05	0,00	0,00	0,19	0,21	0,13	0,22	0,14
80	0,13	0,18	0,06	0,00	0,00	0,21	0,23	0,14	0,24	0,16
90	0,15	0,20	0,07	0,00	0,00	0,24	0,26	0,16	0,27	0,18
100	0,20	0,28	0,15	0,04	0,00	0,28	0,32	0,20	0,35	0,23
110	0,25	0,34	0,20	0,04	0,00	0,33	0,37	0,24	0,43	0,29
120	0,32	0,42	0,27	0,05	0,00	0,39	0,45	0,31	0,52	0,36
130	0,43	0,53	0,34	0,06	0,00	0,47	0,52	0,38	0,63	0,45
140	0,56	0,66	0,45	0,08	0,00	0,56	0,60	0,47	0,77	0,55
150	0,75	0,84	0,57	0,11	0,00	0,65	0,70	0,58	0,96	0,67
160	0,96	1,06	0,71	0,16	0,00	0,75	0,83	0,72	1,18	0,83
170	1,23	1,32	0,90	0,21	0,00	0,88	1,00	0,91	1,45	1,03
180	1,57	1,65	1,14	0,28	0,00	1,04	1,22	1,14	1,78	1,26
190	2,01	2,07	1,49	0,39	0,00	1,25	1,50	1,41	2,21	1,54
200	2,72	2,77	2,14	0,57	0,00	1,60	1,99	1,85	2,93	2,00
210	3,91	3,92	3,23	0,79	0,00	2,29	2,86	2,67	4,12	2,87
220	5,93	5,94	5,27	1,19	0,00	3,82	4,59	4,32	6,21	4,58
221	6,28	6,35	5,68	1,29	0,00	4,16	4,95	4,65	6,62	4,93
111	6,10	5,99	5,43	1,22	0,00	3,84	4,55	4,43	6,22	4,56
66	5,78	5,58	5,14	1,17	0,00	3,55	4,12	4,07	5,79	4,16
44	5,32	5,14	4,84	1,12	0,00	3,29	3,74	3,66	5,34	3,79
30	4,97	4,81	4,59	1,05	0,00	3,09	3,46	3,36	5,00	3,52
21	4,72	4,58	4,43	0,99	0,00	2,94	3,25	3,13	4,76	3,32

TABELA 5 - Deslizamento relativo na interface perfil-laje - VM1

212

					-	-						
Força	PD	4D	5D	6D	7D	8D	PE	4E	5E	6E	7E	8E
(kN)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)
0	0	0	0	0	0	0	0	0	0	0	0	0
10	- 9	9	27	65	64	79	- 7	8	26	43	64	75
20	- 16	19	56	114	134	165	- 13	18	54	91	116	159
30	- 22	30	86	163	203	251	- 19	27	82	138	180	241
40	- 26	42	119	215	273	338	- 23	40	112	186	247	323
50	- 30	55	149	264	340	420	- 27	52	142	232	310	401
60	- 34	68	180	313	408	501	- 30	64	172	280	375	482
70	- 36	82	212	365	475	584	- 30	77	201	328	443	560
80	- 37	97	244	417	544	667	- 32	91	231	376	512	639
90	- 41	110	277	468	613	748	- 34	104	261	425	573	720
100	- 92	83	286	526	716	866	- 82	68	263	476	682	838
110	- 109	88	320	595	821	958	- 98	71	294	541	768	942
120	- 131	86	354	667	932	1057	- 120	69	323	608	837	1049
130	- 158	83	389	748	1049	1162	- 151	65	354	680	919	1165
140	- 195	76	430	836	1183	1281	- 186	55	385	758	1033	1295
150	- 243	57	467	930	1326	1420	- 238	38	416	840	1146	1436
160	- 326	34	507	1037	1485	1563	- 308	14	450	933	1282	1598
170	- 448	5	553	1162	1676	1724	- 407	- 16	488	1038	1449	1784
180	- 578	- 33	607	1307	1907	1926	- 533	- 52	536	1162	1647	2012
190	- 748	- 78	678	1480	2197	2180	- 703	- 96	599	1319	1909	2302
200	- 1060	- 148	795	1740	2662	2596	- 1043	- 169	699	1556	2322	2728
210	- 1662	- 202	1043	2245	3573	3298	- 1699	- 232	913	1985	3192	3592
220	- 2786	- 147	1592	3473	5562	4196	- 2926	- 178	1411	2997	5147	4863
221	- 2892	- 142	1652	3613	5760	4241	- 3053	- 170	1466	3121	5335	4976
205	- 2928	- 163	1625	3583	5721	4120	- 3097	- 196	1434	3088	5295	4890
111	- 2858	- 219	1377	3131	5060	3265	- 3006	- 249	1199	2647	4637	4060
66	- 2694	- 161	1301	2906	4681	2760	- 2841	- 189	1129	2430	4266	3564
44	- 2513	- 64	1300	2797	4461	2446	- 2661	- 87	1134	2325	4045	3253
30	- 2357	27	1314	2723	4299	2215	- 2504	8	1154	2255	3884	3020
21	- 2239	97	1325	2671	4182	2047	- 2389	83	1172	2208	3770	2851

TABELA 6 - Deformações longitudinais nos perfis - VM1

FORÇA	9D	10D	LC	9E	10E	AD	AE
(kN)	(με)	(με)	(με)	(με)	(με)	(με)	(με)
0	0	0	0	0	0	0	0
10	- 29	- 20	- 24	- 21	- 19	- 26	- 32
20	- 61	- 37	- 56	- 44	- 39	- 59	- 68
30	- 95	- 55	- 92	- 69	- 59	- 92	- 101
40	- 127	- 74	- 132	- 95	- 81	- 128	- 135
50	- 158	- 94	- 171	- 122	- 103	- 159	- 156
60	- 187	- 116	- 212	- 148	- 126	- 192	- 190
70	- 215	- 139	- 249	- 174	- 147	- 222	- 220
80	- 241	- 164	- 287	- 200	- 171	- 253	- 252
90	- 267	- 190	- 326	- 223	- 193	- 284	- 284
100	- 296	- 223	- 317	- 246	- 219	- 296	- 301
110	- 322	- 252	- 347	- 269	- 244	- 324	- 333
120	- 347	- 285	- 377	- 289	- 267	- 353	- 362
130	- 369	- 320	- 407	- 311	- 293	- 382	- 391
140	- 391	- 359	- 436	- 331	- 322	- 410	- 417
150	- 407	- 404	- 464	- 349	- 353	- 437	- 440
160	- 420	- 454	- 497	- 366	- 388	- 463	- 466
170	- 431	- 513	- 536	- 380	- 424	- 485	- 482
180	- 433	- 577	- 571	- 390	- 467	- 503	- 498
190	- 431	- 655	- 607	- 399	- 519	- 526	- 502
200	- 407	- 756	- 638	- 393	- 589	- 547	- 502
210	- 359	- 894	- 678	- 370	- 681	- 615	- 492
220	- 167	- 1205	- 762	- 313	- 859	- 626	- 268
221	- 128	- 1255	- 779	- 302	- 877	- 389	- 147
205	- 83	- 1215	- 729	- 261	- 837	- 114	- 62
111	39	- 852	- 380	- 93	- 549	171	223
66	70	- 652	- 196	- 23	- 398	330	394
44	75	- 571	- 144	- 5	- 339	391	457
30	78	- 523	- 132	4	- 308	412	478
21	81	- 490	- 127	10	- 288	420	480

TABELA 7 - Deformações no concreto e na armadura- VM1

Força	1D	2D	3D	1E	2E	3E
(kŇ)	(με)	(με)	(με)	(με)	(με)	(με)
0	0	0	0	0	0	0
10	- 2	- 8	7	- 3	- 2	4
20	- 2	- 19	13	- 5	- 8	9
30	- 1	- 29	21	- 4	- 12	15
40	- 2	- 39	29	- 6	- 15	23
50	- 4	- 51	37	- 7	- 21	31
60	- 7	- 62	46	- 8	- 26	38
70	- 8	- 73	56	- 10	- 30	46
80	- 11	- 84	64	- 12	- 36	55
90	- 13	- 94	75	- 14	- 41	63
100	- 15	- 105	85	- 14	- 47	71
110	- 15	- 115	93	- 15	- 51	80
120	- 16	- 126	102	- 15	- 56	90
130	- 17	- 136	112	- 16	- 61	100
140	- 18	- 145	120	- 17	- 66	108
150	- 16	- 157	128	- 16	- 72	117
160	- 15	- 167	133	- 15	- 79	124
170	- 12	- 180	136	- 13	- 87	130
180	- 9	- 193	138	- 11	- 98	136
190	- 7	- 206	141	- 11	- 111	141
200	- 3	- 219	142	- 10	- 128	148
210	3	- 235	141	- 9	- 151	154
220	2	- 266	134	- 16	- 189	158
221	0	- 270	133	- 16	- 194	157
111	- 5	- 186	47	- 15	- 142	54
66	- 8	- 142	14	- 16	- 115	13
44	- 13	- 110	8	- 17	- 95	6
30	- 13	- 87	4	- 16	- 78	2
21	- 12	- 70	2	- 16	- 65	1

TABELA 8 - Deformações obtidas pelas rosetas - VM1

Viga mista: VM2

FORÇA (kN)	A (mm)	B (mm)	C (mm)
0	0,00	0,00	0,00
10	0,37	0,43	0,37
20	0,78	0,98	0,78
30	1,17	1,53	1,23
40	1,61	2,10	1,69
50	2,04	2,67	2,13
60	2,41	3,22	2,51
70	2,87	3,78	2,95
80	3,65	4,68	3,59
90	4,59	6,16	4,77
100	5,48	7,64	5,69
110	6,33	8,87	6,58
120	7,20	10,22	7,58
130	8,33	11,75	8,66
140	9,56	13,52	9,90
150	10,89	15,49	11,29
160	12,35	17,65	12,82
170	14,07	20,16	14,53
180	16,09	23,10	16,54
190	18,59	26,91	19,13
200	21,98	32,16	22,60
210	26,96	40,22	27,90
220	35,94	55,65	37,73
230	58,28	94,59	62,41
200	59,15	95,18	62,43
210	26,96	40,22	27,90
220	35,94	55,65	37,73
230	58,28	94,59	62,41
200	59,15	95,18	62,43
129	55,67	89,98	58,71
110	54,54	88,28	57,45
90	53,02	86,09	55,83

TABELA 9 - Deslocamento vertical - VM2

FORÇA	11D	12D	13D	14D	15D	16D	17D	18D	12E	17E
(kN)	(mm)									
0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
20	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00
30	0,00	0,00	0,00	0,00	0,00	0,02	0,01	0,00	0,01	0,00
40	0,00	0,00	0,00	0,00	0,00	0,02	0,01	0,00	0,01	0,00
50	0,00	0,00	0,01	0,00	0,00	0,03	0,02	0,00	0,02	0,01
60	0,00	0,00	0,01	0,00	0,00	0,04	0,02	0,00	0,02	0,01
60	0,00	0,01	0,01	0,00	0,00	0,04	0,02	0,00	0,02	0,01
70	0,00	0,01	0,02	0,00	0,00	0,04	0,03	0,01	0,03	0,01
80	0,09	0,15	0,09	0,01	0,00	0,06	0,04	0,01	0,20	0,02
80	0,08	0,15	0,09	0,01	0,00	0,06	0,04	0,01	0,20	0,02
90	0,16	0,27	0,28	0,02	0,00	0,22	0,24	0,11	0,32	0,18
100	0,22	0,36	0,35	0,03	0,00	0,46	0,41	0,26	0,41	0,30
110	0,31	0,46	0,43	0,03	0,00	0,58	0,54	0,38	0,51	0,40
120	0,41	0,57	0,53	0,03	0,00	0,72	0,69	0,52	0,63	0,54
120	0,41	0,58	0,54	0,03	0,00	0,72	0,69	0,52	0,63	0,55
130	0,56	0,73	0,66	0,04	0,00	0,87	0,86	0,68	0,79	0,71
140	0,75	0,91	0,81	0,06	0,00	1,04	1,05	0,86	0,99	0,93
140	0,75	0,91	0,82	0,06	0,00	1,04	1,05	0,87	0,99	0,93
150	0,97	1,13	0,99	0,08	0,00	1,23	1,26	1,08	1,24	1,17
160	1,22	1,38	1,18	0,10	0,00	1,44	1,50	1,33	1,53	1,40
170	1,53	1,68	1,42	0,13	0,00	1,67	1,76	1,59	1,85	1,66
180	1,90	2,04	1,70	0,17	0,00	1,95	2,07	1,91	2,19	1,96
190	2,38	2,51	2,10	0,23	0,00	2,29	2,45	2,31	2,67	2,35
200	2,99	3,10	2,61	0,30	0,00	2,78	2,99	2,88	3,29	2,90
210	3,83	3,92	3,38	0,39	0,00	3,58	3,83	3,76	4,16	3,76
220	5,21	5,32	4,75	0,53	0,00	5,19	5,42	5,41	5,61	5,04
230	8,48	7,49	8,29	0,82	0,00	9,20	9,45	9,45	8,43	5,05
200	8,48	7,49	8,74	0,85	0,00	9,18	9,42	9,46	8,44	5,05
129	8,48	7,49	8,56	0,81	0,00	8,92	9,13	9,25	8,44	5,05
110	8,48	7,49	8,49	0,79	0,00	8,81	9,01	9,16	8,44	5,04
90	8,48	7,49	8,39	0,77	0,00	8,66	8,83	8,99	8,44	5,05

TABELA 10 - Deslizamento relativo na interface perfil-laje - VM2

Força	PD	4D	5D	6D	7D	8D	PE	4E	5E	6E	7E	8E
(kN)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)
0	0	0	0	0	0	0	0	0	0	0	0	0
10	7	21	33	48	58	68	7	18	33	46	57	67
20	13	43	72	100	126	146	15	42	72	99	123	145
30	19	65	109	155	192	221	21	62	108	152	187	220
40	26	90	149	215	264	302	29	84	148	208	257	300
50	32	113	188	272	335	379	36	107	187	263	328	375
60	37	138	228	326	412	459	42	130	227	320	402	452
60	42	160	267	379	487	530	49	151	265	377	474	524
70	48	184	310	444	571	608	54	174	306	435	549	598
80	- 5	160	325	500	675	726	2	133	304	485	655	721
80	- 76	98	315	556	800	868	- 68	82	303	550	779	860
90	- 111	86	340	624	910	981	- 102	64	325	616	889	970
100	- 155	67	364	697	1030	1103	- 145	39	345	687	1009	1088
110	- 155	65	364	698	1031	1106	- 147	39	345	688	1012	1091
120	- 219	37	385	779	1162	1238	- 211	- 3	359	764	1146	1220
120	- 301	1	410	876	1312	1386	- 291	- 39	381	853	1298	1366
130	- 385	- 35	442	981	1480	1553	- 379	- 75	411	952	1468	1526
140	- 557	- 59	487	1108	1668	1737	- 541	- 107	449	1070	1660	1718
140	- 730	- 91	542	1255	1892	1955	- 698	- 146	495	1210	1888	1948
150	- 928	- 119	618	1437	2170	2232	- 878	- 179	565	1381	2167	2236
160	- 931	- 120	620	1440	2172	2234	- 880	- 179	566	1382	2170	2239
170	- 1197	- 145	735	1680	2550	2592	- 1118	- 210	671	1611	2561	2635
180	- 1518	- 151	896	1991	3052	3002	- 1399	- 224	825	1896	3068	3425
190	- 1559	- 149	917	2032	3125	3055	- 1436	- 224	847	1936	3138	3547
200	- 2088	- 89	1246	2618	4164	3765	- 1892	- 193	1179	2509	4013	5355
210	- 2836	123	1872	3714	6017	4819	- 2578	- 51	1842	3725	5204	9617
220	- 3188	275	2301	4441	6894	6123	- 2908	52	2324	4381	6404	11163
230	- 4145	593	3448	6494	10411	8112	- 3725	177	3784	6441	10741	10342
200	- 4346	460	3330	6410	10408	7978	- 3924	46	3673	6360	10683	10151
129	- 4287	385	3114	6024	9861	7405	- 3872	- 2	3477	5994	10158	9530
110	- 4245	380	3064	5921	9707	7252	- 3834	2	3434	5895	10008	9364
90	- 4179	388	3016	5808	9531	7076	- 3772	22	3394	5787	9836	9176

TABELA 11 - Deformações longitudinais nos perfis- VM2 (continua	a)
---	----

			-				
FORÇA	9D	10D	LC	9E	10E	AD	AE
(kN)	(με)	(με)	(με)	(με)	(με)	(με)	(με)
0	0	0	0	0	0	0	0
10	- 15	- 24	- 22	- 51	- 15	- 24	- 41
20	- 31	- 51	- 46	- 106	- 32	- 54	- 195
30	- 47	- 76	- 71	- 159	- 47	- 82	- 365
40	- 62	- 102	- 95	- 228	- 62	- 114	- 317
50	- 77	- 126	- 122	- 293	- 73	- 145	120
60	- 92	- 151	- 148	- 357	- 88	- 179	125
60	- 106	- 173	- 176	- 416	- 101	- 210	518
70	- 116	- 195	- 208	- 465	- 113	- 246	510
80	- 120	- 216	- 211	- 485	- 131	- 265	553
80	- 124	- 247	- 194	- 519	- 150	- 277	- 411
90	- 133	- 272	- 206	- 556	- 167	- 298	- 413
100	- 140	- 300	- 220	- 585	- 185	- 318	- 351
110	- 140	- 300	- 220	- 585	- 185	- 318	- 343
120	- 145	- 327	- 243	- 611	- 206	- 332	- 310
120	- 147	- 357	- 262	- 632	- 230	- 347	- 144
130	- 146	- 389	- 282	- 648	- 255	- 362	- 229
140	- 145	- 422	- 296	- 660	- 283	- 375	- 539
140	- 145	- 460	- 314	- 672	- 317	- 387	- 499
150	- 139	- 499	- 335	- 677	- 355	- 398	- 689
160	- 138	- 500	- 336	- 677	- 356	- 397	- 690
170	- 125	- 549	- 364	- 677	- 410	- 406	- 539
180	- 103	- 611	- 400	- 672	- 479	- 412	- 68
190	- 100	- 619	- 404	- 672	- 489	- 412	- 730
200	- 42	- 737	- 457	- 634	- 624	- 404	239
210	38	- 985	- 551	- 467	- 919	- 341	512
220	34	- 1163	- 605	- 300	- 1135	- 246	1156
230	3	- 1566	- 818	490	- 1628	1061	1943
200	0	- 1470	- 706	694	- 1549	1177	2071
129	- 7	- 1217	- 415	1007	- 1318	1414	2260
110	- 9	- 1147	- 338	1099	- 1256	1482	2342
90	- 12	- 1069	- 264	1204	- 1188	1561	2395

TABELA 12 - Deformações no concreto e na armadura- VM2

Força	1D	2D	3D	1E	2E	3E
(kN)	(με)	(με)	(με)	(με)	(με)	(με)
0	0	0	0	0	0	0
10	- 1	- 10	8	0	- 4	4
20	- 2	- 21	16	0	- 10	7
30	- 4	- 27	24	- 1	- 15	12
40	- 4	- 35	32	- 1	- 20	17
50	- 7	- 27	40	- 4	- 25	21
60	- 6	- 27	39	- 3	- 26	21
60	- 7	- 39	46	- 4	- 30	25
70	- 9	- 49	55	- 6	- 37	30
80	- 10	59	62	- 7	- 38	35
80	- 10	26	100	- 11	- 51	68
90	- 8	30	115	- 12	- 49	79
100	- 7	18	123	- 11	- 54	87
110	- 7	5	133	- 13	- 59	92
120	- 8	- 9	140	- 14	- 64	97
120	- 6	- 22	147	- 13	- 69	101
130	- 4	- 35	153	- 13	- 76	105
140	- 2	- 49	158	- 13	- 86	107
140	- 2	- 67	164	- 14	- 95	109
150	- 3	- 80	169	- 15	- 105	112
160	- 4	- 96	175	- 17	- 121	113
170	- 4	- 114	175	- 19	- 140	112
180	- 8	- 130	175	- 24	- 168	110
190	- 16	- 148	174	- 35	- 198	109
200	- 22	- 197	152	- 38	- 228	100
210	- 26	- 174	127	- 41	- 211	79
220	- 36	- 110	66	- 47	- 172	35
230	- 38	- 89	51	- 48	- 159	24
200	- 39	- 60	38	- 48	- 139	16
129	- 1	- 10	8	0	- 4	4
110	- 2	- 21	16	0	- 10	7
90	- 4	- 27	24	- 1	- 15	12

TABELA 13 - Def	ormações	obtidas	pelas	rosetas	–VM2
	د		•		

FORÇA (kN)	A (mm)	B (mm)	C (mm)
0	0,00	0,00	0,00
10	0,32	0,68	0,50
20	0,91	1,57	1,11
30	1,58	2,42	1,83
40	2,35	3,42	2,50
50	3,18	4,54	3,37
60	4,02	5,79	4,28
70	4,94	7,14	5,15
80	5,81	8,46	6,06
90	6,78	9,87	7,06
100	8,00	11,56	8,15
120	10,88	16,06	11,20
130	12,91	19,23	13,28
140	15,75	23,72	16,20
150	20,08	31,04	20,65
160	31,12	49,95	32,41
165	45,04	73,75	47,59
150	44,95	73,75	47,54
130	43,79	71,99	46,19
120	43,19	70,99	45,67
100	41,89	69,02	44,24
80	40,47	66,83	42,74

TABELA 14 -	Deslocamento	vertical -	VM3
-------------	--------------	------------	-----

FORÇA	11D	12D	13D	14D	15D	16D	17D	18D	12E	17E
(kN)	(mm)	(mm)								
0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
20	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,01
30	0,04	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,02	0,02
40	0,02	0,01	0,01	0,00	0,00	0,00	0,01	0,02	0,03	0,06
50	0,05	0,05	0,02	0,00	0,00	0,05	0,04	0,03	0,07	0,13
60	0,06	0,12	0,08	0,00	0,00	0,06	0,06	0,05	0,53	0,18
70	0,09	0,17	0,21	0,02	0,00	0,10	0,09	0,07	10,43	0,25
80	0,10	0,22	0,27	0,03	0,00	0,16	0,14	0,09	10,43	0,32
90	0,13	0,27	0,34	0,03	0,00	0,23	0,20	0,12	10,43	0,40
100	0,17	0,35	0,42	0,04	0,00	0,32	0,28	0,18	10,43	0,50
120	0,28	0,47	0,52	0,05	0,00	0,44	0,39	0,27	10,43	0,63
130	0,41	0,63	0,65	0,06	0,00	0,57	0,53	0,39	10,44	0,77
140	0,59	0,83	0,83	0,08	0,00	0,74	0,70	0,54	10,44	0,95
150	0,86	1,11	1,09	0,10	0,00	0,98	0,94	0,75	10,44	1,18
160	1,28	1,55	1,49	0,19	0,00	1,36	1,30	1,06	10,44	1,51
165	2,57	2,92	2,65	0,45	0,00	2,43	2,31	1,97	10,44	2,53
150	4,49	5,10	4,39	0,67	0,00	3,68	3,70	3,19	10,44	3,84
130	4,56	5,20	4,46	0,67	0,00	3,71	3,77	3,25	10,44	3,90
120	4,52	5,14	4,43	0,67	0,00	3,70	3,72	3,24	10,44	3,89
100	4,50	5,10	4,40	0,66	0,00	3,68	3,70	3,22	10,44	3,88
80	4,47	5,07	4,37	0,66	0,00	3,67	3,67	3,21	10,44	3,86

TABELA 15 - Deslizamento na interface perfil-laje - VM3

Força	PD	4D	5D	6D	7D	8D	PE	4E	5E	6E	7E	8E
(kN)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)
0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10	20	26	27	45	87	128	18	25	33	55	97	125
20	43	58	64	105	198	284	40	55	74	128	217	278
30	66	92	105	174	328	442	60	89	117	205	347	436
40	66	92	106	175	332	444	61	88	118	207	350	440
50	90	128	154	256	483	604	82	123	166	293	490	602
60	105	161	204	342	653	756	98	151	216	389	646	768
70	126	198	260	438	835	907	116	187	274	495	819	931
80	105	197	300	546	1073	1095	94	191	324	616	1046	1144
90	105	224	369	677	1324	1265	93	218	393	752	1288	1334
100	114	264	455	829	1605	1447	102	256	480	910	1563	1533
120	125	312	560	1007	1933	1656	113	305	586	1096	1884	1768
130	135	374	694	1215	2347	1903	123	366	721	1329	2293	2052
140	155	460	867	1480	2857	2199	142	452	899	1611	2811	2419
150	177	599	1104	1841	3554	2593	161	588	1142	1995	3534	2914
160	222	810	1443	2381	4637	3170	192	800	1479	2576	4711	3561
165	315	1137	1880	3231	6611	3889	317	1120	1898	3588	6871	4287
150	463	1629	2805	5066	11172	6032	415	1624	3033	6136	11350	6759
130	446	2183	4643	7377	15362	14499	328	2187	4945	8862	15297	14081
120	371	2126	4616	7367	15346	14494	244	2136	4921	8876	15277	14119
100	333	2047	4481	7167	15067	14180	203	2059	4792	8684	15015	13802
80	314	2006	4412	7063	14921	14014	182	2020	4725	8584	14878	13635

TABELA 16 - Deformações longitudinais nos perfis - VM3

FORÇA	9D	10D	LC	9E	10E	AD	AE
(kN)	(με)	(με)	(με)	(με)	(με)	(με)	(με)
0	0	0	0	0	0	0	0
10	- 26	- 26	- 25	- 15	- 36	- 25	- 25
20	- 61	- 58	- 55	- 33	- 79	- 58	- 61
30	- 97	- 88	- 77	- 51	- 126	- 94	- 100
40	- 98	- 88	- 77	- 52	- 127	- 95	- 101
50	- 137	- 118	- 103	- 69	- 173	- 130	- 143
60	- 167	- 149	- 127	- 84	- 216	- 169	- 181
70	- 197	- 179	- 152	- 99	- 258	- 210	- 227
80	- 222	- 209	- 161	- 111	- 302	- 235	- 254
90	- 255	- 245	- 176	- 123	- 351	- 268	- 291
100	- 285	- 284	- 204	- 137	- 403	- 308	- 331
120	- 317	- 326	- 231	- 149	- 459	- 347	- 373
130	- 345	- 373	- 259	- 159	- 522	- 388	- 416
140	- 374	- 432	- 294	- 167	- 596	- 433	- 461
150	- 402	- 508	- 332	- 174	- 691	- 483	- 512
160	- 428	- 626	- 389	- 173	- 829	- 541	- 574
165	- 440	- 825	- 479	- 156	- 1062	- 610	- 653
150	- 144	- 1202	- 707	55	- 1594	- 763	- 446
130	628	- 1497	- 795	647	- 2019	- 687	- 321
120	681	- 1457	- 708	696	- 1979	- 617	- 276
100	704	- 1380	- 612	726	- 1896	- 547	- 208
80	710	- 1340	- 566	720	- 1852	- 511	- 172

TABELA 17 - Deformações no concreto e na armadura–VM3

F	45	00	00	4 5	05	05
Força	1D	2D	3D	1E	2E	3E
(KN)	(με)	(με)	(με)	(με)	(με)	(με)
0	0	0	0	0	0	0
10	4	- 7	10	- 8	- 22	7
20	6	- 14	22	- 16	- 44	17
30	8	- 21	34	- 23	- 66	30
40	11	- 28	70	- 24	- 88	53
50	13	- 30	106	- 29	- 100	82
60	14	- 38	133	- 34	- 118	104
70	15	- 45	164	- 40	- 139	127
80	18	- 52	195	- 46	- 161	153
90	20	- 60	228	- 52	- 181	179
100	25	- 66	259	- 56	- 202	203
120	32	- 71	290	- 56	- 221	223
130	41	- 76	318	- 54	- 240	242
140	51	- 82	349	- 51	- 254	262
150	61	- 90	383	- 46	- 263	286
160	70	- 96	423	- 38	- 258	317
165	92	- 86	477	- 16	- 247	371
150	114	- 88	486	4	- 231	380
130	109	- 73	457	9	- 207	349
120	101	- 49	419	15	- 172	311
100	98	- 38	399	19	- 154	291
80	89	- 15	363	23	- 121	255

TABELA 18 - Deformações obtidas pelas rosetas –VM3

FORÇA (kN)	A (mm)	B (mm)	C (mm)
0	0,00	0,00	0,00
10	0,59	0,77	0,61
20	1,35	1,76	1,17
30	2,17	2,83	2,03
40	2,91	4,08	2,86
50	3,78	5,16	3,70
60	4,70	6,57	4,57
70	5,54	7,76	5,44
80	6,48	9,19	6,38
90	7,50	10,72	7,42
100	8,74	12,43	8,70
110	10,20	14,64	10,15
120	11,85	17,18	11,84
130	14,07	20,66	14,10
140	17,22	25,75	17,39
150	23,04	35,86	23,92
158	39,69	65,37	43,15
150	50,96	86,90	58,71
140	52,37	89,74	61,36
70	52,15	90,21	62,43
50	50,19	86,88	59,99

TABELA 19 - Deslocamento vertical - VM4

							,			
FORÇA	11D	12D	13D	14D	15D	16D	17D	18D	12E	17E
(kN)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
0	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00
10	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00
20	0,00	0,01	0,00	0,00	0,00	0,00	0,01	0,00	0,01	0,01
30	- 0,02	0,06	0,06	0,00	0,00	0,04	0,02	0,00	0,06	0,00
40	- 0,02	0,08	0,10	0,00	0,00	0,07	0,10	0,00	0,08	0,06
50	- 0,02	0,12	0,14	0,00	0,00	0,12	0,14	- 0,01	0,12	0,08
60	- 0,02	0,16	0,19	0,00	0,00	0,16	0,19	0,00	0,16	0,11
70	- 0,02	0,20	0,24	0,00	0,00	0,21	0,23	0,02	0,20	0,15
80	- 0,02	0,25	0,31	0,00	0,00	0,27	0,29	0,06	0,25	0,19
90	- 0,02	0,32	0,38	0,00	0,00	0,34	0,36	0,11	0,32	0,25
100	- 0,02	0,40	0,45	0,00	0,00	0,43	0,45	0,17	0,40	0,32
110	- 0,02	0,49	0,55	0,00	0,00	0,53	0,56	0,26	0,49	0,42
120	- 0,02	0,61	0,66	0,00	0,00	0,66	0,71	0,37	0,61	0,55
130	- 0,02	0,75	0,80	0,00	0,00	0,83	0,89	0,54	0,75	0,73
140	- 0,02	0,99	1,03	0,00	0,00	1,13	1,20	0,82	0,99	1,03
150	- 0,02	1,43	1,47	0,00	0,00	1,81	1,96	1,58	1,43	1,78
158	- 0,02	2,64	2,62	0,00	0,00	4,48	4,90	4,82	2,64	4,71
150	- 0,01	3,16	3,06	0,00	0,00	8,77	9,00	10,14	3,16	8,94
140	- 0,01	3,15	3,05	0,01	0,00	9,77	10,37	11,04	3,15	10,56
70	0,04	2,91	2,74	0,01	0,01	10,85	8,51	11,06	2,91	10,52
50	0,04	2,81	2,62	0,01	0,00	10,86	8,22	11,06	2,81	10,52

TABELA 20 - Deslizamento na interface perfil-laje - VM4

Força	PD	4D	5D	6D	7D	8D	PE	4E	5E	6E	7E	8E
(kN)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)
0	0	0	0	0	0	0	0	0	0	0	0	0
10	19	27	31	60	111	159	15	34	49	70	107	156
20	36	56	67	126	225	321	31	68	97	148	225	315
30	53	85	108	200	349	483	45	102	150	235	359	475
40	42	96	142	287	498	673	30	116	196	333	519	657
50	20	95	173	382	670	867	9	116	240	446	710	840
60	21	115	223	482	849	1037	10	141	300	572	898	1000
70	21	115	224	484	852	1040	9	142	301	574	901	1003
80	23	139	283	595	1054	1216	9	170	375	718	1109	1170
90	27	173	356	720	1284	1402	11	205	461	880	1346	1353
100	26	173	357	721	1286	1405	10	205	462	882	1349	1355
110	31	210	443	865	1549	1612	12	248	563	1060	1615	1557
120	35	259	551	1039	1881	1843	13	301	687	1270	1948	1798
130	52	423	866	1546	2835	2502	26	479	1049	1852	2901	2449
140	59	569	1104	1943	3552	3014	42	634	1326	2303	3633	2941
150	71	818	1454	2632	4588	3869	73	886	1709	3018	4754	3683
158	154	1191	1960	4172	6132	5245	106	1223	2267	4569	6742	5008
150	168	1687	3604	8170	9135	12849	44	1875	3983	9898	13644	15042
140	- 247	1677	4209	9699	11100	15884	- 344	2005	4678	11865	15953	99999
70	- 462	1510	4073	9614	11058	15904	- 510	1835	4552	11806	15947	99999
50	- 1590	806	3286	8776	10222	15095	- 1024	1100	3742	10927	15076	99999

TABELA 21 - Deformações longitudinais nos perfis - VM4

FORÇA	9D	10D	LC	9E	10E	AD	AE
(kN)	(με)	(με)	(με)	(με)	(με)	(με)	(με)
0	0	0	0	0	0	0	0
10	- 12	- 24	- 29	- 9	- 28	- 22	- 27
20	- 26	- 49	- 63	- 19	- 60	- 48	- 43
30	- 37	- 69	- 100	- 29	- 92	- 75	- 76
40	- 48	- 88	- 120	- 36	- 124	- 101	- 107
50	- 60	- 110	- 133	- 47	- 155	- 120	- 129
60	- 70	- 131	- 162	- 55	- 187	- 146	- 144
70	- 71	- 132	- 163	- 54	- 187	- 147	- 144
80	- 80	- 151	- 193	- 62	- 220	- 173	- 188
90	- 88	- 172	- 227	- 68	- 257	- 203	- 223
100	- 90	- 172	- 227	- 67	- 258	- 203	- 224
110	- 97	- 196	- 261	- 75	- 296	- 235	- 260
120	- 106	- 221	- 297	- 81	- 337	- 267	- 294
130	- 125	- 284	- 377	- 90	- 435	- 344	- 401
140	- 134	- 331	- 424	- 91	- 503	- 390	- 439
150	- 142	- 405	- 486	- 85	- 617	- 440	- 509
158	- 141	- 553	- 588	- 41	- 836	- 485	- 622
150	- 108	- 766	- 711	27	- 1163	- 493	- 674
140	- 81	- 756	- 608	17	- 1132	- 344	- 635
70	- 70	- 714	- 543	14	- 1074	- 264	- 590
50	- 25	- 443	- 248	36	- 720	339	- 241

TABELA 22 - Deformações no concreto e na armadura –VM4

Força	1D	2D	3D	1E	2E	3E
(kN)	(με)	(με)	(με)	(με)	(με)	(με)
0	0	0	0	0	0	0
10	2	- 12	9	- 8	- 31	12
20	4	- 25	20	- 15	- 49	24
30	10	- 34	46	- 20	- 63	51
40	16	- 40	73	- 26	- 75	76
50	20	- 47	101	- 33	- 90	102
60	25	- 57	132	- 40	- 104	130
70	29	- 65	166	- 48	- 121	159
80	33	- 73	199	- 58	- 140	188
90	38	- 80	230	- 65	- 160	218
100	42	- 84	267	- 72	- 176	249
110	48	- 88	300	- 77	- 194	279
120	56	- 93	337	- 80	- 207	308
130	65	- 96	377	- 80	- 218	336
140	76	- 97	424	- 77	- 223	368
150	93	- 88	477	- 63	- 220	406
158	153	- 79	502	- 17	- 210	420
150	166	- 71	479	- 4	- 204	388
140	163	- 61	456	0	- 191	367
70	103	- 15	298	- 1	- 103	235
50	83	- 4	248	- 3	- 73	190

TABELA 23 - Deformações obtidas pelas rosetas - VM4

FORÇA (kN)	A (mm)	B (mm)	C (mm)
0	0,00	0,00	0,00
10	0,41	0,53	0,36
20	0,80	1,09	0,84
30	1,33	1,80	1,35
40	1,76	2,42	1,99
50	2,24	3,10	2,40
60	2,70	3,76	2,92
70	3,33	4,65	3,56
80	3,94	5,59	4,30
90	4,61	6,54	4,98
100	5,17	7,41	5,53
110	5,80	8,33	6,22
120	6,44	9,31	6,90
130	7,24	10,45	7,66
140	8,06	11,79	8,64
150	9,11	13,41	9,78
160	10,39	15,35	11,02
170	11,91	17,82	12,71
180	14,17	21,49	15,13
190	18,04	28,03	19,24
196	22,30	35,06	23,65
190	47,32	74,59	47,97
180	55,00	86,00	54,30
170	54,56	85,36	53,81
160	54,07	84,53	53,33
150	53,50	83,74	52,77

TABELA 24 -	Deslocamento vertical	-	VM5
	B colocamento vertical		

FORÇA	11D	12D	13D	14D	15D	16D	17D	18D	12E	17E
(kN)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
0	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00
10	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00
20	0,00	0,00	0,01	0,00	0,00	0,00	- 0,01	0,00	0,00	0,01
30	0,01	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,01	0,01
40	0,01	0,00	0,02	0,00	0,00	0,00	- 0,01	0,00	0,01	0,02
50	0,02	0,00	0,03	0,00	0,00	0,00	- 0,01	- 0,01	0,02	0,02
60	0,04	0,05	0,12	0,02	0,00	- 0,01	- 0,02	- 0,02	0,04	0,02
70	0,03	0,08	0,13	0,02	0,00	0,00	0,06	0,01	0,06	0,09
80	0,03	0,11	0,16	0,02	0,00	0,02	0,10	0,02	0,07	0,13
90	0,05	0,15	0,20	0,02	0,00	0,04	0,14	0,03	0,09	0,17
100	0,07	0,19	0,25	0,03	0,00	0,04	0,18	0,05	0,12	0,21
110	0,09	0,24	0,31	0,03	0,00	0,08	0,23	0,07	0,14	0,26
120	0,09	0,24	0,30	0,03	0,00	0,09	0,23	0,07	0,14	0,26
130	0,12	0,29	0,37	0,04	0,00	0,13	0,30	0,11	0,17	0,32
140	0,15	0,35	0,43	0,05	0,00	0,21	0,39	0,17	0,20	0,41
150	0,21	0,43	0,53	0,06	0,00	0,31	0,51	0,24	0,24	0,52
160	0,28	0,54	0,63	0,07	0,00	0,43	0,66	0,33	0,26	0,67
170	0,38	0,67	0,76	0,08	0,00	0,56	0,83	0,46	0,26	0,84
180	0,53	0,88	0,98	0,11	0,00	0,78	1,09	0,63	0,26	1,09
190	0,81	1,25	1,35	0,18	0,00	1,18	1,54	0,96	0,27	1,55
196	1,16	1,72	1,79	0,26	0,00	1,62	2,04	1,32	0,26	2,00
190	1,86	3,65	2,41	0,42	0,00	2,07	2,79	1,95	0,27	3,33
180	4,30	- 0,36	4,42	1,06	0,00	3,08	3,94	2,83	0,27	4,89
170	4,30	- 0,36	4,41	1,06	0,00	3,06	3,92	2,82	0,27	4,87
160	4,30	- 0,36	4,40	1,06	0,00	3,04	3,89	2,81	0,27	4,84
150	4,30	- 0,36	4,38	1,06	0,00	3,02	3,87	2,79	0,27	4,80

TABELA 25 - Deslizamento na interface perfil-laje - VM5

Força	PD	4D	5D	6D	7D	8D	PE	4E	5E	6E	7E	8E
(kN)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)
0	0	0	0	0	0	0	0	0	0	0	0	0
10	5	21	38	54	73	89	7	21	37	51	66	85
20	12	45	83	118	158	181	13	46	78	110	142	179
30	20	71	132	189	257	256	21	72	122	172	227	268
40	27	98	180	262	355	327	28	98	168	237	314	356
50	34	123	229	334	459	393	37	125	213	304	407	438
60	43	150	280	411	570	460	44	152	262	378	510	521
70	29	159	321	491	703	539	28	155	295	447	625	611
80	33	183	375	577	836	605	30	178	344	523	738	686
90	12	187	420	665	992	687	8	176	379	602	871	780
100	9	210	482	761	1151	754	7	199	436	691	1006	862
110	2	261	618	969	1487	883	0	252	569	883	1284	1030
120	- 2	295	708	1092	1682	955	- 1	287	660	996	1438	1127
130	- 7	336	815	1222	1900	1050	- 3	332	767	1117	1599	1241
140	- 8	389	947	1368	2172	1186	- 1	391	901	1254	1796	1386
150	- 4	464	1110	1528	2490	1365	2	474	1067	1409	2045	1582
160	2	568	1313	1736	2904	1636	3	583	1270	1601	2385	1870
170	7	729	1568	2065	3564	2072	18	757	1533	1901	2930	2288
180	- 65	983	1898	2661	4799	2751	7	1054	1904	2468	3985	2966
190	- 95	1185	2207	3301	6055	3418	- 35	1280	2267	3153	5186	3692
196	- 243	1474	2806	4398	8511	6271	- 398	1254	2630	4063	7062	5015
190	- 799	3111	6155	11859	99999	99999	- 946	1953	4938	8665	13522	14161
180	- 804	3091	6111	11789	99999	99999	- 944	1939	4902	8605	13436	14047
170	- 803	3073	6070	11722	99999	99999	- 939	1930	4870	8545	13350	13933
160	- 801	3057	6027	11648	99999	99999	- 931	1922	4836	8483	13259	13807
150	- 796	3041	5986	11579	99999	99999	- 922	1914	4806	8426	13173	13691

TABELA 26 - Deformações longitudinais nos perfis - VM5

FORÇA	9D	10D	LC	9E	10E	AD	AE
(KIN)	(με)	(με)	(με)	(με)	(με)	(με)	(με)
0	0	0	0	0	0	0	0
10	- 25	- 21	- 27	- 18	- 42	- 28	- 35
20	- 58	- 47	- 58	- 38	- 94	- 62	- 64
30	- 94	- 73	- 89	- 59	- 150	- 97	- 100
40	- 128	- 102	- 121	- 80	- 209	- 133	- 135
50	- 162	- 130	- 155	- 101	- 268	- 169	- 177
60	- 196	- 160	- 191	- 122	- 329	- 209	- 216
70	- 227	- 193	- 212	- 137	- 382	- 241	- 248
80	- 256	- 224	- 251	- 152	- 438	- 282	- 299
90	- 284	- 255	- 269	- 165	- 493	- 312	- 323
100	- 314	- 291	- 304	- 181	- 554	- 349	- 359
110	- 372	- 370	- 374	- 214	- 676	- 426	- 435
120	- 402	- 419	- 416	- 229	- 745	- 468	- 477
130	- 430	- 476	- 457	- 245	- 821	- 511	- 518
140	- 463	- 544	- 504	- 260	- 911	- 558	- 563
150	- 495	- 628	- 558	- 274	- 1021	- 609	- 614
160	- 528	- 740	- 626	- 286	- 1167	- 668	- 670
170	- 563	- 920	- 714	- 298	- 1382	- 739	- 739
180	- 590	- 1295	- 820	- 298	- 1749	- 855	- 829
190	- 540	- 1667	- 908	- 248	- 2200	- 1020	- 793
196	1863	- 1594	- 1395	48	- 2275	- 1606	- 414
190	996	- 2273	- 1212	96	- 2613	- 2868	1017
180	993	- 2251	- 1164	95	- 2582	- 2802	1051
170	991	- 2230	- 1120	94	- 2553	- 2737	1087
160	989	- 2207	- 1074	92	- 2521	- 2666	1128
150	- 25	- 21	- 27	- 18	- 42	- 28	- 35

TABELA 27 - Deformações no concreto e na armadura – VM5

Força	1D	2D	3D	1E	2E	3E
(kN)	(με)	(με)	(με)	(με)	(με)	(με)
0	0	0	0	0	0	0
10	0,00	- 1,40	4,68	1,41	- 12,65	8,44
20	0,94	- 7,00	10,29	3,75	- 25,77	16,87
30	1,87	- 11,67	16,37	4,69	- 37,48	24,37
40	1,87	- 19,14	22,45	7,51	- 48,26	33,27
50	2,34	- 26,14	29,94	9,85	- 59,03	40,77
60	3,27	- 34,55	36,02	10,79	- 69,81	47,33
70	1,87	- 43,42	44,44	11,73	- 79,18	54,36
80	1,87	- 52,29	88,41	19,24	- 89,01	90,92
90	1,40	- 57,89	106,65	17,83	- 98,38	107,79
100	- 0,94	- 67,69	123,49	16,89	- 109,16	123,73
110	- 1,87	- 77,49	140,80	18,30	- 118,06	141,07
120	- 4,21	- 86,83	156,24	18,30	- 129,77	157,94
130	- 2,81	- 97,10	171,22	18,30	- 139,13	174,35
140	0,47	- 106,90	182,45	22,99	- 144,75	189,35
150	3,74	- 117,63	195,08	25,34	- 149,91	205,29
160	7,95	- 127,90	207,71	32,85	- 155,53	220,29
170	12,16	- 136,30	222,22	38,95	- 156,93	235,29
180	16,84	- 141,90	240,47	45,52	- 156,93	252,17
190	23,85	- 143,30	263,87	54,43	- 153,65	273,27
196	31,33	- 144,24	277,44	63,82	- 144,75	288,27
190	- 47,70	- 320,16	194,14	- 1,88	- 234,68	254,52
180	- 43,49	- 307,09	181,98	- 1,41	- 234,21	234,82
170	- 41,62	- 289,36	172,15	0,00	- 222,97	219,82
160	- 37,41	- 270,70	165,13	1,88	- 211,73	206,70
150	- 33,67	- 252,97	156,24	3,75	- 199,55	191,23

TABELA 28 - Deformações obtidas pelas rosetas -VM5

FORÇA (kN)	A (mm)	B (mm)	C (mm)
0	0,00	0,00	0,00
10	0,57	0,84	0,61
20	1,09	1,62	1,21
30	1,69	2,37	1,78
40	2,26	3,17	2,37
50	2,76	3,86	2,90
60	3,33	4,59	3,45
70	3,82	5,38	4,00
80	4,33	6,04	4,57
90	4,82	6,73	5,01
100	5,35	7,50	5,58
110	5,82	8,21	6,10
120	6,35	8,90	6,62
130	6,87	9,60	7,13
140	7,43	10,43	7,66
140	7,39	10,42	7,70
150	7,94	11,24	8,27
160	8,83	12,55	9,16
170	10,69	15,56	11,15
180	13,32	19,78	13,91
190	19,22	29,70	20,72
200	37,17	60,31	40,75
201	41,59	67,98	45,75
200	44,96	74,20	50,05
190	47,57	79,10	53,36
170	51,43	86,18	58,43
150	50,48	84,70	57,18

TABELA 29 - Deslocamento vertical - VM6

FORÇA	11D	12D	13D	14D	15D	16D	17D	18D	12E	17E
(kN)	(mm)									
0	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00
10	0,03	0,02	0,02	0,00	0,00	0,02	0,03	0,03	0,00	0,03
20	0,06	0,06	0,04	0,00	0,00	0,04	0,06	0,06	0,00	0,07
30	0,08	0,08	0,07	0,01	0,00	0,06	0,08	0,08	0,00	0,10
40	0,10	0,10	0,10	0,01	0,00	0,09	0,11	0,10	0,01	0,12
50	0,13	0,13	0,12	0,01	0,00	0,11	0,13	0,12	0,03	0,15
60	0,15	0,16	0,15	0,02	0,00	0,13	0,16	0,14	0,04	0,17
70	0,16	0,19	0,18	0,02	0,00	0,16	0,18	0,16	0,06	0,19
80	0,18	0,22	0,21	0,02	0,00	0,18	0,21	0,18	0,08	0,22
90	0,20	0,24	0,23	0,03	0,00	0,21	0,24	0,21	0,09	0,25
100	0,22	0,27	0,25	0,03	0,00	0,23	0,26	0,23	0,11	0,27
110	0,24	0,29	0,28	0,03	0,00	0,26	0,29	0,25	0,13	0,30
120	0,25	0,32	0,31	0,04	0,00	0,28	0,32	0,28	0,14	0,33
130	0,27	0,35	0,33	0,04	0,00	0,31	0,35	0,30	0,16	0,36
140	0,30	0,38	0,36	0,04	0,00	0,34	0,38	0,33	0,17	0,40
140	0,30	0,38	0,36	0,05	0,00	0,34	0,38	0,33	0,18	0,40
150	0,32	0,42	0,39	0,05	0,00	0,38	0,43	0,36	0,20	0,44
160	0,38	0,48	0,45	0,06	0,00	0,46	0,52	0,44	0,24	0,52
170	0,48	0,62	0,58	0,08	0,00	0,67	0,71	0,60	0,33	0,72
180	0,65	0,84	0,77	0,11	0,00	0,99	1,02	0,85	0,45	1,01
190	1,05	1,38	1,27	0,25	0,00	1,80	1,79	1,50	0,74	1,74
200	2,35	3,23	2,61	0,67	0,00	4,38	4,65	3,87	1,67	4,32
201	2,64	3,62	2,85	0,74	0,00	4,93	5,37	4,50	1,87	4,97
200	2,81	3,85	2,98	0,78	0,00	5,37	6,11	5,11	1,99	5,54
190	2,88	3,93	3,00	0,79	0,00	5,66	6,62	5,29	2,04	6,02
170	2,87	3,87	2,98	0,79	0,00	5,68	6,47	5,46	2,02	6,01
150	2,85	3,82	2,96	0,79	0,00	5,64	6,40	5,46	2,01	5,98

TABELA 30 - Deslizamento na interface perfil-laje - VM6

Força	PD	4D	5D	6D	7D	8D	PE	4E	5E	6E	7E	8E
(kN)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)
0	0	0	0	0	0	0	0	0	0	0	0	0
10	1	11	32	54	78	102	2	12	35	56	78	103
20	0	24	68	111	159	208	2	25	71	115	158	208
30	- 4	38	104	170	240	317	- 1	39	108	175	239	315
40	- 10	51	140	229	322	423	- 4	52	145	236	322	422
50	- 15	64	176	286	404	531	- 10	67	183	295	404	528
60	- 21	79	212	345	487	640	- 14	81	222	356	488	636
70	- 26	94	249	406	570	748	- 19	96	261	418	571	743
80	- 30	108	288	466	654	856	- 24	111	300	480	656	853
90	- 34	124	326	526	735	963	- 28	127	339	542	739	958
100	- 38	142	366	589	821	1073	- 31	143	380	607	826	1069
110	- 42	159	405	649	905	1179	- 36	160	421	670	912	1177
120	- 46	176	445	712	990	1290	- 40	176	462	735	999	1286
130	- 50	192	486	776	1078	1400	- 45	193	505	800	1087	1398
140	- 56	209	528	841	1168	1512	- 51	209	546	868	1181	1513
140	- 56	209	529	843	1170	1515	- 52	210	549	870	1182	1516
150	- 63	227	574	915	1267	1633	- 60	226	593	940	1282	1637
160	- 75	273	675	1049	1471	1840	- 71	270	689	1066	1477	1875
170	- 89	431	929	1300	1955	2305	- 86	427	925	1313	1979	2490
180	- 106	626	1192	1631	2594	2942	- 102	625	1170	1636	2615	3316
190	- 147	951	1652	2440	3928	4505	- 163	930	1656	2418	3940	5532
200	- 391	1540	3255	5730	9715	12005	- 365	1556	3500	5755	9896	13350
201	- 449	1744	3791	6952	11265	13693	- 417	1821	4124	7147	11454	15066
200	- 515	1915	4240	7947	12431	15017	- 479	2030	4595	8260	12598	99999
190	- 643	2042	4619	8760	13367	16030	- 688	1963	4720	8765	13165	99999
170	- 721	2593	5844	10971	15634	99999	- 1051	1669	4590	8817	13537	99999
150	- 716	2554	5754	10827	15434	99999	- 1041	1649	4523	8700	13369	99999

TABELA 31 - Deformações longitudinais nos perfis - VM6

FORCA	9D	10D	LC	9E	10E	AD	AE
(kN)	(µɛ)	(µɛ)	(µɛ)	(με)	(µɛ)	(με)	(με)
0	0	0	0		0	0	0
10	- 20	- 36	- 66	- 37	- 36	- 31	- 27
20	- 40	- 75	- 142	- 75	- 72	- 64	- 60
30	- 62	- 119	- 218	- 114	- 111	- 98	- 97
40	- 82	- 161	- 290	- 154	- 148	- 132	- 131
50	- 103	- 203	- 356	- 190	- 185	- 165	- 166
60	- 124	- 244	- 417	- 227	- 223	- 201	- 200
70	- 145	- 286	- 472	- 262	- 260	- 233	- 235
80	- 166	- 325	- 527	- 298	- 298	- 267	- 268
90	- 185	- 362	- 575	- 331	- 335	- 300	- 301
100	- 206	- 401	- 623	- 364	- 374	- 332	- 333
110	- 226	- 437	- 669	- 395	- 411	- 365	- 364
120	- 247	- 473	- 713	- 427	- 448	- 396	- 397
130	- 267	- 509	- 755	- 458	- 486	- 428	- 428
140	- 289	- 544	- 797	- 488	- 524	- 459	- 460
140	- 289	- 544	- 799	- 488	- 525	- 461	- 460
150	- 308	- 581	- 839	- 518	- 564	- 492	- 492
160	- 327	- 628	- 894	- 547	- 618	- 528	- 530
170	- 344	- 715	- 993	- 576	- 730	- 588	- 594
180	- 351	- 810	- 1106	- 590	- 878	- 652	- 664
190	- 242	- 959	- 1337	- 432	- 1301	- 784	- 738
200	146	- 1278	- 1604	134	- 1927	- 470	- 937
201	161	- 1346	- 1531	244	- 2058	- 324	- 986
200	172	- 1390	- 1500	206	- 2058	- 152	- 944
190	216	- 1324	- 1513	- 462	- 1369	- 294	- 607
170	42	- 920	- 1526	143	- 600	- 1241	- 451
150	37	- 886	- 1433	133	- 577	- 1139	- 387

TABELA 32 - Deformações no concreto e na armadura–VM6

Força	1D	2D	3D	1E	2E	3E
(kN)	(με)	(με)	(με)	(με)	(με)	(με)
0	0	0	0	0	0	0
10	8	14	- 7	2	- 18	6
20	15	28	- 12	5	- 33	15
30	24	44	- 18	10	- 49	23
40	33	62	- 26	14	- 61	31
50	41	79	- 33	17	- 73	41
60	50	97	- 42	20	- 86	52
70	59	116	- 53	21	- 98	64
80	69	136	- 64	22	- 111	76
90	79	158	- 76	21	- 123	90
100	89	178	- 88	22	- 136	103
110	101	201	- 99	22	- 149	116
120	111	220	- 112	22	- 161	128
130	122	243	- 124	22	- 174	142
140	132	264	- 137	21	- 186	153
150	133	266	- 138	21	- 187	153
160	143	287	- 149	22	- 197	165
170	157	313	- 161	24	- 207	180
180	173	343	- 175	25	- 212	196
190	192	376	- 186	31	- 212	213
196	212	419	- 202	43	- 200	240
190	230	476	- 255	9	- 256	229
180	237	483	- 260	5	- 264	233
170	242	486	- 263	- 5	- 270	232
160	191	440	- 269	- 29	- 246	188
150	187	437	- 275	613	- 229	173

TABELA 33 - Deformação das rosetas --VM6

FORÇA (kN)	A (mm)	B (mm)	C (mm)
0	0,00	0,00	0,00
10	0,33	0,48	0,41
20	0,82	1,10	0,85
30	1,22	1,73	1,32
40	2,06	2,64	1,90
50	2,70	3,47	2,63
60	3,30	4,22	3,17
70	3,91	5,08	4,13
80	4,48	5,82	4,52
90	5,20	7,07	5,33
100	5,94	8,03	6,05
110	6,70	9,17	6,83
120	7,67	10,42	7,59
130	8,65	11,97	8,38
140	10,04	13,98	9,94
150	11,76	16,51	11,50
160	14,09	20,00	13,60
170	17,57	25,30	17,19
180	24,15	35,81	23,86
190	44,91	68,96	44,68
194	56,83	88,03	55,87
190	67,35	104,59	66,63
181	67,83	104,67	67,12
151	68,00	104,65	67,34
130	67,04	104,63	66,23

TABELA 34 - De	slocamento	vertical -	VM7
----------------	------------	------------	-----

FORÇA	11D	12D	13D	14D	15D	16D	17D	18D	12E	17E
(kN)	(mm)									
0	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00
10	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
20	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
30	0,00	0,00	0,00	0,00	0,01	0,01	0,01	0,00	0,00	0,00
40	0,01	0,00	0,00	0,00	0,00	0,10	0,02	0,01	0,00	0,00
50	0,01	0,00	0,09	0,07	0,00	0,12	0,09	0,01	0,00	0,09
60	0,02	0,00	0,11	0,10	0,00	0,15	0,12	0,02	0,00	0,11
70	0,06	0,00	0,14	0,14	0,00	0,17	0,15	0,06	0,00	0,14
80	0,10	0,00	0,18	0,18	0,00	0,19	0,18	0,10	0,00	0,18
90	0,18	0,00	0,25	0,23	0,01	0,22	0,23	0,18	0,00	0,25
100	0,21	0,00	0,32	0,28	0,03	0,24	0,28	0,21	0,00	0,32
110	0,26	0,00	0,39	0,33	0,05	0,28	0,33	0,26	0,00	0,39
120	0,31	0,00	0,46	0,40	0,09	0,31	0,39	0,31	0,00	0,46
130	0,38	0,00	0,56	0,48	0,16	0,37	0,47	0,38	0,00	0,56
140	0,50	0,00	0,69	0,59	0,25	0,46	0,57	0,50	0,00	0,69
150	0,64	0,00	0,86	0,75	0,39	0,58	0,72	0,64	0,00	0,86
160	0,84	0,00	1,13	1,00	0,62	0,73	0,96	0,84	0,00	1,13
170	1,13	0,00	1,55	1,43	1,02	0,94	1,38	1,13	0,00	1,55
180	1,74	0,00	2,41	2,34	1,88	1,31	2,24	1,74	0,00	2,41
190	3,92	0,00	4,86	4,92	4,44	2,72	4,78	3,92	0,00	4,86
194	5,38	0,00	5,94	5,98	5,56	3,69	5,87	5,38	0,00	5,94
190	6,48	0,01	6,97	6,93	6,63	4,28	6,87	6,48	0,01	6,97
181	6,51	0,01	6,95	6,93	6,65	4,29	6,87	6,51	0,01	6,95
151	6,44	0,00	6,74	6,81	6,63	4,21	6,73	6,44	0,00	6,74
130	6,41	0,01	6,66	6,74	6,57	4,17	6,66	6,41	0,01	6,66

TABELA 35 - Deslizamento na interface perfil-laje - VM7

Eoroa	חס	4D	5D	60	70	80	DE	15	55	6E	75	85
ruiça (kNI)		4D (uc)	(uc)		(10)	(110)	(uc)	+L (uc)	J∟ (µc)	(uc)	/ L	0L (uc)
	(με)	(με)	(µɛ) 0	(με)	(με)	(με)	(με)	(με)	(με)	(µɛ) 0	(με)	(με)
0	0	0	0	0	0	0	0	0	0	0	0	
10	86	11	26	40	55	68	85	86	11	26	40	55
20	177	22	54	85	115	142	172	177	22	54	85	115
30	259	34	82	131	179	223	255	259	34	82	131	179
40	344	44	109	178	247	312	345	344	44	109	178	247
50	425	55	137	225	314	401	431	425	55	137	225	314
60	502	67	165	276	384	496	516	502	67	165	276	384
70	584	73	188	323	457	597	602	584	73	188	323	457
80	658	79	214	374	534	700	680	658	79	214	374	534
90	781	17	187	404	621	851	804	781	17	187	404	621
100	875	- 14	190	455	718	988	899	875	- 14	190	455	718
110	971	- 27	211	519	821	1126	991	971	- 27	211	519	821
120	1074	- 41	237	597	932	1263	1090	1074	- 41	237	597	932
130	1193	- 58	270	690	1056	1428	1207	1193	- 58	270	690	1056
140	1366	- 82	322	809	1188	1629	1368	1366	- 82	322	809	1188
150	1621	- 102	388	951	1337	1892	1578	1621	- 102	388	951	1337
160	2021	- 155	478	1127	1544	2271	1877	2021	- 155	478	1127	1544
170	2606	- 214	617	1347	1855	2802	2281	2606	- 214	617	1347	1855
180	3727	- 272	868	1708	2490	3809	2917	3727	- 272	868	1708	2490
190	11181	- 692	1578	3432	5370	9195	8869	11181	- 692	1578	3432	5370
194	14802	- 912	2171	4664	8383	13076	13270	14802	- 912	2171	4664	8383
190	-	- 1226	3037	6605	12539	-	-	-	- 1226	3037	6605	12539
181	-	- 1358	2971	6613	12620	-	-	-	- 1358	2971	6613	12620
151	-	- 1874	2561	6142	12116	-	-	-	- 1874	2561	6142	12116
130	-	- 1988	2515	6043	11961	-	-	-	- 1988	2515	6043	11961

TABELA 36 - Deformações longitudinais nos perfis - VM7

FORÇA	9D	10D	LC	9E	10E	AD	AE
(kN)	(με)	(με)	(με)	(με)	(με)	(με)	(με)
0	0	0	0	0	0	0	0
10	- 18	- 42	- 19	- 16	- 23	- 17	- 19
20	- 32	- 94	- 39	- 33	- 48	- 36	- 42
30	- 45	- 161	- 57	- 51	- 72	- 60	- 68
40	- 58	- 223	- 79	- 67	- 98	- 83	- 101
50	- 69	- 275	- 102	- 86	- 123	- 107	- 123
60	- 81	- 329	- 125	- 105	- 150	- 131	- 142
70	- 94	- 378	- 148	- 125	- 175	- 156	- 145
80	- 106	- 425	- 173	- 144	- 202	- 181	- 182
90	- 115	- 480	- 163	- 160	- 224	- 194	- 194
100	- 125	- 520	- 166	- 179	- 253	- 208	- 208
110	- 138	- 569	- 182	- 200	- 285	- 226	- 227
120	- 149	- 619	- 200	- 220	- 319	- 247	- 253
130	- 161	- 670	- 219	- 240	- 354	- 270	- 287
140	- 172	- 726	- 239	- 260	- 394	- 297	- 304
150	- 181	- 790	- 266	- 280	- 443	- 328	- 329
160	- 183	- 868	- 303	- 299	- 510	- 367	- 362
170	- 183	- 967	- 365	- 317	- 604	- 409	- 371
180	- 148	- 1145	- 449	- 317	- 769	- 450	- 380
190	23	- 1398	- 606	- 193	- 1124	- 321	- 290
194	106	- 1459	- 639	- 140	- 1175	- 189	- 210
190	41	- 1120	- 576	- 153	- 902	0	- 230
181	58	- 1036	- 571	- 264	- 637	8	- 637
151	146	- 736	- 517	- 101	- 291	- 94	- 362
130	131	- 726	- 437	- 80	- 263	- 47	- 257

TABELA 37 - Deformações no concreto e na armadura-VM7

Força	1D	2D	3D	1E	2E	3E
(kN)	(με)	(με)	(με)	(με)	(με)	(με)
0	0	0	0	0	0	0
10	0	- 5	6	8	- 16	1
20	- 1	- 12	10	15	- 31	4
30	- 3	- 18	17	21	- 43	9
40	- 5	- 26	25	25	- 51	13
50	- 8	- 33	56	33	- 50	37
60	- 11	- 43	71	36	- 60	46
70	- 15	- 52	87	40	- 74	55
80	- 20	- 62	104	41	- 87	66
90	- 27	- 70	124	42	- 98	81
100	- 34	- 80	144	45	- 109	95
110	- 40	- 89	161	47	- 121	109
120	- 44	- 99	178	51	- 130	121
130	- 46	- 109	195	56	- 136	133
140	- 48	- 116	212	63	- 140	148
150	- 48	- 123	230	69	- 144	162
160	- 51	- 129	249	76	- 139	177
170	- 50	- 135	266	88	- 122	187
180	- 43	- 147	272	106	- 125	196
190	- 34	- 159	298	128	- 142	196
194	- 28	- 156	302	132	- 82	198
190	- 31	- 148	306	114	- 96	197
181	- 28	- 143	287	107	- 90	191
151	- 28	- 152	232	109	- 79	148
130	- 22	- 128	207	101	- 64	132

TABELA 38 - Deformação das rosetas --VM7

FORÇA (kN)	A (mm)	B (mm)	C (mm)
0	0,00	0,00	0,00
10	0,46	0,61	0,41
20	1,02	1,30	0,89
30	1,59	2,01	1,48
40	2,26	2,81	2,01
50	2,83	3,53	2,51
60	3,43	4,24	3,06
70	4,04	5,04	3,61
80	4,83	6,20	4,57
90	5,54	7,21	5,26
100	6,30	8,32	6,03
110	7,17	9,53	6,88
120	8,13	10,88	7,86
130	9,17	12,43	8,91
140	10,43	14,26	10,17
150	12,24	16,85	11,95
160	14,19	19,84	13,98
170	16,87	24,16	16,89
180	23,50	34,99	24,06
189	50,19	79,77	53,77
180	66,44	107,53	72,80
160	65,48	106,23	71,71
150	64,93	105,45	71,11
140	64,37	104,67	70,48

TABELA 39 - Deslocamento vertical - VM8

						•	,			
FORÇA	11D	12D	13D	14D	15D	16D	17D	18D	12E	17E
(KN)	(mm)	(mm)								
0	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00
10	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00
20	0,02	0,01	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,02
30	0,05	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,05
40	0,09	0,04	0,02	0,01	0,00	0,00	0,00	0,00	0,00	0,09
50	0,10	0,05	0,03	0,01	0,00	0,01	0,01	0,00	0,00	0,10
60	0,12	0,06	0,05	0,01	0,00	0,01	0,01	0,00	0,00	0,12
70	0,15	0,08	0,09	0,01	0,00	0,01	0,01	0,00	0,00	0,15
80	0,18	0,10	0,14	0,02	0,00	0,07	0,11	0,05	0,07	0,18
90	0,20	0,13	0,18	0,02	0,00	0,10	0,16	0,07	0,09	0,20
100	0,23	0,17	0,25	0,04	0,00	0,14	0,22	0,10	0,12	0,23
110	0,27	0,20	0,31	0,04	0,00	0,20	0,29	0,15	0,16	0,27
120	0,32	0,24	0,38	0,06	0,00	0,27	0,38	0,20	0,22	0,32
130	0,37	0,29	0,46	0,07	0,00	0,36	0,49	0,29	0,29	0,37
140	0,44	0,35	0,55	0,08	0,00	0,48	0,62	0,38	0,38	0,44
150	0,58	0,42	0,66	0,09	0,00	0,67	0,82	0,51	0,51	0,58
160	0,71	0,51	0,81	0,11	0,00	0,88	1,08	0,69	0,68	0,71
170	0,91	0,64	1,05	0,14	0,01	1,20	1,45	0,97	0,94	0,91
180	1,47	0,99	1,63	0,25	0,00	2,05	2,41	1,74	1,69	1,47
189	3,97	2,61	3,76	0,84	0,00	6,18	5,66	5,08	10,05	3,97
180	5,51	3,55	4,74	0,78	0,00	8,46	7,96	7,66	10,06	5,51
160	5,49	3,53	4,73	0,77	0,00	8,40	7,91	7,63	10,05	5,49
150	5,48	3,51	4,71	0,77	0,00	8,37	7,88	7,62	10,06	5,48
140	5,47	3,49	4,70	0,77	0,00	8,34	7,85	7,60	10,06	5,47

TABELA 40 - Deslizamento na interface perfil-laje - VM8

Força	PD	4D	5D	6D	7D	8D	PE	4E	5E	6E	7E	8E
(kN)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)	(με)
0	0	0	0	0	0	0	0	0	0	0	0	0
10	90	6	24	40	54	70	88	90	6	24	40	54
20	187	19	50	87	113	150	174	187	19	50	87	113
30	278	28	79	132	177	244	247	278	28	79	132	177
40	369	38	108	181	245	343	319	369	38	108	181	245
50	453	48	139	231	313	442	385	453	48	139	231	313
60	534	57	167	280	385	545	451	534	57	167	280	385
70	610	64	195	330	458	655	511	610	64	195	330	458
80	682	68	225	384	535	771	570	682	68	225	384	535
90	761	64	246	438	621	900	638	761	64	246	438	621
100	855	57	251	485	720	1049	717	855	57	251	485	720
110	952	24	277	555	833	1194	803	952	24	277	555	833
120	1063	27	309	639	958	1335	902	1063	27	309	639	958
130	1212	25	350	746	1105	1492	1038	1212	25	350	746	1105
140	1425	- 30	398	880	1272	1688	1225	1425	- 30	398	880	1272
150	1763	- 71	474	1066	1479	1958	1543	1763	- 71	474	1066	1479
160	2235	- 115	577	1311	1749	2360	1979	2235	- 115	577	1311	1749
170	2854	- 177	730	1655	2200	2958	2565	2854	- 177	730	1655	2200
180	3950	- 330	1032	2274	3396	4518	3637	3950	- 330	1032	2274	3396
189	12881	- 946	2237	5268	10207	15063	12827	12881	- 946	2237	5268	10207
180	-	- 1499	3097	7448	13735	-	-	-	- 1499	3097	7448	13735
160	-	- 1507	3056	7363	13612	-	-	-	- 1507	3056	7363	13612
150	-	- 1505	3036	7319	13544	-	-	-	- 1505	3036	7319	13544
140	-	- 1502	3018	7276	13476	-	-	-	- 1502	3018	7276	13476

TABELA 41 - Deformações longitudinais nos perfis - VM8

FORÇA	9D	10D	LC	9E	10E	AD	AE
(kN)	(με)	(με)	(με)	(με)	(με)	(με)	(με)
0	0	0	0	0	0	0	0
10	- 15	- 24	- 21	- 15	- 21	- 33	- 32
20	- 27	- 48	- 43	- 32	- 43	- 69	- 65
30	- 39	- 70	- 66	- 46	- 65	- 106	- 103
40	- 48	- 91	- 87	- 60	- 86	- 146	- 136
50	- 57	- 115	- 108	- 74	- 108	- 187	- 179
60	- 68	- 140	- 130	- 90	- 130	- 228	- 217
70	- 77	- 167	- 155	- 102	- 154	- 270	- 253
80	- 85	- 194	- 180	- 112	- 174	- 314	- 298
90	- 94	- 221	- 196	- 122	- 197	- 349	- 337
100	- 102	- 258	- 205	- 134	- 221	- 377	- 371
110	- 113	- 293	- 222	- 146	- 251	- 412	- 402
120	- 122	- 337	- 245	- 156	- 284	- 451	- 439
130	- 132	- 381	- 270	- 168	- 319	- 491	- 481
140	- 141	- 432	- 295	- 178	- 359	- 535	- 522
150	- 155	- 496	- 326	- 179	- 415	- 587	- 561
160	- 160	- 576	- 361	- 187	- 484	- 640	- 619
170	- 160	- 699	- 400	- 185	- 594	- 696	- 698
180	- 56	- 920	- 540	- 118	- 859	- 843	- 510
189	1887	- 1922	- 591	1026	- 1432	- 1143	- 582
180	2415	- 2044	- 637	1073	- 1571	- 757	- 108
160	2413	- 1992	- 575	1070	- 1518	- 666	- 20
150	2412	- 1964	- 541	1068	- 1491	- 617	27
140	2414	- 1937	- 509	1067	- 1463	- 566	72

TABELA 42 - Deformações no concreto e na armadura - VM8

Força	1D	2D	3D	1E	2E	3E
(kN)	(με)	(με)	(με)	(με)	(με)	(με)
0	0	0	0	0	0	0
10	- 1	- 7	6	- 2	- 8	7
20	0	- 14	13	- 3	- 17	15
30	0	- 21	21	- 5	- 24	22
40	- 1	- 28	29	- 5	- 31	32
50	- 3	- 37	36	- 7	- 38	39
60	- 3	- 45	44	- 7	- 47	48
70	- 5	- 55	51	- 7	- 56	55
80	- 15	- 66	109	- 11	- 64	112
90	- 20	- 76	129	- 14	- 72	132
100	- 23	- 87	147	- 17	- 81	153
110	- 27	- 97	166	- 18	- 88	171
120	- 28	- 108	184	- 22	- 98	190
130	- 32	- 118	199	- 24	- 107	205
140	- 32	- 126	217	- 28	- 116	224
150	- 35	- 135	238	- 30	- 119	244
160	- 37	- 142	258	- 34	- 128	264
170	- 40	- 150	278	- 40	- 138	283
180	- 43	- 173	290	- 46	- 162	302
189	- 66	- 222	304	- 43	- 208	318
180	- 65	- 228	277	- 45	- 223	293
160	- 63	- 205	249	- 42	- 201	265
150	- 61	- 193	234	- 40	- 190	250
140	- 61	- 181	219	- 38	- 179	234

TABELA 43 - Deformações obtidas pelas rosetas - VM8

