UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA DE ESTRUTURAS

AÇÃO DIAFRAGMA DE COBERTURA APLICADA ÀS CONSTRUÇÕES EM PÓRTICO DE MADEIRA

LÍVIO TÚLIO BARALDI

Tese apresentada à Escola de Engenharia de São Carlos, da Universidade de São Paulo, como parte dos requisitos para a obtenção do Título de **Doutor** em **Engenharia de Estruturas.**

ORIENTADOR: Prof. Dr. Carlito Calil Junior

São Carlos 2001

À Deus pela sabedoria, e àminha esposa, filhas, pais e avós pelo apoio e confiança.

AGRADECIMENTOS

Ao Professor Carlito Calil Junior pela orientação e amizade durante a elaboração deste trabalho.

A Fundação de Amparo à Pesquisa do Estado de São Paulo -FAPESP pela bolsa de estudos concedida.

A GANG-NAIL do BRASIL pelo material fornecido para a realização dos ensaios.

A HAIRONVILLE do Brasil pelo fornecimento das telhas para a realização dos ensaios.

Aos amigos do LaMEM: Arnaldo Bragatto Cido Jaime José Francisco Roberto Silvio Tânia pelo apoio durante o desenvolvimento deste trabalho.

SUMÁRIO

LISTA DE FIGURAS	i
LISTA DE TABELAS	iii
LISTA DE SIGLAS	iv
LISTA DE SÍMBOLOS	v
RESUMO	vi
ABSTRACT	vii
1 INTRODUÇÃO 1.1 Ação diafragma 1.2 Objetivos e justificativa	1 2 7
2 REVISÃO BIBLIOGRÁFICA 2.1 Aplicação da ação diafragma 2.2 Conclusões	8 9 25
3 A NORMA ASAE EP484.1 - Cálculo diafragma de coberturas metálicas em construções retangulares	28 28
3.1.1 Propósito e alcance	28 29
3 1 3 Rigidez e resistência diafragma	31
3.1.3.1 Aparelhagem de testes	31
3.1.3.1.1 Tamanho do pórtico	31
3.1.3.1.2 Madeira	31
3.1.3.1.3 Tamanho e espaçamento das terças e banzos	31
3.1.3.1.4 Carregamento e instrumentação	31
3.1.3.2 Procedimentos de teste	32
3.1.3.2.1 Número de testes e critérios de resistência na	
ruptura	32
3.1.3.2.2 Procedimento de carregamento	32
3.1.3.2.3 Definição de falha	32
3.1.3.3 Relatorio de testes	32
3.1.3.3.1 Informações gerais	32
3.1.3.3.2 Configurações do paíner dialitagina	3Z 22
3 1 3 3 4 Telba metálica	32
3 1 3 3 5 Fixadores	33
3 1 3 3 6 Resultados	33
3.1.3.4 Rigidez da construção diafragma, ch	35
3.1.3.4.1 Ajuste do comprimento diafragma	35
3.1.4 Procedimentos de cálculo	36
3.1.4.1 Suposições gerais	36

3.1.4.2 Roteiro de cálculo	36		
3.1.4.3 Transferencia do cisainamento 3.2 Considerações gerais	37 38		
4 MATERIAIS E MÉTODOS	42		
4.1 Modelo numérico	42		
4.2 Modelo experimental	42		
4.2.1 Madeira	43		
4.2.2 Telhas	43		
4.2.3 Fixadores Gang-Nail	44		
4.2.4 Painel diafragma	44		
4.2.5 Procedimentos de ensaio	47		
5 RESULTADOS	52		
5.1 Ensaios preliminares	52		
5.2 Modelos numéricos	56		
5.2.1 Rigidez (k) e força de resistência (R) do pórtico	57		
5.3 Ensaios finais	59		
5.3.1 Eucalipto	59		
5.3.2 Pinus	62		
5.4 Discussão dos resultados	63		
5.4.1 Painéis de Eucalipto	64		
5.4.2 Painéis de Pinus	66		
5.5 Considerações gerais			
6 CONCLUSÕES	72		
REFERÊNCIAS BIBLIOGR	74		
ANEXO 1 - ENSAIOS PRELIMINARES			
ANEXO 2 - MODELOS NUMÉRICOS			
ANEXO 3 - ENSAIOS FINAS			

ANEXO 4 - EXEMPLO DE CÁLCULO

LISTA DE FIGURAS

FIGURA 1 - Pórtico treliçado	2
FIGURA 2 - Ação diafragma	2
FIGURA 3 - Contraventamento - Deslocamento horizontal	3
FIGURA 4 - Ação diafragma - Força resistente R	4
FIGURA 5 - Rigidez do pórtico treliçado	5
FIGURA 6 - Ensaios para determinação da rigidez e resistência	
diafragma	6
FIGURA 7 - Comportamento de viga do diafragma	6
FIGURA 8 - Ligação metálica	10
FIGURA 9 - Verificação do pórtico considerando a ação diafragma.	12
FIGURA 10 - Transferência das forças para a fundação	13
FIGURA 11 - Influência da cobertura na rigidez da edificação	15
FIGURA 12 - Modelo de mola para interação pórtico-diafragma	21
FIGURA 13 - Modelo de treliça para o painel diafragma	21
FIGURA 14 - Modelo tridimensional	22
FIGURA 15 - Modelo proposto por Keener e Manbeck	23
FIGURA 16 - Identificação da estrutura	29
FIGURA 17 - Modelo de teste em viga simples	30
FIGURA 18 – Dimensões da telha de aço	43
FIGURA 19 – Parafuso de fixação das telhas	44
FIGURA 20 – Conectores HC	44
FIGURA 21 – Modelo de ensaio com painel diafragma	45
FIGURA 22 – Configuração da malha de madeira	47
FIGURA 23 – Procedimento de montagem da malha de madeira	48
FIGURA 24 – Ensaio de rigidez da malha	49
FIGURA 25 – Fixação das telhas	49
FIGURA 26 - Ensaio do painel diafragma	50
FIGURA 27 – Disposição dos parafusos de fixação das telhas	52
FIGURA 28 - Modos de ruptura dos painéis	53
FIGURA 29 - Resultados do primeiro painel	53
FIGURA 30 - Resultados do segundo painel	54

FIGURA 31 - Resultado Pinus - Teste sem reforço	55
FIGURA 32 - Resultado Pinus - Teste com reforço	56
FIGURA 33 - Rigidez do pórtico - Eucalipto	57
FIGURA 34 - Rigidez do pórtico - Pinus	58
FIGURA 35 – Modos de ruptura	64
FIGURA 36 – Flexão do painel de cobertura	64
FIGURA 37 - Comparativo entre painéis em Pinus e Eucalipto	69
FIGURA 38 - Disposição construtiva para o Pinus	70
FIGURA 39 - Disposições construtivas para o Eucalipto	70

LISTA DE TABELAS

TABELA 1 – Coeficiente mS	40
TABELA 2 – Coeficiente mD	41
TABELA 3 – Propriedades diafragma - Eucalipto	60
TABELA 4 – Propriedades diafragma - Eucalipto	61
TABELA 5 - Propriedades da madeira - Eucalipto	62
TABELA 6 - Propriedades diafragma - Pinus	62
TABELA 7 - Propriedades da madeira - Pinus	63
TABELA 8 - Influência da rigidez do pórtico	65
TABELA 9 - Comparação entre o Pinus e o Eucalipto	67

LISTA DE SIGLAS

ANSI	American National Standards Institute
ASAE	American Society of Agricultural Engineers
ASTM	American Society for Testing and Materials
CDE	Chapas com Dentes Estampados
PPR	Pórtico Principal de Rigidez
TPI	Truss Plate Institute

LISTA DE SÍMBOLOS

А	Área
C'	Rigidez do painel teste ajustado pelo comprimento diafragma
D_S	Deslocamento de cisalhamento do diafragma teste
D _T	Deslocamento total
D_b	Deslocamento devido àflexão do painel
E	Módulo de elasticidade
E_pI_p	Rigidez efetiva dos painéis
F	Força
K	Rigidez do pórtico
L_B	Comprimento da construção
P_{ult}	Força de ruptura do painel diafragma
Qr	Força de resistência da cobertura diafragma
R	Força de reação horizontal
Т	Força de tração
Vr	Força de cisalhamento máxima no plano da cobertura
а	Largura do diafragma
b	Comprimento diafragma
b'	Distância de centro a centro das terças de extremidade
С	Rigidez diafragma de cisalhamento
Ch	Rigidez da cobertura
d	Comprimento diafragma
mD	Força de resistência diafragma modificada
mS	Força de cisalhamento modificada
t	Espessura da telha
ν	Coeficiente de Poisson
θ	Inclinação do telhado

RESUMO

Este trabalho tem como objetivo apresentar uma análise do comportamento de estruturas em pórtico de madeira levando-se em conta a influência da ação diafragma da cobertura, que será verificada por meio da realização de ensaios em painéis diafragma e por análise numérica. Além disso, apresenta os procedimentos de cálculo para o projeto de edificações considerando a ação diafragma de cobertura. Fornece informações para a produção de estruturas treliçadas de cobertura em nível industrial, utilizando-se chapas com dentes estampados, com maior controle de qualidade técnica dos projetos e economia de material.

Palavras-chave: estruturas de madeira; madeira; cobertura; cálculo; ação diafragma.

ABSTRACT

The aim of this work is to analyze the behavior of post-frame of timber structures taking in account the influence of the roof diaphragm action, which will be verified by tests in diaphragm panels and in computational theoretical model. Furthermore, it will be show the design criteria considering the diaphragm action. Also, important information is presented for increase the production of trusses for roofs in industrial scale using metal plate connectors in conjunction with a better control of the technical quality of design and economy of material.

Key words: timber structures; timber; design; diaphragm action.

1 INTRODUÇÃO

As construções em pórticos treliçados de madeira apresentam um desempenho estrutural eficiente. São basicamente compostas por elementos principais, tais como: pilares e treliças, e por componentes secundários, tais como: terças, contraventamentos e fechamentos.

Na análise estrutural destas edificações, na grande maioria dos casos, não considerados os efeitos tridimensionais são da construção. No dimensionamento das estruturas considera-se que todas as forças laterais que contribuem para as ações sobre um pórtico individual são resistidas por ele próprio. Na realidade uma parcela destas ações pode ser transferida para os pórticos principais de rigidez (PPR), localizados nas extremidades da edificação pela cobertura, como ilustra a figura 2. Estas ações são transferidas da cobertura para os elementos principais através dos elementos secundários por esforços de cisalhamento. No caso da edificação apresentar grande comprimento, pode-se utilizar PPR internos, aumentando a eficiência da cobertura. Pode-se então definir PPR como os elementos estruturais responsáveis por transmitir os esforços horizontais absorvidos pela cobertura para as fundações do edifício.

A este mecanismo dá-se o nome de ação diafragma da cobertura, que quando considerado no cálculo resulta em dimensões de fundações mais consistentes com o desempenho real da estrutura e conseqüente economia de material. O diafragma da cobertura é formado principalmente pelas terças e telhas. Apresenta-se na figura a seguir o esquema com os principais elementos que formam a edificação:

FIGURA 1 - Pórtico treliçado (Fonte: Gebremedhin, 1992)

1.1 Ação diafragma

A ação diafragma pode ser considerada de placa, parede ou cobertura, e é calculada para resistir no seu plano, como parte de um sistema de contraventamento, a deslocamentos, como ilustra a figura a seguir:

FIGURA 2 - Ação diafragma (Fonte: Canadian Wood Construction, 1986)

De acordo com o **Canadian Wood Construction (1986)**, a aplicação da ação diafragma elimina a necessidade da parte do contraventamento onde o diafragma estiver agindo. Esta mesma informação é encontrada na norma americana para o cálculo de treliças de madeira utilizando-se conectores do tipo chapas com dentes estampados (ANSI/TPI, 1995).

Os contraventamentos são barras colocadas perpendicularmente as estruturas principais com a finalidade de garantir a estabilidade do conjunto durante sua vida útil e durante a fase de montagem, e para dar ao edifício uma rigidez espacial. Os contraventamentos horizontais laterais permitem melhor distribuição das forças horizontais, reduzindo momentos na base das colunas e deslocamentos. Experiências mostram uma redução de 15% a 20% das reações horizontais e dos momentos na base dos pilares para forças horizontais aplicadas nos pórticos. O mesmo efeito pode-se conseguir para a ação do vento por meio do diafragma da cobertura.

Figura 3 – Contraventamento - deslocamento horizontal (Fonte: Bellei, Edifícios industriais em aço)

Como pode ser visto, uma vez verificada a eficiência do diafragma, pode-se minimizar os efeitos das ações laterais sobre um edifício, mesmo que a análise seja feita por pórticos isolados, para isso, acrescenta-se uma força de resistência lateral contrária a ação que solicita a edificação, fornecida pela cobertura diafragma. Em certos casos pode-se inclusive dispensar a utilização do contraventamento uma vez que, o diafragma pode exercer esta função, no seu plano de atuação.

Para que uma cobertura apresente comportamento adequado quanto àação diafragma, deve-se garantir que as ligações tenham resistência suficiente para transferir as ações horizontais por cisalhamento para os PPR. Como as ações são transferidas para os PPR, estes devem apresentar rigidez maior que os demais pórticos da edificação, para absorverem estes esforços e transmiti-los para as fundações.

De um modo geral, a ação diafragma é um meio de fornecer rigidez no plano resistente à ação horizontal que atua sobre a estrutura. Esquematicamente, a ação diafragma pode ser representada por uma força "R" de reação horizontal que age sobre a estrutura, como ilustra a figura a seguir:

FIGURA 4 - Ação diafragma - Força resistente R (Fonte: ASAE EP 484.1, 1991)

A ação diafragma pode ser estimada sob dois parâmetros, a sua resistência, ou seja, a parcela do cisalhamento a que o diafragma pode resistir; e eficiência, ou seja, a porcentagem da força total que será resistida pelo diafragma, sendo cada um destes parâmetros determinados de acordo com a rigidez do pórtico treliçado em conjunto com a resistência e rigidez do diafragma. Então, o objetivo passa a ser determinar estes parâmetros e compatibilizá-los para que no cálculo da estrutura se considere a ação diafragma.

Na determinação destes parâmetros, os seguintes procedimentos podem ser adotados: para a rigidez dos pórticos pode-se utilizar programas de computador para análise plana ou realizar ensaios com protótipos ou modelos, sendo por definição a rigidez do pórtico a força necessária para provocar um deslocamento lateral unitário (ASAE EP 484.1, 1991). Esta rigidez é mostrada na figura a seguir:

FIGURA 5 - Rigidez do pórtico treliçado (Fonte: ASAE EP 484.1, 1991)

Já para o diafragma as propriedades podem ser obtidas a partir de ensaios em protótipos ou painéis diafragma. Além dos métodos citados anteriormente, as propriedades descritas para a ação diafragma podem ser obtidas por modelos numéricos, desde que sua validade tenha sido demonstrada pela comparação dos resultados obtidos no modelo e em ensaios.

a) Protótipos (Fonte: Gebremedhin, 1992)
b) Painéis (Fonte: ASAE EP 484.1, 1991)
FIGURA 6 – Ensaios para determinação da rigidez e resistência diafragma

Em nível estrutural, um diafragma é considerado como uma viga especial, onde tem-se, no caso do diafragma de cobertura, o momento resistido por um binário de compressão e tração (banzos), localizado nas paredes laterais da edificação e o cisalhamento absorvido pelo diafragma (alma).

FIGURA 7 – Comportamento de viga do diafragma (Fonte: Wright e Manbeck, 1992)

Na prática, quando uma ação solicita a edificação perpendicularmente ao seu comprimento, a ação diafragma ocorre na cobertura. Se a ação age paralela ao comprimento da edificação a ação diafragma é fornecida pelo fechamento lateral, denominada assim de parede cisalhante.

1.2 Objetivos e justificativa

Este trabalho tem como objetivo avaliar a ação diafragma de cobertura em edificações em pórticos treliçados de madeira. Serão consideradas telhas metálicas na cobertura e as estruturas executadas com madeiras de reflorestamento como as dos gêneros Pinus e Eucalipto. Para as ligações serão utilizados conectores padrão do sistema GANG-NAIL.

A determinação teórica da rigidez dos pórticos treliçados será feita com modelagem numérica usando o software ANSYS para análise de estruturas. Já a determinação da resistência e rigidez do diafragma será experimental, usando painéis diafragma de acordo com os procedimentos apresentados pela norma **ASAE EP 484.1 (1991)**, descritos no capítulo 3.

Com estes resultados serão apresentados os valores de resistência e rigidez a serem utilizados no dimensionamento de estruturas de madeira considerando a ação diafragma na resistência à ação do vento, para o sistema construtivo adotado, uma vez que a alteração dos dispositivos adotados interfere diretamente nas propriedades do diafragma.

Por meio da consideração da ação diafragma, obtém-se dimensões de fundações mais condizentes com o comportamento real da estrutura e com maior economia. Além disso, as considerações adotadas para o cálculo das estruturas são mais próximas do comportamento real da edificação, não sendo necessário adotar as simplificações no dimensionamento de estruturas por área de influência sobre os pórticos planos.

2 REVISÃO BIBLIOGRÁFICA

A ação diafragma considerada no cálculo das estruturas proporciona economia de material e leva em conta um comportamento tridimensional, mais próximo da realidade da estrutura, quando solicitada por forças horizontais.

Além disso, conhecido o funcionamento da estrutura com a ação diafragma e levando em conta esta ação no dimensionamento, a estrutura apresenta ótimo desempenho frente a condições adversas, como por exemplo, a ação do vento e terremotos (**Gebremedhin**, **1992**).

A aplicação da ação diafragma em estruturas de madeira tem sido maior em construções leves, com maior aplicação em construções rurais, sendo também utilizada em edificações comerciais e industriais, principalmente a partir de novas pesquisas e do desenvolvimento de novas técnicas e ferramentas de cálculo (Bender, 1992).

A consideração da ação diafragma no cálculo de estruturas exige a determinação de suas propriedades, bem como diretrizes para o cálculo. A norma americana **ASAE EP484-1 (1991)**, Cálculo Diafragma de Coberturas Metálicas em Construções Retangulares, apresenta um roteiro completo para a determinação das propriedades e cálculo de estruturas considerando o diafragma da cobertura. Devido a importância desta norma no desenvolvimento do trabalho, um resumo do conteúdo da mesma é apresentado no capítulo 3.

2.1 Aplicação da ação diafragma

Gebremedhin et. al. (1986) afirmam que um dos caminhos mais eficientes e baratos para fornecer estabilidade lateral a uma edificação é através do uso da cobertura como um diafragma horizontal. Neste trabalho apresentam um procedimento de cálculo para a inclusão da teoria diafragma no projeto de pórticos.

O procedimento de cálculo apresenta as seguintes etapas:

- Aplicar carregamento (vento + permanente), locar um apoio horizontal no ponto de fixação da treliça com o pilar para impedir o deslocamento horizontal do pórtico e determinar qual a força necessária para impedir este deslocamento (reação horizontal);
- 2) Determinar a rigidez do pórtico (k);
- Selecionar a força de resistência diafragma modificada (mD) e a força de cisalhamento modificada (mS) da cobertura, valores tabelados, a partir da razão da rigidez do pórtico, da rigidez diafragma e do número de pórticos;
- Calcular a força de restrição lateral e a força de cisalhamento na cobertura, sendo:

Força de resistência lateral = mD x reação horizontal

Força de cisalhamento na cobertura = mS x reação horizontal

- Distribuir a força de restrição ao deslocamento lateral igualmente nos nós do banzo superior com sentido oposto à ação do vento na parede e, então, analisar o pórtico;
- 6) Checar o cisalhamento na cobertura próximo aos pórticos principais de rigidez.

Os fatores de redução mD e mS dependem da rigidez relativa do pórtico e da cobertura, do número de pórticos na construção e da posição de um pórtico particular na edificação. O fator mD é calculado a partir do princípio da compatibilidade de deslocamento lateral do pórtico e da cobertura na linha de apoio da treliça no pilar. Em outras palavras, mostra quem resiste mais às forças horizontais, o pórtico ou a cobertura.

O cálculo das colunas deve ser feito em duas etapas, da base do pilar até o ponto de inflexão (linha do piso), e do ponto de inflexão para o apoio da treliça no pilar.

Os autores citados concluem que os fatores limitantes no cálculo podem ser: resistência do pilar, cisalhamento horizontal no pilar e flambagem das diagonais ou banzo da treliça. A ação diafragma é mais efetiva no controle de deslocamentos laterais e na redução das forças dos pilares quando o comprimento da edificação decresce e a largura aumenta. É importante destacar que esse trabalho é parte integrante da bibliografia que serviu de base para a elaboração da norma **ASAE EP484-1 (1991)**.

Groom e Leichti (1991) apresentam um estudo do conector utilizado na união da treliça com o pilar em pórticos treliçados. Foi elaborado um modelo de elementos finitos com análise não-linear para estes componentes. Os autores realizaram testes em corpos-de-prova para obtenção de dados a serem comparados com os obtidos na modelagem. A comparação entre os dados apresentou resultados satisfatórios, uma vez que o modelo foi simplificado para seis elementos de mola representando quatrocentos elementos, com variação média máxima dos resultados em torno de 24% a mais no modelo numérico.

FIGURA 8 – Ligação metálica (Fonte: Groom e Leichti, 1991)

Wright e Manbeck (1992) apresentam uma revisão teórica do comportamento de painel diafragma analisando as variáveis envolvidas, as características dos painéis de ensaio diafragma, e também, fazem uma análise comparativa entre diafragmas de madeira sobre madeira, metal sobre metal, e metal sobre madeira. Além disso, afirmam que a análise bidimensional de pórticos utilizada nos cálculos das estruturas funciona bem quando a estrutura está submetida a forças verticais, já para forças horizontais, como por exemplo, o vento, este procedimento não é muito eficaz. Quando o carregamento é horizontal e perpendicular ao eixo longitudinal da construção, o comportamento de pórticos individuais é substituído pela ação conjunta da cobertura com os pórticos. A este fenômeno dá-se o nome de ação diafragma. Para a seqüência do trabalho, propõem a análise de um modelo de elementos finitos de painéis diafragma com aço sobre madeira.

Woeste et. al. (1992) apresentam os principais aspectos levados em conta pelo calculista no dimensionamento das estruturas e afirmam que novas pesquisas e testes executados em estruturas ou modelos poderiam justificar uma mudança nos procedimentos de cálculo, entre estas mudanças encontra-se a consideração da ação diafragma.

Gebremedhin e Manbeck (1992) apresentam os procedimentos de cálculo diafragma para construções em pórtico, onde se encontram as seguintes recomendações, a partir da consideração de que os pórticos internos na edificação apresentam o mesmo espaçamento e a mesma rigidez, e os painéis diafragma entre os pórticos também devem apresentar a mesma rigidez no plano:

 1º passo: Determinar a rigidez do pórtico, como mostra a figura 5. Este valor pode ser determinado pela análise bidimensional do pórtico por um programa de computador. A rigidez do pórtico "k" é a força necessária para produzir um deslocamento unitário do ponto de apoio da treliça no pilar;

- 2º passo: A partir da análise estrutural bidimensional do pórtico com o carregamento externo aplicado, determinar uma força de resistência horizontal "R", necessária para impedir o deslocamento horizontal do pórtico, como ilustra a figura 4;
- 3º passo: Calcular a rigidez da cobertura "ch", que pode ser obtida a partir dos ensaios em painéis diafragma para cada plano da cobertura. A rigidez total do telhado é igual à soma da rigidez de cada plano, uma vez que as características podem ser diferentes para cada parte e o painel diafragma deve representar fielmente a estrutura real;
- 4º passo: Calcular a razão entre a rigidez do pórtico e a rigidez da cobertura diafragma;
- 5º passo: Calcular a força de resistência modificada "mD", do diafragma;
- 6º passo: Calcular a força de cisalhamento modificada "mS", a partir dos valores de mD;
- 7º passo: Calcular a força de resistência da cobertura diafragma, "Qr", e a força de cisalhamento máxima no plano da cobertura "Vr". A cobertura diafragma deve apresentar uma força de resistência maior ou igual ao cisalhamento máximo que ocorre na cobertura;
- 8º passo: Analisar a construção em pórtico, incluindo a ação de cobertura diafragma, como ilustra a figura a seguir, com uma força "q", distribuída horizontalmente na cobertura.

FIGURA 9 - Verificação do pórtico considerando a ação diafragma (Fonte: ASAE EP 484.1, 1991)

A transferência das forças horizontais até a fundação segue o esquema ilustrado pela figura a seguir, onde pode-se perceber a importância da ligação no cobrimento das telhas, pois, o modelo considera as telhas como contínuas:

FIGURA 10 - Transferência das forças para a fundação (Fonte: ASAE EP 484.1, 1991)

O mesmo procedimento pode ser aplicado considerando-se a ação diafragma do forro, isolado ou em conjunto com a cobertura.

As ligações do diafragma com os pórticos principais de rigidez devem resistir ao cisalhamento V_r, descrito anteriormente. Além disso, as extremidades do diafragma devem ser dimensionadas para resistir às forças decorrentes da flexão. O procedimento de cálculo diafragma é detalhado no capítulo 3.

De acordo com **Gebremedhin (1992)**, nos cálculos das estruturas normalmente não são considerados os efeitos tridimensionais da construção. Na prática, determina-se a área de influência sobre cada pórtico individual para as ações, tanto verticais quanto horizontais, e considera-se que o próprio pórtico resiste às solicitações.

Este mesmo autor afirma ainda, que a utilização do princípio da ação diafragma leva a estruturas mais leves, econômicas e competitivas com outras alternativas de construção. A ação diafragma da cobertura justifica o uso de coluna com seções reduzidas e fundações menos profundas que o determinados pelos métodos convencionais.

Quando a ação diafragma é considerada, uma parcela das forças laterais é absorvida pela cobertura por cisalhamento. Este esforço é transferido para os pórticos principais de rigidez (PPR) para, em seguida, serem transferidos às fundações. Com isso a ação diafragma age no sentido de aliviar os esforços nos pilares dos pórticos internos, sendo uma parcela dos esforços absorvida pelo pórtico e o restante pela cobertura diafragma. Por isso no cálculo são consideradas a rigidez do pórtico e a rigidez e resistência do diafragma.

Ainda de acordo com este autor, a parcela que cada elemento estrutural absorve das forças horizontais depende do comprimento da edificação, do espaçamento entre os pórticos, da rigidez dos pórticos isolados, dos pórticos principais de rigidez e da cobertura diafragma.

Além disto, o autor apresenta resultados de ensaios com cobertura diafragma de um protótipo, tendo verificado a variação do deslocamento dos pórticos desta edificação, em cinco estágios diferentes da construção, que foram: pórtico de madeira isolado, PPR com vedação, todas as paredes com vedação, metade do telhado coberto, e edificação toda coberta. O gráfico a seguir ilustra as variações nos deslocamentos horizontais, comprovando a eficiência da cobertura na resistência às forças horizontais.

- Pórtico Isolado
- Oitões com vedação
- Paredes com vedação
- 1 água coberta
- O Construção coberta

Cabe destacar que a consideração da ação diafragma em conjunto com a racionalização das treliças de cobertura, como, por exemplo, utilizando-se conectores do tipo CDE, propicia a execução de estruturas com segurança e economia.

Bohnhoff (1992) procura determinar a validade de assumir uma treliça com rigidez infinita para o cálculo da rigidez (k) e resistência dos pórticos (R), considerando a ligação pilar-treliça como rígida. Além disso, desenvolve equações para estimar "k" e "R" para pórticos com pilares engastados considerando as propriedades do solo. Para este fim, vinte e sete análises diferentes foram feitas, variando-se os seguintes parâmetros: altura do pilar; vão livre da treliça; e fixação do pilar. As seguintes considerações foram assumidas para todas as análises: banzos contínuos, ligação rígida entre banzos, diagonais rotuladas nos banzos, dimensões dos pilares fixas e metade da força aplicada em cada pilar.

A análise dos resultados consiste na comparação entre os valores obtidos em modelos teóricos e modelos numéricos. Para pilares fixos na base, não engastados, a consideração de treliça com rigidez infinita aumenta a rigidez do pórtico, neste caso, a ligação entre a treliça e o pilar foi considerada não rotulada. Esta diferença diminui com o aumento da altura do pilar e do vão da treliça. Ainda neste caso os resultados mostram que a rigidez do pórtico é muito mais dependente da fixação do pilar no solo que das propriedades da treliça. Em outras palavras, a consideração de treliça com rigidez infinita não é tão crítica quanto as considerações feitas a respeito das conexões dos pilares. Portanto, uma análise detalhada considerando as propriedades da treliça não se justifica, a menos que o comportamento semi-rígido das conexões do pilar estejam também sendo consideradas.

A partir desta verificação o autor desenvolve uma formulação para a determinação de "k" e "R", considerando o engastamento do pilar e as propriedades do solo. Neste caso, pilar engastado é aquele que apresenta anel de concreto na fundação e pilar não engastado é aquele onde toda a resistência a deslocamentos horizontais na base do pilar é fornecida pelo solo. Considerou-se ainda que abaixo da linha do solo, o pilar age como se fosse infinitamente rígido. O autor conclui que a maior vantagem em utilizar esta formulação é que os parâmetros "k" e "R", podem ser determinados independentemente da treliça e levam em consideração as condições de fixação do pilar e as propriedades do solo.

De acordo com **Gebremedhin et. al. (1992)**, na grande maioria dos casos as propriedades diafragma para projeto de uma edificação são obtidas por ensaios em painéis, uma vez que ensaios em protótipos apresentam custo elevado. Afirmam também que os ensaios com painéis não conseguem levar em conta as muitas variáveis envolvidas na construção. A partir desta constatação, um protótipo foi ensaiado com os seguintes objetivos: determinar o aumento da rigidez da construção devido à instalação da cobertura metálica; estimar a rigidez dos pórticos e cobertura diafragma; avaliar a precisão dos procedimentos de análise diafragma apresentados

pela literatura; e determinar a distribuição das forças nos pórticos internos quando a ação diafragma é utilizada.

Para este fim, uma construção foi analisada em vários estágios, sendo estes: construção sem fechamento metálico; fechamento metálico nos PPR; fechamento metálico nas paredes; cobertura metálica em uma água do telhado; cobertura completa; e cobertura completa com uma face da cumeeira desconectada para verificar a transferência do cisalhamento.

A ação horizontal considerada foi a do vento e foi simulada pela aplicação de forças horizontais concentradas de igual intensidade em cada pórtico interno. Como principais resultados tem-se:

- A rigidez dos PPR pode ser um importante fator para o dimensionamento dos pilares com procedimentos de cálculo diafragma, contrariando a norma ASAE EP (1991), que assume os PPR com deslocamentos horizontais desprezíveis;
- A colocação do fechamento nos PPR não influencia a transferência de cisalhamento, mas aumenta drasticamente a rigidez dos mesmos;
- O fechamento lateral diminui os deslocamentos horizontais em apenas 14%;
- Com a instalação da cobertura em uma água, os deslocamentos horizontais foram reduzidos em 79%, mostrando a eficiência da cobertura;
- Com a cobertura completa, a redução foi de 93%;
- Sem a fixação da cumeeira, a redução no deslocamento foi de 91%.

Dentre as principais conclusões dos autores, destacam-se:

- Com a cobertura completa pode-se assumir que cada pórtico interno resiste a uma mesma parcela de força;
- A ação diafragma reduz os deslocamentos horizontais na base do pilar;

- Os deslocamentos dos PPR afetam significativamente a rigidez do pórtico e da cobertura diafragma, mostrando que a norma ASAE EP (1991) é não conservativa no cálculo dos momentos fletores dos pórticos internos, mas, por outro lado, é conservativa para o cisalhamento de cálculo na cobertura metálica;
- Uma cobertura diafragma não funciona como duas unidades independentes (cada água do telhado como um diafragma independente), pois as treliças e cumeeira contribuem para o trabalho conjunto das duas águas do telhado;
- Em nível econômico, a cobertura diafragma fornece um sistema de contraventamento efetivo e barato para construções com uma razão comprimento-largura menor que 4 (quatro).

Com o objetivo de avaliar a variação da rigidez do PPR com o acréscimo de aberturas e a utilização de reforços em função das aberturas, **Gebremedhin**

e Jorgensen (1993) realizaram uma série de ensaios com um pórtico. A partir dos resultados obtidos nos ensaios, os autores concluem:

- Pode ser importante considerar a rigidez efetiva do PPR nos cálculos;
- Reforços nas emendas do fechamento aumentam consideravelmente a rigidez;
- Uma abertura de 25% da área da parede reduziu a rigidez do PPR em 18%, enquanto uma abertura de 50% reduziu a rigidez em 52%;
- A utilização de reforços, quando aberturas existem na parede, auxilia na restauração da rigidez inicial do PPR;
- É possível uma relação entre a rigidez do PPR e da cobertura diafragma, desde que sejam utilizados materiais e métodos construtivos similares.

De acordo com **Wright e Manbeck (1993)**, os principais fatores que afetam a resistência e rigidez do painel diafragma são:

- Dimensões do painel;
- Tipo e tamanho dos fixadores;
- Material de cobertura;

- Perfil e espessura da telha;
- Classe de resistência da madeira;
- Comportamento não-linear dos fixadores quando solicitados por forças elevadas.

Neste trabalho os autores tiveram como objetivo desenvolver um modelo numérico para estimar a resistência e rigidez de painéis diafragma, e verificar os valores obtidos no modelo com os resultados de testes em laboratório com painéis diafragma. O painel foi modelado no programa para análise numérica "ABAQUS", as telhas foram modeladas com elementos do tipo "SHELL" e as peças de madeira com elementos do tipo "BEAM". Para as conexões utilizou-se um elemento chamado "JOINTC" que permite a entrada de propriedades não-lineares. Foram analisados os conectores utilizados nas ligações entre as telhas, das telhas com as terças e das terças com as treliças para comportamento não-linear. Os ensaios com painéis seguiram as especificações da ASAE EP484-1 (1991). A comparação entre os resultados do modelo numérico e dos ensaios mostrou a validade do modelo, sendo destacada a dificuldade para a sua elaboração, uma vez que era composto por 11.644 nós, 11 515 elementos e envolvia 69.864 graus de liberdade. Os autores alertam ainda para a necessidade de se considerar o comportamento não-linear das conexões, principalmente para carregamentos elevados.

Segundo **Alsmarker (1995)**, a transferência das forças devido ao vento pode ser feita para as fundações por meio da ação diafragma proporcionando um projeto econômico e eficiente. Como elemento diafragma pode-se utilizar o material de cobertura e deve-se garantir que as ligações entre os diversos elementos que compõem a estrutura possam resistir a esforços de cisalhamento. A cobertura pode então ser considerada como uma viga alta, onde as telhas representam a alma e absorvem os esforços de cisalhamento e os "banzos" que absorvem os momentos são representados pelas paredes laterais da edificação, como ilustra a figura 7.

Para que a ação diafragma possa ser considerada nos cálculos, deve-se garantir que a cobertura apresente resistência ao cisalhamento, que as forças possam ser transferidas para os PPR e ainda que todas as ligações intercomponentes da estrutura possam resistir a esforços de cisalhamento, caso contrário a estrutura se comportará como uma série de pórticos individuais. Ainda segundo o autor, o número de variáveis que afetam o comportamento diafragma é muito grande, o que dificulta a compreensão, conhecimento e aplicação da ação diafragma. Dentre estas variáveis podem-se citar: altura do diafragma, espaçamento entre PPR, as características geométricas do material de cobertura, a natureza de comportamento não-linear dos fixadores, sendo esta uma das mais complexas, distribuição e fixação das telhas e a madeira e suas características.

O comportamento diafragma de uma cobertura pode ser analisado a partir de ensaios com painéis diafragma, desde que estes painéis representem a construção real.

Anderson e Kelley (1996) afirmam que os modelos numéricos apresentam resultados não muito confiáveis na determinação das propriedades diafragma, além disso, o grau de complexidade do modelo torna-o insatisfatório como um método para determinar as propriedades de um vasto número de construções diafragma. Em vista disso, afirmam que testes em larga escala com painéis diafragma é o único método amplo e prático, com boa aceitação, para a determinação da resistência e rigidez de diafragmas.

Com esta finalidade os autores realizaram testes em vinte e quatro diafragmas de cobertura, obtendo valores de resistência e rigidez. Foram feitas oito variações de diafragmas com três repetições para cada uma delas. Os autores sugerem ainda que a otimização do diafragma seria maior se os dados dos ensaios fossem reportados por componentes, ao invés de serem específicos para uma dada construção em particular.

Niu e Gebremedhin (1996) desenvolveram um modelo de rigidez tridimensional com o objetivo de fornecer procedimentos simples para uma incorporação mais precisa da interação pórtico-diafragma no cálculo das estruturas. Este trabalho apresentou três objetivos principais: desenvolver um modelo semi-analítico simplificado para extrapolar os valores de rigidez obtidos em testes com painéis diafragma para rigidez de cobertura diafragma, desenvolver um modelo de rigidez tridimensional que simule a interação pórtico-diafragma e dê uma estimativa dos deslocamentos no ponto de apoio da treliça no pilar da edificação, e estimar a resistência para a construção em pórtico treliçado baseado no modelo de rigidez tridimensional. A figura a seguir apresenta o modelo de mola utilizado pelos autores para caracterizar a interação pórtico-diafragma em construções em pórtico treliçado com telha metálica:

FIGURA 12 - Modelo de mola para interação pórtico-diafragma (Fonte: Niu e Gebremedhin, 1996)

Para modelar o painel diafragma foi utilizado um modelo de treliça com as mesmas dimensões do painel diafragma, como mostra a figura a seguir:

FIGURA 13 - Modelo de treliça para o painel diafragma (Fonte: Niu e Gebremedhin, 1996)

Neste modelo as incógnitas são as áreas das barras. De acordo com os autores as áreas das terças e banzos não influenciaram significativamente na rigidez do painel, por isso foram tomadas com valor unitário. Para a calibração, foi necessário apenas definir as áreas das barras diagonais para se obter a mesma rigidez do painel diafragma. Por fim, foi elaborado o modelo tridimensional esquematizado a seguir:

FIGURA 14 - Modelo tridimensional (Fonte: Niu e Gebremedhin, 1996)

Na seqüência os autores geraram e analisaram o modelo tridimensional em um programa de elementos finitos. Os resultados da modelagem foram comparados com os dados experimentais de testes em três protótipos, apresentando uma variação entre 2% e 17% dos deslocamentos reais dos protótipos. Keener e Manbeck (1996) desenvolveram um modelo numérico simplificado para análise diafragma a partir do modelo numérico proposto por Wright et. al. (1993). O objetivo principal foi modelar a telha a partir da sua rigidez, determinada em ensaios de laboratório, por barras de treliça com igual rigidez, como mostram as figuras a seguir.

FIGURA 15 – Modelo proposto por Keener e Manbeck (Fonte: Keener e Manbeck, 1996)

A rigidez da telha foi determinada para cada corrugação diferente, e os conectores foram modelados levando-se em conta suas propriedades não-

lineares. Os autores concluem que o modelo simplificado pode ser utilizado para valores de cargas menores que 40% da força de ruptura do painel, impossibilitando a utilização deste modelo para a determinação da resistência do diafragma, sendo possível somente a determinação da rigidez.

Trabalho desenvolvido por **Niu e Gebremedhin (1997)** teve como principais objetivos: desenvolver a instrumentação necessária para medir deformações na cobertura metálica e terças de um painel e de um protótipo; desenvolver perfis de deformação com diferentes vãos do sistema de cobertura do protótipo; confirmar a contribuição das terças internas na resistência às deformações causadas por forças no plano diafragma. Para esta finalidade ensaios foram desenvolvidos com painéis diafragma e um protótipo.

A partir dos resultados obtidos os autores concluem:

- Os deslizamentos das telhas nos cobrimentos controlam a rigidez ao cisalhamento elástico-linear do painel sem conectores nas emendas. O número de conectores nas emendas foi crítico na determinação da rigidez;
- Baseado nas deformações medidas, os deslocamentos nos vãos extremos da edificação ocorrem principalmente devido ao cisalhamento, já no vão médio devido à flexão e nos vãos intermediários (1/4) são um híbrido de cisalhamento e flexão;
- As medidas de deformações e rotações das terças indicam que a contribuição das terças internas é significativa e deve ser considerada no cálculo das forças nos banzos da cobertura diafragma;
- A distribuição das deformações nas terças mostram que as duas águas do telhado trabalham mais como um diafragma único do que como dois diafragmas independentes.
2.2 Conclusões

Da revisão bibliográfica conclui-se que:

A ação diafragma é um importante efeito a ser considerado no projeto de edificações solicitadas por ações horizontais. A sua consideração leva em conta um comportamento mais real da edificação quando solicitada por ações horizontais, ou seja, os efeitos tridimensionais. Apesar de gerar um trabalho maior para o dimensionamento das estruturas, este, é compensado pela análise mais precisa e pela economia de material que se pode conseguir com a consideração da ação diafragma. Para isso, deve-se determinar os parâmetros de resistência e rigidez da cobertura diafragma. Estes parâmetros são obtidos a partir de ensaios em protótipos, ensaios com painéis diafragma, ou ainda, com modelos numéricos, desde que a viabilidade destes modelos seja comprovada por ensaios.

Os ensaios com protótipos apresentam grande complexidade de execução, além do fato de exigirem grandes investimentos financeiros em equipamentos, porém, têm sido uma importante ferramenta para determinação dos parâmetros de resistência e rigidez diafragma, principalmente em dois pontos referentes à norma ASAE EP 484-1 (1991), influência dos deslocamentos que ocorrem nos pórticos principais de rigidez e também, até que ponto os resultados obtidos em ensaios com painéis podem ser extrapolados para as coberturas que geralmente apresentam dimensões maiores. A questão dos PPR é de grande importância, uma vez que a norma considera estes elementos como perfeitamente rígidos e caso isso não ocorra na prática, o dimensionamento das estruturas apresentará erros. Além disso, deve ser destacado que os ensaios em protótipos representam fielmente as características da edificação e, também, permitem a verificação de valores utilizados a partir de ensaios em painéis adaptados para a edificação, e permitem a análise de uma série de parâmetros que interferem na ação diafragma.

Em vista disso, apesar da complexidade de execução e dos elevados custos de instrumentação devem ser realizados para fins de comprovação dos resultados obtidos em painéis e melhor análise das variáveis envolvidas na determinação dos parâmetros de cálculo diafragma.

Já a obtenção dos parâmetros de cálculo diafragma através de ensaios com painéis diafragma é de fácil execução, feitos em laboratório, e de baixo custo, porém apresentam certas limitações, principalmente, com relação às dimensões, mas são uma importante ferramenta para obtenção destes parâmetros. Devido ao grande número de dispositivos e materiais diferentes que são utilizados na construção de estruturas, muitos ensaios devem ser realizados para a obtenção das propriedades diafragma. Ensaios de protótipos em larga escala são muito caros e por isso a utilização de painéis se justifica e é bastante utilizada em pesquisas. Torna-se necessário definir uma seqüência de ensaios que possam representar uma série de sistemas construtivos e não apenas uma edificação em si. Com esses dados em mãos, ensaios com protótipos para cada sistema podem ser feitos para verificação dos resultados obtidos.

Os modelos numéricos são ferramentas importantes, mas devem estar sempre acompanhados de ensaios que mostrem a sua viabilidade. Os modelos podem ser desenvolvidos tanto para painéis, quanto para protótipos. Uma vez que as variáveis envolvidas são muitas, modelos simplificados devem ser elaborados de tal forma que a reprodução desses modelos se torne mais fácil. Para a elaboração desses modelos deve-se ter em mente a necessidade de, para análises com carregamentos elevados, considerar os efeitos não-lineares dos conectores, principalmente se os modelos forem utilizados para a determinação da resistência do diafragma, que exige a aplicação de carregamentos elevados.

Para a consideração da ação diafragma nos cálculos, deve-se determinar dois parâmetros do diafragma, a saber, a sua rigidez e a sua resistência. Como estes parâmetros devem ser determinados para cada configuração de montagem da cobertura, ou seja, variações nas dimensões, número ou tipo dos conectores, espécie de madeira, etc., exige-se a realização de ensaios para cada configuração especificada. Algumas normas tratam da consideração da ação diafragma, sendo a mais completa a norma americana ASAE EP484-1 (1991), ou seja, apresentando um roteiro completo para a determinação das propriedades diafragma e procedimentos de cálculo. Esta norma especifica os ensaios com painéis diafragma como ferramenta para a determinação das propriedades diafragma da cobertura. Este método tem sido largamente utilizado por pesquisadores na determinação dos parâmetros de cálculo diafragma. Muitas pesquisas têm sido desenvolvidas com o objetivo de verificar as hipóteses adotadas pela norma. Estas pesquisas baseiam-se no próprio texto da norma, mas verificam se as hipóteses adotadas devem ou não ser alteradas. Como estes trabalhos se baseiam no processo apresentado pela norma, e ainda não foram editadas modificações no texto da norma, a sua utilização se justifica.

Apresenta-se no capítulo 3, um resumo desta norma com os principais tópicos relacionados à determinação das propriedades diafragma e de cálculo de edificação considerando a ação diafragma.

3 A NORMA ASAE EP484.1 - CÁLCULO DIAFRAGMA DE COBERTURAS METÁLICAS EM CONSTRUÇÕES RETANGULARES

Essa norma apresenta os procedimentos para determinação da resistência e rigidez diafragma, por meio de ensaios com painéis, e os procedimentos para cálculo de estruturas levando-se em conta os efeitos do diafragma de coberturas e forros em edificações retangulares. Esses procedimentos são limitados para análise de construções isoladas e simétricas ao longo do maior eixo, tanto nos materiais de execução, quanto no processo de cálculo e ainda, assume que os PPR são suficientemente rígidos para transferir as forças de cisalhamento da cobertura para as fundações, apresentando deslocamentos horizontais desprezíveis.

3.1 Norma ASAE EP 484.1

Apresenta-se a seguir as principais considerações da norma para análise das propriedades diafragma:

3.1.1 Propósito e alcance

A norma apresenta os procedimentos para realização dos ensaios em painéis diafragma e procedimentos para cálculo de pórticos treliçados considerando a ação diafragma de cobertura. Esta norma se aplica para a análise e cálculo de construções em pórtico treliçado retangular com cobertura metálica usando diafragma de cobertura ou forro, isolados ou em combinação. Os pórticos principais de rigidez, localizados nas extremidades da edificação, devem apresentar rigidez para transferir forças de cisalhamento da cobertura para as fundações com deslocamento lateral do ponto de apoio da treliça no pilar desprezível.

3.1.2 - Terminologia

FIGURA 16 - Identificação da estrutura (Fonte: ASAE EP 484.1, 1991)

- c_h Rigidez diafragma da construção: Obtida de testes em painel. É ajustada para diferenças entre o comprimento do painel de teste e a cobertura diafragma e para a inclinação da cobertura.
- 2) Teste de painel diafragma em balanço (FIGURA 6b):
- Diafragma: Uma montagem estrutural, incluindo o reticulado de madeira (banzos de treliças e terças), cobertura metálica, conectores padrão capazes de transferir no plano forças de cisalhamento por meio da cobertura e dos membros do reticulado.
- 4) Cálculo diafragma (Projeto): É o cálculo de um pórtico, incluindo as treliças de madeira, pilares laterais, conectores de cisalhamento, emendas de banzo e fundações, no qual a resistência e rigidez diafragma são utilizadas para transferir forças horizontais para a fundação.
- Conectores diafragma: São os elementos entre a cobertura e terças, entre os membros da estrutura diafragma e entre folhas individuais da cobertura.
- b Comprimento diafragma: É a dimensão do diafragma medida na direção das corrugações das telhas.
- 7) c Rigidez diafragma de cisalhamento: É definida como a inclinação da curva força de cisalhamento x deslocamento do diafragma entre a força

zero e a força correspondente da resistência de projeto ao cisalhamento do diafragma, em força por unidade de deslocamento lateral do plano.

- 8) a ou 2a Largura do diafragma: É a dimensão do painel diafragma medida na direção perpendicular as corrugações da telha.
- 9) Pórtico principal de rigidez (PPR): Transfere no plano, forças de cisalhamento, de um diafragma, para as fundações.
- 10) k Rigidez do pórtico: É a rigidez horizontal para a força aplicada na união da coluna com a treliça do pórtico individual, sem cobertura em cada vão da construção (FIGURA 5).
- 11) R Força de restrição horizontal: Força aplicada na união da coluna com a treliça da face de sotavento do pórtico para prevenir translação devida a ações de projeto quando a ação diafragma não está incluída (FIGURA 4).
- 12) Teste em viga simples: A malha deve ser suportada no ponto G por um apoio fixo (rotulado), e no ponto E com um apoio móvel (também rotulado). A linha HJ deve ser contraventada fora do plano. Podem ser necessárias forças de restrição para resistir a movimentos fora do plano nos pontos C e E.

FIGURA 17 - Modelo de teste em viga simples (Fonte: ASAE EP 484.1, 1991)

13) Conectores de tração: São os conectores requeridos para transferir as forças de tração nos flanges da viga diafragma nos pontos onde os membros

dos flanges são conectados. Na cobertura diafragma os membros dos flanges são as extremidades das terças de ponto de apoio da treliça no pilar e cumeeira.

3.1.3 Rigidez e resistência diafragma

A montagem do painel diafragma deve ser funcionalmente equivalente à construção real, ou seja, o espaçamento dos pilares, o tipo de cobertura, o perfil da cobertura, a espessura da cobertura, o tipo de fixação e acessórios, e os apoios para cada pórtico diafragma devem ser idênticos. A madeira utilizada nos ensaios deve apresentar massa específica ou classe de resistência igual ou superior àutilizada na construção do edifício.

3.1.3.1 Aparelhagem de testes:

3.1.3.1.1 Tamanho do painel:

- Comprimento do painel (b): não exceder o comprimento diafragma usado em projeto;

 Largura (a ou 2a): Não deve ser menor que a largura global de três folhas de cobertura tanto para viga em balanço quanto apoiada, e também, não menos que a largura de um vão da construção (distância entre pórticos) para em balanço e dois vãos para viga apoiada.

3.1.3.1.2 Madeira:

Apresentar umidade máxima de 19% (+ ou - 3%) da fabricação para o teste.

3.1.3.1.3 Tamanho e espaçamento das terças e banzos: Deve ser igual aquele utilizado na construção.

3.1.3.1.4 Carregamento e instrumentação:

- Precisão de + ou - 2%;

- Aplicar e medir as forças com incrementos iguais;

- Deslocamentos com precisão de pelo menos 0,02mm.

3.1.3.2 Procedimentos de teste:

3.1.3.2.1 Número de testes e critérios de resistência na ruptura:

- Realizar um ensaio e duas repetições;

- Valores médios calculados sobre três valores;

3.1.3.2.2 Procedimento de carregamento:

No mínimo 10 leituras antes da ruptura para determinar a curva força
deslocamento;

3.1.3.2.3 Definição de falha:

- A ruptura é definida por falha na telha, malha de madeira ou conectores, a qual possa ser desagradável na aparência ou desempenho da cobertura diafragma.

3.1.3.3 Relatório de testes

3.1.3.3.1 Informações gerais:

- Laboratório investigador

- Teste "ID" - identificação única do modelo

- Data do teste

3.1.3.3.2 Configurações do painel diafragma:

- Comprimento, b: Para diafragmas utilizando folhas de comprimento simples, este pode ser o comprimento da folha de cobertura, a menos que o conector de extremidade esteja localizado a mais que 75 mm da borda das folhas. O comprimento é medido da linha de centro dos conectores de extremidade quando estes estiverem a mais de 75 mm da borda das folhas.

- Largura "a" ou "2a": Distância medida perpendicularmente ao comprimento das folhas. A largura é medida da linha de centro das peças laterais da malha.

- Configuração do carregamento, apoios e relógios comparadores.

3.1.3.3.3 Propriedades da madeira:

- Número total de peças utilizadas na montagem
- Seções

- Classe e espécie de madeira
- Módulo de elasticidade de cada peça
- 3.1.3.3.4 Telha metálica:
- Produtor
- Perfil da telha
- Metal utilizado na fabricação
- Grau do metal
- Tensão de escoamento
- Espessura
- Módulo de Resistência àflexão (W_x)
- g/p: A razão da largura plana total do metal usado para formar uma corrugação completa pela largura nominal.
- Rascunho com todas as dimensões do perfil.
- 3.1.3.3.5 Conectores
- Fabricante
- Tipo (nome geral e/ou específico do conector)
- Diâmetro
- Comprimento nominal
- Tipo e tamanho de arruela
- Resistência ao cisalhamento do conector
- Rigidez ao cisalhamento do conector
- 3.1.3.3.6 Resultados

- As curvas de força x deslocamento para cada montagem testada, indicando a escala. Para teste em balanço P_{ult} é igual à magnitude da carga aplicada na ruptura, e para teste em viga simples P_{ult} é igual a metade da resultante da carga aplicada na ruptura.

- Resistência ao cisalhamento de cálculo: A resistência ao cisalhamento de cálculo para carga de longa duração é igual a 0,4P_{ult}/LDF, sendo LDF o fator de duração da carga, se a ruptura foi iniciada pela quebra da madeira ou por falha do conector da madeira; de outro modo a resistência ao cisalhamento de cálculo é igual a 0,4P_{ult}. O fator LDF pode conservativamente ser tomado como 1,6. A resistência ao cisalhamento por

unidade de comprimento pode ser reportada como a resistência ao cisalhamento de cálculo dividida pelo comprimento diafragma, b.

- Rigidez ao cisalhamento do diafragma teste, c:

• Para teste de viga simples:

A rigidez de cisalhamento, c, para um diafragma teste é baseada relativamente àporção linear da curva força - deslocamento do meio do vão a partir de 0,4P_{ult} de acordo com a expressão:

$$c = \frac{1}{2} \frac{P}{D_s} \frac{a}{b}$$

onde:

$$\mathsf{P} = \mathsf{0}, \mathsf{4P}_{\mathsf{ult}};$$

 $\mathsf{D}_{\mathsf{s}} = \mathsf{Deslocamento} \ \mathsf{de} \ \mathsf{cisalhamento} \ \mathsf{do} \ \mathsf{diafragma} \ \mathsf{teste} \ \mathsf{para} \\ \mathsf{0.4P}_{\mathsf{ult}};$

a/b = razão da malha mostrada na figura 17.

O deslocamento de cisalhamento, D_s , para o teste diafragma de viga simples é obtido dos deslocamentos medidos, D_2 , D_3 e D_4 na figura 17 e com as seguintes equações:

$$D_s = D_T - D_b$$
$$D_T = D_2 - \frac{1}{2} (D_3 + D_4)$$
$$D_b = \frac{Pa^3}{6E_p I_p}$$

 $E_p I_p = EI$ efetivo dos painéis levando-se em conta a contribuição das terças de extremidade. (A contribuição do momento de inércia das terças sobre seus próprios eixos é negligenciado.) A seguinte equação é recomendada:

$$E_p I_p = (b' - y)^2 A_1 E_1 + y^2 A_2 E_2$$

onde:

 A_1 , A_2 = área média para cada terça de extremidade;

 E_1 , E_2 = média do módulo de elasticidade para cada terça de extremidade:

b' = Distância de centro a centro das terças de extremidade;

$$y = \frac{b' E_1 A_1}{\left(A_1 E_1 + A_2 E_2\right)}$$

3.1.3.4 Rigidez da construção diafragma, ch

A rigidez de cisalhamento da construção diafragma é definida pela seguinte equação:

$$C_h = C'\left(\cos^2 \boldsymbol{q}\right) \left(\frac{b'}{a}\right)$$

onde:

b'/a = razão da cobertura diafragma;

 θ = Inclinação do telhado;

C' = Rigidez do painel teste ajustado pelo comprimento diafragma pela equação a seguir.

3.1.3.4.1 Ajuste do comprimento diafragma:

A rigidez de cisalhamento, c, para um dado comprimento do painel diafragma pode ser corrigida para rigidez cisalhamento, C', para cobertura diafragma de diferentes comprimentos, pela seguinte equação:

$$C' = \frac{E \cdot t}{\left[2(1+\boldsymbol{u})\frac{g}{p} + \frac{K_2}{(b' \cdot t)^2}\right]}$$

onde:

E = Módulo de elasticidade da telha;

t = Espessura da telha;

 υ = Coeficiente de Poisson;

g/p = Como visto anteriormente;

 b' = Comprimento diafragma medido ao longo da inclinação paralelo as corrugações, até o conector mais externo;

 K_2 = Constante para um dado painel calculado.

A constante K₂ é determinada pela substituição da rigidez de cisalhamento do diafragma teste calculado anteriormente (c), e para outra geometria

diafragma e valores de cálculo do material. Esta relação é válida para comprimentos diafragma de até 2 vezes o comprimento do diafragma teste.

Quando os teste são em escala real, C' = c.

3.1.4 Procedimentos de cálculo

3.1.4.1 Suposições gerais

- A rigidez c_h da cobertura diafragma;
- Rigidez e espaçamento uniforme dos pórticos;
- Rigidez da cobertura uniforme;

- PPR suficientemente rígido para se desprezarem deslocamentos de momento e cortante no ponto de apoio da treliça no pilar sob cargas de projeto;

- Comprimento diafragma igual ao comprimento de uma água do telhado;

3.1.4.2 Roteiro de cálculo

- Rigidez horizontal do pórtico (k=P/Δ)

- Força de restrição horizontal, R: Uma restrição horizontal é localizada na linha do ponto de apoio da treliça no pilar, e o comportamento da estrutura é analisado com todas as cargas externas aplicadas. A força de restrição, R, é a força requerida para impedir um deslocamento horizontal do ponto de apoio da treliça no pilar.

Razão entre a rigidez do pórtico e da cobertura: k/ch;

- Força lateral modificada, mD: A força lateral modificada é calculada pelo princípio da compatibilidade do deslocamento lateral do pórtico e da cobertura na linha do ponto de apoio da treliça no pilar. Alternativamente pode-se utilizar as tabelas apresentadas pela norma. É importante destacar que esse coeficiente depende diretamente da relação

entre as rigidezes do pórtico isolado e da cobertura, e também do número de pórticos que formam a edificação. Quando mD se aproxima de 1, mais carga é levada pelo diafragma para os PPR. Quando mD se aproxima de 0 mais carga é resistida pelos pórticos;

- Força de cisalhamento modificada da cobertura, mS: É calculada a partir do valor mD. Alternativamente, pode ser obtida das tabelas apresentadas pela norma;

- Força de resistência lateral da cobertura diafragma, Q: Essa força é calculada pela multiplicação da força de restrição horizontal, R, na linha de ponto de apoio da treliça no pilar por mD;

 Força de cisalhamento na cobertura metálica: A componente horizontal da máxima força de cisalhamento, V_h, na cobertura metálica é calculada pela multiplicação da força de restrição horizontal R, na linha do ponto de apoio da treliça no pilar por mS;

A força de cisalhamento máxima (V) na telha é igual a: $V_h/\cos\theta$;

 A força de cisalhamento máxima na cobertura, V, deve ser menor ou igual à resistência ao cisalhamento de cálculo do diafragma. A resistência ao cisalhamento de cálculo é determinada como descrito anteriormente;

- A ação de cobertura diafragma é incluída pela aplicação da força de resistência lateral diafragma, Q, distribuída como uma força horizontal uniforme ao longo do banzo superior da treliça na direção de R. A força distribuída, q, em força por unidade de comprimento ao longo do membro é igual a Q dividida pelo comprimento das duas águas da cobertura diafragma.

3.1.4.3 Transferência do cisalhamento:

As forças de cisalhamento devem ser transferidas para as fundações, como ilustra a figura 10.

- As ligações entre a cobertura diafragma e o PPR devem ser calculadas para transferir a força de cisalhamento, V, como calculada anteriormente;

 PPR diafragma: A resistência ao cisalhamento do PPR diafragma deve ser maior ou igual à soma das componentes horizontais das forças de cisalhamento diafragma. A resistência do PPR diafragma é determinada como descrita anteriormente;

- O PPR diafragma só é efetivo quando a força de cisalhamento pode ser transmitida para a base das colunas do pórtico e fundação. Entretanto uma porção do cisalhamento do PPR pode necessitar para ser transferida para as bases das colunas de outros meios (tais como contraventamento), se a soma das componentes horizontais das forças de cisalhamento da cobertura diafragma exceder a resistência do PPR diafragma.

- O engastamento dos pilares dos PPR deve ser capaz de resistir ao momento inverso produzido pela força de cisalhamento, V e V_c.

3.2 Considerações gerais

A Norma **ASAE EP484.1 (1991)** apresenta um procedimento completo para a determinação das propriedades diafragma de cobertura, desde os procedimentos de ensaio até a determinação dos valores de resistência diafragma a serem utilizados nos cálculos dos pórticos. Por se tratar de um material completo sobre o assunto será utilizada como base para este trabalho.

Alguns aspectos devem ser destacados com relação a essa norma:

 Permite a determinação das propriedades diafragma a partir de ensaios com painéis diafragma ensaiados em laboratório, desde que os mesmos representem fielmente o sistema construtivo analisado;

- Assume, para efeito de cálculo, que todos os PPR apresentam uma rigidez tal que, os deslocamentos horizontais nestes pórticos, devidos a todas as ações são nulos;
- Os parâmetros de cálculo diafragma dependem de uma série de fatores, que devem ser levados em conta na determinação da resistência diafragma. Dentre esses fatores, destacam-se as propriedades da madeira, rigidez do pórtico isolado, resistência do diafragma teste e relação entre a rigidez do pórtico e a rigidez do diafragma (k/c_h);
- Os parâmetros mD e mS, definidos a partir da relação k/c_h e do número de pórticos na construção, portanto esse passa a ser um fator de grande importância nos cálculos, uma vez que os coeficientes mD e mS determinam respectivamente a força de resistência diafragma (Q) e a força de cisalhamento na cobertura (V_h);
- Valores do coeficiente mD próximos de 1, significam que o diafragma está sendo mais solicitado e consequentemente é o responsável pela transferência de maior parte dos esforços para os PPR. Já valores de mD próximos de 0 significam que os pórticos apresentam baixos valores de deslocamentos horizontais, portanto são bastante rígidos fazendo com que a cobertura diafragma seja pouco solicitada para absorver os esforços laterais;
- O coeficiente mS é quem define, a partir de mD, qual o valor de cisalhamento máximo que ocorre na cobertura, sendo que este valor deve ser sempre menor que a resistência de cálculo da cobertura diafragma (F_d);
- Os valores dos coeficientes mD e mS foram obtidos a partir das tabelas encontradas na norma. Essas tabelas são apresentadas a seguir.

TABELA 1 - Coeficiente mD

Number of Frames*							Number of Frames*												Number of Frames*											
k/c _h	3	4	5	6	7	8	9	10	k/c _h	11	12	13	14	15	16	17	18	19	20	21	22	23	24	k/c _h	25	26	27	28	29	30
0.0100	0.995	0.990	0.980	0.971	0.957	0.943	0.925	0.908	0 0050	0 941	0 929	0.916	0 904	0 889	0 875	0 859	0 844	0 827	0 811	0 793	0 777	0 759	0 742	0.0050	0 724	0 706	0 688	0.671	0 653	0.636
0.0300	0.985	0.971	0.943	0,917	0.879	0.844	0.801	0.761	0.0100	0.887	0.867	0 844	0.822	0 797	0 774	0.748	0.724	0.698	0.674	0.648	0.625	0.600	0.577	0.0075	0.629	0.608	0 587	0 567	0 547	0.528
0.0500	0.976	0.952	0,908	0.868	0.811	0.762	0.702	0.650	0.0150	0.838	0.811	0.780	0.751	0.719	0.690	0.658	0.629	0.599	0.571	0.541	0.515	0.487	0.463	0.0100	0.553	0.530	0.508	0.487	0.465	0.445
0.0700	0.966	0.935	0.875	0.823	0.752	0.692	0.621	0.563	0.0200	0.794	0.761	0.724	0.690	0.653	0.620	0.585	0.553	0,520	0.490	0,460	0.432	0.405	0.380	0.0125	0,490	0.467	0.444	0.422	0.401	0.381
0.0900	0.957	0,917	0.845	0.782	0.699	0.632	0.554	0.493	0.0250	0.753	0.716	0.674	0.637	0.597	0.561	0.523	0.491	0.456	0.426	0.395	0.369	0.341	0.318	0.0150	0.437	0.414	0.391	0.370	0.349	0.330
0.1100	0,948	0,901	0.816	0.745	0.653	0.581	0.498	0.436	0.0300	0.715	0.675	0.629	0.590	0.547	0.510	0.472	0.438	0.404	0.374	0.344	0.318	0.292	0.270	0.0175	0.393	0.370	0.347	0.327	0.307	0,289
0,1300	0.939	0.885	0.788	0.711	0:611	0.536	0.451	0.389	0.0350	0.681	0.637	0.589	0.548	0.504	0.467	0.427	0.394	0.360	0.331	0.302	0.277	0.252	0,231	0.0200	0.355	0.333	0.311	0.291	0.271	0.254
0.1500	0.930	0.870	0.763	0.679	0.573	0.496	0.410	0.349	0,0400	0.649	0.603	0.553	0.511	0.466	0.428	0.389	0.356	0.323	0.295	0.267	0.243	0.220	0.200	0.0225	0.322	0,301	0.279	0.261	0.242	0.225
0.1700	0.922	0.855	0,738	0.650	0.539	0.461	0.375	0.316	0.0450	0.619	0.572	0.520	0.477	0.432	0.394	0.356	0.324	0.291	0.264	0.237	0.215	0.193	0.175	0.0250	0.294	0.273	0.252	0.235	0.217	0.201
0.1900	0.913	0.840	0.715	0.623	0.508	0.430	0.344	0.286	0.0500	0.592	0.543	0.491	0.447	0.402	0.365	0.326	0.295	0.264	0.238	0.212	0.192	0.171	0.154	0.0275	0.269	0.249	0.229	0.212	0.195	0.180
0.2100	0.905	0.826	0.693	0.597	0.480	0.402	0.317	0.261	0.0550	0,566	0.517	0.463	0.420	0.375	0.338	0.301	0.271	0.240	0.216	0.191	0.171	0.152	0.136	0,0300	0.247	0.228	0.209	0.192	0.176	0.162
0.2300	0.897	0.813	0.673	0.574	0.455	0.376	0.292	0.239	0,0600	0.542	0.492	0.438	0.395	0.350	0.314	0.278	0.249	0.219	0.196	0.172	0.154	0.135	0.121	0.0325	0.228	0.209	0.191	0.175	0,160	0.147
0.2500	0,889	0.800	0.653	0.552	0.431	0.354	0.271	0.220	0.0650	0.520	0.469	0.415	0.372	0.328	0.293	0.257	0.229	0.201	0.179	0.156	0.139	0.122	0.108	0.0350	0.210	0.193	0.175	0.160	0.146	0.133
0.2700	0.881	0.787	0.634	0.531	0.409	0.333	0.252	0.203	0.0700	0.499	0.448	0.394	0.352	0.308	0.274	0.239	0.212	0.185	0.163	0.142	0.126	0,110	0.097	0.0375	0.195	0.178	0.161	0.147	0.133	0.121
0.2900	0.873	0.775	0.617	0.512	0.389	0.314	0.235	0.187	0.0750	0.479	0.428	0.375	0.333	0.290	0.256	0.222	0.196	0.170	0.150	0.130	0.114	0.099	0.087	0.0400	0.181	0.165	0.148	0,135	0.122	0.111
0.3100	0.866	0.763	0.600	0,494	0.371	0.297	0.219	0.174	0.0800	0.461	0.410	0.356	0.315	0.273	0.240	0.207	0.182	0.157	0.138	0.119	0.104	0.090	0.079	0.0425	0.168	0.153	0.137	0.124	0.112	0.101
0.3300	0.858	0.752	0.583	0.476	0.353	0.281	0.205	0.161	0.0850	0.444	0.393	0.340	0.299	0.257	0.226	0.194	0.170	0.146	0.127	0.109	0.095	0.082	0.071	0.0450	0.157	0.142	0.127	0.115	0.103	0,093
0.3500	0.851	0.741	0.568	0.460	0.337	0.266	0.192	0.150	0.0900	0.427	0.377	0.324	0.284	0.243	0.213	0.182	0.158	0.135	0.118	0.100	0.088	0.075	0.065	0.0475	0.146	0.132	0.118	0.106	0.095	0.086
0.3700	0.844	0.730	0.553	0.445	0.322	0.253	0.180	0.140	0.0950	0.412	0.362	0.309	0.270	0.230	0.200	0.170	0.148	0.126	0.109	0.093	0.080	0.068	0.059	0.0500	0.137	0.123	0.110	0.099	0.088	0.079
0.3900	0,837	0.719	0.539	0.431	0.309	0.240	0.170	0.131	0.1000	0,397	0.347	0.296	0.257	0.218	0.189	0.160	0.139	0,117	0.101	0.086	0.074	0.063	0.054	0.0525	0.128	0.115	0.102	0.092	0.081	0.073
0.4100	0.830	0.709	0.525	0.417	0.296	0.229	0.160	0.123	0.1050	0.383	0.334	0.283	0.245	0.207	0.179	0.151	0.130	0.109	0.094	0.079	0,068	0.057	0.050	0.0550	0.120	0.108	0.095	0.085	0.075	0.068
0.4300	0.823	0.699	0.512	0.404	0,283	0.218	0.151	0.115	0.1100	0.370	0.321	0.271	0.234	0.196	0.169	0.142	0.122	0.102	0.088	0.074	0.063	0.053	0.045	0.0575	0.113	0.101	0.089	0.080	0.070	0.063
0.4500	0.816	0,690	0.500	0.392	0.272	0.208	0.143	0.109	0.1150	0.358	0.309	0.259	0.223	0.187	0.160	0.134	0.115	0.096	0.082	0.068	0.059	0.049	0.042	0.0600	0.106	0.095	0.083	0.074	0.065	0.058
0.4/00	0.810	0.680	0.488	0.380	0.261	0.199	0.135	0.102	0.1200	0.346	0.298	0.249	0.214	0.178	0.152	0.126	0.108	0.090	0.077	0,064	0.054	0.045	0.039	0.0625	0.100	0.089	0.078	0.069	0.061	0.054
0.4900	0.803	0.6/1	0.4/6	0.369	0.251	0.190	0.128	0.096	0.1250	0.335	0.287	0.239	0.204	0.169	0.144	0.120	0.102	0.084	0.072	0.059	0.051	0.042	0.036	0,0650	0.094	0.084	0.073	0.065	0.057	0.050
0.5100	0.797	0.662	0.465	0.358	0.241	0.182	0.121	0.091	0.1300	0.324	0.277	0.229	0.196	0.161	0.137	0.113	0.096	0.079	0.067	0.055	0.047	0.039	0.033	0,06/5	0.089	0.079	0.069	0.061	0.053	0.047
0.5300	0.791	0.654	0.454	0.348	0.232	0,1/4	0.115	0.086	0.1350	0.314	0.268	0.221	0.188	0.154	0.131	0.107	0.091	0.075	0.063	0.052	0.044	0.036	0.030	0.0700	0.084	0.074	0.065	0.057	0.050	0.044
0.000	0.764	0.645	0.444	0.339	0.224	0.16/	0.109	0.081	0.1400	0.304	0.259	0,212	0.180	0,147	0.124	0.102	0.086	0.070	0.059	0.048	0.041	0.033	0.028	0.0750	0.080	0.0/0	0.061	0,054	0.047	0.041
0.5700	0.770	0.637	0.434	0,330	0.216	0.161	0.104	0.077	0.1450	0.295	0,250	0.204	0.173	0.141	0,119	0.097	0.081	0.066	0.056	0.045	0.038	0.031	0.026	0.0750	0.073	0.066	0.05/	0.051	0.044	0.039
0.3900	0.772	0.629	0.425	0.321	0.208	0.104	0.099	0.073	0.1500	0.286	0.242	0.197	0.166	0.135	0.113	0.092	0.077	0.063	0.053	0.043	0.036	0.029	0.024	0.0//3	0.0/1	0.063	0.054	0.048	0.041	0.036
0.0100	0.760	0.621	0.410	0.312	0.201	0.148	0.095	0.069	0.1550	0.277	0.234	0.190	0.159	0.129	0.108	0.087	0.073	0.059	0.050	0.040	0.034	0.027	0.023	0.0800	0.066	0,050	0.051	0.045	0.039	0.034
0.0300	0.700	0.013	0.407	0.304	0.194	0.143	0.090	0.000	0.1600	0,269	0.226	0.183	0.153	0.123	0.103	0,083	0.070	0.056	0.047	0.038	0.031	0.025	0.021	0.0823	0.004	0.050	0.048	0.042	0.036	0.032
0.0000	0,755	0.000	0.398	0.297	0.100	0.137	0.085	0.063	0.1650	0.261	0,219	0.176	0.147	0.118	0.099	0.079	0.066	0.053	0.044	0.035	0.030	0.024	0.020	0.0000	0.001	0.053	0.040	0.040	0.034	0.030
0.6700	0.749	0.399	0.390	0.209	0.181	0.132	0.082	0.060	0.1700	0.254	0.212	0.170	0.142	0.113	0.095	0.075	0.063	0.050	0.042	0.033	0.028	0.022	0.018	0.08/3	0.056	0.001	0.043	0.035	0.032	0.028
0.0300	0.743	0.392	0.302	0.202	0.170	0.127	0.079	0.05/	0.1750	0.247	0.206	0.164	0.137	0.109	0.090	0.072	0,060	0.048	0.039	0.031	0.026	0.021	0.017	0.0900	0.055	0.048	0.041	0.036	0.030	0.027
0.7100	0.733	0,000	0.3/4	0.275	0.170	0.125	0.075	0.054	0.1800	0.240	0.200	0.159	0,132	0.105	0.087	0,069	0.057	0.045	0.037	0,030	0.025	0.019	0.016	0,0923	0.055	0.040	0,039	0.034	0.029	0.025
0.7500	0.727	0.570	0.360	0.209	0.100	0.119	0.072	0.032	0.1850	0.233	0.194	0.154	0.127	0.101	0.083	0.066	0.054	0.043	0.035	0.028	0.023	0.018	0.015	0.0930	0.020	0.044	0.03/	0.032	0.02/	0.024
			0.000	V. 202	0.109	0.114	0.009	0.047	0.1900	0.227	0,188	0.148	0.123	0.097	0.080	0.063	0.052	0.041	0.034	0.026	0.022	0.017	0.014	0 1000	0.040	0.041	0.033	0.030	0.020	0.022
*Number	of fram	nes (nel	udae fr	amed on	dwalle	Value		or the	0.1950	0.221	0,183	0.144	0.118	0.093	0.077	0.060	0.049	0.039	0.032	0.025	0.021	0.016	0.013	0.1000	0.040	0.040	0.000	0.027	V.U24	0.021
critica	al (cent	er) fra	me of t	he buil	ding.	k/ch is	the ra	tio of	0.2000	0.215	0.177	0.139	0.114	0.089	0.073	0.057	0.047	0.037	0.030	0.024	0.019	0.015	0.012							

frame to roofing stiffness.

TABELA 2 - Coeficiente mS

Number of Frames								Number of Frames											Number of Frames											
k/ch	3	4	5	6	7	8	9	10	k/c _h	11	12	13	14	15	16	17	18	19	20	21	22	23	24	k/ch	25	26	27	28	 29	30
0.0100	0.498	0.990	1 475	1 951	2 416	2 867	3 303	3 773	0.0050	4 304	 6 761	·····								•••••	• • • • •		•••••			· · · · ·				
0.0300	0,493	0.971	1.429	1.861	2.264	2.635	2 973	3 277	0.0000	4.304	4.741	2.10/	5 222	5 540	5 050	0./4/	7.109	1.458	1, /93	8.115	8.423	8,/1/	8.999	0.0050	9.267	9.523	9.766	9.997	10.000	10.000
0.0500	0.488	0.952	1.385	1.779	2.131	2.440	2,707	2.935	0.0150	3 963	4 302	4.675	J. 222	5 182	5 / 30	6,14/	5 941/	6.0/0	6,903	6 379	1.320	1.513	1.000	0.0075	8.486	8.6/7	8.856	9.022	9.177	9.322
0.0700	0.483	0.935	1.344	1.704	2.013	2.274	2.488	2.663	0.0200	3 813	4 115	4 391	4 641	A 866	5 069	5 250	5 412	5 556	5 693	5 704	5 905	5 043	6./20	0.0100	7.845	7.992	8.12/	8.250	8.363	8.467
0,0900	0.478	0.917	1.305	1.635	1,909	2.130	2.305	2.442	0.0250	3.676	3 946	4.187	4 401	4,000	6 750	1.230	5.03/	5 1/4	5 9/3	5 107	5 400	5.763	0.000	0.0125	/.311	1.425	7.529	7.622	7.707	7.783
0.1100	0.474	0.901	1.268	1.572	1.815	2.005	2.150	2.258	0.0300	3.550	3 791	4 003	4 189	4 350	4.733	4.500	6 716	6 802	6 879	1.327	1.400	5 0/1	5 092	0.0130	0.00/	6.94/	1.029	7.101	/.166	7.223
0.1300	0,469	0.885	1.234	1.514	1.731	1.895	2.016	2.103	0.0350	3 432	3 649	3 837	3 999	4.137	4,450	4.010	4./14	4.502	4.070	4.742	4.357	2.043	J.002	0.0175	0.40/	6,039	6.604	0.001	6./11	6.755
0.1500	0,465	0.870	1.201	1.460	1.655	1.797	1,899	1,970	0.0400	3, 323	3 519	3 686	3 827	3 946	4.046	4.129	4 199	4.256	4.304	4,019	4,000	4,055	4.124	0.0200	5 820	5 877	5 810	5 054	0.323	6.35/
0.1700	0.461	0.855	1.170	1.410	1.585	1.710	1.796	1.855	0.0450	3.222	3 399	3 548	3 672	3 775	3 861	3 931	3 988	4.035	4.074	4.105	4.131	4.402	4.424	0.0225	5 566	5 604	5 6 10	2.270	5 (0)	6.014
0.1900	0.457	0.840	1,141	1.364	1.522	1.631	1.705	1.754	0.0500	3.127	3.288	3.421	3 531	3 621	3 694	3 754	3 802	3 841	3 872	3 897	3 918	3 034	3 947	0.0275	5 328	5 361	5 300	5 414	5 4 35	5 / 50
0.2100	0.452	0.826	1.113	1.320	1.464	1.560	1.624	1.665	0.0550	3.039	3.185	3,305	3 402	3.481	3 544	3 595	3 635	3 668	3 694	3 714	1 731	3 746	3 754	0 0300	5 116	5 144	5 167	5 188	5 205	5 210
0.2300	0.448	0.813	1.086	1.279	1.410	1.495	1.550	1.585	0.0600	2.956	3.089	3,197	3.283	3.353	3.408	3.451	3.486	3.513	3 534	3.551	3 565	3 575	3 583	0.0325	4.923	4 947	4 967	4 984	4 998	5 010
0.2500	0.444	0.800	1.061	1.241	1.360	1.436	1.484	1.514	0.0650	2.877	2.999	3.097	3.174	3.235	3.283	3.321	3.351	3.374	3 391	3 405	3 416	3 425	3 431	0.0350	4.749	4 769	4 786	4 800	4.811	4 921
0.2700	0.441	0.787	1.037	1.206	1.314	1.382	1.424	1.450	0.0700	2.804	2.916	3.004	3.073	3.127	3.170	3,202	3,228	3.247	3.262	3.274	3.283	3 290	3 295	0.0375	4.589	4.606	4.621	4 632	4.642	4 650
0,2900	0.437	0.775	1.014	1.172	1.271	1.333	1.369	1.391	0.0750	2.734	2.837	2.917	2.980	3.028	3,065	3.093	3.115	3.132	3.145	3.154	3.162	3.167	3 172	0.0400	4.442	4.457	4.469	4.479	4.488	4 494
0.3100	0.433	0.763	0.992	1.140	1.232	1.287	1.319	1.338	0.0800	2.669	2.763	2.836	2.892	2.935	2.968	2.993	3.012	3.026	3.037	3.045	3.052	3.056	3.060	0.0425	4.307	4.320	4.330	4.339	4.346	4.352
0.3300	0.429	0.752	0.971	1.110	1.194	1.244	1.273	1.289	0.0850	2,606	2.694	2.760	2.811	2.850	2.879	2.900	2.917	2.929	2.939	2.946	2,951	2,955	2.958	0.0450	4.182	4.193	4.202	4.209	4.215	4.220
0.3300	0.426	0.741	0.951	1.082	1.159	1.204	1.230	1.244	0.0900	2.548	2.628	2.689	2.735	2.769	2,795	2.815	2.829	2.840	2.848	2.854	2.858	2.861	2.864	0.0475	4.066	4.076	4.083	4.090	4.095	4.099
0.3700	0.422	0.730	0.932	1.055	1.12/	1.167	1,190	1.203	0.0950	2.492	2.566	2.622	2.664	2.695	2.718	2.735	2.747	2.757	2.764	2.769	2.772	2.775	2.777	0.0500	3.958	3.966	3.973	3.978	3.983	3.986
0.3900	0.418	0.719	0.913	1.029	1.096	1.133	1.153	1.164	0.1000	2.438	2.507	2.559	2.597	2.625	2.645	2.660	2.671	2.680	2,685	2.690	2,693	2.695	2.697	0.0525	3.857	3.864	3.870	3,875	3.878	3.881
0.4100	0.413	0.709	0.890	1.005	1.05/	1.100	1.119	1.129	0.1050	2.388	2.452	2.499	2.533	2.559	2.577	2.591	2,600	2.608	2.613	2.616	2,619	2.621	2.623	0.0550	3.762	3,769	3.774	3.778	3.781	3.784
0.4500	0.408	0,699	0,678	0.902	1,039	1.0/0	1.080	1.095	0.1100	2.339	2.399	2.442	2.474	2.497	2,513	2.525	2.534	2.540	2.545	2.548	2.550	2.552	2.553	0.0575	3.673	3.679	3.683	3.687	3,690	3.692
0 4700	0 405	0.680	0.846	0.900	1,015	1.041	1.030	1.004	0.1150	2.293	2.348	2.389	2.417	2.438	2,453	2.464	2.472	2.477	2.481	2.484	2.486	2.487	2.488	0.0600	3.590	3.595	3.599	3.602	3.604	3,606
0.4900	0 402	0 671	0 831	0.919	0.965	0.980	1.028	1.000	0.1200	2.249	2.300	2.338	2.364	2.383	2.397	2.406	2.413	2.418	2.421	2.424	2.426	2.427	2.428	0.0625	3.511	3.515	3.519	3,522	3.524	3.525
0.5100	0.398	0.662	0.816	0 900	0.963	0.965	0.976	0 991	0.1250	2.207	2.255	2.289	2.314	2.331	2.343	2.352	2.358	2.362	2.365	2.367	2.369	2.370	2.371	0.0650	3.436	3.440	3.443	3.446	3,448	3.449
0.5300	0.395	0.654	0.802	0.881	0 922	0 942	0.952	0.957	0.1300	2.166	2.211	2.243	2.265	2.281	2.292	2.300	2.306	2.309	2.312	2.314	2.315	2.316	2.317	0.06/5	3.366	3,369	3.372	3.374	3.376	3.377
0.5500	0.392	0.645	0.788	0.864	0.902	0.920	0 929	0 934	0.1350	2.128	2.170	2.199	2.220	2.234	2.244	2.251	2.256	2.260	2.262	2.263	2.265	2.265	2.266	0.0700	3.299	3.302	3,305	3.306	3.308	3.309
0.5700	0.389	0.637	0.775	0.847	0.882	0.900	0 908	0 912	0.1400	2.090	2.130	2.157	2,176	2.189	2.199	2.205	2,209	2.212	2,214	2.216	2.217	2.217	2.218	0.0723	3.236	3.238	3.240	3.242	3.243	3.244
0.5900	0.386	0.629	0.763	0.831	0.864	0.880	0 888	0 891	0.1430	2.055	2.091	2.117	2.135	2.147	2.155	2.161	2.165	2.167	2.169	2.171	2.171	2.172	2.172	0.0/50	3.1/5	3.1/8	3.179	3.181	3.182	3.183
0.6100	0.383	0.621	0.750	0.815	0.846	0.861	0.868	0.872	0.1500	2.020	2.055	2.079	2.095	2.106	2.114	2.119	2.122	2.125	2.126	2.128	2.128	2.129	2.129	0.0775	3.11/	3.120	3.121	3.123	3.124	3.124
0.6300	0.380	0.613	0.738	0.800	0.830	0.844	0.850	0.853	0.1330	1.98/	2.020	2.042	2.057	2.067	2.074	2.079	2.082	2.084	2.086	2.087	2.087	2.088	2.088	0.0000	3.002	3.005	3.000	3.06/	3.068	3.069
0.6500	0.377	0.606	0.727	0.786	0.814	0.826	0.832	0.835	0.1000	1.935	1.986	2.007	2.021	2.030	2.036	2.041	2.044	2.046	2.047	2.048	2.048	2.049	2.049	0.0023	3.010	3.012	3.013	3.014	3.015	3.016
0.6700	0.375	0.599	0.716	0.772	0.798	0.810	0.816	0.818	0.1000	1.923	1.953	1.9/3	1.986	1.994	2,000	2.004	2,007	2.009	2.010	2.011	2.011	2.011	2.012	0.0000	2.900	2.901	2.903	2.964	2,964	2.965
0.6900	0.372	0.592	0.705	0.759	0.783	0.795	0.800	0.802	0.1750	1.895	1,922	1.940	1.952	1.960	1.966	1.969	1,9/2	1.973	1.974	1.975	1.975	1.976	1,976	0.0073	2.912	2.913	2.914	2,915	2.916	2.916
0.7100	0.369	0.585	0.694	0.746	0,769	0.780	0.784	0.786	0.1700	1.00/	1,892	1.909	1.920	1.928	1.933	1.936	1,938	1.939	1.940	1.941	1.941	1.942	1.942	0,0900	2.000	2.00/	2.808	2.869	2.869	2.869
0.7300	0.366	0.578	0.684	0.733	0.755	0.765	0.769	0.771	0.1000	1 810	1.003	1.8/9	1.889	1.896	1.901	1.904	1.906	1.907	1,908	1.908	1,909	1.909	1.909	0.0723	2.021	2.022	2.023	2.824	2.824	2,825
0.7500	0.364	0.571	0.674	0.721	0.742	0.751	0.755	0.757	0.1000	1.012	1.033	1.850	1,860	1.866	1.870	1.873	1.8/5	1.8/6	1.8/7	1.877	1.878	1.878	1.878	0.0900	2.119	2.780	2./80	2.781	4.782	2.782
·····	• • • • • • • •	• • • • • • • •	• • • • • • • •		• • • • • • •	· • · · · · · ·			0.1900	1.767	1.000	1.822	1.831	1.837	1.841	1.843	1.845	1.846	1.847	1.847	1.847	1.848	1.848	0.0973	2.736	2./39	2.139	2.740	2.740	Z. 741
Greatest	roofin	g shear	under	lateral	loadin	g is ne	ar the d	end,	0.1300	1 739	1.757	1.750	1,804	1.009	1,813	1.815	1.810	1.81/	1.818	1.818	1.819	1.819	1.819	0,1000	4.070	2.079	2.700	2.700	2./01	2.701
or shear	walls.										·····	1./09	1.///	1.782	1.783	1./8/	1./89	1./90	1,790	1.791	1.791	1./91	1,791				••••••	•••••		••••

4 MATERIAIS E MÉTODOS

A partir das conclusões da revisão bibliográfica e do estudo da norma americana **ASAE EP484-1 (1991)**, propõe-se neste trabalho o estudo numérico e experimental dos painéis diafragma, por se tratar. de um mecanismo prático, barato e de valor reconhecido pela literatura internacional.

4.1 Modelo numérico

Foram desenvolvidos modelos numéricos com o "software ANSYS" para a simulação dos ensaios com painéis diafragma. Para este fim, foram desenvolvidos modelos numéricos, baseado nos trabalhos de **Keener e Manbeck (1996)**, utilizando-se elementos de viga para simular as barras e para as telhas foram utilizadas barras diagonais com a mesma rigidez das telhas para simplificar a montagem dos modelos. Foi então verificada a validade dos modelos propostos com os resultados dos ensaios. Os modelos são apresentados no anexo 2. Além disso, foram desenvolvidos modelos do pórtico para a determinação da rigidez e da força de resistência do pórtico, os quais, também são apresentados no anexo 2. No capítulo 5, apresenta-se um resumo dos resultados obtidos na análise numérica dos pórticos.

4.2 Modelo experimental

Os ensaios foram realizados com espécies de madeira de reflorestamento dos gêneros Eucalipto e Pinus, telhas de aço em perfil trapezoidal e dispositivos de ligação das peças de madeira do padrão Gang-Nail de construção. Todos estes materiais são comumente encontrados no mercado e representam uma parcela significativa de construções industriais e agrícolas em estruturas de madeira.

4.2.1 Madeira

A utilização de madeiras de reflorestamento dos gêneros Pinus e Eucalipto teve como objetivo manter a linha de pesquisa adotada pelo LaMEM. As peças de madeira foram classificadas de acordo com a classe de resistência, por meio de ensaios de compressão paralela à fibras com corpos-de-prova extraídos das próprias vigas a serem utilizadas na montagem dos painéis diafragma. Além disso, foi determinado o módulo de elasticidade das vigas na flexão. A umidade de serviço da madeira foi a de equilíbrio seca ao ar livre.

4.2.2 Telhas

Foram utilizadas telhas de aço, fornecidas pela Haironville do Brasil, no perfil 33/343, com espessura de 0,5mm, e as seguintes dimensões:

FIGURA 18 – Dimensões da telha de aço - (Fonte: Guia de produtos: Haironville do Brasil)

Para a fixação das telhas, foram utilizados parafusos auto-atarraxantes sextavados, com diâmetros de 6,3 mm, arruelas com diâmetro de 16 mm e espessura de 1 mm, com vedação de neoprene, pois é o comercialmente recomendado para a fixação da telha.

Parafuso auto-atarraxante sextavado, diâmetro de 6,3 ou 6,5 mm arruela com diâmetro de 16 mm e espessura de 1 mm, vedação de neoprene

FIGURA 19 – Parafuso de fixação das telhas - (Fonte: Guia de produtos: Haironville do Brasil)

4.2.3 Fixadores Gang-Nail

Para a fixação das peças de madeira, terças nos banzos, foram utilizados conectores padrão Gang-Nail do tipo HC, como mostra a figura abaixo. Para a ligação dos conectores nas peças de madeira foram utilizados pregos do tipo 18x27, disponíveis comercialmente e apresentando diâmetro e comprimento compatíveis com as dimensões das peças de madeira e do conector HC.

4.2.4 Painel diafragma

Os parâmetros de resistência e rigidez diafragma foram determinados a partir de ensaios com painéis diafragma de acordo com o modelo proposto pela norma ASAE EP484.1 (1991), como mostra a figura 21. O modelo é composto por uma malha de madeira, sendo as peças verticais representativas dos banzos superiores das treliças e as peças horizontais representativas das terças, apresenta-se na figura 22 o modelo de painel utilizado nos ensaios, com suas respectivas dimensões. Sobre as peças horizontais foram fixadas as telhas. A partir dos resultados obtidos nos ensaios preliminares optou-se pela utilização do número máximo de parafusos na fixação das telhas para evitar o deslizamento entre as mesmas, por ser este um fator importante na determinação da rigidez e resistência diafragma. Os ensaios preliminares confirmaram os resultados obtidos por **Niu e Gebremedhin (1997)**, com relação ao aumento da rigidez do diafragma quando as ligações entre as telhas são reforçadas evitando-se assim o deslizamento entre as mesmas. Apresenta-se no capítulo 5 os resultados obtidos nos ensaios preliminares e as conclusões.

FIGURA 21 – Modelo de ensaio com painel diafragma – (Fonte: ASAE EP 484.1, 1991)

Neste trabalho optou-se por utilizar o modelo de viga biapoiada para a realização dos ensaios devido à sua maior facilidade de montagem e execução.

Por meio deste ensaio a seguinte propriedade é obtida:

- Força de ruptura do painel (F_u);

A partir desta força e com as propriedades da madeira e do pórtico, definidas a partir de modelos numéricos, foram calculadas as seguintes propriedades:

- Força de resistência para o cálculo (Pult);
- Resistência de cálculo (F_d);
- Rigidez ao cisalhamento do diafragma teste (c);
- Rigidez da construção diafragma (c');
- Rigidez da construção diafragma corrigida para a inclinação da cobertura (c_h);
- Coeficientes mD e mS;
- Resistência lateral da cobertura diafragma (Q);
- Cisalhamento na cobertura metálica (V_h);
- Cisalhamento máximo na telha (V).

A determinação destes parâmetros é feita partir das considerações apresentadas no capítulo 3.

Para o cálculo da resistência lateral da cobertura diafragma (Q), são necessários os valores de rigidez do pórtico (K) e da resistência lateral do pórtico (R), que são obtidos a partir de modelos numéricos. No primeiro caso a força necessária para gerar um deslocamento unitário horizontal no ponto de ligação entre a treliça e a coluna, e o segundo a força necessária para anular o deslocamento horizontal do mesmo ponto para a estrutura solicitada por todas as ações. Neste trabalho são consideradas as ações permanentes e a ação do vento.

Dimensões das peças e do painel

As dimensões das peças de madeira e os espaçamentos entre elas foram definidos levando-se em conta as características de execução de estruturas

de madeira no sistema Gang-Nail e as características das telhas, com isso, utilizou-se a seguinte configuração:

FIGURA 22 – Configuração da malha de madeira

4.2.5 Procedimentos de ensaio

As seguintes etapas foram realizadas para a execução dos ensaios:

• Determinação da rigidez das vigas de madeira;

Para cada peça de madeira determinou-se o valor do módulo de elasticidade por meio de ensaios de flexão em viga biapoiada;

Montagem da malha de madeira;

Após a determinação da rigidez das peças de madeira utilizadas na montagem do painel, essas foram posicionadas sobre uma superfície plana para marcar o gabarito das peças, uma vez posicionadas as peças, os conectores HC foram colocados em suas posições de montagem e feita a pré-furação da madeira (Figura 23-a), na seqüência os conectores HC foram

fixados por meio de pregos (Figura 23-b), formando assim, a malha de madeira (Figura 23-c).

(a) Pré-furação

(b) Conector HC fixado

(c) Malha de madeira FIGURA 23 – Procedimento de montagem da malha de madeira

• Determinação da rigidez do painel de madeira sem as telhas;

Na seqüência a malha de madeira foi posicionada no pórtico de ensaio e a sua rigidez foi determinada com a aplicação de uma força na barra vertical central, sendo também nesta barra feita a medição dos deslocamentos verticais do painel. Para o ensaio foi adotado o limite de deslocamento máximo aproximado de L/200, sendo L o vão do painel, com dez leituras para cada ensaio.

FIGURA 24 – Ensaio para determinação da rigidez da malha de madeira

• Colocação das telhas;

Após a determinação da rigidez da malha de madeira foram fixadas as telhas (3 folhas), sendo utilizado o número máximo de parafusos possíveis para a fixação das telhas, ou seja, um por onda baixa, uma vez que os ensaios preliminares mostraram um aumento de rigidez do painel quando utilizado este sistema de montagem. Além disso, atenção especial foi dada à linha de parafusos de costura com a função principal de ligar as folhas das telhas, proporcionando assim, que as telhas trabalhem em conjunto minimizando os efeitos do deslizamento entre elas.

FIGURA 25 – Fixação das telhas

• Ensaio do painel diafragma completo.

Todos os procedimentos de ensaio seguiram as especificações apresentadas pela norma **ASAE EP 484.1 (1991)**, dos quais destacam-se:

- Controle da umidade da madeira para a execução dos ensaios, neste caso umidade de equilíbrio ao ar, em torno de 12 a 15%;
- As dimensões e espaçamentos das terças e banzos são os mesmos utilizados na edificação;
- As medidas foram feitas com precisão de 2% no mínimo;
- Foram realizadas três repetições para cada variação de montagem, sendo os valores médios calculados sobre estas três repetições.

FIGURA 26 – Ensaio do painel diafragma

• Ensaios realizados

Para o Eucalipto foram ensaiados três painéis. Para cada painel utilizou-se o número máximo de parafusos para fixação das telhas. Nas emendas longitudinais das telhas foram fixados os parafusos de costura com a função principal de impedir o deslizamento entre as mesmas. Em cada ponto de fixação das peças de madeira foram utilizados um par de conector HC, como especificado pela fabricante. A partir dos resultados obtidos nos ensaios foram feitas análises para duas situações, a saber, com colunas de 3,0 e 3,5 metros de altura. A altura do painel de 2,0 metros permite que os resultados

obtidos sejam extrapolados para coberturas que apresentem comprimentos de até 4,0 metros.

Para o Pinus foram ensaiados três painéis. Para cada painel utilizou-se o número máximo de parafusos para fixação das telhas. Nas emendas das telhas foram fixados os parafusos de costura com a função principal de impedir o deslizamento entre as mesmas. Em cada ponto de fixação das peças de madeira foram utilizados dois pares de conector HC, para reforçar a ligação, uma vez que nos ensaios preliminares, para efeito da ação diafragma, um par de conectores se mostrou ineficiente. A partir dos resultados obtidos nos ensaios foram feitas análises para colunas de 3,0 metros de altura. A altura do painel de 2,0 metros permite que os resultados obtidos sejam extrapolados para coberturas que apresentem comprimentos de até 4,0 metros.

Apresenta-se a seguir, no capítulo 5, os resultados obtidos nos ensaios, bem como uma análise desses resultados.

5 RESULTADOS

5.1 Ensaios preliminares

Com o objetivo de avaliar o comportamento experimental dos painéis diafragma e para auxiliar na definição das variáveis a serem consideradas nos ensaios definitivos do trabalho, foram ensaiadas duas configurações com uma mesma espécie (Eucalipto Citriodora), variando-se o número de parafusos para verificar a influência deste número sobre a rigidez do painel, seguindo as configurações especificadas no capítulo 4. Além disso, duas configurações de ensaio para o Pinus foram realizadas, já com o número máximo de parafusos de fixação das telhas, com o objetivo de verificar o desempenho das ligações dos conectores HC. Essa verificação se justificou em função da baixa densidade do Pinus e consequentente perigo de arrancamento dos pregos.

As seguintes configurações foram adotadas para a fixação das telhas:

+Parafusos de fixação

FIGURA 27 – Disposição dos parafusos de fixação das telhas

Nos ensaios realizados com o eucalipto foram encontrados dois modos de ruptura, a saber, flexão dos conectores HC de ligação entre as peças de madeira e deslizamento entre as telhas para o primeiro painel com o número mínimo de parafusos, e cisalhamento/arrancamento dos parafusos com flexão dos conectores HC no painel com o número máximo de parafusos.

Flexão do conector HC Cisalhamento/arrancamento FIGURA 28 – Modos de ruptura dos painéis

O deslizamento entre as folhas das telhas foi considerado elevado. Em função disso optou-se por trabalhar com o número máximo de parafusos.

A seguir são apresentados os resultados obtidos nos ensaios preliminares com o Eucalipto:

• Primeiro painel - Número mínimo de parafusos:

FIGURA 29 - Resultados do primeiro painel - Rigidez

Segundo painel - Número máximo de parafusos:

FIGURA 30 - Resultados do segundo painel - Rigidez

Comparando-se os resultados obtidos nos ensaios dos painéis pode-se verificar que no segundo caso, número máximo de parafusos, a rigidez apresentada pelo painel é muito superior ao valor obtido no primeiro painel. Analisando a força necessária para gerar um deslocamento de 0,20 cm nos painéis sem as telhas, verifica-se que para os dois casos essa força é da ordem de 0,10kN. Já comparando a força necessária para gerar esse mesmo deslocamento nos painéis com as telhas , verifica-se que no caso do painel 1, número mínimo de parafusos, a força necessária foi de 0,55kN, enquanto que no segundo caso, número máximo de parafusos, esse deslocamento não foi alcançado. Esse fato comprova a maior rigidez do painel quando utilizado o número máximo de parafusos, justificando assim, a sua utilização nos ensaios definitivos.

Outra análise feita inicialmente refere-se a configuração de montagem dos painéis com Pinus. Devido àbaixa densidade da madeira o modo de ruptura apresentado nos ensaios iniciais foi por arrancamento dos pregos de fixação do conector HC, apresentando valores muito baixos de resistência. Duas alternativas foram propostas para tentar melhorar o desempenho do painel: substituir os pregos comuns por pregos anelado, que apresentam maior

resistência ao arrancamento; ou trabalhar com o dobro de conectores HC em cada ponto de fixação. Ensaios iniciais com o acréscimo no número de conectores HC modificaram a forma de ruptura para flexão da chapa e/ou cisalhamento nos parafusos de fixação das telhas. Em virtude deste fato, e para manter os mesmos materiais utilizados para o Eucalipto, optou-se por esta alternativa, descartando-se a substituição do tipo de prego.

Apresenta-se a seguir os resultados obtidos com o Pinus, sendo o primeiro painel sem reforço (figura 31) e o segundo painel com o reforço nas ligações entre as peças de madeira (figura 32):

PAINEL DIAFRAGMA - Pinus - Teste sem reforço

FIGURA 31 - Resultado Pinus - Teste sem reforço

Fazendo-se a mesma comparação dos resultados do eucalipto, verifica-se que para o painel sem reforço e sem telhas o deslocamento de 0,20cm é obtido com uma força da ordem de 0,09kN, enquanto que para o painel com reforço esse deslocamento é obtido para uma força de 0,16 kN. Analisando-se o painel com as telhas, verifica-se que essas forças passam, respectivamente, para 0,38kN e no segundo caso não é atingido em duas repetições, sendo alcançado esse deslocamento em apenas uma repetição para uma força de 0,50kN.

PAINEL DIAFRAGMA - Pinus - Teste com reforço

FIGURA 32 - Resultado Pinus - Teste com reforço

Cabe destacar que na primeira situação a ruptura se deu por arrancamento dos pregos enquanto que no segundo caso a ruptura se deu por flexão da chapa e cisalhamento dos parafusos de fixação das telhas. No caso dos painéis em Pinus também se trabalhou com o número máximo de parafusos para fixação das telhas. A partir da análise destes resultados verifica-se a viabilidade da utilização do painel com reforço nas ligações para o Pinus.

Outro aspecto observado nos ensaios preliminares com o Pinus foi a grande diferença de valores de resistência obtidos nos dois casos analisados, sendo, no primeiro painel, verificada uma força de ruptura de 2,19kN, enquanto que no segundo caso essa força passou para 6,67kN, ou seja, 3 vezes maior. Em vista desses resultados optou-se por trabalhar com o painel com reforço das ligações entre as peças de madeira.

Os cálculos completos com relação aos painéis testes em Eucalipto e Pinus são apresentados no anexo 1.

5.2 Modelos numéricos

Conforme apresentado no capítulo 4 - Materiais e Métodos, utilizou-se o programa ANSYS para a modelagem numérica. Apresenta-se a seguir os resultados obtidos na modelagem numérica dos pórticos, sendo eles, a rigidez do pórtico (k) e a força de restrição horizontal(R). Para a modelagem foram adotados elementos do tipo 'link' para a treliça e elementos do tipo 'beam' para os pilares.

Para essas análises foram consideradas as seguintes seções para as peças:

Banzos:	4,5cm x 9,0cm;
Diagonais e Montantes:	4,5cm x 7,0cm;
Terças:	4,5cm x 7,0cm;
Pilares:	2 x 6,0cm x 16,0cm (Eucalipto: 3,0m e
3,5m; Pinus: 3,0m de altura livre	e).

Para o módulo de elasticidade foram utilizados valores médios obtidos a partir da classificação das peças de madeira utilizadas nos ensaios.

- 5.2.1 Rigidez (k) e Força de Resistência (R) do pórtico
- a) Eucalipto

Para o pórtico em Eucalipto foram obtidos os seguintes resultados:

k = 2,50 kN/cm (3,0 metros)	k = 1,57 kN/cm (3,5 metros)
R = 0,99 kN (3,0 metros)	R = 1,21 kN (3,5 metros)

FIGURA 34 - Rigidez do pórtico - Pinus

Para o pórtico em Pinus foram obtidos os seguintes resultados:

k = 0,85 kN/cm (3,0 metros) R = 0,99 kN (3,0 metros)

Como pode ser observado, o valor de rigidez do pórtico para o caso do Eucalipto é bem superior ao valor obtido para o Pinus, da ordem de 3 vezes. Isso se dá devido ao valor maior do Módulo de Elasticidade do Eucalipto. Por outro lado, a força de resistência lateral é a mesma para os dois casos, apresentando variação apenas na terceira casa decimal, isso devido ao fato de essa força agir basicamente sobre a ação do vento, que é a mesma para as duas situações, pois, a edificação apresenta as mesmas dimensões.

Devido àmaior rigidez do Eucalipto optou-se por calcular, neste caso, as propriedades diafragma para duas alturas diferentes de pilares, 3,0 e 3,5 metros respectivamente.

A partir dos valores de rigidez e força de resistência obtidos pelo modelo numérico dos pórticos e dos resultados obtidos nos ensaios com o painéis pode-se determinar todas os parâmetros diafragma de cálculo.

Os modelos numéricos para os painéis diafragma são apresentados no anexo 2, uma vez que não são necessários para os cálculos e sim, serão utilizados como ferramenta adicional para a determinação das propriedades diafragma de cobertura e comparados com os resultados obtidos nos ensaios. Também no anexo 2 apresentam-se os modelos numéricos completos para os pórticos.

5.3 Ensaios finais

Uma vez definido o vão da estrutura, limitado pelas dimensões do painel diafragma de ensaio, neste caso de 6,5 metros e uma inclinação de 28% em função do tipo de telha e do sistema construtivo adotado, pode-se calcular as propriedades diafragma para diversos comprimentos da edificação de tal forma que a condição imposta pela norma **ASAE EP484-1 (1991)**, força de cisalhamento máximo na telha (V) menor ou igual a resistência de cálculo (F_d), seja satisfeita. Para esse trabalho adotou-se como espaçamento entre os pórticos a distância de 1,20 metros, obtida a partir das especificações de projeto da GANG-NAIL.

São apresentados a seguir os resultados obtidos nos ensaios com os painéis diafragma.

5.3.1 Eucalipto

Dados da estrutura:

Vão = 6,50m Inclinação = 28% Seção da coluna = 2x6x16 (cm) Comprimento = variável

	Altura da coluna = 3,00m													
	l	k = 2,5 kl	N/cm				R = 0,99	9 kN						
Númer	Número máximo de pórticos = 13 (L = 14,4m)													
Painel	F _u (kN)	P _{ult} (kN)	F _d (kN)	С	C _h	mD	mS	Q	V _h	V				
				(kN/cm)	(kN/cm)			(kN)	(kN)	(kN)				
1	14,40	7,20	2,88	2,39	30,25	0,3475	2,796	0,34	2,77	2,87				
2	13,48	6,74	2,70	1,97	25,00	0,2959	2,558	0,29	2,53	2,63				
3	13,26	6,63	2,65	1,93	24,57	0,2914	2,538	0,29	2,51	2,61				
Média	13,71	6,86	2,74	2,10	26,61	0,3116	2,631	0,31	2,60	2,70				
Númer	o de pói	rticos = 1	2 (L = 13	0,3634	2,584	0,36	2,56	2,66						
Númer	o de pói	rticos = 1	1 (L = 12	0,4137	2,498	0,41	2,47	2,57						
Númer	o de pói	rticos = 1	0 (L = 10),8m)		0,4809	2,402	0,47	2,38	2,47				
Númer	o de pói	rticos = 0	9 (L = 9,	6m)		0,5214	2,266	0,52	2,27	2,33				
Númer	o de pói	rticos = 0)8 (L = 8,	4m)		0,6035	2,060	0,62	2,08	2,16				
Númer	o de pói	rticos = 0)7 (L = 7,	2m)		0,6888	1,888	0,68	1,87	1,94				
									_					
Númer	o de pói	rticos = (06 (L = 6,	0,7736	1,620	0,77	1,60	1,67						
Númer	o de pói	rticos = 0)5 (L = 4,	0,8381	1,296	0,83	1,28	1,33						

TABELA 3 - Propriedades diafragma - Eucalipto

Uma vez que os valores de força de ruptura do painel (F_u), força de resistência para o cálculo (P_{ult}), resistência de cálculo (F_d), rigidez ao cisalhamento do painel teste (c) e rigidez da cobertura diafragma (c_h) são constantes para uma mesma configuração do painel e do pórtico eles são apresentados apenas uma vez.
Como pode-se observar na tabela anterior, considerando o pilar com 3,0 metros de altura, o maior comprimento da cobertura diafragma que pode ser considerado é de 14,4 metros (13 pórticos), portanto, para edificações com comprimentos maiores torna-se necessária a execução de PPR internos à edificação, caso contrário as condições da norma não serão satisfeitas. A consideração para diferentes comprimentos da edificação é feita uma vez que os coeficientes mD e mS são determinados em função da relação entre a rigidez do pórtico e a rigidez da cobertura (k/c_h), que é constante para cada configuração e do número de pórticos (comprimento da edificação), que pode assumir diferentes valores.

Outro aspecto importante a ser destacado é que pode-se considerar o diafragma da cobertura para comprimentos menores de edificação, e neste caso os valores de resistência da cobertura são maiores, por outro lado não se aproveita ao máximo a resistência da cobertura.

Altura da coluna = 3,50m										
	k = 1,57 kN/cm R = 1,21 kN									
Númer	o máxim	no de pói	rticos = ()7 (Comp	orimento	da edifica	ação = 7,	2m)		
Painel	F _u (kN)	P _{ult} (kN)	F _d (kN)	С	Ch	mD	mS	Q	V _h	V
				(kN/cm)	(kN/cm)			(kN)	(kN)	(kN)
1	14,40	7,20	2,88	2,39	30,25	0,8054	2,120	0,97	2,56	2,66
2	13,48	6,74	2,70	1,97	25,00	0,7731	2,055	0,94	2,49	2,58
3	13,26	6,63	2,65	1,93	24,57	0,77	2,049	0,93	2,48	2,57
Média	13,71	6,86	2,74	2,10	26,61	0,7828	2,075	0,95	2,51	2,60
-										
Número de pórticos = 06 (L = 6,0m) 0,8465 1,743 1,03 2,11 2,19										
Númer	o de pór	ticos = 0	95 (L = 4,	8m)		0,8923	1,366	1,08	1,65	1,72

TABELA 4 - Propriedades diafragma - Eucalipto

A partir dos resultados apresentados na tabela 4, verifica-se que o aumento da altura da coluna em apenas 0,50 metro reduziu significativamente o comprimento da edificação a ser utilizado pela cobertura diafragma sem a necessidade da execução de PPR internos àedificação, de 13 para apenas 7. Com isso verifica-se que tanto as propriedades da cobertura quanto do pórtico interferem na resistência da cobertura diafragma, obrigando com isso, um amplo estudo da melhor disposição construtiva a ser adotada para a consideração da ação diafragma.

Apresentam-se a seguir as principais propriedades da madeira consideradas no cálculo da resistência diafragma, bem como a classificação de acordo com a classe de resistência.

Viga	E _{,m} (MPa)	f _{c0} (MPa)	Classe
42	22.256	75,6	
08	31.890	71,5	
06	24.570	75,1	C60
16	28.321	66,0	
04	27.714	69,1	
14	29.697	68,6	

TABELA 5 - Propriedades da madeira - Eucalipto

5.3.2 Pinus

Dados da estrutura:

Vão = 6,50m Inclinação = 28% Seção da coluna = 2x6x16 (cm) Comprimento = variável

TABELA 6 -	Propriedades	diafragma	- Pinus
------------	--------------	-----------	---------

Altura da coluna = 3,00m										
	k = 0,85 kN/cm R = 0,99 kN									
Númer	Número máximo de pórticos = 05 (L = 4,8m)									
Painel	F _u (kN)	P _{ult} (kN)	F _d (kN)	С	Ch	mD	mS	Q	V _h	V
				(kN/cm)	(kN/cm)			(kN)	(kN)	(kN)
1	8,59	4,30	1,72	1,40	17,94	0,9126	1,391	0,90	1,38	1,43
2	10,88	5,44	1,55	1,17	15,00	0,8969	1,371	0,89	1,36	1,41
3	4,57	2,29	0,65	1,62	20,61	0,9799	0,49	0,97	0,49	0,50
Média	8,01	4,01	1,31	0,93	17,85	0,9298	1,084	0,92	1,08	1,11

Como pode ser verificado para o caso do Pinus, o comprimento total da edificação a ser considerado para o cálculo da resistência diafragma reduzse para apenas 4,8 metros (5 pórticos), mesmo a cobertura apresentando valores de rigidez da cobertura satisfatórios, o conjunto resistência da cobertura e rigidez do pórtico não se mostra eficiente nesta configuração de montagem.

No caso do Pinus não se justifica o cálculo das propriedades para um número menor que 5 pórticos por se tratar de uma edificação muito pequena em seu comprimento. Para essa configuração de montagem da edificação, a consideração da ação diafragma só se justifica para construções modulares de 4,8 metros, com PPR entre esses módulos.

Apresenta-se a seguir as principais propriedades da madeira consideradas no cálculo da resistência diafragma, bem como a classificação de acordo com a classe de resistência.

Viga	E _{,m} (MPa)	f _{c0} (MPa)	Classe
21	8.512	24,2	
24	10.639	17,3	
23	8.997	23,0	C25
20	6.689	19,4	
06	12.583	22,6	
15	11.356	19,7	

TABELA 7 - Propriedades da madeira - Pinus

Todos os cálculos referentes **à** propriedades de resistência e rigidez diafragma e os resultados dos ensaios são apresentados no anexo 3.

5.4 Discussão dos resultados

Apresenta-se a seguir uma discussão dos resultados obtidos nos ensaios dos painéis em Eucalipto e Pinus com ênfase na determinação dos parâmetros diafragma para utilização no cálculo de estruturas utilizando este sistema construtivo.

5.4.1 Painéis em Eucalipto

O modo de ruptura característico para o painel em Eucalipto foi por arrancamento e/ou cisalhamento dos parafusos de fixação das telhas, como mostra a figura 35.

Arrancamento dos parafusos Cisalhar FIGURA 35 - Modos de ruptura

Cisalhamento dos parafusos

Além disso, pôde-se observar o efeito de flexão dos conectores HC centrais. Em virtude da elevada densidade do Eucalipto, a ligação pregada entre as peças de madeira apresenta bom desempenho, não ocorrendo problemas de arrancamento dos pregos. Por outro lado, o número máximo de parafusos de fixação das telhas gera menores valores de deslocamentos devido à flexão do painel e com isso, uma menor solicitação dos conectores HC, como mostra a figura 36.

FIGURA 36 - Flexão do painel de cobertura

Os ensaios mostram que o enrijecimento das ligações das telhas nas peças de madeira aliviam os conectores de ligação entre as peças de madeira, fato esse importante, uma vez que a norma **ASAE EP 484-1 (1991)** recomenda que, para os casos de ruptura dos conectores de ligação entre as peças de madeira, a resistência de cálculo diafragma (F_d) deve ser reduzida por um coeficiente de segurança, reduzindo significativamente a eficiência da cobertura diafragma. Por outro lado, deve-se analisar cuidadosamente os comprimentos dos parafusos utilizados, de tal forma que se evite ao máximo o seu arrancamento, obtendo-se assim maior aproveitamento da cobertura diafragma.

Uma análise importante a ser feita para a determinação das propriedades diafragma de coberturas refere-se àrigidez do pórtico, uma vez que essa rigidez é definida em função das propriedades do pilar. A partir dos resultados obtidos para o Eucalipto, apresentados na tabela 8, observa-se que pequenas variações no comprimento dos pilares geram grande variação na rigidez dos mesmos. Para se garantir a mesma eficiência da cobertura diafragma torna-se necessária a variação das propriedades da madeira ou da seção do pilar. Pode-se verificar esse fato, comparando-se o comprimento máximo da viga de cobertura diafragma para cada um dos casos analisados, ou seja, pilares com 3,0 e 3,5 metros de altura, onde foram obtidos, respectivamente, 14,4 e 7,2 metros de comprimento da edificação. Uma variação de apenas 0,5 metros na altura do pilar gerou uma diminuição de 50% no comprimento da viga diafragma.

Altura do pilar (m)	Rigidez do pórtico (kN/cm)	Comprimento máximo da cobertura diafragma (m)	Q (kN)
3,0	2,50	14,40	0,31
3,5	1,57	7,20	0,95

TABELA 8 -	Influência	da rigidez	do pórtico

Observa-se também na tabela 8, que para a coluna de 3,0 metros, obtém-se valores menores de resistência diafragma do que para a coluna com 3,5 metros de altura. Isso se justifica, pois, no primeiro caso o pórtico apresenta maior rigidez e consequentemente absorve maior parcela das ações laterais,

solicitando menos a cobertura diafragma que não é totalmente utilizada. Aumentando-se a altura da coluna, a rigidez do pórtico diminui e a sua eficiência também, a estrutura então passa a solicitar mais a cobertura diafragma podendo-se considerar valores maiores para a resistência diafragma (Q), necessitando, porém utilizar um número menor de pórticos para formar a viga diafragma da construção.

As propriedades diafragma de uma cobertura dependem diretamente das propriedades do pórtico e da cobertura, e a variação de parâmetros em qualquer um destes elementos altera significativamente os valores a serem utilizados no projeto. Por isso, a análise de construções individuais se torna inviável para determinação das propriedades diafragma de coberturas, e sim a análise a partir de sistemas construtivos, como descrito por **Anderson e Kelley (1996)**.

Uma vez que a resistência ao cisalhamento de cálculo (F_d) é obtida a partir da rigidez (K), da força de resistência (R) do pórtico, e da força de ruptura do painel (F_u), torna-se possível determinar a resistência diafragma para diversos comprimentos da edificação. Deve-se destacar que considerar valores para comprimentos menores do máximo permitido para o sistema resulta em mau aproveitamento do diafragma. Para se comprovar este fato basta comparar os valores de força máxima de cisalhamento na cobertura (V) com a resistência ao cisalhamento de cálculo (F_d), obtidos para cada comprimento da edificação (número de pórticos), nas tabelas 3 e 4. Não se permite adotar nos cálculos valores de resistência de cálculo (F_d), maiores que a força de cisalhamento máximo (V).

5.4.2 Painéis em Pinus

No caso dos painéis em Pinus o modo de ruptura característico foi por flexão do conector HC e arrancamento dos parafusos de fixação das telhas e dos pregos utilizados na fixação do conector HC. O sistema construtivo adotado não apresentou boa eficiência do ponto de vista de algumas propriedades diafragma. Apesar de os resultados mostrarem valores elevados para a resistência diafragma (Q=0,92 kN), a baixa capacidade de suportar os esforços de cisalhamento da cobertura (V), aliada a baixa rigidez dos pórticos (K), permite considerar a ação diafragma para no máximo um comprimento da edificação de 4,8 metros (5 pórticos).

Outro aspecto importante a ser destacado refere-se ao desempenho do pórtico. Adotou-se para este trabalho altura livre mínima de 3,00 metros e seção dupla de 2 peças de 6cm x 16cm para as colunas. No caso do Pinus, esta configuração de montagem foi um fator limitante na definição do comprimento da viga diafragma da construção, gerando a necessidade de PPR internos para viabilizar a consideração da resistência da cobertura diafragma, no caso de edificações com comprimentos elevados.

Cabe ressaltar que o fator limitante para o Pinus não é a cobertura diafragma, mas sim a baixa rigidez das colunas, que geram baixa rigidez do pórtico isolado, fator este que influencia diretamente na determinação do comprimento da viga diafragma da edificação, este fato fica bastante evidenciado quando comparados os resultados obtidos entre o Pinus e o Eucalipto para o cisalhamento máximo na cobertura (V) e para a força de resistência diafragma (Q), com a mesma altura da coluna, neste caso, 3,0 metros.

	Q (kN)	V (kN)
Pinus (L = 4,80 m)	0,92	1,11
Eucalipto (L = 4,80 m)	0,83	1,33

TABELA 9 - Comparação entre o Pinus e o Eucalipto

Uma análise nos resultados obtidos mostra que no terceiro painel o valor de cisalhamento máximo na cobertura é bastante inferior ao obtido pelos outros painéis, isso foi devido ao arrancamento dos pregos de fixação do conector HC, fato este que torna necessária a consideração de um valor menor para a resistência de cálculo (F_d), mas por outro lado não inviabiliza a utilização do

painel, uma vez que este tipo de falha pode ocorrer na prática e é considerada pela norma por meio da utilização de um coeficiente de redução na resistência. Além disso, analisando os valores de resistência diafragma (Q), nota-se que são da mesma ordem de grandeza dos valores obtidos para os demais painéis.

Portanto para o Pinus há a necessidade de se aumentar a seção das colunas e/ou substituir os pregos comuns utilizados nas ligações entre peças de madeira por pregos do tipo anelado, que apresentam valores de resistência ao arrancamento muito superiores àqueles apresentados pelo prego comum (Silva et. al. 2001). Além disso, deve-se adotar um parafuso de fixação das telhas de comprimento maior, diminuindo assim o arrancamento.

5.5 Considerações gerais

Uma análise importante a ser feita é que a resistência diafragma (Q) obtida para o caso de uma cobertura diafragma com 5 pórticos é da mesma ordem de grandeza independente da madeira utilizada (TABELA 9). Isso comprova que não somente as propriedades da madeira interferem na ação diafragma, mas um conjunto de fatores e, todos devem ser levados em conta. No caso do sistema construtivo proposto, como as falhas geralmente ocorreram por arrancamento/cisalhamento dos parafusos, acompanhados de flexão do conector, independente da madeira utilizada, os valores são da mesma ordem de grandeza.

A figura 37 apresenta um comparativo entre os ensaios com o Pinus e o Eucalipto, onde se pode observar que para o painel sem as telhas, mesmo utilizando-se maior número de conectores HC para o Pinus, a diferença de rigidez entre eles é significativa, enquanto que ao analisar-se o comportamento dos painéis com as telhas, percebe-se que a diferença entre a rigidez dos mesmos não é mais tão significativa, ou seja, a telha melhora a

distribuição dos esforços diminuindo a diferença de rigidez das espécies de madeira. A partir dessa constatação, percebe-se que para o sistema proposto o fator mais importante não é a cobertura, pois, para os dois casos o comportamento é muito parecido, mas sim a grande diferença entre os valores de rigidez do pórtico, 2,50 kN/cm e 0,85 kN/cm, respectivamente para o Eucalipto e o Pinus, que propiciam diferenças significativas na determinação da viga de cobertura diafragma (número máximo de pórticos).

FIGURA 37 - Comparativo entre painéis em Pinus e Eucalipto

A partir dos resultados obtidos verifica-se que a determinação dos parâmetros de cálculo diafragma pode ser feita a partir do modelo de ensaio proposto pela norma **ASAE EP (1991)**.

Para configurações de montagem no sistema Gang-Nail, com conectores HC na ligação das terças com os banzos, telhas metálicas fabricadas pela Haironville do Brasil no perfil 33/343, vãos de até 6,5 metros da treliça e pilares de seção 2x6x12(cm), verifica-se:

 Para a utilização do Pinus deve-se projetar PPR a no máximo 7,20 metros de comprimento da edificação, 5 pórticos, sendo dois como PPR nas extremidades da edificação, ou seja, 4 vãos de 1,20 metros:

FIGURA 38 - Disposição construtiva para o Pinus

 Para a utilização do Eucalipto deve-se projetar PPR a no máximo 14,40 metros de comprimento da edificação, 13 pórticos, ou seja, 12 vãos de 1,20 metros, para edificações com 3,00 metros de altura livre. Já para altura livre de 3,50 metros os PPR devem estar espaçados de no máximo 7,20 metros, 7 pórticos, ou seja, 6 vãos de 1,20 metros;

FIGURA 39 - Disposições construtivas para o Eucalipto

Analisando a situação de espaçamento máximo entre os PPR para cada espécie de madeira, verifica-se que para o Eucalipto os valores de cisalhamento admissível na cobertura (V) são elevados em comparação aos obtidos para o Pinus. Por outro lado, os valores de resistência diafragma (Q)

para o Pinus são superiores aos obtidos para o Eucalipto. Com isso, deve-se alertar para o fato de que quanto maior o espaçamento adotado entre os PPR, menor o aproveitamento da resistência diafragma da cobertura.

6 CONCLUSÕES

A partir das considerações feitas no capítulo 5 pode-se concluir que para o sistema construtivo proposto, a saber: configurações de montagem no sistema Gang-Nail, com conectores HC na ligação das terças com os banzos, telhas metálicas com altura de ondas de 32mm e espessura de 0,5mm, vãos de até 6,5 metros da treliça e pilares de seção 2x6x12(cm):

- A determinação das propriedades diafragma de coberturas pode ser feita a partir do modelo de ensaio de painéis diafragma em laboratório, proposto pela norma ASAE EP (1991), viabilizando assim a sua utilização para diversos sistemas construtivos;
- A partir do sistema construtivo proposto, três situações foram analisadas, sendo elas, construção em Pinus com colunas de 3,0 metros de altura; construção em Eucalipto com colunas de 3,0 e 3,5 metros de altura. Para estas situações os seguintes valores de resistência diafragma podem ser utilizados nos cálculos:

Q = 0,92 kN (Pinus com Altura livre máxima de 3,0 metros);

Q = 0,31 kN (Eucalipto com Altura livre máxima de 3,0 metros);

Q = 0,95 kN (Eucalipto com Altura livre máxima de 3,5 metros).

A aplicação desses valores nos cálculos de estruturas é mostrada no Anexo 4 - Exemplo de Cálculo.

 As propriedades da madeira, altura livre e comprimento da edificação são fatores importantes a serem estudados para se obter maior proveito da cobertura diafragma nos cálculos, para cada sistema construtivo adotado. Uma vez definida a madeira e altura livre necessária, vários comprimentos diferentes da edificação podem ser utilizados e, para cada comprimento adotado, valores diferentes de resistência diafragma devem ser considerados nos cálculos, sendo que quanto maior o espaçamento entre os PPR menor será o valor da resistência diafragma da cobertura a ser utilizado nos cálculos. Cabe nesse caso, um estudo de viabilidade técnica e econômica para cada edificação projetada;

 Uma vez definida uma configuração de montagem (sistema construtivo, telha e madeira), a altura livre da edificação e a rigidez do pórtico são os principais fatores que interferem na distribuição dos PPR ao longo do comprimento da edificação;

Para a continuidade deste trabalho propõe-se:

- Para a configuração proposta neste trabalho, realizar ensaios em um protótipo, em Eucalipto, com a finalidade de comparar os resultados obtidos em laboratório e os obtidos com o ensaio do protótipo;
- Testar uma nova configuração de montagem para o Pinus, substituindo os pregos lisos utilizados nas ligações dos conectores HC por pregos anelados;
- Realização de ensaios em painéis para outros sistemas construtivos, classes de madeira e diversos vãos;
- Para uma mesma configuração de montagem apresentar os limites de espaçamento entre PPR, fornecendo uma ferramenta prática para a construção de galpões considerando a ação diafragma de cobertura para diversos vãos.

REFERÊNCIAS BIBLIOGRÁFICAS

- Alsmarker, T. (1995). Diaphragms and shear walls. Timber Engineering STEP 1: Basis of design, material properties, structural components and joints, p. B13, 1995.
- American Society of Agricultural Engineers ASAE. (1991). Diaphragm design of metal-clad, post-frame rectangular buildings, EP484.1. p. 523-532. *In* ASAE Standards. 38th edition. ASAE, St. Joseph, MI. 10p.
- American National Standards Institute / Truss Plate Institute. (1995). ANSI/TPI 1 (DRAFT 6) - National design standard for metal plate connected wood truss construction. 107 p.
- Anderson, G.A.; Kelley, V.C. (1996). Light-gage metal diaphragms on dimension lumber frames. In: International Wood Engineering Conference, 1996, New Orleans/USA. Anais, p. 2-35/2-60.
- Associação Brasileira de Normas Técnicas. 1988. NBR 6123/1988 Forças devidas ao vento em edificações. 110p.
- Bellei, I.H. (1994). Edifícios industriais em aço: Projeto e Cálculo Editora
 Pini 1^a Edição.
- **Bender, D.A. (1992).** Contemporary post-frame construction. Wood Design Focus, v.3, n.1, p.3.

- **Bohnhoff, D.R. (1992).** Estimating frame stiffness and eave loads for diaphragm analysis of post-frame buildings. Transactions of American Society of Agricultural Engineers, v.35, n.3, p.1043-1054.
- **Canadian Wood Construction (1986)** Shearwalls and Diaphragms, 24 p.,1986.
- **Gebremedhin, K.G. (1991).** Diaphragm test results of a full-scale post-frame building. *Frame Building Professional.* 3(5): 4-8,24-26.
- **Gebremedhin, K.G. (1992).** Application of diaphragm action in post-frame building. Wood Design Focus, v.3, n.1, p.7-10.
- **Gebremedhin, K.G.; Manbeck, H.B. (1992).** Diaphragm design procedures for post-frame buildings. Wood Design Focus, v.3, n.1, p.15-18.
- **Gebremedhin, K.G.; Bartsch, J.A.; Jorgensen, M.C. (1992).** Predicting roof diaphragm and endwall stiffness from full-scale test results of a metalclad, post-frame building. Transactions of American Society of Agricultural Engineers, v.35, n.3, p.977-985.
- **Gebremedhin, K.G.; Jorgensen, M.C. (1993).** Stiffness of post-frame building end walls. Transactions of American Society of Agricultural Engineers, v.36, n.3, p.905-913.
- **Groom, K.M.; Leichti, R. (1991).** Finite-element model of a nonlinear intercomponent connection in light-frame wood structures. In: International Timber Engineering Conference London 1991. Anais, p.4-346/4-353.
- Keener, J.D.; Manbeck, H.B. (1996). A simplified model for predicting the behavior of metal-clad, wood-framed diaphragms. Transactions of American Society of Agricultural Engineers, v.39, n.3, p.1113-1122.

- Niu, K.T.; Gebremedhin, K.G. (1996). Three-dimensional building stiffness model for post-frame buildings. In: International Wood Engineering Conference, 1996, New Orleans/USA. Anais, p. 2-45/2-52.
- Niu, K.T.; Gebremedhin, K.G. (1997). Evaluation of interaction of wood framing and metal cladding in roof diaphragms. Transactions of American Society of Agricultural Engineers, v.40, n.2, p.465-476.
- Silva, E.Y.T.M.; Calil, C.Jr; Filho, J.F.N. (1995). Resistência ao arrancamento de pregos. In: V EBRAMEM - Encontro Brasileiro em Madeiras e em Estruturas de Madeira, 1995, Belo Horizonte/Brasil. Anais, p. 367-375.
- Woeste, F.E.; bender, D.A.; Siegel, C.E. (1992). Post-frame building design considerations. Wood Design Focus, v.3, p.10-14.
- Wright, B.W.; Manbeck, H.B. (1992). Theoretical prediction models for diaphragm panel behavior A review. Transactions of American Society of Agricultural Engineers, v.35, n.1, p.287-295.
- Wright, B.W.; Manbeck, H.B. (1993). Finite element analysis of woodframed, metal-clad diaphragm panels. Transactions of American Society of Agricultural Engineers, v.36, n.3, p.895-904.

ANEXOS

Os arquivos dos anexos, disponíveis somente em .xls, poderão ser solicitados à biblioteca do Departamento de Engenharia de Estruturas pelo e-mail minatel@sc.usp.br