COMO CONSULTAR A DISSERTAÇÃO

ANÁLISE ESTRUTURAL DAS CHAPAS METÁLICAS DE SILOS E DE RESERVATÓRIOS CILÍNDRICOS

Luciano Jorge de Andrade Junior

Dissertação apresentada à Escola de Engenharia de São Carlos da Universidade de São Paulo, como parte dos requisitos para obtenção do título de Mestre em Engenharia de Estruturas

ORIENTADOR: Prof. Dr. José Jairo de Sáles

A dissertação está dividida em 6 capítulos e organizada de acordo com as diretrizes da Escola de Engenharia de São Carlos em 6 disquetes.

CAPÍTULO 1 – Ambiente onde se desenvolve a Dissertação

CAPÍTULO 2 - Comportamento Estrutural e Ações em Silos e em Reservatórios

CAPÍTULO 3 - Análise do problema de estabilidade em cascas cilíndricas

CAPÍTULO 4 - Análise Numérica de Cascas Cilíndricas

CAPÍTULO 5 - Caso Exemplo: Silo de Grãos

CAPÍTULO 6 - Conclusões

ANÁLISE ESTRUTURAL DAS CHAPAS METÁLICAS DE SILOS E DE RESERVATÓRIOS CILÍNDRICOS

Luciano Jorge de Andrade Junior

Dissertação apresentada à Escola de Engenharia de São Carlos da Universidade de São Paulo, como parte dos requisitos para obtenção do título de Mestre em Engenharia de Estruturas

ORIENTADOR: Prof. Dr. José Jairo de Sáles

São Carlos 1998

Ao meu pai, orientador natural.

Ao sempre disposto professor José Jairo de Sáles, minha estima pela orientação neste trabalho e minha admiração pela sua maneira clara e direta de se expressar.

Ao Conselho Nacional de Pesquisa - CNPq, pela bolsa de estudo concedida.

Aos amigos *Arthur Dias*, companheiro distinto em momentos de luta, *Luciano Barbosa*, um ponderador, e *Júlio Pituba*, um sujeito seguro, meu profundo respeito e um agradecimento largo pela sempre participação em minha vida na cidade de São Carlos.

Aos colegas, professores e funcionários do Departamento de Estruturas, sempre no dia-a-dia das aulas, nos momentos do café, meus sinceros agradecimentos pela prosa, pelo muito aprendido e pela colaboração em minhas atividades de mestrado.

SUMÁRIO

LISTA DE FIGURAS	i
LISTA DE TABELAS	iv
LISTA DE GRÁFICOS	v
LISTA DE SIGLAS	vi
LISTA DE SÍMBOLOS	vii
RESUMO	xii
ABSTRACT	xiii

CAPÍTULO 1 - Ambiente onde se desenvolve a Dissertação	1
1.1 - Introdução	1
1.2 - Visão geral do corpo da Dissertação	6

CAPÍTULO 2 : Comportamento Estrutural e Ações de Silos e de Reservatórios......7

2.1 - Introdução	7
2.2 - Esforços Solicitantes e Equações de Equilíbrio	9
2.3 - As Equações de Equilíbrio	12
2.4 - Teoria do Regime de Membrana	13
2.5 - Teoria do Regime de Flexão	14
2.6 - As ações	17
2.6.1 - A Ação do Vento	18
2.6.2 - As Ações devidas ao Material Sólido	21
2.6.3 - A Ação Hidrostática.	25

CAPÍTULO 3 - Análise do problema de estabilidade em cascas cilíndricas	26
3.1 - Introdução	
3.2 - Caracterização do fenômeno.	29
3.3 - Cálculo da tensão crítica de flambagem	
3.4 - Caso axissimétrico de flambagem	
3.5 - Caso assimétrico de flambagem	41
3.6 - A perda de estabilidade devida à compressão axial.	42
3.7 - A perda de estabilidade devida à compressão axial combinada com pressão i	nterna.44
3.8 - A perda de estabilidade devida à compressão axial combinada com flexão	45

Capítulo 4 : Análise Numérica de Cascas Cilíndricas	
4.1 - O Esquema Estático dos Reservatórios	Erro! Indicador não definido.
4.2 - Os Modelos Geométricos dos Reservatórios	Erro! Indicador não definido.
4.3 - As Características do Aço Empregado	Erro! Indicador não definido.
4.4 - Considerações acerca das Espessuras das Chapas	Erro! Indicador não definido.
4.5 - Os Casos em Análise	Erro! Indicador não definido.
4.6 - As Ações Consideradas	Erro! Indicador não definido.
4.7 - Combinação de Ações	Erro! Indicador não definido.
4.8 - As hipóteses do Programa Computacional	Erro! Indicador não definido.
4.9 - Esquema da Análise.	Erro! Indicador não definido.
4.9.1 - Avaliação dos esforços, tensões e deslocamento	os em cada modelo. Erro! Indicador não definido

CAPÍTULO 5 - Caso Exemplo: Silo de Grãos. Erro! Indicador não definido.

CAPÍTULO 6 - Conclusões Erro! Indicador não definido.

LISTA DE FIGURAS

Figura 1 \diamond - Tanque de álcool de 10.000 m ³	1
Figura 2∻ - Silo de açúcar	1
Figura 3 - Reservatório de água	2
Figura 4∻ - Estruturas cilíndricas em fase de montagem	3
Figura 5 - Afundamento do topo de silo sob a ação do vento	3
Figura 6 - Amassamento do costado do silo devidoà ação do vento.	3
Figura 7 - Ações axissimétricas: seção eficiente	3
Figura 8 - Tensões meridionais: podem provocar flambagem	4
Figura 9 - A resistência à flexão é menor que a resistência à compressão	5
Figura 10 - Partes da Estrutura: Tampa, corpo e fundo	7
Figura 11 - Esforços Solicitantes Generalizados.	9
Figura 12 - Esforços de Membrana	10
Figura 16 - Esforços de Flexão.	10
Figura 17 - Esforços Solicitantes Finais	12
Figura 15 - Fator B.H para reservatórios de Aço	16
Figura 16 - Fator B.H para reservatórios de Concreto	17
Figura 17 - Nomenclatura dos Silos	18
Figura 18- Esquema de Ações	18
Figura 19 - Pressão ao Longo da altura do silo	20
Figura 20 - Configuração dos coeficientes C _{pe} no perímetro do silo	20
Figura 21 - Distribuição dos Cpe em cobertura plana	20
Figura 22 - Distribuição dos C _{pe} em cobertura cônica	20
Figura 23 - Fluxo de funil	21
Figura 24 - Ações do material no silo	22
Figura 25 - Configuração de flambagem elástica de cilindro comprimido	26
Figura 26 - Modo Geral de Flambagem periódica na circunferência de um silindro longo	27

Figura 27 - Modo axissimétrico de flambagem local	27
Figura 28 -Disposição das chapas calandradas e regiões de tensões residuais	
Figura 29 -Caminhos fundamental e secundário de flambagem	30
Figura 30 -Estado fundamental de deformação	
Figura 31 - Caminho fundamental ψ_1	
Figura 32 - Caminho fundamental ψ_2	
Figura 33 - Medidas de Imperfeições	44
Figura 34 - Esquema Estático dos Reservatórios	48
Figura 35 - Modelos Geométricos de Reservatórios Cilíndricos	49
Figura 36 - Variaçãodas Chapas ao Longo da Altura.	50
Figura 37 - Elemento sob Força Tangencial	50
Figura 38 - Caso 1 - Sem Atrito: Parede de Espessura Constante	51
Figura 39 - Caso 2 - Sem Atrito: Parede de Espessura Variável	51
Figura 40 - Caso 3 - Com Atrito: Parede de Espessura Constante	52
Figura 41 - Caso 4 - Com Atrito: Parede de Espessura Variável	52
Figura 42 - Caso 5 - Reservatório Vazio com Parede de Espessura Constante.	52
Figura 43 - Caso 6 - Reservatório Vazio com Parede de Espessura Variável	53
Figura 44 - O elemento finito utilizado	59
Figura 45 - Soluções no Elemento Finito	60
Figura 46 - Malhas e rede de elementos finitos nos modelos.	62
Figura 47 - Espessuras do costado para o modelo 1 - Casos 1 e 2	65
Figura 48 - Espessuras do costado para o modelo 1 - Casos 3 e 4	69
Figura 49 - Tensões tangenciais σ_y - Modelo 1 - Caso 5	74
Figura 50 - Tensões tangenciais σ_y - Modelo 1 - Caso 6	74
Figura 51 - Tensões meridionais σ_z - Modelo 1 - Caso 5	75
Figura 52 - Tensões meridionais σ_z - Modelo 1 - Caso 6	75
Figura 53 - Espessuras do costado para o modelo 5 - Casos 1 e 2	77
Figura 54 - Espessuras do costado para o modelo 5 - Casos 3 e 4	81
Figura 55 - Tensões tangenciais σ_y - Modelo 5 - Caso 5	86
Figura 56 - Tensões tangenciais σ_y - Modelo 5 - Caso 6	86
Figura 57 - Tensões meridionais σ_z - Modelo 5 - Caso 5	87
Figura 58 - Tensões meridionais σ_z - Modelo 5 - Caso 6	87
Figura 59 - Faixas de Coeficientes de Pressão em cobertura cônica	91
Figura 60 - Valores das pressões na cobertura do silo exemplo	92

Figura 61 - Áreas das faixas de pressão	92
Figura 62 - Esforços transmitidos pela tampa ao costado do silo	93
Figura 63 - Esquema da cobertura cônica	96
Figura 64 - Equilíbrio da viga secundária	98
Figura 65 - Características do perfil I adotado	99
Figura 66 - Equilíbrio da viga principal	100
Figura 67 - Equilíbrio do anel central	
Figura 68 - Esquema do anel central	102
Figura 69 - Seção transversal do anel tracionado	104
Figura 70 - Detalhe da chapa para a viga principal	104
Figura 71 - Detalhe da ligação da viga de topo à viga secundária	104
Figura 72 -Esquema de aplicação das forças no costado	106
Figura 73 - Definição das áreas do silo-exemplo	107
Figura 74 - Mapa dos elementos finitos na casca do silo exemplo	
Figura 75 - Mapa dos nós dos elementos finitos na casca do silo exemplo	109
Figura 76 - Tensões meridionais σ_z - solicitação: vento - parte interna da casca	112
Figura 77 - Tensões meridionais σ_z - solicitação: vento - superfície média	112
Figura 78 - Tensões meridionais σ_z - solicitação: vento - face externa da casca	113
Figura 79 - Tensões meridionais σ_z - solicitação: grãos - face interna da casca	113
Figura 80 - Tensões meridionais σ_z - solicitação: grãos - superfície média	114
Figura 81 - Tensões meridionais σ_z - solicitação: grãos - face externa da casca	114
Figura 82 - Espessuras do costado do silo exemplo	115
Figura 83 - Regiões de concentração de tensões nos modelos 1 e 5	117

♦ As fotos correspondentes às figuras 1, 2 e 4 foram feitas pelo Renato Celine Badiale.

LISTA DE TABELAS

TABELA 01 - Valores dos C _{pe} no perímetro do silo	20
TABELA 02 - Relações altura/diâmetro e área lateral para um volume constante	49
TABELA 03 -Pressões devidas ao material - Modelo 1	55
TABELA 04 - Pressões do vento ao longo da altura e do perímetro - Modelo 1	55
TABELA 05 - Pressões do vento ao longo da altura e do perímetro - Modelo 5	56
TABELA 06 - Pressões devidas ao material armazenado - Modelo 5	56
TABELA 07 - Valores para as forças de atrito por unidade de comprimento da gerat	riz em
cada um dos modelos 1 e 5	58
TABELA 08 - Dimensões dos modelos para o volume de 800 m ³	62
TABELA 09 - Deslocamentos e tensões - Modelo 1- Caso 1 e Caso 2	66
TABELA 10 - Deslocamentos e tensões - Modelo 1-Caso 3 e Caso 4	70
TABELA 11 - Deslocamentos e tensões - Modelo 5 - Caso 1 e Caso 2	78
TABELA 12 - Deslocamentos e tensões - Modelo 5 - Caso 3 e Caso 4	82
TABELA 13 - Pressões do vento ao longo da altura e do perímetro	94
TABELA 14 - Variações de espessuras testadas para o silo exemplo	110
TABELA 15 - Verificação à flambagem para flexão e compressão	110
TABELA 16 - Verificação à flambagem para compressão e pressão interna	111

LISTA DE GRÁFICOS

Gráfico	1 - Deslocamentos Radiais - Modelo 1- Casos 1 e 2	67
Gráfico	2 - Tensões Tangenciais - Modelo 1 - Casos 1 e 2.	68
Gráfico	3 - Deslocamentos Radiais - Modelo 1 - Casos 3 e 4	71
Gráfico	4 - Tensões Tangenciais - Modelo 1 - Casos 3 e 4.	72
Gráfico	5 - Tensões Meridionais - Modelo 1 - Casos 3 e 4.	73
Gráfico	6 - Deslocamentos Radiais - Modelo 5- Casos 1 e 2	79
Gráfico	7 - Tensões Tangenciais - Modelo 5 - Casos 1 e 2.	80
Gráfico	8 - Deslocamentos Radiais - Modelo 5 - Casos 3 e 4.	
Gráfico	9 - Tensões Tangenciais - Modelo 5 - Casos 3 e 4.	84
Gráfico	10 - Tensões Meridionais - Modelo 5 - Casos 3 e 4.	85

LISTA DE SIGLAS

AISC	- American Institute of Steel Construction
ASCE	- American Society of Civil Engineers
DIN	- Deutsche Industrie Normen
ECCS	- European Convention for Constructional Steelwork
NBR	- Norma Brasileira Registrada

LISTA DE SÍMBOLOS

a	: expoente de variação de S ₂	
b	: parâmetro meteorológico para o cálculo de S2; valor do ângulo para os	
coeficientes de	pressão externa do vento, C _{pe}	
c	: índice que indica o silo preenchido, na condição estática.	
C ₁ , C ₂ ,		
C_3, C_4 : coefic	ientes da equação diferencial de deslocamentos no regime de flexão	
C _e	: fator de excentricidade da abertura de escoamento em relação à parede do	
silo		
C_{f}	: coeficiente de uniformização do cone de material no topo do silo	
C_g	: fator que depende do material ensilado	
C _h	: fator de altura do silo	
C _m	: fator de sobrepressão	
Cr	: fator de rigidez do silo	
Cs	: fator de consideração de impactos devidos ao desmoronamentos de cúpulas	
C _{pe}	: coeficiente de pressão externa do vento	
d	: índice que indica fator de equivalência entre a condição estática e a	
condição dinâm	ica do esvaziamento uniforme	
dA	: elemento infinitesimal de área	
$dz, d\theta$: infinit	ésimos nas direções z e θ , respectivamente	
dN_{θ}, dN_{z}	: infinitésimos dos esforças tangenciais de membrana nas direções θ e z,	
respectivamente		
$dM_{\theta}, dM_{z},$		
$dM_{\theta z}, dM_{z\theta}$: momentos infinitesimais para o cálculo dos esforços de flexão	
D	: diâmetro do silo	
e	: espessura da casca cilíndrica	
Е	: módulo de elasticidade	
E _N	: energia de deformação de membrana	

 E_N^z : termo de contribuição axial (direção da geratriz) da energia de deformação linear de membrana

 E_N^{θ} : termo de contribuição circunferencial (ou tangencial) da energia de deformação linear de membrana

 $E_N^{z\theta}$: termo de contribuição devida ao cisalhamento, da energia de deformação linear de membrana

Ent : energia potencial total Ept0, Ept1, E_{pt2} : termos da energia potencial total Fr : fator de rajada do vento f_v : tensão limite de escoamento F_x, F_{xy}, : esforços de membrana no elemento finito do ANSYS (Shell 63) F_v Η : altura do silo : número de semi-ondas formadas na casca cilíndrica, na direção i circunferencial, na configuração prevista de flambagem : número crítico mínimo de semi-ondas na direção circunferencial 1_{CM} i : número de semi-ondas formadas na direção da geratriz, na configuração prevista de flambagem : distância entre o eixo vertical da abertura de escoamento e a parede do silo k Kd : fator dinâmico considerado quando da descarga do silo : comprimento relacionado ao tamanho potencial das ondas de flambagem; $l_{\rm r}$ pode ser medido tanto na direção da geratriz quanto na direção circunferencial l_z : comprimento da semi-onda na direção da geratriz : comprimento da semi-onda na circunferência lθ $M_x, M_y,$ M_{xv} : momentos por unidade de comprimento, no elemento finito do ANSYS (Shell 63) p (P) : pressão horizontal atuando na parede do silo; o índice que estiver subscrito a P indica a condição de solicitação (estático - Janssen, dinâmico - esvaziamento) Pcr : valor de solicitação crítica : pressão vertical atuando na direção do eixo do silo; o índice que estiver subscrito a q (Q) q ou Q indica a condição de solicitação (estático - Janssen, dinâmico - esvaziamento) : pressão vertical total (do material ensilado) resultante no fundo do silo q_{f}

R : raio hidráulico da estrutura cilíndrica

S : área da seção transversal de massa ensilada

S1 : fator topográfico, usado na avaliação das variações do relevo do terreno

S₂ : fator para a consideração do "efeito combinado da rugosidade do terreno , da variação da velocidade do vento com a altura acima do terreno e das dimensões da edificação." (NBR 6123 (1987))

S₃ : fator estatístico usado para a avaliação do grau de segurança e da vida útil da estrutura

 \overline{u} : medida de imperfeição a partir da imperfeição até a direção de l_r

U : perímetro da seção S

u, v, w : deslocamentos correspondentes às coordenadas x, y, z

- V : volume de um silo cilíndrico
- V_k : velocidade característica do vento

 V_{cs} : resultante da força de atrito, em unidade de força por unidade de comprimento

v : f	orça de a	trito na pa	arede por un	idade de área
-------	-----------	-------------	--------------	---------------

x, y, z : coordenadas cartesianas

w₁ : deslocamento fundamental na direção da geratriz do silo

w_h : solução homogênea da equação diferencial dos deslocamentos w

w_p : solução particular da equação diferencial dos deslocamentos w

r, θ , z : coordenadas cilíndricas

z : coordenada na direção da geratriz do cilindro; também indica altura medida a partir da superfície do terreno

 α_z : constante de ponderação de N_{zf} (vale 1, na condição de solicitação predominante na direção da geratriz

 α_{θ} : constante de ponderação de $N_{\theta f}$ (vale 1 , na condição de pressão externa dominante)

β : coeficiente de amortecimento dos esforços na casca cilíndrica; ou, razão entre a tensão meridional de membrana e a tensão efetiva de membrana, até o início de flambagem

 ΔP : componente estática de pressão do vento

 ϵ : deformação na direção tangencial, θ

 ϵ_{zf} : deformação uniforme fundamental, na direção da geratriz, associada a N_{zf}

$\epsilon_{\theta f}$: deformação uniforme fundamental, na direção circunferencial, associada a
N_{zf}	
φ	: ângulo de atrito entre as partículas do material ensilado (ângulo de atrito
interno)	
φ'	: ângulo de atrito entre o material ensilado e o costado do silo
$\phi(z)$: função exponencial do comportamento da pressão lateral do material
ensilado	
γ	: densidade do material armazenado
$\lambda = p/q$:	razão entre as pressões horizontal e vertical
μ	: coeficiente de atrito entre as partículas do material ensilado(coeficiente de
atrito inte	rno.)
μ'	: coeficiente de atrito entre o material ensilado e as paredes da célula
ν	: coeficiente de Poisson
ψ_1	: caminho fundamental de deslocamentos v e w de flambagem
ψ_2	: caminho secundário de deslocamentos v e w de flambagem
$\sigma_{\theta}, \sigma_{z}$:	tensões nas direções tangencial e meridional, respectivamente
σ_{cr}	: tensão crítica de flambagem na direção da geratriz do silo
$\sigma_{ef,u}$:	tensão última, de resistência, da casca cilíndrica
σ_0	: tensão uniforme de compressão devida à força axial (direção da geratriz) de
projeto	
σ_{b}	: tensão máxima de compressão devida ao momento de projeto
$\tau_{\theta z},\tau_{z\theta,}$	
$\tau_{\theta y},\tau_{y\theta,}$	
τ_{zy},τ_{yz}	: tensões de cisalhamento.
N_{zf}	: esforço solicitante axial correspondente a um estado fundamental de
solicitaçã	o uniforme de membrana
$N_{\theta f}$: esforço solicitante tangencial correspondente a um estado fundamental de
solicitaçã	o uniforme de membrana
N_z	: esforço interno meridional por unidade de comprimento
N_{θ}	: esforço interno tangencial por unidade de comprimento
$N_{\theta z},\!N_{z\theta}$:	esforços de membrana
$M_{\boldsymbol{\theta}}$: esforço de flexão na direção tangencial
M_{z}	: esforço de flexão na direção meridional
$P_{y,}P_{z}$:	ações externas que atuam nas direções y e z do elemento de casca

 $Q_{\theta},\,Q_z\;$: esforço interno cortante

RESUMO

ANDRADE Jr., L. J. de (1998). *Análise Estrutural das Chapas Metálicas de Silos e de Reservatórios Cilíndricos*. São Carlos. Dissertação (Mestrado) - Escola de Engenharia de São Carlos, Universidade de São Paulo.

A aplicação de conceitos de estabilidade surge espontaneamente em estruturas metálicas e, mais destacadamente, nas estruturas de silos e de reservatórios. A parede cilíndrica que compõe o corpo desse tipo de estrutura é formada de chapas metálicas delgadas, característica que surge da grande eficiência da forma cilíndrica. Neste trabalho, procura-se dispor ao engenheiro conceitos claros e distintos do comportamento e dos fenômenos de perda de estabilidade do equilíbrio de reservatórios e de silos metálicos. São expostas as teorias para a análise de silos para materiais granulares e pulverulentos nãocoesivos e reservatórios para líquidos que não produzem gases. Mostra-se que a ação do material ensilado provoca esforços de compressão que possibilitam a ocorrência de fenômenos de perda da estabilidade da estrutura, conhecidos como flambagem no jargão técnico. Também a ação do vento pode ocasionar perda de estabilidade na estrutura vazia. Apresenta-se um resumo das teorias envolvidas, um ensaio numérico de modelos cilíndricos, um exemplo de silo de grãos, e uma compilação das normas e artigos mais atuais e abrangentes do problema de estabilidade em estruturas cilíndricas. Por fim, são estabelecidas as configurações estruturais que apresentam maiores riscos para a flambagem, e fornecidas as relações de diâmetro/espessura e de diâmetro/altura em que é possível se evitar os problemas advindos da perda da estabilidade do equilíbrio.

Palavras-chave: silos metálicos; flambagem; estruturas cilíndricas.

ABSTRACT

ANDRADE Jr., L. J. de (1998). *Structural Analysis of the Steel Plates on Silos and Tanks*. São Carlos. Dissertação (Mestrado) - Escola de Engenharia de São Carlos, Universidade de São Paulo.

The application of the stability concepts appears spontaneously on steel structures and, more distinctly, on silos and tanks structures. The cylindrical wall that makes the body of this kind of structure is constituted of thin steel plates, characteristic that comes out of the great efficiency of the cylindrical shape. In this work, it is intended for the engineer clear and distinct notions about the behaviour and the loss of stability equilibrium phenomena of steel silos and tanks. The theories for the analysis of silos for non-cohesive, pulverulent and grain materials, and of tanks to liquids that produces no gases, are exposed. It is shown that the action of the bulk stored material causes compression that makes possible the occurrence of the phenomena of loss of the stability of the structure, commonly known in the technician jargon as buckling. Also the wind load can lead to the loss of stability of the empty structure. A summary is shown for of the involved theories, a numerical experiment with cylindrical models, an example of grain silo, and a compilation of the recommendations, norms and articles on the problem of the cylindrical structures stability. At least, it is established the structural configurations that poses major risks to buckling, and it is supplied relations of diametre/thickness and of diametre/height with whom it is possible to avoid the problems that come from the loss of the stability of equilibrium.

Keywords: steel silos; buckling; cylindrical shell structures.

Capítulo 1 - Ambiente onde se desenvolve a Dissertação.

1.1 - Introdução

Os ambientes onde estão situados os silos e os reservatórios podem variar desde um campo agrícola, passando a instalações industriais, estações de distribuição de água, até refinarias e usinas de álcool. As estruturas chamadas silos armazenam grãos, farinhas e material sólido a granel, e os reservatórios armazenam água, álcool e líquidos em geral.

Figura 1 - Tanque de álcool de 10.000 m³

Figura 2 - Silo de açúcar.

A figura 1 ilustra um tanque metálico de álcool, típico de regiões de cana-de-açúcar e instalações industriais de usinas; este, em particular, localizado em Assis/SP.

A figura 2 representa um silo metálico de açúcar, situado em Guaíra/SP.

A figura 3 mostra um reservatório metálico de água, de relação altura/diâmetro aproximadamente igual a 7, situado no Campus da Escola de Engenharia de São Carlos:

Figura 3 - Reservatório de água.

O objetivo desta dissertação é o estudo do comportamento estrutural de silos e de reservatórios quando submetidos às ações hidrostática, do vento e de material granular ou pulverulento, e da instabilidade do equilíbrio da casca cilíndrica quando submetida a esforços de compressão ao longo da geratriz.

Com este objetivo, pretende-se fornecer ao projetista o conhecimento necessário à identificação dos esforços solicitantes de membrana e de flexão, e das características do fenômeno de instabilidade do equilíbrio de cascas cilíndricas, comumente chamado flambagem. Esse conhecimento deve proporcionar condições para que sejam previstas as situações onde podem ocorrer a flambagem da estrutura.

Os esforços solicitantes devidos à ação do vento são analisados para as estruturas de silos e de reservatórios quando estão vazias, uma vez que, quando cheias, ou parcialmente cheias, a quantidade de material contida nelas é suficiente para conferir à estrutura maior estabilidade à ação do vento. Já os esforços de atrito na parede da estrutura, devidos ao material ensilado, são analisados quando o material está em repouso ou durante o esvaziamento do silo.

Uma fase à qual a estrutura cilíndrica fica bastante suscetível à ação do vento é quando da montagem do silo e ainda não está fixada a tampa (figuras 4 e 5).

A figura 4 ilustra o caso de estruturas cilíndricas em fase de montagem. São dornas de fermentação do caldo da cana-de-açúcar, com dimensões de 12 m de diâmetro e 12 m de altura ($\sim 1.350 \text{ m}^3$):

Figura 4 - Estruturas cilíndricas em fase de montagem.

A figura 5 é de um silo metálico, sem tampa, com 27,5 m de altura e 18,5 m de diâmetro, situado na Austrália [Ansourian (1992)], que sofreu afundamento do topo devido à ação do vento; a figura 6 mostra silos com amassamento do costado (Ansourian (1992)):

Figura 5 - Afundamento do topo de silo sob a
ação do vento.Figura 6 - Amassamento do costado do silo
devido à ação do vento.

A preocupação do estudo da perda de estabilidade do equilíbrio de silos e de reservatórios decorre da grande relação diâmetro/espessura da estrutura.

Esta estrutura possui paredes delgadas porque a forma cilíndrica é de grande eficiência para suportar as ações devidas ao material armazenado. Essas ações são axissimétricas e, para este caso, as tensões circunferenciais de membrana são bem suportadas pela parede de aço, diferentemente das tensões de membrana ao longo da geratriz que, provocadas pelo atrito do material ensilado com a parede, são tensões de compressão (figura 8) e estão associadas à possível flambagem da parede.

Figura 7 - Ações axissimétricas: seção eficiente.

No entanto, as ações do vento não são axissimétricas e a pequena espessura da parede da estrutura cilíndrica possibilita o afundamento do topo e o amassamento do costado dos silos e dos reservatórios quando se encontram vazios (vide figuras 5 e 6). Além disso, a

ação do vento ao longo da geratriz da estrutura também provoca tensões de compressão de membrana, concorrendo para o fenômeno de flambagem (figura 8).

Figura 8 - Tensões meridionais: podem provocar flambagem.

A flambagem de uma casca cilíndrica pode ser comparada, inicialmente, à flambagem de uma haste delgada; uma vez que as ações de compressão ao longo da geratriz atinjam valores críticos de flambagem na estrutura cilíndrica, podem ocorrer grandes deformações permanentes na casca. Neste estudo de silos e de reservatórios metálicos, em que as paredes cilíndricas podem ser muito esbeltas, é grande a possibilidade de flambagem. Além disto, a estrutura, quando vazia, também está muito suscetível à flexão devida à ação do vento.

A pequena espessura das chapas da parede do silo tem uma importante conseqüência (Bushnell (1984)), uma vez que a resistência da casca cilíndrica à ação de compressão ao longo da geratriz é maior que a resistência à flexão (Figura 9). Por isso, uma casca delgada pode suportar uma solicitação de compressão relativamente grande sem se deformar muito, ou seja, a casca pode absorver uma grande quantidade de energia de deformação de membrana à compressão. Contudo, se houver uma maneira dessa energia de membrana ser convertida em energia de flexão, a casca poderá se deformar muito, podendo perder a estabilidade do equilíbrio, ou seja, flambar.

Figura 9 - A resistência à flexão é menor que a resistência à compressão.

1.2 - Visão geral do corpo da Dissertação.

A dissertação compõe-se de 6 capítulos, que, longe de ser um tratado matemático e, portanto, não se propõe a lançar modelos ou novos equacionamentos, visa fornecer informações que permitam ao engenheiro de estruturas a escolha de parâmetros adequados para se evitar o colapso por instabilidade do equilíbrio.

No *capítulo 2*, é tratado o comportamento estrutural de silos e de reservatórios, a conformação da estrutura e o comportamento de acordo com o tipo de material armazenado. É apresentado ainda o equacionamento dos regimes de membrana e de flexão e, por fim, a maneira como são consideradas as ações devidas aos materiais armazenados e ao vento.

O *capítulo 3* está relacionado à análise do problema de estabilidade de cascas cilíndricas. Nele está caracterizado o fenômeno, sendo feitas as distinções para 1) perda de estabilidade devida à compressão axial, 2) perda de estabilidade devida à combinação de compressão axial e pressão interna uniforme (devida ao material granular ou pulverulento), 3) perda de estabilidade devida à combinação de compressão axial e flexão (devida à ação do vento na estrutura vazia).

No *capítulo 4* é feita a análise numérica do comportamento estrutural de cascas cilíndricas, para dois modelos, com relações altura/diâmetro de 1:1 e 1:5, sujeitos a ações hidrostática, de material granular ou pulverulento, e do vento, combinadas de acordo com a NBR8681(1984), considerando-se a possibilidade de a estrutura estar vazia e a variação das espessuras das chapas metálicas ao longo da geratriz. Antes da análise numérica em si, é mostrado o tipo elemento finito aplicado e, de modo sucinto, as hipóteses básicas adotadas no programa ANSYS©(1995).

O *capítulo 5* apresenta um exemplo de silo metálico cilíndrico para milho, de 1.650 m^3 onde se aplica a análise numérica e os conceitos expostos nos capítulos 3 e 4.

Finalmente, são expostas as conclusões do autor e apontadas as pesquisas que podem ser desenvolvidas na área de silos e reservatórios metálicos. Também estão anexadas as *Referências Bibliográficas* que despertaram o pensamento e impulsionaram o autor à escrita da dissertação, bem como algumas tabelas, gráficos e textos que, não sendo indispensáveis à dissertação, servem para que se possa reproduzir o exemplo do capítulo 5 e se evitem consultas desnecessárias às referências bibliográficas.

Capítulo 1 - Ambiente onde se desenvolve	1	
1.1 - Introdução		1
1.2 - Visão geral do corpo da Dissertação.		4

Capítulo 2 : Comportamento Estrutural e Ações em Silos e em Reservatórios.

2.1 - Introdução

Os silos e os reservatórios são sugeridos, intuitivamente, como estruturas fechadas que servem para armazenar líquidos e materiais agrícolas ou industriais. Neste estudo, o silo pode ser entendido como uma estrutura para armazenar grãos (material granular) ou farinhas (material pulverulento), e o reservatório com a função de armazenar líquidos (água, sucos, óleos vegetais, etc.).

O tipo de silo e de reservatório a ser estudado está caracterizado pela forma cilíndrica, apoiado na superfície do terreno, com fundo plano, tampa plana ou cônica, composto por chapas metálicas calandradas e por chapas planas soldadas entre si. A forma e a nomenclatura básica estão descritas na figura 10 :

Figura 10 - Partes da Estrutura: Tampa, corpo e fundo.

a) O corpo e o fundo são constituídos por chapas metálicas retangulares, calandradas ou planas, soldadas entre si;

b) A união do corpo com o fundo é feita através de solda ;

c) Considera-se o corpo cilíndrico apoiado em fundação rígida;

d) A tampa tem também a função de enrijecer a borda superior do corpo cilíndrico.

A descrição do comportamento estrutural de silos e de reservatórios está fundamentada nas teorias de membrana e flexional das cascas de revolução, com o objetivo de mostrar os deslocamentos e os esforços decorrentes de ações com simetria radial, e cujas hipóteses são :

1 - A estrutura é composta por material homogêneo, isótropo e com relação linear de tensão/deformação;

2 - A espessura e da parede é pequena em relação às dimensões da estrutura;

3 - As retas normais à superfície média permanecem normais à superfície média após a deformação da estrutura;

4 - Os deslocamentos são pequenos em relação à espessura e.

Estas hipóteses são conhecidas como as de Kirchhoff-Love e implicam na validade do princípio da superposição de efeitos, já que a teoria é linear e de 1ª ordem.

2.2 - Esforços Solicitantes e Equações de Equilíbrio.

De maneira genérica, um elemento de casca de área dS = $r.d\theta.dy$ está submetido a tensões normais σ e tangenciais τ definidas em direção e sentido na figura 11 :

Figura 11 - Esforços Solicitantes Generalizados

Essas tensões resultam em forças e momentos, chamados de esforços solicitantes generalizados, que atuam por unidade de comprimento da face considerada do elemento.

O cálculo desses esforços generalizados é bastante complexo, pois conduz à resolução de um sistema de equações diferenciais. Contudo, pode-se simplificar o cálculo quando se admite uma distinção dos esforços solicitantes em esforços solicitantes de membrana e de flexão.

Inicialmente, serão apresentados nas figuras 12 e 13 esses esforços de membrana e de flexão e, posteriormente, as condições que caracterizam os regimes de membrana e o regime de flexão:

Figura 13 - Esforços de Flexão

As relações que regem os esforços solicitantes são definidas em função da espessura e das tensões e estão listadas nas equações 1 a 10 :

$$N_{\theta} = \int_{-e/2}^{e/2} \sigma_{\theta} dy \qquad eq. 1 \qquad M_{z} = \int_{-e/2}^{e/2} \theta_{z} \left(1 - \frac{y}{r}\right) y dy \qquad eq. 2$$

$$N_{z} = \int_{-e/2}^{e/2} \sigma_{z} \left(1 - \frac{y}{r}\right) dy \qquad eq. 3 \qquad M_{\theta z} = \int_{-e/2}^{e/2} \tau_{\theta z} y dy \qquad eq. 4$$

$$N_{\theta z} = \int_{-e/2}^{e/2} \tau_{\theta z} dy \qquad eq. 5 \qquad M_{z\theta} = \int_{-e/2}^{e/2} \tau_{z\theta} y \left(1 - \frac{y}{r}\right) dy \qquad eq. 6$$

$$N_{z\theta} = \int_{-e/2}^{e/2} \tau_{z\theta} \left(1 - \frac{y}{r}\right) dy \qquad eq. 7 \qquad Q_{\theta} = \int_{-e/2}^{e/2} \tau_{\theta y} dy \qquad eq. 8$$

$$M_{\theta} = \int_{-e/2}^{e/2} \sigma_{\theta} y dy \qquad \text{eq. 9} \qquad Q_{z} = \int_{-e/2}^{e/2} \tau_{zy} \left(1 - \frac{y}{r}\right) dy \qquad \text{eq. 10}$$

A forma cilíndrica dos corpos dos silos e dos reservatórios e a simetria axial das ações permitem quatro simplificações:

$$\begin{split} 1. \ \tau_{\theta y} &\equiv 0 \Longrightarrow Q_{\theta} = 0 \\ 2. \ \tau_{\theta z} &\equiv 0 \Longrightarrow N_{\theta z} \equiv M_{\theta z} \equiv 0 \\ 3. \ \tau_{z \theta} &\equiv 0 \Longrightarrow N_{z \theta} \equiv M_{z \theta} \equiv 0 \\ 4. \ M_{\theta} &\equiv 0 \end{split}$$

Essas simplificações diminuem o número de esforços solicitantes de dez para quatro esforços solicitantes: N_{θ} , N_z , M_z e Q_z , ilustrados na figura 14:

Figura 14 - Esforços solicitantes finais

2.3 - As Equações de Equilíbrio

As equações de equilíbrio que resultam das simplificações estão definidas nas direções dos eixos y e z e em torno do eixo x :

a) Segundo a direção z:

$$-N_{z}rd\theta + p_{z}dzrd\theta + \left(N_{z} + \frac{\partial N_{z}}{\partial z}dz\right)rd\theta = 0$$

$$\frac{\partial N_{z}}{\partial z}dz = 0$$

$$\frac{\partial N_z}{\partial z} + p_z = 0 \qquad \text{eq. 11}$$

b) Segundo a direção y:

$$N_{\theta}dz\frac{1}{2}d\theta + \left[\left(N_{\theta} + dN_{\theta}\right)dz\right]\frac{1}{2}d\theta + p_{y}dzdS + \left(Q_{z} + dQ_{z}\right)rd\theta - Q_{z}rd_{\theta} = 0$$

$$N_{\theta} + r\frac{\partial Q_{z}}{\partial z} + p_{y}r = 0$$
eq. 12

c) Em torno do eixo x :

$$-M_{z}rd\theta - \left(M_{z} + \frac{\partial M_{z}}{\partial z}dz\right)rd\theta + Q_{z}rd\theta dz = 0$$

$$\frac{\partial M_{z}}{\partial z} - Q_{z} = 0$$
eq. 13

2.4 - Teoria do Regime de Membrana

Esta teoria admite que o elemento possui pequena rigidez à flexão e à torção, ou seja, os momentos fletores e os momentos de torção não são significativos em presença dos esforços de compressão.

Desta forma, as cascas apresentam pequena rigidez à flexão e à torção, que despertam um estado de tensões secundárias de pouca importância.

As condições em que se pode aceitar o regime de membrana são [Gravina (1957)]:

- 1. A variação das curvaturas normais da superfície média deverá ser contínua;
- 2. A variação da espessura da casca deverá ser contínua;
- 3. A distribuição das forças externas deverá ser contínua;
- As forças externas aplicadas às bordas livres deverão atuar nos correspondentes planos tangentes à superfície média;
- 5. As reações dos vínculos deverão estar contidas nos planos tangentes à superfície média.

Essas condições, quando não atendidas, podem provocar uma perturbação, em geral local, e cuja análise deve levar em consideração a rigidez à flexão da casca.

O regime de membrana ocorre quando a casca está sujeita a esforços que atuam ao longo da superfície média, ou seja, apenas aos esforços N_{θ} e N_z .

Das equações de equilíbrio, uma vez que a equação 11 é independente das equações 12 e 13, pode-se determinar N_{θ} .

Pela lei de Hooke, aplicada a σ_{θ} , ou seja, com $\sigma_{\theta} = E\epsilon_{\theta}$, e considerando que a distribuição de σ_{θ} é constante na espessura, isto é, que $N_{\theta} = \sigma_{\theta}$.e , resulta:

$$\varepsilon_{\theta} = \frac{N_{\theta}}{eE}$$
 eq. 14

Sendo o deslocamento radial w função de z :

$$w(z) = -\varepsilon_{\theta}r$$
 eq. 15

Substituindo a equação 3.14 na equação 3.15 :

$$w(z) = -\frac{N_{\theta}}{eE}r$$
 eq. 16

Ou, observando a equação de equilíbrio em N_{θ} :

$$w(z) = p_y \frac{r^2}{Ee}$$
 eq. 17

2.5 - Teoria do Regime de Flexão

O regime de flexão ocorre quando há qualquer alteração nas condições do regime de membrana. Essa alteração provoca uma perturbação, em geral local, e, para avaliá-la, devese considerar a rigidez da casca.

Nessa avaliação, são combinadas as equações de equilíbrio e as relações entre esforços e deslocamentos:

$$N_{\theta} = -\frac{Ee}{r}w \qquad eq. 18$$

$$M_z = -D\frac{d^2w}{dz^2}$$
 eq. 19

$$Q_z = -D\frac{d^3w}{dz^3} \qquad eq. 20$$

$$M_{\theta} = v M_z$$
 eq. 21

O resultado dessa combinação, considerando a parede de espessura constante, é uma equação diferencial em função do deslocamento:

$$\frac{d^4w}{dz^4} + 4\beta^4w = \frac{p_y}{D}$$
 eq. 22

com D =
$$\frac{\text{Ee}^3}{12(1-v^2)}$$
; $\beta^4 = \frac{3(1-v^2)}{r^2e^2} \Rightarrow \beta \approx \frac{1,3}{\sqrt{re}}$ eq.23

A solução geral da equação diferencial **22** é composta pelas solução particular w_p e homogênea w_h :

$$w(z) = w_h(z) + w_p(z)$$
 eq. 23

A solução homogênea está definida por:

$$w_h(z) = \exp(\beta z) (C_1 \cos\beta z + C_2 \sin\beta z) + \exp(\beta z) (C_3 \cos\beta z + C_4 \sin\beta z) \qquad \text{eq. 24}$$

E a solução particular para pressão hidrostática:

$$w_p(z) = p_y \frac{r^2}{Ee}$$
 eq. 25

Desta maneira, os deslocamentos da parede do reservatório podem ser calculadas com:

$$w(z) = p_y \frac{r^2}{Ee} + \exp(\beta z) (C_1 \cos\beta z + C_2 \sin\beta z) + \exp(-\beta z) (C_3 \cos\beta z + C_4 \sin\beta z) \qquad \text{eq. 26}$$

As condições de vinculação do reservatório são as que definem os valores das constantes C_1, C_2, C_3, C_4 .

Vale ressaltar que, no presente estudo, esse cálculo de w(y) é simplificado porque os reservatórios são relativamente longos H/D > 1 e suas paredes são muito delgadas (r/e > 200). Isto significa afirmar que as perturbações do fundo do reservatório não alcançam o topo e C_1 e C_2 podem ser admitidas nulas. Analogamente, as perturbações do topo não alcançam o fundo do reservatório.

Observe-se que, estando as funções trigonométricas multiplicadas por termos exponenciais, existe uma tendência de redução no valor do termo correspondente a $exp(-\beta z)$ à medida em que o valor de z aumenta e, quanto maior o valor de β , mais rápida é essa redução. Deste fato, β é uma característica da casca cilíndrica chamada de *coeficiente de amortecimento*.

Uma maneira prática de verificar se os efeitos de uma borda não afetam a outra borda do silo ou reservatório é verificar se o valor de $\beta H \ge 5$ [BILLINGTON(1965)]. As figuras 15 e 16 revelam, para diversas relações raio/espessura, como varia o valor de βH . Para a figura 15 foi considerado o reservatório de aço, paredes delgadas, 265 < r/e < 1000, r = 4,0 m, 4 < e < 15 mm, H = 4,0 m e H = 8,0 m, e para a figura 16 foi considerado o reservatório de concreto, 13 < r/e < 40, r= 4,0 m, 100 < e < 320 mm, H= 4,0 m e H = 8,0 m:

Figura 15 - Fator β.Η para reservatórios de aço

Figura 16 - Fator β.H para reservatórios de concreto

Observando-se os gráficos nas figuras 15 e 16, percebe-se que, para as relações altura/diâmetro 0,5 e 1,0 , é coerente serem considerados nulos os coeficientes C_1 e C_2 , principalmente nos reservatórios em aço. Para relações H/D > 1,0 há uma distância maior para o amortecimento e, nas estruturas de silos em aço, os efeitos de uma borda não afetam a outra borda (as paredes são muito delgadas).

2.6 - As ações

As ações consideradas são as do peso próprio da estrutura, do material armazenado, e a do vento. Não são consideradas ações provenientes da fermentação do material ensilado, ou da liberação de gases (caso dos reservatórios de petróleo), bem como de equipamentos especiais. Isto porque se admite que esses tipos de ações não provocam esforços significativos na análise da estabilidade da estrutura, exceto em condições em que o equipamento aumente em muito o valor da tensão meridional de membrana.

As ações e as estruturas dos reservatórios serão analisadas de acordo com a simbologia e os desenhos indicados na figura 17 - Nomenclatura dos Silos, que se baseia na terminologia das NBR 11162(1990) e NBR 11165(1990), e na figura 18 - Esquema de ações.

Figura 17 - Nomenclatura dos Silos

Figura 18 - Esquema de ações

2.6.1 - A Ação do Vento

A ação variável do vento está calculada segundo a NBR6123 - *Forças devidas ao Vento em Edificações (1987)* e, como regra geral, assume-se que o vento pode atuar em qualquer direção horizontal. Como a estrutura do reservatório é axissimétrica em relação a um eixo perpendicular à direção do vento, considera-se que o vento pode incidir perpendicularmente a qualquer geratriz do reservatório.

A componente estática de pressão do vento, ΔP , que atua perpendicularmente sobre um elemento de área, é dada por:

$$\Delta \mathbf{P} = \mathbf{C}_{pe} \cdot \mathbf{q} \cdot \mathbf{dA} \qquad \text{eq. 27}$$

• Sendo C_{pe} o coeficiente de pressão externa.

Os coeficientes de pressão externa C_{pe} são expressos para o corpo da estrutura, figura 20 (coeficientes extraídos da NBR6123(1987)), e para a cobertura cônica, figura 22 (BRIASSOULIS (1986)), e a cobertura plana, figura 21 (Esslinger et al. (1971)).
E q é a pressão do vento em um ponto onde ocorre a estagnação do ar, obtida da expressão q = $0.613.V_k^2$, $V_k = S_1.S_2.S_3.V_0$, V_k em m/s e q em N/m².

A velocidade V₀ é chamada velocidade básica, correspondente a uma rajada de 3 segundos, excedida em média uma vez em 50 anos, medida a 10 m acima do terreno, em local plano e aberto; as isopletas de velocidades básicas, em m/s, encontram-se na figura A (anexo 1 deste trabalho) da NBR 6123 (1987). Para os exemplos, adotou-se $V_0 = 40$ m/s.

O fator topográfico S₁ é utilizado na avaliação das variações do relevo do terreno, e adotado igual a 1,0 para os modelos numéricos e no exemplo do capítulo 5.

O fator S₂ serve para a consideração do "efeito combinado da rugosidade do terreno, da variação da velocidade do vento com a altura acima do terreno e das dimensões da edificação"(NBR6123 (1987)).

O fator S₂ é calculado para uma altura z, medida acima da superfície nivelada do terreno, com a expressão:

$$S_2 = b.F_{r}(z/10)^p$$
 eq. 28

sendo b = parâmetro meteorológico, p = expoente de variação de z/10, F_r = fator de rajada do vento.

E o fator estatístico S₃, que avalia o grau de segurança e a vida útil da estrutura, consideradas as instalações de silos e de reservatórios com baixo fator de ocupação humana, foi tomado igual a 0,95.

Figura 19 - Pressão ao longo da altura do silo.

Figura 21 - Distribuição dos C_{pe} em Cobertura Plana

Figura 22 - Distribuição dos $C_{pe}\,em$ cobertura cônica.

TABELA 1 - Valores dos C _{pe} no				
perímetro do Silo.				
b	H/D ≤ 2,5	A/D = 10		
0	+1,0	+1,0		
10	+0,9	+0,9		
20	+0,7	+0,7		
30	+0,35	+0,35		
40	0	0		
50	-0,5	-0,7		
60	-1,05	-1,2		
70	-1,25	-1,4		
80	-1,3	-1,45		
90	-1,2	-1,4		
100	-0,85	-1,1		
120	-0,4	-0,6		
140	-0,25	-0,35		
160	-0,25	-0,35		
180	-0,25	-0,35		

2.6.2 - As Ações devidas ao Material Sólido

As ações devidas aos materiais granulares ou pulverulentos serão avaliadas de acordo com a norma alemã de ações em silos DIN1055-6 (1986). O seu campo de aplicação, de modo geral, está definido para silos com células verticais, prismáticas ou cilíndricas, com relação altura/diâmetro pelo menos igual a 0,8, com tremonha ou fundo plano, material granular ou pulverulento, sem coesão.

A altura máxima do silo, que pode ser analisada pela norma, é limitada pela relação entre a pressão vertical total do material ensilado resultante no fundo do silo, q_f , e o peso específico do material ensilado γ :

$$q_f / \gamma \le 25 m$$
 eq. 29

O tipo de silo a ser analisado é do tipo cilíndrico, de superfície, vertical e de fundo plano, que geralmente provoca um tipo de escoamento (do material ensilado) chamado *fluxo de funil*, onde parte do material permanece em repouso:

Figura 23 - Fluxo de funil

A Figura 23 ilustra um fluxo de funil com conduto estável. Do contrário, quando ocorre um fluxo de saída mais um fluxo de entrada, pode haver formação de um conduto instável e, conseqüentemente, sobrepressões dinâmicas elevadas.

Na formulação para o cálculo das pressões, da força de atrito na parede e na descrição dos parâmetros relacionados ao material ensilado, a nomenclatura básica é:

- γ : peso específico do material ensilado
- ϕ : ângulo de atrito entre as partículas do material ensilado (ângulo de atrito interno)
- ϕ ' : ângulo de atrito entre o material ensilado e as paredes da célula

 μ =tg ϕ : coeficiente de atrito entre as partículas do material ensilado (coef. de atrito interno)

 $\mu'=tg\phi'$: coeficiente de atrito entre o material ensilado e as paredes da célula

- q : pressão vertical atuando na direção do eixo do silo
- p : pressão horizontal atuando na parede do silo
- v : força de atrito na parede por unidade de área
- S : área da seção transversal da massa ensilada
- U : perímetro da seção S
- R=S/U : raio hidráulico da célula
- D : diâmetro da seção transversal
- H : altura total da célula
- e : espessura da parede
- K_d : fator dinâmico considerado quando da descarga do silo
- $\lambda = p/q$: razão entre as pressões horizontal e vertical

Figura 24 - Ações do material no silo

Inicialmente são expostas as expressões da norma alemã DIN1055-6 (1986) para o cálculo das pressões estáticas, lateral e vertical, e da força de atrito na parede por unidade de área e, posteriormente, os efeitos das sobrepressões na descarga dos silos.

Quando do *enchimento*, até a situação de repouso do material ensilado, as pressões lateral e vertical e a força de atrito por unidade de área podem ser calculadas com:

$$V_c = \frac{\gamma . S}{U} \phi(z) \qquad \text{eq. 30}$$

lateral

$$p_C = \frac{\gamma . S}{\mu' U} \phi(z) \qquad \qquad \text{eq. 31}$$

vertical

$$q_{c} = \frac{\gamma . S}{\lambda . \mu' . U} \phi(z) \qquad \text{eq. 32}$$

Onde a função $\phi(z)$ é dada por:

$$\phi(z) = (1 - e^{-z/z_0})$$
 eq. 33

$$z_0 = \frac{S}{\lambda . \mu' . U} \qquad \text{eq. 34}$$

Da superficie superior do material armazenado até uma profundidade z, a resultante do atrito, em unidade de força por unidade de comprimento, é dada por:

$$V_{cs} = \frac{\gamma . S}{U} [z - z_0.\phi(z)]$$
 eq. 35

A pressão q_f que atua no fundo plano do silo é considerada constante sobre toda a seção transversal e, para silos com H/D \ge 1,5 :

$$q_f = C_f q_c \le \gamma. H \qquad \text{eq. 36}$$

com
$$C_f = 1,5$$
 (grãos em geral)
 $C_f = 1,8$ (material pulverulento)

Quando do esvaziamento do silo as ações atuam dinamicamente, mas para a consideração estática dos efeitos essas ações são multiplicadas por fatores de equivalência do efeito dinâmico para a ação estática. Para um esvaziamento uniforme, valem as relações:

$$V_{d} = 1, 1.v_{c}$$
 eq. 37

$$q_c = 1,25.q_d$$
 eq. 39

O fator 1,1 também é válido para o somatório da pressão de atrito ao longo da altura (v_{cs}) . O fator e_h encontra-se no apêndice, em tabela extraída da DIN1055-6 (1986).

No caso de um esvaziamento não uniforme, considerando que o topo e o fundo tenham enrijecedores de borda, os valores da pressão horizontal p_c são majorados por um fator C_m :

 C_m : fator de sobrepressão, que, para silos circulares com D/e ≥ 200 (e: espessura da parede do silo):

 $Cm = 1,0 + 3C\sqrt{(H/D)}$

O fator $C = C_h.C_e.C_r.C_g$

 C_h : fator de altura - 1,0 $\leq C_h = (0,13.H/D+0,87) \leq 1,4$

 C_e : fator de excentricidade - 1,0 \leq C_e = 0,5(1+3e/r) \leq 2,0

e : excentricidade do ponto de descarga em relação ao eixo vertical do silo cilíndrico

 C_r : fator de rigidez - $C_r = 0.05$ para D/t ≤ 200

C_g : fator que depende do material ensilado (vem tabelado na DIN 1055)

A pressão lateral total no esvaziamento do silo é dada por:

 $p_{esv} = C_{m.}(pressão estática de Janssen)$ eq. 40

Para as considerações do acréscimo das ações devido aos impactos do material, impactos oriundo da formação e desmoronamento de cúpulas, há uma majoração da pressão horizontal p_c , ao longo de toda a altura, por um fator C_s :

$$C_s = 1 + \frac{0.50}{\sqrt{k}}$$
 eq. 41

k : distância entre o eixo vertical da abertura de saída e a parede do silo (mínimo k = 0,50 m).

2.6.3 - A Ação Hidrostática.

A ação hidrostática provoca efeitos que atuam nas direções radial e vertical e resultam em pressão lateral no costado e pressão no fundo do reservatório:

lateral	$\mathbf{p} = \mathbf{\gamma} \cdot \mathbf{z}$	eq. 42
fundo	$q_f = \gamma.H$	eq. 43

Capítulo 2 : Comportamento Estrutural e Ações em Silos e em Re	servatórios 7
2.1 - Introdução	7
2.2 - Esforços Solicitantes e Equações de Equilíbrio	9
2.3 - As Equações de Equilíbrio	12
2.4 - Teoria do Regime de Membrana	13
2.5 - Teoria do Regime de Flexão	14
2.6 - As ações	17
2.6.1 - A Ação do Vento	18
2.6.2 - As Ações devidas ao Material Sólido	21
2.6.3 - A Ação Hidrostática.	25

Capítulo 3 - Análise do problema de estabilidade em cascas cilíndricas.

3.1 - Introdução

Figura 25- Configuração de flambagem elástica de cilindro comprimido

A forma cilíndrica para as estruturas de silos e de reservatórios é uma das mais eficientes para o armazenamento de grandes volumes de material líquido ou granular. Devido a essa grande eficiência, as chapas metálicas que formam o costado da estrutura são muito finas em relação ao diâmetro (estrutura de paredes delgadas), e a questão que surge então é até que ponto o equilíbrio dessa estrutura é estável.

A relação da espessura para o raio do cilindro é, portanto, um parâmetro significativo no estudo dessa estabilidade. Considera-se também a relação altura para o diâmetro, bem como a maneira como são aplicados os sistemas de forças que atuam nessas estruturas.

Vale esclarecer que o sistema está em equilíbrio estável se, depois de impostas perturbações tais como pequenas mudanças de posição, a configuração resultante encontra-se próxima da configuração inicial.

Existem maneiras diferentes de uma casca cilíndrica perder a estabilidade do equilíbrio, dependentes de vários fatores. Os cilindros longos (relação altura/diâmetro > 3) perdem a

estabilidade do equilíbrio, ou flambam, em um modo periódico de deformação na circunferência, chamado modo assimétrico, como ilustra a figura 26, quando a ação dominante é uma pressão externa provocada, por exemplo, pela ação do vento:

Figura 26 - Modo geral de flambagem periódica na circunferência de um cilindro longo

Se a pressão externa não for dominante e houver, suponha-se, uma compressão axial, este modo de flambagem pode adquirir formas diferentes daquela ilustrada na figura 26. Esta suposição, entretanto, não fará parte da análise que será efetuada neste trabalho, porque somente cabe ser analisado, para uma pressão externa dominante (a ação do vento), o caso do silo ou do reservatório quando estiver vazio.

Quando o silo estiver cheio, o modo de flambagem que pode ocorrer é o modo axissimétrico de flambagem local, ilustrado pela figura 27, e provocado pela ação resultante do atrito entre o material ensilado e o costado do silo:

Figura 27 - Modo axissimétrico de flambagem local.

A maneira como a estrutura é montada pode contribuir para a flambagem no modo axissimétrico. Em geral, as estruturas são montadas com chapas calandradas dispostas de modo a formarem um anel e cada anel é soldado em cima de outro anel, na direção da geratriz, de modo que um silo fica composto de vários anéis. As tensões residuais, oriundas dos processos de soldagem e de conformação (calandragem) das chapas metálicas utilizadas nos silos, contêm componentes axissimétricos que podem ocasionar uma flambagem que se manifesta a um valor abaixo do valor da tensão crítica de flambagem prevista. A figura 28 ilustra como as chapas são dispostas e as regiões onde ocorrem as tensões residuais.

Figura 28 - Disposição das chapas calandradas e regiões de tensões residuais.

Neste capítulo, tratar-se-á primeiro da caracterização do fenômeno de flambagem, com uma classificação dos tipos de flambagem e, em seguida, dos modos axissimétrico e assimétrico de flambagem. Por último, serão mostrados e analisados os casos previstos na norma do ECCS (1988) para a perda de estabilidade do equilíbrio em 1) compressão axial, 2) compressão axial combinada à pressão interna, 3) compressão axial combinada com flexão.

É importante notar que a teoria a ser exposta refere-se à perturbação de posição e não à perturbação de velocidade de deformação da estrutura, o que caracteriza um estudo puramente estático e pode ser justificado pela teoria dos sistemas conservativos.

Para efeito prático, o que interessa determinar é o modo como a estrutura irá flambar e a tensão crítica que define o esgotamento da capacidade portante da estrutura.

3.2 - Caracterização do fenômeno.

Adota-se de início a definição do conceito de flambagem como o fenômeno que ocorre quando a ação atuante na estrutura alcança um valor máximo, o que significa que isto deve resultar em uma não-linearidade na relação entre a solicitação aplicada e os deslocamentos correspondentes.

Pode-se atribuir essa não-linearidade a duas causas distintas. Na primeira, o material que compõe a estrutura pode deixar de apresentar um comportamento linear entre as tensões e as deformações, e a causa é geralmente conhecida como *não-linearidade material*. Na segunda causa, o que ocorre são as mudanças na geometria da estrutura provocarem a não-linearidade, e esse tipo é conhecido como *não-linearidade geométrica*.

Neste caso de estudo de silos metálicos de paredes delgadas, o que ocorre é a flambagem com o aço ainda no regime elástico, justamente devido à pequena espessura da parede em relação ao raio da estrutura cilíndrica. Vale esclarecer que, até ocorrer a flambagem, a estrutura é admitida no regime linear geométrico, ou seja, pequenos deslocamentos e pequenas deformações. Na realidade, não interessa à engenharia civil que a estrutura de um silo trabalhe em regime de não-linearidade geométrica, sendo bastante uma previsão de início de flambagem com um valor limite, chamado valor crítico de tensão.

Seja um cilindro submetido a compressão axial. O que ocorre primeiro é uma deformação axial puramente de membrana, com deslocamento axial w_2 , com a parede do cilindro permanecendo reta. A um certo nível de solicitação este caminho fundamental alcança um estado crítico de estabilidade. Acima deste nível de solicitação, o estado de equilíbrio não é mais estável, podendo ocorrer, devido a uma pequena perturbação no deslocamento, um súbito movimento lateral (direção radial).

Qualquer estado de estabilidade que ocorra acima da solicitação crítica, ocorrerá em um caminho secundário (ou de pós-flambagem), que intercepta o caminho primário no estado crítico, formado essencialmente de uma deformação lateral v_2 . Este tipo de comportamento é conhecido como bifurcação.

Figura 29 - Caminhos fundamental e secundário de flambagem

Uma classificação prática desse comportamento de bifurcação está ligada à forma que esse caminho secundário pode tomar. Para as estruturas cilíndricas, dentro de modo simples de bifurcação, a forma inicial de deslocamento do caminho secundário pode ser caracterizada em termos de um grau de liberdade, e a flambagem pode ser, como já definido, ou **axissimétrica** ou **assimétrica**.

No próximo tópico será desenvolvida a teoria para o cálculo da tensão crítica de flambagem, em função dos modos predominantes de solicitação: ou axial, ou devido à pressão externa exercida pelo vento.

3.3 - Cálculo da Tensão Crítica de Flambagem.

A teoria da elasticidade prevê, para uma casca cilíndrica perfeita, isótropa, uniformemente comprimida na direção axial (da geratriz), em um estado puro de tensão de membrana, cujas bordas são indeslocáveis nas direções radial e circunferencial, o início de flambagem simétrica com respeito ao eixo do cilindro [Timoshenko &Gere (1961)] a uma tensão crítica :

$$\sigma_{\rm cr} = \frac{1}{\sqrt{3(1-v^2)}} \cdot \frac{{\rm Ee}}{r} \approx 0,605 \frac{{\rm Ee}}{r} \qquad \text{eq. 44}$$

assumindo o coeficiente de Poisson igual a 0,3.

A determinação desse valor crítico dá-se com a utilização do método da energia. Enquanto a geratriz da casca cilíndrica mantém-se reta, o total da energia de deformação é obtido com a energia de deformação devida à compressão na direção axial. Quando ocorre a flambagem, devem ser consideradas para a energia total de deformação as parcelas de energia na direção tangencial (na circunferência da casca cilíndrica, e com respeito à superfície média) e da energia devida à flexão da casca, que são adicionadas à energia de deformação devida à compressão axial de membrana.

Seja admitida uma combinação arbitrária de pressão lateral externa p e de solicitação axial N, que provoque na casca cilíndrica um estado fundamental de esforços solicitantes uniformes de membrana:

$$N_{zf} = -\alpha_z \sigma_z e$$
 eq. 45

$$N_{\theta f} = -\alpha_{\theta} \sigma_z e \qquad \text{eq. 46}$$

onde as constantes α_z , α_{θ} são definidas para o caso de solicitação axial dominante, quando $\alpha_z=1$:

$$\alpha_{\theta} = \frac{N_{\theta f}}{N_{zf}}$$
 eq. 47

e, para o caso de pressão externa dominante, quando α_{θ} =1:

$$\alpha_z = \frac{N_{zf}}{N_{\theta f}}$$
 eq. 48

Para esses casos, chamados de estados fundamentais (N_{zf} , $N_{\theta f}$), estão associadas as deformações uniformes fundamentais:

$$\varepsilon_{zf} = \frac{1}{Ee} \left(N_{zf} - \nu N_{\theta f} \right)$$
 eq. 49

$$\varepsilon_{\theta f} = \frac{1}{Ee} \Big(N_{\theta f} - \nu N_{zf} \Big)$$
 eq. 50

Com respeito a um estado indeformado e sem solicitações externas (p = 0, N = 0) a mudança na energia potencial total (E_{pt}) para a casca da figura 28, sob a ação de p e N arbitrários e em estado deformado, é (CROLL 1983):

$$E_{pt} = \frac{1}{2} \int_{0}^{2\pi H} \left(N_z \varepsilon_z + N_\theta \varepsilon_\theta + 2N_{z\theta} \varepsilon_{z\theta} \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z + M_\theta \delta_\theta + 2M_{z\theta} \delta_{z\theta} \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z + M_\theta \delta_\theta + 2M_{z\theta} \delta_{z\theta} \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z + M_\theta \delta_\theta + 2M_{z\theta} \delta_{z\theta} \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z + M_\theta \delta_\theta + 2M_{z\theta} \delta_{z\theta} \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z + M_\theta \delta_\theta + 2M_{z\theta} \delta_{z\theta} \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z + M_\theta \delta_\theta + 2M_{z\theta} \delta_{z\theta} \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z + M_\theta \delta_\theta + 2M_{z\theta} \delta_{z\theta} \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z + M_\theta \delta_\theta + 2M_{z\theta} \delta_{z\theta} \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z + M_\theta \delta_\theta + 2M_{z\theta} \delta_{z\theta} \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z + M_\theta \delta_\theta + 2M_{z\theta} \delta_{z\theta} \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z + M_\theta \delta_\theta + 2M_{z\theta} \delta_{z\theta} \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z + M_\theta \delta_\theta + 2M_{z\theta} \delta_{z\theta} \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z + M_\theta \delta_\theta + 2M_{z\theta} \delta_{z\theta} \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z + M_\theta \delta_\theta + 2M_{z\theta} \delta_{z\theta} \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z + M_\theta \delta_\theta + 2M_{z\theta} \delta_z \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z + M_\theta \delta_\theta + 2M_{z\theta} \delta_z \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z + M_\theta \delta_\theta + 2M_{z\theta} \delta_z \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z + M_\theta \delta_\theta + 2M_{z\theta} \delta_z \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z + M_\theta \delta_\theta + M_z \delta_z \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z + M_\theta \delta_\theta + M_z \delta_z \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z + M_z \delta_z \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z + M_z \delta_z \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z \right) r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left(M_z \delta_z \right)$$

Figura 30 - Estado Fundamental de Deformação

Na equação 53 as resultantes por unidade de comprimento (N, M) e suas respectivas deformações (ϵ , δ) e deslocamentos (U, V, W) são medidos em relação à estrutura indeformada. A E_{pt} pode ser reescrita como:

$$E_{pt} = \frac{1}{2} \int_{0}^{2\pi H} \left[N_{zf} + n_z \right) (\varepsilon_{zf} + \varepsilon_z) + (N_{\theta f} + n_{\theta}) (\varepsilon_{\theta f} + \varepsilon_{\theta}) + 2 \left(N_{\theta f} + n_{z\theta} \right) \left(\varepsilon_{z\theta f} + \varepsilon_{z\theta} \right) \right] r dz d\theta + \frac{1}{2} \int_{0}^{2\pi H} \left[M_{zf} + m_z \right) (\delta_{zf} + \delta_z) + (M_{\theta f} + m_{\theta}) (\delta_{\theta f} + \delta_{\theta}) + 2 \left(M_{z\theta f} + m_{z\theta} \right) \left(\delta_{z\theta f} + \delta_{z\theta} \right) \right] r dz d\theta + \frac{1}{2} \left(M_{z\theta f} + m_z \right) \left(\delta_{z\theta f} + \delta_{z\theta} \right) \right] r dz d\theta + \frac{1}{2} \left(M_{f} + u \right) \left|_{0}^{H} - \int_{0}^{2\pi H} p \left(v_f + v \right) r dz d\theta \right| d\theta + \frac{1}{2} \left(M_{z\theta f} + m_z \right) \left(\delta_{z\theta f} + \delta_{z\theta} \right) \right] r dz d\theta + \frac{1}{2} \left(M_{f} + u \right) \left|_{0}^{H} - \int_{0}^{2\pi H} p \left(v_f + v \right) r dz d\theta \right| d\theta + \frac{1}{2} \left(M_{f} + u \right) \left|_{0}^{H} - \int_{0}^{2\pi H} p \left(v_f + v \right) r dz d\theta \right| d\theta + \frac{1}{2} \left(M_{f} + u \right) \left|_{0}^{H} - \int_{0}^{2\pi H} p \left(v_f + v \right) r dz d\theta \right| d\theta + \frac{1}{2} \left(M_{f} + u \right) \left|_{0}^{H} - \int_{0}^{2\pi H} p \left(v_f + v \right) r dz d\theta \right| d\theta + \frac{1}{2} \left(M_{f} + u \right) \left|_{0}^{H} - \int_{0}^{2\pi H} p \left(v_f + v \right) r dz d\theta \right| d\theta + \frac{1}{2} \left(M_{f} + u \right) \left|_{0}^{H} - \int_{0}^{2\pi H} p \left(v_f + v \right) r dz d\theta \right| d\theta + \frac{1}{2} \left(M_{f} + u \right) \left|_{0}^{H} - \int_{0}^{2\pi H} p \left(v_f + v \right) r dz d\theta \right| d\theta + \frac{1}{2} \left(M_{f} + u \right) \left|_{0}^{H} - \int_{0}^{2\pi H} p \left(v_f + v \right) r dz d\theta \right| d\theta + \frac{1}{2} \left(M_{f} + u \right) \left|_{0}^{H} - \int_{0}^{2\pi H} p \left(v_f + v \right) r dz d\theta \right| d\theta + \frac{1}{2} \left(M_{f} + u \right) \left|_{0}^{H} - \frac{1}{2} \left(M_{f} + u \right) \left|_{0}^{H} - \frac{1}{2} \left(M_{f} + u \right) \right|_{0}^{H} + \frac{1}{2} \left(M_{f} + u \right) \left(M_{f}$$

A equação 52, quando expandida, pode ser dividida em parcelas tais que:

$$E_{pt} = E_{pt_0} + E_{pt_1} + E_{pt_2} + \dots$$
 eq. 53

onde os termos que envolvem potências constantes, lineares, quadráticos, cúbicos, etc., relacionados aos deslocamentos incrementais (u, v, w), quando ocorre o estado fundamental de membrana tal que obedeça às eq. 44 e 45, são dados por:

$$E_{pt_0} = \frac{1}{2} \iint \left(N_{zf} \varepsilon_f + N_{\theta z} \varepsilon_{\theta f} \right) r dz d\theta - N W_f \Big|_0^H - \iint p v_f r dz d\theta \qquad \text{eq. 54}$$

$$E_{pt_1} = \frac{1}{2} \iint \left[\left(N_{zf} \varepsilon_z' + n_z' \varepsilon_{zf} \right) + \left(N_{\theta f} \varepsilon_{\theta f}' \right) \right] r dz d\theta - PW \Big|_0^H - \iint pvr dz d\theta \qquad \text{eq. 55}$$

$$E_{pt_2} = \frac{1}{2} \iint \left[n'_z \varepsilon'_z + n'_{\theta} + 2n'_z \varepsilon'_z \right] r dz d\theta + \frac{1}{2} \iint \left[m'_z \delta'_z + m'_{\theta} \delta_{\theta} + 2m'_{z\theta} \delta'_{z\theta} \right] r dz d\theta + \frac{1}{2} \iint \left[\left(N'_{zf} \varepsilon''_z + n''_z \varepsilon_{zf} \right) + \left(N_{\theta f} \varepsilon'_{\theta} + n''_{\theta} \varepsilon_{\theta f} \right) \right] r dz d\theta$$
eq. 56

Os termos E_{pt_0} , E_{pt_1} , E_{pt_2} desenvolvidos nas equações 54, 55, 56 têm os incrementos lineares dos esforços resultantes (n', m'), que estão associados às deformações lineares (ϵ ', δ ') definidas como:

e os esforços de membrana n" são aqueles associados às deformações ϵ ", dadas por:

$$\varepsilon_z'' = \frac{1}{2} \left(\frac{\partial v}{\partial z}\right)^2$$
 eq. 63

$$\varepsilon_{\theta}^{\prime\prime} = \frac{1}{2r^2} \left(\frac{\partial v}{\partial \theta}\right)^2 \qquad \text{eq. 64}$$

As resultantes lineares dos esforços solicitantes estão relacionadas às deformações lineares com as expressões:

 $n'_{z} = K(\varepsilon'_{z} + v\varepsilon'_{\theta}) \quad \text{eq. 65} \qquad m'_{z} = D(\delta'_{z} + v\delta'_{\theta}) \quad \text{eq. 68}$ $n'_{\theta} = K(\varepsilon'_{\theta} + v\varepsilon'_{z}) \quad \text{eq. 66} \qquad m'_{\theta} = D(\delta'_{\theta} + v\delta'_{z}) \quad \text{eq. 69}$ $n'_{z\theta} = K(1 - v)\varepsilon'_{z\theta} \quad \text{eq. 67} \qquad m'_{z\theta} = D(1 - v)\delta'_{z\theta} \quad \text{eq. 70}$

onde
$$K = \frac{E}{3(1-2\nu)}$$
 e $D = \frac{Ee^3}{12(1-\nu^2)}$. As equações relacionadas n_z " e n_{θ} ":
 $n_z'' = K(\varepsilon_z'' + \varepsilon_{\theta}'')$ eq. 71

$$n_{\theta}^{\prime\prime} = K \left(\varepsilon_{\theta}^{\prime\prime} + \varepsilon_{z}^{\prime\prime} \right)$$
 eq. 72

onde n_z " e n_{θ} " são as componentes quadráticas dos esforços solicitantes não-lineares de membrana.

No desenvolvimento da equação 51 o termo E_{pt_0} (eq. 54), que é constante em relação aos incrementos de deslocamentos mas variável a cada incremento de solicitações, representa a magnitude de E_{pt} para o caminho fundamental ψ_1 (figura 31):

Figura 31 - Caminho fundamental ψ_1

Figura 32 - Caminho secundário ψ₂

O termo linear E_{pt_1} , tomado em consideração ao estado de equilíbrio em ψ_1 , deve ser nulo, ou muito próximo de zero, quando os efeitos de flexão são negligenciados nas bordas da casca. Para pequenas perturbações em relação à configuração fundamental é a forma quadrática E_{pt_2} que provém as primeiras contribuições significativas. Se o estado de equilíbrio é estável, então $E_{pt_2} > 0$; se o estado de equilíbrio é instável, haverá pelo menos um modo de deformação em que $E_{pt_2} = 0$. A situação que corresponde à estabilidade crítica é definida para $E_{pt_2} = 0$; os modos (u_c, v_c, w_c) correspondentes são definidos como os modos críticos e a tensão σ_c é chamada tensão crítica.

Portanto, o estudo da estabilidade do equilíbrio no caminho fundamental ψ_1 está todo de acordo com a natureza da forma quadrática E_{pt_2} . A expressão E_{pt_2} , dada pela equação 58, é formada por parcelas distintas, de modo que as energias de deformação linear de

 $E_N^z = \frac{1}{2} \iint n_z' \varepsilon_z' r dz d\theta \qquad \text{eq. 73} \qquad E_p^z = \frac{1}{2} \iint m_z' \delta_z' r dz d\theta \qquad \text{eq. 76}$

$$E_{N}^{\theta} = \frac{1}{2} \iint n_{\theta}' \varepsilon_{\theta}' r dz d\theta \qquad \text{eq. 74} \qquad E_{p}^{z} = \frac{1}{2} \iint m_{\theta}' \delta_{\theta}' r dz d\theta \qquad \text{eq. 77}$$
$$E_{N}^{z\theta} = \frac{1}{2} \iint n_{z\theta}' \varepsilon_{z\theta}' r dz d\theta \qquad \text{eq. 75} \qquad E_{p}^{z} = \frac{1}{2} \iint 2m_{z\theta}' \delta_{z\theta}' r dz d\theta \qquad \text{eq. 78}$$

As equações 73 a 78 são os termos lineares da energia de deformação, de forma a distinguir dos termos não-lineares da energia de deformação de membrana (G_N):

$$\overline{G}_{N}^{z} = \frac{1}{2} \iint N_{zf} \varepsilon_{z}^{"} r dz d\theta \quad \text{eq. 79} \qquad \overline{G}_{N}^{\theta} = \frac{1}{2} \iint N_{\theta f} \varepsilon_{\theta}^{"} r dz d\theta \quad \text{eq. 81}$$

$$\overline{\overline{G}}_{N}^{z} = \frac{1}{2} \iint n_{z}^{"} \varepsilon_{zf} r dz d\theta \quad \text{eq. 80} \qquad \overline{\overline{G}}_{N}^{\theta} = \frac{1}{2} \iint n_{\theta}^{"} \varepsilon_{\theta f} r dz d\theta \quad \text{eq. 82}$$

As equações 81 a 84 advêm da interação entre os esforços solicitantes e as deformações fundamentais ($N_{\theta f}$, ${}_{f}N_{\theta f}$, ε_{zf} , $\varepsilon_{\theta f}$, respectivamente) e as componentes dos incrementos dos esforços, das forças e deformações. As razões pelas quais há a separação nos termos \overline{U}_{N}^{z} , $\overline{\overline{U}}_{N}^{z}$, $\overline{\overline{U}}_{\theta}^{z}$, $\overline{\overline{U}}_{\theta}^{z}$ serão dadas no tópico que trata de flambagem assimétrica para a solicitação axial dominante.

Todo esse desenvolvimento deve conduzir à determinação da tensão crítica de flambagem em uma análise de bifurcação. Seja uma casca cilíndrica com os modos de incremento para os deslocamentos dados por:

$$u = u_{ij} \operatorname{sen}(i\theta) \operatorname{sen}\left(\frac{j\pi}{H}z\right)$$
 eq. 83

$$v = v_{ij} \cos(i\theta) \sin\left(\frac{j\pi}{H}z\right)$$
 eq. 84

$$w = w_{ij} \cos(i\theta) \cos\left(\frac{j\pi}{H}z\right)$$
 eq. 85

Essas equações 85 a 87 satisfazem à clássica condição de vinculação das bordas da casca, ou seja, para $n_z = u = v = m_z = 0$ (as bordas estão com os deslocamentos impedidos). Para que o caminho ψ_2 intercepte ψ_1 (figura 30), ou utilizando uma descrição de certo modo enganosa, para que o caminho ψ_2 bifurque do caminho ψ_1 , é necessário que exista um estado de equilíbrio adjacente. Isto ocorre quando E_{pt_2} é estacionária com respeito a cada um dos deslocamentos generalizados (u_{ij} , v_{ij} , w_{ij}).

Fazendo E_{pt_2} estacionário com respeito a (u_{ij}, v_{ij}) conduz a duas condições que podem ser expressas por (CROLL 1983):

$$u_{ij} = \frac{i\left(i^2 + (2+\nu)\lambda^2\right)}{\left(i^2 + \lambda^2\right)}v_{ij}$$
eq. 86
$$\lambda\left(i^2 + \nu\lambda^2\right)$$

$$w_{ij} = \frac{\lambda(i^2 + \lambda^2)}{(i^2 + \lambda^2)} v_{ij}$$
 eq. 87

Estas expressões 88 e 89 relacionam os deslocamentos axial (w_{ij}) e tangencial (u_{ij}) ao deslocamento radial (v_{ij}). Por conseguinte, as contribuições lineares da energia de deformação (E_N, E_p) podem ser definidas como:

$$E_{N}^{z} = \frac{\pi KL}{4} \left[\frac{(1-\nu^{2})i^{2}\lambda^{4}(i^{2}-\nu\lambda^{2})}{(i^{2}+\lambda^{2})^{4}} \right] v_{ij}^{2}$$
 eq. 88

$$E_{N}^{\theta} = \frac{\pi KL}{4} \left[\frac{(1 - v^{2})\lambda^{6} (\lambda^{2} - vi^{2})}{(i^{2} + \lambda^{2})^{4}} \right] v_{ij}^{2}$$
 eq. 89

$$E_{N}^{\theta_{z}} = \frac{\pi KL}{4} \left[\frac{2(1-\nu^{2})(1+\nu)i^{2}\lambda^{6}}{(i^{2}+\lambda^{2})^{4}} \right] v_{ij}^{2}$$
 eq. 90

$$E_p^z = \frac{\pi KL}{4} \left[\frac{1}{\varphi} \lambda^2 \left(\lambda^2 + v i^2 \right) \right] v_{ij}^2$$
 eq. 91

$$E_{p}^{\theta} = \frac{\pi KL}{4} \left[\frac{1}{\varphi} i^{2} \left(i^{2} + \nu \lambda^{2} \right) \right] v_{ij}^{2}$$
 eq. 92

$$E_p^{\theta z} = \frac{\pi K L}{4} \left[\frac{2}{\varphi} (1 - \nu) i^2 \lambda^2 \right] v_{ij}^2 \qquad \text{eq. 93}$$

e os termos não-lineares da energia de deformação de membrana são:

$$\overline{G}_N^z = \frac{\pi K L}{8} \left[\frac{N_{zf}}{K} \lambda^2 \right] v_{ij}^2$$
 eq. 94

$$\overline{\overline{G}}_{N}^{z} = \frac{\pi K L}{8} \Big[\varepsilon_{zf} \left(\lambda^{2} + \nu i^{2} \right) \Big] v_{ij}^{2}$$
 eq. 95

$$\overline{G}_{N}^{\theta} = \frac{\pi K L}{8} \left[\frac{N_{\theta f}}{K} i^{2} \right] v_{ij}^{2} \qquad \text{eq. 96}$$

$$\overline{\overline{G}}_{N}^{\theta} = \frac{\pi K L}{8} \left[\varepsilon_{\theta f} \left(i^{2} + \nu \lambda^{2} \right) \right] v_{ij}^{2}$$
 eq. 97

onde $R = \frac{r}{e}$, $L = \frac{H}{r}$, $\lambda = \frac{j\pi}{L}$, $\varphi = 12R^2$.

Então, as energias totais de membrana (E_N) e de flexão (E_p) são dadas por:

$$E_N = E_N^z + E_N^\theta + E_N^{z\theta} = \frac{\pi KL}{4} \left[\frac{\left(1 - \nu^2\right) \lambda^4}{\left(i^2 + \lambda^2\right)} \right] v_{ij}^2$$
eq. 98

$$E_{p} = E_{p}^{z} + E_{p}^{\theta} + E_{p}^{z\theta} = \frac{\pi KL}{4} \left[\frac{\left(i^{2} + \lambda^{2}\right)^{2}}{\varphi} \right] v_{ij}^{2}$$
 eq. 99

e a energia não-linear total de membrana é:

$$G_N = \overline{G}_N^z + \overline{\overline{G}}_N^z + \overline{G}_N^\theta + \overline{\overline{G}}_N^\theta = \frac{\pi K L}{4} \Big[N_{zf} \lambda^2 + N_{\theta f} i^2 \Big] v_{ij}^2 \qquad \text{eq. 100}$$

Estas equações 98, 99 e 100, permitem verificar quando E_{pt_2} é estacionária, ou seja:

$$\frac{\partial G_N}{\partial v_{ij}} = \frac{\pi KL}{2} \left[\frac{\left(i^2 + \lambda^2\right)}{\varphi} + \frac{\left(1 - \nu^2\right)\lambda^4}{\left(i^2 + \lambda^2\right)^2} + \frac{1}{K} \left(N_{zf} \lambda^2 + N_{\theta f} i^2\right) \right] v_{ij} = 0 \quad \text{eq. 101}$$

que, para soluções diferentes da trivial ($v_{ij} \neq 0$), resulta em:

$$\frac{\sigma_c}{E} = \frac{\left[\frac{\left(i^2 + \lambda^2\right)^2}{\varphi} + \frac{\left(1 - \nu^2\right)\lambda^4}{\left(1 + \lambda^2\right)^2}\right]}{\left(1 - \nu^2\right)\left(\alpha_z\lambda^2 + \alpha_\theta i^2\right)}$$
eq. 102

3.4 - Caso Axissimétrico de Flambagem.

Este caso ocorre para a solicitação axial predominante, quando a equação 102 coincide com a clássica fórmula para o cálculo da tensão de flambagem dada em Timoshenko&Gere (1961), desde que seja assumido i = 0 (indica ausência de ondas na direção circunferencial) e substituindo os parâmetros $\alpha_z = 1$ (fator que, quando unitário, indica solicitação axial predominante), $\alpha_{\theta} = 0$ (fator que, quando unitário, indica solicitação de pressão externa

predominante),
$$\lambda = \frac{j\pi}{L} = \frac{j\pi r}{H}$$
, $\varphi = 12\frac{r^2}{e^2}$:

$$\sigma_{cr} = \frac{N_{cr}}{2\pi re} = D \left(\frac{j^2 \pi^2}{eH^2} + \frac{E}{r^2 D} \frac{H^2}{j^2 \pi^2} \right)$$
eq. 103

Considerando-se σ_{cr} uma função contínua de $\frac{j\pi}{H}$, a equação 103 atinge um valor de mínimo quando:

$$\frac{\partial \sigma_{cr}}{\partial \left(\frac{j\pi}{H}\right)} = 0 \Rightarrow D \left(\frac{2}{e} \frac{j\pi}{H} - \frac{2}{r^2} \frac{E}{D} \frac{1}{\frac{j^3 \pi^3}{H^3}}\right) = 0 \Rightarrow \frac{j\pi}{H} = 4 \sqrt{\frac{Ee}{r^2 D}}$$
eq. 104

Substituindo-se o valor de $\left(\frac{j\pi}{H}\right)^2 = \sqrt{\frac{Ee}{r^2D}} = \frac{1}{re}\sqrt{12(1-v^2)}$ na equação 103 e

sendo admitido o valor de v = 0,3, obtém-se:

$$\sigma_{cr} = D\left(\frac{j^2 \pi^2}{eH^2} + \frac{E}{r^2 D} \frac{H^2}{j^2 \pi^2}\right) = D\left(\frac{1}{e} \frac{1}{re} \sqrt{12(1-v^2)} + \frac{E}{r^2 \frac{Ee^3}{12(1-v^2)}} \frac{re}{\sqrt{12(1-v^2)}}\right)$$

$$\sigma_{cr} = \frac{2Ee}{r} \frac{1}{\sqrt{12(1-v^2)}} = \frac{1}{\sqrt{3(1-v^2)}} \cdot \frac{Ee}{r} \approx 0,605 \frac{Ee}{r}$$

Sendo este valor de σ_{cr} o mesmo obtido com a equação 44 (caso de solicitação axial de compressão, flambagem axissimétrica).

Analisando-se essa equação 46 para uma casca cilíndrica metálica, E = 205.000 Mpa e supondo $250 < \sigma_{cr} < 300$ Mpa, resulta uma relação $500 < \frac{r}{e} < 400$. Portanto, uma flambagem axissimétrica ocorre no regime elástico para cascas cilíndricas com paredes muito delgadas, com relação raio/espessura da ordem de 500.

3.5 - Caso Assimétrico de Flambagem.

Este caso pode ocorrer quando uma pressão externa p for dominante ($\alpha_{\theta} = 1$), ou seja, quando essa ação provoca os efeitos dominantes que levam à flambagem da casca, caso específico do silo vazio e sob a ação do vento. Nesta situação, os esforços solicitantes fundamentais são:

$$N_{\theta f} = -\sigma_z e = -pr \qquad \qquad \text{eq. 105}$$

$$N_{zf} = \alpha_z N_{\theta}^F = -\alpha_z \sigma_z e = -\alpha_x pr \qquad \text{eq. 106}$$

A equação 104 passa a ser expressa como:

$$\frac{\sigma_c}{E} = \frac{\left[\frac{\left(i^2 + \lambda^2\right)^2}{\varphi} + \frac{\left(1 - \nu^2\right)\lambda^4}{\left(1 + \lambda^2\right)^2}\right]}{\left(1 - \nu^2\right)\left(\alpha_z \lambda^2 + i^2\right)}$$
eq. 107

Para uma casca típica com L = H/r = 2, R = r/e = 400, e $\nu = 0.3$, com uma flambagem caracterizada geometricamente por uma semi-onda na direção axial, ou seja, j = 1, pode-se relacionar o espectro de tensão crítica.

Para uma variação do número de ondas na direção circunferencial, i, a tensão crítica mínima corresponde ao modo $i_{CM} = 8,5$ (CM = crítico mínimo). A localização do número i_{CM} geralmente é efetuada com um procedimento numérico ou gráfico, como ocorre nas normas inglesas e européias (CROLL 1983).

Entretanto, para muitas cascas calcula-se que o comprimento da semi-onda na circunferência, $l_{\theta} = \frac{\pi r}{i_{CM}}$, que caracteriza o modo mínimo, é bem menor que o comprimento da

semi-onda na direção da geratriz, l_z . Isto significa que $\frac{i_{CM}}{\lambda} = \frac{l_z}{l_{\theta}} < 1$, ou, mais ainda, que

 $\left(\frac{i}{\lambda}\right)^2 \ll 1$. Admitindo essa hipótese, a equação 109 pode ser aproximada por:

$$\frac{\overline{\sigma}_c}{E} = \left[\frac{\frac{i^4}{\varphi} + \frac{(i-\nu^2)\lambda^4}{i^4}}{(1-\nu^2)i^2}\right]$$
eq. 108

que apresenta um mínimo para:

$$\bar{i}_{CM} = \left[3\varphi\lambda^4 (1-\nu^2)\right]^{1/8}$$
 eq. 109

Pode-se utilizar esse valor de mínimo para i_{CM} na equação 109, para se obter uma resposta aproximada da mínima tensão crítica.

3.6 - A perda de estabilidade devida à compressão axial.

Este caso reflete uma grande discrepância entre os valores da força crítica para as estruturas reais e os valores teóricos obtidos com a teoria da estabilidade elástica. As razões são comumente atribuídas às imperfeições na parede da estrutura cilíndrica e às condições de vinculação das bordas. Em suma, assume-se a análise para uma estrutura perfeitamente cilíndrica, sem defeitos, idealizada para um estado puro de tensão de membrana.

A teoria da estabilidade elástica prevê, para uma casca cilíndrica perfeita, uniformemente comprimida na direção axial, em um estado puro de tensão de membrana, cujas bordas são indeslocáveis nas direções radial e circunferencial, o início de flambagem simétrica com respeito ao eixo do cilindro [Timoshenko &Gere (1961)] a uma tensão de:

$$\sigma_{\rm cr} = \frac{1}{\sqrt{3(1-v^2)}} \cdot \frac{{\rm Ee}}{r} \approx 0.605 \frac{{\rm Ee}}{r} \qquad \text{eq. 110}$$

assumindo o coeficiente de Poisson igual a 0,3.

A tensão crítica de flambagem, σ_{cr} , é uma expressão clássica da teoria da elasticidade considerada função contínua de **m** π /**H**, com **m** representado o número de ondas da configuração de flambagem elástica da casca cilíndrica de altura H.

Na realidade, verificou-se experimentalmente [Brush & Almroth (1975)] que, para um conjunto de cilindros axialmente comprimidos com relações raio/espessura entre 100 e 500, a

tensão crítica de flambagem ficou com valores de 30 a 40% do valor da expressão clássica de tensão crítica (equação 46).

Salienta-se que nesse tipo de análise o cilindro é comprimido axialmente quando está vazio, ou seja, sem pressão interna e sem pressão externa.

Para a análise da ação do vento nos silos e reservatórios vazios, devido à grande sensibilidade da força crítica às imperfeições, será utilizada a expressão da tensão crítica de flambagem, σ_u , das recomendações européias para construção metálica do ECCS (1988) para a flambagem de cascas de aço, descritas nas equações 47 a 60:

$$\sigma_{f,u} = 0.75.\alpha.\sigma_{cr}$$
 se $\alpha.\sigma_{cr} \le \frac{1}{2}f_y$ eq. 111

$$\sigma_{f,u} = f_y \left[1 - 0.4123 \left(\frac{f_y}{\alpha \sigma_{cr}} \right)^{0.6} \right] \qquad \text{se} \qquad \alpha.\sigma_{cr} \ge \frac{1}{2} f_y \qquad \text{eq. 112}$$

 f_y : tensão de escoamento do aço. α : fator de redução.

$$\alpha = \alpha_0$$
 $\alpha_0 = \frac{0.83}{\sqrt{1 + 0.01. r/e}}$ para...... $r/e < 212$ eq. 113

$$\alpha_0 = \frac{0.70}{\sqrt{0.1 + 0.01. \frac{r}{e}}}$$
.....para...... $\frac{r}{e} > 212$ eq. 114

Deve-se considerar o caso em que as imperfeições \overline{u} sejam menores que $0,01.l_r$, $l_r = 4.\sqrt{r.e}$, ao longo da altura, e $l_r = (25.e)$ na circunferência, caso em que valem as equações 47 e 48. O valor de l_r não deve exceder 95% da distância entre os cordões de solda (cordões meridionais - ao longo da altura - ou os cordões circunferenciais. Se \overline{u}/l_r for igual a 0,02, os valores de α são reduzidos à metade. Se \overline{u}/l_r estiver entre 0,01 e 0,02, pode-se fazer uma interpolação linear entre os valores de α e de $\alpha/2$. O comprimento l_r está relacionado ao tamanho potencial das ondas de flambagem. (figura 54 - adaptada do ECCS (1988)).

Figura 33 - Medidas de imperfeições.

3.7 - A perda de estabilidade devida à compressão axial combinada com pressão interna.

Este caso pode ser aplicado à condição do silo estar preenchido. A pressão interna devida ao material é levada em consideração, sendo conseqüência direta o aumento da resistência da estrutura à flambagem por compressão axial.

Será utilizada a expressão das recomendações européias com relação à flambagem das cascas de aço [ECCS (1988)], para uma combinação de compressão axial e pressão interna. Desta forma, a resistência a ser verificada para a estrutura é (fórmula já adaptada às coordenadas adotadas, ou seja, z na direção da altura do silo, x tangencial, e y radial):

$$\sigma_{ef,d} = \sqrt{\sigma_{zd}^2 + \sigma_{xd}^2 - \sigma_{xd}\sigma_{zd}} \le \sigma_{ef,u}$$
eq. 115

Com $\sigma_{ef,u}$ definida por:

Que é calculado com:

$$\frac{\sigma_{\rm ef,u}}{f_{\rm y}} = \frac{0.75}{\overline{\lambda}_{\rm p}^2} \qquad \text{se} \qquad \overline{\lambda}_{\rm p} \ge \sqrt{2} \qquad \text{eq. 117}$$

$$\frac{\sigma_{ef,u}}{f_v} = 1 - 0,4123.\,\overline{\lambda}_p^{1,2} \qquad \text{se} \qquad \overline{\lambda}_p \le \sqrt{2} \qquad \text{eq. 118}$$

$$\overline{\lambda}_{p} = \sqrt{\frac{\beta \cdot f_{y}}{\alpha_{p} \cdot \sigma_{cr}}}$$
 eq. 119

$$\alpha_{p} = \alpha_{0} + (1 - \alpha_{0}) \frac{\rho}{\rho + 0,007}$$
 eq. 120

$$\rho = p_c \frac{r\sqrt{r}}{Ee\sqrt{e}}$$
 eq. 121

 β : é a razão entre a tensão meridional de membrana σ_{zu} e a tensão efetiva $\sigma_{ef,u}$ até o início da flambagem:

$$\beta = \frac{\sigma_{zd}}{\sigma_{ef,d}}$$
 eq. 122

Para este cálculo segundo o ECCS a tensão compressiva de membrana σ_{zu} deve ser considerada positiva e a tensão tangencial de tração $\sigma_{xu} = -p_c.r/e$ como um valor negativo.

Adota-se um valor médio uniforme que seja possível admitir para a pressão lateral interna do silo, p_c, baseada na equação 31.

3.8 - A perda de estabilidade devida à compressão axial combinada com flexão.

As recomendações do ECCS representam o cálculo de compressão axial combinada com flexão admitindo:

$$\alpha = \frac{\alpha_0 + \alpha_b \sigma_b}{\sigma_0 + \sigma_b}$$
 eq. 123

$$\alpha_b = 0.1887 + 0.8113.\alpha_0$$
 (experimental) eq. 124

 α_0 : dado pelas equações 113 e 114.

 σ_0 : tensão uniforme de compressão devida à força axial de projeto.

 σ_b : tensão máxima de compressão devida ao momento de projeto.

Obtido o valor de α , é feita a aplicação nas equações 111 ou 112 e verificada a tensão crítica de flambagem.

A tensão σ_b é obtida para a solicitação do vento quando o silo está vazio, uma vez que o momento de projeto é calculado para a ação do vento.

Capítulo 3 - Análise do problema de estabilidade em cascas cilíndricas	
3.1 - Introdução	
3.2 - Caracterização do fenômeno	
3.3 - Cálculo da Tensão Crítica de Flambagem.	
3.4 - Caso Axissimétrico de Flambagem	
3.5 - Caso Assimétrico de Flambagem	41
3.6 - A perda de estabilidade devida à compressão axial	
3.7 - A perda de estabilidade devida à compressão axial combinada com p	pressão interna44
3.8 - A perda de estabilidade devida à compressão axial combinada com f	lexão45

Capítulo 4 - Análise Numérica de Cascas Cilíndricas.

O objetivo da análise numérica é avaliar a distribuição dos esforços e deslocamentos, oriundos das ações permanentes e variáveis, com ênfase nos efeitos devidos ao material armazenado e ao vento, em regime linear de deformações.

Essa ênfase destina-se ao estudo da instabilidade das chapas metálicas do corpo do reservatório em duas situações distintas: 1) quando o reservatório encontra-se vazio e está solicitado pelo vento; 2) quando do fluxo de carga ou descarga do material ensilado.

A análise numérica encontra-se estabelecida para duas categorias de produtos a serem ensilados: 1) os que não provocam atrito nas paredes; 2) os que provocam atrito nas paredes. Também considera-se na análise a variação de espessura das chapas do costado do silo ao longo da altura.

Uma consequência direta dessa análise numérica está no exemplo de silo metálico para milho, no capítulo 5.

4.1 - O Esquema Estático dos Reservatórios.

Os reservatórios cilíndricos são formados por chapas de aço soldadas entre si e geometricamente definidos pelo diâmetro (D), altura (H) e espessura do corpo (e). O corpo do reservatório é soldado ao fundo, e a tampa pode ser ou inteiramente soldada ou apenas fixada em determinados pontos do topo do reservatório.

As paredes do reservatório são vinculadas ao fundo considerando restrições aos deslocamentos nas direções x, y, z, e restrições aos giros em torno dos eixos x, y, z.

Figura 34 - Esquema Estático dos Reservatórios

4.2 - Os Modelos Geométricos dos Reservatórios

O critério para se determinar a relação entre as dimensões do modelo é o volume do reservatório, mantido constante. Conseqüentemente, para um dado volume V₀ e consideradas as relações altura/diâmetro (H/D) entre 1 e 5, ficam definidas as dimensões das alturas e dos diâmetros para os reservatórios de mesmo volume com H/D = 1 e H/D = 5. Também estão calculadas as áreas laterais respectivas a cada um dos modelos.

As dimensões dos diâmetros, das alturas, as proporções entre as mesmas, e os valores das áreas laterais estão na tabela 2 e na figura 36 para os modelos que serão analisados numericamente (H/D=1 e H/D=5) e os modelos intermediários (H/D=2, 3, 4):

Definidos: H = altura do cilindro D = diâmetro V = volume =
$$\pi \frac{D^2}{4} H$$

Para um dado volume Vo estabelecer uma função f (y), com y = H/D.

$$V = V_{0} \Leftrightarrow V_{0} = cte$$

$$V_{0} = \pi \frac{D^{3}}{4} \left(\frac{H}{D}\right) \Rightarrow D^{3} = \frac{4}{\pi} V_{0} \frac{1}{\left(\frac{H}{D}\right)}$$

$$y = \frac{H}{D} \Rightarrow D^{3} = \frac{4}{\pi} V_{0} \frac{1}{y} \Leftrightarrow D > 0$$

$$\therefore D = K \frac{1}{\sqrt[3]{y}} \Leftrightarrow K = \sqrt[3]{\frac{4}{\pi} V_{0}}$$
ou

$$f(y) = K \frac{1}{\sqrt[3]{y}} \Leftrightarrow f(y) = D$$

TABELA 2 - Relações Altura/Diâmetro eÁrea Lateral para um Volume Constante.					
y = H/D	D	Н	Área lateral		
1	1	1	3,142		
2	0,794	1,588	3,961		
3	0,693	2,079	4,526		
4	0,630	2,520	4,988		
5	0,585	2,925	5,377		

Figura 35 - Modelos Geométricos de Reservatórios Cilíndricos

4.3 - As Características do Aço Empregado.

O aço empregado está caracterizado por um módulo de elasticidade (E) igual a 205.000 MPa, coeficiente de Poisson (μ) igual a 0,3, densidade (γ) de 77.000N/m³, tensão de escoamento f_y = 250 MPa , e tensão última f_u = 400 MPa.

4.4 - Considerações acerca das Espessuras das Chapas.

As espessuras das chapas do corpo do reservatório são consideradas em dois casos: 1) constantes ao longo da altura do reservatório; 2) variáveis ao longo da altura do reservatório.

Figura 36 - Variação das Chapas ao Longo da Altura

Como estimativa das espessuras das chapas foi utilizada a expressão de cálculo das tensões anulares de membranas:

- e = espessura do elemento
- p = pressão na face do elemento
- r = raio da seção transversal
- T = componente tangencial

Figura 37 - Elemento sob Força Tangencial

Considerando-se o equilíbrio do elemento de membrana na figura 38, o valor da tensão de membrana anular que atua no elemento é:

$$\sigma = \frac{p.r}{e} \qquad \qquad \text{eq. 125}$$

4.5 - Os Casos em Análise

Considerando a existência ou não de atrito devido ao material armazenado, a condição de o reservatório estar vazio e as condições acerca das espessuras das chapas dos corpos dos reservatórios, resultam, pela combinação das condições anteriores, 6 casos de análise:

CASO 1) Reservatório com Líquido e Espessura da Parede Constante ao Longo da Altura.

Figura 38 - Caso 1 - Sem atrito: Parede de Espessura Constante

CASO 2) Reservatório com Líquido e Espessura da Parede Variável ao Longo da Altura.

Figura 39 - CASO 2 - Sem atrito: Parede de Espessura Variável

Caso 3) Reservatório com Material Granular ou Pulverulento e Espessura da Parede Constante ao Longo da Altura.

Figura 40 - CASO 3 - Com atrito: Parede de Espessura Constante

CASO 4) Reservatório com Material Granular ou Pulverulento e Espessura da Parede Variável ao Longo da Altura.

Figura 41 - CASO 4 - Com atrito: Parede de Espessura Variável

CASO 5) Reservatório Vazio e Espessura da Parede Constante ao Longo da Altura.

Figura 42 - CASO 5: Reservatório Vazio com Parede de Espessura Constante CASO 6) Reservatório Vazio e Espessura da Parede Variável ao Longo da Altura.

Figura 43 - CASO 6: Reservatório Vazio com Parede de Espessura Variável

4.6 - As Ações Consideradas

As ações estão combinadas de acordo com a NBR8681 (1986), sendo destacadas as ações do vento de acordo com a NBR6123 (1987) e a do material armazenado de acordo com a norma DIN1055-6 (1986).

Como ação permanente está considerado o peso próprio da estrutura básica, ou seja, tampa, corpo e fundo do reservatório.

As ações variáveis são as do vento e a do material armazenado.

4.7 - Combinação de Ações

As combinações pesquisadas que são aplicadas aos casos 1 a 6 (há mais de um caso que é analisado com a mesma combinação de ações) estão definidas como:

1 - Combinação normal C1 : ação permanente (peso próprio - p.p.), ação variável principal (vento) - aplicada aos casos 5 e 6;

2 - Combinação normal C2 : ação permanente (p.p.), ação variável principal(líquido), ação variável secundária (vento) - aplicada aos casos 1 e 2;

3 - Combinação normal C3 : ação permanente (p.p.), ação variável principal (sólido), ação variável secundária (vento) - aplicada aos casos 3 e 4;

Sendo aplicados em cada caso os coeficientes definidos pela NBR8681 - Ações e segurança nas estruturas (1986), resultam as expressões:

C1 = 1,0p.p. + 1,4vento	eq. 126
C2 = 1,3p.p. + 1,4líquido + 1,4.0,6.vento	eq. 127
C3 = 1,3p.p. + 1,4sólido + 1,4.0,6.vento	eq. 128

Com as fórmulas descritas no capítulo 2 são determinados os valores das ações empregadas na análise numérica dos modelos 1 e 5. Os valores estão nas tabelas 4 e 5 para o modelo 1 e nas tabelas 6 e 7 para o modelo 5.

Esquema dos valores das ações calculadas para o Modelo 1 (10,0 x 10,0 m)

Esquema dos valores das ações calculadas para o Modelo 5 (6,0 x 30,0 m)

Esquema das ações para o Modelo 5 - Gráficos das Ações devidas ao material granular ensilado, correspondentes à tabela 7.

Tabela 7 - Valores para a Força de atrito por unidade de comprimento, ao longo dageratriz do silo, correspondentes aos Modelos 1 e 5.

4.8 - As hipóteses do Programa Computacional

O uso da formulação de elementos finitos, e a conseqüente automatização do cálculo, são essenciais para a análise de problemas oriundos da aplicação de esforços externos assimétricos à casca cilíndrica de silos e de reservatórios.

Esses esforços provocam um comportamento de difícil tratamento, onde o equacionamento via cálculo diferencial é quase não manuseável. Para grandes sistemas então, a melhor possibilidade para uma análise das equações diferenciais é via simulação numérica.

A intenção é mostrar o tipo de elemento finito utilizado, descrevendo as suas capacidades e o equacionamento que está embutido no cálculo numérico. No entanto, expor toda a teoria envolvida, inclusive a formulação do método dos elementos finitos, obviamente, não faz parte deste trabalho.

O programa computacional utilizado é a versão universitária 5.2 do ANSYS (1995). O elemento finito utilizado é chamado SHELL 63 - Elastic Shell, ou seja, um elemento de casca elástico. O elemento tem capacidade para operar em regime de membrana, em regime de flexão, ou em ambos. Tem seis graus de liberdade em cada nó: translações nas direções x, y, z e rotações em torno dos eixos x, y, z.

Figura 44 - O elemento finito utilizado.

O sistema de orientação padrão do elemento tem o eixo \mathbf{x} ao longo da linha \mathbf{ij} , o eixo \mathbf{y} perpendicular ao eixo \mathbf{x} e o eixo \mathbf{z} definido pela regra da mão-direita. Este é o sistema adotado neste trabalho para o elemento finito. Salienta-se, no entanto, que o sistema utilizado na análise da casca cilíndrica é o sistema cilíndrico (ver esquema da figura 32).

As solicitações externas podem ser aplicadas aos nós e às superfícies do elemento (indicados por números circulados na figura 45). A espessura do elemento é definida em cada nó e pode ser constante ou variar de nó para nó. Pode-se definir também a distância da superfície média (MID) às superfícies (1) (fundo - BOT) e (2) (topo - TOP - na direção positiva do eixo z).

Os resultados estão associados aos nós em forma de deslocamentos (representam o conjunto de resultados chamado solução primária), e ao elemento (representa a chamada solução derivada). Estão ilustrados os momentos sobre a face x (M_x), sobre a face y (M_y) e o momento cruzado (M_{xy}). Os momentos são calculados por unidade de comprimento do sistema de coordenadas do elemento. As direções das tensões são paralelas às do sistema de coordenadas do elemento.

Figura 45 - Soluções no Elemento Finito.

O cálculo dos momentos ($_{Mx}$, $_{My}$, $_{Mxy}$) e das esforços (F_x , Fy, F_{xy}) (por unidade de comprimento do elemento) são computadas a partir das tensões definidas nas faces BOT, MID e TOP (figura 46) com:

$$F_{x} = \frac{e\left(\sigma_{x,top} + 4\sigma_{x,mid} + \sigma_{x,bot}\right)}{6}$$
 eq. 129

$$F_{y} = \frac{e\left(\sigma_{y,top} + 4\sigma_{y,mid} + \sigma_{y,bot}\right)}{6}$$
 eq. 130

$$F_{xy} = \frac{e\left(\sigma_{xy,top} + 4\sigma_{xy,mid} + \sigma_{xy,bot}\right)}{6}$$
 eq. 131

$$M_{x} = \frac{e^{2} \left(\sigma_{x,top} - \sigma_{x,bot}\right)}{12}$$
 eq. 132

$$M_{y} = \frac{e^{2} \left(\sigma_{y,top} - \sigma_{y,bot}\right)}{12}$$
eq. 133

$$M_{xy} = \frac{e^2 \left(\sigma_{xy,top} - \sigma_{xy,bot}\right)}{12}$$
eq. 134

A solução nodal de uma análise consiste de a) a solução dos graus de liberdade, tais como deslocamentos, e b) as reações calculadas nos nós restringidos - forças, por exemplo.

As soluções tais como tensões, deformações, etc., são dadas para o centróide do elemento. Os valores são calculados como uma média dos valores nos pontos de integração, e, uma vez calculados nos pontos de integração, são extrapolados para os nós.

Em suma, o elemento SHELL 63 utiliza uma formulação em que o elemento DKT se faz presente na função de forma de deslocamento **w**.

4.9 - Esquema da Análise.

Tendo-se em vista os 2 modelos, cada modelo com 6 casos de estudo, a análise é feita comparando-se os aspectos da distribuição de tensões e dos deslocamentos de cada modelo, com o objetivo de mapear as áreas de concentração de tensões. Com base nesse estudo, é feita uma aplicação de análise de instabilidade para o exemplo de um silo de milho. A principal característica avaliada concerne à distribuição de tensões, principalmente a tensão meridional de compressão, ligada à variação de espessura da chapa ao longo da altura quando comparada com uma espessura constante ao longo da altura.

A análise está dividida em duas etapas:

1. Avaliação, para cada modelo, das tensões e dos deslocamentos da estrutura;

 Comparação, entre os modelos, das regiões de concentração de tensões segundo a relação altura/diâmetro (H/D).

Foi escolhido um volume V $\approx 800 \text{ m}^3$ e as relações H/D variando de 1 a 5 de tal forma que:

TABELA 8 - Dimensões dos Modelos para o Volume de 800 m ³ .				
Volume	H/D	D	Η	
785	1	10	10	
848	5	6	30	

Cada modelo também teve uma distribuição de rede semelhante, com três tipos de malhas, indicadas na figura 47:

Figura 46 - Malhas e rede de elementos finitos nos modelos.

As bordas 1 e 4 têm o mesmo número de subdivisões, que é igual a 10, em uma faixa de 1 metro de altura, o que significa uma rede com malhas de 0,1 m de altura e largura igual ao valor do semiperímetro do modelo dividido por 18. As bordas 2 e 3 têm duas subdivisões em uma faixa de 1 metro de altura, que resulta em malhas de 0,5 m de altura e mesma largura que as malhas das bordas 1 e 4. A parte do meio tem faixas de 1 metro de altura, o que dá malhas com 1 m de altura e mesma largura das malhas das bordas. Vale esclarecer que os elementos finitos resultam com as mesmas dimensões das malhas.

4.9.1 - Avaliação dos esforços, tensões e deslocamentos em cada modelo.

Cada modelo será avaliado quanto à mudança da espessura das chapas ao longo da altura para os valores dos esforços (M_y - como descrito nos elementos, segundo o esquema da figura 43), das tensões (σ_y , σ_z - o índice y indica tensão tangencial e o índice z indica tensão meridional, com sinal negativo para compressão), e para os valores dos deslocamentos radiais (U_x).

O objetivo é mostrar o comportamento da casca para as diferentes espessuras adotadas. Serão mostradas as diferentes possibilidades de variação das espessuras das chapas metálicas e as faixas de extensão de cada espessura (por exemplo, chapas de 9,5 mm do fundo até a altura 2,0 m, seguidas por outras de espessura 8,0 mm, que vão de 2,0 m até 5 m).

Deve ser óbvio que com os valores das tensões tangenciais não se determina o valor da espessura da chapa de aço, pois o escoamento da parede do silo não é fator determinante para o cálculo. Os valores das tensões meridionais são os valores pelos quais se deve analisar a possibilidade do fenômeno de flambagem, que está tratado no **Capítulo 3** e aplicado ao exemplo do **Capítulo 5**.

Portanto, não é intenção modelar o comportamento ideal da casca cilíndrica, nem serem determinados valores para as tensões limites de flambagem, e sim estudar as possibilidades de comportamento, observando e descrevendo os valores das tensões e dos esforços na parede do silo ou reservatório.

Os modelos são entendidos com o auxílio de *figuras tridimensionais* (para o caso de comportamento assimétrico, i.e., estruturas solicitadas pelo vento), que ilustram as tensões, e com *gráficos* definidos para uma linha meridional (quando for o caso de comportamento axissimétrico, i.e., material ensilado ou hidrostático), que ilustram as tensões e os deslocamentos.

Logo, para os casos 1 e 2, e os casos 3 e 4, que admitem esforços axissimétricos, as tensões tangencial e meridional, e o deslocamento radial, são apresentados em tabelas e visualizados em gráficos.

Cada figura contém *4 quadros*. O *primeiro* é uma vista interna, da base ao topo, de metade da estrutura cilíndrica, como se o observador estivesse dentro da estrutura. O *quadro 2* apresenta uma vista isométrica do lado externo da estrutura. O *quadro 3* é uma vista, como

MODELO 1 - CASOS 1 e 2 - Figura 45 (Caso 1: e = constante, Caso 2 : e = variável). Tabela 4, e Gráficos 1 e 2.

Figura 47 - Espessuras do costado para o Modelo 1 - Casos 1 e 2

No gráfico 1, o comportamento dos deslocamentos fica evidente para a variação de espessura da parede. E, como se deve esperar, os deslocamentos são maiores no caso 2.

Analisando-se o gráfico 2, percebe-se que a distribuição de tensões para uma espessura constante é bem graduada de acordo com a solicitação hidrostática aplicada, ou seja, as maiores tensões tangenciais aparecem mais próximas do fundo do reservatório (cota 10 m do gráfico 2). Quando a espessura varia, é possível obter tensões tangenciais da mesma ordem de grandeza que as do fundo em trechos mais afastados do fundo (cota 0 a 5 m, no gráfico 2). Na cota 8.33 m ocorre uma mudança no comportamento das tensões tangenciais devido à mudança de espessura do costado.

Se as chapas estão bem posicionadas, ou seja, se elas se encontram a uma altura conveniente, os valores das tensões no encontro das chapas varia suavemente, como acontece na altura 5 m (tensão = 26 MPa) e na altura 4,6 (tensão = 23,8 MPa). Caso as chapas não estejam bem localizadas, ocorre uma mudança rápida, para uma distância pequena, nos valores das tensões, como acontece na altura 8,3 m (tensão = 43,3 MPa) e na altura 7,9 m (tensão = 41,4 MPa). De fato, a mudança mais brusca nos valores das tensões está localizada próximo ao fundo do reservatório, o que indica a espessura e a faixa de altura para essa espessura (0 a 2 m) não são adequados.

MODELO 1 - CASOS 3 e 4, Figura 45 (Caso 3: e = constante, Caso 4 : e = variável). Tabela 5, e Gráficos 3 e 4.

Figura 48 - Espessuras do costado para o Modelo 1 - Casos 3 e 4

Os deslocamentos radiais, no gráfico 3, para o caso de material ensilado, apresenta maior variação de deslocamentos que o caso hidrostático; a curva correspondente ao caso 3 é praticamente linear no trecho central, com perturbações nas regiões próximas às bordas; a curva correspondente ao caso 4 tem um comportamento tortuoso, reflexo da atuação do atrito do material ensilado com a parede do silo.

O gráfico 4 reflete as condições dos deslocamentos, tanto para o caso 3 quanto para o caso 4, apresentado configurações semelhantes às dos deslocamentos radiais.

O comportamento das tensões meridionais é suave para o caso de espessura constante (Caso 3), com um aumento de valores exponencial. Para a curva correspondente ao caso 4, com parede de espessura variável, ocorrem mudanças de inclinação da curva par os pontos de variação de espessura da chapa. Essas mudanças de espessura, para este caso, não chegam a mudar de modo considerável o comportamento da curva do caso 4, pois a curva não apresenta inclinações fortes.

• NOTA: A inclinação de uma curva deve ser entendida como a inclinação da reta tangente ao ponto da curva, como definido em cálculo diferencial.

MODELO 1 : CASOS 5 e 6 - Figuras 49-50 (Caso 5) - Tensões em Pa.

Figura 50 - Tensões tangenciais σ_y - Modelo 1 - Caso 6.

Nas figuras 49 e 50 estão mostradas as tensões tangenciais para a solicitação do vento. As maiores tensões estão localizadas próximas ao topo, com duas regiões distintas em vermelho e em azul. Isto corresponde à atuação, na região em azul, de pressão positiva do vento (ou sobrepressões); a região em vermelho corresponde ao efeito de sucção do vento. Dependendo da intensidade de atuação das forças do vento, pode ocorrer o fenômeno de ovalização da seção transversal da casca. Este ponto da análise fundamenta-se em observações feitas em Gaylord & Gaylord (1985).

MODELO 1 : CASOS 5 e 6 - Figuras 51-52 (Caso 6)

Figura 51 - Tensões meridionais $\sigma_z\,$ - Modelo 1 - Caso 5

Figura 52 - Tensões meridionais σ_z - Modelo 1 - Caso 6.

As figuras 51 e 52 apresentam regiões em azul, ou seja, maiores tensões de compressão, em duas regiões distintas: uma próxima ao topo, e outra junto à base. A região próxima ao topo indica cuidado em relação à atuação do vento a barlavento, na região de sobrepressão do vento. A região em azul próxima à base, alerta para um possível cuidado em relação à compressão, no entanto é de menor importância em relação à região próxima à tampa porque geralmente a base apresenta espessura maior.

A região em vermelho próxima à base, na região a barlavento, apresenta os maiores valores de tração meridional. É nesta região que se devem anotar os valores para o cálculo da ancoragem da estrutura ao vento. A outra região em vermelho, mais próxima da tampa, se vista em par com a região próxima à base, na realidade mostra como a estrutura está sendo solicitada: ocorre um efeito de arrancamento (na estrutura) em relação ao plano da base.

A região a sotavento não apresenta maiores tensões que a região a barlavento. Aliás, isto não significa muito, pois o vento pode atuar vindo de qualquer direção, o que indica ser necessário considerar a estrutura para a situação mais desfavorável em todo o perímetro.

Comparando-se as regiões de tensões para o caso da espessura constante e o caso da espessura variável, nota-se um aumento dos valores para a região de menor espessura (figura 50, na faixa de 6 a 10 m de altura). A localização das regiões de tensão, entretanto, não varia significativamente.

Capítulo 4 : Análise Numérica de Cascas Cilíndricas	47
4.1 - O Esquema Estático dos Reservatórios	47
4.2 - Os Modelos Geométricos dos Reservatórios	48
4.3 - As Características do Aço Empregado.	50
4.4 - Considerações acerca das Espessuras das Chapas.	50
4.5 - Os Casos em Análise	51
4.6 - As Ações Consideradas	53
4.7 - Combinação de Ações	53
4.8 - As hipóteses do Programa Computacional	59
4.9 - Esquema da Análise	61
4.9.1 - Avaliação dos esforços, tensões e deslocamentos em cada modelo.	63
, , , ,	

CAPÍTULO 5 - Caso Exemplo: Silo de Grãos.

O exemplo é para um reservatório cilíndrico de fundo plano, apoiado diretamente ao nível do solo, de volume aproximado 1615 m³ (Altura H = 17 m, diâmetro D = 11 m).

Roteiro

a) Determinação das pressões que atuam no silo:

- a .1) Tampa : pressão do vento
- a .2) Parede: pressão devida ao material armazenado pressão do vento
- a .3) Fundo: pressão devida ao material armazenado.

Normas técnicas utilizadas:

- NBR6123 Forças devidas ao vento em edificações
- DIN1055-6 Hipóteses para ações de projeto para construções, ações em silos (Lastannahmen für Bauten, Lasten in Silozellen).
- DIN 18914 Silos cilíndricos elevados de paredes delgadas em aço. Düsseldorf, set 1985

b) Determinação das espessuras das chapas.

- b .1) Tampa
- b .2) Parede
 - 1) Combinação das ações
 - 2) Determinação das espessuras das chapas

- a) Determinação das pressões que atuam no silo.
- a .1 Determinação das pressões que atuam na tampa.
- Pressão do vento em tampa cônica

Os coeficiente de pressão externa C_{pe} são distribuídos em faixas (coeficientes extraídos de Briassoulis (1986)):

Velocidade básica adotada:
$$V_0 = 40 \text{ m/s}$$

fatores adotados: $S_1 = 1,0$ (fator topográfico)
 $S_2 = 0,94.(z/10)^{0,105} = 0,94.(17/10)^{0,105}$
 $S_2 = 0,99$ (terreno com pequenos obstáculos)
 $S_3 = 0,95$ (Baixo fator de ocupação humana)

 Δp em Newtons/m² (componente estática de pressão do vento que atua perpendicularmente sobre um elemento de área)

$$\Delta p = C_{pe}.q.dA$$

$$q = 0,613.V_{k}^{2} \quad (N/m^{2})$$

$$V_{k} = S_{1}.S_{2}.S_{3}.V_{0} = 1,0.0,99.0,95.40$$

$$V_{k} = 37,62 \text{ m/s}$$
Portanto, $q = 867,56 \text{ N/m}^{2}$

Figura 75 - Valores das Pressões na cobertura do silo exemplo

O cálculo das áreas da cobertura para as faixas 1 a 6 está indicado no *Apêndice - Cálculo das Áreas de Fatias da Superfície Cônica*. Os resultados são:

Figura 76 - Áreas das Faixas de Pressão.

Com os valores da pressão do vento e as áreas onde atua o vento, pode-se calcular os esforços que a cobertura transmite ao costado do silo:

Figura 77 - Esforços transmitidos pela tampa ao costado do Silo.

Equilíbrio:

Direção Z:

$$-T + \left(\sum_{i=1}^{6} P_i A_i\right) \cdot \cos 26, 6^\circ = 0 \qquad T = 83.914 N$$

Direção X:

$$S + (-P_1A_1 - P_2A_2 - P_3A_3) \cdot \operatorname{sen}(26,6^\circ) + (P_4A_4 + 5_5A_5 + P_6A_6) \cdot \operatorname{sen}(26,6^\circ) = 0$$

S = 8.963 N

Momento em torno do eixo central y:

 $M + P_1 A_1 r_1 + P_2 A_2 r_2 + P_3 A_3 r_3 + P_4 A_4 r_4 + P_5 A_5 r_5 + P_5 A_6 r_6 = 0 \qquad r_i = x' \cos 26,6^{\circ}$ M = 23.804 N.m

a .2) Determinação das Pressões que atuam na parede do silo

a.2.1) Pressão devida ao vento

Extraindo os coeficientes da **Tabela 1** (pág. 20), monta-se a **Tabela 14** - Pressões do Vento ao longo da altura e do perímetro:

A pressão hidrostática p, em função da profundidade z, p(z), é calculada pela relação:

 $p = \gamma . z$ p = 10000*17,0 $p = 170.000 \text{ N/m}^2$

a .2.3) Pressão devida ao material armazenado - calculada com a DIN 1055-6 (1986)

- Material: milho
- $\gamma = 8000 \text{ N/m}^3$ peso específico
- $\phi = 28^{\circ}$ ângulo de atrito entre os grãos
- $\mu' = 0.25$ coeficiente de atrito entre os grãos e a parede
- $\mu = 0,53$ $\mu = tg \phi$

Perímetro U	Área da Seção	Raio hidráulico da célula cilíndrica
U = 3,14.D U = 34,56 m	$S = 95,03 m^2$	S/U = 2,75 m (raio hidráulico da célula cilíndrica)

Para o caso de esvaziamento não-uniforme: $p_c = C_m$. (Pressão estática de Janssen) São também considerados os impactos devido ao possível desmoronamento de cúpulas. Para esses casos, os coeficientes adotados são:

$C = C_h C_e C_r C_g$	$C_h =$	C _e	Cr	Cg	C _m =	$C_s =$
	0,13*H/D+.87				1+1,3C√17/11	1+0,5/√5,5
0,048	1,07	1,0	0,05	0,9	1,08	1,21

a. **3** - Determinação das pressões que atuam no fundo do silo (segundo a DIN1055-6)

 $q_f = 1,5.q_c < 8*17 = 136.000 \text{ N/m}^2$ $q_f = 1,5*88.641$ $q_f = 132.962 \text{ N/m}^2$

b) Determinação das Espessuras das Chapas

b.1) Tampa (Calculada segundo Gaylord &Gaylord (1984), verificada de acordo com a NBR8800 (1986)).

Tipo Cônica: inclinação de 1:2 (26,6°)

suportada por vigas radiais apoiadas em dois anéis - um anel sobre o silo, diâmetro 11 m, chamado anel de tração, o outro no topo do cone, diâmetro 1m, chamado de anel de compressão.

A ações são enumeradas para as combinações:

- 1. Ação do vento já calculada no item a .1
- 2. Acidental (homem sobre a tampa), na posição mais desfavorável, meio do vão: 1.000 N
- 3. Sobrecarga: 250 N/m²
- 4. Permanente : peso próprio, estimado em 440 N/m²

Figura 78 - Esquema da Cobertura Cônica

No esquema da cobertura cônica são adotadas 10 vigas radiais principais (5 m), 10 vigas radiais secundárias (3 m), de tal modo que no perímetro do topo do silo o espaçamento entre as vigas principais é 1,73 m.

As vigas principais são consideradas apoiadas no anel central (anel de compressão). O esquema de solicitações básicas sendo definido como:

Número	descrição
1	Permanente
2	Sobrecarga
3	Vento
4	Acidental (concentrada)

Combinação de Ações:

mais desfavorável (sem o efeito de sucção do vento)

 $C_1 = 1,3x440 + 15x250 = 947 \text{ N/m}^2$

considerando a sucção do vento, em seu valor mais desfavorável (faixa 4 da **figura 75**): $C_2 = 1.0x440 + 1.4x(1128) + 250 = -890 \text{ N/m}^2$

As placas são analisadas de acordo com Gaylord & Gaylord (1984) (tabela 6-6 , pág.195) (também no apêndice), considerando um estado limite de utilização definido no anexo C da NBR8800 (1986).

Placa 1

 $b = 3,00 \text{ m}, p = 250 \text{ N/m}^2, E = 205.000 \text{ Mpa}, t = 0,00375 \text{ m}$

$$\sqrt{\frac{p}{E}} \left(\frac{b}{t}\right)^2 = \sqrt{\frac{250}{205e9}} .800^2 = 22,34$$
 $\frac{b}{t} = \frac{3}{0,00375} = 800$

Esse valor 22,34 implica, pela tabela 6-6, na relação flecha δ no meio do maior vão (no caso 3 m) para a espessura da placa *t*: $\frac{\delta}{t} = 2,74$ $\delta = 0,00375 * 2,74 \cong 10mm < 17$ mm O.k., satisfaz a NBR8800

$$\frac{3}{.00375}\sqrt{\frac{f}{205000}} = 11 \Rightarrow \sqrt{\frac{f}{E}} = 0,01375 \Rightarrow f \cong 38,76 Mpa < 250 \text{ Mpa OK}$$

Vigas Secundárias

comprimento em projeção: a = 5,5 - 2,5xcos 18° , a = 3,12 m.

Figura 79 - Equilíbrio da Viga Secundária

$$q_1 = 690 \frac{11\pi}{20} \cong 1192 + 100 = 1292N / m \qquad V_1 = \frac{3,122}{6} (2*1292 + 642) + \frac{1000}{2} \therefore V_1 \cong 2180N$$
$$q_2 = 690 \frac{5\pi}{20} \cong 542 + 100 = 642N / m \qquad V_2 = \frac{3,122}{6} (1292 + 2*642) + \frac{1000}{2} \therefore V_2 \cong 1840N$$

O momento atinge valor máximo em x₁:

$$\frac{x_1}{a} = \frac{1292 - \sqrt{\left(1292^2 + 1292*642 + 642^2\right)/3}}{1292 - 642} \therefore \frac{x_1}{a} = 0,472m$$
$$M = \frac{3,122^2}{6} \cdot 0,492 \Big[2*1292 + 642 - 3*1292*0,492 + (1292 - 642)0,472^2 \Big]$$
$$M = 1541 + \underbrace{500 * \frac{3,122}{0,476}}_{\text{N}} \cong 2285N.m$$
$$\text{Referente à força de 1000 N}$$
Referente à força de 1000 N

Perfil escolhido : I_p 80 (Manual Brasileiro de Estruturas Metálicas (1986) Vol. II, pág. 28) (ver também no Anexo 5)

Figura 80 - Características do Perfil I adotado

d = 80 mm	$b_f = 46 \text{ mm}$	$t_{\rm w} = 3,8 {\rm mm}$	$t_{\rm f} = 5,2 {\rm mm}$	p = 60 N/m
$A = 7,64 \text{ cm}^2$	$W_x = 20 \text{ cm}^3$	$I_x = 80 \text{ cm}^4$	$r_y = 1,05 \text{ cm}$	$I_t = 0,70 \text{ cm}^4$

Classificação da Viga

$$\frac{d}{t_w} = \frac{80}{3.8} = 21 < \lambda_r = 5.6 \sqrt{\frac{E}{f_y}} = 160$$
 viga não-esbelta

Flambagem Lateral da Mesa - FLM

$$\lambda = \frac{b}{t} = \frac{b_f}{2t_f} = \frac{46}{2 \cdot 5, 2} = 4,42 < \lambda_p = 0,38 \sqrt{\frac{E}{f_y}} \approx 11$$

Como $\lambda < \lambda_p$, então $M_n = M_{pl}$

Flambagem Lateral da Alma - FLA

$$\lambda = \frac{d}{t_w} = \frac{80}{3.8} = 21 \qquad \lambda_p = 3.5 \sqrt{\frac{E}{f_y}} \cong 100$$

Como $\lambda < \lambda_p$ $M = M_{pl}$

Verificação Global das Vigas Secundárias

Flambagem Lateral com Torção - FLT

$$\begin{split} \lambda &= \frac{l_b}{r_y} = \frac{312.2}{1.05} = 297 \qquad \lambda_p = 1.75 \sqrt{\frac{E}{f_y}} \equiv 50 \Longrightarrow \lambda > \lambda_p \\ \lambda_r &= \frac{0.707 \beta_1 C_b}{M_r} \sqrt{1 + \sqrt{1 + \frac{4\beta_2}{C_b^2 \beta_1^2} M_r^2}} \cong 385 \\ \beta_1 &= \pi \sqrt{GE} \sqrt{I_t A} \cong 1027.10^3 N.m \\ \beta_2 &= 6.145 \frac{A(d-t_f)}{I_t} \cong 3917 \qquad C_b = 1.0 \\ M_r &= W_x (f_y - f_r) = 20(250 - 115) \therefore M_r = 2700 N.m \\ \lambda_r &\cong 385 > \lambda \qquad \lambda_p = 50 < \frac{\lambda}{297} < 385 = \lambda_r \\ M_n &= M_{pl} - (M_{pl} - M_r) \frac{\lambda - \lambda_p}{\lambda_r - \lambda_p} \qquad M_{pl} = M_y \qquad M_{pl} = 20*250 = 5000 N.m \\ M_n &\equiv 3304 N.m \\ \phi_b M_n &= 0.9.3304 = 2973 N.m \qquad M_d &\cong 2970 N.m \\ \hline \text{Vigas de Topo às Vigas Secundárias} \\ \text{Vão} &= 2*3* \text{sen } 18^\circ = 1.85 \text{ m} \qquad \text{Va}_2 = 1840 \text{ N} \end{split}$$

$= 2*3* \text{sen } 18^\circ = 1,85 \text{ m}$		$V_2 = 1840 N$
	Peso da viga de topo	47 N
		1887 N

Características do perfil adotado:

 $\sub{75x40},$ P = 51 N/m, t = 4,76 mm, W_x = 21,1 cm 3 , r_y = 1,20 cm

Vigas Principais

Inicialmente, é adotado um peso de 150 N/m para a viga principal.

Figura 81 - Equilíbrio da Viga Principal

$$q_{1} = 1192 + 150 = 1342N / m \qquad q_{2} = 690 \frac{2\pi}{150} + 150 \Rightarrow q_{2} = 584N / m$$

$$V_{1} = \frac{5}{2} (1342 + 584) + 500 + 278 \Rightarrow V_{1} = 5037N$$

$$V_{1} = \frac{5}{2} (1342 + 584) + 500 + 416 \Rightarrow V_{1} \cong 5176N$$

$$Htg\phi = \frac{5}{6} (1342 + 2*584) + 500 + 416 \Rightarrow H \cong 6007N$$
O momento a 3 m, x₁/a = 3/5 = 0,6:

$$M = 2958N . m$$

Perfil Escolhido: IP 100

d = 100 mm	$b_f = 55 \text{ mm}$	$t_{w} = 4,1 \text{ mm}$	$t_{\rm f} = 5,7 {\rm mm}$	p = 81 N/m
$A = 10,3 \text{ cm}^2$	$W_x = 34,3 \text{ cm}^3$	$I_x = 171 \text{ cm}^4$	$r_y = 1,24 \text{ cm}$	$I_t = 1,21 \text{ cm}^4$

$$\frac{d}{t_w} = \frac{100}{4,1} = 24, 4 < \lambda_r = 5, 6\sqrt{\frac{E}{f_y}} = 160$$

viga não-esbelta

Flambagem Lateral da Mesa - FLM

$$\lambda = \frac{b}{t} = \frac{b_f}{2t_f} = \frac{55}{2*5,7} = 4,82 < \lambda_p = 0,38 \sqrt{\frac{E}{f_y}} \cong 11$$

Como $\lambda < \lambda_p$, então $M_n = M_{pl}$
Flambagem Lateral da Alma - FLA

$$\lambda = \frac{d}{t_w} = \frac{100}{4,1} = 24,4 \qquad \lambda_p = 3.5 \sqrt{\frac{E}{f_y}} \approx 100$$

Como $\lambda < \lambda_p$

 $M = M_{pl}$

Verificação Global das Vigas Principais

Flambagem Lateral com Torção - FLT

$$\begin{split} \lambda &= \frac{l_b}{r_y} = \frac{312.2}{1.24} \cong 252 \ \lambda_p = 1.75 \sqrt{\frac{E}{f_y}} \cong 50 \Longrightarrow \lambda > \lambda_p \\ \lambda_r &= \frac{0.707 \beta_1 C_b}{M_r} \sqrt{1 + \sqrt{1 + \frac{4\beta_2}{C_b^2 \beta_1^2} M_r^2}} \cong 315 \\ \beta_1 &= \pi \sqrt{GE} \sqrt{I_r A} \cong 1420.10^3 \ N.m \\ \beta_2 &= 6.145 \frac{A \left(d - t_f \right)^2}{I_t} \cong 4856 \qquad C_b = 1.0 \\ M_r &= W_x \left(f_y - f_r \right) = 34.3(250 - 115) \therefore M_r = 4630 \ N.m \\ \lambda_r &\cong 315 > \lambda \qquad \lambda_p = 50 < \frac{\lambda}{252} < 315 = \lambda_r \\ M_n &= M_{pl} - \left(M_{pl} - M_r \right) \frac{\lambda - \lambda_p}{\lambda_r - \lambda_p} \qquad M_{pl} = 34.3^* 250 = 8575 \ N.m \qquad M_{pl} = M_y \\ M_n &\cong 5568 \ N.m \\ \phi_b M_n &= 0.9.5568 = 5011 \ N.m \qquad M_d \cong 5011 \ N.m \end{split}$$

$$\delta(x_1 = 3,0m) = \frac{864*3}{24E171.10^{-8}} (5^3 - 2*5*3^2 + 3^3)$$

$$\delta = 0,0191m \cong 19mm \Longrightarrow \frac{19}{4470} \cong \frac{1}{235}$$
 O.K

Anel de Compressão

O anel de compressão está sujeito às solicitações de 10 vigas principais igualmente distribuídas no perímetro. A figura 48 ilustra o esquema de forças atuantes no anel e a força de compressão a que a seção [está submetida:

Figura 82 - Equilíbrio do Anel Central

Figura 83 - Esquema do Anel Central

Equilíbrio na direção x	Equilíbrio na direção y
O.K. (simetria)	$2V - 2H \operatorname{sen} 36^{\circ} - 2H \operatorname{sen} 72^{\circ} = 0$ $V = H(\operatorname{sen} 36^{\circ} + \operatorname{sen} 72^{\circ})$ $V \cong 9244N$

Admitindo um perfil [100 - de acordo com a Tabela 3 do Anexo 1 - que tem área transversal A = 13,5 cm² :

$$\frac{V}{A} = \frac{9244N}{0,00135m^2} \cong 6,85MPa \qquad \text{O.K.}$$

Anel Tracionado

As forças radiais que atuam no anel tracionado são as mesmas que atuam no anel central. Logo, as forças que atuam no anel tracionado têm a mesma resultante V (figura 82). O anel tracionado é admitido com a seção indicada na figura 84 :

a) Ligação no anel

b) Detalhe do anel

Figura 84 - Seção transversal do anel tracionado.

A área da seção do anel tracionado é A = 69,45 cm², que, para V = 9244 N resulta numa tensão igual a 0,133 kN/cm²

Cálculo dos Parafusos de ligação da:

- Viga principal ao anel central (figura 83): 2 parafusos ASTM A307 ¹/₂" (figura 85) solicitação: (esforço cortante = 5,2 KN) resistência: 13,25 KN
- *Viga secundária à viga de topo* (o detalhe para a chapa de ligação é semelhante ao da figura 85, a menos da altura de 80 mm, que deve ser 60mm, para se adequar ao I_P 80):

Figura 85 - Detalhe da chapa para a viga principal

b.2) Determinação das espessuras das chapas da parede cilíndrica

b.2.1) Combinação das Ações.

 $C_1 = 1,0 \text{ p.p.} + 1,4.\text{vento}$

peso-próprio (p.p.) : (peso da tampa, por metro de perímetro) + peso das chapas por metro linear do perímetro ao longo da altura.

Peso da Tampa = 7.427 + 17.881+ 30.684 + 329	Peso da Tampa = 56.321 N
Perímetro = 11 m*p = 34,56 m	$\frac{Peso.da.tampa}{perimetro} \cong 1630N \ / \ m$

Figura 87 - Esquema de aplicação das forças no costado

O cálculo numérico, via elementos finitos, é determinado utilizando-se o programa ANSYS©. Os resultados numéricos estão indicados em figuras que indicam as áreas de mesma tensão meridional, nos casos de solicitação para o vento e para o material ensilado. Ao final deste capítulo, estão anexados os resultados de deslocamentos e tensões meridionais e tangenciais , ao longo de uma linha meridional, para o caso do material ensilado, devido à axissimetria do modelo.

b.2.2) Esquema das Malhas e da Rede de Elementos Finitos para o Silo Exemplo

Considerando-se a ação do vento e a geometria axissimétrica da estrutura, foi adotado um modelo simétrico, formado por metade da casca cilíndrica do silo exemplo.

Além disso, esse modelo foi dividido em 10 áreas de interesse para a análise da estrutura, e foi fixada uma origem global. A figura 88 ilustra o modelo, cuja base foi considerada com restrições aos deslocamentos e aos giros nas direções x, y e z. As figuras posteriores e mostram a distribuição dos elementos e dos nós no modelo.

Área 10	Área 1
Área 9	Área 2
Área 8	Área 3
Área 7	Área 4
Área 6	Área 5

Figura 88- Definição das Áreas do Silo-exemplo.

882		880				←		874	531	530			\leftarrow		525		523
873			870					865	540)				535			532
864				860				856	549)			545				541
855					850			847	558	5		555					550
846	845					840		838	567	1	565					560	559
837		835					830	829	576	575					570		568
828			825					820	585	5				580			577
819				815				811	594	-			590				586
810					805			802	603			600					595
801	800					795		793	612		610						604
224				220				216					105				101
324				320	210	\leftarrow		316	185			105	185		←		181
315	205				310	200		307	198	,	205	195				200	190
306	305	205				300	200	298	207	015	205				210	200	199
297		295					290	289	216	215					210		208
522		520			←		515	514	333			330		←			325
513			510					505	342	2	340					335	334
504				500				496	351	350					345		343
405					490			487	360)				355			352
485	485					480		478	369)			365				361
477		475					470	469	378	;		375					370
468			465					460	387	'	385					380	379
459				455				451	396	395					390		388
450					445			442	405	5				400			397
441	440					435		433	414	-			410				406
432		430					425	424	423			420					415
200			205					200	226	•	1			220			217
288			285	275		←		280	223			←	220	220			$\frac{217}{220}$
279				275	265			$\frac{2}{1}$	232	•		240	230				226
$\frac{2/0}{261}$	260				265	255		262	243	•	250	240					235
201	260					233		255	252		250						244
792		790		←			785	784	621	620		\leftarrow			615		613
783			780					775	630)				625			622
774				770				766	639)			635				631
765					760			757	648	;		645					640
756	755					750		748	657	'	655					650	649
747		745					740	39	666	665					660		658
738			735					730	675	;				670			667
729				725				721	684	-			680				676
720					715			712	693			690					685
711	710					705		703	702		700					695	694

Figura 89 - Mapa dos Elementos Finitos na Casca do Silo Exemplo.

861	878	877	876	875	874	873	872	871	572	572	580	579	578	577	576	575	574	573	571
870	950	941	932	923	914	905	896	887	581	581	662	653	644	635	626	617	608	599	590
869		940					895	886	582	582			645					600	591
868			930					885	583	583		655		\downarrow			610		592
867				920				884	584	584	665			•		620	+		593
866					910			883	585	585					630	1	+		594
865	945					900		882	586	586				640		1	+		595
864		935			1		890	881	587	587			650			1	+	605	596
863			925					880	588	588		660					615		597
862	942	933	924	915	906	897	888	879	589	589	670	661	652	643	634	625	616	607	598
175	183	182	181	180	179	178	177	176	11	11	24	23	22	21	20	19	18	17	16
175	183	182	181	180	179	178	177	176	11	11	24	23	22	21	20	19	18	17	16
356	380	377	374	371	368	365	363	359	230	230	266	263	260	257	254	251	248	245	242
355				370					231	231							-	246	243
354	378	375	372	369	366	363	360	357	232	232	268	265	262	259	256	253	250	247	244
345	353	352	351	350	349	348	347	346	229	229	241	240	239	238	237	236	235	234	233
345	353	352	351	350	349	348	347	346	229	229	241	240	239	238	237	236	235	234	233
490	570	560	550	540	530	520	510	500	381	381	471	461	451	441	431	421	411	401	391
489									382	382							1		392
488					1				383	383						+	+		393
487					1				384	384				¥	-				394
486									385	385	475	465	455	445	435	425	415	405	395
485	565	555	545	535	525	515	505	495	386	386						-	+		396
484									387	387						+	+		397
483					↑	_			388	388				¥	-	_			398
482					1				389	389						+	+		399
481	561	551	541	531	521	511	501	491	390	390	480	470	460	450	440	430	420	410	400
309	320	319	318	317	316	315	314	313	270	270	278	277	276	275	274	273	272	271	269
309	320	319	318	317	316	315	314	313	270	270	278	277	276	275	274	273	272	271	269
312	344	341	338	335	332	329	326	323	279	279	306	303	300	297	294	291	288	285	282
311									280	280					295				283
310	342	339	336	333	330	327	324	321	281	281	308	305	302	299	296	293	290	287	284
130	142	141	140	139	138	137	136	135	62	62	70	69	68	67	66	65	64	63	61
130	142	141	140	139	138	137	136	135	62	62	70	69	68	67	66	65	64	63	61
788	860	851	842	833	824	815	806	797	672	672	762	753	744	735	726	717	708	699	690
787		850					805	796	673	673			745				-	700	691
786			840					795	674	674		755			-	-	710		692
785				830	^	-		794	675	675	765				-	720	-		693
784		<u> </u>			820		<u> </u>	793	676	676	<u> </u>		<u> </u>	*	730	+	+		694
783	855					810		792	677	677				740		+			695
782		845					800	791	678	678			750			+		705	696
781		1	835				1	790	679	679	1	760				_	715		697
780	852	843	834	825	816	807	798	789	680	680	770	761	752	743	734	725	716	707	698
771	779	778	777	776	775	774	773	772	671	671	689	688	687	686	685	684	683	682	⊥ 681

Figura 90- Mapa dos Nós dos Elementos Finitos na Casca do Silo Exemplo b.2.3) Verificações à Flambagem

Faixas	1 ^a	2ª	Faixas	3 ^a	4 ^a	Faixas	5 ^a				
17 - 16 m	6,3	6,3	16 - 17 m	6,3	4,75	-	-				
16 - 14 m	6,3	6,3	14 - 16 m	6,3	4,75	7 - 17	4,75				
3 - 14m	6,3	4,75	3 - 14 m	4,75	4,75	4 - 7 m	6,3				
	-	-	2 - 3 m	8,0	8,0	2 - 4 m	8,0				
1 - 3 m	9,5	8,0	1 - 2 m	9,5	9,5	1 - 2 m	9,5				
0 - 1 m	12,5	9,5	0 -1 m	12,5	12,5	0 -1 m	16,0				
	TABELA 17 - Variações de espessura testadas para o silo-exemplo										

Para essa configuração de elementos finitos, foram ensaiados no ANSYS cinco variações de espessura (em milímetros) e escolhida a quinta variação :

O critério para a avaliação das 5 variações testadas é o de flambagem. São verificadas a flambagem para o silo vazio e sob a ação do (verificação de flexão + compressão), para o silo cheio com milho (verificação de compressão + pressão interna). Além disso, uma verificação prévia, apenas para a expressão clássica de cilindro axialmente comprimido também foi efetuada (eq. 46). O resultado superestima o valor da carga crítica.

• Verificação de Flexão + compressão (solicitação do vento - silo vazio)

O peso-próprio da tampa foi computado para se obter σ_0 , que é a tensão uniforme de compressão devida à força axial de projeto (eq. 59).

Dos resultados do ANSYS, é obtido o valor da tensão máxima de compressão meridional, $\sigma_b = 9,73$ MPa, sendo analisada as espessuras de chapa onde atua essa tensão (4,75 mm, 6,3 mm e 12,5 mm, para as regiões em azul na figura). Foi escolhida essa figura porque são as tensões máximas atuantes no elemento (na face interna da casca - S_{z botton})

Para uma tensão de compressão σ_b = -7,9 MPa, os resultados são:

Espessuras	Tensão Crítica		Δlfa		Tensão Obtida					
m	(MPa)		Alla		(MPa)					
0.00475	107		0.827		66.42	<	107	O		
0.00630	142		0.901		96.02	<	142	O		
0.00800	180		0.973							
0.00950	214		1.029							
0.01600	282		1.130		161	<	282	O		
TABELA 18 - Verificação de flambagem para flexão + compressão										

• Verificação de compressão + pressão interna

Para esta verificação precisa-se determinar a tensão de membrana de projeto, σ_{zd} , a pressão interna estática p_c (de Janssen) correspondente a σ_{zd} , e dispor da tensão de escoamento do aço, do raio e da espessura na seção. Pondo em forma de um roteiro:

- 1. Dado σ_{zd}
- 2. Calcula-se a tensão tangencial, $\sigma_{\theta} = -p_c \, \frac{R}{e}$
- 3. Calcula-se a tensão efetiva (eq.51) $\sigma_{ef,d} = \sqrt{\sigma_{zd}^2 + \sigma_{\theta d}^2 \sigma_{\theta d} \sigma_{zd}}$
- 4. Acha-se (eq. 58) o parâmetro $\beta = \frac{\sigma_{zd}}{\sigma_{ef,d}}$

5. Pela eq. 57, calcula-se
$$\rho = \frac{\sigma_{\theta d}}{E} \sqrt{\frac{R}{e}}$$

6. Determina-se α_0 (eq. 49 ou eq. 50, dependendo do valor de R/e)

7. Calcula-se
$$\alpha_p = \alpha_0 + (1 - \alpha_0) \frac{\rho}{\rho + 0,007}$$

8. Acha-se
$$\lambda_p = \sqrt{\frac{\beta f_y}{\alpha_p \sigma_{cr}}}$$

- 9. Finalmente, obtém-se $\sigma_{ef,u}$ com uma das equações 53 ou 54.
- 10. Compara-se $\sigma_{ef,d} < \sigma_{ef,u}$.

Espessuras	рс	(σz)	σθ	σef,d	β	ρ	α0	αρ	λρ	σef,u	
CASO 5											
4,75	0.036	22	-41.68	56.02	0.393	0.0069	0.2048	0.600106	1.236	78.66	
6,30	0.047	22	-41.03	55.41	0.397	0.0059	0.2356	0.585639	1.092	122.61	
8,00	0.050	40	-34.38	64.47	0.62	0.0044	0.2650	0.548583	1.252	73.26	
9,50	0.051	45	-29.53	65	0.692	0.0035	0.2884	0.524068	1.242	76.74	
16,00	0.053	59	-18.22	69.91	0.844	0.0016	0.3722	0.491802	1.234	79.38	
TA	TABELA 17 - Verificação à flambagem para compressão + pressão interna										

As figuras e as tabelas de onde são obtidos os valores para o cálculo das tabelas 16 e 17 são fornecidos primeiro para a verificação de flexão + compressão, e depois para o caso de compressão + pressão interna:

Figura 91 - Tensões meridionais (vento): face interna da casca

Figura 92 - Tensões meridionais (solicitação: vento): superfície média

Figura 93 - Tensões meridionais (solicitação: vento): face externa da casca

Figura 95 - Tensões meridionais (solicitação: grãos): superfície média

Figura 96 - Tensões meridionais (solicitação: grãos): face externa da casca

Concluída a verificação à flambagem do costado do silo de grãos, as espessuras das chapas do costado são:

Figura 97 - Espessuras do Costado do Silo Exemplo.

Capítulo 6 - Conclusões

O comportamento das estruturas em cascas, de geometria cilíndrica, teve enfoque à aplicação em silos e em reservatórios metálicos de paredes delgadas (400 < r/e < 500). As características que diferenciam um silo de um reservatório foram apresentadas e o fenômeno de flambagem foi analisado para tipos determinados de solicitação da estrutura. As conclusões serão feitas com base nos modelos 1 e 5 (H/D = 1, e H/D = 5, respectivamente) da análise numérica, e esclarecidas segundo a teoria apresentada no capítulo 3. Serão comparados os resultados numéricos aos métodos de verificação da norma européia [ECCS (1988)].

Para as estruturas de silos e de reservatórios de relação altura/diâmetro 1 (modelo 1), a flambagem pode ocorrer quando a estrutura está vazia e submetida à ação do vento no modo de flambagem assimétrico, ou seja, quando a solicitação que predomina é a pressão externa do vento. Observe-se a distribuição das tensões tangenciais nas figuras 49 e 50 (página 74), com atenção às regiões de concentração de tensão positiva e de tensão negativa. Esse modo de flambagem pode ocorrer na forma de ovalização da seção transversal da estrutura.

No modelo 5, admitidas também as condições de solicitação do vento e a estrutura vazia, a flambagem pode ocorrer devido à concentração de tensões de compressão de membrana (meridionais).

A figura 83 ilustra os casos do modelo 1 (quadros 1 e 2) e do modelo 5 (quadros 4, 5, 6). No modelo 1, as tensões que podem potencializar a flambagem são as tensões tangenciais, mas não há predomínio dessas tensões sobre as tensões meridionais de membrana. As tensões que predominam no modelo 5 são as tensões meridionais.

Figura 83 - Regiões de concentração de tensões nos modelos 1 e 5.

Quando a estrutura é um silo e a solicitação predominante deve-se ao material ensilado, o modo de flambagem é o axissimétrico. Os silos mais baixos (H/D=1) apresentam menor risco de sofrer flambagem devido à compressão meridional (direção da geratriz) do que os silos de relação H/D=5, porque o atrito desenvolve-se por unidade de comprimento. Os resultados obtidos para o modelo 1 indicam maior concentração de tensão tangencial em relação à tensão meridional de compressão (Tabela 10, página 70 e gráficos 4 e 5, páginas 72 e 73). Para o modelo 5, as tensões tangenciais não predominam sobre as tensões meridionais (Tabela 12, página 82 e gráficos 9, 10, páginas 84 e 85).

Os resultados obtidos com a norma do ECCS (1988) referem-se ao exemplo 6 do capítulo 5. Os valores da análise numérica foram obtidos no ANSYS© para as solicitações do material ensilado, não sendo considerada a análise da solicitação do vento.

Na análise numérica, o silo apresentou valor de flambagem maior que o valor calculado com o ECCS(1988). O cálculo do silo, considerando a ação do material ensilado provocando compressão na direção da geratriz, forneceu resultados da tensão crítica praticamente iguais ao da teoria clássica de flambagem no caso axissimétrico (equação 44). O caso onde é considerada a ação de pressão lateral interna (provocada pelo material ensilado) forneceu uma tensão crítica de flambagem menor que o da equação 44. Os valores

encontrados utilizando-se o ECCS(1988) são menores ainda que a simulação numérica para o caso de compressão axial combinado à pressão interna (em torno de 20% menores).

Pode-se observar que as discrepâncias na avaliação dos valores críticos da tensão são oriundas de fatores considerados apenas com parâmetros experimentais. A discrepância maior é obtida para o silo com material ensilado, onde a diferença entre o valor clássico da tensão crítica (eq. 44) e os valores numéricos via ANSYS© chegam a 30%. Para os valores obtidos com o ECCS(1988), a tensão crítica chega a ser 50% menor que o valor obtido com a expressão clássica de compressão axissimétrica (eq. 44).

Como sugestões a trabalhos futuros, pode-se observar que os casos de estruturas danificadas pelo vento são numerosos e a bibliografia é reduzida para o estudo de estruturas submetidas à ação do vento. Um estudo para se calcular uma estrutura cilíndrica (silo ou reservatório metálico de paredes delgadas) submetida à ação do vento é necessário para se calcular esse tipo de estrutura.

A consideração de imperfeições também pode ser abordada em um estudo. Já existe uma bibliografia mais abrangente que o caso de solicitação de vento, com estudos de parâmetros para serem considerados esses efeitos devidos às imperfeições.

Como observação final, deve-se cuidar na simulação numérica de detalhes inerentes ao projeto em si. Não foram trabalhados detalhes de aberturas no costado, nem sistemas de ventilação interna do material ensilado. Os efeitos devidos ao esvaziamento do silo foram considerados nas ações, para um esvaziamento centrado, não sendo considerada uma descarga excêntrica na simulação numérica.; um caso que pode ser estudado.

REFERÊNCIAS BIBLIOGRÁFICAS

- ABNT NBR 6120 (1980) Fcargas para o cálculo de estruturas de edificações
- ABNT NBR 6123 (1987) Forças Devidas ao Vento em Edificações. (incorporada a errata nº 1 de DEZ./1990 84 pág)
- ABNT NBR 7821 (1983) Tanques soldados para armazenamento de petróleo e derivados.
- ABNT NBR 8681 (1983) Ações e segurança nas estruturas.
- ABNT NBR 8800 (1986) Projeto e execução de estruturas de aço de edifícios.
- ABNT NBR11162 (1990) Silos cilíndricos para grãos vegetais.
- ABNT NBR11165 (1990) Componentes de silos cilíndricos metálicos para grãos vegetais
- ANSOURIAN, Peter (1992). "On the Buckling Analysis and Design of Silos and Tanks". Journal of Constructional Steel Research, 23, 21 pág.
- AWWA (1967) American Water Works Asociation: *Steel Tanks, Standpipes, Reservoirs and Elevated Tanks - For Water Storage*. AWWA D100-67 - AWS D5, 2-67; New York.
- BEAUFAIT, Fred W., JOANNIDES, Socrates, A, GERLEIN, Mauricia A .(1967) "Analysis of Shell Walls of Circular Tanks under Axissummetrical Pressure".
- BILLINGTON, David P (1965). Thin Shell Concrete Structures. McGraw-Hill, USA.
- BULL, John W. (1990) Finite Element Applications to Thin-Walled Structures. Elsevier-Applied Science, edited by John W. Bull, The Universities Press LTD, Belfast, Northern Ireland.
- BRIASSOULIS, D., PECKNOLD, D. A (1986). "Anchorage Requirements for Wind-Loaded Empty Silos", Journal of Structural Engineering, vol 112, nº2.
- BRUSH, D.O., ALMROTH, B. O. (1975) *Buckling of Bars, plates and shells*. McGraw-Hill Book company, New York
- BUSHNELL, David . (1989) "Computerized Buckling analysis of shells. Kluwer Academic Publishers, Dordrecht, The Netherlands.
- CROLL, J.G.A., WALKER, A. C. (1972) Elements of Structural Stability. The Macmillan Press, Great Britain.
- DIN 1055-6 (1986), Lastnnahmen für Bautenm Lasten in Silozellen. Fassung September .
- DIN 18914, (1985) Thin walled cylindrical steel tower silos.

- EGGWERTZ, Sigge, SAMUELSON, Lars Å. (1991) "Design of Shell Structures with Opening Subjected to Buckling". Journal of Construction Steel Research, 18.
- ESSLINGER, M., AHMED, S. R., SCHROEDER, H. H. (1971) "Stationäre Windbelastung Offner und Geschlossener Kreyszylinder Silos, Der Stahlbau, Dec.
- FORTES FILHO, Jorge.(1985) *Uma Introdução ao Estudo dos Silos*. Dissertação de mestrado na Escola de Engenharia de São Carlos/USP.
- FARKAS, Jósef, JARMÁI, Károly.(1996) "Fabrication Cost Calculation and Optimum Design of Welded Steel Silos". Welding in the World - Le Soudage dans Le Monde. Vol 37, Nº 5, Elsevier Science Ltd, Great Britain, 1996.
- GAYLORD, Edwin Henry, GAYLORD, Charles N (1984). *Design of Steel Bins for Storage of Bulk Solids*. New Jersey, USA, William J. Hall (editor).
- GAYLORD, Edwin Henry, GAYLORD, Charles N.(1977) "Granular Material Pressures in Bins", Winter Meeting American Society of Agricultural Engineers. (Paper n°77-4503 ASAE).
- GHALI, A .(1979) Circular Storage Tanks and Silos. London, 1st edition, Spon Limited.
- GODOY, Luis A .(1996) Thin-Walled Structures with Structural Imperfections: Analysis and Behavior, Pergamon
- GRAVINA, Pedro B. J.(1957) Teoria e Cálculo das Cascas. Cascas de Revolução. São Paulo.
- GREINER, R., DERLER, P.(1995) "Effect of Imperfections on Wind Loaded Cylindrical Shells". Thin-Walled Structures.
- HUTCHINSON, John. (1965) "Axial Buckling of Pressurized Imperfect Cylindrical Shells". AIAA Journal, vol 3, n° 8.
- KNEBEL, K., SCHWEIZERHOF, K (1995). "Buckling of Cylindrical Shells Containing Granular Solids". Thin-Walled Structures, 23, 1995.
- KNOEDEL, Peter, UMMENHOFER, Thomas, SCHULZ, Ulrich (1995). "On the Modelling of Different Types of Imperfections in Silo Shells". Thin-Walled Structures, 23.
- KWADE, Arno, SCHULZE, Dietmar, SCHWEDES, Jörg.(1994) "Auslegung von Silos: Unmittelbare Messung des Horizontallastverjhältnisses". Beton und Stahlbetonbau 89, Heft 3 - Ernst & Sohn
- LAMBERT, F. W., *The Theory and Practical Design of Bunkers*. The British Constructional Stellwork Association LTD, Hancock House, 87, Vincent Square, London, SW1
- MACDONALD, P.A , HOLMES, J. D., KWOK, K.C.S (1990). "Wind Loads on circular storage bins, silos and tanks. Part III. Fluctuating and Peak Pressure Distributions".

Journal of Wind Engineering and Structural Aerodynamics. 34 319-337. Elsevier Science Publishers B.V., Amsterdam.

- MADERSPACH, V., GAUNT, J.T., SWORD, J. II. (1973)"Buckling of Cylindrical Shells due to Wind Loading". Der Stahlbau 9, 269-277.
- MANUAL BRASILEIRO PARA CÁLCULO DE ESTRUTURAS METÁLICAS (1986), Vol II, Brasília/DF, MIC/STI.
- PIROK, J.N., WOZNIAK, R.S.(1989) "Steel Tanks". McGraw-Hill Book Company.
- ROTTER, J.M., JUMIKIS, P.T., FLEMING, S.P. (1989) "Experiments on the Buckling of Thinwalled Model Silo Structures". Journal Of Construction Steel Research 13
- TIMOSHENKO, Stephen P., GERE, James M.(1961) Theory of Elastic Stability. Tokyo, McGraw-Hill Kogakusha, 2nd ed.
- TIMOSHENKO, Stephen P. (1940) Theory of Plates and Shells. McGraw-Hill Book Company, Inc, New York.
- TRAHAIR, N.S. (1985) "Structural Design Criteria for Steel Bins and Silos". International Journal of Bulk Solids Storage in Silos. Vol 01, nº 2.
- TRAHAIR, N.S.et al. (1983) "Structural Design of Steel Bins for Bulk Solids". Australian Institute of Steel Construction, Nov.

ANEXO 5

TABELAS DE PERFIS DO

MANUAL BRASILEIRO PARA CÁLCULO DE ESTRUTURAS METÁLICAS

VOLUME II 1986

MINISTÉRIO DA INDÚSTRIA E DO COMÉRCIO SECRETARIA DE TECNOLOGIA INDUSTRIAL

		Ī				2	T. I	I _X	W _x	r _x	Ιy	Wy	ry
íP	d	^b f	^t w	۴f	r	cm²	Kg/m	cm ⁴	cm ³	cm	cm ⁴	cm ³	cm
80	80	46	3,8	5,2	5	7,64	6,0	80	20,0	3,24	8,49	3,69	1,05
100 120	100 120	55 64	4,1 4,4	5,7 6,3	7 7	10,3 13,2	8,1 10,4	171 318	34,2 53,0	4,07 4,90	15,9 27,7	5,79 8,65	1,24 1,45
140	140	73	4,7	6,9	7	16,4	12,9	541	77,3	5,74	44,9	12,3	1,65
160	160	82	5,0	7,4	9	20,1	15,8	869	109	6,58	68,3	16,7	1,84
180	180	91	5,3	8,0	9	23,9	18,8	1320	146	7,42	101	22,2	2,05
200 220 240 270 300 330 360	200 220 240 270 300 330 360	100 110 120 135 150 160 170	5,6 5,9 6,2 6,6 7,1 7,5 8,0	8,5 9,2 9,8 10,2 10,7 11,5 12,7	12 12 15 15 15 15 18 18	28,5 33,4 39,1 45,9 53,8 62,6 72,7	22,4 26,2 30,7 36,1 42,2 49,1 57,1	1940 2770 3890 5790 8360 11770 16270	194 252 324 429 557 713 904	8,26 9,11 9,97 11,2 12,5 13,7 15,0	142 205 284 420 604 788 1040	28,5 37,3 47,3 62,2 80,5 98,5 123	2,24 2,48 2,69 3,02 3,35 3,55 3,79
400 450 500 550	400 450 500 550	180 190 200 210	8,6 9,4 10,2 11,1	13,5 14,6 16,0 17,2	21 21 21 21 24	84,5 98,8 116 134	66,3 77,6 90,7 106	23130 33740 48200 67120)160 1500 1930 2440	16,5 18,5 20,4 22,3	1320 1680 2140 2670	146 176 214 254	3,95 4,12 4,31 4,45
600	600	220	12,0	19,0	24	156	122	92080	3070	24,3	3390	308	4,46

DESIG.	Р	MODUL. RESIST. PLÁSTICOS		l _T	C _w	r	d/A _f	β_1/W_x	β_2
IP	Kg/m	Z _x cm ³	$\frac{Z_y}{cm^3}$	cm ⁴	cm ⁶	Сл	1	МРа	
80	6.0	23,2	5,75	0,70	118	1,22	3,34	46431	3914
100 120 140 160 180 200 220 240	8,1 10,4 12,9 15,8 18,8 22,4 26,2 20,7	39,4 60,8 88,4 124 166 220 286	8,99 13,4 19,0 25,7 34,2 43,9 57,4	1,21 1,74 2,45 3,62 4,81 7,01 9,10	351 890 1980 3960 7430 12990 22670	1,45 1,69 1,93 2,15 2,39 2,59 2,87	3,19 2,98 2,78 2,64 2,47 2,33 2,17	41451 36310 32928 31425 29489 29257 27780	4851 6285 7600 8286 9421 9555 10453
270	36,1	484	72,6 95,6	12,9 16,0	37390 70580	3,11 3,51	2,04 1,96	27834 25366	10294 12409
300 330 360	42,2 49,1 57,1	628 804 1020	124 151 189	20,2 28,3 37,5	125900 199100 313600	3,90 4,13 4,40	1,87 1,79 1,67	23766 23705 23193	14286 14381 14986
400 450 500	66,3 77,6 90,7	1310 1700 2200	225 273 332	51,3 67,2 89.6	490000 791000	4,63 4,87	1,64 1,62	22792 21813	15769 17862
550 600	106 122	2780 3520	395 480	124 166	1884000 2846000	5,34 5,60	1,56 1,52	21211 21214 21049	19436 19660 20330

	[1 * -	y 				PI Di CC PF	ERFIS U DE E AÇO, LAN ONF, NBR 6 Ropriedae	ABAS IN MINADOS 351/81 DES PARA (con	CLINADAS PROJETO ntinuação)	5.
	ی ا ا					$egin{array}{c} heta \ heta \ heta \end{array}$	= 8% I = 5% I	oara d ≤ oara d >	300 300	
	OBS:	$l_{T} = l_{C_{W}} = \beta_{1} = \beta_{2} = \frac{\beta_{2}}{x} = l_{0} = 0$	MOME CONS [®] PARÂ DISTÂ DISTÂ	ENTO DE L'ANTE I METRO METRO INCIA D INCIA D	E INÉRCI DE EMPE DE TOR DE TOR O CG À H O CG AO	A À TORÇ NAMENTC ÇÀO UNIF ÇÃO NÃO FACE EXTI CENTRO	'ĀO) ORME (CO) UNIFORMI ERNA DA A DE CIZALH	NF. NBR 8 5 (CONF. ILMA IAMENTC	3800/86) NBR 8800/	86)
		MANU								
DESIG	Р	SISTENI	D RESIS- TE PLÁS-	-x	e _o	1 _r	Cu	d/A _c	$\beta_1/W_{\rm W}$	β2
DESIG. U	P Kg/m	$\frac{\text{NODOLO}}{\text{SISTENT}}$ $\frac{\text{Z}_{\text{X}}}{\text{cm}^3}$	D RESIS- TE PLÁS- CO Z _y cm ³	x cm	e _o cm	I _r cm4	C _w cm ⁶	d/A_{f} cm ⁻¹	β ₁ / _{Wx} MPa	β ₂
U U	P Kg/m	$\frac{\text{MODOLU}}{\text{SISTENT}}$ $\frac{\text{Z}_{\text{X}}}{\text{cm}^3}$	CO Zy cm ³	x cm	e ₀ cm 2.47	I _r cm ⁴	C _w cm ⁶	d/A_f cm ⁻¹	$\frac{\beta_1}{W_X}$ MPa	β ₂ - 753
DESIG. U 50	P Kg/m 5,59 7.09	$\frac{\text{MODOLU}}{\text{SISTENT}}$ $\frac{\text{Z}_{\text{X}}}{\text{cm}^3}$ $-$ 23.4	$ \frac{\text{D RESIS-}}{\text{E PLAS-}} \\ \frac{\text{CO}}{\text{Z}_{y}} \\ \frac{\text{cm}^{3}}{\text{-}} \\ 5.1 $	x cm 1,37 1,42	e _o cm 2,47 2,60	I _r cm ⁴ 1,12 1.61	C _w cm ⁶ 27,8 77,3	d/A _f cm ⁻¹ 1,88 2.06	$\beta_1/W_{\rm X}$ MPa 106977 86503	β ₂ - 753 1188
DESIG. U 50 65 80	P Kg/m 5,59 7,09 8,64	$\frac{\text{MODOLU}}{\text{SISTENT}}$ $\frac{\text{Z}_{\text{X}}}{\text{em}^3}$ $-$ $23,4$ $31,8$	$ \frac{\text{D RESIS-}}{\text{E PLAS-}} \\ \frac{\text{CO}}{\text{Z}_{y}} \\ \frac{\text{cm}^{3}}{\text{-}} \\ \frac{\text{-}}{5,1} \\ 16,6 \\ \end{array} $	x cm 1,37 1,42 1,45	e ₀ cm 2,47 2,60 2,67	I _f cm ⁴ 1,12 1,61 2,16	C _w cm ⁶ 27,8 77,3 168	d/A _f cm ⁻¹ 1,88 2,06 2,22	β_1/W_X MPa 106977 86503 73862	β_2 - 753 1188 1692
DESIG. U 50 65 80 100	P Kg/m 5,59 7,09 8,64 10,6	$ \begin{array}{r} \text{MODOLU} \\ \text{SISTENT} \\ \hline \\ \text{Cm}^3 \\ \hline \\ 23,4 \\ 31,8 \\ 49,0 \\ \end{array} $	D RESIS- TE PLÁS- CO Cm ³ - 5,1 16,6 22,3	x cm 1,37 1,42 1,45 1,55	eo cm 2,47 2,60 2,67 2,93	I _f cm ⁴ 1,12 1,61 2,16 2,81	C _w cm ⁶ 27,8 77,3 168 414	d/A _f cm ⁻¹ 1,88 2,06 2,22 2,35	$\beta_1/W_{\rm W}$ MPa 106977 86503 73862 60030	β ₂ - 753 1188 1692 2578
DESIG. U 50 65 80 100 120	P Kg/m 5,59 7,09 8,64 10,6 13,4			x cm 1,37 1,42 1,45 1,55 1,60	eo cm 2,47 2,60 2,67 2,93 3,03	I _f cm ⁴ 1,12 1,61 2,16 2,81 4,15	C _w cm ⁶ 27,8 77,3 168 414 900	d/A _f cm ⁻¹ 1,88 2,06 2,22 2,35 2,42	β_1/W_X MPa 106977 86503 73862 60030 55566	β ₂ - 753 1188 1692 2578 3235
DESIG. U 50 65 80 100 120	P Kg/m 5,59 7,09 8,64 10,6 13,4	$ \begin{array}{c} \text{MODOLU} \\ \text{SISTENT} \\ \text{TIC} \\ \hline \text{Z}_{X} \\ \hline \text{em}^{3} \\ \hline - \\ 23,4 \\ 31,8 \\ 49,0 \\ 72,6 \\ \hline \end{array} $	CO Cm ³ Cm ³	x cm 1,37 1,42 1,45 1,55 1,60	e ₀ cm 2,47 2,60 2,67 2,93 3,03	I ₁ cm ⁴ 1,12 1,61 2,16 2,81 4,15	C _w cm ⁶ 27,8 77,3 168 414 900	d/A_{f} cm ⁻¹ 1,88 2,06 2,22 2,35 2,42	$\beta_1/W_{\rm W}$ MPa 106977 86503 73862 60030 55566	β ₂ - 753 1188 1692 2578 3235
DESIG. U 50 65 80 100 120 140	P Kg/m 5,59 7,09 8,64 10,6 13,4 16,0	$ \begin{array}{r} \text{MODOLU} \\ \text{SISTENT} \\ \hline \text{TIC} \\ \hline \text{Z}_{\text{X}} \\ \hline \text{cm}^3 \\ \hline \\ - \\ 23,4 \\ 31,8 \\ 49,0 \\ 72,6 \\ \hline \\ 102.8 \\ \hline \end{array} $	CO Cm ³ Cm ³	x cm 1,37 1,42 1,45 1,55 1,60 1,75	e ₀ cm 2,47 2,60 2,67 2,93 3,03 3,37	I ₁ cm ⁴ 1,12 1,61 2,16 2,81 4,15 5,68	C _w cm ⁶ 27,8 77,3 168 414 900 1800	d/A _f cm ⁻¹ 1,88 2,06 2,22 2,35 2,42 2,33	β_1/W_X MPa 106977 86503 73862 60030 55566 50029	β ₂ 753 1188 1692 2578 3235 3890
DESIG. U 50 65 80 100 120 140 160	P Kg/m 5,59 7,09 8,64 10,6 13,4 16,0 18,8	$ \begin{array}{c} \text{MODOLU}\\ \text{SISTENT}\\ \text{TIC}\\ \text{Z}_{X}\\ \text{cm}^{3}\\ \begin{array}{c} -\\ 23,4\\ 31,8\\ 49,0\\ 72,6\\ 102.8\\ 137,6\\ \end{array} $	CO Cm ³ Cm ³	x cm 1,37 1,42 1,45 1,55 1,60 1,75 1,84	eo cm 2,47 2,60 2,67 2,93 3,03 3,37 3,56	I _r cm ⁴ 1,12 1,61 2,16 2,81 4,15 5,68 7,39	C _w cm ⁶ 27,8 77,3 168 414 900 1800 3260	d/A _f cm ⁻¹ 1,88 2,06 2,22 2,35 2,42 2,33 2,34 2,34	β_1/W_X MPa 106977 86503 73862 60030 55566 50029 46102	β ₂ - 753 1188 1692 2578 3235 3890 4652
DESIG. U 50 65 80 100 120 140 160 180	P Kg/m 5,59 7,09 8,64 10,6 13,4 16,0 18,8 22,0	$\begin{array}{r} \text{MODOLU}\\ \text{SISTENT}\\ \hline \text{TIC}\\ \hline \textbf{Z}_{\text{X}}\\ \hline \textbf{cm}^3\\ \hline -\\ 23,4\\ 31,8\\ 49,0\\ 72,6\\ 102.8\\ 137,6\\ 179,2\\ \hline \textbf{cm}^2, \textbf{cm}^2 \\ 102,8\\ 137,6\\ 179,2\\ \hline \textbf{cm}^2, \textbf{cm}^2 \\ \textbf{cm}^2, \textbf{cm}^2 \\ \textbf{cm}^2, \textbf{cm}^2 \\ \textbf{cm}^2, \textbf{cm}^2, \textbf{cm}^2 \\ \textbf{cm}^2, \textbf$	C RESIS- TE PLÁS- CO Z y cm ³ - 5,1 16,6 22,3 30,2 40,0 50,2 62,4	x cm 1,37 1,42 1,45 1,55 3,60 1,75 1,84 1,92	eo cm 2,47 2,60 2,67 2,93 3,03 3,37 3,56 3,75	I _r cm ⁴ 1,12 1,61 2,16 2,81 4,15 5,68 7,39 9,55	C _w cm ⁶ 27,8 77,3 168 414 900 1800 3260 5570	d/A _f cm ⁻¹ 1,88 2,06 2,22 2,35 2,42 2,33 2,34 2,34 2,34	β_1/W_X MPa 106977 86503 73862 60030 55566 50029 46102 43776	β ₂ - 753 1188 1692 2578 3235 3890 4652 5367
DESIG. U 50 65 80 100 120 140 160 180 200	P Kg/m 5,59 7,09 8,64 10,6 13,4 16,0 18,8 22,0 25,3	$\begin{array}{r} \text{MODOLU}\\ \text{SISTENT}\\ \hline \text{TIC}\\ \hline \textbf{Z}_{\text{X}}\\ \hline \textbf{cm}^3\\ \hline -\\ 23,4\\ 31,8\\ 49,0\\ 72,6\\ \hline 102.8\\ 137,6\\ 179,2\\ 228\\ 137,6\\ 179,2\\ 228\\ \hline \textbf{cc}\\ \textbf{cc}$	C RESIS- E PLÁS- CO Z y cm ³ - 5,1 16,6 22,3 30,2 40,0 50,2 62,4 72,6 22,6 20,2	x cm 1,37 1,42 1,45 1,55 3,60 1,75 1,84 1,92 2,01	eo cm 2,47 2,60 2,67 2,93 3,03 3,37 3,56 3,75 3,94	I ₁ cm ⁴ 1,12 1,61 2,16 2,81 4,15 5,68 7,39 9,55 11,9	C _w cm ⁶ 27,8 77,3 168 414 900 1800 3260 5570 9070	d/A _f cm ⁻¹ 1,88 2,06 2,22 2,35 2,42 2,33 2,34 2,34 2,34 2,34 2,32	$\beta_1/W_{\rm W}$ MPa 106977 86503 73862 60030 55566 50029 46102 43776 41154	β ₂ - 753 1188 1692 2578 3235 3890 4652 5367 6162
DESIG. U 50 65 80 100 120 140 160 180 200 220	P Kg/m 5,59 7,09 8,64 10,6 13,4 16,0 18,8 22,0 25,3 29,4	$\begin{array}{r} \text{MODOLU} \\ \text{SISTENT} \\ \hline \text{TIC} \\ \textbf{Z}_{\text{X}} \\ \hline \textbf{cm}^3 \\ \hline \textbf{-} \\ 23,4 \\ 31,8 \\ 49,0 \\ 72,6 \\ \hline 102,8 \\ 137,6 \\ 179,2 \\ 228 \\ 292 \\ \hline \end{array}$	CO Z y Cm ³ - 5,1 16,6 22,3 30,2 40,0 50.2 62,4 72,6 94,2	x cm 1,37 1,42 1,45 1,55 1,60 1,75 1,84 1,92 2,01 2,14	eo cm 2,47 2,60 2,67 2,93 3,03 3,37 3,56 3,75 3,94 4,20	I ₁ cm ⁴ 1,12 1,61 2,16 2,81 4,15 5,68 7,39 9,55 11,9 16,0	C _w cm ⁶ 27,8 77,3 168 414 900 1800 3260 5570 9070 14600	d/A _f cm ⁻¹ 1,88 2,06 2,22 2,35 2,42 2,33 2,34 2,34 2,34 2,32 2,20	β_1/W_X MPa 106977 86503 73862 60030 55566 50029 46102 43776 41154 40094	β_2 - 753 1188 1692 2578 3235 3890 4652 5367 6162 6450
DESIG. U 50 65 80 100 120 140 160 180 200 220 240	P Kg/m 5,59 7,09 8,64 10,6 13,4 16,0 18,8 22,0 25,3 29,4 33,2	$\begin{array}{r} \text{MODOLU} \\ \text{SISTENT} \\ \hline \text{TIC} \\ \textbf{Z}_{\text{X}} \\ \hline \textbf{cm}^3 \\ \hline \textbf{-} \\ 23,4 \\ 31,8 \\ 49,0 \\ 72,6 \\ 102.8 \\ 137,6 \\ 179,2 \\ 228 \\ 292 \\ 358 \\ \end{array}$	Co Z y cm ³ - 5,1 16,6 22,3 30,2 40,0 50.2 62,4 72,6 94,2 112	x cm 1,37 1,42 1,45 1,55 1,60 1,75 1,84 1,92 2,01 2,14 2,23	eo cm 2,47 2,60 2,67 2,93 3,03 3,37 3,56 3,75 3,94 4,20 4,39	I ₁ cm ⁴ 1,12 1,61 2,16 2,81 4,15 5,68 7,39 9,55 11,9 16,0 19,7	C _w cm ⁶ 27,8 77,3 168 414 900 1800 3260 5570 9070 14600 22100	$\frac{d/A_{f}}{cm^{-1}}$ 1,88 2,06 2,22 2,35 2,42 2,33 2,34 2,34 2,34 2,32 2,20 2,17	β_1/W_X MPa 106977 86503 73862 60030 55566 50029 46102 43776 41154 40094 38639	β ₂ - 753 1188 1692 2578 3235 3890 4652 5367 6162 6450 7091
DESIG. U 50 65 80 100 120 140 160 180 200 220 220 240 260	P Kg/m 5,59 7,09 8,64 10,6 13,4 16,0 18,8 22,0 25,3 29,4 33,2 37,9	$\begin{array}{r} \text{MODOLU} \\ \text{SISTENT} \\ \hline \text{TIC} \\ \textbf{Z}_{\text{X}} \\ \hline \textbf{cm}^3 \\ \hline \textbf{-} \\ 23,4 \\ 31,8 \\ 49,0 \\ 72,6 \\ \hline 102.8 \\ 137,6 \\ 179,2 \\ 228 \\ 292 \\ \hline 358 \\ 442 \\ \end{array}$	2 RESIS- E PLÁS- CO Z y cm ³ - 5,1 16,6 22,3 30,2 40,0 50.2 62,4 72,6 94,2 132 136	x cm 1,37 1,42 1,45 1,55 1,60 1,75 1,84 1,92 2,01 2,14 2,23 2,36	eo cm 2,47 2,60 2,67 2,93 3,03 3,37 3,56 3,75 3,94 4,20 4,39 4,66	I ₁ cm ⁴ 1,12 1,61 2,16 2,81 4,15 5,68 7,39 9,55 11,9 16,0 19,7 25,5	C _w cm ⁶ 27,8 77,3 168 414 900 1800 3260 5570 9070 14600 22100 33300	d/A _f cm ⁻¹ 1,88 2,06 2,22 2,35 2,42 2,33 2,34 2,34 2,34 2,32 2,20 2,17 2,06	β_1/W_X MPa 106977 86503 73862 60030 55566 50029 46102 43776 41154 40094 38639 37985	β ₂ - 753 1188 1692 2578 3235 3890 4652 5367 6162 6450 7091 7346
DESIG. U 50 65 80 100 120 140 160 180 200 220 240 260 280	P Kg/m 5,59 7,09 8,64 10,6 13,4 16,0 18,8 22,0 25,3 29,4 33,2 37,9 41,8	$\begin{array}{r} \text{MODOLU} \\ \text{SISTENT} \\ \hline \text{TIC} \\ \textbf{Z}_{\text{X}} \\ \hline \textbf{cm}^3 \\ \hline \textbf{-} \\ 23,4 \\ 31,8 \\ 49,0 \\ 72,6 \\ \hline \textbf{102.8} \\ 137,6 \\ 179,2 \\ 228 \\ 292 \\ \hline \textbf{358} \\ 442 \\ 532 \\ \end{array}$	Cm 3 Cm 4 Cm 4	x cm 1,37 1,42 1,45 1,55 1,60 1,75 1,84 1,92 2,01 2,14 2,23 2,36 2,53	eo cm 2,47 2,60 2,67 2,93 3,03 3,37 3,56 3,75 3,94 4,20 4,39 4,66 5,02	I,12 1,61 2,16 2,81 4,15 5,68 7,39 9,55 11,9 16,0 19,7 25,5 31.0	C _w cm ⁶ 27,8 77,3 168 414 900 1800 3260 5570 9070 14600 22100 33300 48500	d/A _f cm ⁻¹ 1,88 2,06 2,22 2,35 2,42 2,33 2,34 2,34 2,34 2,34 2,32 2,20 2,17 2,06 2,87	β_1/W_X MPa 106977 86503 73862 60030 55566 50029 46102 43776 41154 40094 38639 37985 36434	β ₂ - 753 1188 1692 2578 3235 3890 4652 5367 6162 6450 7091 7346 7338
DESIG. U 50 65 80 100 120 140 160 180 200 220 240 260 280 300	P Kg/m 5,59 7,09 8,64 10,6 13,4 16,0 18,8 22,0 25,3 29,4 33,2 37,9 41,8 46,2	$\begin{array}{c} \text{MODOLU} \\ \text{SISTENT} \\ \hline \text{TIC} \\ \textbf{Z}_{\text{X}} \\ \hline \textbf{cm}^3 \\ \hline \textbf{-} \\ 23,4 \\ 31,8 \\ 49,0 \\ 72,6 \\ \hline 102.8 \\ 137,6 \\ 179,2 \\ 228 \\ 292 \\ \hline 358 \\ 442 \\ 532 \\ 632 \\ \hline \end{array}$	Co Z y cm ³ - 5,1 16,6 22,3 30,2 40,0 50.2 62,4 72,6 94,2 132 136 160 188	x cm 1,37 1,42 1,45 1,55 1,60 1,75 1,84 1,92 2,01 2,14 2,23 2,36 2,53 2,70	eo cm 2,47 2,60 2,67 2,93 3,03 3,37 3,56 3,75 3,94 4,20 4,39 4,66 5,02 5,41	I,12 1,61 2,16 2,81 4,15 5,68 7,39 9,55 11,9 16,0 19,7 25,5 31,0 37,4	C _w cm ⁶ 27,8 77,3 168 414 900 1800 3260 5570 9070 14600 22100 33300 48500 69100	d/A _f cm ⁻¹ 1,88 2,06 2,22 2,35 2,42 2,33 2,34 2,34 2,34 2,32 2,20 2,17 2,06 2,87 1,87	β_1/W_X MPa 106977 86503 73862 60030 55566 50029 46102 43776 41154 40094 38639 37985 36434 35198	β ₂ - 753 1188 1692 2578 3235 3890 4652 5367 6162 6450 7091 7346 7338 8127
DESIG. U 50 65 80 100 120 140 160 180 200 220 240 260 280 300 320	P Kg/m 5,59 7,09 8,64 10,6 13,4 16,0 18,8 22,0 25,3 29,4 33,2 37,9 41,8 46,2 59,5	$\begin{array}{r} \text{MODULU} \\ \text{SISTENT} \\ \hline \text{TIG} \\ \hline \text{Z}_{\text{X}} \\ \hline \text{em}^3 \\ \hline \\ \hline \\ \text{-} \\ 23,4 \\ 31,8 \\ 49,0 \\ 72,6 \\ \hline \\ 102.8 \\ 137,6 \\ 179,2 \\ 228 \\ 292 \\ \hline \\ 358 \\ 442 \\ 532 \\ 632 \\ 826 \\ \hline \end{array}$	3 RESIS- E PLÁS- CO Z y cm ³ - 5,1 16,6 22,3 30,2 40,0 50.2 62,4 72,6 94,2 112 136 160 188 215	x cm 1,37 1,42 1,45 1,55 1,60 1,75 1,84 1,92 2,01 2,14 2,23 2,36 2,53 2,70 2,60	e ₀ cm 2,47 2,60 2,67 2,93 3,03 3,37 3,56 3,75 3,94 4,20 4,39 4,66 5,02 5,41 4,82	I,12 1,61 2,16 2,81 4,15 5,68 7,39 9,55 11,9 16,0 19,7 25,5 31,0 37,4 66,7	C _w cm ⁶ 27,8 77,3 168 414 900 1800 3260 5570 9070 14600 22100 33300 48500 69100 96100	d/A _f cm ⁻¹ 1,88 2,06 2,22 2,35 2,42 2,33 2,34 2,34 2,34 2,34 2,32 2,20 2,17 2,06 2,87 1,87 1,83	$\beta_1/W_{\rm X}$ MPa 106977 86503 73862 60030 55566 50029 46102 43776 41154 40094 38639 37985 36434 35198 42051	β_2 753 1188 1692 2578 3235 3890 4652 5367 6162 6450 7091 7346 7338 8127 6664
DESIG. U 50 65 80 100 120 140 160 180 200 220 240 260 280 300 320	P Kg/m 5,59 7,09 8,64 10,6 13,4 16,0 18,8 22,0 25,3 29,4 33,2 37,9 41,8 46,2 59,5 60,6	$\begin{array}{c} \text{MODULU} \\ \text{SISTENT} \\ \hline \text{TIG} \\ \textbf{Z}_{\text{X}} \\ \hline \textbf{cm}^3 \\ \hline \textbf{cm}^3$	D RESIS- E PLÁS- CO Z _y cm ³ - 5,1 16,6 22,3 30,2 40,0 50,2 62,4 72,6 94,2 112 136 160 188 215 205	x cm 1,37 1,42 1,45 1,55 1,60 1,75 1,84 1,92 2,01 2,14 2,23 2,36 2,53 2,70 2,60 2,40	eo cm 2,47 2,60 2,67 2,93 3,03 3,37 3,56 3,75 3,94 4,20 4,39 4,66 5,02 5,41 4,82 4,45	I _f cm ⁴ 1,12 1,61 2,16 2,81 4,15 5,68 7,39 9,55 11,9 16,0 19,7 25,5 31,0 37,4 66,7 61,2	C _w cm ⁶ 27,8 77,3 168 414 900 1800 3260 5570 9070 14600 22100 33300 48500 69100 96100	d/A _f cm ⁻¹ 1,88 2,06 2,22 2,35 2,42 2,33 2,34 2,34 2,34 2,34 2,34 2,34	β_1/W_{χ} MPa 106977 86503 73862 60030 55566 50029 46102 43776 41154 40094 38639 37985 36434 35198 42051 37628	β_2 - 753 1188 1692 2578 3235 3890 4652 5367 6162 6450 7091 7346 7338 8127 6664 9030
DESIG. U 50 65 80 100 120 140 160 180 200 220 240 260 280 300 320 320 350 380	P Kg/m 5,59 7,09 8,64 10,6 13,4 16,0 18,8 22,0 25,3 29,4 33,2 37,9 41,8 46,2 59,5 60,6 63,1	MODULU SISTENT TIC Z _x em ³ - 23,4 31,8 49,0 72,6 102.8 137,6 179,2 228 292 358 442 532 632 826 918 1014	D RESIS- E PLÁS- CO Z _y cm ³ - 5,1 16,6 22,3 30,2 40,0 50.2 62,4 72,6 94,2 112 136 160 188 215 205 214	x cm 1,37 1,42 1,45 1,55 1,60 1,75 1,84 1,92 2,01 2,14 2,23 2,36 2,53 2,70 2,60 2,40 2,38	eo cm 2,47 2,60 2,67 2,93 3,03 3,37 3,56 3,75 3,94 4,20 4,39 4,66 5,02 5,41 4,82 4,45 4,58	I _f cm ⁴ 1,12 1,61 2,16 2,81 4,15 5,68 7,39 9,55 11,9 16,0 19,7 25,5 31,0 37,4 66,7 61,2 59,1	C _w cm ⁶ 27,8 77,3 168 414 900 1800 3260 5570 9070 14600 22100 33300 48500 69100 96100 114000 146000	d/A _f cm ⁻¹ 1,88 2,06 2,22 2,35 2,42 2,33 2,34 2,34 2,34 2,34 2,34 2,32 2,20 2,17 2,06 2,87 1,87 1,83 2,19 2,33	β_1/W_{χ} MPa 106977 86503 73862 60030 55566 50029 46102 43776 41154 40094 38639 37985 36434 35198 42051 37628 33390	β_2 - 753 1188 1692 2578 3235 3890 4652 5367 6162 6450 7091 7346 7338 8127 6664 9030 11552
DESIG. U 50 65 80 100 120 140 160 180 200 220 240 260 280 300 320 350 380 400	P Kg/m 5,59 7,09 8,64 10,6 13,4 16,0 18,8 22,0 25,3 29,4 33,2 37,9 41,8 46,2 59,5 60,6 63,1 71,8	$\begin{array}{r} \text{MODOLU}\\ \text{SISTENT}\\ \hline \text{TIC}\\ \hline \textbf{Z}_{\text{X}}\\ \hline \textbf{cm}^3\\ \hline -\\ 23,4\\ 31,8\\ 49,0\\ 72,6\\ \hline 102,8\\ 137,6\\ 179,2\\ 228\\ 292\\ \hline 358\\ 442\\ 532\\ 632\\ 826\\ \hline 918\\ 1014\\ 1240\\ \hline \end{array}$	J RESIS- E PLÁS- CO Z y cm ³ - 5,1 16,6 22,3 30,2 40,0 50.2 62,4 72,6 94,2 112 136 160 188 215 205 214 279	x cm 1,37 1,42 1,45 1,55 1,60 1,75 1,84 1,92 2,01 2,14 2,23 2,36 2,53 2,70 2,60 2,40 2,38 2,65	eo cm 2,47 2,60 2,67 2,93 3,03 3,37 3,56 3,75 3,94 4,20 4,39 4,66 5,02 5,41 4,82 4,45 4,58 5,11	I _r cm ⁴ 1,12 1,61 2,16 2,81 4,15 5,68 7,39 9,55 11,9 16,0 19,7 25,5 31,0 37,4 66,7 61,2 59,1 81,6	C _w cm ⁶ 27,8 77,3 168 414 900 3260 5570 9070 14600 22100 33300 48500 69100 96100 114000 146000 221000	d/A _f cm ⁻¹ 1,88 2,06 2,22 2,35 2,42 2,33 2,34 2,34 2,34 2,34 2,32 2,20 2,17 2,06 2,87 1,87 1,83 2,19 2,33 2,02	β_1/W_{χ} MPa 106977 86503 73862 60030 55566 50029 46102 43776 41154 40094 38639 37985 36434 35198 42051 37628 33390 34017	β ₂ - 753 1188 1692 2578 3235 3890 4652 5367 6162 6450 7091 7346 7338 8127 6664 9030 11552 10487

ANEXO 2

TABELAS PARA

CÁLCULO DE PLACAS TEORIA DE GRANDES DEFLEXÕES

Extraídas de Gaylord&Gaylord (1984)

Design of Structural Components Chap. 6

				·····
$\frac{b}{t}\sqrt{\frac{f}{E}}$	$\frac{pE}{f^2}$	$\sqrt{\frac{p}{E}} \left(\frac{b}{t}\right)^2$	$\frac{f_{g}}{f}$	$\frac{\delta}{l}$
1.5	0.702	1.89	0.159	0.363
1.75	0.594	2.36	0.199	0.472
2	0.535	2.93	0.239	0.591
2.25	0.504	3.59	0.279	0.713
2.5	0.488	4.37	0.315	0.848
2.75	0.479	5,23	0.352	0.980
3	0.475	6.20	0.386	1.12
3.5	0.469	8.39	0.446	1.40
4	0.462	10.9	0.497	1.70
4.5	0.455	13.7	0.542	1.99
5	0.444	16.7	0.580	2.28
5.5	0.432	19.9	0.613	2.56
6	0.419	23.3	0.641	2.85
7	0.393	30.7	0.685	3.44
8	0.368	38.8	0.719	4.02
9	0.342	47.4	0.748	4.59
10	0.323	56.8	0.770	5.19
11	0.303	66.6	0.789	5.77
12	0.286	77.0	0.804	6.36
13	0.271	88.0	0.818	6.99
14	0.257	99.4	0.830	7.55
15	0.244	111.1	0.841	8,13
16	0.232	123.3	0.850	8.71
17	0.222	136.2	0.857	9.32
18	0.212	149.2	0.865	9.90

TABLE 6-5. UNIFORMLY LOADED RECTANGULAR PLATES WITH SIMPLY SUPPORTED EDGES: LARGE-DEFLECTION THEORY: $a/b \ge 2$

Chap. 6 Design of Structural Components

TABLE 6-6.	UNIFORMLY LOADED RECTANGULAR PLATES
WITH MOME	NT-RESISTANT EDGES: LARGE-DEFLECTION
THEORY: a/	1.5 ≼ t

$\frac{b}{t}\sqrt{\frac{f}{E}}$	$\frac{pE}{f^2}$	$\sqrt{\frac{\overline{p}}{E}} {\binom{b}{t}}^2$	$\frac{f_a}{f}$	$\frac{\delta}{t}$
1.50	0.880	2.11	0.019	0.116
1.75	0.645	2.46	0.025	0.169
2	0.497	2.82	0.032	0.223
2.25	0.393	3.17	0.040	0.273
2.5	0.321	3,54	0.047	0.329
2.75	0.268	3.92	0.055	0.393
3	0.229	4.31	0.062	0.458
3.5	0.175	5.12	0.078	0.588
4	0.141	6,01	0.090	0.737
4.5	0.118	6.96	0.102	0.882
5	0.101	7.95	0.112	1.02
5.5	0.0890	9.02	0.120	1.17
6	0.0794	10.1	0.127	1.21
7	0.0655	12.5	0.137	1.59
8	0.0558	15.1	0.144	1.88
9	0.0486	17.9	0.147	2.18
10	0.0431	20.8	0.150	2.47
11	0.0386	23.8	0.154	2.74
12	0.0350	26.9	0.156	3.01
13	0.0320	30.2	0.157	3.29
14	0.0295	33.7	0.158	3,59
15	0.0274	37.2	0.159	3.87
16	0.0254	40.8	0.159	4.15
17	0.0239	44.7	0.159	4.45
18	0.0224	48.5	0.160	4.72

195

Cálculo das Áreas de Fatias da Superfície Cônica

Figura 1 - Vistas de um Cone Fatiado

Figura 2 - Dimensões e Nomenclatura

O objetivo é calcular as áreas A_1 , A_2 , A_3 indicadas na figura 1. As áreas são superfícies cuja projeção R é uma curva diferenciável (um segmento de círculo), logo aplicase o cálculo diferencial com a fórmula extraída de SWOKOWSKI, Earl William. (Cálculo com Geometria Analítica, vol. 2, Mc Graw-Hill do Brasil, São Paulo, 1983) :

$$A = \iint_{R} \sqrt{\left(f_{x}(x,y)\right)^{2} + \left(f_{y}(x,y)\right)^{2} + 1} dA$$
1

Onde f_x é a derivada parcial em relação a x e f_y é a derivada parcial em relação a y. A função f da superfície do cone é dada em função de x e de y, tal que:

$$f(x, y) = z \Longrightarrow (2z - 5, 5)^2 = x^2 + y^2 \qquad z = \frac{\sqrt{x^2 + y^2 + 5, 5}}{2}$$
$$f_x(x, y) = \frac{1}{2} \frac{x}{\sqrt{x^2 + y^2}} \qquad f_y(x, y) = \frac{1}{2} \frac{y}{\sqrt{x^2 + y^2}}$$

Aplicando a equação 1 :

$$A = \iint_{R} \frac{\sqrt{5}}{2} dx dy$$

Os limites de integração serão aplicados para a dedução de uma fórmula geral para o cálculo de uma área de forma semelhante à área A_1 . Para tanto, são definidos os intervalos:

$$-\sqrt{R^2 - y^2} \le x \le 0 \qquad \qquad R_i \le y \le R$$

Substituindo os intervalos de x e de y na equação 2 :

$$\frac{A}{2} = \frac{\sqrt{5}}{2} \int_{R_i}^{R} \int_{-\sqrt{x^2 - y^2}}^{0} dx dy$$

$$\frac{A}{2} = \frac{\sqrt{5}}{2} \int_{R_i}^R 0 - \left(-\sqrt{R^2 - y^2}\right) dy \Rightarrow A = \frac{\sqrt{5}}{2} \left(\frac{y}{2}\sqrt{R^2 - y^2} + \frac{R^2}{2}\operatorname{arcsen}\left(\frac{y}{R}\right)\right) \Big|_{R_i}^R$$

$$A = \sqrt{5}R^{2} \left(\frac{\pi}{2} - \frac{a}{2}\sqrt{1 - a^{2}} + \frac{R^{2}}{2} \operatorname{arcsen}(a) \right)$$
3

A equação 3 é a fórmula para o cálculo de áreas semelhantes à área A₁ da **figura 1**. Para as dimensões indicadas na figura 2, as áreas resultam:

Figura 3 - Áreas da superfície cônica

Demonstração das Fórmulas dos Regimes de Membrana e de Flexão

(considerando-se um carregamento hidrostático)

(Luciano Jorge de Andrade Junior. São Carlos, outubro de 1997.)

1) Regime de Membrana ($N_{\theta} e N_z$)

(ou seja, o fundo do reservatório é considerado livre para se deslocar)

a) Carregamento hidrostático

$$N_{\theta} = -p_{y}r \qquad p_{y} = -\gamma z + \gamma H \therefore p_{y} = \gamma (H - z)$$
$$N_{\theta} = -\gamma (H - z)r \qquad N_{z} = 0$$
$$w(z) = \gamma (H - z) \cdot \frac{r^{2}}{Ee}$$

2) Regime de Flexão (N_{θ} , M_z e M_{θ})

A expressão completa dos deslocamentos é dada por:

$$w(z) = \gamma(H - z) \cdot \frac{r^2}{Ee} + \exp(-\beta z) \left[C_3 \cos(\beta z) + C_4 \sin(\beta z) \right]$$

2.1 - Fundo não-engastado.

Admitindo o fundo não-engastado, as condições de vinculação podem ser adotadas tais que:

$$w)_0 = 0$$
 (1) $\frac{d^2 w}{dz^2}_0 = 0$ (2)

Condição (1): $0 = \gamma H \frac{r^2}{Ee} + C_3 \Longrightarrow C_3 = -\gamma H \frac{r^2}{Ee}$

Condição (2):
$$\frac{dw}{dz} = -\gamma \frac{r^2}{Ee} - \beta \exp(-\beta z) [C_3 \cos(\beta z) + C_4 \sin(\beta z)] + \beta \exp(-\beta z) [-\beta C_3 \sin(\beta z) + \beta C_4 \cos(\beta z)]$$

$$\frac{d^2 w}{dz^2} = \beta^2 \exp(-\beta z) [C_3 \cos(\beta z) + C_4 \sin(\beta z)] - \beta \exp(-\beta z) [-\beta C_3 \sin(\beta z) + \beta C_4 \cos(\beta z)] - \beta \exp(-\beta z) [-\beta C_3 \sin(\beta z) + \beta C_4 \cos(\beta z)] + \exp(-\beta z) [-\beta^2 C_3 \cos(\beta z) - \beta^2 C_4 \sin(\beta z)]
$$\frac{d^2 w}{dz^2} = \beta^2 \exp(-\beta z) [2C_3 \sin(\beta z) - 2C_4 \cos(\beta z)] \frac{d^2 w}{dz^2} _0 = 0 \Rightarrow 0 = C_3 \sin(\beta z) - C_4 \cos(\beta z) \because \sin(\beta z) _{z=0} = 0 \therefore C_4 = 0 \frac{d^3 w}{dz^3} = -2\beta^3 \exp(-\beta z) [C_3 \sin(\beta z) - C_4 \cos(\beta z)] + 2\beta^2 \exp(-\beta z) [\beta C_3 \cos(\beta z) + \beta C_4 \sin(\beta z)] \frac{d^3 w}{dz^3} = 2\beta^3 \exp(-\beta z) [C_3 [\sin(\beta z) + \cos(\beta z)] + C_4 [\sin(\beta z) - \cos(\beta z)]$$$$

Pelos cálculos efetuados e substituindo-se os valores de C_3 e C_4 , a expressão dos deslocamentos resulta:

$$w(z) = \gamma \frac{r^2}{Ee} \left[(H - z) - H \cos(\beta z) \exp(-\beta z) \right] \qquad \beta^4 = \frac{3(1 - \nu^2)}{r^2 e^2}$$
$$D = \frac{Ee^3}{12(1 - \nu^2)}$$

A partir de w(z), os esforços $N_{\theta},\,M_z,\,M_{\theta}$ e Q_z podem ser calculados:

$$N_{\theta} = -\frac{Ee}{r} \mathbf{w} \therefore N_{\theta} = -\gamma r \Big[\mathbf{H} - \mathbf{z} - \mathbf{H} \exp(-\beta z) \cos(\beta z) \Big]$$

$$M_{z}(z) = -D\left[\frac{d^{2}w}{dz^{2}}\right] \therefore M_{z}(z) = \frac{\gamma Hr^{2}e^{2}\beta^{2}}{6(1-\nu^{2})} \exp(-\beta z) \operatorname{sen}(\beta z)$$

 $M_{\theta} = v M_z$

$$Q_z = -D\frac{d^3w}{dz^3} \therefore Q_z = \frac{e^2\beta^3 \exp(-\beta z)\gamma Hr^2}{6(1-\nu^2)} \left[\operatorname{sen}(\beta z) + \cos(\beta z) \right]$$

2.2 - Fundo engastado

Admitindo o fundo engastado, as condições de contorno são:

$$w)_0 = 0 \qquad (1) \qquad \qquad \frac{dw}{dz} \bigg|_0 = 0$$

Condição (1):
$$0 = \gamma \frac{\text{Hr}^2}{\text{Ee}} + \text{C}_3 \therefore \text{C}_3 = -\gamma \frac{\text{Hr}^2}{\text{Ee}}$$

Condição (2):
$$\frac{dw}{dz} = -\gamma \frac{r^2}{Ee} - \beta \exp(-\beta z) [C_3 \cos(\beta z) + C_4 \sin(\beta z)] + \exp(-\beta z) [-\beta C_3 \sin(\beta z) + \beta C_4 \cos(\beta z)]$$

$$\frac{\mathrm{dw}}{\mathrm{dz}}\Big|_{0} = 0 \Longrightarrow 0 = -\gamma \frac{\mathrm{r}^{2}}{\mathrm{Ee}} - \beta \mathrm{C}_{3} + \beta \mathrm{C}_{4} \Longrightarrow \mathrm{C}_{4} = \gamma \frac{\mathrm{r}^{2}}{\mathrm{Ee}} + \mathrm{C}_{3}$$

$$C_4 = \gamma \frac{r^2}{Ee} \left(\frac{1}{\beta} - H \right)$$

Substituindo-se os valores de C_3 e C_4 na equação dos deslocamentos, w(z) resulta:

$$w(z) = \gamma(H-z)\frac{r^{2}}{Ee} + \exp(-\beta z)\left[-\gamma H\frac{r^{2}}{Ee}\cos(\beta z) + \gamma\frac{r^{2}}{Ee}\left(\frac{1}{\beta} - H\right)\sin(\beta z)\right]$$

Os esforços são dados então por:

$$N_{\theta} = -\frac{\text{Ee}}{r} \mathbf{w} :$$

$$N_{\theta}(z) = \gamma r \left\{ \mathbf{H} - z + \exp(-\beta z) \left[-\mathbf{H} \cos(\beta z) + \left(\frac{1}{\beta} - \mathbf{H}\right) \sin(\beta z) \right] \right\}$$

$$\left[d^{2} \mathbf{w} \right]$$

$$M_z = -D \left[\frac{d^2 w}{dz^2} \right] \therefore$$

$$M_{z} = -\gamma \frac{e^{2}\beta^{2}r^{2}}{6(1-\nu^{2})} \exp(-\beta z) \left[-H \operatorname{sen}(\beta z) - \left(\frac{1}{\beta} - H\right) \cos(\beta z) \right]$$

 $M_{\theta} = v M_z$

$$Q_{z} = -D\left[\frac{d^{3}w}{dz^{3}}\right]:$$

$$Q_{z} = -\gamma \frac{e^{2}\beta^{3}r^{2}}{6(1-\nu^{2})} \exp(-\beta z) \left\{-2H \operatorname{sen}(\beta z) + \frac{1}{\beta} \left[\operatorname{sen}(\beta z) - \cos(\beta z)\right]\right\}$$

Deslocamentos e Tensões ao Longo de uma Linha Meridiona						
S	UX	UX	SY	Sy		
	Caso 1	Caso 2	Caso 1	Caso 2		
m	m	m	N/m2	N/m2		
0,00	4,55E-06	1,88E-05	3,08E+05	2131,7		
0,62	3,33E-05	7,58E-05	2,26E+06	3,90E+06		
1,25	6,20E-05	1,33E-04	4,20E+06	7,81E+06		
1,87	8,88E-05	1,88E-04	6,02E+06	1,16E+07		
2,49	1,19E-04	2,45E-04	8,06E+06	1,55E+07		
3,11	1,48E-04	3,05E-04	1,01E+07	1,96E+07		
3,74	1,77E-04	3,61E-04	1,20E+07	2,34E+07		
4,36	2,05E-04	4,18E-04	1,39E+07	2,73E+07		
4,98	2,34E-04	4,75E-04	1,59E+07	3,12E+07		
5,61	2,63E-04	5,31E-04	1,78E+07	3,51E+07		
6,23	2,91E-04	5,89E-04	1,98E+07	3,90E+07		
6,85	3,20E-04	6,48E-04	2,17E+07	4,31E+07		
7,48	3,49E-04	6,99E-04	2,36E+07	4,66E+07		
8,10	3,77E-04	7,56E-04	2,56E+07	5,05E+07		
8,72	4,06E-04	8,40E-04	2,75E+07	5,62E+07		
9,34	4,35E-04	8,47E-04	2,95E+07	5,67E+07		
9,97	4,63E-04	8,02E-04	3,14E+07	5,37E+07		
10,59	4,92E-04	7,68E-04	3,34E+07	5,14E+07		
11,21	5,21E-04	7,72E-04	3,53E+07	5,18E+07		
11,84	5,49E-04	8,36E-04	3,73E+07	5,61E+07		
12,46	5,78E-04	8,79E-04	3,92E+07	5,90E+07		
13,08	6,07E-04	9,18E-04	4,12E+07	6,17E+07		
13,70	6,36E-04	9,62E-04	4,31E+07	6,47E+07		
14,33	6,64E-04	1,01E-03	4,50E+07	6,77E+07		
14,95	6,93E-04	1,05E-03	4,70E+07	7,06E+07		
15,57	7,22E-04	1,09E-03	4,89E+07	7,35E+07		
16,20	7,50E-04	1,13E-03	5,09E+07	7,65E+07		
16,82	7,79E-04	1,18E-03	5,28E+07	7,96E+07		
17,44	8,08E-04	1,22E-03	5,48E+07	8,21E+07		
18,07	8,36E-04	1,26E-03	5,67E+07	8,50E+07		
18,69	8,65E-04	1,34E-03	5,87E+07	9,03E+07		
19,31	8,94E-04	1,31E-03	6,06E+07	8,89E+07		
19,93	9,22E-04	1,23E-03	6,25E+07	8,30E+07		
20,56	9,51E-04	1,16E-03	6,45E+07	7,83E+07		
21,18	9,80E-04	1,14E-03	6,64E+07	7,72E+07		
21,80	1,01E-03	1,20E-03	6,84E+07	8,13E+07		
22,43	1,04E-03	1,24E-03	7,03E+07	8,36E+07		
23,05	1,07E-03	1,26E-03	7,23E+07	8,56E+07		
23,67	1,09E-03	1,30E-03	7,42E+07	8,80E+07		
24,29	1,12E-03	1,33E-03	7,62E+07	9,04E+07		
24,92	1,15E-03	1,37E-03	7,81E+07	9,28E+07		
25,54	1,18E-03	1,40E-03	8,01E+07	9,48E+07		
26,16	1,21E-03	1,44E-03	8,20E+07	9,74E+07		
26,79	1,24E-03	1,48E-03	8,39E+07	1,01E+08		
27,41	1,27E-03	1,48E-03	8,59E+07	1,00E+08		
28,03	1,30E-03	1,37E-03	8,79E+07	9,31E+07		
28,65	1,32E-03	1,33E-03	8,98E+07	8,99E+07		
29,28	1,36E-03	1,36E-03	9,24E+07	9,24E+07		
29,90	1,78E-16	0	-1139,4	-4926,4		

MODELO 5 CASO 1 e CASO 2 Deslocamentos e Tensões ao Longo de uma Linha Meridiona

Tabela 12 - Deslocamentos e Tensões - Modelo 5 - Casos 1 e 2

Deslocamentos Radiais Casos 1 e 2

⁻ensões Tangenciais Caoso 1 e 2

ANEXOS

ANEXO 1 - Valores de Cálculo para Materiais Ensilados (Tabela 1 da DIN1055-6 (1986)).

ANEXO 2 - Tabelas para Cálculo de Placas - Teoria de Grandes Deflexões.

ANEXO 3 - Isopletas da Velocidade Básica V₀ (m/s) (Tabela 1 da NBR 6123 (1987)).

ANEXO 4 - Cálculo das Áreas de Fatias da Superfície Cônica.

ANEXO 5 - Tabelas de Perfis do Manual Brasileiro para Cálculo de Estruturas Metálicas.

ANEXO 6 - Demonstração das Fórmulas dos Regimes de Membrana e de Flexão.

